Daily bump.
[official-gcc.git] / gcc / function.c
blob5922712b8edbae1464c696009902bdb57b39b1e9
1 /* Expands front end tree to back end RTL for GNU C-Compiler
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register.
36 Call `put_var_into_stack' when you learn, belatedly, that a variable
37 previously given a pseudo-register must in fact go in the stack.
38 This function changes the DECL_RTL to be a stack slot instead of a reg
39 then scans all the RTL instructions so far generated to correct them. */
41 #include "config.h"
42 #include "system.h"
43 #include "rtl.h"
44 #include "tree.h"
45 #include "flags.h"
46 #include "except.h"
47 #include "function.h"
48 #include "expr.h"
49 #include "libfuncs.h"
50 #include "regs.h"
51 #include "hard-reg-set.h"
52 #include "insn-config.h"
53 #include "recog.h"
54 #include "output.h"
55 #include "basic-block.h"
56 #include "obstack.h"
57 #include "toplev.h"
58 #include "hash.h"
59 #include "ggc.h"
60 #include "tm_p.h"
61 #include "integrate.h"
62 #include "langhooks.h"
64 #ifndef TRAMPOLINE_ALIGNMENT
65 #define TRAMPOLINE_ALIGNMENT FUNCTION_BOUNDARY
66 #endif
68 #ifndef LOCAL_ALIGNMENT
69 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
70 #endif
72 /* Some systems use __main in a way incompatible with its use in gcc, in these
73 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
74 give the same symbol without quotes for an alternative entry point. You
75 must define both, or neither. */
76 #ifndef NAME__MAIN
77 #define NAME__MAIN "__main"
78 #define SYMBOL__MAIN __main
79 #endif
81 /* Round a value to the lowest integer less than it that is a multiple of
82 the required alignment. Avoid using division in case the value is
83 negative. Assume the alignment is a power of two. */
84 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
86 /* Similar, but round to the next highest integer that meets the
87 alignment. */
88 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
90 /* NEED_SEPARATE_AP means that we cannot derive ap from the value of fp
91 during rtl generation. If they are different register numbers, this is
92 always true. It may also be true if
93 FIRST_PARM_OFFSET - STARTING_FRAME_OFFSET is not a constant during rtl
94 generation. See fix_lexical_addr for details. */
96 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
97 #define NEED_SEPARATE_AP
98 #endif
100 /* Nonzero if function being compiled doesn't contain any calls
101 (ignoring the prologue and epilogue). This is set prior to
102 local register allocation and is valid for the remaining
103 compiler passes. */
104 int current_function_is_leaf;
106 /* Nonzero if function being compiled doesn't contain any instructions
107 that can throw an exception. This is set prior to final. */
109 int current_function_nothrow;
111 /* Nonzero if function being compiled doesn't modify the stack pointer
112 (ignoring the prologue and epilogue). This is only valid after
113 life_analysis has run. */
114 int current_function_sp_is_unchanging;
116 /* Nonzero if the function being compiled is a leaf function which only
117 uses leaf registers. This is valid after reload (specifically after
118 sched2) and is useful only if the port defines LEAF_REGISTERS. */
119 int current_function_uses_only_leaf_regs;
121 /* Nonzero once virtual register instantiation has been done.
122 assign_stack_local uses frame_pointer_rtx when this is nonzero.
123 calls.c:emit_library_call_value_1 uses it to set up
124 post-instantiation libcalls. */
125 int virtuals_instantiated;
127 /* These variables hold pointers to functions to create and destroy
128 target specific, per-function data structures. */
129 void (*init_machine_status) PARAMS ((struct function *));
130 void (*free_machine_status) PARAMS ((struct function *));
131 /* This variable holds a pointer to a function to register any
132 data items in the target specific, per-function data structure
133 that will need garbage collection. */
134 void (*mark_machine_status) PARAMS ((struct function *));
136 /* Likewise, but for language-specific data. */
137 void (*init_lang_status) PARAMS ((struct function *));
138 void (*save_lang_status) PARAMS ((struct function *));
139 void (*restore_lang_status) PARAMS ((struct function *));
140 void (*mark_lang_status) PARAMS ((struct function *));
141 void (*free_lang_status) PARAMS ((struct function *));
143 /* The FUNCTION_DECL for an inline function currently being expanded. */
144 tree inline_function_decl;
146 /* The currently compiled function. */
147 struct function *cfun = 0;
149 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
150 static varray_type prologue;
151 static varray_type epilogue;
153 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
154 in this function. */
155 static varray_type sibcall_epilogue;
157 /* In order to evaluate some expressions, such as function calls returning
158 structures in memory, we need to temporarily allocate stack locations.
159 We record each allocated temporary in the following structure.
161 Associated with each temporary slot is a nesting level. When we pop up
162 one level, all temporaries associated with the previous level are freed.
163 Normally, all temporaries are freed after the execution of the statement
164 in which they were created. However, if we are inside a ({...}) grouping,
165 the result may be in a temporary and hence must be preserved. If the
166 result could be in a temporary, we preserve it if we can determine which
167 one it is in. If we cannot determine which temporary may contain the
168 result, all temporaries are preserved. A temporary is preserved by
169 pretending it was allocated at the previous nesting level.
171 Automatic variables are also assigned temporary slots, at the nesting
172 level where they are defined. They are marked a "kept" so that
173 free_temp_slots will not free them. */
175 struct temp_slot
177 /* Points to next temporary slot. */
178 struct temp_slot *next;
179 /* The rtx to used to reference the slot. */
180 rtx slot;
181 /* The rtx used to represent the address if not the address of the
182 slot above. May be an EXPR_LIST if multiple addresses exist. */
183 rtx address;
184 /* The alignment (in bits) of the slot. */
185 unsigned int align;
186 /* The size, in units, of the slot. */
187 HOST_WIDE_INT size;
188 /* The type of the object in the slot, or zero if it doesn't correspond
189 to a type. We use this to determine whether a slot can be reused.
190 It can be reused if objects of the type of the new slot will always
191 conflict with objects of the type of the old slot. */
192 tree type;
193 /* The value of `sequence_rtl_expr' when this temporary is allocated. */
194 tree rtl_expr;
195 /* Non-zero if this temporary is currently in use. */
196 char in_use;
197 /* Non-zero if this temporary has its address taken. */
198 char addr_taken;
199 /* Nesting level at which this slot is being used. */
200 int level;
201 /* Non-zero if this should survive a call to free_temp_slots. */
202 int keep;
203 /* The offset of the slot from the frame_pointer, including extra space
204 for alignment. This info is for combine_temp_slots. */
205 HOST_WIDE_INT base_offset;
206 /* The size of the slot, including extra space for alignment. This
207 info is for combine_temp_slots. */
208 HOST_WIDE_INT full_size;
211 /* This structure is used to record MEMs or pseudos used to replace VAR, any
212 SUBREGs of VAR, and any MEMs containing VAR as an address. We need to
213 maintain this list in case two operands of an insn were required to match;
214 in that case we must ensure we use the same replacement. */
216 struct fixup_replacement
218 rtx old;
219 rtx new;
220 struct fixup_replacement *next;
223 struct insns_for_mem_entry
225 /* The KEY in HE will be a MEM. */
226 struct hash_entry he;
227 /* These are the INSNS which reference the MEM. */
228 rtx insns;
231 /* Forward declarations. */
233 static rtx assign_stack_local_1 PARAMS ((enum machine_mode, HOST_WIDE_INT,
234 int, struct function *));
235 static struct temp_slot *find_temp_slot_from_address PARAMS ((rtx));
236 static void put_reg_into_stack PARAMS ((struct function *, rtx, tree,
237 enum machine_mode, enum machine_mode,
238 int, unsigned int, int,
239 struct hash_table *));
240 static void schedule_fixup_var_refs PARAMS ((struct function *, rtx, tree,
241 enum machine_mode,
242 struct hash_table *));
243 static void fixup_var_refs PARAMS ((rtx, enum machine_mode, int, rtx,
244 struct hash_table *));
245 static struct fixup_replacement
246 *find_fixup_replacement PARAMS ((struct fixup_replacement **, rtx));
247 static void fixup_var_refs_insns PARAMS ((rtx, rtx, enum machine_mode,
248 int, int, rtx));
249 static void fixup_var_refs_insns_with_hash
250 PARAMS ((struct hash_table *, rtx,
251 enum machine_mode, int, rtx));
252 static void fixup_var_refs_insn PARAMS ((rtx, rtx, enum machine_mode,
253 int, int, rtx));
254 static void fixup_var_refs_1 PARAMS ((rtx, enum machine_mode, rtx *, rtx,
255 struct fixup_replacement **, rtx));
256 static rtx fixup_memory_subreg PARAMS ((rtx, rtx, int));
257 static rtx walk_fixup_memory_subreg PARAMS ((rtx, rtx, int));
258 static rtx fixup_stack_1 PARAMS ((rtx, rtx));
259 static void optimize_bit_field PARAMS ((rtx, rtx, rtx *));
260 static void instantiate_decls PARAMS ((tree, int));
261 static void instantiate_decls_1 PARAMS ((tree, int));
262 static void instantiate_decl PARAMS ((rtx, HOST_WIDE_INT, int));
263 static rtx instantiate_new_reg PARAMS ((rtx, HOST_WIDE_INT *));
264 static int instantiate_virtual_regs_1 PARAMS ((rtx *, rtx, int));
265 static void delete_handlers PARAMS ((void));
266 static void pad_to_arg_alignment PARAMS ((struct args_size *, int,
267 struct args_size *));
268 #ifndef ARGS_GROW_DOWNWARD
269 static void pad_below PARAMS ((struct args_size *, enum machine_mode,
270 tree));
271 #endif
272 static rtx round_trampoline_addr PARAMS ((rtx));
273 static rtx adjust_trampoline_addr PARAMS ((rtx));
274 static tree *identify_blocks_1 PARAMS ((rtx, tree *, tree *, tree *));
275 static void reorder_blocks_0 PARAMS ((tree));
276 static void reorder_blocks_1 PARAMS ((rtx, tree, varray_type *));
277 static void reorder_fix_fragments PARAMS ((tree));
278 static tree blocks_nreverse PARAMS ((tree));
279 static int all_blocks PARAMS ((tree, tree *));
280 static tree *get_block_vector PARAMS ((tree, int *));
281 extern tree debug_find_var_in_block_tree PARAMS ((tree, tree));
282 /* We always define `record_insns' even if its not used so that we
283 can always export `prologue_epilogue_contains'. */
284 static void record_insns PARAMS ((rtx, varray_type *)) ATTRIBUTE_UNUSED;
285 static int contains PARAMS ((rtx, varray_type));
286 #ifdef HAVE_return
287 static void emit_return_into_block PARAMS ((basic_block, rtx));
288 #endif
289 static void put_addressof_into_stack PARAMS ((rtx, struct hash_table *));
290 static bool purge_addressof_1 PARAMS ((rtx *, rtx, int, int,
291 struct hash_table *));
292 static void purge_single_hard_subreg_set PARAMS ((rtx));
293 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
294 static rtx keep_stack_depressed PARAMS ((rtx));
295 #endif
296 static int is_addressof PARAMS ((rtx *, void *));
297 static struct hash_entry *insns_for_mem_newfunc PARAMS ((struct hash_entry *,
298 struct hash_table *,
299 hash_table_key));
300 static unsigned long insns_for_mem_hash PARAMS ((hash_table_key));
301 static bool insns_for_mem_comp PARAMS ((hash_table_key, hash_table_key));
302 static int insns_for_mem_walk PARAMS ((rtx *, void *));
303 static void compute_insns_for_mem PARAMS ((rtx, rtx, struct hash_table *));
304 static void mark_function_status PARAMS ((struct function *));
305 static void maybe_mark_struct_function PARAMS ((void *));
306 static void prepare_function_start PARAMS ((void));
307 static void do_clobber_return_reg PARAMS ((rtx, void *));
308 static void do_use_return_reg PARAMS ((rtx, void *));
310 /* Pointer to chain of `struct function' for containing functions. */
311 static struct function *outer_function_chain;
313 /* Given a function decl for a containing function,
314 return the `struct function' for it. */
316 struct function *
317 find_function_data (decl)
318 tree decl;
320 struct function *p;
322 for (p = outer_function_chain; p; p = p->outer)
323 if (p->decl == decl)
324 return p;
326 abort ();
329 /* Save the current context for compilation of a nested function.
330 This is called from language-specific code. The caller should use
331 the save_lang_status callback to save any language-specific state,
332 since this function knows only about language-independent
333 variables. */
335 void
336 push_function_context_to (context)
337 tree context;
339 struct function *p;
341 if (context)
343 if (context == current_function_decl)
344 cfun->contains_functions = 1;
345 else
347 struct function *containing = find_function_data (context);
348 containing->contains_functions = 1;
352 if (cfun == 0)
353 init_dummy_function_start ();
354 p = cfun;
356 p->outer = outer_function_chain;
357 outer_function_chain = p;
358 p->fixup_var_refs_queue = 0;
360 if (save_lang_status)
361 (*save_lang_status) (p);
363 cfun = 0;
366 void
367 push_function_context ()
369 push_function_context_to (current_function_decl);
372 /* Restore the last saved context, at the end of a nested function.
373 This function is called from language-specific code. */
375 void
376 pop_function_context_from (context)
377 tree context ATTRIBUTE_UNUSED;
379 struct function *p = outer_function_chain;
380 struct var_refs_queue *queue;
382 cfun = p;
383 outer_function_chain = p->outer;
385 current_function_decl = p->decl;
386 reg_renumber = 0;
388 restore_emit_status (p);
390 if (restore_lang_status)
391 (*restore_lang_status) (p);
393 /* Finish doing put_var_into_stack for any of our variables which became
394 addressable during the nested function. If only one entry has to be
395 fixed up, just do that one. Otherwise, first make a list of MEMs that
396 are not to be unshared. */
397 if (p->fixup_var_refs_queue == 0)
399 else if (p->fixup_var_refs_queue->next == 0)
400 fixup_var_refs (p->fixup_var_refs_queue->modified,
401 p->fixup_var_refs_queue->promoted_mode,
402 p->fixup_var_refs_queue->unsignedp,
403 p->fixup_var_refs_queue->modified, 0);
404 else
406 rtx list = 0;
408 for (queue = p->fixup_var_refs_queue; queue; queue = queue->next)
409 list = gen_rtx_EXPR_LIST (VOIDmode, queue->modified, list);
411 for (queue = p->fixup_var_refs_queue; queue; queue = queue->next)
412 fixup_var_refs (queue->modified, queue->promoted_mode,
413 queue->unsignedp, list, 0);
417 p->fixup_var_refs_queue = 0;
419 /* Reset variables that have known state during rtx generation. */
420 rtx_equal_function_value_matters = 1;
421 virtuals_instantiated = 0;
422 generating_concat_p = 1;
425 void
426 pop_function_context ()
428 pop_function_context_from (current_function_decl);
431 /* Clear out all parts of the state in F that can safely be discarded
432 after the function has been parsed, but not compiled, to let
433 garbage collection reclaim the memory. */
435 void
436 free_after_parsing (f)
437 struct function *f;
439 /* f->expr->forced_labels is used by code generation. */
440 /* f->emit->regno_reg_rtx is used by code generation. */
441 /* f->varasm is used by code generation. */
442 /* f->eh->eh_return_stub_label is used by code generation. */
444 if (free_lang_status)
445 (*free_lang_status) (f);
446 free_stmt_status (f);
449 /* Clear out all parts of the state in F that can safely be discarded
450 after the function has been compiled, to let garbage collection
451 reclaim the memory. */
453 void
454 free_after_compilation (f)
455 struct function *f;
457 free_eh_status (f);
458 free_expr_status (f);
459 free_emit_status (f);
460 free_varasm_status (f);
462 if (free_machine_status)
463 (*free_machine_status) (f);
465 if (f->x_parm_reg_stack_loc)
466 free (f->x_parm_reg_stack_loc);
468 f->x_temp_slots = NULL;
469 f->arg_offset_rtx = NULL;
470 f->return_rtx = NULL;
471 f->internal_arg_pointer = NULL;
472 f->x_nonlocal_labels = NULL;
473 f->x_nonlocal_goto_handler_slots = NULL;
474 f->x_nonlocal_goto_handler_labels = NULL;
475 f->x_nonlocal_goto_stack_level = NULL;
476 f->x_cleanup_label = NULL;
477 f->x_return_label = NULL;
478 f->x_save_expr_regs = NULL;
479 f->x_stack_slot_list = NULL;
480 f->x_rtl_expr_chain = NULL;
481 f->x_tail_recursion_label = NULL;
482 f->x_tail_recursion_reentry = NULL;
483 f->x_arg_pointer_save_area = NULL;
484 f->x_clobber_return_insn = NULL;
485 f->x_context_display = NULL;
486 f->x_trampoline_list = NULL;
487 f->x_parm_birth_insn = NULL;
488 f->x_last_parm_insn = NULL;
489 f->x_parm_reg_stack_loc = NULL;
490 f->fixup_var_refs_queue = NULL;
491 f->original_arg_vector = NULL;
492 f->original_decl_initial = NULL;
493 f->inl_last_parm_insn = NULL;
494 f->epilogue_delay_list = NULL;
497 /* Allocate fixed slots in the stack frame of the current function. */
499 /* Return size needed for stack frame based on slots so far allocated in
500 function F.
501 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
502 the caller may have to do that. */
504 HOST_WIDE_INT
505 get_func_frame_size (f)
506 struct function *f;
508 #ifdef FRAME_GROWS_DOWNWARD
509 return -f->x_frame_offset;
510 #else
511 return f->x_frame_offset;
512 #endif
515 /* Return size needed for stack frame based on slots so far allocated.
516 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
517 the caller may have to do that. */
518 HOST_WIDE_INT
519 get_frame_size ()
521 return get_func_frame_size (cfun);
524 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
525 with machine mode MODE.
527 ALIGN controls the amount of alignment for the address of the slot:
528 0 means according to MODE,
529 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
530 positive specifies alignment boundary in bits.
532 We do not round to stack_boundary here.
534 FUNCTION specifies the function to allocate in. */
536 static rtx
537 assign_stack_local_1 (mode, size, align, function)
538 enum machine_mode mode;
539 HOST_WIDE_INT size;
540 int align;
541 struct function *function;
543 rtx x, addr;
544 int bigend_correction = 0;
545 int alignment;
546 int frame_off, frame_alignment, frame_phase;
548 if (align == 0)
550 tree type;
552 if (mode == BLKmode)
553 alignment = BIGGEST_ALIGNMENT;
554 else
555 alignment = GET_MODE_ALIGNMENT (mode);
557 /* Allow the target to (possibly) increase the alignment of this
558 stack slot. */
559 type = (*lang_hooks.types.type_for_mode) (mode, 0);
560 if (type)
561 alignment = LOCAL_ALIGNMENT (type, alignment);
563 alignment /= BITS_PER_UNIT;
565 else if (align == -1)
567 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
568 size = CEIL_ROUND (size, alignment);
570 else
571 alignment = align / BITS_PER_UNIT;
573 #ifdef FRAME_GROWS_DOWNWARD
574 function->x_frame_offset -= size;
575 #endif
577 /* Ignore alignment we can't do with expected alignment of the boundary. */
578 if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
579 alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
581 if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
582 function->stack_alignment_needed = alignment * BITS_PER_UNIT;
584 /* Calculate how many bytes the start of local variables is off from
585 stack alignment. */
586 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
587 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
588 frame_phase = frame_off ? frame_alignment - frame_off : 0;
590 /* Round frame offset to that alignment.
591 We must be careful here, since FRAME_OFFSET might be negative and
592 division with a negative dividend isn't as well defined as we might
593 like. So we instead assume that ALIGNMENT is a power of two and
594 use logical operations which are unambiguous. */
595 #ifdef FRAME_GROWS_DOWNWARD
596 function->x_frame_offset = FLOOR_ROUND (function->x_frame_offset - frame_phase, alignment) + frame_phase;
597 #else
598 function->x_frame_offset = CEIL_ROUND (function->x_frame_offset - frame_phase, alignment) + frame_phase;
599 #endif
601 /* On a big-endian machine, if we are allocating more space than we will use,
602 use the least significant bytes of those that are allocated. */
603 if (BYTES_BIG_ENDIAN && mode != BLKmode)
604 bigend_correction = size - GET_MODE_SIZE (mode);
606 /* If we have already instantiated virtual registers, return the actual
607 address relative to the frame pointer. */
608 if (function == cfun && virtuals_instantiated)
609 addr = plus_constant (frame_pointer_rtx,
610 (frame_offset + bigend_correction
611 + STARTING_FRAME_OFFSET));
612 else
613 addr = plus_constant (virtual_stack_vars_rtx,
614 function->x_frame_offset + bigend_correction);
616 #ifndef FRAME_GROWS_DOWNWARD
617 function->x_frame_offset += size;
618 #endif
620 x = gen_rtx_MEM (mode, addr);
622 function->x_stack_slot_list
623 = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
625 return x;
628 /* Wrapper around assign_stack_local_1; assign a local stack slot for the
629 current function. */
632 assign_stack_local (mode, size, align)
633 enum machine_mode mode;
634 HOST_WIDE_INT size;
635 int align;
637 return assign_stack_local_1 (mode, size, align, cfun);
640 /* Allocate a temporary stack slot and record it for possible later
641 reuse.
643 MODE is the machine mode to be given to the returned rtx.
645 SIZE is the size in units of the space required. We do no rounding here
646 since assign_stack_local will do any required rounding.
648 KEEP is 1 if this slot is to be retained after a call to
649 free_temp_slots. Automatic variables for a block are allocated
650 with this flag. KEEP is 2 if we allocate a longer term temporary,
651 whose lifetime is controlled by CLEANUP_POINT_EXPRs. KEEP is 3
652 if we are to allocate something at an inner level to be treated as
653 a variable in the block (e.g., a SAVE_EXPR).
655 TYPE is the type that will be used for the stack slot. */
658 assign_stack_temp_for_type (mode, size, keep, type)
659 enum machine_mode mode;
660 HOST_WIDE_INT size;
661 int keep;
662 tree type;
664 unsigned int align;
665 struct temp_slot *p, *best_p = 0;
667 /* If SIZE is -1 it means that somebody tried to allocate a temporary
668 of a variable size. */
669 if (size == -1)
670 abort ();
672 if (mode == BLKmode)
673 align = BIGGEST_ALIGNMENT;
674 else
675 align = GET_MODE_ALIGNMENT (mode);
677 if (! type)
678 type = (*lang_hooks.types.type_for_mode) (mode, 0);
680 if (type)
681 align = LOCAL_ALIGNMENT (type, align);
683 /* Try to find an available, already-allocated temporary of the proper
684 mode which meets the size and alignment requirements. Choose the
685 smallest one with the closest alignment. */
686 for (p = temp_slots; p; p = p->next)
687 if (p->align >= align && p->size >= size && GET_MODE (p->slot) == mode
688 && ! p->in_use
689 && objects_must_conflict_p (p->type, type)
690 && (best_p == 0 || best_p->size > p->size
691 || (best_p->size == p->size && best_p->align > p->align)))
693 if (p->align == align && p->size == size)
695 best_p = 0;
696 break;
698 best_p = p;
701 /* Make our best, if any, the one to use. */
702 if (best_p)
704 /* If there are enough aligned bytes left over, make them into a new
705 temp_slot so that the extra bytes don't get wasted. Do this only
706 for BLKmode slots, so that we can be sure of the alignment. */
707 if (GET_MODE (best_p->slot) == BLKmode)
709 int alignment = best_p->align / BITS_PER_UNIT;
710 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
712 if (best_p->size - rounded_size >= alignment)
714 p = (struct temp_slot *) ggc_alloc (sizeof (struct temp_slot));
715 p->in_use = p->addr_taken = 0;
716 p->size = best_p->size - rounded_size;
717 p->base_offset = best_p->base_offset + rounded_size;
718 p->full_size = best_p->full_size - rounded_size;
719 p->slot = gen_rtx_MEM (BLKmode,
720 plus_constant (XEXP (best_p->slot, 0),
721 rounded_size));
722 p->align = best_p->align;
723 p->address = 0;
724 p->rtl_expr = 0;
725 p->type = best_p->type;
726 p->next = temp_slots;
727 temp_slots = p;
729 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
730 stack_slot_list);
732 best_p->size = rounded_size;
733 best_p->full_size = rounded_size;
737 p = best_p;
740 /* If we still didn't find one, make a new temporary. */
741 if (p == 0)
743 HOST_WIDE_INT frame_offset_old = frame_offset;
745 p = (struct temp_slot *) ggc_alloc (sizeof (struct temp_slot));
747 /* We are passing an explicit alignment request to assign_stack_local.
748 One side effect of that is assign_stack_local will not round SIZE
749 to ensure the frame offset remains suitably aligned.
751 So for requests which depended on the rounding of SIZE, we go ahead
752 and round it now. We also make sure ALIGNMENT is at least
753 BIGGEST_ALIGNMENT. */
754 if (mode == BLKmode && align < BIGGEST_ALIGNMENT)
755 abort ();
756 p->slot = assign_stack_local (mode,
757 (mode == BLKmode
758 ? CEIL_ROUND (size, align / BITS_PER_UNIT)
759 : size),
760 align);
762 p->align = align;
764 /* The following slot size computation is necessary because we don't
765 know the actual size of the temporary slot until assign_stack_local
766 has performed all the frame alignment and size rounding for the
767 requested temporary. Note that extra space added for alignment
768 can be either above or below this stack slot depending on which
769 way the frame grows. We include the extra space if and only if it
770 is above this slot. */
771 #ifdef FRAME_GROWS_DOWNWARD
772 p->size = frame_offset_old - frame_offset;
773 #else
774 p->size = size;
775 #endif
777 /* Now define the fields used by combine_temp_slots. */
778 #ifdef FRAME_GROWS_DOWNWARD
779 p->base_offset = frame_offset;
780 p->full_size = frame_offset_old - frame_offset;
781 #else
782 p->base_offset = frame_offset_old;
783 p->full_size = frame_offset - frame_offset_old;
784 #endif
785 p->address = 0;
786 p->next = temp_slots;
787 temp_slots = p;
790 p->in_use = 1;
791 p->addr_taken = 0;
792 p->rtl_expr = seq_rtl_expr;
793 p->type = type;
795 if (keep == 2)
797 p->level = target_temp_slot_level;
798 p->keep = 0;
800 else if (keep == 3)
802 p->level = var_temp_slot_level;
803 p->keep = 0;
805 else
807 p->level = temp_slot_level;
808 p->keep = keep;
811 /* We may be reusing an old slot, so clear any MEM flags that may have been
812 set from before. */
813 RTX_UNCHANGING_P (p->slot) = 0;
814 MEM_IN_STRUCT_P (p->slot) = 0;
815 MEM_SCALAR_P (p->slot) = 0;
816 MEM_VOLATILE_P (p->slot) = 0;
817 set_mem_alias_set (p->slot, 0);
819 /* If we know the alias set for the memory that will be used, use
820 it. If there's no TYPE, then we don't know anything about the
821 alias set for the memory. */
822 set_mem_alias_set (p->slot, type ? get_alias_set (type) : 0);
823 set_mem_align (p->slot, align);
825 /* If a type is specified, set the relevant flags. */
826 if (type != 0)
828 RTX_UNCHANGING_P (p->slot) = TYPE_READONLY (type);
829 MEM_VOLATILE_P (p->slot) = TYPE_VOLATILE (type);
830 MEM_SET_IN_STRUCT_P (p->slot, AGGREGATE_TYPE_P (type));
833 return p->slot;
836 /* Allocate a temporary stack slot and record it for possible later
837 reuse. First three arguments are same as in preceding function. */
840 assign_stack_temp (mode, size, keep)
841 enum machine_mode mode;
842 HOST_WIDE_INT size;
843 int keep;
845 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
848 /* Assign a temporary.
849 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
850 and so that should be used in error messages. In either case, we
851 allocate of the given type.
852 KEEP is as for assign_stack_temp.
853 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
854 it is 0 if a register is OK.
855 DONT_PROMOTE is 1 if we should not promote values in register
856 to wider modes. */
859 assign_temp (type_or_decl, keep, memory_required, dont_promote)
860 tree type_or_decl;
861 int keep;
862 int memory_required;
863 int dont_promote ATTRIBUTE_UNUSED;
865 tree type, decl;
866 enum machine_mode mode;
867 #ifndef PROMOTE_FOR_CALL_ONLY
868 int unsignedp;
869 #endif
871 if (DECL_P (type_or_decl))
872 decl = type_or_decl, type = TREE_TYPE (decl);
873 else
874 decl = NULL, type = type_or_decl;
876 mode = TYPE_MODE (type);
877 #ifndef PROMOTE_FOR_CALL_ONLY
878 unsignedp = TREE_UNSIGNED (type);
879 #endif
881 if (mode == BLKmode || memory_required)
883 HOST_WIDE_INT size = int_size_in_bytes (type);
884 rtx tmp;
886 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
887 problems with allocating the stack space. */
888 if (size == 0)
889 size = 1;
891 /* Unfortunately, we don't yet know how to allocate variable-sized
892 temporaries. However, sometimes we have a fixed upper limit on
893 the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
894 instead. This is the case for Chill variable-sized strings. */
895 if (size == -1 && TREE_CODE (type) == ARRAY_TYPE
896 && TYPE_ARRAY_MAX_SIZE (type) != NULL_TREE
897 && host_integerp (TYPE_ARRAY_MAX_SIZE (type), 1))
898 size = tree_low_cst (TYPE_ARRAY_MAX_SIZE (type), 1);
900 /* The size of the temporary may be too large to fit into an integer. */
901 /* ??? Not sure this should happen except for user silliness, so limit
902 this to things that aren't compiler-generated temporaries. The
903 rest of the time we'll abort in assign_stack_temp_for_type. */
904 if (decl && size == -1
905 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
907 error_with_decl (decl, "size of variable `%s' is too large");
908 size = 1;
911 tmp = assign_stack_temp_for_type (mode, size, keep, type);
912 return tmp;
915 #ifndef PROMOTE_FOR_CALL_ONLY
916 if (! dont_promote)
917 mode = promote_mode (type, mode, &unsignedp, 0);
918 #endif
920 return gen_reg_rtx (mode);
923 /* Combine temporary stack slots which are adjacent on the stack.
925 This allows for better use of already allocated stack space. This is only
926 done for BLKmode slots because we can be sure that we won't have alignment
927 problems in this case. */
929 void
930 combine_temp_slots ()
932 struct temp_slot *p, *q;
933 struct temp_slot *prev_p, *prev_q;
934 int num_slots;
936 /* We can't combine slots, because the information about which slot
937 is in which alias set will be lost. */
938 if (flag_strict_aliasing)
939 return;
941 /* If there are a lot of temp slots, don't do anything unless
942 high levels of optimization. */
943 if (! flag_expensive_optimizations)
944 for (p = temp_slots, num_slots = 0; p; p = p->next, num_slots++)
945 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
946 return;
948 for (p = temp_slots, prev_p = 0; p; p = prev_p ? prev_p->next : temp_slots)
950 int delete_p = 0;
952 if (! p->in_use && GET_MODE (p->slot) == BLKmode)
953 for (q = p->next, prev_q = p; q; q = prev_q->next)
955 int delete_q = 0;
956 if (! q->in_use && GET_MODE (q->slot) == BLKmode)
958 if (p->base_offset + p->full_size == q->base_offset)
960 /* Q comes after P; combine Q into P. */
961 p->size += q->size;
962 p->full_size += q->full_size;
963 delete_q = 1;
965 else if (q->base_offset + q->full_size == p->base_offset)
967 /* P comes after Q; combine P into Q. */
968 q->size += p->size;
969 q->full_size += p->full_size;
970 delete_p = 1;
971 break;
974 /* Either delete Q or advance past it. */
975 if (delete_q)
976 prev_q->next = q->next;
977 else
978 prev_q = q;
980 /* Either delete P or advance past it. */
981 if (delete_p)
983 if (prev_p)
984 prev_p->next = p->next;
985 else
986 temp_slots = p->next;
988 else
989 prev_p = p;
993 /* Find the temp slot corresponding to the object at address X. */
995 static struct temp_slot *
996 find_temp_slot_from_address (x)
997 rtx x;
999 struct temp_slot *p;
1000 rtx next;
1002 for (p = temp_slots; p; p = p->next)
1004 if (! p->in_use)
1005 continue;
1007 else if (XEXP (p->slot, 0) == x
1008 || p->address == x
1009 || (GET_CODE (x) == PLUS
1010 && XEXP (x, 0) == virtual_stack_vars_rtx
1011 && GET_CODE (XEXP (x, 1)) == CONST_INT
1012 && INTVAL (XEXP (x, 1)) >= p->base_offset
1013 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
1014 return p;
1016 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
1017 for (next = p->address; next; next = XEXP (next, 1))
1018 if (XEXP (next, 0) == x)
1019 return p;
1022 /* If we have a sum involving a register, see if it points to a temp
1023 slot. */
1024 if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == REG
1025 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
1026 return p;
1027 else if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == REG
1028 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
1029 return p;
1031 return 0;
1034 /* Indicate that NEW is an alternate way of referring to the temp slot
1035 that previously was known by OLD. */
1037 void
1038 update_temp_slot_address (old, new)
1039 rtx old, new;
1041 struct temp_slot *p;
1043 if (rtx_equal_p (old, new))
1044 return;
1046 p = find_temp_slot_from_address (old);
1048 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
1049 is a register, see if one operand of the PLUS is a temporary
1050 location. If so, NEW points into it. Otherwise, if both OLD and
1051 NEW are a PLUS and if there is a register in common between them.
1052 If so, try a recursive call on those values. */
1053 if (p == 0)
1055 if (GET_CODE (old) != PLUS)
1056 return;
1058 if (GET_CODE (new) == REG)
1060 update_temp_slot_address (XEXP (old, 0), new);
1061 update_temp_slot_address (XEXP (old, 1), new);
1062 return;
1064 else if (GET_CODE (new) != PLUS)
1065 return;
1067 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
1068 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
1069 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
1070 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
1071 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
1072 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
1073 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
1074 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
1076 return;
1079 /* Otherwise add an alias for the temp's address. */
1080 else if (p->address == 0)
1081 p->address = new;
1082 else
1084 if (GET_CODE (p->address) != EXPR_LIST)
1085 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
1087 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
1091 /* If X could be a reference to a temporary slot, mark the fact that its
1092 address was taken. */
1094 void
1095 mark_temp_addr_taken (x)
1096 rtx x;
1098 struct temp_slot *p;
1100 if (x == 0)
1101 return;
1103 /* If X is not in memory or is at a constant address, it cannot be in
1104 a temporary slot. */
1105 if (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1106 return;
1108 p = find_temp_slot_from_address (XEXP (x, 0));
1109 if (p != 0)
1110 p->addr_taken = 1;
1113 /* If X could be a reference to a temporary slot, mark that slot as
1114 belonging to the to one level higher than the current level. If X
1115 matched one of our slots, just mark that one. Otherwise, we can't
1116 easily predict which it is, so upgrade all of them. Kept slots
1117 need not be touched.
1119 This is called when an ({...}) construct occurs and a statement
1120 returns a value in memory. */
1122 void
1123 preserve_temp_slots (x)
1124 rtx x;
1126 struct temp_slot *p = 0;
1128 /* If there is no result, we still might have some objects whose address
1129 were taken, so we need to make sure they stay around. */
1130 if (x == 0)
1132 for (p = temp_slots; p; p = p->next)
1133 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1134 p->level--;
1136 return;
1139 /* If X is a register that is being used as a pointer, see if we have
1140 a temporary slot we know it points to. To be consistent with
1141 the code below, we really should preserve all non-kept slots
1142 if we can't find a match, but that seems to be much too costly. */
1143 if (GET_CODE (x) == REG && REG_POINTER (x))
1144 p = find_temp_slot_from_address (x);
1146 /* If X is not in memory or is at a constant address, it cannot be in
1147 a temporary slot, but it can contain something whose address was
1148 taken. */
1149 if (p == 0 && (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0))))
1151 for (p = temp_slots; p; p = p->next)
1152 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1153 p->level--;
1155 return;
1158 /* First see if we can find a match. */
1159 if (p == 0)
1160 p = find_temp_slot_from_address (XEXP (x, 0));
1162 if (p != 0)
1164 /* Move everything at our level whose address was taken to our new
1165 level in case we used its address. */
1166 struct temp_slot *q;
1168 if (p->level == temp_slot_level)
1170 for (q = temp_slots; q; q = q->next)
1171 if (q != p && q->addr_taken && q->level == p->level)
1172 q->level--;
1174 p->level--;
1175 p->addr_taken = 0;
1177 return;
1180 /* Otherwise, preserve all non-kept slots at this level. */
1181 for (p = temp_slots; p; p = p->next)
1182 if (p->in_use && p->level == temp_slot_level && ! p->keep)
1183 p->level--;
1186 /* X is the result of an RTL_EXPR. If it is a temporary slot associated
1187 with that RTL_EXPR, promote it into a temporary slot at the present
1188 level so it will not be freed when we free slots made in the
1189 RTL_EXPR. */
1191 void
1192 preserve_rtl_expr_result (x)
1193 rtx x;
1195 struct temp_slot *p;
1197 /* If X is not in memory or is at a constant address, it cannot be in
1198 a temporary slot. */
1199 if (x == 0 || GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1200 return;
1202 /* If we can find a match, move it to our level unless it is already at
1203 an upper level. */
1204 p = find_temp_slot_from_address (XEXP (x, 0));
1205 if (p != 0)
1207 p->level = MIN (p->level, temp_slot_level);
1208 p->rtl_expr = 0;
1211 return;
1214 /* Free all temporaries used so far. This is normally called at the end
1215 of generating code for a statement. Don't free any temporaries
1216 currently in use for an RTL_EXPR that hasn't yet been emitted.
1217 We could eventually do better than this since it can be reused while
1218 generating the same RTL_EXPR, but this is complex and probably not
1219 worthwhile. */
1221 void
1222 free_temp_slots ()
1224 struct temp_slot *p;
1226 for (p = temp_slots; p; p = p->next)
1227 if (p->in_use && p->level == temp_slot_level && ! p->keep
1228 && p->rtl_expr == 0)
1229 p->in_use = 0;
1231 combine_temp_slots ();
1234 /* Free all temporary slots used in T, an RTL_EXPR node. */
1236 void
1237 free_temps_for_rtl_expr (t)
1238 tree t;
1240 struct temp_slot *p;
1242 for (p = temp_slots; p; p = p->next)
1243 if (p->rtl_expr == t)
1245 /* If this slot is below the current TEMP_SLOT_LEVEL, then it
1246 needs to be preserved. This can happen if a temporary in
1247 the RTL_EXPR was addressed; preserve_temp_slots will move
1248 the temporary into a higher level. */
1249 if (temp_slot_level <= p->level)
1250 p->in_use = 0;
1251 else
1252 p->rtl_expr = NULL_TREE;
1255 combine_temp_slots ();
1258 /* Mark all temporaries ever allocated in this function as not suitable
1259 for reuse until the current level is exited. */
1261 void
1262 mark_all_temps_used ()
1264 struct temp_slot *p;
1266 for (p = temp_slots; p; p = p->next)
1268 p->in_use = p->keep = 1;
1269 p->level = MIN (p->level, temp_slot_level);
1273 /* Push deeper into the nesting level for stack temporaries. */
1275 void
1276 push_temp_slots ()
1278 temp_slot_level++;
1281 /* Likewise, but save the new level as the place to allocate variables
1282 for blocks. */
1284 #if 0
1285 void
1286 push_temp_slots_for_block ()
1288 push_temp_slots ();
1290 var_temp_slot_level = temp_slot_level;
1293 /* Likewise, but save the new level as the place to allocate temporaries
1294 for TARGET_EXPRs. */
1296 void
1297 push_temp_slots_for_target ()
1299 push_temp_slots ();
1301 target_temp_slot_level = temp_slot_level;
1304 /* Set and get the value of target_temp_slot_level. The only
1305 permitted use of these functions is to save and restore this value. */
1308 get_target_temp_slot_level ()
1310 return target_temp_slot_level;
1313 void
1314 set_target_temp_slot_level (level)
1315 int level;
1317 target_temp_slot_level = level;
1319 #endif
1321 /* Pop a temporary nesting level. All slots in use in the current level
1322 are freed. */
1324 void
1325 pop_temp_slots ()
1327 struct temp_slot *p;
1329 for (p = temp_slots; p; p = p->next)
1330 if (p->in_use && p->level == temp_slot_level && p->rtl_expr == 0)
1331 p->in_use = 0;
1333 combine_temp_slots ();
1335 temp_slot_level--;
1338 /* Initialize temporary slots. */
1340 void
1341 init_temp_slots ()
1343 /* We have not allocated any temporaries yet. */
1344 temp_slots = 0;
1345 temp_slot_level = 0;
1346 var_temp_slot_level = 0;
1347 target_temp_slot_level = 0;
1350 /* Retroactively move an auto variable from a register to a stack slot.
1351 This is done when an address-reference to the variable is seen. */
1353 void
1354 put_var_into_stack (decl)
1355 tree decl;
1357 rtx reg;
1358 enum machine_mode promoted_mode, decl_mode;
1359 struct function *function = 0;
1360 tree context;
1361 int can_use_addressof;
1362 int volatilep = TREE_CODE (decl) != SAVE_EXPR && TREE_THIS_VOLATILE (decl);
1363 int usedp = (TREE_USED (decl)
1364 || (TREE_CODE (decl) != SAVE_EXPR && DECL_INITIAL (decl) != 0));
1366 context = decl_function_context (decl);
1368 /* Get the current rtl used for this object and its original mode. */
1369 reg = (TREE_CODE (decl) == SAVE_EXPR
1370 ? SAVE_EXPR_RTL (decl)
1371 : DECL_RTL_IF_SET (decl));
1373 /* No need to do anything if decl has no rtx yet
1374 since in that case caller is setting TREE_ADDRESSABLE
1375 and a stack slot will be assigned when the rtl is made. */
1376 if (reg == 0)
1377 return;
1379 /* Get the declared mode for this object. */
1380 decl_mode = (TREE_CODE (decl) == SAVE_EXPR ? TYPE_MODE (TREE_TYPE (decl))
1381 : DECL_MODE (decl));
1382 /* Get the mode it's actually stored in. */
1383 promoted_mode = GET_MODE (reg);
1385 /* If this variable comes from an outer function, find that
1386 function's saved context. Don't use find_function_data here,
1387 because it might not be in any active function.
1388 FIXME: Is that really supposed to happen?
1389 It does in ObjC at least. */
1390 if (context != current_function_decl && context != inline_function_decl)
1391 for (function = outer_function_chain; function; function = function->outer)
1392 if (function->decl == context)
1393 break;
1395 /* If this is a variable-size object with a pseudo to address it,
1396 put that pseudo into the stack, if the var is nonlocal. */
1397 if (TREE_CODE (decl) != SAVE_EXPR && DECL_NONLOCAL (decl)
1398 && GET_CODE (reg) == MEM
1399 && GET_CODE (XEXP (reg, 0)) == REG
1400 && REGNO (XEXP (reg, 0)) > LAST_VIRTUAL_REGISTER)
1402 reg = XEXP (reg, 0);
1403 decl_mode = promoted_mode = GET_MODE (reg);
1406 can_use_addressof
1407 = (function == 0
1408 && optimize > 0
1409 /* FIXME make it work for promoted modes too */
1410 && decl_mode == promoted_mode
1411 #ifdef NON_SAVING_SETJMP
1412 && ! (NON_SAVING_SETJMP && current_function_calls_setjmp)
1413 #endif
1416 /* If we can't use ADDRESSOF, make sure we see through one we already
1417 generated. */
1418 if (! can_use_addressof && GET_CODE (reg) == MEM
1419 && GET_CODE (XEXP (reg, 0)) == ADDRESSOF)
1420 reg = XEXP (XEXP (reg, 0), 0);
1422 /* Now we should have a value that resides in one or more pseudo regs. */
1424 if (GET_CODE (reg) == REG)
1426 /* If this variable lives in the current function and we don't need
1427 to put things in the stack for the sake of setjmp, try to keep it
1428 in a register until we know we actually need the address. */
1429 if (can_use_addressof)
1430 gen_mem_addressof (reg, decl);
1431 else
1432 put_reg_into_stack (function, reg, TREE_TYPE (decl), promoted_mode,
1433 decl_mode, volatilep, 0, usedp, 0);
1435 else if (GET_CODE (reg) == CONCAT)
1437 /* A CONCAT contains two pseudos; put them both in the stack.
1438 We do it so they end up consecutive.
1439 We fixup references to the parts only after we fixup references
1440 to the whole CONCAT, lest we do double fixups for the latter
1441 references. */
1442 enum machine_mode part_mode = GET_MODE (XEXP (reg, 0));
1443 tree part_type = (*lang_hooks.types.type_for_mode) (part_mode, 0);
1444 rtx lopart = XEXP (reg, 0);
1445 rtx hipart = XEXP (reg, 1);
1446 #ifdef FRAME_GROWS_DOWNWARD
1447 /* Since part 0 should have a lower address, do it second. */
1448 put_reg_into_stack (function, hipart, part_type, part_mode,
1449 part_mode, volatilep, 0, 0, 0);
1450 put_reg_into_stack (function, lopart, part_type, part_mode,
1451 part_mode, volatilep, 0, 0, 0);
1452 #else
1453 put_reg_into_stack (function, lopart, part_type, part_mode,
1454 part_mode, volatilep, 0, 0, 0);
1455 put_reg_into_stack (function, hipart, part_type, part_mode,
1456 part_mode, volatilep, 0, 0, 0);
1457 #endif
1459 /* Change the CONCAT into a combined MEM for both parts. */
1460 PUT_CODE (reg, MEM);
1461 MEM_ATTRS (reg) = 0;
1463 /* set_mem_attributes uses DECL_RTL to avoid re-generating of
1464 already computed alias sets. Here we want to re-generate. */
1465 if (DECL_P (decl))
1466 SET_DECL_RTL (decl, NULL);
1467 set_mem_attributes (reg, decl, 1);
1468 if (DECL_P (decl))
1469 SET_DECL_RTL (decl, reg);
1471 /* The two parts are in memory order already.
1472 Use the lower parts address as ours. */
1473 XEXP (reg, 0) = XEXP (XEXP (reg, 0), 0);
1474 /* Prevent sharing of rtl that might lose. */
1475 if (GET_CODE (XEXP (reg, 0)) == PLUS)
1476 XEXP (reg, 0) = copy_rtx (XEXP (reg, 0));
1477 if (usedp)
1479 schedule_fixup_var_refs (function, reg, TREE_TYPE (decl),
1480 promoted_mode, 0);
1481 schedule_fixup_var_refs (function, lopart, part_type, part_mode, 0);
1482 schedule_fixup_var_refs (function, hipart, part_type, part_mode, 0);
1485 else
1486 return;
1489 /* Subroutine of put_var_into_stack. This puts a single pseudo reg REG
1490 into the stack frame of FUNCTION (0 means the current function).
1491 DECL_MODE is the machine mode of the user-level data type.
1492 PROMOTED_MODE is the machine mode of the register.
1493 VOLATILE_P is nonzero if this is for a "volatile" decl.
1494 USED_P is nonzero if this reg might have already been used in an insn. */
1496 static void
1497 put_reg_into_stack (function, reg, type, promoted_mode, decl_mode, volatile_p,
1498 original_regno, used_p, ht)
1499 struct function *function;
1500 rtx reg;
1501 tree type;
1502 enum machine_mode promoted_mode, decl_mode;
1503 int volatile_p;
1504 unsigned int original_regno;
1505 int used_p;
1506 struct hash_table *ht;
1508 struct function *func = function ? function : cfun;
1509 rtx new = 0;
1510 unsigned int regno = original_regno;
1512 if (regno == 0)
1513 regno = REGNO (reg);
1515 if (regno < func->x_max_parm_reg)
1516 new = func->x_parm_reg_stack_loc[regno];
1518 if (new == 0)
1519 new = assign_stack_local_1 (decl_mode, GET_MODE_SIZE (decl_mode), 0, func);
1521 PUT_CODE (reg, MEM);
1522 PUT_MODE (reg, decl_mode);
1523 XEXP (reg, 0) = XEXP (new, 0);
1524 MEM_ATTRS (reg) = 0;
1525 /* `volatil' bit means one thing for MEMs, another entirely for REGs. */
1526 MEM_VOLATILE_P (reg) = volatile_p;
1528 /* If this is a memory ref that contains aggregate components,
1529 mark it as such for cse and loop optimize. If we are reusing a
1530 previously generated stack slot, then we need to copy the bit in
1531 case it was set for other reasons. For instance, it is set for
1532 __builtin_va_alist. */
1533 if (type)
1535 MEM_SET_IN_STRUCT_P (reg,
1536 AGGREGATE_TYPE_P (type) || MEM_IN_STRUCT_P (new));
1537 set_mem_alias_set (reg, get_alias_set (type));
1540 if (used_p)
1541 schedule_fixup_var_refs (function, reg, type, promoted_mode, ht);
1544 /* Make sure that all refs to the variable, previously made
1545 when it was a register, are fixed up to be valid again.
1546 See function above for meaning of arguments. */
1548 static void
1549 schedule_fixup_var_refs (function, reg, type, promoted_mode, ht)
1550 struct function *function;
1551 rtx reg;
1552 tree type;
1553 enum machine_mode promoted_mode;
1554 struct hash_table *ht;
1556 int unsigned_p = type ? TREE_UNSIGNED (type) : 0;
1558 if (function != 0)
1560 struct var_refs_queue *temp;
1562 temp
1563 = (struct var_refs_queue *) ggc_alloc (sizeof (struct var_refs_queue));
1564 temp->modified = reg;
1565 temp->promoted_mode = promoted_mode;
1566 temp->unsignedp = unsigned_p;
1567 temp->next = function->fixup_var_refs_queue;
1568 function->fixup_var_refs_queue = temp;
1570 else
1571 /* Variable is local; fix it up now. */
1572 fixup_var_refs (reg, promoted_mode, unsigned_p, reg, ht);
1575 static void
1576 fixup_var_refs (var, promoted_mode, unsignedp, may_share, ht)
1577 rtx var;
1578 enum machine_mode promoted_mode;
1579 int unsignedp;
1580 struct hash_table *ht;
1581 rtx may_share;
1583 tree pending;
1584 rtx first_insn = get_insns ();
1585 struct sequence_stack *stack = seq_stack;
1586 tree rtl_exps = rtl_expr_chain;
1588 /* If there's a hash table, it must record all uses of VAR. */
1589 if (ht)
1591 if (stack != 0)
1592 abort ();
1593 fixup_var_refs_insns_with_hash (ht, var, promoted_mode, unsignedp,
1594 may_share);
1595 return;
1598 fixup_var_refs_insns (first_insn, var, promoted_mode, unsignedp,
1599 stack == 0, may_share);
1601 /* Scan all pending sequences too. */
1602 for (; stack; stack = stack->next)
1604 push_to_full_sequence (stack->first, stack->last);
1605 fixup_var_refs_insns (stack->first, var, promoted_mode, unsignedp,
1606 stack->next != 0, may_share);
1607 /* Update remembered end of sequence
1608 in case we added an insn at the end. */
1609 stack->last = get_last_insn ();
1610 end_sequence ();
1613 /* Scan all waiting RTL_EXPRs too. */
1614 for (pending = rtl_exps; pending; pending = TREE_CHAIN (pending))
1616 rtx seq = RTL_EXPR_SEQUENCE (TREE_VALUE (pending));
1617 if (seq != const0_rtx && seq != 0)
1619 push_to_sequence (seq);
1620 fixup_var_refs_insns (seq, var, promoted_mode, unsignedp, 0,
1621 may_share);
1622 end_sequence ();
1627 /* REPLACEMENTS is a pointer to a list of the struct fixup_replacement and X is
1628 some part of an insn. Return a struct fixup_replacement whose OLD
1629 value is equal to X. Allocate a new structure if no such entry exists. */
1631 static struct fixup_replacement *
1632 find_fixup_replacement (replacements, x)
1633 struct fixup_replacement **replacements;
1634 rtx x;
1636 struct fixup_replacement *p;
1638 /* See if we have already replaced this. */
1639 for (p = *replacements; p != 0 && ! rtx_equal_p (p->old, x); p = p->next)
1642 if (p == 0)
1644 p = (struct fixup_replacement *) xmalloc (sizeof (struct fixup_replacement));
1645 p->old = x;
1646 p->new = 0;
1647 p->next = *replacements;
1648 *replacements = p;
1651 return p;
1654 /* Scan the insn-chain starting with INSN for refs to VAR and fix them
1655 up. TOPLEVEL is nonzero if this chain is the main chain of insns
1656 for the current function. MAY_SHARE is either a MEM that is not
1657 to be unshared or a list of them. */
1659 static void
1660 fixup_var_refs_insns (insn, var, promoted_mode, unsignedp, toplevel, may_share)
1661 rtx insn;
1662 rtx var;
1663 enum machine_mode promoted_mode;
1664 int unsignedp;
1665 int toplevel;
1666 rtx may_share;
1668 while (insn)
1670 /* fixup_var_refs_insn might modify insn, so save its next
1671 pointer now. */
1672 rtx next = NEXT_INSN (insn);
1674 /* CALL_PLACEHOLDERs are special; we have to switch into each of
1675 the three sequences they (potentially) contain, and process
1676 them recursively. The CALL_INSN itself is not interesting. */
1678 if (GET_CODE (insn) == CALL_INSN
1679 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
1681 int i;
1683 /* Look at the Normal call, sibling call and tail recursion
1684 sequences attached to the CALL_PLACEHOLDER. */
1685 for (i = 0; i < 3; i++)
1687 rtx seq = XEXP (PATTERN (insn), i);
1688 if (seq)
1690 push_to_sequence (seq);
1691 fixup_var_refs_insns (seq, var, promoted_mode, unsignedp, 0,
1692 may_share);
1693 XEXP (PATTERN (insn), i) = get_insns ();
1694 end_sequence ();
1699 else if (INSN_P (insn))
1700 fixup_var_refs_insn (insn, var, promoted_mode, unsignedp, toplevel,
1701 may_share);
1703 insn = next;
1707 /* Look up the insns which reference VAR in HT and fix them up. Other
1708 arguments are the same as fixup_var_refs_insns.
1710 N.B. No need for special processing of CALL_PLACEHOLDERs here,
1711 because the hash table will point straight to the interesting insn
1712 (inside the CALL_PLACEHOLDER). */
1714 static void
1715 fixup_var_refs_insns_with_hash (ht, var, promoted_mode, unsignedp, may_share)
1716 struct hash_table *ht;
1717 rtx var;
1718 enum machine_mode promoted_mode;
1719 int unsignedp;
1720 rtx may_share;
1722 struct insns_for_mem_entry *ime
1723 = (struct insns_for_mem_entry *) hash_lookup (ht, var,
1724 /*create=*/0, /*copy=*/0);
1725 rtx insn_list;
1727 for (insn_list = ime->insns; insn_list != 0; insn_list = XEXP (insn_list, 1))
1728 if (INSN_P (XEXP (insn_list, 0)))
1729 fixup_var_refs_insn (XEXP (insn_list, 0), var, promoted_mode,
1730 unsignedp, 1, may_share);
1734 /* Per-insn processing by fixup_var_refs_insns(_with_hash). INSN is
1735 the insn under examination, VAR is the variable to fix up
1736 references to, PROMOTED_MODE and UNSIGNEDP describe VAR, and
1737 TOPLEVEL is nonzero if this is the main insn chain for this
1738 function. */
1740 static void
1741 fixup_var_refs_insn (insn, var, promoted_mode, unsignedp, toplevel, no_share)
1742 rtx insn;
1743 rtx var;
1744 enum machine_mode promoted_mode;
1745 int unsignedp;
1746 int toplevel;
1747 rtx no_share;
1749 rtx call_dest = 0;
1750 rtx set, prev, prev_set;
1751 rtx note;
1753 /* Remember the notes in case we delete the insn. */
1754 note = REG_NOTES (insn);
1756 /* If this is a CLOBBER of VAR, delete it.
1758 If it has a REG_LIBCALL note, delete the REG_LIBCALL
1759 and REG_RETVAL notes too. */
1760 if (GET_CODE (PATTERN (insn)) == CLOBBER
1761 && (XEXP (PATTERN (insn), 0) == var
1762 || (GET_CODE (XEXP (PATTERN (insn), 0)) == CONCAT
1763 && (XEXP (XEXP (PATTERN (insn), 0), 0) == var
1764 || XEXP (XEXP (PATTERN (insn), 0), 1) == var))))
1766 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0)
1767 /* The REG_LIBCALL note will go away since we are going to
1768 turn INSN into a NOTE, so just delete the
1769 corresponding REG_RETVAL note. */
1770 remove_note (XEXP (note, 0),
1771 find_reg_note (XEXP (note, 0), REG_RETVAL,
1772 NULL_RTX));
1774 delete_insn (insn);
1777 /* The insn to load VAR from a home in the arglist
1778 is now a no-op. When we see it, just delete it.
1779 Similarly if this is storing VAR from a register from which
1780 it was loaded in the previous insn. This will occur
1781 when an ADDRESSOF was made for an arglist slot. */
1782 else if (toplevel
1783 && (set = single_set (insn)) != 0
1784 && SET_DEST (set) == var
1785 /* If this represents the result of an insn group,
1786 don't delete the insn. */
1787 && find_reg_note (insn, REG_RETVAL, NULL_RTX) == 0
1788 && (rtx_equal_p (SET_SRC (set), var)
1789 || (GET_CODE (SET_SRC (set)) == REG
1790 && (prev = prev_nonnote_insn (insn)) != 0
1791 && (prev_set = single_set (prev)) != 0
1792 && SET_DEST (prev_set) == SET_SRC (set)
1793 && rtx_equal_p (SET_SRC (prev_set), var))))
1795 delete_insn (insn);
1797 else
1799 struct fixup_replacement *replacements = 0;
1800 rtx next_insn = NEXT_INSN (insn);
1802 if (SMALL_REGISTER_CLASSES)
1804 /* If the insn that copies the results of a CALL_INSN
1805 into a pseudo now references VAR, we have to use an
1806 intermediate pseudo since we want the life of the
1807 return value register to be only a single insn.
1809 If we don't use an intermediate pseudo, such things as
1810 address computations to make the address of VAR valid
1811 if it is not can be placed between the CALL_INSN and INSN.
1813 To make sure this doesn't happen, we record the destination
1814 of the CALL_INSN and see if the next insn uses both that
1815 and VAR. */
1817 if (call_dest != 0 && GET_CODE (insn) == INSN
1818 && reg_mentioned_p (var, PATTERN (insn))
1819 && reg_mentioned_p (call_dest, PATTERN (insn)))
1821 rtx temp = gen_reg_rtx (GET_MODE (call_dest));
1823 emit_insn_before (gen_move_insn (temp, call_dest), insn);
1825 PATTERN (insn) = replace_rtx (PATTERN (insn),
1826 call_dest, temp);
1829 if (GET_CODE (insn) == CALL_INSN
1830 && GET_CODE (PATTERN (insn)) == SET)
1831 call_dest = SET_DEST (PATTERN (insn));
1832 else if (GET_CODE (insn) == CALL_INSN
1833 && GET_CODE (PATTERN (insn)) == PARALLEL
1834 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1835 call_dest = SET_DEST (XVECEXP (PATTERN (insn), 0, 0));
1836 else
1837 call_dest = 0;
1840 /* See if we have to do anything to INSN now that VAR is in
1841 memory. If it needs to be loaded into a pseudo, use a single
1842 pseudo for the entire insn in case there is a MATCH_DUP
1843 between two operands. We pass a pointer to the head of
1844 a list of struct fixup_replacements. If fixup_var_refs_1
1845 needs to allocate pseudos or replacement MEMs (for SUBREGs),
1846 it will record them in this list.
1848 If it allocated a pseudo for any replacement, we copy into
1849 it here. */
1851 fixup_var_refs_1 (var, promoted_mode, &PATTERN (insn), insn,
1852 &replacements, no_share);
1854 /* If this is last_parm_insn, and any instructions were output
1855 after it to fix it up, then we must set last_parm_insn to
1856 the last such instruction emitted. */
1857 if (insn == last_parm_insn)
1858 last_parm_insn = PREV_INSN (next_insn);
1860 while (replacements)
1862 struct fixup_replacement *next;
1864 if (GET_CODE (replacements->new) == REG)
1866 rtx insert_before;
1867 rtx seq;
1869 /* OLD might be a (subreg (mem)). */
1870 if (GET_CODE (replacements->old) == SUBREG)
1871 replacements->old
1872 = fixup_memory_subreg (replacements->old, insn, 0);
1873 else
1874 replacements->old
1875 = fixup_stack_1 (replacements->old, insn);
1877 insert_before = insn;
1879 /* If we are changing the mode, do a conversion.
1880 This might be wasteful, but combine.c will
1881 eliminate much of the waste. */
1883 if (GET_MODE (replacements->new)
1884 != GET_MODE (replacements->old))
1886 start_sequence ();
1887 convert_move (replacements->new,
1888 replacements->old, unsignedp);
1889 seq = gen_sequence ();
1890 end_sequence ();
1892 else
1893 seq = gen_move_insn (replacements->new,
1894 replacements->old);
1896 emit_insn_before (seq, insert_before);
1899 next = replacements->next;
1900 free (replacements);
1901 replacements = next;
1905 /* Also fix up any invalid exprs in the REG_NOTES of this insn.
1906 But don't touch other insns referred to by reg-notes;
1907 we will get them elsewhere. */
1908 while (note)
1910 if (GET_CODE (note) != INSN_LIST)
1911 XEXP (note, 0)
1912 = walk_fixup_memory_subreg (XEXP (note, 0), insn, 1);
1913 note = XEXP (note, 1);
1917 /* VAR is a MEM that used to be a pseudo register with mode PROMOTED_MODE.
1918 See if the rtx expression at *LOC in INSN needs to be changed.
1920 REPLACEMENTS is a pointer to a list head that starts out zero, but may
1921 contain a list of original rtx's and replacements. If we find that we need
1922 to modify this insn by replacing a memory reference with a pseudo or by
1923 making a new MEM to implement a SUBREG, we consult that list to see if
1924 we have already chosen a replacement. If none has already been allocated,
1925 we allocate it and update the list. fixup_var_refs_insn will copy VAR
1926 or the SUBREG, as appropriate, to the pseudo. */
1928 static void
1929 fixup_var_refs_1 (var, promoted_mode, loc, insn, replacements, no_share)
1930 rtx var;
1931 enum machine_mode promoted_mode;
1932 rtx *loc;
1933 rtx insn;
1934 struct fixup_replacement **replacements;
1935 rtx no_share;
1937 int i;
1938 rtx x = *loc;
1939 RTX_CODE code = GET_CODE (x);
1940 const char *fmt;
1941 rtx tem, tem1;
1942 struct fixup_replacement *replacement;
1944 switch (code)
1946 case ADDRESSOF:
1947 if (XEXP (x, 0) == var)
1949 /* Prevent sharing of rtl that might lose. */
1950 rtx sub = copy_rtx (XEXP (var, 0));
1952 if (! validate_change (insn, loc, sub, 0))
1954 rtx y = gen_reg_rtx (GET_MODE (sub));
1955 rtx seq, new_insn;
1957 /* We should be able to replace with a register or all is lost.
1958 Note that we can't use validate_change to verify this, since
1959 we're not caring for replacing all dups simultaneously. */
1960 if (! validate_replace_rtx (*loc, y, insn))
1961 abort ();
1963 /* Careful! First try to recognize a direct move of the
1964 value, mimicking how things are done in gen_reload wrt
1965 PLUS. Consider what happens when insn is a conditional
1966 move instruction and addsi3 clobbers flags. */
1968 start_sequence ();
1969 new_insn = emit_insn (gen_rtx_SET (VOIDmode, y, sub));
1970 seq = gen_sequence ();
1971 end_sequence ();
1973 if (recog_memoized (new_insn) < 0)
1975 /* That failed. Fall back on force_operand and hope. */
1977 start_sequence ();
1978 sub = force_operand (sub, y);
1979 if (sub != y)
1980 emit_insn (gen_move_insn (y, sub));
1981 seq = gen_sequence ();
1982 end_sequence ();
1985 #ifdef HAVE_cc0
1986 /* Don't separate setter from user. */
1987 if (PREV_INSN (insn) && sets_cc0_p (PREV_INSN (insn)))
1988 insn = PREV_INSN (insn);
1989 #endif
1991 emit_insn_before (seq, insn);
1994 return;
1996 case MEM:
1997 if (var == x)
1999 /* If we already have a replacement, use it. Otherwise,
2000 try to fix up this address in case it is invalid. */
2002 replacement = find_fixup_replacement (replacements, var);
2003 if (replacement->new)
2005 *loc = replacement->new;
2006 return;
2009 *loc = replacement->new = x = fixup_stack_1 (x, insn);
2011 /* Unless we are forcing memory to register or we changed the mode,
2012 we can leave things the way they are if the insn is valid. */
2014 INSN_CODE (insn) = -1;
2015 if (! flag_force_mem && GET_MODE (x) == promoted_mode
2016 && recog_memoized (insn) >= 0)
2017 return;
2019 *loc = replacement->new = gen_reg_rtx (promoted_mode);
2020 return;
2023 /* If X contains VAR, we need to unshare it here so that we update
2024 each occurrence separately. But all identical MEMs in one insn
2025 must be replaced with the same rtx because of the possibility of
2026 MATCH_DUPs. */
2028 if (reg_mentioned_p (var, x))
2030 replacement = find_fixup_replacement (replacements, x);
2031 if (replacement->new == 0)
2032 replacement->new = copy_most_rtx (x, no_share);
2034 *loc = x = replacement->new;
2035 code = GET_CODE (x);
2037 break;
2039 case REG:
2040 case CC0:
2041 case PC:
2042 case CONST_INT:
2043 case CONST:
2044 case SYMBOL_REF:
2045 case LABEL_REF:
2046 case CONST_DOUBLE:
2047 case CONST_VECTOR:
2048 return;
2050 case SIGN_EXTRACT:
2051 case ZERO_EXTRACT:
2052 /* Note that in some cases those types of expressions are altered
2053 by optimize_bit_field, and do not survive to get here. */
2054 if (XEXP (x, 0) == var
2055 || (GET_CODE (XEXP (x, 0)) == SUBREG
2056 && SUBREG_REG (XEXP (x, 0)) == var))
2058 /* Get TEM as a valid MEM in the mode presently in the insn.
2060 We don't worry about the possibility of MATCH_DUP here; it
2061 is highly unlikely and would be tricky to handle. */
2063 tem = XEXP (x, 0);
2064 if (GET_CODE (tem) == SUBREG)
2066 if (GET_MODE_BITSIZE (GET_MODE (tem))
2067 > GET_MODE_BITSIZE (GET_MODE (var)))
2069 replacement = find_fixup_replacement (replacements, var);
2070 if (replacement->new == 0)
2071 replacement->new = gen_reg_rtx (GET_MODE (var));
2072 SUBREG_REG (tem) = replacement->new;
2074 /* The following code works only if we have a MEM, so we
2075 need to handle the subreg here. We directly substitute
2076 it assuming that a subreg must be OK here. We already
2077 scheduled a replacement to copy the mem into the
2078 subreg. */
2079 XEXP (x, 0) = tem;
2080 return;
2082 else
2083 tem = fixup_memory_subreg (tem, insn, 0);
2085 else
2086 tem = fixup_stack_1 (tem, insn);
2088 /* Unless we want to load from memory, get TEM into the proper mode
2089 for an extract from memory. This can only be done if the
2090 extract is at a constant position and length. */
2092 if (! flag_force_mem && GET_CODE (XEXP (x, 1)) == CONST_INT
2093 && GET_CODE (XEXP (x, 2)) == CONST_INT
2094 && ! mode_dependent_address_p (XEXP (tem, 0))
2095 && ! MEM_VOLATILE_P (tem))
2097 enum machine_mode wanted_mode = VOIDmode;
2098 enum machine_mode is_mode = GET_MODE (tem);
2099 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
2101 if (GET_CODE (x) == ZERO_EXTRACT)
2103 enum machine_mode new_mode
2104 = mode_for_extraction (EP_extzv, 1);
2105 if (new_mode != MAX_MACHINE_MODE)
2106 wanted_mode = new_mode;
2108 else if (GET_CODE (x) == SIGN_EXTRACT)
2110 enum machine_mode new_mode
2111 = mode_for_extraction (EP_extv, 1);
2112 if (new_mode != MAX_MACHINE_MODE)
2113 wanted_mode = new_mode;
2116 /* If we have a narrower mode, we can do something. */
2117 if (wanted_mode != VOIDmode
2118 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
2120 HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
2121 rtx old_pos = XEXP (x, 2);
2122 rtx newmem;
2124 /* If the bytes and bits are counted differently, we
2125 must adjust the offset. */
2126 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
2127 offset = (GET_MODE_SIZE (is_mode)
2128 - GET_MODE_SIZE (wanted_mode) - offset);
2130 pos %= GET_MODE_BITSIZE (wanted_mode);
2132 newmem = adjust_address_nv (tem, wanted_mode, offset);
2134 /* Make the change and see if the insn remains valid. */
2135 INSN_CODE (insn) = -1;
2136 XEXP (x, 0) = newmem;
2137 XEXP (x, 2) = GEN_INT (pos);
2139 if (recog_memoized (insn) >= 0)
2140 return;
2142 /* Otherwise, restore old position. XEXP (x, 0) will be
2143 restored later. */
2144 XEXP (x, 2) = old_pos;
2148 /* If we get here, the bitfield extract insn can't accept a memory
2149 reference. Copy the input into a register. */
2151 tem1 = gen_reg_rtx (GET_MODE (tem));
2152 emit_insn_before (gen_move_insn (tem1, tem), insn);
2153 XEXP (x, 0) = tem1;
2154 return;
2156 break;
2158 case SUBREG:
2159 if (SUBREG_REG (x) == var)
2161 /* If this is a special SUBREG made because VAR was promoted
2162 from a wider mode, replace it with VAR and call ourself
2163 recursively, this time saying that the object previously
2164 had its current mode (by virtue of the SUBREG). */
2166 if (SUBREG_PROMOTED_VAR_P (x))
2168 *loc = var;
2169 fixup_var_refs_1 (var, GET_MODE (var), loc, insn, replacements,
2170 no_share);
2171 return;
2174 /* If this SUBREG makes VAR wider, it has become a paradoxical
2175 SUBREG with VAR in memory, but these aren't allowed at this
2176 stage of the compilation. So load VAR into a pseudo and take
2177 a SUBREG of that pseudo. */
2178 if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (var)))
2180 replacement = find_fixup_replacement (replacements, var);
2181 if (replacement->new == 0)
2182 replacement->new = gen_reg_rtx (promoted_mode);
2183 SUBREG_REG (x) = replacement->new;
2184 return;
2187 /* See if we have already found a replacement for this SUBREG.
2188 If so, use it. Otherwise, make a MEM and see if the insn
2189 is recognized. If not, or if we should force MEM into a register,
2190 make a pseudo for this SUBREG. */
2191 replacement = find_fixup_replacement (replacements, x);
2192 if (replacement->new)
2194 *loc = replacement->new;
2195 return;
2198 replacement->new = *loc = fixup_memory_subreg (x, insn, 0);
2200 INSN_CODE (insn) = -1;
2201 if (! flag_force_mem && recog_memoized (insn) >= 0)
2202 return;
2204 *loc = replacement->new = gen_reg_rtx (GET_MODE (x));
2205 return;
2207 break;
2209 case SET:
2210 /* First do special simplification of bit-field references. */
2211 if (GET_CODE (SET_DEST (x)) == SIGN_EXTRACT
2212 || GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
2213 optimize_bit_field (x, insn, 0);
2214 if (GET_CODE (SET_SRC (x)) == SIGN_EXTRACT
2215 || GET_CODE (SET_SRC (x)) == ZERO_EXTRACT)
2216 optimize_bit_field (x, insn, 0);
2218 /* For a paradoxical SUBREG inside a ZERO_EXTRACT, load the object
2219 into a register and then store it back out. */
2220 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
2221 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG
2222 && SUBREG_REG (XEXP (SET_DEST (x), 0)) == var
2223 && (GET_MODE_SIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
2224 > GET_MODE_SIZE (GET_MODE (var))))
2226 replacement = find_fixup_replacement (replacements, var);
2227 if (replacement->new == 0)
2228 replacement->new = gen_reg_rtx (GET_MODE (var));
2230 SUBREG_REG (XEXP (SET_DEST (x), 0)) = replacement->new;
2231 emit_insn_after (gen_move_insn (var, replacement->new), insn);
2234 /* If SET_DEST is now a paradoxical SUBREG, put the result of this
2235 insn into a pseudo and store the low part of the pseudo into VAR. */
2236 if (GET_CODE (SET_DEST (x)) == SUBREG
2237 && SUBREG_REG (SET_DEST (x)) == var
2238 && (GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
2239 > GET_MODE_SIZE (GET_MODE (var))))
2241 SET_DEST (x) = tem = gen_reg_rtx (GET_MODE (SET_DEST (x)));
2242 emit_insn_after (gen_move_insn (var, gen_lowpart (GET_MODE (var),
2243 tem)),
2244 insn);
2245 break;
2249 rtx dest = SET_DEST (x);
2250 rtx src = SET_SRC (x);
2251 rtx outerdest = dest;
2253 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2254 || GET_CODE (dest) == SIGN_EXTRACT
2255 || GET_CODE (dest) == ZERO_EXTRACT)
2256 dest = XEXP (dest, 0);
2258 if (GET_CODE (src) == SUBREG)
2259 src = SUBREG_REG (src);
2261 /* If VAR does not appear at the top level of the SET
2262 just scan the lower levels of the tree. */
2264 if (src != var && dest != var)
2265 break;
2267 /* We will need to rerecognize this insn. */
2268 INSN_CODE (insn) = -1;
2270 if (GET_CODE (outerdest) == ZERO_EXTRACT && dest == var
2271 && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
2273 /* Since this case will return, ensure we fixup all the
2274 operands here. */
2275 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 1),
2276 insn, replacements, no_share);
2277 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 2),
2278 insn, replacements, no_share);
2279 fixup_var_refs_1 (var, promoted_mode, &SET_SRC (x),
2280 insn, replacements, no_share);
2282 tem = XEXP (outerdest, 0);
2284 /* Clean up (SUBREG:SI (MEM:mode ...) 0)
2285 that may appear inside a ZERO_EXTRACT.
2286 This was legitimate when the MEM was a REG. */
2287 if (GET_CODE (tem) == SUBREG
2288 && SUBREG_REG (tem) == var)
2289 tem = fixup_memory_subreg (tem, insn, 0);
2290 else
2291 tem = fixup_stack_1 (tem, insn);
2293 if (GET_CODE (XEXP (outerdest, 1)) == CONST_INT
2294 && GET_CODE (XEXP (outerdest, 2)) == CONST_INT
2295 && ! mode_dependent_address_p (XEXP (tem, 0))
2296 && ! MEM_VOLATILE_P (tem))
2298 enum machine_mode wanted_mode;
2299 enum machine_mode is_mode = GET_MODE (tem);
2300 HOST_WIDE_INT pos = INTVAL (XEXP (outerdest, 2));
2302 wanted_mode = mode_for_extraction (EP_insv, 0);
2304 /* If we have a narrower mode, we can do something. */
2305 if (GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
2307 HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
2308 rtx old_pos = XEXP (outerdest, 2);
2309 rtx newmem;
2311 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
2312 offset = (GET_MODE_SIZE (is_mode)
2313 - GET_MODE_SIZE (wanted_mode) - offset);
2315 pos %= GET_MODE_BITSIZE (wanted_mode);
2317 newmem = adjust_address_nv (tem, wanted_mode, offset);
2319 /* Make the change and see if the insn remains valid. */
2320 INSN_CODE (insn) = -1;
2321 XEXP (outerdest, 0) = newmem;
2322 XEXP (outerdest, 2) = GEN_INT (pos);
2324 if (recog_memoized (insn) >= 0)
2325 return;
2327 /* Otherwise, restore old position. XEXP (x, 0) will be
2328 restored later. */
2329 XEXP (outerdest, 2) = old_pos;
2333 /* If we get here, the bit-field store doesn't allow memory
2334 or isn't located at a constant position. Load the value into
2335 a register, do the store, and put it back into memory. */
2337 tem1 = gen_reg_rtx (GET_MODE (tem));
2338 emit_insn_before (gen_move_insn (tem1, tem), insn);
2339 emit_insn_after (gen_move_insn (tem, tem1), insn);
2340 XEXP (outerdest, 0) = tem1;
2341 return;
2344 /* STRICT_LOW_PART is a no-op on memory references
2345 and it can cause combinations to be unrecognizable,
2346 so eliminate it. */
2348 if (dest == var && GET_CODE (SET_DEST (x)) == STRICT_LOW_PART)
2349 SET_DEST (x) = XEXP (SET_DEST (x), 0);
2351 /* A valid insn to copy VAR into or out of a register
2352 must be left alone, to avoid an infinite loop here.
2353 If the reference to VAR is by a subreg, fix that up,
2354 since SUBREG is not valid for a memref.
2355 Also fix up the address of the stack slot.
2357 Note that we must not try to recognize the insn until
2358 after we know that we have valid addresses and no
2359 (subreg (mem ...) ...) constructs, since these interfere
2360 with determining the validity of the insn. */
2362 if ((SET_SRC (x) == var
2363 || (GET_CODE (SET_SRC (x)) == SUBREG
2364 && SUBREG_REG (SET_SRC (x)) == var))
2365 && (GET_CODE (SET_DEST (x)) == REG
2366 || (GET_CODE (SET_DEST (x)) == SUBREG
2367 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG))
2368 && GET_MODE (var) == promoted_mode
2369 && x == single_set (insn))
2371 rtx pat, last;
2373 replacement = find_fixup_replacement (replacements, SET_SRC (x));
2374 if (replacement->new)
2375 SET_SRC (x) = replacement->new;
2376 else if (GET_CODE (SET_SRC (x)) == SUBREG)
2377 SET_SRC (x) = replacement->new
2378 = fixup_memory_subreg (SET_SRC (x), insn, 0);
2379 else
2380 SET_SRC (x) = replacement->new
2381 = fixup_stack_1 (SET_SRC (x), insn);
2383 if (recog_memoized (insn) >= 0)
2384 return;
2386 /* INSN is not valid, but we know that we want to
2387 copy SET_SRC (x) to SET_DEST (x) in some way. So
2388 we generate the move and see whether it requires more
2389 than one insn. If it does, we emit those insns and
2390 delete INSN. Otherwise, we an just replace the pattern
2391 of INSN; we have already verified above that INSN has
2392 no other function that to do X. */
2394 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2395 if (GET_CODE (pat) == SEQUENCE)
2397 last = emit_insn_before (pat, insn);
2399 /* INSN might have REG_RETVAL or other important notes, so
2400 we need to store the pattern of the last insn in the
2401 sequence into INSN similarly to the normal case. LAST
2402 should not have REG_NOTES, but we allow them if INSN has
2403 no REG_NOTES. */
2404 if (REG_NOTES (last) && REG_NOTES (insn))
2405 abort ();
2406 if (REG_NOTES (last))
2407 REG_NOTES (insn) = REG_NOTES (last);
2408 PATTERN (insn) = PATTERN (last);
2410 delete_insn (last);
2412 else
2413 PATTERN (insn) = pat;
2415 return;
2418 if ((SET_DEST (x) == var
2419 || (GET_CODE (SET_DEST (x)) == SUBREG
2420 && SUBREG_REG (SET_DEST (x)) == var))
2421 && (GET_CODE (SET_SRC (x)) == REG
2422 || (GET_CODE (SET_SRC (x)) == SUBREG
2423 && GET_CODE (SUBREG_REG (SET_SRC (x))) == REG))
2424 && GET_MODE (var) == promoted_mode
2425 && x == single_set (insn))
2427 rtx pat, last;
2429 if (GET_CODE (SET_DEST (x)) == SUBREG)
2430 SET_DEST (x) = fixup_memory_subreg (SET_DEST (x), insn, 0);
2431 else
2432 SET_DEST (x) = fixup_stack_1 (SET_DEST (x), insn);
2434 if (recog_memoized (insn) >= 0)
2435 return;
2437 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2438 if (GET_CODE (pat) == SEQUENCE)
2440 last = emit_insn_before (pat, insn);
2442 /* INSN might have REG_RETVAL or other important notes, so
2443 we need to store the pattern of the last insn in the
2444 sequence into INSN similarly to the normal case. LAST
2445 should not have REG_NOTES, but we allow them if INSN has
2446 no REG_NOTES. */
2447 if (REG_NOTES (last) && REG_NOTES (insn))
2448 abort ();
2449 if (REG_NOTES (last))
2450 REG_NOTES (insn) = REG_NOTES (last);
2451 PATTERN (insn) = PATTERN (last);
2453 delete_insn (last);
2455 else
2456 PATTERN (insn) = pat;
2458 return;
2461 /* Otherwise, storing into VAR must be handled specially
2462 by storing into a temporary and copying that into VAR
2463 with a new insn after this one. Note that this case
2464 will be used when storing into a promoted scalar since
2465 the insn will now have different modes on the input
2466 and output and hence will be invalid (except for the case
2467 of setting it to a constant, which does not need any
2468 change if it is valid). We generate extra code in that case,
2469 but combine.c will eliminate it. */
2471 if (dest == var)
2473 rtx temp;
2474 rtx fixeddest = SET_DEST (x);
2476 /* STRICT_LOW_PART can be discarded, around a MEM. */
2477 if (GET_CODE (fixeddest) == STRICT_LOW_PART)
2478 fixeddest = XEXP (fixeddest, 0);
2479 /* Convert (SUBREG (MEM)) to a MEM in a changed mode. */
2480 if (GET_CODE (fixeddest) == SUBREG)
2482 fixeddest = fixup_memory_subreg (fixeddest, insn, 0);
2483 promoted_mode = GET_MODE (fixeddest);
2485 else
2486 fixeddest = fixup_stack_1 (fixeddest, insn);
2488 temp = gen_reg_rtx (promoted_mode);
2490 emit_insn_after (gen_move_insn (fixeddest,
2491 gen_lowpart (GET_MODE (fixeddest),
2492 temp)),
2493 insn);
2495 SET_DEST (x) = temp;
2499 default:
2500 break;
2503 /* Nothing special about this RTX; fix its operands. */
2505 fmt = GET_RTX_FORMAT (code);
2506 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2508 if (fmt[i] == 'e')
2509 fixup_var_refs_1 (var, promoted_mode, &XEXP (x, i), insn, replacements,
2510 no_share);
2511 else if (fmt[i] == 'E')
2513 int j;
2514 for (j = 0; j < XVECLEN (x, i); j++)
2515 fixup_var_refs_1 (var, promoted_mode, &XVECEXP (x, i, j),
2516 insn, replacements, no_share);
2521 /* Given X, an rtx of the form (SUBREG:m1 (MEM:m2 addr)),
2522 return an rtx (MEM:m1 newaddr) which is equivalent.
2523 If any insns must be emitted to compute NEWADDR, put them before INSN.
2525 UNCRITICAL nonzero means accept paradoxical subregs.
2526 This is used for subregs found inside REG_NOTES. */
2528 static rtx
2529 fixup_memory_subreg (x, insn, uncritical)
2530 rtx x;
2531 rtx insn;
2532 int uncritical;
2534 int offset = SUBREG_BYTE (x);
2535 rtx addr = XEXP (SUBREG_REG (x), 0);
2536 enum machine_mode mode = GET_MODE (x);
2537 rtx result;
2539 /* Paradoxical SUBREGs are usually invalid during RTL generation. */
2540 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
2541 && ! uncritical)
2542 abort ();
2544 if (!flag_force_addr
2545 && memory_address_p (mode, plus_constant (addr, offset)))
2546 /* Shortcut if no insns need be emitted. */
2547 return adjust_address (SUBREG_REG (x), mode, offset);
2549 start_sequence ();
2550 result = adjust_address (SUBREG_REG (x), mode, offset);
2551 emit_insn_before (gen_sequence (), insn);
2552 end_sequence ();
2553 return result;
2556 /* Do fixup_memory_subreg on all (SUBREG (MEM ...) ...) contained in X.
2557 Replace subexpressions of X in place.
2558 If X itself is a (SUBREG (MEM ...) ...), return the replacement expression.
2559 Otherwise return X, with its contents possibly altered.
2561 If any insns must be emitted to compute NEWADDR, put them before INSN.
2563 UNCRITICAL is as in fixup_memory_subreg. */
2565 static rtx
2566 walk_fixup_memory_subreg (x, insn, uncritical)
2567 rtx x;
2568 rtx insn;
2569 int uncritical;
2571 enum rtx_code code;
2572 const char *fmt;
2573 int i;
2575 if (x == 0)
2576 return 0;
2578 code = GET_CODE (x);
2580 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
2581 return fixup_memory_subreg (x, insn, uncritical);
2583 /* Nothing special about this RTX; fix its operands. */
2585 fmt = GET_RTX_FORMAT (code);
2586 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2588 if (fmt[i] == 'e')
2589 XEXP (x, i) = walk_fixup_memory_subreg (XEXP (x, i), insn, uncritical);
2590 else if (fmt[i] == 'E')
2592 int j;
2593 for (j = 0; j < XVECLEN (x, i); j++)
2594 XVECEXP (x, i, j)
2595 = walk_fixup_memory_subreg (XVECEXP (x, i, j), insn, uncritical);
2598 return x;
2601 /* For each memory ref within X, if it refers to a stack slot
2602 with an out of range displacement, put the address in a temp register
2603 (emitting new insns before INSN to load these registers)
2604 and alter the memory ref to use that register.
2605 Replace each such MEM rtx with a copy, to avoid clobberage. */
2607 static rtx
2608 fixup_stack_1 (x, insn)
2609 rtx x;
2610 rtx insn;
2612 int i;
2613 RTX_CODE code = GET_CODE (x);
2614 const char *fmt;
2616 if (code == MEM)
2618 rtx ad = XEXP (x, 0);
2619 /* If we have address of a stack slot but it's not valid
2620 (displacement is too large), compute the sum in a register. */
2621 if (GET_CODE (ad) == PLUS
2622 && GET_CODE (XEXP (ad, 0)) == REG
2623 && ((REGNO (XEXP (ad, 0)) >= FIRST_VIRTUAL_REGISTER
2624 && REGNO (XEXP (ad, 0)) <= LAST_VIRTUAL_REGISTER)
2625 || REGNO (XEXP (ad, 0)) == FRAME_POINTER_REGNUM
2626 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2627 || REGNO (XEXP (ad, 0)) == HARD_FRAME_POINTER_REGNUM
2628 #endif
2629 || REGNO (XEXP (ad, 0)) == STACK_POINTER_REGNUM
2630 || REGNO (XEXP (ad, 0)) == ARG_POINTER_REGNUM
2631 || XEXP (ad, 0) == current_function_internal_arg_pointer)
2632 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
2634 rtx temp, seq;
2635 if (memory_address_p (GET_MODE (x), ad))
2636 return x;
2638 start_sequence ();
2639 temp = copy_to_reg (ad);
2640 seq = gen_sequence ();
2641 end_sequence ();
2642 emit_insn_before (seq, insn);
2643 return replace_equiv_address (x, temp);
2645 return x;
2648 fmt = GET_RTX_FORMAT (code);
2649 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2651 if (fmt[i] == 'e')
2652 XEXP (x, i) = fixup_stack_1 (XEXP (x, i), insn);
2653 else if (fmt[i] == 'E')
2655 int j;
2656 for (j = 0; j < XVECLEN (x, i); j++)
2657 XVECEXP (x, i, j) = fixup_stack_1 (XVECEXP (x, i, j), insn);
2660 return x;
2663 /* Optimization: a bit-field instruction whose field
2664 happens to be a byte or halfword in memory
2665 can be changed to a move instruction.
2667 We call here when INSN is an insn to examine or store into a bit-field.
2668 BODY is the SET-rtx to be altered.
2670 EQUIV_MEM is the table `reg_equiv_mem' if that is available; else 0.
2671 (Currently this is called only from function.c, and EQUIV_MEM
2672 is always 0.) */
2674 static void
2675 optimize_bit_field (body, insn, equiv_mem)
2676 rtx body;
2677 rtx insn;
2678 rtx *equiv_mem;
2680 rtx bitfield;
2681 int destflag;
2682 rtx seq = 0;
2683 enum machine_mode mode;
2685 if (GET_CODE (SET_DEST (body)) == SIGN_EXTRACT
2686 || GET_CODE (SET_DEST (body)) == ZERO_EXTRACT)
2687 bitfield = SET_DEST (body), destflag = 1;
2688 else
2689 bitfield = SET_SRC (body), destflag = 0;
2691 /* First check that the field being stored has constant size and position
2692 and is in fact a byte or halfword suitably aligned. */
2694 if (GET_CODE (XEXP (bitfield, 1)) == CONST_INT
2695 && GET_CODE (XEXP (bitfield, 2)) == CONST_INT
2696 && ((mode = mode_for_size (INTVAL (XEXP (bitfield, 1)), MODE_INT, 1))
2697 != BLKmode)
2698 && INTVAL (XEXP (bitfield, 2)) % INTVAL (XEXP (bitfield, 1)) == 0)
2700 rtx memref = 0;
2702 /* Now check that the containing word is memory, not a register,
2703 and that it is safe to change the machine mode. */
2705 if (GET_CODE (XEXP (bitfield, 0)) == MEM)
2706 memref = XEXP (bitfield, 0);
2707 else if (GET_CODE (XEXP (bitfield, 0)) == REG
2708 && equiv_mem != 0)
2709 memref = equiv_mem[REGNO (XEXP (bitfield, 0))];
2710 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2711 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == MEM)
2712 memref = SUBREG_REG (XEXP (bitfield, 0));
2713 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2714 && equiv_mem != 0
2715 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == REG)
2716 memref = equiv_mem[REGNO (SUBREG_REG (XEXP (bitfield, 0)))];
2718 if (memref
2719 && ! mode_dependent_address_p (XEXP (memref, 0))
2720 && ! MEM_VOLATILE_P (memref))
2722 /* Now adjust the address, first for any subreg'ing
2723 that we are now getting rid of,
2724 and then for which byte of the word is wanted. */
2726 HOST_WIDE_INT offset = INTVAL (XEXP (bitfield, 2));
2727 rtx insns;
2729 /* Adjust OFFSET to count bits from low-address byte. */
2730 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
2731 offset = (GET_MODE_BITSIZE (GET_MODE (XEXP (bitfield, 0)))
2732 - offset - INTVAL (XEXP (bitfield, 1)));
2734 /* Adjust OFFSET to count bytes from low-address byte. */
2735 offset /= BITS_PER_UNIT;
2736 if (GET_CODE (XEXP (bitfield, 0)) == SUBREG)
2738 offset += (SUBREG_BYTE (XEXP (bitfield, 0))
2739 / UNITS_PER_WORD) * UNITS_PER_WORD;
2740 if (BYTES_BIG_ENDIAN)
2741 offset -= (MIN (UNITS_PER_WORD,
2742 GET_MODE_SIZE (GET_MODE (XEXP (bitfield, 0))))
2743 - MIN (UNITS_PER_WORD,
2744 GET_MODE_SIZE (GET_MODE (memref))));
2747 start_sequence ();
2748 memref = adjust_address (memref, mode, offset);
2749 insns = get_insns ();
2750 end_sequence ();
2751 emit_insns_before (insns, insn);
2753 /* Store this memory reference where
2754 we found the bit field reference. */
2756 if (destflag)
2758 validate_change (insn, &SET_DEST (body), memref, 1);
2759 if (! CONSTANT_ADDRESS_P (SET_SRC (body)))
2761 rtx src = SET_SRC (body);
2762 while (GET_CODE (src) == SUBREG
2763 && SUBREG_BYTE (src) == 0)
2764 src = SUBREG_REG (src);
2765 if (GET_MODE (src) != GET_MODE (memref))
2766 src = gen_lowpart (GET_MODE (memref), SET_SRC (body));
2767 validate_change (insn, &SET_SRC (body), src, 1);
2769 else if (GET_MODE (SET_SRC (body)) != VOIDmode
2770 && GET_MODE (SET_SRC (body)) != GET_MODE (memref))
2771 /* This shouldn't happen because anything that didn't have
2772 one of these modes should have got converted explicitly
2773 and then referenced through a subreg.
2774 This is so because the original bit-field was
2775 handled by agg_mode and so its tree structure had
2776 the same mode that memref now has. */
2777 abort ();
2779 else
2781 rtx dest = SET_DEST (body);
2783 while (GET_CODE (dest) == SUBREG
2784 && SUBREG_BYTE (dest) == 0
2785 && (GET_MODE_CLASS (GET_MODE (dest))
2786 == GET_MODE_CLASS (GET_MODE (SUBREG_REG (dest))))
2787 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
2788 <= UNITS_PER_WORD))
2789 dest = SUBREG_REG (dest);
2791 validate_change (insn, &SET_DEST (body), dest, 1);
2793 if (GET_MODE (dest) == GET_MODE (memref))
2794 validate_change (insn, &SET_SRC (body), memref, 1);
2795 else
2797 /* Convert the mem ref to the destination mode. */
2798 rtx newreg = gen_reg_rtx (GET_MODE (dest));
2800 start_sequence ();
2801 convert_move (newreg, memref,
2802 GET_CODE (SET_SRC (body)) == ZERO_EXTRACT);
2803 seq = get_insns ();
2804 end_sequence ();
2806 validate_change (insn, &SET_SRC (body), newreg, 1);
2810 /* See if we can convert this extraction or insertion into
2811 a simple move insn. We might not be able to do so if this
2812 was, for example, part of a PARALLEL.
2814 If we succeed, write out any needed conversions. If we fail,
2815 it is hard to guess why we failed, so don't do anything
2816 special; just let the optimization be suppressed. */
2818 if (apply_change_group () && seq)
2819 emit_insns_before (seq, insn);
2824 /* These routines are responsible for converting virtual register references
2825 to the actual hard register references once RTL generation is complete.
2827 The following four variables are used for communication between the
2828 routines. They contain the offsets of the virtual registers from their
2829 respective hard registers. */
2831 static int in_arg_offset;
2832 static int var_offset;
2833 static int dynamic_offset;
2834 static int out_arg_offset;
2835 static int cfa_offset;
2837 /* In most machines, the stack pointer register is equivalent to the bottom
2838 of the stack. */
2840 #ifndef STACK_POINTER_OFFSET
2841 #define STACK_POINTER_OFFSET 0
2842 #endif
2844 /* If not defined, pick an appropriate default for the offset of dynamically
2845 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
2846 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
2848 #ifndef STACK_DYNAMIC_OFFSET
2850 /* The bottom of the stack points to the actual arguments. If
2851 REG_PARM_STACK_SPACE is defined, this includes the space for the register
2852 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
2853 stack space for register parameters is not pushed by the caller, but
2854 rather part of the fixed stack areas and hence not included in
2855 `current_function_outgoing_args_size'. Nevertheless, we must allow
2856 for it when allocating stack dynamic objects. */
2858 #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
2859 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2860 ((ACCUMULATE_OUTGOING_ARGS \
2861 ? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
2862 + (STACK_POINTER_OFFSET)) \
2864 #else
2865 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2866 ((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
2867 + (STACK_POINTER_OFFSET))
2868 #endif
2869 #endif
2871 /* On most machines, the CFA coincides with the first incoming parm. */
2873 #ifndef ARG_POINTER_CFA_OFFSET
2874 #define ARG_POINTER_CFA_OFFSET(FNDECL) FIRST_PARM_OFFSET (FNDECL)
2875 #endif
2877 /* Build up a (MEM (ADDRESSOF (REG))) rtx for a register REG that just had its
2878 address taken. DECL is the decl or SAVE_EXPR for the object stored in the
2879 register, for later use if we do need to force REG into the stack. REG is
2880 overwritten by the MEM like in put_reg_into_stack. */
2883 gen_mem_addressof (reg, decl)
2884 rtx reg;
2885 tree decl;
2887 rtx r = gen_rtx_ADDRESSOF (Pmode, gen_reg_rtx (GET_MODE (reg)),
2888 REGNO (reg), decl);
2890 /* Calculate this before we start messing with decl's RTL. */
2891 HOST_WIDE_INT set = decl ? get_alias_set (decl) : 0;
2893 /* If the original REG was a user-variable, then so is the REG whose
2894 address is being taken. Likewise for unchanging. */
2895 REG_USERVAR_P (XEXP (r, 0)) = REG_USERVAR_P (reg);
2896 RTX_UNCHANGING_P (XEXP (r, 0)) = RTX_UNCHANGING_P (reg);
2898 PUT_CODE (reg, MEM);
2899 MEM_ATTRS (reg) = 0;
2900 XEXP (reg, 0) = r;
2902 if (decl)
2904 tree type = TREE_TYPE (decl);
2905 enum machine_mode decl_mode
2906 = (DECL_P (decl) ? DECL_MODE (decl) : TYPE_MODE (TREE_TYPE (decl)));
2907 rtx decl_rtl = (TREE_CODE (decl) == SAVE_EXPR ? SAVE_EXPR_RTL (decl)
2908 : DECL_RTL_IF_SET (decl));
2910 PUT_MODE (reg, decl_mode);
2912 /* Clear DECL_RTL momentarily so functions below will work
2913 properly, then set it again. */
2914 if (DECL_P (decl) && decl_rtl == reg)
2915 SET_DECL_RTL (decl, 0);
2917 set_mem_attributes (reg, decl, 1);
2918 set_mem_alias_set (reg, set);
2920 if (DECL_P (decl) && decl_rtl == reg)
2921 SET_DECL_RTL (decl, reg);
2923 if (TREE_USED (decl) || (DECL_P (decl) && DECL_INITIAL (decl) != 0))
2924 fixup_var_refs (reg, GET_MODE (reg), TREE_UNSIGNED (type), reg, 0);
2926 else
2927 fixup_var_refs (reg, GET_MODE (reg), 0, reg, 0);
2929 return reg;
2932 /* If DECL has an RTL that is an ADDRESSOF rtx, put it into the stack. */
2934 void
2935 flush_addressof (decl)
2936 tree decl;
2938 if ((TREE_CODE (decl) == PARM_DECL || TREE_CODE (decl) == VAR_DECL)
2939 && DECL_RTL (decl) != 0
2940 && GET_CODE (DECL_RTL (decl)) == MEM
2941 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF
2942 && GET_CODE (XEXP (XEXP (DECL_RTL (decl), 0), 0)) == REG)
2943 put_addressof_into_stack (XEXP (DECL_RTL (decl), 0), 0);
2946 /* Force the register pointed to by R, an ADDRESSOF rtx, into the stack. */
2948 static void
2949 put_addressof_into_stack (r, ht)
2950 rtx r;
2951 struct hash_table *ht;
2953 tree decl, type;
2954 int volatile_p, used_p;
2956 rtx reg = XEXP (r, 0);
2958 if (GET_CODE (reg) != REG)
2959 abort ();
2961 decl = ADDRESSOF_DECL (r);
2962 if (decl)
2964 type = TREE_TYPE (decl);
2965 volatile_p = (TREE_CODE (decl) != SAVE_EXPR
2966 && TREE_THIS_VOLATILE (decl));
2967 used_p = (TREE_USED (decl)
2968 || (DECL_P (decl) && DECL_INITIAL (decl) != 0));
2970 else
2972 type = NULL_TREE;
2973 volatile_p = 0;
2974 used_p = 1;
2977 put_reg_into_stack (0, reg, type, GET_MODE (reg), GET_MODE (reg),
2978 volatile_p, ADDRESSOF_REGNO (r), used_p, ht);
2981 /* List of replacements made below in purge_addressof_1 when creating
2982 bitfield insertions. */
2983 static rtx purge_bitfield_addressof_replacements;
2985 /* List of replacements made below in purge_addressof_1 for patterns
2986 (MEM (ADDRESSOF (REG ...))). The key of the list entry is the
2987 corresponding (ADDRESSOF (REG ...)) and value is a substitution for
2988 the all pattern. List PURGE_BITFIELD_ADDRESSOF_REPLACEMENTS is not
2989 enough in complex cases, e.g. when some field values can be
2990 extracted by usage MEM with narrower mode. */
2991 static rtx purge_addressof_replacements;
2993 /* Helper function for purge_addressof. See if the rtx expression at *LOC
2994 in INSN needs to be changed. If FORCE, always put any ADDRESSOFs into
2995 the stack. If the function returns FALSE then the replacement could not
2996 be made. */
2998 static bool
2999 purge_addressof_1 (loc, insn, force, store, ht)
3000 rtx *loc;
3001 rtx insn;
3002 int force, store;
3003 struct hash_table *ht;
3005 rtx x;
3006 RTX_CODE code;
3007 int i, j;
3008 const char *fmt;
3009 bool result = true;
3011 /* Re-start here to avoid recursion in common cases. */
3012 restart:
3014 x = *loc;
3015 if (x == 0)
3016 return true;
3018 code = GET_CODE (x);
3020 /* If we don't return in any of the cases below, we will recurse inside
3021 the RTX, which will normally result in any ADDRESSOF being forced into
3022 memory. */
3023 if (code == SET)
3025 result = purge_addressof_1 (&SET_DEST (x), insn, force, 1, ht);
3026 result &= purge_addressof_1 (&SET_SRC (x), insn, force, 0, ht);
3027 return result;
3029 else if (code == ADDRESSOF)
3031 rtx sub, insns;
3033 if (GET_CODE (XEXP (x, 0)) != MEM)
3035 put_addressof_into_stack (x, ht);
3036 return true;
3039 /* We must create a copy of the rtx because it was created by
3040 overwriting a REG rtx which is always shared. */
3041 sub = copy_rtx (XEXP (XEXP (x, 0), 0));
3042 if (validate_change (insn, loc, sub, 0)
3043 || validate_replace_rtx (x, sub, insn))
3044 return true;
3046 start_sequence ();
3047 sub = force_operand (sub, NULL_RTX);
3048 if (! validate_change (insn, loc, sub, 0)
3049 && ! validate_replace_rtx (x, sub, insn))
3050 abort ();
3052 insns = gen_sequence ();
3053 end_sequence ();
3054 emit_insn_before (insns, insn);
3055 return true;
3058 else if (code == MEM && GET_CODE (XEXP (x, 0)) == ADDRESSOF && ! force)
3060 rtx sub = XEXP (XEXP (x, 0), 0);
3062 if (GET_CODE (sub) == MEM)
3063 sub = adjust_address_nv (sub, GET_MODE (x), 0);
3064 else if (GET_CODE (sub) == REG
3065 && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
3067 else if (GET_CODE (sub) == REG && GET_MODE (x) != GET_MODE (sub))
3069 int size_x, size_sub;
3071 if (!insn)
3073 /* When processing REG_NOTES look at the list of
3074 replacements done on the insn to find the register that X
3075 was replaced by. */
3076 rtx tem;
3078 for (tem = purge_bitfield_addressof_replacements;
3079 tem != NULL_RTX;
3080 tem = XEXP (XEXP (tem, 1), 1))
3081 if (rtx_equal_p (x, XEXP (tem, 0)))
3083 *loc = XEXP (XEXP (tem, 1), 0);
3084 return true;
3087 /* See comment for purge_addressof_replacements. */
3088 for (tem = purge_addressof_replacements;
3089 tem != NULL_RTX;
3090 tem = XEXP (XEXP (tem, 1), 1))
3091 if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
3093 rtx z = XEXP (XEXP (tem, 1), 0);
3095 if (GET_MODE (x) == GET_MODE (z)
3096 || (GET_CODE (XEXP (XEXP (tem, 1), 0)) != REG
3097 && GET_CODE (XEXP (XEXP (tem, 1), 0)) != SUBREG))
3098 abort ();
3100 /* It can happen that the note may speak of things
3101 in a wider (or just different) mode than the
3102 code did. This is especially true of
3103 REG_RETVAL. */
3105 if (GET_CODE (z) == SUBREG && SUBREG_BYTE (z) == 0)
3106 z = SUBREG_REG (z);
3108 if (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
3109 && (GET_MODE_SIZE (GET_MODE (x))
3110 > GET_MODE_SIZE (GET_MODE (z))))
3112 /* This can occur as a result in invalid
3113 pointer casts, e.g. float f; ...
3114 *(long long int *)&f.
3115 ??? We could emit a warning here, but
3116 without a line number that wouldn't be
3117 very helpful. */
3118 z = gen_rtx_SUBREG (GET_MODE (x), z, 0);
3120 else
3121 z = gen_lowpart (GET_MODE (x), z);
3123 *loc = z;
3124 return true;
3127 /* Sometimes we may not be able to find the replacement. For
3128 example when the original insn was a MEM in a wider mode,
3129 and the note is part of a sign extension of a narrowed
3130 version of that MEM. Gcc testcase compile/990829-1.c can
3131 generate an example of this situation. Rather than complain
3132 we return false, which will prompt our caller to remove the
3133 offending note. */
3134 return false;
3137 size_x = GET_MODE_BITSIZE (GET_MODE (x));
3138 size_sub = GET_MODE_BITSIZE (GET_MODE (sub));
3140 /* Don't even consider working with paradoxical subregs,
3141 or the moral equivalent seen here. */
3142 if (size_x <= size_sub
3143 && int_mode_for_mode (GET_MODE (sub)) != BLKmode)
3145 /* Do a bitfield insertion to mirror what would happen
3146 in memory. */
3148 rtx val, seq;
3150 if (store)
3152 rtx p = PREV_INSN (insn);
3154 start_sequence ();
3155 val = gen_reg_rtx (GET_MODE (x));
3156 if (! validate_change (insn, loc, val, 0))
3158 /* Discard the current sequence and put the
3159 ADDRESSOF on stack. */
3160 end_sequence ();
3161 goto give_up;
3163 seq = gen_sequence ();
3164 end_sequence ();
3165 emit_insn_before (seq, insn);
3166 compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
3167 insn, ht);
3169 start_sequence ();
3170 store_bit_field (sub, size_x, 0, GET_MODE (x),
3171 val, GET_MODE_SIZE (GET_MODE (sub)));
3173 /* Make sure to unshare any shared rtl that store_bit_field
3174 might have created. */
3175 unshare_all_rtl_again (get_insns ());
3177 seq = gen_sequence ();
3178 end_sequence ();
3179 p = emit_insn_after (seq, insn);
3180 if (NEXT_INSN (insn))
3181 compute_insns_for_mem (NEXT_INSN (insn),
3182 p ? NEXT_INSN (p) : NULL_RTX,
3183 ht);
3185 else
3187 rtx p = PREV_INSN (insn);
3189 start_sequence ();
3190 val = extract_bit_field (sub, size_x, 0, 1, NULL_RTX,
3191 GET_MODE (x), GET_MODE (x),
3192 GET_MODE_SIZE (GET_MODE (sub)));
3194 if (! validate_change (insn, loc, val, 0))
3196 /* Discard the current sequence and put the
3197 ADDRESSOF on stack. */
3198 end_sequence ();
3199 goto give_up;
3202 seq = gen_sequence ();
3203 end_sequence ();
3204 emit_insn_before (seq, insn);
3205 compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
3206 insn, ht);
3209 /* Remember the replacement so that the same one can be done
3210 on the REG_NOTES. */
3211 purge_bitfield_addressof_replacements
3212 = gen_rtx_EXPR_LIST (VOIDmode, x,
3213 gen_rtx_EXPR_LIST
3214 (VOIDmode, val,
3215 purge_bitfield_addressof_replacements));
3217 /* We replaced with a reg -- all done. */
3218 return true;
3222 else if (validate_change (insn, loc, sub, 0))
3224 /* Remember the replacement so that the same one can be done
3225 on the REG_NOTES. */
3226 if (GET_CODE (sub) == REG || GET_CODE (sub) == SUBREG)
3228 rtx tem;
3230 for (tem = purge_addressof_replacements;
3231 tem != NULL_RTX;
3232 tem = XEXP (XEXP (tem, 1), 1))
3233 if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
3235 XEXP (XEXP (tem, 1), 0) = sub;
3236 return true;
3238 purge_addressof_replacements
3239 = gen_rtx (EXPR_LIST, VOIDmode, XEXP (x, 0),
3240 gen_rtx_EXPR_LIST (VOIDmode, sub,
3241 purge_addressof_replacements));
3242 return true;
3244 goto restart;
3248 give_up:
3249 /* Scan all subexpressions. */
3250 fmt = GET_RTX_FORMAT (code);
3251 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3253 if (*fmt == 'e')
3254 result &= purge_addressof_1 (&XEXP (x, i), insn, force, 0, ht);
3255 else if (*fmt == 'E')
3256 for (j = 0; j < XVECLEN (x, i); j++)
3257 result &= purge_addressof_1 (&XVECEXP (x, i, j), insn, force, 0, ht);
3260 return result;
3263 /* Return a new hash table entry in HT. */
3265 static struct hash_entry *
3266 insns_for_mem_newfunc (he, ht, k)
3267 struct hash_entry *he;
3268 struct hash_table *ht;
3269 hash_table_key k ATTRIBUTE_UNUSED;
3271 struct insns_for_mem_entry *ifmhe;
3272 if (he)
3273 return he;
3275 ifmhe = ((struct insns_for_mem_entry *)
3276 hash_allocate (ht, sizeof (struct insns_for_mem_entry)));
3277 ifmhe->insns = NULL_RTX;
3279 return &ifmhe->he;
3282 /* Return a hash value for K, a REG. */
3284 static unsigned long
3285 insns_for_mem_hash (k)
3286 hash_table_key k;
3288 /* K is really a RTX. Just use the address as the hash value. */
3289 return (unsigned long) k;
3292 /* Return non-zero if K1 and K2 (two REGs) are the same. */
3294 static bool
3295 insns_for_mem_comp (k1, k2)
3296 hash_table_key k1;
3297 hash_table_key k2;
3299 return k1 == k2;
3302 struct insns_for_mem_walk_info
3304 /* The hash table that we are using to record which INSNs use which
3305 MEMs. */
3306 struct hash_table *ht;
3308 /* The INSN we are currently processing. */
3309 rtx insn;
3311 /* Zero if we are walking to find ADDRESSOFs, one if we are walking
3312 to find the insns that use the REGs in the ADDRESSOFs. */
3313 int pass;
3316 /* Called from compute_insns_for_mem via for_each_rtx. If R is a REG
3317 that might be used in an ADDRESSOF expression, record this INSN in
3318 the hash table given by DATA (which is really a pointer to an
3319 insns_for_mem_walk_info structure). */
3321 static int
3322 insns_for_mem_walk (r, data)
3323 rtx *r;
3324 void *data;
3326 struct insns_for_mem_walk_info *ifmwi
3327 = (struct insns_for_mem_walk_info *) data;
3329 if (ifmwi->pass == 0 && *r && GET_CODE (*r) == ADDRESSOF
3330 && GET_CODE (XEXP (*r, 0)) == REG)
3331 hash_lookup (ifmwi->ht, XEXP (*r, 0), /*create=*/1, /*copy=*/0);
3332 else if (ifmwi->pass == 1 && *r && GET_CODE (*r) == REG)
3334 /* Lookup this MEM in the hashtable, creating it if necessary. */
3335 struct insns_for_mem_entry *ifme
3336 = (struct insns_for_mem_entry *) hash_lookup (ifmwi->ht,
3338 /*create=*/0,
3339 /*copy=*/0);
3341 /* If we have not already recorded this INSN, do so now. Since
3342 we process the INSNs in order, we know that if we have
3343 recorded it it must be at the front of the list. */
3344 if (ifme && (!ifme->insns || XEXP (ifme->insns, 0) != ifmwi->insn))
3345 ifme->insns = gen_rtx_EXPR_LIST (VOIDmode, ifmwi->insn,
3346 ifme->insns);
3349 return 0;
3352 /* Walk the INSNS, until we reach LAST_INSN, recording which INSNs use
3353 which REGs in HT. */
3355 static void
3356 compute_insns_for_mem (insns, last_insn, ht)
3357 rtx insns;
3358 rtx last_insn;
3359 struct hash_table *ht;
3361 rtx insn;
3362 struct insns_for_mem_walk_info ifmwi;
3363 ifmwi.ht = ht;
3365 for (ifmwi.pass = 0; ifmwi.pass < 2; ++ifmwi.pass)
3366 for (insn = insns; insn != last_insn; insn = NEXT_INSN (insn))
3367 if (INSN_P (insn))
3369 ifmwi.insn = insn;
3370 for_each_rtx (&insn, insns_for_mem_walk, &ifmwi);
3374 /* Helper function for purge_addressof called through for_each_rtx.
3375 Returns true iff the rtl is an ADDRESSOF. */
3377 static int
3378 is_addressof (rtl, data)
3379 rtx *rtl;
3380 void *data ATTRIBUTE_UNUSED;
3382 return GET_CODE (*rtl) == ADDRESSOF;
3385 /* Eliminate all occurrences of ADDRESSOF from INSNS. Elide any remaining
3386 (MEM (ADDRESSOF)) patterns, and force any needed registers into the
3387 stack. */
3389 void
3390 purge_addressof (insns)
3391 rtx insns;
3393 rtx insn;
3394 struct hash_table ht;
3396 /* When we actually purge ADDRESSOFs, we turn REGs into MEMs. That
3397 requires a fixup pass over the instruction stream to correct
3398 INSNs that depended on the REG being a REG, and not a MEM. But,
3399 these fixup passes are slow. Furthermore, most MEMs are not
3400 mentioned in very many instructions. So, we speed up the process
3401 by pre-calculating which REGs occur in which INSNs; that allows
3402 us to perform the fixup passes much more quickly. */
3403 hash_table_init (&ht,
3404 insns_for_mem_newfunc,
3405 insns_for_mem_hash,
3406 insns_for_mem_comp);
3407 compute_insns_for_mem (insns, NULL_RTX, &ht);
3409 for (insn = insns; insn; insn = NEXT_INSN (insn))
3410 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
3411 || GET_CODE (insn) == CALL_INSN)
3413 if (! purge_addressof_1 (&PATTERN (insn), insn,
3414 asm_noperands (PATTERN (insn)) > 0, 0, &ht))
3415 /* If we could not replace the ADDRESSOFs in the insn,
3416 something is wrong. */
3417 abort ();
3419 if (! purge_addressof_1 (&REG_NOTES (insn), NULL_RTX, 0, 0, &ht))
3421 /* If we could not replace the ADDRESSOFs in the insn's notes,
3422 we can just remove the offending notes instead. */
3423 rtx note;
3425 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3427 /* If we find a REG_RETVAL note then the insn is a libcall.
3428 Such insns must have REG_EQUAL notes as well, in order
3429 for later passes of the compiler to work. So it is not
3430 safe to delete the notes here, and instead we abort. */
3431 if (REG_NOTE_KIND (note) == REG_RETVAL)
3432 abort ();
3433 if (for_each_rtx (&note, is_addressof, NULL))
3434 remove_note (insn, note);
3439 /* Clean up. */
3440 hash_table_free (&ht);
3441 purge_bitfield_addressof_replacements = 0;
3442 purge_addressof_replacements = 0;
3444 /* REGs are shared. purge_addressof will destructively replace a REG
3445 with a MEM, which creates shared MEMs.
3447 Unfortunately, the children of put_reg_into_stack assume that MEMs
3448 referring to the same stack slot are shared (fixup_var_refs and
3449 the associated hash table code).
3451 So, we have to do another unsharing pass after we have flushed any
3452 REGs that had their address taken into the stack.
3454 It may be worth tracking whether or not we converted any REGs into
3455 MEMs to avoid this overhead when it is not needed. */
3456 unshare_all_rtl_again (get_insns ());
3459 /* Convert a SET of a hard subreg to a set of the appropriate hard
3460 register. A subroutine of purge_hard_subreg_sets. */
3462 static void
3463 purge_single_hard_subreg_set (pattern)
3464 rtx pattern;
3466 rtx reg = SET_DEST (pattern);
3467 enum machine_mode mode = GET_MODE (SET_DEST (pattern));
3468 int offset = 0;
3470 if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG
3471 && REGNO (SUBREG_REG (reg)) < FIRST_PSEUDO_REGISTER)
3473 offset = subreg_regno_offset (REGNO (SUBREG_REG (reg)),
3474 GET_MODE (SUBREG_REG (reg)),
3475 SUBREG_BYTE (reg),
3476 GET_MODE (reg));
3477 reg = SUBREG_REG (reg);
3481 if (GET_CODE (reg) == REG && REGNO (reg) < FIRST_PSEUDO_REGISTER)
3483 reg = gen_rtx_REG (mode, REGNO (reg) + offset);
3484 SET_DEST (pattern) = reg;
3488 /* Eliminate all occurrences of SETs of hard subregs from INSNS. The
3489 only such SETs that we expect to see are those left in because
3490 integrate can't handle sets of parts of a return value register.
3492 We don't use alter_subreg because we only want to eliminate subregs
3493 of hard registers. */
3495 void
3496 purge_hard_subreg_sets (insn)
3497 rtx insn;
3499 for (; insn; insn = NEXT_INSN (insn))
3501 if (INSN_P (insn))
3503 rtx pattern = PATTERN (insn);
3504 switch (GET_CODE (pattern))
3506 case SET:
3507 if (GET_CODE (SET_DEST (pattern)) == SUBREG)
3508 purge_single_hard_subreg_set (pattern);
3509 break;
3510 case PARALLEL:
3512 int j;
3513 for (j = XVECLEN (pattern, 0) - 1; j >= 0; j--)
3515 rtx inner_pattern = XVECEXP (pattern, 0, j);
3516 if (GET_CODE (inner_pattern) == SET
3517 && GET_CODE (SET_DEST (inner_pattern)) == SUBREG)
3518 purge_single_hard_subreg_set (inner_pattern);
3521 break;
3522 default:
3523 break;
3529 /* Pass through the INSNS of function FNDECL and convert virtual register
3530 references to hard register references. */
3532 void
3533 instantiate_virtual_regs (fndecl, insns)
3534 tree fndecl;
3535 rtx insns;
3537 rtx insn;
3538 unsigned int i;
3540 /* Compute the offsets to use for this function. */
3541 in_arg_offset = FIRST_PARM_OFFSET (fndecl);
3542 var_offset = STARTING_FRAME_OFFSET;
3543 dynamic_offset = STACK_DYNAMIC_OFFSET (fndecl);
3544 out_arg_offset = STACK_POINTER_OFFSET;
3545 cfa_offset = ARG_POINTER_CFA_OFFSET (fndecl);
3547 /* Scan all variables and parameters of this function. For each that is
3548 in memory, instantiate all virtual registers if the result is a valid
3549 address. If not, we do it later. That will handle most uses of virtual
3550 regs on many machines. */
3551 instantiate_decls (fndecl, 1);
3553 /* Initialize recognition, indicating that volatile is OK. */
3554 init_recog ();
3556 /* Scan through all the insns, instantiating every virtual register still
3557 present. */
3558 for (insn = insns; insn; insn = NEXT_INSN (insn))
3559 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
3560 || GET_CODE (insn) == CALL_INSN)
3562 instantiate_virtual_regs_1 (&PATTERN (insn), insn, 1);
3563 instantiate_virtual_regs_1 (&REG_NOTES (insn), NULL_RTX, 0);
3564 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
3565 if (GET_CODE (insn) == CALL_INSN)
3566 instantiate_virtual_regs_1 (&CALL_INSN_FUNCTION_USAGE (insn),
3567 NULL_RTX, 0);
3570 /* Instantiate the stack slots for the parm registers, for later use in
3571 addressof elimination. */
3572 for (i = 0; i < max_parm_reg; ++i)
3573 if (parm_reg_stack_loc[i])
3574 instantiate_virtual_regs_1 (&parm_reg_stack_loc[i], NULL_RTX, 0);
3576 /* Now instantiate the remaining register equivalences for debugging info.
3577 These will not be valid addresses. */
3578 instantiate_decls (fndecl, 0);
3580 /* Indicate that, from now on, assign_stack_local should use
3581 frame_pointer_rtx. */
3582 virtuals_instantiated = 1;
3585 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
3586 all virtual registers in their DECL_RTL's.
3588 If VALID_ONLY, do this only if the resulting address is still valid.
3589 Otherwise, always do it. */
3591 static void
3592 instantiate_decls (fndecl, valid_only)
3593 tree fndecl;
3594 int valid_only;
3596 tree decl;
3598 /* Process all parameters of the function. */
3599 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
3601 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (decl));
3602 HOST_WIDE_INT size_rtl;
3604 instantiate_decl (DECL_RTL (decl), size, valid_only);
3606 /* If the parameter was promoted, then the incoming RTL mode may be
3607 larger than the declared type size. We must use the larger of
3608 the two sizes. */
3609 size_rtl = GET_MODE_SIZE (GET_MODE (DECL_INCOMING_RTL (decl)));
3610 size = MAX (size_rtl, size);
3611 instantiate_decl (DECL_INCOMING_RTL (decl), size, valid_only);
3614 /* Now process all variables defined in the function or its subblocks. */
3615 instantiate_decls_1 (DECL_INITIAL (fndecl), valid_only);
3618 /* Subroutine of instantiate_decls: Process all decls in the given
3619 BLOCK node and all its subblocks. */
3621 static void
3622 instantiate_decls_1 (let, valid_only)
3623 tree let;
3624 int valid_only;
3626 tree t;
3628 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
3629 if (DECL_RTL_SET_P (t))
3630 instantiate_decl (DECL_RTL (t),
3631 int_size_in_bytes (TREE_TYPE (t)),
3632 valid_only);
3634 /* Process all subblocks. */
3635 for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
3636 instantiate_decls_1 (t, valid_only);
3639 /* Subroutine of the preceding procedures: Given RTL representing a
3640 decl and the size of the object, do any instantiation required.
3642 If VALID_ONLY is non-zero, it means that the RTL should only be
3643 changed if the new address is valid. */
3645 static void
3646 instantiate_decl (x, size, valid_only)
3647 rtx x;
3648 HOST_WIDE_INT size;
3649 int valid_only;
3651 enum machine_mode mode;
3652 rtx addr;
3654 /* If this is not a MEM, no need to do anything. Similarly if the
3655 address is a constant or a register that is not a virtual register. */
3657 if (x == 0 || GET_CODE (x) != MEM)
3658 return;
3660 addr = XEXP (x, 0);
3661 if (CONSTANT_P (addr)
3662 || (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == REG)
3663 || (GET_CODE (addr) == REG
3664 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
3665 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
3666 return;
3668 /* If we should only do this if the address is valid, copy the address.
3669 We need to do this so we can undo any changes that might make the
3670 address invalid. This copy is unfortunate, but probably can't be
3671 avoided. */
3673 if (valid_only)
3674 addr = copy_rtx (addr);
3676 instantiate_virtual_regs_1 (&addr, NULL_RTX, 0);
3678 if (valid_only && size >= 0)
3680 unsigned HOST_WIDE_INT decl_size = size;
3682 /* Now verify that the resulting address is valid for every integer or
3683 floating-point mode up to and including SIZE bytes long. We do this
3684 since the object might be accessed in any mode and frame addresses
3685 are shared. */
3687 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
3688 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
3689 mode = GET_MODE_WIDER_MODE (mode))
3690 if (! memory_address_p (mode, addr))
3691 return;
3693 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
3694 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
3695 mode = GET_MODE_WIDER_MODE (mode))
3696 if (! memory_address_p (mode, addr))
3697 return;
3700 /* Put back the address now that we have updated it and we either know
3701 it is valid or we don't care whether it is valid. */
3703 XEXP (x, 0) = addr;
3706 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
3707 is a virtual register, return the equivalent hard register and set the
3708 offset indirectly through the pointer. Otherwise, return 0. */
3710 static rtx
3711 instantiate_new_reg (x, poffset)
3712 rtx x;
3713 HOST_WIDE_INT *poffset;
3715 rtx new;
3716 HOST_WIDE_INT offset;
3718 if (x == virtual_incoming_args_rtx)
3719 new = arg_pointer_rtx, offset = in_arg_offset;
3720 else if (x == virtual_stack_vars_rtx)
3721 new = frame_pointer_rtx, offset = var_offset;
3722 else if (x == virtual_stack_dynamic_rtx)
3723 new = stack_pointer_rtx, offset = dynamic_offset;
3724 else if (x == virtual_outgoing_args_rtx)
3725 new = stack_pointer_rtx, offset = out_arg_offset;
3726 else if (x == virtual_cfa_rtx)
3727 new = arg_pointer_rtx, offset = cfa_offset;
3728 else
3729 return 0;
3731 *poffset = offset;
3732 return new;
3735 /* Given a pointer to a piece of rtx and an optional pointer to the
3736 containing object, instantiate any virtual registers present in it.
3738 If EXTRA_INSNS, we always do the replacement and generate
3739 any extra insns before OBJECT. If it zero, we do nothing if replacement
3740 is not valid.
3742 Return 1 if we either had nothing to do or if we were able to do the
3743 needed replacement. Return 0 otherwise; we only return zero if
3744 EXTRA_INSNS is zero.
3746 We first try some simple transformations to avoid the creation of extra
3747 pseudos. */
3749 static int
3750 instantiate_virtual_regs_1 (loc, object, extra_insns)
3751 rtx *loc;
3752 rtx object;
3753 int extra_insns;
3755 rtx x;
3756 RTX_CODE code;
3757 rtx new = 0;
3758 HOST_WIDE_INT offset = 0;
3759 rtx temp;
3760 rtx seq;
3761 int i, j;
3762 const char *fmt;
3764 /* Re-start here to avoid recursion in common cases. */
3765 restart:
3767 x = *loc;
3768 if (x == 0)
3769 return 1;
3771 code = GET_CODE (x);
3773 /* Check for some special cases. */
3774 switch (code)
3776 case CONST_INT:
3777 case CONST_DOUBLE:
3778 case CONST_VECTOR:
3779 case CONST:
3780 case SYMBOL_REF:
3781 case CODE_LABEL:
3782 case PC:
3783 case CC0:
3784 case ASM_INPUT:
3785 case ADDR_VEC:
3786 case ADDR_DIFF_VEC:
3787 case RETURN:
3788 return 1;
3790 case SET:
3791 /* We are allowed to set the virtual registers. This means that
3792 the actual register should receive the source minus the
3793 appropriate offset. This is used, for example, in the handling
3794 of non-local gotos. */
3795 if ((new = instantiate_new_reg (SET_DEST (x), &offset)) != 0)
3797 rtx src = SET_SRC (x);
3799 /* We are setting the register, not using it, so the relevant
3800 offset is the negative of the offset to use were we using
3801 the register. */
3802 offset = - offset;
3803 instantiate_virtual_regs_1 (&src, NULL_RTX, 0);
3805 /* The only valid sources here are PLUS or REG. Just do
3806 the simplest possible thing to handle them. */
3807 if (GET_CODE (src) != REG && GET_CODE (src) != PLUS)
3808 abort ();
3810 start_sequence ();
3811 if (GET_CODE (src) != REG)
3812 temp = force_operand (src, NULL_RTX);
3813 else
3814 temp = src;
3815 temp = force_operand (plus_constant (temp, offset), NULL_RTX);
3816 seq = get_insns ();
3817 end_sequence ();
3819 emit_insns_before (seq, object);
3820 SET_DEST (x) = new;
3822 if (! validate_change (object, &SET_SRC (x), temp, 0)
3823 || ! extra_insns)
3824 abort ();
3826 return 1;
3829 instantiate_virtual_regs_1 (&SET_DEST (x), object, extra_insns);
3830 loc = &SET_SRC (x);
3831 goto restart;
3833 case PLUS:
3834 /* Handle special case of virtual register plus constant. */
3835 if (CONSTANT_P (XEXP (x, 1)))
3837 rtx old, new_offset;
3839 /* Check for (plus (plus VIRT foo) (const_int)) first. */
3840 if (GET_CODE (XEXP (x, 0)) == PLUS)
3842 if ((new = instantiate_new_reg (XEXP (XEXP (x, 0), 0), &offset)))
3844 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 1), object,
3845 extra_insns);
3846 new = gen_rtx_PLUS (Pmode, new, XEXP (XEXP (x, 0), 1));
3848 else
3850 loc = &XEXP (x, 0);
3851 goto restart;
3855 #ifdef POINTERS_EXTEND_UNSIGNED
3856 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
3857 we can commute the PLUS and SUBREG because pointers into the
3858 frame are well-behaved. */
3859 else if (GET_CODE (XEXP (x, 0)) == SUBREG && GET_MODE (x) == ptr_mode
3860 && GET_CODE (XEXP (x, 1)) == CONST_INT
3861 && 0 != (new
3862 = instantiate_new_reg (SUBREG_REG (XEXP (x, 0)),
3863 &offset))
3864 && validate_change (object, loc,
3865 plus_constant (gen_lowpart (ptr_mode,
3866 new),
3867 offset
3868 + INTVAL (XEXP (x, 1))),
3870 return 1;
3871 #endif
3872 else if ((new = instantiate_new_reg (XEXP (x, 0), &offset)) == 0)
3874 /* We know the second operand is a constant. Unless the
3875 first operand is a REG (which has been already checked),
3876 it needs to be checked. */
3877 if (GET_CODE (XEXP (x, 0)) != REG)
3879 loc = &XEXP (x, 0);
3880 goto restart;
3882 return 1;
3885 new_offset = plus_constant (XEXP (x, 1), offset);
3887 /* If the new constant is zero, try to replace the sum with just
3888 the register. */
3889 if (new_offset == const0_rtx
3890 && validate_change (object, loc, new, 0))
3891 return 1;
3893 /* Next try to replace the register and new offset.
3894 There are two changes to validate here and we can't assume that
3895 in the case of old offset equals new just changing the register
3896 will yield a valid insn. In the interests of a little efficiency,
3897 however, we only call validate change once (we don't queue up the
3898 changes and then call apply_change_group). */
3900 old = XEXP (x, 0);
3901 if (offset == 0
3902 ? ! validate_change (object, &XEXP (x, 0), new, 0)
3903 : (XEXP (x, 0) = new,
3904 ! validate_change (object, &XEXP (x, 1), new_offset, 0)))
3906 if (! extra_insns)
3908 XEXP (x, 0) = old;
3909 return 0;
3912 /* Otherwise copy the new constant into a register and replace
3913 constant with that register. */
3914 temp = gen_reg_rtx (Pmode);
3915 XEXP (x, 0) = new;
3916 if (validate_change (object, &XEXP (x, 1), temp, 0))
3917 emit_insn_before (gen_move_insn (temp, new_offset), object);
3918 else
3920 /* If that didn't work, replace this expression with a
3921 register containing the sum. */
3923 XEXP (x, 0) = old;
3924 new = gen_rtx_PLUS (Pmode, new, new_offset);
3926 start_sequence ();
3927 temp = force_operand (new, NULL_RTX);
3928 seq = get_insns ();
3929 end_sequence ();
3931 emit_insns_before (seq, object);
3932 if (! validate_change (object, loc, temp, 0)
3933 && ! validate_replace_rtx (x, temp, object))
3934 abort ();
3938 return 1;
3941 /* Fall through to generic two-operand expression case. */
3942 case EXPR_LIST:
3943 case CALL:
3944 case COMPARE:
3945 case MINUS:
3946 case MULT:
3947 case DIV: case UDIV:
3948 case MOD: case UMOD:
3949 case AND: case IOR: case XOR:
3950 case ROTATERT: case ROTATE:
3951 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
3952 case NE: case EQ:
3953 case GE: case GT: case GEU: case GTU:
3954 case LE: case LT: case LEU: case LTU:
3955 if (XEXP (x, 1) && ! CONSTANT_P (XEXP (x, 1)))
3956 instantiate_virtual_regs_1 (&XEXP (x, 1), object, extra_insns);
3957 loc = &XEXP (x, 0);
3958 goto restart;
3960 case MEM:
3961 /* Most cases of MEM that convert to valid addresses have already been
3962 handled by our scan of decls. The only special handling we
3963 need here is to make a copy of the rtx to ensure it isn't being
3964 shared if we have to change it to a pseudo.
3966 If the rtx is a simple reference to an address via a virtual register,
3967 it can potentially be shared. In such cases, first try to make it
3968 a valid address, which can also be shared. Otherwise, copy it and
3969 proceed normally.
3971 First check for common cases that need no processing. These are
3972 usually due to instantiation already being done on a previous instance
3973 of a shared rtx. */
3975 temp = XEXP (x, 0);
3976 if (CONSTANT_ADDRESS_P (temp)
3977 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3978 || temp == arg_pointer_rtx
3979 #endif
3980 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3981 || temp == hard_frame_pointer_rtx
3982 #endif
3983 || temp == frame_pointer_rtx)
3984 return 1;
3986 if (GET_CODE (temp) == PLUS
3987 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
3988 && (XEXP (temp, 0) == frame_pointer_rtx
3989 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3990 || XEXP (temp, 0) == hard_frame_pointer_rtx
3991 #endif
3992 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3993 || XEXP (temp, 0) == arg_pointer_rtx
3994 #endif
3996 return 1;
3998 if (temp == virtual_stack_vars_rtx
3999 || temp == virtual_incoming_args_rtx
4000 || (GET_CODE (temp) == PLUS
4001 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
4002 && (XEXP (temp, 0) == virtual_stack_vars_rtx
4003 || XEXP (temp, 0) == virtual_incoming_args_rtx)))
4005 /* This MEM may be shared. If the substitution can be done without
4006 the need to generate new pseudos, we want to do it in place
4007 so all copies of the shared rtx benefit. The call below will
4008 only make substitutions if the resulting address is still
4009 valid.
4011 Note that we cannot pass X as the object in the recursive call
4012 since the insn being processed may not allow all valid
4013 addresses. However, if we were not passed on object, we can
4014 only modify X without copying it if X will have a valid
4015 address.
4017 ??? Also note that this can still lose if OBJECT is an insn that
4018 has less restrictions on an address that some other insn.
4019 In that case, we will modify the shared address. This case
4020 doesn't seem very likely, though. One case where this could
4021 happen is in the case of a USE or CLOBBER reference, but we
4022 take care of that below. */
4024 if (instantiate_virtual_regs_1 (&XEXP (x, 0),
4025 object ? object : x, 0))
4026 return 1;
4028 /* Otherwise make a copy and process that copy. We copy the entire
4029 RTL expression since it might be a PLUS which could also be
4030 shared. */
4031 *loc = x = copy_rtx (x);
4034 /* Fall through to generic unary operation case. */
4035 case PREFETCH:
4036 case SUBREG:
4037 case STRICT_LOW_PART:
4038 case NEG: case NOT:
4039 case PRE_DEC: case PRE_INC: case POST_DEC: case POST_INC:
4040 case SIGN_EXTEND: case ZERO_EXTEND:
4041 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
4042 case FLOAT: case FIX:
4043 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
4044 case ABS:
4045 case SQRT:
4046 case FFS:
4047 /* These case either have just one operand or we know that we need not
4048 check the rest of the operands. */
4049 loc = &XEXP (x, 0);
4050 goto restart;
4052 case USE:
4053 case CLOBBER:
4054 /* If the operand is a MEM, see if the change is a valid MEM. If not,
4055 go ahead and make the invalid one, but do it to a copy. For a REG,
4056 just make the recursive call, since there's no chance of a problem. */
4058 if ((GET_CODE (XEXP (x, 0)) == MEM
4059 && instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), XEXP (x, 0),
4061 || (GET_CODE (XEXP (x, 0)) == REG
4062 && instantiate_virtual_regs_1 (&XEXP (x, 0), object, 0)))
4063 return 1;
4065 XEXP (x, 0) = copy_rtx (XEXP (x, 0));
4066 loc = &XEXP (x, 0);
4067 goto restart;
4069 case REG:
4070 /* Try to replace with a PLUS. If that doesn't work, compute the sum
4071 in front of this insn and substitute the temporary. */
4072 if ((new = instantiate_new_reg (x, &offset)) != 0)
4074 temp = plus_constant (new, offset);
4075 if (!validate_change (object, loc, temp, 0))
4077 if (! extra_insns)
4078 return 0;
4080 start_sequence ();
4081 temp = force_operand (temp, NULL_RTX);
4082 seq = get_insns ();
4083 end_sequence ();
4085 emit_insns_before (seq, object);
4086 if (! validate_change (object, loc, temp, 0)
4087 && ! validate_replace_rtx (x, temp, object))
4088 abort ();
4092 return 1;
4094 case ADDRESSOF:
4095 if (GET_CODE (XEXP (x, 0)) == REG)
4096 return 1;
4098 else if (GET_CODE (XEXP (x, 0)) == MEM)
4100 /* If we have a (addressof (mem ..)), do any instantiation inside
4101 since we know we'll be making the inside valid when we finally
4102 remove the ADDRESSOF. */
4103 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), NULL_RTX, 0);
4104 return 1;
4106 break;
4108 default:
4109 break;
4112 /* Scan all subexpressions. */
4113 fmt = GET_RTX_FORMAT (code);
4114 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
4115 if (*fmt == 'e')
4117 if (!instantiate_virtual_regs_1 (&XEXP (x, i), object, extra_insns))
4118 return 0;
4120 else if (*fmt == 'E')
4121 for (j = 0; j < XVECLEN (x, i); j++)
4122 if (! instantiate_virtual_regs_1 (&XVECEXP (x, i, j), object,
4123 extra_insns))
4124 return 0;
4126 return 1;
4129 /* Optimization: assuming this function does not receive nonlocal gotos,
4130 delete the handlers for such, as well as the insns to establish
4131 and disestablish them. */
4133 static void
4134 delete_handlers ()
4136 rtx insn;
4137 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4139 /* Delete the handler by turning off the flag that would
4140 prevent jump_optimize from deleting it.
4141 Also permit deletion of the nonlocal labels themselves
4142 if nothing local refers to them. */
4143 if (GET_CODE (insn) == CODE_LABEL)
4145 tree t, last_t;
4147 LABEL_PRESERVE_P (insn) = 0;
4149 /* Remove it from the nonlocal_label list, to avoid confusing
4150 flow. */
4151 for (t = nonlocal_labels, last_t = 0; t;
4152 last_t = t, t = TREE_CHAIN (t))
4153 if (DECL_RTL (TREE_VALUE (t)) == insn)
4154 break;
4155 if (t)
4157 if (! last_t)
4158 nonlocal_labels = TREE_CHAIN (nonlocal_labels);
4159 else
4160 TREE_CHAIN (last_t) = TREE_CHAIN (t);
4163 if (GET_CODE (insn) == INSN)
4165 int can_delete = 0;
4166 rtx t;
4167 for (t = nonlocal_goto_handler_slots; t != 0; t = XEXP (t, 1))
4168 if (reg_mentioned_p (t, PATTERN (insn)))
4170 can_delete = 1;
4171 break;
4173 if (can_delete
4174 || (nonlocal_goto_stack_level != 0
4175 && reg_mentioned_p (nonlocal_goto_stack_level,
4176 PATTERN (insn))))
4177 delete_related_insns (insn);
4183 max_parm_reg_num ()
4185 return max_parm_reg;
4188 /* Return the first insn following those generated by `assign_parms'. */
4191 get_first_nonparm_insn ()
4193 if (last_parm_insn)
4194 return NEXT_INSN (last_parm_insn);
4195 return get_insns ();
4198 /* Return the first NOTE_INSN_BLOCK_BEG note in the function.
4199 Crash if there is none. */
4202 get_first_block_beg ()
4204 rtx searcher;
4205 rtx insn = get_first_nonparm_insn ();
4207 for (searcher = insn; searcher; searcher = NEXT_INSN (searcher))
4208 if (GET_CODE (searcher) == NOTE
4209 && NOTE_LINE_NUMBER (searcher) == NOTE_INSN_BLOCK_BEG)
4210 return searcher;
4212 abort (); /* Invalid call to this function. (See comments above.) */
4213 return NULL_RTX;
4216 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
4217 This means a type for which function calls must pass an address to the
4218 function or get an address back from the function.
4219 EXP may be a type node or an expression (whose type is tested). */
4222 aggregate_value_p (exp)
4223 tree exp;
4225 int i, regno, nregs;
4226 rtx reg;
4228 tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
4230 if (TREE_CODE (type) == VOID_TYPE)
4231 return 0;
4232 if (RETURN_IN_MEMORY (type))
4233 return 1;
4234 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
4235 and thus can't be returned in registers. */
4236 if (TREE_ADDRESSABLE (type))
4237 return 1;
4238 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
4239 return 1;
4240 /* Make sure we have suitable call-clobbered regs to return
4241 the value in; if not, we must return it in memory. */
4242 reg = hard_function_value (type, 0, 0);
4244 /* If we have something other than a REG (e.g. a PARALLEL), then assume
4245 it is OK. */
4246 if (GET_CODE (reg) != REG)
4247 return 0;
4249 regno = REGNO (reg);
4250 nregs = HARD_REGNO_NREGS (regno, TYPE_MODE (type));
4251 for (i = 0; i < nregs; i++)
4252 if (! call_used_regs[regno + i])
4253 return 1;
4254 return 0;
4257 /* Assign RTL expressions to the function's parameters.
4258 This may involve copying them into registers and using
4259 those registers as the RTL for them. */
4261 void
4262 assign_parms (fndecl)
4263 tree fndecl;
4265 tree parm;
4266 rtx entry_parm = 0;
4267 rtx stack_parm = 0;
4268 CUMULATIVE_ARGS args_so_far;
4269 enum machine_mode promoted_mode, passed_mode;
4270 enum machine_mode nominal_mode, promoted_nominal_mode;
4271 int unsignedp;
4272 /* Total space needed so far for args on the stack,
4273 given as a constant and a tree-expression. */
4274 struct args_size stack_args_size;
4275 tree fntype = TREE_TYPE (fndecl);
4276 tree fnargs = DECL_ARGUMENTS (fndecl);
4277 /* This is used for the arg pointer when referring to stack args. */
4278 rtx internal_arg_pointer;
4279 /* This is a dummy PARM_DECL that we used for the function result if
4280 the function returns a structure. */
4281 tree function_result_decl = 0;
4282 #ifdef SETUP_INCOMING_VARARGS
4283 int varargs_setup = 0;
4284 #endif
4285 rtx conversion_insns = 0;
4286 struct args_size alignment_pad;
4288 /* Nonzero if the last arg is named `__builtin_va_alist',
4289 which is used on some machines for old-fashioned non-ANSI varargs.h;
4290 this should be stuck onto the stack as if it had arrived there. */
4291 int hide_last_arg
4292 = (current_function_varargs
4293 && fnargs
4294 && (parm = tree_last (fnargs)) != 0
4295 && DECL_NAME (parm)
4296 && (! strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
4297 "__builtin_va_alist")));
4299 /* Nonzero if function takes extra anonymous args.
4300 This means the last named arg must be on the stack
4301 right before the anonymous ones. */
4302 int stdarg
4303 = (TYPE_ARG_TYPES (fntype) != 0
4304 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
4305 != void_type_node));
4307 current_function_stdarg = stdarg;
4309 /* If the reg that the virtual arg pointer will be translated into is
4310 not a fixed reg or is the stack pointer, make a copy of the virtual
4311 arg pointer, and address parms via the copy. The frame pointer is
4312 considered fixed even though it is not marked as such.
4314 The second time through, simply use ap to avoid generating rtx. */
4316 if ((ARG_POINTER_REGNUM == STACK_POINTER_REGNUM
4317 || ! (fixed_regs[ARG_POINTER_REGNUM]
4318 || ARG_POINTER_REGNUM == FRAME_POINTER_REGNUM)))
4319 internal_arg_pointer = copy_to_reg (virtual_incoming_args_rtx);
4320 else
4321 internal_arg_pointer = virtual_incoming_args_rtx;
4322 current_function_internal_arg_pointer = internal_arg_pointer;
4324 stack_args_size.constant = 0;
4325 stack_args_size.var = 0;
4327 /* If struct value address is treated as the first argument, make it so. */
4328 if (aggregate_value_p (DECL_RESULT (fndecl))
4329 && ! current_function_returns_pcc_struct
4330 && struct_value_incoming_rtx == 0)
4332 tree type = build_pointer_type (TREE_TYPE (fntype));
4334 function_result_decl = build_decl (PARM_DECL, NULL_TREE, type);
4336 DECL_ARG_TYPE (function_result_decl) = type;
4337 TREE_CHAIN (function_result_decl) = fnargs;
4338 fnargs = function_result_decl;
4341 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
4342 parm_reg_stack_loc = (rtx *) xcalloc (max_parm_reg, sizeof (rtx));
4344 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
4345 INIT_CUMULATIVE_INCOMING_ARGS (args_so_far, fntype, NULL_RTX);
4346 #else
4347 INIT_CUMULATIVE_ARGS (args_so_far, fntype, NULL_RTX, 0);
4348 #endif
4350 /* We haven't yet found an argument that we must push and pretend the
4351 caller did. */
4352 current_function_pretend_args_size = 0;
4354 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
4356 struct args_size stack_offset;
4357 struct args_size arg_size;
4358 int passed_pointer = 0;
4359 int did_conversion = 0;
4360 tree passed_type = DECL_ARG_TYPE (parm);
4361 tree nominal_type = TREE_TYPE (parm);
4362 int pretend_named;
4363 int last_named = 0, named_arg;
4365 /* Set LAST_NAMED if this is last named arg before last
4366 anonymous args. */
4367 if (stdarg || current_function_varargs)
4369 tree tem;
4371 for (tem = TREE_CHAIN (parm); tem; tem = TREE_CHAIN (tem))
4372 if (DECL_NAME (tem))
4373 break;
4375 if (tem == 0)
4376 last_named = 1;
4378 /* Set NAMED_ARG if this arg should be treated as a named arg. For
4379 most machines, if this is a varargs/stdarg function, then we treat
4380 the last named arg as if it were anonymous too. */
4381 named_arg = STRICT_ARGUMENT_NAMING ? 1 : ! last_named;
4383 if (TREE_TYPE (parm) == error_mark_node
4384 /* This can happen after weird syntax errors
4385 or if an enum type is defined among the parms. */
4386 || TREE_CODE (parm) != PARM_DECL
4387 || passed_type == NULL)
4389 SET_DECL_RTL (parm, gen_rtx_MEM (BLKmode, const0_rtx));
4390 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
4391 TREE_USED (parm) = 1;
4392 continue;
4395 /* For varargs.h function, save info about regs and stack space
4396 used by the individual args, not including the va_alist arg. */
4397 if (hide_last_arg && last_named)
4398 current_function_args_info = args_so_far;
4400 /* Find mode of arg as it is passed, and mode of arg
4401 as it should be during execution of this function. */
4402 passed_mode = TYPE_MODE (passed_type);
4403 nominal_mode = TYPE_MODE (nominal_type);
4405 /* If the parm's mode is VOID, its value doesn't matter,
4406 and avoid the usual things like emit_move_insn that could crash. */
4407 if (nominal_mode == VOIDmode)
4409 SET_DECL_RTL (parm, const0_rtx);
4410 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
4411 continue;
4414 /* If the parm is to be passed as a transparent union, use the
4415 type of the first field for the tests below. We have already
4416 verified that the modes are the same. */
4417 if (DECL_TRANSPARENT_UNION (parm)
4418 || (TREE_CODE (passed_type) == UNION_TYPE
4419 && TYPE_TRANSPARENT_UNION (passed_type)))
4420 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
4422 /* See if this arg was passed by invisible reference. It is if
4423 it is an object whose size depends on the contents of the
4424 object itself or if the machine requires these objects be passed
4425 that way. */
4427 if ((TREE_CODE (TYPE_SIZE (passed_type)) != INTEGER_CST
4428 && contains_placeholder_p (TYPE_SIZE (passed_type)))
4429 || TREE_ADDRESSABLE (passed_type)
4430 #ifdef FUNCTION_ARG_PASS_BY_REFERENCE
4431 || FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far, passed_mode,
4432 passed_type, named_arg)
4433 #endif
4436 passed_type = nominal_type = build_pointer_type (passed_type);
4437 passed_pointer = 1;
4438 passed_mode = nominal_mode = Pmode;
4441 promoted_mode = passed_mode;
4443 #ifdef PROMOTE_FUNCTION_ARGS
4444 /* Compute the mode in which the arg is actually extended to. */
4445 unsignedp = TREE_UNSIGNED (passed_type);
4446 promoted_mode = promote_mode (passed_type, promoted_mode, &unsignedp, 1);
4447 #endif
4449 /* Let machine desc say which reg (if any) the parm arrives in.
4450 0 means it arrives on the stack. */
4451 #ifdef FUNCTION_INCOMING_ARG
4452 entry_parm = FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
4453 passed_type, named_arg);
4454 #else
4455 entry_parm = FUNCTION_ARG (args_so_far, promoted_mode,
4456 passed_type, named_arg);
4457 #endif
4459 if (entry_parm == 0)
4460 promoted_mode = passed_mode;
4462 #ifdef SETUP_INCOMING_VARARGS
4463 /* If this is the last named parameter, do any required setup for
4464 varargs or stdargs. We need to know about the case of this being an
4465 addressable type, in which case we skip the registers it
4466 would have arrived in.
4468 For stdargs, LAST_NAMED will be set for two parameters, the one that
4469 is actually the last named, and the dummy parameter. We only
4470 want to do this action once.
4472 Also, indicate when RTL generation is to be suppressed. */
4473 if (last_named && !varargs_setup)
4475 SETUP_INCOMING_VARARGS (args_so_far, promoted_mode, passed_type,
4476 current_function_pretend_args_size, 0);
4477 varargs_setup = 1;
4479 #endif
4481 /* Determine parm's home in the stack,
4482 in case it arrives in the stack or we should pretend it did.
4484 Compute the stack position and rtx where the argument arrives
4485 and its size.
4487 There is one complexity here: If this was a parameter that would
4488 have been passed in registers, but wasn't only because it is
4489 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
4490 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
4491 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of
4492 0 as it was the previous time. */
4494 pretend_named = named_arg || PRETEND_OUTGOING_VARARGS_NAMED;
4495 locate_and_pad_parm (promoted_mode, passed_type,
4496 #ifdef STACK_PARMS_IN_REG_PARM_AREA
4498 #else
4499 #ifdef FUNCTION_INCOMING_ARG
4500 FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
4501 passed_type,
4502 pretend_named) != 0,
4503 #else
4504 FUNCTION_ARG (args_so_far, promoted_mode,
4505 passed_type,
4506 pretend_named) != 0,
4507 #endif
4508 #endif
4509 fndecl, &stack_args_size, &stack_offset, &arg_size,
4510 &alignment_pad);
4513 rtx offset_rtx = ARGS_SIZE_RTX (stack_offset);
4515 if (offset_rtx == const0_rtx)
4516 stack_parm = gen_rtx_MEM (promoted_mode, internal_arg_pointer);
4517 else
4518 stack_parm = gen_rtx_MEM (promoted_mode,
4519 gen_rtx_PLUS (Pmode,
4520 internal_arg_pointer,
4521 offset_rtx));
4523 set_mem_attributes (stack_parm, parm, 1);
4526 /* If this parameter was passed both in registers and in the stack,
4527 use the copy on the stack. */
4528 if (MUST_PASS_IN_STACK (promoted_mode, passed_type))
4529 entry_parm = 0;
4531 #ifdef FUNCTION_ARG_PARTIAL_NREGS
4532 /* If this parm was passed part in regs and part in memory,
4533 pretend it arrived entirely in memory
4534 by pushing the register-part onto the stack.
4536 In the special case of a DImode or DFmode that is split,
4537 we could put it together in a pseudoreg directly,
4538 but for now that's not worth bothering with. */
4540 if (entry_parm)
4542 int nregs = FUNCTION_ARG_PARTIAL_NREGS (args_so_far, promoted_mode,
4543 passed_type, named_arg);
4545 if (nregs > 0)
4547 current_function_pretend_args_size
4548 = (((nregs * UNITS_PER_WORD) + (PARM_BOUNDARY / BITS_PER_UNIT) - 1)
4549 / (PARM_BOUNDARY / BITS_PER_UNIT)
4550 * (PARM_BOUNDARY / BITS_PER_UNIT));
4552 /* Handle calls that pass values in multiple non-contiguous
4553 locations. The Irix 6 ABI has examples of this. */
4554 if (GET_CODE (entry_parm) == PARALLEL)
4555 emit_group_store (validize_mem (stack_parm), entry_parm,
4556 int_size_in_bytes (TREE_TYPE (parm)));
4558 else
4559 move_block_from_reg (REGNO (entry_parm),
4560 validize_mem (stack_parm), nregs,
4561 int_size_in_bytes (TREE_TYPE (parm)));
4563 entry_parm = stack_parm;
4566 #endif
4568 /* If we didn't decide this parm came in a register,
4569 by default it came on the stack. */
4570 if (entry_parm == 0)
4571 entry_parm = stack_parm;
4573 /* Record permanently how this parm was passed. */
4574 DECL_INCOMING_RTL (parm) = entry_parm;
4576 /* If there is actually space on the stack for this parm,
4577 count it in stack_args_size; otherwise set stack_parm to 0
4578 to indicate there is no preallocated stack slot for the parm. */
4580 if (entry_parm == stack_parm
4581 || (GET_CODE (entry_parm) == PARALLEL
4582 && XEXP (XVECEXP (entry_parm, 0, 0), 0) == NULL_RTX)
4583 #if defined (REG_PARM_STACK_SPACE) && ! defined (MAYBE_REG_PARM_STACK_SPACE)
4584 /* On some machines, even if a parm value arrives in a register
4585 there is still an (uninitialized) stack slot allocated for it.
4587 ??? When MAYBE_REG_PARM_STACK_SPACE is defined, we can't tell
4588 whether this parameter already has a stack slot allocated,
4589 because an arg block exists only if current_function_args_size
4590 is larger than some threshold, and we haven't calculated that
4591 yet. So, for now, we just assume that stack slots never exist
4592 in this case. */
4593 || REG_PARM_STACK_SPACE (fndecl) > 0
4594 #endif
4597 stack_args_size.constant += arg_size.constant;
4598 if (arg_size.var)
4599 ADD_PARM_SIZE (stack_args_size, arg_size.var);
4601 else
4602 /* No stack slot was pushed for this parm. */
4603 stack_parm = 0;
4605 /* Update info on where next arg arrives in registers. */
4607 FUNCTION_ARG_ADVANCE (args_so_far, promoted_mode,
4608 passed_type, named_arg);
4610 /* If we can't trust the parm stack slot to be aligned enough
4611 for its ultimate type, don't use that slot after entry.
4612 We'll make another stack slot, if we need one. */
4614 unsigned int thisparm_boundary
4615 = FUNCTION_ARG_BOUNDARY (promoted_mode, passed_type);
4617 if (GET_MODE_ALIGNMENT (nominal_mode) > thisparm_boundary)
4618 stack_parm = 0;
4621 /* If parm was passed in memory, and we need to convert it on entry,
4622 don't store it back in that same slot. */
4623 if (entry_parm != 0
4624 && nominal_mode != BLKmode && nominal_mode != passed_mode)
4625 stack_parm = 0;
4627 /* When an argument is passed in multiple locations, we can't
4628 make use of this information, but we can save some copying if
4629 the whole argument is passed in a single register. */
4630 if (GET_CODE (entry_parm) == PARALLEL
4631 && nominal_mode != BLKmode && passed_mode != BLKmode)
4633 int i, len = XVECLEN (entry_parm, 0);
4635 for (i = 0; i < len; i++)
4636 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
4637 && GET_CODE (XEXP (XVECEXP (entry_parm, 0, i), 0)) == REG
4638 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
4639 == passed_mode)
4640 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
4642 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
4643 DECL_INCOMING_RTL (parm) = entry_parm;
4644 break;
4648 /* ENTRY_PARM is an RTX for the parameter as it arrives,
4649 in the mode in which it arrives.
4650 STACK_PARM is an RTX for a stack slot where the parameter can live
4651 during the function (in case we want to put it there).
4652 STACK_PARM is 0 if no stack slot was pushed for it.
4654 Now output code if necessary to convert ENTRY_PARM to
4655 the type in which this function declares it,
4656 and store that result in an appropriate place,
4657 which may be a pseudo reg, may be STACK_PARM,
4658 or may be a local stack slot if STACK_PARM is 0.
4660 Set DECL_RTL to that place. */
4662 if (nominal_mode == BLKmode || GET_CODE (entry_parm) == PARALLEL)
4664 /* If a BLKmode arrives in registers, copy it to a stack slot.
4665 Handle calls that pass values in multiple non-contiguous
4666 locations. The Irix 6 ABI has examples of this. */
4667 if (GET_CODE (entry_parm) == REG
4668 || GET_CODE (entry_parm) == PARALLEL)
4670 int size_stored
4671 = CEIL_ROUND (int_size_in_bytes (TREE_TYPE (parm)),
4672 UNITS_PER_WORD);
4674 /* Note that we will be storing an integral number of words.
4675 So we have to be careful to ensure that we allocate an
4676 integral number of words. We do this below in the
4677 assign_stack_local if space was not allocated in the argument
4678 list. If it was, this will not work if PARM_BOUNDARY is not
4679 a multiple of BITS_PER_WORD. It isn't clear how to fix this
4680 if it becomes a problem. */
4682 if (stack_parm == 0)
4684 stack_parm
4685 = assign_stack_local (GET_MODE (entry_parm),
4686 size_stored, 0);
4687 set_mem_attributes (stack_parm, parm, 1);
4690 else if (PARM_BOUNDARY % BITS_PER_WORD != 0)
4691 abort ();
4693 /* Handle calls that pass values in multiple non-contiguous
4694 locations. The Irix 6 ABI has examples of this. */
4695 if (GET_CODE (entry_parm) == PARALLEL)
4696 emit_group_store (validize_mem (stack_parm), entry_parm,
4697 int_size_in_bytes (TREE_TYPE (parm)));
4698 else
4699 move_block_from_reg (REGNO (entry_parm),
4700 validize_mem (stack_parm),
4701 size_stored / UNITS_PER_WORD,
4702 int_size_in_bytes (TREE_TYPE (parm)));
4704 SET_DECL_RTL (parm, stack_parm);
4706 else if (! ((! optimize
4707 && ! DECL_REGISTER (parm))
4708 || TREE_SIDE_EFFECTS (parm)
4709 /* If -ffloat-store specified, don't put explicit
4710 float variables into registers. */
4711 || (flag_float_store
4712 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE))
4713 /* Always assign pseudo to structure return or item passed
4714 by invisible reference. */
4715 || passed_pointer || parm == function_result_decl)
4717 /* Store the parm in a pseudoregister during the function, but we
4718 may need to do it in a wider mode. */
4720 rtx parmreg;
4721 unsigned int regno, regnoi = 0, regnor = 0;
4723 unsignedp = TREE_UNSIGNED (TREE_TYPE (parm));
4725 promoted_nominal_mode
4726 = promote_mode (TREE_TYPE (parm), nominal_mode, &unsignedp, 0);
4728 parmreg = gen_reg_rtx (promoted_nominal_mode);
4729 mark_user_reg (parmreg);
4731 /* If this was an item that we received a pointer to, set DECL_RTL
4732 appropriately. */
4733 if (passed_pointer)
4735 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (passed_type)),
4736 parmreg);
4737 set_mem_attributes (x, parm, 1);
4738 SET_DECL_RTL (parm, x);
4740 else
4742 SET_DECL_RTL (parm, parmreg);
4743 maybe_set_unchanging (DECL_RTL (parm), parm);
4746 /* Copy the value into the register. */
4747 if (nominal_mode != passed_mode
4748 || promoted_nominal_mode != promoted_mode)
4750 int save_tree_used;
4751 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
4752 mode, by the caller. We now have to convert it to
4753 NOMINAL_MODE, if different. However, PARMREG may be in
4754 a different mode than NOMINAL_MODE if it is being stored
4755 promoted.
4757 If ENTRY_PARM is a hard register, it might be in a register
4758 not valid for operating in its mode (e.g., an odd-numbered
4759 register for a DFmode). In that case, moves are the only
4760 thing valid, so we can't do a convert from there. This
4761 occurs when the calling sequence allow such misaligned
4762 usages.
4764 In addition, the conversion may involve a call, which could
4765 clobber parameters which haven't been copied to pseudo
4766 registers yet. Therefore, we must first copy the parm to
4767 a pseudo reg here, and save the conversion until after all
4768 parameters have been moved. */
4770 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
4772 emit_move_insn (tempreg, validize_mem (entry_parm));
4774 push_to_sequence (conversion_insns);
4775 tempreg = convert_to_mode (nominal_mode, tempreg, unsignedp);
4777 if (GET_CODE (tempreg) == SUBREG
4778 && GET_MODE (tempreg) == nominal_mode
4779 && GET_CODE (SUBREG_REG (tempreg)) == REG
4780 && nominal_mode == passed_mode
4781 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (entry_parm)
4782 && GET_MODE_SIZE (GET_MODE (tempreg))
4783 < GET_MODE_SIZE (GET_MODE (entry_parm)))
4785 /* The argument is already sign/zero extended, so note it
4786 into the subreg. */
4787 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
4788 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
4791 /* TREE_USED gets set erroneously during expand_assignment. */
4792 save_tree_used = TREE_USED (parm);
4793 expand_assignment (parm,
4794 make_tree (nominal_type, tempreg), 0, 0);
4795 TREE_USED (parm) = save_tree_used;
4796 conversion_insns = get_insns ();
4797 did_conversion = 1;
4798 end_sequence ();
4800 else
4801 emit_move_insn (parmreg, validize_mem (entry_parm));
4803 /* If we were passed a pointer but the actual value
4804 can safely live in a register, put it in one. */
4805 if (passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
4806 /* If by-reference argument was promoted, demote it. */
4807 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
4808 || ! ((! optimize
4809 && ! DECL_REGISTER (parm))
4810 || TREE_SIDE_EFFECTS (parm)
4811 /* If -ffloat-store specified, don't put explicit
4812 float variables into registers. */
4813 || (flag_float_store
4814 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE))))
4816 /* We can't use nominal_mode, because it will have been set to
4817 Pmode above. We must use the actual mode of the parm. */
4818 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
4819 mark_user_reg (parmreg);
4820 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
4822 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
4823 int unsigned_p = TREE_UNSIGNED (TREE_TYPE (parm));
4824 push_to_sequence (conversion_insns);
4825 emit_move_insn (tempreg, DECL_RTL (parm));
4826 SET_DECL_RTL (parm,
4827 convert_to_mode (GET_MODE (parmreg),
4828 tempreg,
4829 unsigned_p));
4830 emit_move_insn (parmreg, DECL_RTL (parm));
4831 conversion_insns = get_insns();
4832 did_conversion = 1;
4833 end_sequence ();
4835 else
4836 emit_move_insn (parmreg, DECL_RTL (parm));
4837 SET_DECL_RTL (parm, parmreg);
4838 /* STACK_PARM is the pointer, not the parm, and PARMREG is
4839 now the parm. */
4840 stack_parm = 0;
4842 #ifdef FUNCTION_ARG_CALLEE_COPIES
4843 /* If we are passed an arg by reference and it is our responsibility
4844 to make a copy, do it now.
4845 PASSED_TYPE and PASSED mode now refer to the pointer, not the
4846 original argument, so we must recreate them in the call to
4847 FUNCTION_ARG_CALLEE_COPIES. */
4848 /* ??? Later add code to handle the case that if the argument isn't
4849 modified, don't do the copy. */
4851 else if (passed_pointer
4852 && FUNCTION_ARG_CALLEE_COPIES (args_so_far,
4853 TYPE_MODE (DECL_ARG_TYPE (parm)),
4854 DECL_ARG_TYPE (parm),
4855 named_arg)
4856 && ! TREE_ADDRESSABLE (DECL_ARG_TYPE (parm)))
4858 rtx copy;
4859 tree type = DECL_ARG_TYPE (parm);
4861 /* This sequence may involve a library call perhaps clobbering
4862 registers that haven't been copied to pseudos yet. */
4864 push_to_sequence (conversion_insns);
4866 if (!COMPLETE_TYPE_P (type)
4867 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4868 /* This is a variable sized object. */
4869 copy = gen_rtx_MEM (BLKmode,
4870 allocate_dynamic_stack_space
4871 (expr_size (parm), NULL_RTX,
4872 TYPE_ALIGN (type)));
4873 else
4874 copy = assign_stack_temp (TYPE_MODE (type),
4875 int_size_in_bytes (type), 1);
4876 set_mem_attributes (copy, parm, 1);
4878 store_expr (parm, copy, 0);
4879 emit_move_insn (parmreg, XEXP (copy, 0));
4880 conversion_insns = get_insns ();
4881 did_conversion = 1;
4882 end_sequence ();
4884 #endif /* FUNCTION_ARG_CALLEE_COPIES */
4886 /* In any case, record the parm's desired stack location
4887 in case we later discover it must live in the stack.
4889 If it is a COMPLEX value, store the stack location for both
4890 halves. */
4892 if (GET_CODE (parmreg) == CONCAT)
4893 regno = MAX (REGNO (XEXP (parmreg, 0)), REGNO (XEXP (parmreg, 1)));
4894 else
4895 regno = REGNO (parmreg);
4897 if (regno >= max_parm_reg)
4899 rtx *new;
4900 int old_max_parm_reg = max_parm_reg;
4902 /* It's slow to expand this one register at a time,
4903 but it's also rare and we need max_parm_reg to be
4904 precisely correct. */
4905 max_parm_reg = regno + 1;
4906 new = (rtx *) xrealloc (parm_reg_stack_loc,
4907 max_parm_reg * sizeof (rtx));
4908 memset ((char *) (new + old_max_parm_reg), 0,
4909 (max_parm_reg - old_max_parm_reg) * sizeof (rtx));
4910 parm_reg_stack_loc = new;
4913 if (GET_CODE (parmreg) == CONCAT)
4915 enum machine_mode submode = GET_MODE (XEXP (parmreg, 0));
4917 regnor = REGNO (gen_realpart (submode, parmreg));
4918 regnoi = REGNO (gen_imagpart (submode, parmreg));
4920 if (stack_parm != 0)
4922 parm_reg_stack_loc[regnor]
4923 = gen_realpart (submode, stack_parm);
4924 parm_reg_stack_loc[regnoi]
4925 = gen_imagpart (submode, stack_parm);
4927 else
4929 parm_reg_stack_loc[regnor] = 0;
4930 parm_reg_stack_loc[regnoi] = 0;
4933 else
4934 parm_reg_stack_loc[REGNO (parmreg)] = stack_parm;
4936 /* Mark the register as eliminable if we did no conversion
4937 and it was copied from memory at a fixed offset,
4938 and the arg pointer was not copied to a pseudo-reg.
4939 If the arg pointer is a pseudo reg or the offset formed
4940 an invalid address, such memory-equivalences
4941 as we make here would screw up life analysis for it. */
4942 if (nominal_mode == passed_mode
4943 && ! did_conversion
4944 && stack_parm != 0
4945 && GET_CODE (stack_parm) == MEM
4946 && stack_offset.var == 0
4947 && reg_mentioned_p (virtual_incoming_args_rtx,
4948 XEXP (stack_parm, 0)))
4950 rtx linsn = get_last_insn ();
4951 rtx sinsn, set;
4953 /* Mark complex types separately. */
4954 if (GET_CODE (parmreg) == CONCAT)
4955 /* Scan backwards for the set of the real and
4956 imaginary parts. */
4957 for (sinsn = linsn; sinsn != 0;
4958 sinsn = prev_nonnote_insn (sinsn))
4960 set = single_set (sinsn);
4961 if (set != 0
4962 && SET_DEST (set) == regno_reg_rtx [regnoi])
4963 REG_NOTES (sinsn)
4964 = gen_rtx_EXPR_LIST (REG_EQUIV,
4965 parm_reg_stack_loc[regnoi],
4966 REG_NOTES (sinsn));
4967 else if (set != 0
4968 && SET_DEST (set) == regno_reg_rtx [regnor])
4969 REG_NOTES (sinsn)
4970 = gen_rtx_EXPR_LIST (REG_EQUIV,
4971 parm_reg_stack_loc[regnor],
4972 REG_NOTES (sinsn));
4974 else if ((set = single_set (linsn)) != 0
4975 && SET_DEST (set) == parmreg)
4976 REG_NOTES (linsn)
4977 = gen_rtx_EXPR_LIST (REG_EQUIV,
4978 stack_parm, REG_NOTES (linsn));
4981 /* For pointer data type, suggest pointer register. */
4982 if (POINTER_TYPE_P (TREE_TYPE (parm)))
4983 mark_reg_pointer (parmreg,
4984 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4986 /* If something wants our address, try to use ADDRESSOF. */
4987 if (TREE_ADDRESSABLE (parm))
4989 /* If we end up putting something into the stack,
4990 fixup_var_refs_insns will need to make a pass over
4991 all the instructions. It looks through the pending
4992 sequences -- but it can't see the ones in the
4993 CONVERSION_INSNS, if they're not on the sequence
4994 stack. So, we go back to that sequence, just so that
4995 the fixups will happen. */
4996 push_to_sequence (conversion_insns);
4997 put_var_into_stack (parm);
4998 conversion_insns = get_insns ();
4999 end_sequence ();
5002 else
5004 /* Value must be stored in the stack slot STACK_PARM
5005 during function execution. */
5007 if (promoted_mode != nominal_mode)
5009 /* Conversion is required. */
5010 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
5012 emit_move_insn (tempreg, validize_mem (entry_parm));
5014 push_to_sequence (conversion_insns);
5015 entry_parm = convert_to_mode (nominal_mode, tempreg,
5016 TREE_UNSIGNED (TREE_TYPE (parm)));
5017 if (stack_parm)
5018 /* ??? This may need a big-endian conversion on sparc64. */
5019 stack_parm = adjust_address (stack_parm, nominal_mode, 0);
5021 conversion_insns = get_insns ();
5022 did_conversion = 1;
5023 end_sequence ();
5026 if (entry_parm != stack_parm)
5028 if (stack_parm == 0)
5030 stack_parm
5031 = assign_stack_local (GET_MODE (entry_parm),
5032 GET_MODE_SIZE (GET_MODE (entry_parm)), 0);
5033 set_mem_attributes (stack_parm, parm, 1);
5036 if (promoted_mode != nominal_mode)
5038 push_to_sequence (conversion_insns);
5039 emit_move_insn (validize_mem (stack_parm),
5040 validize_mem (entry_parm));
5041 conversion_insns = get_insns ();
5042 end_sequence ();
5044 else
5045 emit_move_insn (validize_mem (stack_parm),
5046 validize_mem (entry_parm));
5049 SET_DECL_RTL (parm, stack_parm);
5052 /* If this "parameter" was the place where we are receiving the
5053 function's incoming structure pointer, set up the result. */
5054 if (parm == function_result_decl)
5056 tree result = DECL_RESULT (fndecl);
5057 rtx addr = DECL_RTL (parm);
5058 rtx x;
5060 #ifdef POINTERS_EXTEND_UNSIGNED
5061 if (GET_MODE (addr) != Pmode)
5062 addr = convert_memory_address (Pmode, addr);
5063 #endif
5065 x = gen_rtx_MEM (DECL_MODE (result), addr);
5066 set_mem_attributes (x, result, 1);
5067 SET_DECL_RTL (result, x);
5070 if (GET_CODE (DECL_RTL (parm)) == REG)
5071 REGNO_DECL (REGNO (DECL_RTL (parm))) = parm;
5072 else if (GET_CODE (DECL_RTL (parm)) == CONCAT)
5074 REGNO_DECL (REGNO (XEXP (DECL_RTL (parm), 0))) = parm;
5075 REGNO_DECL (REGNO (XEXP (DECL_RTL (parm), 1))) = parm;
5080 /* Output all parameter conversion instructions (possibly including calls)
5081 now that all parameters have been copied out of hard registers. */
5082 emit_insns (conversion_insns);
5084 last_parm_insn = get_last_insn ();
5086 current_function_args_size = stack_args_size.constant;
5088 /* Adjust function incoming argument size for alignment and
5089 minimum length. */
5091 #ifdef REG_PARM_STACK_SPACE
5092 #ifndef MAYBE_REG_PARM_STACK_SPACE
5093 current_function_args_size = MAX (current_function_args_size,
5094 REG_PARM_STACK_SPACE (fndecl));
5095 #endif
5096 #endif
5098 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
5100 current_function_args_size
5101 = ((current_function_args_size + STACK_BYTES - 1)
5102 / STACK_BYTES) * STACK_BYTES;
5104 #ifdef ARGS_GROW_DOWNWARD
5105 current_function_arg_offset_rtx
5106 = (stack_args_size.var == 0 ? GEN_INT (-stack_args_size.constant)
5107 : expand_expr (size_diffop (stack_args_size.var,
5108 size_int (-stack_args_size.constant)),
5109 NULL_RTX, VOIDmode, 0));
5110 #else
5111 current_function_arg_offset_rtx = ARGS_SIZE_RTX (stack_args_size);
5112 #endif
5114 /* See how many bytes, if any, of its args a function should try to pop
5115 on return. */
5117 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
5118 current_function_args_size);
5120 /* For stdarg.h function, save info about
5121 regs and stack space used by the named args. */
5123 if (!hide_last_arg)
5124 current_function_args_info = args_so_far;
5126 /* Set the rtx used for the function return value. Put this in its
5127 own variable so any optimizers that need this information don't have
5128 to include tree.h. Do this here so it gets done when an inlined
5129 function gets output. */
5131 current_function_return_rtx
5132 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
5133 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
5136 /* Indicate whether REGNO is an incoming argument to the current function
5137 that was promoted to a wider mode. If so, return the RTX for the
5138 register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
5139 that REGNO is promoted from and whether the promotion was signed or
5140 unsigned. */
5142 #ifdef PROMOTE_FUNCTION_ARGS
5145 promoted_input_arg (regno, pmode, punsignedp)
5146 unsigned int regno;
5147 enum machine_mode *pmode;
5148 int *punsignedp;
5150 tree arg;
5152 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
5153 arg = TREE_CHAIN (arg))
5154 if (GET_CODE (DECL_INCOMING_RTL (arg)) == REG
5155 && REGNO (DECL_INCOMING_RTL (arg)) == regno
5156 && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
5158 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
5159 int unsignedp = TREE_UNSIGNED (TREE_TYPE (arg));
5161 mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
5162 if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
5163 && mode != DECL_MODE (arg))
5165 *pmode = DECL_MODE (arg);
5166 *punsignedp = unsignedp;
5167 return DECL_INCOMING_RTL (arg);
5171 return 0;
5174 #endif
5176 /* Compute the size and offset from the start of the stacked arguments for a
5177 parm passed in mode PASSED_MODE and with type TYPE.
5179 INITIAL_OFFSET_PTR points to the current offset into the stacked
5180 arguments.
5182 The starting offset and size for this parm are returned in *OFFSET_PTR
5183 and *ARG_SIZE_PTR, respectively.
5185 IN_REGS is non-zero if the argument will be passed in registers. It will
5186 never be set if REG_PARM_STACK_SPACE is not defined.
5188 FNDECL is the function in which the argument was defined.
5190 There are two types of rounding that are done. The first, controlled by
5191 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
5192 list to be aligned to the specific boundary (in bits). This rounding
5193 affects the initial and starting offsets, but not the argument size.
5195 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
5196 optionally rounds the size of the parm to PARM_BOUNDARY. The
5197 initial offset is not affected by this rounding, while the size always
5198 is and the starting offset may be. */
5200 /* offset_ptr will be negative for ARGS_GROW_DOWNWARD case;
5201 initial_offset_ptr is positive because locate_and_pad_parm's
5202 callers pass in the total size of args so far as
5203 initial_offset_ptr. arg_size_ptr is always positive. */
5205 void
5206 locate_and_pad_parm (passed_mode, type, in_regs, fndecl,
5207 initial_offset_ptr, offset_ptr, arg_size_ptr,
5208 alignment_pad)
5209 enum machine_mode passed_mode;
5210 tree type;
5211 int in_regs ATTRIBUTE_UNUSED;
5212 tree fndecl ATTRIBUTE_UNUSED;
5213 struct args_size *initial_offset_ptr;
5214 struct args_size *offset_ptr;
5215 struct args_size *arg_size_ptr;
5216 struct args_size *alignment_pad;
5219 tree sizetree
5220 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
5221 enum direction where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
5222 int boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
5224 #ifdef REG_PARM_STACK_SPACE
5225 /* If we have found a stack parm before we reach the end of the
5226 area reserved for registers, skip that area. */
5227 if (! in_regs)
5229 int reg_parm_stack_space = 0;
5231 #ifdef MAYBE_REG_PARM_STACK_SPACE
5232 reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE;
5233 #else
5234 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
5235 #endif
5236 if (reg_parm_stack_space > 0)
5238 if (initial_offset_ptr->var)
5240 initial_offset_ptr->var
5241 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
5242 ssize_int (reg_parm_stack_space));
5243 initial_offset_ptr->constant = 0;
5245 else if (initial_offset_ptr->constant < reg_parm_stack_space)
5246 initial_offset_ptr->constant = reg_parm_stack_space;
5249 #endif /* REG_PARM_STACK_SPACE */
5251 arg_size_ptr->var = 0;
5252 arg_size_ptr->constant = 0;
5253 alignment_pad->var = 0;
5254 alignment_pad->constant = 0;
5256 #ifdef ARGS_GROW_DOWNWARD
5257 if (initial_offset_ptr->var)
5259 offset_ptr->constant = 0;
5260 offset_ptr->var = size_binop (MINUS_EXPR, ssize_int (0),
5261 initial_offset_ptr->var);
5263 else
5265 offset_ptr->constant = -initial_offset_ptr->constant;
5266 offset_ptr->var = 0;
5268 if (where_pad != none
5269 && (!host_integerp (sizetree, 1)
5270 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
5271 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5272 SUB_PARM_SIZE (*offset_ptr, sizetree);
5273 if (where_pad != downward)
5274 pad_to_arg_alignment (offset_ptr, boundary, alignment_pad);
5275 if (initial_offset_ptr->var)
5276 arg_size_ptr->var = size_binop (MINUS_EXPR,
5277 size_binop (MINUS_EXPR,
5278 ssize_int (0),
5279 initial_offset_ptr->var),
5280 offset_ptr->var);
5282 else
5283 arg_size_ptr->constant = (-initial_offset_ptr->constant
5284 - offset_ptr->constant);
5286 #else /* !ARGS_GROW_DOWNWARD */
5287 if (!in_regs
5288 #ifdef REG_PARM_STACK_SPACE
5289 || REG_PARM_STACK_SPACE (fndecl) > 0
5290 #endif
5292 pad_to_arg_alignment (initial_offset_ptr, boundary, alignment_pad);
5293 *offset_ptr = *initial_offset_ptr;
5295 #ifdef PUSH_ROUNDING
5296 if (passed_mode != BLKmode)
5297 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
5298 #endif
5300 /* Pad_below needs the pre-rounded size to know how much to pad below
5301 so this must be done before rounding up. */
5302 if (where_pad == downward
5303 /* However, BLKmode args passed in regs have their padding done elsewhere.
5304 The stack slot must be able to hold the entire register. */
5305 && !(in_regs && passed_mode == BLKmode))
5306 pad_below (offset_ptr, passed_mode, sizetree);
5308 if (where_pad != none
5309 && (!host_integerp (sizetree, 1)
5310 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
5311 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5313 ADD_PARM_SIZE (*arg_size_ptr, sizetree);
5314 #endif /* ARGS_GROW_DOWNWARD */
5317 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
5318 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
5320 static void
5321 pad_to_arg_alignment (offset_ptr, boundary, alignment_pad)
5322 struct args_size *offset_ptr;
5323 int boundary;
5324 struct args_size *alignment_pad;
5326 tree save_var = NULL_TREE;
5327 HOST_WIDE_INT save_constant = 0;
5329 int boundary_in_bytes = boundary / BITS_PER_UNIT;
5331 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5333 save_var = offset_ptr->var;
5334 save_constant = offset_ptr->constant;
5337 alignment_pad->var = NULL_TREE;
5338 alignment_pad->constant = 0;
5340 if (boundary > BITS_PER_UNIT)
5342 if (offset_ptr->var)
5344 offset_ptr->var =
5345 #ifdef ARGS_GROW_DOWNWARD
5346 round_down
5347 #else
5348 round_up
5349 #endif
5350 (ARGS_SIZE_TREE (*offset_ptr),
5351 boundary / BITS_PER_UNIT);
5352 offset_ptr->constant = 0; /*?*/
5353 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5354 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
5355 save_var);
5357 else
5359 offset_ptr->constant =
5360 #ifdef ARGS_GROW_DOWNWARD
5361 FLOOR_ROUND (offset_ptr->constant, boundary_in_bytes);
5362 #else
5363 CEIL_ROUND (offset_ptr->constant, boundary_in_bytes);
5364 #endif
5365 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5366 alignment_pad->constant = offset_ptr->constant - save_constant;
5371 #ifndef ARGS_GROW_DOWNWARD
5372 static void
5373 pad_below (offset_ptr, passed_mode, sizetree)
5374 struct args_size *offset_ptr;
5375 enum machine_mode passed_mode;
5376 tree sizetree;
5378 if (passed_mode != BLKmode)
5380 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
5381 offset_ptr->constant
5382 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
5383 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
5384 - GET_MODE_SIZE (passed_mode));
5386 else
5388 if (TREE_CODE (sizetree) != INTEGER_CST
5389 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
5391 /* Round the size up to multiple of PARM_BOUNDARY bits. */
5392 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5393 /* Add it in. */
5394 ADD_PARM_SIZE (*offset_ptr, s2);
5395 SUB_PARM_SIZE (*offset_ptr, sizetree);
5399 #endif
5401 /* Walk the tree of blocks describing the binding levels within a function
5402 and warn about uninitialized variables.
5403 This is done after calling flow_analysis and before global_alloc
5404 clobbers the pseudo-regs to hard regs. */
5406 void
5407 uninitialized_vars_warning (block)
5408 tree block;
5410 tree decl, sub;
5411 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
5413 if (warn_uninitialized
5414 && TREE_CODE (decl) == VAR_DECL
5415 /* These warnings are unreliable for and aggregates
5416 because assigning the fields one by one can fail to convince
5417 flow.c that the entire aggregate was initialized.
5418 Unions are troublesome because members may be shorter. */
5419 && ! AGGREGATE_TYPE_P (TREE_TYPE (decl))
5420 && DECL_RTL (decl) != 0
5421 && GET_CODE (DECL_RTL (decl)) == REG
5422 /* Global optimizations can make it difficult to determine if a
5423 particular variable has been initialized. However, a VAR_DECL
5424 with a nonzero DECL_INITIAL had an initializer, so do not
5425 claim it is potentially uninitialized.
5427 We do not care about the actual value in DECL_INITIAL, so we do
5428 not worry that it may be a dangling pointer. */
5429 && DECL_INITIAL (decl) == NULL_TREE
5430 && regno_uninitialized (REGNO (DECL_RTL (decl))))
5431 warning_with_decl (decl,
5432 "`%s' might be used uninitialized in this function");
5433 if (extra_warnings
5434 && TREE_CODE (decl) == VAR_DECL
5435 && DECL_RTL (decl) != 0
5436 && GET_CODE (DECL_RTL (decl)) == REG
5437 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
5438 warning_with_decl (decl,
5439 "variable `%s' might be clobbered by `longjmp' or `vfork'");
5441 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
5442 uninitialized_vars_warning (sub);
5445 /* Do the appropriate part of uninitialized_vars_warning
5446 but for arguments instead of local variables. */
5448 void
5449 setjmp_args_warning ()
5451 tree decl;
5452 for (decl = DECL_ARGUMENTS (current_function_decl);
5453 decl; decl = TREE_CHAIN (decl))
5454 if (DECL_RTL (decl) != 0
5455 && GET_CODE (DECL_RTL (decl)) == REG
5456 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
5457 warning_with_decl (decl,
5458 "argument `%s' might be clobbered by `longjmp' or `vfork'");
5461 /* If this function call setjmp, put all vars into the stack
5462 unless they were declared `register'. */
5464 void
5465 setjmp_protect (block)
5466 tree block;
5468 tree decl, sub;
5469 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
5470 if ((TREE_CODE (decl) == VAR_DECL
5471 || TREE_CODE (decl) == PARM_DECL)
5472 && DECL_RTL (decl) != 0
5473 && (GET_CODE (DECL_RTL (decl)) == REG
5474 || (GET_CODE (DECL_RTL (decl)) == MEM
5475 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
5476 /* If this variable came from an inline function, it must be
5477 that its life doesn't overlap the setjmp. If there was a
5478 setjmp in the function, it would already be in memory. We
5479 must exclude such variable because their DECL_RTL might be
5480 set to strange things such as virtual_stack_vars_rtx. */
5481 && ! DECL_FROM_INLINE (decl)
5482 && (
5483 #ifdef NON_SAVING_SETJMP
5484 /* If longjmp doesn't restore the registers,
5485 don't put anything in them. */
5486 NON_SAVING_SETJMP
5488 #endif
5489 ! DECL_REGISTER (decl)))
5490 put_var_into_stack (decl);
5491 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
5492 setjmp_protect (sub);
5495 /* Like the previous function, but for args instead of local variables. */
5497 void
5498 setjmp_protect_args ()
5500 tree decl;
5501 for (decl = DECL_ARGUMENTS (current_function_decl);
5502 decl; decl = TREE_CHAIN (decl))
5503 if ((TREE_CODE (decl) == VAR_DECL
5504 || TREE_CODE (decl) == PARM_DECL)
5505 && DECL_RTL (decl) != 0
5506 && (GET_CODE (DECL_RTL (decl)) == REG
5507 || (GET_CODE (DECL_RTL (decl)) == MEM
5508 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
5509 && (
5510 /* If longjmp doesn't restore the registers,
5511 don't put anything in them. */
5512 #ifdef NON_SAVING_SETJMP
5513 NON_SAVING_SETJMP
5515 #endif
5516 ! DECL_REGISTER (decl)))
5517 put_var_into_stack (decl);
5520 /* Return the context-pointer register corresponding to DECL,
5521 or 0 if it does not need one. */
5524 lookup_static_chain (decl)
5525 tree decl;
5527 tree context = decl_function_context (decl);
5528 tree link;
5530 if (context == 0
5531 || (TREE_CODE (decl) == FUNCTION_DECL && DECL_NO_STATIC_CHAIN (decl)))
5532 return 0;
5534 /* We treat inline_function_decl as an alias for the current function
5535 because that is the inline function whose vars, types, etc.
5536 are being merged into the current function.
5537 See expand_inline_function. */
5538 if (context == current_function_decl || context == inline_function_decl)
5539 return virtual_stack_vars_rtx;
5541 for (link = context_display; link; link = TREE_CHAIN (link))
5542 if (TREE_PURPOSE (link) == context)
5543 return RTL_EXPR_RTL (TREE_VALUE (link));
5545 abort ();
5548 /* Convert a stack slot address ADDR for variable VAR
5549 (from a containing function)
5550 into an address valid in this function (using a static chain). */
5553 fix_lexical_addr (addr, var)
5554 rtx addr;
5555 tree var;
5557 rtx basereg;
5558 HOST_WIDE_INT displacement;
5559 tree context = decl_function_context (var);
5560 struct function *fp;
5561 rtx base = 0;
5563 /* If this is the present function, we need not do anything. */
5564 if (context == current_function_decl || context == inline_function_decl)
5565 return addr;
5567 fp = find_function_data (context);
5569 if (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == MEM)
5570 addr = XEXP (XEXP (addr, 0), 0);
5572 /* Decode given address as base reg plus displacement. */
5573 if (GET_CODE (addr) == REG)
5574 basereg = addr, displacement = 0;
5575 else if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
5576 basereg = XEXP (addr, 0), displacement = INTVAL (XEXP (addr, 1));
5577 else
5578 abort ();
5580 /* We accept vars reached via the containing function's
5581 incoming arg pointer and via its stack variables pointer. */
5582 if (basereg == fp->internal_arg_pointer)
5584 /* If reached via arg pointer, get the arg pointer value
5585 out of that function's stack frame.
5587 There are two cases: If a separate ap is needed, allocate a
5588 slot in the outer function for it and dereference it that way.
5589 This is correct even if the real ap is actually a pseudo.
5590 Otherwise, just adjust the offset from the frame pointer to
5591 compensate. */
5593 #ifdef NEED_SEPARATE_AP
5594 rtx addr;
5596 addr = get_arg_pointer_save_area (fp);
5597 addr = fix_lexical_addr (XEXP (addr, 0), var);
5598 addr = memory_address (Pmode, addr);
5600 base = gen_rtx_MEM (Pmode, addr);
5601 set_mem_alias_set (base, get_frame_alias_set ());
5602 base = copy_to_reg (base);
5603 #else
5604 displacement += (FIRST_PARM_OFFSET (context) - STARTING_FRAME_OFFSET);
5605 base = lookup_static_chain (var);
5606 #endif
5609 else if (basereg == virtual_stack_vars_rtx)
5611 /* This is the same code as lookup_static_chain, duplicated here to
5612 avoid an extra call to decl_function_context. */
5613 tree link;
5615 for (link = context_display; link; link = TREE_CHAIN (link))
5616 if (TREE_PURPOSE (link) == context)
5618 base = RTL_EXPR_RTL (TREE_VALUE (link));
5619 break;
5623 if (base == 0)
5624 abort ();
5626 /* Use same offset, relative to appropriate static chain or argument
5627 pointer. */
5628 return plus_constant (base, displacement);
5631 /* Return the address of the trampoline for entering nested fn FUNCTION.
5632 If necessary, allocate a trampoline (in the stack frame)
5633 and emit rtl to initialize its contents (at entry to this function). */
5636 trampoline_address (function)
5637 tree function;
5639 tree link;
5640 tree rtlexp;
5641 rtx tramp;
5642 struct function *fp;
5643 tree fn_context;
5645 /* Find an existing trampoline and return it. */
5646 for (link = trampoline_list; link; link = TREE_CHAIN (link))
5647 if (TREE_PURPOSE (link) == function)
5648 return
5649 adjust_trampoline_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0));
5651 for (fp = outer_function_chain; fp; fp = fp->outer)
5652 for (link = fp->x_trampoline_list; link; link = TREE_CHAIN (link))
5653 if (TREE_PURPOSE (link) == function)
5655 tramp = fix_lexical_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0),
5656 function);
5657 return adjust_trampoline_addr (tramp);
5660 /* None exists; we must make one. */
5662 /* Find the `struct function' for the function containing FUNCTION. */
5663 fp = 0;
5664 fn_context = decl_function_context (function);
5665 if (fn_context != current_function_decl
5666 && fn_context != inline_function_decl)
5667 fp = find_function_data (fn_context);
5669 /* Allocate run-time space for this trampoline
5670 (usually in the defining function's stack frame). */
5671 #ifdef ALLOCATE_TRAMPOLINE
5672 tramp = ALLOCATE_TRAMPOLINE (fp);
5673 #else
5674 /* If rounding needed, allocate extra space
5675 to ensure we have TRAMPOLINE_SIZE bytes left after rounding up. */
5676 #ifdef TRAMPOLINE_ALIGNMENT
5677 #define TRAMPOLINE_REAL_SIZE \
5678 (TRAMPOLINE_SIZE + (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT) - 1)
5679 #else
5680 #define TRAMPOLINE_REAL_SIZE (TRAMPOLINE_SIZE)
5681 #endif
5682 tramp = assign_stack_local_1 (BLKmode, TRAMPOLINE_REAL_SIZE, 0,
5683 fp ? fp : cfun);
5684 #endif
5686 /* Record the trampoline for reuse and note it for later initialization
5687 by expand_function_end. */
5688 if (fp != 0)
5690 rtlexp = make_node (RTL_EXPR);
5691 RTL_EXPR_RTL (rtlexp) = tramp;
5692 fp->x_trampoline_list = tree_cons (function, rtlexp,
5693 fp->x_trampoline_list);
5695 else
5697 /* Make the RTL_EXPR node temporary, not momentary, so that the
5698 trampoline_list doesn't become garbage. */
5699 rtlexp = make_node (RTL_EXPR);
5701 RTL_EXPR_RTL (rtlexp) = tramp;
5702 trampoline_list = tree_cons (function, rtlexp, trampoline_list);
5705 tramp = fix_lexical_addr (XEXP (tramp, 0), function);
5706 return adjust_trampoline_addr (tramp);
5709 /* Given a trampoline address,
5710 round it to multiple of TRAMPOLINE_ALIGNMENT. */
5712 static rtx
5713 round_trampoline_addr (tramp)
5714 rtx tramp;
5716 #ifdef TRAMPOLINE_ALIGNMENT
5717 /* Round address up to desired boundary. */
5718 rtx temp = gen_reg_rtx (Pmode);
5719 rtx addend = GEN_INT (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT - 1);
5720 rtx mask = GEN_INT (-TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT);
5722 temp = expand_simple_binop (Pmode, PLUS, tramp, addend,
5723 temp, 0, OPTAB_LIB_WIDEN);
5724 tramp = expand_simple_binop (Pmode, AND, temp, mask,
5725 temp, 0, OPTAB_LIB_WIDEN);
5726 #endif
5727 return tramp;
5730 /* Given a trampoline address, round it then apply any
5731 platform-specific adjustments so that the result can be used for a
5732 function call . */
5734 static rtx
5735 adjust_trampoline_addr (tramp)
5736 rtx tramp;
5738 tramp = round_trampoline_addr (tramp);
5739 #ifdef TRAMPOLINE_ADJUST_ADDRESS
5740 TRAMPOLINE_ADJUST_ADDRESS (tramp);
5741 #endif
5742 return tramp;
5745 /* Put all this function's BLOCK nodes including those that are chained
5746 onto the first block into a vector, and return it.
5747 Also store in each NOTE for the beginning or end of a block
5748 the index of that block in the vector.
5749 The arguments are BLOCK, the chain of top-level blocks of the function,
5750 and INSNS, the insn chain of the function. */
5752 void
5753 identify_blocks ()
5755 int n_blocks;
5756 tree *block_vector, *last_block_vector;
5757 tree *block_stack;
5758 tree block = DECL_INITIAL (current_function_decl);
5760 if (block == 0)
5761 return;
5763 /* Fill the BLOCK_VECTOR with all of the BLOCKs in this function, in
5764 depth-first order. */
5765 block_vector = get_block_vector (block, &n_blocks);
5766 block_stack = (tree *) xmalloc (n_blocks * sizeof (tree));
5768 last_block_vector = identify_blocks_1 (get_insns (),
5769 block_vector + 1,
5770 block_vector + n_blocks,
5771 block_stack);
5773 /* If we didn't use all of the subblocks, we've misplaced block notes. */
5774 /* ??? This appears to happen all the time. Latent bugs elsewhere? */
5775 if (0 && last_block_vector != block_vector + n_blocks)
5776 abort ();
5778 free (block_vector);
5779 free (block_stack);
5782 /* Subroutine of identify_blocks. Do the block substitution on the
5783 insn chain beginning with INSNS. Recurse for CALL_PLACEHOLDER chains.
5785 BLOCK_STACK is pushed and popped for each BLOCK_BEGIN/BLOCK_END pair.
5786 BLOCK_VECTOR is incremented for each block seen. */
5788 static tree *
5789 identify_blocks_1 (insns, block_vector, end_block_vector, orig_block_stack)
5790 rtx insns;
5791 tree *block_vector;
5792 tree *end_block_vector;
5793 tree *orig_block_stack;
5795 rtx insn;
5796 tree *block_stack = orig_block_stack;
5798 for (insn = insns; insn; insn = NEXT_INSN (insn))
5800 if (GET_CODE (insn) == NOTE)
5802 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
5804 tree b;
5806 /* If there are more block notes than BLOCKs, something
5807 is badly wrong. */
5808 if (block_vector == end_block_vector)
5809 abort ();
5811 b = *block_vector++;
5812 NOTE_BLOCK (insn) = b;
5813 *block_stack++ = b;
5815 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
5817 /* If there are more NOTE_INSN_BLOCK_ENDs than
5818 NOTE_INSN_BLOCK_BEGs, something is badly wrong. */
5819 if (block_stack == orig_block_stack)
5820 abort ();
5822 NOTE_BLOCK (insn) = *--block_stack;
5825 else if (GET_CODE (insn) == CALL_INSN
5826 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
5828 rtx cp = PATTERN (insn);
5830 block_vector = identify_blocks_1 (XEXP (cp, 0), block_vector,
5831 end_block_vector, block_stack);
5832 if (XEXP (cp, 1))
5833 block_vector = identify_blocks_1 (XEXP (cp, 1), block_vector,
5834 end_block_vector, block_stack);
5835 if (XEXP (cp, 2))
5836 block_vector = identify_blocks_1 (XEXP (cp, 2), block_vector,
5837 end_block_vector, block_stack);
5841 /* If there are more NOTE_INSN_BLOCK_BEGINs than NOTE_INSN_BLOCK_ENDs,
5842 something is badly wrong. */
5843 if (block_stack != orig_block_stack)
5844 abort ();
5846 return block_vector;
5849 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
5850 and create duplicate blocks. */
5851 /* ??? Need an option to either create block fragments or to create
5852 abstract origin duplicates of a source block. It really depends
5853 on what optimization has been performed. */
5855 void
5856 reorder_blocks ()
5858 tree block = DECL_INITIAL (current_function_decl);
5859 varray_type block_stack;
5861 if (block == NULL_TREE)
5862 return;
5864 VARRAY_TREE_INIT (block_stack, 10, "block_stack");
5866 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
5867 reorder_blocks_0 (block);
5869 /* Prune the old trees away, so that they don't get in the way. */
5870 BLOCK_SUBBLOCKS (block) = NULL_TREE;
5871 BLOCK_CHAIN (block) = NULL_TREE;
5873 /* Recreate the block tree from the note nesting. */
5874 reorder_blocks_1 (get_insns (), block, &block_stack);
5875 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
5877 /* Remove deleted blocks from the block fragment chains. */
5878 reorder_fix_fragments (block);
5880 VARRAY_FREE (block_stack);
5883 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
5885 static void
5886 reorder_blocks_0 (block)
5887 tree block;
5889 while (block)
5891 TREE_ASM_WRITTEN (block) = 0;
5892 reorder_blocks_0 (BLOCK_SUBBLOCKS (block));
5893 block = BLOCK_CHAIN (block);
5897 static void
5898 reorder_blocks_1 (insns, current_block, p_block_stack)
5899 rtx insns;
5900 tree current_block;
5901 varray_type *p_block_stack;
5903 rtx insn;
5905 for (insn = insns; insn; insn = NEXT_INSN (insn))
5907 if (GET_CODE (insn) == NOTE)
5909 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
5911 tree block = NOTE_BLOCK (insn);
5913 /* If we have seen this block before, that means it now
5914 spans multiple address regions. Create a new fragment. */
5915 if (TREE_ASM_WRITTEN (block))
5917 tree new_block = copy_node (block);
5918 tree origin;
5920 origin = (BLOCK_FRAGMENT_ORIGIN (block)
5921 ? BLOCK_FRAGMENT_ORIGIN (block)
5922 : block);
5923 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
5924 BLOCK_FRAGMENT_CHAIN (new_block)
5925 = BLOCK_FRAGMENT_CHAIN (origin);
5926 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
5928 NOTE_BLOCK (insn) = new_block;
5929 block = new_block;
5932 BLOCK_SUBBLOCKS (block) = 0;
5933 TREE_ASM_WRITTEN (block) = 1;
5934 BLOCK_SUPERCONTEXT (block) = current_block;
5935 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
5936 BLOCK_SUBBLOCKS (current_block) = block;
5937 current_block = block;
5938 VARRAY_PUSH_TREE (*p_block_stack, block);
5940 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
5942 NOTE_BLOCK (insn) = VARRAY_TOP_TREE (*p_block_stack);
5943 VARRAY_POP (*p_block_stack);
5944 BLOCK_SUBBLOCKS (current_block)
5945 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
5946 current_block = BLOCK_SUPERCONTEXT (current_block);
5949 else if (GET_CODE (insn) == CALL_INSN
5950 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
5952 rtx cp = PATTERN (insn);
5953 reorder_blocks_1 (XEXP (cp, 0), current_block, p_block_stack);
5954 if (XEXP (cp, 1))
5955 reorder_blocks_1 (XEXP (cp, 1), current_block, p_block_stack);
5956 if (XEXP (cp, 2))
5957 reorder_blocks_1 (XEXP (cp, 2), current_block, p_block_stack);
5962 /* Rationalize BLOCK_FRAGMENT_ORIGIN. If an origin block no longer
5963 appears in the block tree, select one of the fragments to become
5964 the new origin block. */
5966 static void
5967 reorder_fix_fragments (block)
5968 tree block;
5970 while (block)
5972 tree dup_origin = BLOCK_FRAGMENT_ORIGIN (block);
5973 tree new_origin = NULL_TREE;
5975 if (dup_origin)
5977 if (! TREE_ASM_WRITTEN (dup_origin))
5979 new_origin = BLOCK_FRAGMENT_CHAIN (dup_origin);
5981 /* Find the first of the remaining fragments. There must
5982 be at least one -- the current block. */
5983 while (! TREE_ASM_WRITTEN (new_origin))
5984 new_origin = BLOCK_FRAGMENT_CHAIN (new_origin);
5985 BLOCK_FRAGMENT_ORIGIN (new_origin) = NULL_TREE;
5988 else if (! dup_origin)
5989 new_origin = block;
5991 /* Re-root the rest of the fragments to the new origin. In the
5992 case that DUP_ORIGIN was null, that means BLOCK was the origin
5993 of a chain of fragments and we want to remove those fragments
5994 that didn't make it to the output. */
5995 if (new_origin)
5997 tree *pp = &BLOCK_FRAGMENT_CHAIN (new_origin);
5998 tree chain = *pp;
6000 while (chain)
6002 if (TREE_ASM_WRITTEN (chain))
6004 BLOCK_FRAGMENT_ORIGIN (chain) = new_origin;
6005 *pp = chain;
6006 pp = &BLOCK_FRAGMENT_CHAIN (chain);
6008 chain = BLOCK_FRAGMENT_CHAIN (chain);
6010 *pp = NULL_TREE;
6013 reorder_fix_fragments (BLOCK_SUBBLOCKS (block));
6014 block = BLOCK_CHAIN (block);
6018 /* Reverse the order of elements in the chain T of blocks,
6019 and return the new head of the chain (old last element). */
6021 static tree
6022 blocks_nreverse (t)
6023 tree t;
6025 tree prev = 0, decl, next;
6026 for (decl = t; decl; decl = next)
6028 next = BLOCK_CHAIN (decl);
6029 BLOCK_CHAIN (decl) = prev;
6030 prev = decl;
6032 return prev;
6035 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
6036 non-NULL, list them all into VECTOR, in a depth-first preorder
6037 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
6038 blocks. */
6040 static int
6041 all_blocks (block, vector)
6042 tree block;
6043 tree *vector;
6045 int n_blocks = 0;
6047 while (block)
6049 TREE_ASM_WRITTEN (block) = 0;
6051 /* Record this block. */
6052 if (vector)
6053 vector[n_blocks] = block;
6055 ++n_blocks;
6057 /* Record the subblocks, and their subblocks... */
6058 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
6059 vector ? vector + n_blocks : 0);
6060 block = BLOCK_CHAIN (block);
6063 return n_blocks;
6066 /* Return a vector containing all the blocks rooted at BLOCK. The
6067 number of elements in the vector is stored in N_BLOCKS_P. The
6068 vector is dynamically allocated; it is the caller's responsibility
6069 to call `free' on the pointer returned. */
6071 static tree *
6072 get_block_vector (block, n_blocks_p)
6073 tree block;
6074 int *n_blocks_p;
6076 tree *block_vector;
6078 *n_blocks_p = all_blocks (block, NULL);
6079 block_vector = (tree *) xmalloc (*n_blocks_p * sizeof (tree));
6080 all_blocks (block, block_vector);
6082 return block_vector;
6085 static int next_block_index = 2;
6087 /* Set BLOCK_NUMBER for all the blocks in FN. */
6089 void
6090 number_blocks (fn)
6091 tree fn;
6093 int i;
6094 int n_blocks;
6095 tree *block_vector;
6097 /* For SDB and XCOFF debugging output, we start numbering the blocks
6098 from 1 within each function, rather than keeping a running
6099 count. */
6100 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
6101 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
6102 next_block_index = 1;
6103 #endif
6105 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
6107 /* The top-level BLOCK isn't numbered at all. */
6108 for (i = 1; i < n_blocks; ++i)
6109 /* We number the blocks from two. */
6110 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
6112 free (block_vector);
6114 return;
6117 /* If VAR is present in a subblock of BLOCK, return the subblock. */
6119 tree
6120 debug_find_var_in_block_tree (var, block)
6121 tree var;
6122 tree block;
6124 tree t;
6126 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
6127 if (t == var)
6128 return block;
6130 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
6132 tree ret = debug_find_var_in_block_tree (var, t);
6133 if (ret)
6134 return ret;
6137 return NULL_TREE;
6140 /* Allocate a function structure and reset its contents to the defaults. */
6142 static void
6143 prepare_function_start ()
6145 cfun = (struct function *) ggc_alloc_cleared (sizeof (struct function));
6147 init_stmt_for_function ();
6148 init_eh_for_function ();
6150 cse_not_expected = ! optimize;
6152 /* Caller save not needed yet. */
6153 caller_save_needed = 0;
6155 /* No stack slots have been made yet. */
6156 stack_slot_list = 0;
6158 current_function_has_nonlocal_label = 0;
6159 current_function_has_nonlocal_goto = 0;
6161 /* There is no stack slot for handling nonlocal gotos. */
6162 nonlocal_goto_handler_slots = 0;
6163 nonlocal_goto_stack_level = 0;
6165 /* No labels have been declared for nonlocal use. */
6166 nonlocal_labels = 0;
6167 nonlocal_goto_handler_labels = 0;
6169 /* No function calls so far in this function. */
6170 function_call_count = 0;
6172 /* No parm regs have been allocated.
6173 (This is important for output_inline_function.) */
6174 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
6176 /* Initialize the RTL mechanism. */
6177 init_emit ();
6179 /* Initialize the queue of pending postincrement and postdecrements,
6180 and some other info in expr.c. */
6181 init_expr ();
6183 /* We haven't done register allocation yet. */
6184 reg_renumber = 0;
6186 init_varasm_status (cfun);
6188 /* Clear out data used for inlining. */
6189 cfun->inlinable = 0;
6190 cfun->original_decl_initial = 0;
6191 cfun->original_arg_vector = 0;
6193 cfun->stack_alignment_needed = STACK_BOUNDARY;
6194 cfun->preferred_stack_boundary = STACK_BOUNDARY;
6196 /* Set if a call to setjmp is seen. */
6197 current_function_calls_setjmp = 0;
6199 /* Set if a call to longjmp is seen. */
6200 current_function_calls_longjmp = 0;
6202 current_function_calls_alloca = 0;
6203 current_function_contains_functions = 0;
6204 current_function_is_leaf = 0;
6205 current_function_nothrow = 0;
6206 current_function_sp_is_unchanging = 0;
6207 current_function_uses_only_leaf_regs = 0;
6208 current_function_has_computed_jump = 0;
6209 current_function_is_thunk = 0;
6211 current_function_returns_pcc_struct = 0;
6212 current_function_returns_struct = 0;
6213 current_function_epilogue_delay_list = 0;
6214 current_function_uses_const_pool = 0;
6215 current_function_uses_pic_offset_table = 0;
6216 current_function_cannot_inline = 0;
6218 /* We have not yet needed to make a label to jump to for tail-recursion. */
6219 tail_recursion_label = 0;
6221 /* We haven't had a need to make a save area for ap yet. */
6222 arg_pointer_save_area = 0;
6224 /* No stack slots allocated yet. */
6225 frame_offset = 0;
6227 /* No SAVE_EXPRs in this function yet. */
6228 save_expr_regs = 0;
6230 /* No RTL_EXPRs in this function yet. */
6231 rtl_expr_chain = 0;
6233 /* Set up to allocate temporaries. */
6234 init_temp_slots ();
6236 /* Indicate that we need to distinguish between the return value of the
6237 present function and the return value of a function being called. */
6238 rtx_equal_function_value_matters = 1;
6240 /* Indicate that we have not instantiated virtual registers yet. */
6241 virtuals_instantiated = 0;
6243 /* Indicate that we want CONCATs now. */
6244 generating_concat_p = 1;
6246 /* Indicate we have no need of a frame pointer yet. */
6247 frame_pointer_needed = 0;
6249 /* By default assume not varargs or stdarg. */
6250 current_function_varargs = 0;
6251 current_function_stdarg = 0;
6253 /* We haven't made any trampolines for this function yet. */
6254 trampoline_list = 0;
6256 init_pending_stack_adjust ();
6257 inhibit_defer_pop = 0;
6259 current_function_outgoing_args_size = 0;
6261 if (init_lang_status)
6262 (*init_lang_status) (cfun);
6263 if (init_machine_status)
6264 (*init_machine_status) (cfun);
6267 /* Initialize the rtl expansion mechanism so that we can do simple things
6268 like generate sequences. This is used to provide a context during global
6269 initialization of some passes. */
6270 void
6271 init_dummy_function_start ()
6273 prepare_function_start ();
6276 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
6277 and initialize static variables for generating RTL for the statements
6278 of the function. */
6280 void
6281 init_function_start (subr, filename, line)
6282 tree subr;
6283 const char *filename;
6284 int line;
6286 prepare_function_start ();
6288 current_function_name = (*lang_hooks.decl_printable_name) (subr, 2);
6289 cfun->decl = subr;
6291 /* Nonzero if this is a nested function that uses a static chain. */
6293 current_function_needs_context
6294 = (decl_function_context (current_function_decl) != 0
6295 && ! DECL_NO_STATIC_CHAIN (current_function_decl));
6297 /* Within function body, compute a type's size as soon it is laid out. */
6298 immediate_size_expand++;
6300 /* Prevent ever trying to delete the first instruction of a function.
6301 Also tell final how to output a linenum before the function prologue.
6302 Note linenums could be missing, e.g. when compiling a Java .class file. */
6303 if (line > 0)
6304 emit_line_note (filename, line);
6306 /* Make sure first insn is a note even if we don't want linenums.
6307 This makes sure the first insn will never be deleted.
6308 Also, final expects a note to appear there. */
6309 emit_note (NULL, NOTE_INSN_DELETED);
6311 /* Set flags used by final.c. */
6312 if (aggregate_value_p (DECL_RESULT (subr)))
6314 #ifdef PCC_STATIC_STRUCT_RETURN
6315 current_function_returns_pcc_struct = 1;
6316 #endif
6317 current_function_returns_struct = 1;
6320 /* Warn if this value is an aggregate type,
6321 regardless of which calling convention we are using for it. */
6322 if (warn_aggregate_return
6323 && AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
6324 warning ("function returns an aggregate");
6326 current_function_returns_pointer
6327 = POINTER_TYPE_P (TREE_TYPE (DECL_RESULT (subr)));
6330 /* Make sure all values used by the optimization passes have sane
6331 defaults. */
6332 void
6333 init_function_for_compilation ()
6335 reg_renumber = 0;
6337 /* No prologue/epilogue insns yet. */
6338 VARRAY_GROW (prologue, 0);
6339 VARRAY_GROW (epilogue, 0);
6340 VARRAY_GROW (sibcall_epilogue, 0);
6343 /* Indicate that the current function uses extra args
6344 not explicitly mentioned in the argument list in any fashion. */
6346 void
6347 mark_varargs ()
6349 current_function_varargs = 1;
6352 /* Expand a call to __main at the beginning of a possible main function. */
6354 #if defined(INIT_SECTION_ASM_OP) && !defined(INVOKE__main)
6355 #undef HAS_INIT_SECTION
6356 #define HAS_INIT_SECTION
6357 #endif
6359 void
6360 expand_main_function ()
6362 #ifdef FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN
6363 if (FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN)
6365 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
6366 rtx tmp, seq;
6368 start_sequence ();
6369 /* Forcibly align the stack. */
6370 #ifdef STACK_GROWS_DOWNWARD
6371 tmp = expand_simple_binop (Pmode, AND, stack_pointer_rtx, GEN_INT(-align),
6372 stack_pointer_rtx, 1, OPTAB_WIDEN);
6373 #else
6374 tmp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
6375 GEN_INT (align - 1), NULL_RTX, 1, OPTAB_WIDEN);
6376 tmp = expand_simple_binop (Pmode, AND, tmp, GEN_INT (-align),
6377 stack_pointer_rtx, 1, OPTAB_WIDEN);
6378 #endif
6379 if (tmp != stack_pointer_rtx)
6380 emit_move_insn (stack_pointer_rtx, tmp);
6382 /* Enlist allocate_dynamic_stack_space to pick up the pieces. */
6383 tmp = force_reg (Pmode, const0_rtx);
6384 allocate_dynamic_stack_space (tmp, NULL_RTX, BIGGEST_ALIGNMENT);
6385 seq = gen_sequence ();
6386 end_sequence ();
6388 for (tmp = get_last_insn (); tmp; tmp = PREV_INSN (tmp))
6389 if (NOTE_P (tmp) && NOTE_LINE_NUMBER (tmp) == NOTE_INSN_FUNCTION_BEG)
6390 break;
6391 if (tmp)
6392 emit_insn_before (seq, tmp);
6393 else
6394 emit_insn (seq);
6396 #endif
6398 #ifndef HAS_INIT_SECTION
6399 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, NAME__MAIN), LCT_NORMAL,
6400 VOIDmode, 0);
6401 #endif
6404 extern struct obstack permanent_obstack;
6406 /* The PENDING_SIZES represent the sizes of variable-sized types.
6407 Create RTL for the various sizes now (using temporary variables),
6408 so that we can refer to the sizes from the RTL we are generating
6409 for the current function. The PENDING_SIZES are a TREE_LIST. The
6410 TREE_VALUE of each node is a SAVE_EXPR. */
6412 void
6413 expand_pending_sizes (pending_sizes)
6414 tree pending_sizes;
6416 tree tem;
6418 /* Evaluate now the sizes of any types declared among the arguments. */
6419 for (tem = pending_sizes; tem; tem = TREE_CHAIN (tem))
6421 expand_expr (TREE_VALUE (tem), const0_rtx, VOIDmode, 0);
6422 /* Flush the queue in case this parameter declaration has
6423 side-effects. */
6424 emit_queue ();
6428 /* Start the RTL for a new function, and set variables used for
6429 emitting RTL.
6430 SUBR is the FUNCTION_DECL node.
6431 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
6432 the function's parameters, which must be run at any return statement. */
6434 void
6435 expand_function_start (subr, parms_have_cleanups)
6436 tree subr;
6437 int parms_have_cleanups;
6439 tree tem;
6440 rtx last_ptr = NULL_RTX;
6442 /* Make sure volatile mem refs aren't considered
6443 valid operands of arithmetic insns. */
6444 init_recog_no_volatile ();
6446 current_function_instrument_entry_exit
6447 = (flag_instrument_function_entry_exit
6448 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
6450 current_function_profile
6451 = (profile_flag
6452 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
6454 current_function_limit_stack
6455 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
6457 /* If function gets a static chain arg, store it in the stack frame.
6458 Do this first, so it gets the first stack slot offset. */
6459 if (current_function_needs_context)
6461 last_ptr = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
6463 /* Delay copying static chain if it is not a register to avoid
6464 conflicts with regs used for parameters. */
6465 if (! SMALL_REGISTER_CLASSES
6466 || GET_CODE (static_chain_incoming_rtx) == REG)
6467 emit_move_insn (last_ptr, static_chain_incoming_rtx);
6470 /* If the parameters of this function need cleaning up, get a label
6471 for the beginning of the code which executes those cleanups. This must
6472 be done before doing anything with return_label. */
6473 if (parms_have_cleanups)
6474 cleanup_label = gen_label_rtx ();
6475 else
6476 cleanup_label = 0;
6478 /* Make the label for return statements to jump to. Do not special
6479 case machines with special return instructions -- they will be
6480 handled later during jump, ifcvt, or epilogue creation. */
6481 return_label = gen_label_rtx ();
6483 /* Initialize rtx used to return the value. */
6484 /* Do this before assign_parms so that we copy the struct value address
6485 before any library calls that assign parms might generate. */
6487 /* Decide whether to return the value in memory or in a register. */
6488 if (aggregate_value_p (DECL_RESULT (subr)))
6490 /* Returning something that won't go in a register. */
6491 rtx value_address = 0;
6493 #ifdef PCC_STATIC_STRUCT_RETURN
6494 if (current_function_returns_pcc_struct)
6496 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
6497 value_address = assemble_static_space (size);
6499 else
6500 #endif
6502 /* Expect to be passed the address of a place to store the value.
6503 If it is passed as an argument, assign_parms will take care of
6504 it. */
6505 if (struct_value_incoming_rtx)
6507 value_address = gen_reg_rtx (Pmode);
6508 emit_move_insn (value_address, struct_value_incoming_rtx);
6511 if (value_address)
6513 rtx x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), value_address);
6514 set_mem_attributes (x, DECL_RESULT (subr), 1);
6515 SET_DECL_RTL (DECL_RESULT (subr), x);
6518 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
6519 /* If return mode is void, this decl rtl should not be used. */
6520 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
6521 else
6523 /* Compute the return values into a pseudo reg, which we will copy
6524 into the true return register after the cleanups are done. */
6526 /* In order to figure out what mode to use for the pseudo, we
6527 figure out what the mode of the eventual return register will
6528 actually be, and use that. */
6529 rtx hard_reg
6530 = hard_function_value (TREE_TYPE (DECL_RESULT (subr)),
6531 subr, 1);
6533 /* Structures that are returned in registers are not aggregate_value_p,
6534 so we may see a PARALLEL. Don't play pseudo games with this. */
6535 if (! REG_P (hard_reg))
6536 SET_DECL_RTL (DECL_RESULT (subr), hard_reg);
6537 else
6539 /* Create the pseudo. */
6540 SET_DECL_RTL (DECL_RESULT (subr), gen_reg_rtx (GET_MODE (hard_reg)));
6542 /* Needed because we may need to move this to memory
6543 in case it's a named return value whose address is taken. */
6544 DECL_REGISTER (DECL_RESULT (subr)) = 1;
6548 /* Initialize rtx for parameters and local variables.
6549 In some cases this requires emitting insns. */
6551 assign_parms (subr);
6553 /* Copy the static chain now if it wasn't a register. The delay is to
6554 avoid conflicts with the parameter passing registers. */
6556 if (SMALL_REGISTER_CLASSES && current_function_needs_context)
6557 if (GET_CODE (static_chain_incoming_rtx) != REG)
6558 emit_move_insn (last_ptr, static_chain_incoming_rtx);
6560 /* The following was moved from init_function_start.
6561 The move is supposed to make sdb output more accurate. */
6562 /* Indicate the beginning of the function body,
6563 as opposed to parm setup. */
6564 emit_note (NULL, NOTE_INSN_FUNCTION_BEG);
6566 if (GET_CODE (get_last_insn ()) != NOTE)
6567 emit_note (NULL, NOTE_INSN_DELETED);
6568 parm_birth_insn = get_last_insn ();
6570 context_display = 0;
6571 if (current_function_needs_context)
6573 /* Fetch static chain values for containing functions. */
6574 tem = decl_function_context (current_function_decl);
6575 /* Copy the static chain pointer into a pseudo. If we have
6576 small register classes, copy the value from memory if
6577 static_chain_incoming_rtx is a REG. */
6578 if (tem)
6580 /* If the static chain originally came in a register, put it back
6581 there, then move it out in the next insn. The reason for
6582 this peculiar code is to satisfy function integration. */
6583 if (SMALL_REGISTER_CLASSES
6584 && GET_CODE (static_chain_incoming_rtx) == REG)
6585 emit_move_insn (static_chain_incoming_rtx, last_ptr);
6586 last_ptr = copy_to_reg (static_chain_incoming_rtx);
6589 while (tem)
6591 tree rtlexp = make_node (RTL_EXPR);
6593 RTL_EXPR_RTL (rtlexp) = last_ptr;
6594 context_display = tree_cons (tem, rtlexp, context_display);
6595 tem = decl_function_context (tem);
6596 if (tem == 0)
6597 break;
6598 /* Chain thru stack frames, assuming pointer to next lexical frame
6599 is found at the place we always store it. */
6600 #ifdef FRAME_GROWS_DOWNWARD
6601 last_ptr = plus_constant (last_ptr,
6602 -(HOST_WIDE_INT) GET_MODE_SIZE (Pmode));
6603 #endif
6604 last_ptr = gen_rtx_MEM (Pmode, memory_address (Pmode, last_ptr));
6605 set_mem_alias_set (last_ptr, get_frame_alias_set ());
6606 last_ptr = copy_to_reg (last_ptr);
6608 /* If we are not optimizing, ensure that we know that this
6609 piece of context is live over the entire function. */
6610 if (! optimize)
6611 save_expr_regs = gen_rtx_EXPR_LIST (VOIDmode, last_ptr,
6612 save_expr_regs);
6616 if (current_function_instrument_entry_exit)
6618 rtx fun = DECL_RTL (current_function_decl);
6619 if (GET_CODE (fun) == MEM)
6620 fun = XEXP (fun, 0);
6621 else
6622 abort ();
6623 emit_library_call (profile_function_entry_libfunc, LCT_NORMAL, VOIDmode,
6624 2, fun, Pmode,
6625 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
6627 hard_frame_pointer_rtx),
6628 Pmode);
6631 #ifdef PROFILE_HOOK
6632 if (current_function_profile)
6633 PROFILE_HOOK (profile_label_no);
6634 #endif
6636 /* After the display initializations is where the tail-recursion label
6637 should go, if we end up needing one. Ensure we have a NOTE here
6638 since some things (like trampolines) get placed before this. */
6639 tail_recursion_reentry = emit_note (NULL, NOTE_INSN_DELETED);
6641 /* Evaluate now the sizes of any types declared among the arguments. */
6642 expand_pending_sizes (nreverse (get_pending_sizes ()));
6644 /* Make sure there is a line number after the function entry setup code. */
6645 force_next_line_note ();
6648 /* Undo the effects of init_dummy_function_start. */
6649 void
6650 expand_dummy_function_end ()
6652 /* End any sequences that failed to be closed due to syntax errors. */
6653 while (in_sequence_p ())
6654 end_sequence ();
6656 /* Outside function body, can't compute type's actual size
6657 until next function's body starts. */
6659 free_after_parsing (cfun);
6660 free_after_compilation (cfun);
6661 cfun = 0;
6664 /* Call DOIT for each hard register used as a return value from
6665 the current function. */
6667 void
6668 diddle_return_value (doit, arg)
6669 void (*doit) PARAMS ((rtx, void *));
6670 void *arg;
6672 rtx outgoing = current_function_return_rtx;
6674 if (! outgoing)
6675 return;
6677 if (GET_CODE (outgoing) == REG)
6678 (*doit) (outgoing, arg);
6679 else if (GET_CODE (outgoing) == PARALLEL)
6681 int i;
6683 for (i = 0; i < XVECLEN (outgoing, 0); i++)
6685 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
6687 if (GET_CODE (x) == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
6688 (*doit) (x, arg);
6693 static void
6694 do_clobber_return_reg (reg, arg)
6695 rtx reg;
6696 void *arg ATTRIBUTE_UNUSED;
6698 emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
6701 void
6702 clobber_return_register ()
6704 diddle_return_value (do_clobber_return_reg, NULL);
6706 /* In case we do use pseudo to return value, clobber it too. */
6707 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
6709 tree decl_result = DECL_RESULT (current_function_decl);
6710 rtx decl_rtl = DECL_RTL (decl_result);
6711 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
6713 do_clobber_return_reg (decl_rtl, NULL);
6718 static void
6719 do_use_return_reg (reg, arg)
6720 rtx reg;
6721 void *arg ATTRIBUTE_UNUSED;
6723 emit_insn (gen_rtx_USE (VOIDmode, reg));
6726 void
6727 use_return_register ()
6729 diddle_return_value (do_use_return_reg, NULL);
6732 /* Generate RTL for the end of the current function.
6733 FILENAME and LINE are the current position in the source file.
6735 It is up to language-specific callers to do cleanups for parameters--
6736 or else, supply 1 for END_BINDINGS and we will call expand_end_bindings. */
6738 void
6739 expand_function_end (filename, line, end_bindings)
6740 const char *filename;
6741 int line;
6742 int end_bindings;
6744 tree link;
6745 rtx clobber_after;
6747 #ifdef TRAMPOLINE_TEMPLATE
6748 static rtx initial_trampoline;
6749 #endif
6751 finish_expr_for_function ();
6753 /* If arg_pointer_save_area was referenced only from a nested
6754 function, we will not have initialized it yet. Do that now. */
6755 if (arg_pointer_save_area && ! cfun->arg_pointer_save_area_init)
6756 get_arg_pointer_save_area (cfun);
6758 #ifdef NON_SAVING_SETJMP
6759 /* Don't put any variables in registers if we call setjmp
6760 on a machine that fails to restore the registers. */
6761 if (NON_SAVING_SETJMP && current_function_calls_setjmp)
6763 if (DECL_INITIAL (current_function_decl) != error_mark_node)
6764 setjmp_protect (DECL_INITIAL (current_function_decl));
6766 setjmp_protect_args ();
6768 #endif
6770 /* Initialize any trampolines required by this function. */
6771 for (link = trampoline_list; link; link = TREE_CHAIN (link))
6773 tree function = TREE_PURPOSE (link);
6774 rtx context ATTRIBUTE_UNUSED = lookup_static_chain (function);
6775 rtx tramp = RTL_EXPR_RTL (TREE_VALUE (link));
6776 #ifdef TRAMPOLINE_TEMPLATE
6777 rtx blktramp;
6778 #endif
6779 rtx seq;
6781 #ifdef TRAMPOLINE_TEMPLATE
6782 /* First make sure this compilation has a template for
6783 initializing trampolines. */
6784 if (initial_trampoline == 0)
6786 initial_trampoline
6787 = gen_rtx_MEM (BLKmode, assemble_trampoline_template ());
6788 set_mem_align (initial_trampoline, TRAMPOLINE_ALIGNMENT);
6790 ggc_add_rtx_root (&initial_trampoline, 1);
6792 #endif
6794 /* Generate insns to initialize the trampoline. */
6795 start_sequence ();
6796 tramp = round_trampoline_addr (XEXP (tramp, 0));
6797 #ifdef TRAMPOLINE_TEMPLATE
6798 blktramp = replace_equiv_address (initial_trampoline, tramp);
6799 emit_block_move (blktramp, initial_trampoline,
6800 GEN_INT (TRAMPOLINE_SIZE));
6801 #endif
6802 INITIALIZE_TRAMPOLINE (tramp, XEXP (DECL_RTL (function), 0), context);
6803 seq = get_insns ();
6804 end_sequence ();
6806 /* Put those insns at entry to the containing function (this one). */
6807 emit_insns_before (seq, tail_recursion_reentry);
6810 /* If we are doing stack checking and this function makes calls,
6811 do a stack probe at the start of the function to ensure we have enough
6812 space for another stack frame. */
6813 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
6815 rtx insn, seq;
6817 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6818 if (GET_CODE (insn) == CALL_INSN)
6820 start_sequence ();
6821 probe_stack_range (STACK_CHECK_PROTECT,
6822 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
6823 seq = get_insns ();
6824 end_sequence ();
6825 emit_insns_before (seq, tail_recursion_reentry);
6826 break;
6830 /* Warn about unused parms if extra warnings were specified. */
6831 /* Either ``-W -Wunused'' or ``-Wunused-parameter'' enables this
6832 warning. WARN_UNUSED_PARAMETER is negative when set by
6833 -Wunused. */
6834 if (warn_unused_parameter > 0
6835 || (warn_unused_parameter < 0 && extra_warnings))
6837 tree decl;
6839 for (decl = DECL_ARGUMENTS (current_function_decl);
6840 decl; decl = TREE_CHAIN (decl))
6841 if (! TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
6842 && DECL_NAME (decl) && ! DECL_ARTIFICIAL (decl))
6843 warning_with_decl (decl, "unused parameter `%s'");
6846 /* Delete handlers for nonlocal gotos if nothing uses them. */
6847 if (nonlocal_goto_handler_slots != 0
6848 && ! current_function_has_nonlocal_label)
6849 delete_handlers ();
6851 /* End any sequences that failed to be closed due to syntax errors. */
6852 while (in_sequence_p ())
6853 end_sequence ();
6855 /* Outside function body, can't compute type's actual size
6856 until next function's body starts. */
6857 immediate_size_expand--;
6859 clear_pending_stack_adjust ();
6860 do_pending_stack_adjust ();
6862 /* Mark the end of the function body.
6863 If control reaches this insn, the function can drop through
6864 without returning a value. */
6865 emit_note (NULL, NOTE_INSN_FUNCTION_END);
6867 /* Must mark the last line number note in the function, so that the test
6868 coverage code can avoid counting the last line twice. This just tells
6869 the code to ignore the immediately following line note, since there
6870 already exists a copy of this note somewhere above. This line number
6871 note is still needed for debugging though, so we can't delete it. */
6872 if (flag_test_coverage)
6873 emit_note (NULL, NOTE_INSN_REPEATED_LINE_NUMBER);
6875 /* Output a linenumber for the end of the function.
6876 SDB depends on this. */
6877 emit_line_note_force (filename, line);
6879 /* Before the return label (if any), clobber the return
6880 registers so that they are not propagated live to the rest of
6881 the function. This can only happen with functions that drop
6882 through; if there had been a return statement, there would
6883 have either been a return rtx, or a jump to the return label.
6885 We delay actual code generation after the current_function_value_rtx
6886 is computed. */
6887 clobber_after = get_last_insn ();
6889 /* Output the label for the actual return from the function,
6890 if one is expected. This happens either because a function epilogue
6891 is used instead of a return instruction, or because a return was done
6892 with a goto in order to run local cleanups, or because of pcc-style
6893 structure returning. */
6894 if (return_label)
6895 emit_label (return_label);
6897 /* C++ uses this. */
6898 if (end_bindings)
6899 expand_end_bindings (0, 0, 0);
6901 if (current_function_instrument_entry_exit)
6903 rtx fun = DECL_RTL (current_function_decl);
6904 if (GET_CODE (fun) == MEM)
6905 fun = XEXP (fun, 0);
6906 else
6907 abort ();
6908 emit_library_call (profile_function_exit_libfunc, LCT_NORMAL, VOIDmode,
6909 2, fun, Pmode,
6910 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
6912 hard_frame_pointer_rtx),
6913 Pmode);
6916 /* Let except.c know where it should emit the call to unregister
6917 the function context for sjlj exceptions. */
6918 if (flag_exceptions && USING_SJLJ_EXCEPTIONS)
6919 sjlj_emit_function_exit_after (get_last_insn ());
6921 /* If we had calls to alloca, and this machine needs
6922 an accurate stack pointer to exit the function,
6923 insert some code to save and restore the stack pointer. */
6924 #ifdef EXIT_IGNORE_STACK
6925 if (! EXIT_IGNORE_STACK)
6926 #endif
6927 if (current_function_calls_alloca)
6929 rtx tem = 0;
6931 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
6932 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
6935 /* If scalar return value was computed in a pseudo-reg, or was a named
6936 return value that got dumped to the stack, copy that to the hard
6937 return register. */
6938 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
6940 tree decl_result = DECL_RESULT (current_function_decl);
6941 rtx decl_rtl = DECL_RTL (decl_result);
6943 if (REG_P (decl_rtl)
6944 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
6945 : DECL_REGISTER (decl_result))
6947 rtx real_decl_rtl;
6949 #ifdef FUNCTION_OUTGOING_VALUE
6950 real_decl_rtl = FUNCTION_OUTGOING_VALUE (TREE_TYPE (decl_result),
6951 current_function_decl);
6952 #else
6953 real_decl_rtl = FUNCTION_VALUE (TREE_TYPE (decl_result),
6954 current_function_decl);
6955 #endif
6956 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
6958 /* If this is a BLKmode structure being returned in registers,
6959 then use the mode computed in expand_return. Note that if
6960 decl_rtl is memory, then its mode may have been changed,
6961 but that current_function_return_rtx has not. */
6962 if (GET_MODE (real_decl_rtl) == BLKmode)
6963 PUT_MODE (real_decl_rtl, GET_MODE (current_function_return_rtx));
6965 /* If a named return value dumped decl_return to memory, then
6966 we may need to re-do the PROMOTE_MODE signed/unsigned
6967 extension. */
6968 if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
6970 int unsignedp = TREE_UNSIGNED (TREE_TYPE (decl_result));
6972 #ifdef PROMOTE_FUNCTION_RETURN
6973 promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
6974 &unsignedp, 1);
6975 #endif
6977 convert_move (real_decl_rtl, decl_rtl, unsignedp);
6979 else if (GET_CODE (real_decl_rtl) == PARALLEL)
6980 emit_group_load (real_decl_rtl, decl_rtl,
6981 int_size_in_bytes (TREE_TYPE (decl_result)));
6982 else
6983 emit_move_insn (real_decl_rtl, decl_rtl);
6985 /* The delay slot scheduler assumes that current_function_return_rtx
6986 holds the hard register containing the return value, not a
6987 temporary pseudo. */
6988 current_function_return_rtx = real_decl_rtl;
6992 /* If returning a structure, arrange to return the address of the value
6993 in a place where debuggers expect to find it.
6995 If returning a structure PCC style,
6996 the caller also depends on this value.
6997 And current_function_returns_pcc_struct is not necessarily set. */
6998 if (current_function_returns_struct
6999 || current_function_returns_pcc_struct)
7001 rtx value_address
7002 = XEXP (DECL_RTL (DECL_RESULT (current_function_decl)), 0);
7003 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
7004 #ifdef FUNCTION_OUTGOING_VALUE
7005 rtx outgoing
7006 = FUNCTION_OUTGOING_VALUE (build_pointer_type (type),
7007 current_function_decl);
7008 #else
7009 rtx outgoing
7010 = FUNCTION_VALUE (build_pointer_type (type), current_function_decl);
7011 #endif
7013 /* Mark this as a function return value so integrate will delete the
7014 assignment and USE below when inlining this function. */
7015 REG_FUNCTION_VALUE_P (outgoing) = 1;
7017 #ifdef POINTERS_EXTEND_UNSIGNED
7018 /* The address may be ptr_mode and OUTGOING may be Pmode. */
7019 if (GET_MODE (outgoing) != GET_MODE (value_address))
7020 value_address = convert_memory_address (GET_MODE (outgoing),
7021 value_address);
7022 #endif
7024 emit_move_insn (outgoing, value_address);
7026 /* Show return register used to hold result (in this case the address
7027 of the result. */
7028 current_function_return_rtx = outgoing;
7031 /* If this is an implementation of throw, do what's necessary to
7032 communicate between __builtin_eh_return and the epilogue. */
7033 expand_eh_return ();
7035 /* Emit the actual code to clobber return register. */
7037 rtx seq, after;
7039 start_sequence ();
7040 clobber_return_register ();
7041 seq = gen_sequence ();
7042 end_sequence ();
7044 after = emit_insn_after (seq, clobber_after);
7046 if (clobber_after != after)
7047 cfun->x_clobber_return_insn = after;
7050 /* ??? This should no longer be necessary since stupid is no longer with
7051 us, but there are some parts of the compiler (eg reload_combine, and
7052 sh mach_dep_reorg) that still try and compute their own lifetime info
7053 instead of using the general framework. */
7054 use_return_register ();
7056 /* Fix up any gotos that jumped out to the outermost
7057 binding level of the function.
7058 Must follow emitting RETURN_LABEL. */
7060 /* If you have any cleanups to do at this point,
7061 and they need to create temporary variables,
7062 then you will lose. */
7063 expand_fixups (get_insns ());
7067 get_arg_pointer_save_area (f)
7068 struct function *f;
7070 rtx ret = f->x_arg_pointer_save_area;
7072 if (! ret)
7074 ret = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, f);
7075 f->x_arg_pointer_save_area = ret;
7078 if (f == cfun && ! f->arg_pointer_save_area_init)
7080 rtx seq;
7082 /* Save the arg pointer at the beginning of the function. The
7083 generated stack slot may not be a valid memory address, so we
7084 have to check it and fix it if necessary. */
7085 start_sequence ();
7086 emit_move_insn (validize_mem (ret), virtual_incoming_args_rtx);
7087 seq = gen_sequence ();
7088 end_sequence ();
7090 push_topmost_sequence ();
7091 emit_insn_after (seq, get_insns ());
7092 pop_topmost_sequence ();
7095 return ret;
7098 /* Extend a vector that records the INSN_UIDs of INSNS (either a
7099 sequence or a single insn). */
7101 static void
7102 record_insns (insns, vecp)
7103 rtx insns;
7104 varray_type *vecp;
7106 if (GET_CODE (insns) == SEQUENCE)
7108 int len = XVECLEN (insns, 0);
7109 int i = VARRAY_SIZE (*vecp);
7111 VARRAY_GROW (*vecp, i + len);
7112 while (--len >= 0)
7114 VARRAY_INT (*vecp, i) = INSN_UID (XVECEXP (insns, 0, len));
7115 ++i;
7118 else
7120 int i = VARRAY_SIZE (*vecp);
7121 VARRAY_GROW (*vecp, i + 1);
7122 VARRAY_INT (*vecp, i) = INSN_UID (insns);
7126 /* Determine how many INSN_UIDs in VEC are part of INSN. */
7128 static int
7129 contains (insn, vec)
7130 rtx insn;
7131 varray_type vec;
7133 int i, j;
7135 if (GET_CODE (insn) == INSN
7136 && GET_CODE (PATTERN (insn)) == SEQUENCE)
7138 int count = 0;
7139 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
7140 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
7141 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i)) == VARRAY_INT (vec, j))
7142 count++;
7143 return count;
7145 else
7147 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
7148 if (INSN_UID (insn) == VARRAY_INT (vec, j))
7149 return 1;
7151 return 0;
7155 prologue_epilogue_contains (insn)
7156 rtx insn;
7158 if (contains (insn, prologue))
7159 return 1;
7160 if (contains (insn, epilogue))
7161 return 1;
7162 return 0;
7166 sibcall_epilogue_contains (insn)
7167 rtx insn;
7169 if (sibcall_epilogue)
7170 return contains (insn, sibcall_epilogue);
7171 return 0;
7174 #ifdef HAVE_return
7175 /* Insert gen_return at the end of block BB. This also means updating
7176 block_for_insn appropriately. */
7178 static void
7179 emit_return_into_block (bb, line_note)
7180 basic_block bb;
7181 rtx line_note;
7183 rtx p, end;
7185 p = NEXT_INSN (bb->end);
7186 end = emit_jump_insn_after (gen_return (), bb->end);
7187 if (line_note)
7188 emit_line_note_after (NOTE_SOURCE_FILE (line_note),
7189 NOTE_LINE_NUMBER (line_note), PREV_INSN (bb->end));
7191 #endif /* HAVE_return */
7193 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
7195 /* These functions convert the epilogue into a variant that does not modify the
7196 stack pointer. This is used in cases where a function returns an object
7197 whose size is not known until it is computed. The called function leaves the
7198 object on the stack, leaves the stack depressed, and returns a pointer to
7199 the object.
7201 What we need to do is track all modifications and references to the stack
7202 pointer, deleting the modifications and changing the references to point to
7203 the location the stack pointer would have pointed to had the modifications
7204 taken place.
7206 These functions need to be portable so we need to make as few assumptions
7207 about the epilogue as we can. However, the epilogue basically contains
7208 three things: instructions to reset the stack pointer, instructions to
7209 reload registers, possibly including the frame pointer, and an
7210 instruction to return to the caller.
7212 If we can't be sure of what a relevant epilogue insn is doing, we abort.
7213 We also make no attempt to validate the insns we make since if they are
7214 invalid, we probably can't do anything valid. The intent is that these
7215 routines get "smarter" as more and more machines start to use them and
7216 they try operating on different epilogues.
7218 We use the following structure to track what the part of the epilogue that
7219 we've already processed has done. We keep two copies of the SP equivalence,
7220 one for use during the insn we are processing and one for use in the next
7221 insn. The difference is because one part of a PARALLEL may adjust SP
7222 and the other may use it. */
7224 struct epi_info
7226 rtx sp_equiv_reg; /* REG that SP is set from, perhaps SP. */
7227 HOST_WIDE_INT sp_offset; /* Offset from SP_EQUIV_REG of present SP. */
7228 rtx new_sp_equiv_reg; /* REG to be used at end of insn. */
7229 HOST_WIDE_INT new_sp_offset; /* Offset to be used at end of insn. */
7230 rtx equiv_reg_src; /* If nonzero, the value that SP_EQUIV_REG
7231 should be set to once we no longer need
7232 its value. */
7235 static void handle_epilogue_set PARAMS ((rtx, struct epi_info *));
7236 static void emit_equiv_load PARAMS ((struct epi_info *));
7238 /* Modify SEQ, a SEQUENCE that is part of the epilogue, to no modifications
7239 to the stack pointer. Return the new sequence. */
7241 static rtx
7242 keep_stack_depressed (seq)
7243 rtx seq;
7245 int i, j;
7246 struct epi_info info;
7248 /* If the epilogue is just a single instruction, it ust be OK as is. */
7250 if (GET_CODE (seq) != SEQUENCE)
7251 return seq;
7253 /* Otherwise, start a sequence, initialize the information we have, and
7254 process all the insns we were given. */
7255 start_sequence ();
7257 info.sp_equiv_reg = stack_pointer_rtx;
7258 info.sp_offset = 0;
7259 info.equiv_reg_src = 0;
7261 for (i = 0; i < XVECLEN (seq, 0); i++)
7263 rtx insn = XVECEXP (seq, 0, i);
7265 if (!INSN_P (insn))
7267 add_insn (insn);
7268 continue;
7271 /* If this insn references the register that SP is equivalent to and
7272 we have a pending load to that register, we must force out the load
7273 first and then indicate we no longer know what SP's equivalent is. */
7274 if (info.equiv_reg_src != 0
7275 && reg_referenced_p (info.sp_equiv_reg, PATTERN (insn)))
7277 emit_equiv_load (&info);
7278 info.sp_equiv_reg = 0;
7281 info.new_sp_equiv_reg = info.sp_equiv_reg;
7282 info.new_sp_offset = info.sp_offset;
7284 /* If this is a (RETURN) and the return address is on the stack,
7285 update the address and change to an indirect jump. */
7286 if (GET_CODE (PATTERN (insn)) == RETURN
7287 || (GET_CODE (PATTERN (insn)) == PARALLEL
7288 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == RETURN))
7290 rtx retaddr = INCOMING_RETURN_ADDR_RTX;
7291 rtx base = 0;
7292 HOST_WIDE_INT offset = 0;
7293 rtx jump_insn, jump_set;
7295 /* If the return address is in a register, we can emit the insn
7296 unchanged. Otherwise, it must be a MEM and we see what the
7297 base register and offset are. In any case, we have to emit any
7298 pending load to the equivalent reg of SP, if any. */
7299 if (GET_CODE (retaddr) == REG)
7301 emit_equiv_load (&info);
7302 add_insn (insn);
7303 continue;
7305 else if (GET_CODE (retaddr) == MEM
7306 && GET_CODE (XEXP (retaddr, 0)) == REG)
7307 base = gen_rtx_REG (Pmode, REGNO (XEXP (retaddr, 0))), offset = 0;
7308 else if (GET_CODE (retaddr) == MEM
7309 && GET_CODE (XEXP (retaddr, 0)) == PLUS
7310 && GET_CODE (XEXP (XEXP (retaddr, 0), 0)) == REG
7311 && GET_CODE (XEXP (XEXP (retaddr, 0), 1)) == CONST_INT)
7313 base = gen_rtx_REG (Pmode, REGNO (XEXP (XEXP (retaddr, 0), 0)));
7314 offset = INTVAL (XEXP (XEXP (retaddr, 0), 1));
7316 else
7317 abort ();
7319 /* If the base of the location containing the return pointer
7320 is SP, we must update it with the replacement address. Otherwise,
7321 just build the necessary MEM. */
7322 retaddr = plus_constant (base, offset);
7323 if (base == stack_pointer_rtx)
7324 retaddr = simplify_replace_rtx (retaddr, stack_pointer_rtx,
7325 plus_constant (info.sp_equiv_reg,
7326 info.sp_offset));
7328 retaddr = gen_rtx_MEM (Pmode, retaddr);
7330 /* If there is a pending load to the equivalent register for SP
7331 and we reference that register, we must load our address into
7332 a scratch register and then do that load. */
7333 if (info.equiv_reg_src
7334 && reg_overlap_mentioned_p (info.equiv_reg_src, retaddr))
7336 unsigned int regno;
7337 rtx reg;
7339 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
7340 if (HARD_REGNO_MODE_OK (regno, Pmode)
7341 && !fixed_regs[regno]
7342 && TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)
7343 && !REGNO_REG_SET_P (EXIT_BLOCK_PTR->global_live_at_start,
7344 regno)
7345 && !refers_to_regno_p (regno,
7346 regno + HARD_REGNO_NREGS (regno,
7347 Pmode),
7348 info.equiv_reg_src, NULL))
7349 break;
7351 if (regno == FIRST_PSEUDO_REGISTER)
7352 abort ();
7354 reg = gen_rtx_REG (Pmode, regno);
7355 emit_move_insn (reg, retaddr);
7356 retaddr = reg;
7359 emit_equiv_load (&info);
7360 jump_insn = emit_jump_insn (gen_indirect_jump (retaddr));
7362 /* Show the SET in the above insn is a RETURN. */
7363 jump_set = single_set (jump_insn);
7364 if (jump_set == 0)
7365 abort ();
7366 else
7367 SET_IS_RETURN_P (jump_set) = 1;
7370 /* If SP is not mentioned in the pattern and its equivalent register, if
7371 any, is not modified, just emit it. Otherwise, if neither is set,
7372 replace the reference to SP and emit the insn. If none of those are
7373 true, handle each SET individually. */
7374 else if (!reg_mentioned_p (stack_pointer_rtx, PATTERN (insn))
7375 && (info.sp_equiv_reg == stack_pointer_rtx
7376 || !reg_set_p (info.sp_equiv_reg, insn)))
7377 add_insn (insn);
7378 else if (! reg_set_p (stack_pointer_rtx, insn)
7379 && (info.sp_equiv_reg == stack_pointer_rtx
7380 || !reg_set_p (info.sp_equiv_reg, insn)))
7382 if (! validate_replace_rtx (stack_pointer_rtx,
7383 plus_constant (info.sp_equiv_reg,
7384 info.sp_offset),
7385 insn))
7386 abort ();
7388 add_insn (insn);
7390 else if (GET_CODE (PATTERN (insn)) == SET)
7391 handle_epilogue_set (PATTERN (insn), &info);
7392 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
7394 for (j = 0; j < XVECLEN (PATTERN (insn), 0); j++)
7395 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET)
7396 handle_epilogue_set (XVECEXP (PATTERN (insn), 0, j), &info);
7398 else
7399 add_insn (insn);
7401 info.sp_equiv_reg = info.new_sp_equiv_reg;
7402 info.sp_offset = info.new_sp_offset;
7405 seq = gen_sequence ();
7406 end_sequence ();
7407 return seq;
7410 /* SET is a SET from an insn in the epilogue. P is a pointer to the epi_info
7411 structure that contains information about what we've seen so far. We
7412 process this SET by either updating that data or by emitting one or
7413 more insns. */
7415 static void
7416 handle_epilogue_set (set, p)
7417 rtx set;
7418 struct epi_info *p;
7420 /* First handle the case where we are setting SP. Record what it is being
7421 set from. If unknown, abort. */
7422 if (reg_set_p (stack_pointer_rtx, set))
7424 if (SET_DEST (set) != stack_pointer_rtx)
7425 abort ();
7427 if (GET_CODE (SET_SRC (set)) == PLUS
7428 && GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
7430 p->new_sp_equiv_reg = XEXP (SET_SRC (set), 0);
7431 p->new_sp_offset = INTVAL (XEXP (SET_SRC (set), 1));
7433 else
7434 p->new_sp_equiv_reg = SET_SRC (set), p->new_sp_offset = 0;
7436 /* If we are adjusting SP, we adjust from the old data. */
7437 if (p->new_sp_equiv_reg == stack_pointer_rtx)
7439 p->new_sp_equiv_reg = p->sp_equiv_reg;
7440 p->new_sp_offset += p->sp_offset;
7443 if (p->new_sp_equiv_reg == 0 || GET_CODE (p->new_sp_equiv_reg) != REG)
7444 abort ();
7446 return;
7449 /* Next handle the case where we are setting SP's equivalent register.
7450 If we already have a value to set it to, abort. We could update, but
7451 there seems little point in handling that case. Note that we have
7452 to allow for the case where we are setting the register set in
7453 the previous part of a PARALLEL inside a single insn. But use the
7454 old offset for any updates within this insn. */
7455 else if (p->new_sp_equiv_reg != 0 && reg_set_p (p->new_sp_equiv_reg, set))
7457 if (!rtx_equal_p (p->new_sp_equiv_reg, SET_DEST (set))
7458 || p->equiv_reg_src != 0)
7459 abort ();
7460 else
7461 p->equiv_reg_src
7462 = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
7463 plus_constant (p->sp_equiv_reg,
7464 p->sp_offset));
7467 /* Otherwise, replace any references to SP in the insn to its new value
7468 and emit the insn. */
7469 else
7471 SET_SRC (set) = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
7472 plus_constant (p->sp_equiv_reg,
7473 p->sp_offset));
7474 SET_DEST (set) = simplify_replace_rtx (SET_DEST (set), stack_pointer_rtx,
7475 plus_constant (p->sp_equiv_reg,
7476 p->sp_offset));
7477 emit_insn (set);
7481 /* Emit an insn to do the load shown in p->equiv_reg_src, if needed. */
7483 static void
7484 emit_equiv_load (p)
7485 struct epi_info *p;
7487 if (p->equiv_reg_src != 0)
7488 emit_move_insn (p->sp_equiv_reg, p->equiv_reg_src);
7490 p->equiv_reg_src = 0;
7492 #endif
7494 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
7495 this into place with notes indicating where the prologue ends and where
7496 the epilogue begins. Update the basic block information when possible. */
7498 void
7499 thread_prologue_and_epilogue_insns (f)
7500 rtx f ATTRIBUTE_UNUSED;
7502 int inserted = 0;
7503 edge e;
7504 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
7505 rtx seq;
7506 #endif
7507 #ifdef HAVE_prologue
7508 rtx prologue_end = NULL_RTX;
7509 #endif
7510 #if defined (HAVE_epilogue) || defined(HAVE_return)
7511 rtx epilogue_end = NULL_RTX;
7512 #endif
7514 #ifdef HAVE_prologue
7515 if (HAVE_prologue)
7517 start_sequence ();
7518 seq = gen_prologue ();
7519 emit_insn (seq);
7521 /* Retain a map of the prologue insns. */
7522 if (GET_CODE (seq) != SEQUENCE)
7523 seq = get_insns ();
7524 record_insns (seq, &prologue);
7525 prologue_end = emit_note (NULL, NOTE_INSN_PROLOGUE_END);
7527 seq = gen_sequence ();
7528 end_sequence ();
7530 /* Can't deal with multiple successors of the entry block
7531 at the moment. Function should always have at least one
7532 entry point. */
7533 if (!ENTRY_BLOCK_PTR->succ || ENTRY_BLOCK_PTR->succ->succ_next)
7534 abort ();
7536 insert_insn_on_edge (seq, ENTRY_BLOCK_PTR->succ);
7537 inserted = 1;
7539 #endif
7541 /* If the exit block has no non-fake predecessors, we don't need
7542 an epilogue. */
7543 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7544 if ((e->flags & EDGE_FAKE) == 0)
7545 break;
7546 if (e == NULL)
7547 goto epilogue_done;
7549 #ifdef HAVE_return
7550 if (optimize && HAVE_return)
7552 /* If we're allowed to generate a simple return instruction,
7553 then by definition we don't need a full epilogue. Examine
7554 the block that falls through to EXIT. If it does not
7555 contain any code, examine its predecessors and try to
7556 emit (conditional) return instructions. */
7558 basic_block last;
7559 edge e_next;
7560 rtx label;
7562 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7563 if (e->flags & EDGE_FALLTHRU)
7564 break;
7565 if (e == NULL)
7566 goto epilogue_done;
7567 last = e->src;
7569 /* Verify that there are no active instructions in the last block. */
7570 label = last->end;
7571 while (label && GET_CODE (label) != CODE_LABEL)
7573 if (active_insn_p (label))
7574 break;
7575 label = PREV_INSN (label);
7578 if (last->head == label && GET_CODE (label) == CODE_LABEL)
7580 rtx epilogue_line_note = NULL_RTX;
7582 /* Locate the line number associated with the closing brace,
7583 if we can find one. */
7584 for (seq = get_last_insn ();
7585 seq && ! active_insn_p (seq);
7586 seq = PREV_INSN (seq))
7587 if (GET_CODE (seq) == NOTE && NOTE_LINE_NUMBER (seq) > 0)
7589 epilogue_line_note = seq;
7590 break;
7593 for (e = last->pred; e; e = e_next)
7595 basic_block bb = e->src;
7596 rtx jump;
7598 e_next = e->pred_next;
7599 if (bb == ENTRY_BLOCK_PTR)
7600 continue;
7602 jump = bb->end;
7603 if ((GET_CODE (jump) != JUMP_INSN) || JUMP_LABEL (jump) != label)
7604 continue;
7606 /* If we have an unconditional jump, we can replace that
7607 with a simple return instruction. */
7608 if (simplejump_p (jump))
7610 emit_return_into_block (bb, epilogue_line_note);
7611 delete_insn (jump);
7614 /* If we have a conditional jump, we can try to replace
7615 that with a conditional return instruction. */
7616 else if (condjump_p (jump))
7618 rtx ret, *loc;
7620 ret = SET_SRC (PATTERN (jump));
7621 if (GET_CODE (XEXP (ret, 1)) == LABEL_REF)
7622 loc = &XEXP (ret, 1);
7623 else
7624 loc = &XEXP (ret, 2);
7625 ret = gen_rtx_RETURN (VOIDmode);
7627 if (! validate_change (jump, loc, ret, 0))
7628 continue;
7629 if (JUMP_LABEL (jump))
7630 LABEL_NUSES (JUMP_LABEL (jump))--;
7632 /* If this block has only one successor, it both jumps
7633 and falls through to the fallthru block, so we can't
7634 delete the edge. */
7635 if (bb->succ->succ_next == NULL)
7636 continue;
7638 else
7639 continue;
7641 /* Fix up the CFG for the successful change we just made. */
7642 redirect_edge_succ (e, EXIT_BLOCK_PTR);
7645 /* Emit a return insn for the exit fallthru block. Whether
7646 this is still reachable will be determined later. */
7648 emit_barrier_after (last->end);
7649 emit_return_into_block (last, epilogue_line_note);
7650 epilogue_end = last->end;
7651 last->succ->flags &= ~EDGE_FALLTHRU;
7652 goto epilogue_done;
7655 #endif
7656 #ifdef HAVE_epilogue
7657 if (HAVE_epilogue)
7659 /* Find the edge that falls through to EXIT. Other edges may exist
7660 due to RETURN instructions, but those don't need epilogues.
7661 There really shouldn't be a mixture -- either all should have
7662 been converted or none, however... */
7664 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7665 if (e->flags & EDGE_FALLTHRU)
7666 break;
7667 if (e == NULL)
7668 goto epilogue_done;
7670 start_sequence ();
7671 epilogue_end = emit_note (NULL, NOTE_INSN_EPILOGUE_BEG);
7673 seq = gen_epilogue ();
7675 #ifdef INCOMING_RETURN_ADDR_RTX
7676 /* If this function returns with the stack depressed and we can support
7677 it, massage the epilogue to actually do that. */
7678 if (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
7679 && TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl)))
7680 seq = keep_stack_depressed (seq);
7681 #endif
7683 emit_jump_insn (seq);
7685 /* Retain a map of the epilogue insns. */
7686 if (GET_CODE (seq) != SEQUENCE)
7687 seq = get_insns ();
7688 record_insns (seq, &epilogue);
7690 seq = gen_sequence ();
7691 end_sequence ();
7693 insert_insn_on_edge (seq, e);
7694 inserted = 1;
7696 #endif
7697 epilogue_done:
7699 if (inserted)
7700 commit_edge_insertions ();
7702 #ifdef HAVE_sibcall_epilogue
7703 /* Emit sibling epilogues before any sibling call sites. */
7704 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7706 basic_block bb = e->src;
7707 rtx insn = bb->end;
7708 rtx i;
7709 rtx newinsn;
7711 if (GET_CODE (insn) != CALL_INSN
7712 || ! SIBLING_CALL_P (insn))
7713 continue;
7715 start_sequence ();
7716 seq = gen_sibcall_epilogue ();
7717 end_sequence ();
7719 i = PREV_INSN (insn);
7720 newinsn = emit_insn_before (seq, insn);
7722 /* Retain a map of the epilogue insns. Used in life analysis to
7723 avoid getting rid of sibcall epilogue insns. */
7724 record_insns (GET_CODE (seq) == SEQUENCE
7725 ? seq : newinsn, &sibcall_epilogue);
7727 #endif
7729 #ifdef HAVE_prologue
7730 if (prologue_end)
7732 rtx insn, prev;
7734 /* GDB handles `break f' by setting a breakpoint on the first
7735 line note after the prologue. Which means (1) that if
7736 there are line number notes before where we inserted the
7737 prologue we should move them, and (2) we should generate a
7738 note before the end of the first basic block, if there isn't
7739 one already there.
7741 ??? This behaviour is completely broken when dealing with
7742 multiple entry functions. We simply place the note always
7743 into first basic block and let alternate entry points
7744 to be missed.
7747 for (insn = prologue_end; insn; insn = prev)
7749 prev = PREV_INSN (insn);
7750 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7752 /* Note that we cannot reorder the first insn in the
7753 chain, since rest_of_compilation relies on that
7754 remaining constant. */
7755 if (prev == NULL)
7756 break;
7757 reorder_insns (insn, insn, prologue_end);
7761 /* Find the last line number note in the first block. */
7762 for (insn = BASIC_BLOCK (0)->end;
7763 insn != prologue_end && insn;
7764 insn = PREV_INSN (insn))
7765 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7766 break;
7768 /* If we didn't find one, make a copy of the first line number
7769 we run across. */
7770 if (! insn)
7772 for (insn = next_active_insn (prologue_end);
7773 insn;
7774 insn = PREV_INSN (insn))
7775 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7777 emit_line_note_after (NOTE_SOURCE_FILE (insn),
7778 NOTE_LINE_NUMBER (insn),
7779 prologue_end);
7780 break;
7784 #endif
7785 #ifdef HAVE_epilogue
7786 if (epilogue_end)
7788 rtx insn, next;
7790 /* Similarly, move any line notes that appear after the epilogue.
7791 There is no need, however, to be quite so anal about the existence
7792 of such a note. */
7793 for (insn = epilogue_end; insn; insn = next)
7795 next = NEXT_INSN (insn);
7796 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7797 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
7800 #endif
7803 /* Reposition the prologue-end and epilogue-begin notes after instruction
7804 scheduling and delayed branch scheduling. */
7806 void
7807 reposition_prologue_and_epilogue_notes (f)
7808 rtx f ATTRIBUTE_UNUSED;
7810 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
7811 rtx insn, last, note;
7812 int len;
7814 if ((len = VARRAY_SIZE (prologue)) > 0)
7816 last = 0, note = 0;
7818 /* Scan from the beginning until we reach the last prologue insn.
7819 We apparently can't depend on basic_block_{head,end} after
7820 reorg has run. */
7821 for (insn = f; insn; insn = NEXT_INSN (insn))
7823 if (GET_CODE (insn) == NOTE)
7825 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
7826 note = insn;
7828 else if (contains (insn, prologue))
7830 last = insn;
7831 if (--len == 0)
7832 break;
7836 if (last)
7838 rtx next;
7840 /* Find the prologue-end note if we haven't already, and
7841 move it to just after the last prologue insn. */
7842 if (note == 0)
7844 for (note = last; (note = NEXT_INSN (note));)
7845 if (GET_CODE (note) == NOTE
7846 && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
7847 break;
7850 next = NEXT_INSN (note);
7852 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
7853 if (GET_CODE (last) == CODE_LABEL)
7854 last = NEXT_INSN (last);
7855 reorder_insns (note, note, last);
7859 if ((len = VARRAY_SIZE (epilogue)) > 0)
7861 last = 0, note = 0;
7863 /* Scan from the end until we reach the first epilogue insn.
7864 We apparently can't depend on basic_block_{head,end} after
7865 reorg has run. */
7866 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
7868 if (GET_CODE (insn) == NOTE)
7870 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
7871 note = insn;
7873 else if (contains (insn, epilogue))
7875 last = insn;
7876 if (--len == 0)
7877 break;
7881 if (last)
7883 /* Find the epilogue-begin note if we haven't already, and
7884 move it to just before the first epilogue insn. */
7885 if (note == 0)
7887 for (note = insn; (note = PREV_INSN (note));)
7888 if (GET_CODE (note) == NOTE
7889 && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
7890 break;
7893 if (PREV_INSN (last) != note)
7894 reorder_insns (note, note, PREV_INSN (last));
7897 #endif /* HAVE_prologue or HAVE_epilogue */
7900 /* Mark P for GC. */
7902 static void
7903 mark_function_status (p)
7904 struct function *p;
7906 struct var_refs_queue *q;
7907 struct temp_slot *t;
7908 int i;
7909 rtx *r;
7911 if (p == 0)
7912 return;
7914 ggc_mark_rtx (p->arg_offset_rtx);
7916 if (p->x_parm_reg_stack_loc)
7917 for (i = p->x_max_parm_reg, r = p->x_parm_reg_stack_loc;
7918 i > 0; --i, ++r)
7919 ggc_mark_rtx (*r);
7921 ggc_mark_rtx (p->return_rtx);
7922 ggc_mark_rtx (p->x_cleanup_label);
7923 ggc_mark_rtx (p->x_return_label);
7924 ggc_mark_rtx (p->x_save_expr_regs);
7925 ggc_mark_rtx (p->x_stack_slot_list);
7926 ggc_mark_rtx (p->x_parm_birth_insn);
7927 ggc_mark_rtx (p->x_tail_recursion_label);
7928 ggc_mark_rtx (p->x_tail_recursion_reentry);
7929 ggc_mark_rtx (p->internal_arg_pointer);
7930 ggc_mark_rtx (p->x_arg_pointer_save_area);
7931 ggc_mark_tree (p->x_rtl_expr_chain);
7932 ggc_mark_rtx (p->x_last_parm_insn);
7933 ggc_mark_tree (p->x_context_display);
7934 ggc_mark_tree (p->x_trampoline_list);
7935 ggc_mark_rtx (p->epilogue_delay_list);
7936 ggc_mark_rtx (p->x_clobber_return_insn);
7938 for (t = p->x_temp_slots; t != 0; t = t->next)
7940 ggc_mark (t);
7941 ggc_mark_rtx (t->slot);
7942 ggc_mark_rtx (t->address);
7943 ggc_mark_tree (t->rtl_expr);
7944 ggc_mark_tree (t->type);
7947 for (q = p->fixup_var_refs_queue; q != 0; q = q->next)
7949 ggc_mark (q);
7950 ggc_mark_rtx (q->modified);
7953 ggc_mark_rtx (p->x_nonlocal_goto_handler_slots);
7954 ggc_mark_rtx (p->x_nonlocal_goto_handler_labels);
7955 ggc_mark_rtx (p->x_nonlocal_goto_stack_level);
7956 ggc_mark_tree (p->x_nonlocal_labels);
7958 mark_hard_reg_initial_vals (p);
7961 /* Mark the struct function pointed to by *ARG for GC, if it is not
7962 NULL. This is used to mark the current function and the outer
7963 function chain. */
7965 static void
7966 maybe_mark_struct_function (arg)
7967 void *arg;
7969 struct function *f = *(struct function **) arg;
7971 if (f == 0)
7972 return;
7974 ggc_mark_struct_function (f);
7977 /* Mark a struct function * for GC. This is called from ggc-common.c. */
7979 void
7980 ggc_mark_struct_function (f)
7981 struct function *f;
7983 ggc_mark (f);
7984 ggc_mark_tree (f->decl);
7986 mark_function_status (f);
7987 mark_eh_status (f->eh);
7988 mark_stmt_status (f->stmt);
7989 mark_expr_status (f->expr);
7990 mark_emit_status (f->emit);
7991 mark_varasm_status (f->varasm);
7993 if (mark_machine_status)
7994 (*mark_machine_status) (f);
7995 if (mark_lang_status)
7996 (*mark_lang_status) (f);
7998 if (f->original_arg_vector)
7999 ggc_mark_rtvec ((rtvec) f->original_arg_vector);
8000 if (f->original_decl_initial)
8001 ggc_mark_tree (f->original_decl_initial);
8002 if (f->outer)
8003 ggc_mark_struct_function (f->outer);
8006 /* Called once, at initialization, to initialize function.c. */
8008 void
8009 init_function_once ()
8011 ggc_add_root (&cfun, 1, sizeof cfun, maybe_mark_struct_function);
8012 ggc_add_root (&outer_function_chain, 1, sizeof outer_function_chain,
8013 maybe_mark_struct_function);
8015 VARRAY_INT_INIT (prologue, 0, "prologue");
8016 VARRAY_INT_INIT (epilogue, 0, "epilogue");
8017 VARRAY_INT_INIT (sibcall_epilogue, 0, "sibcall_epilogue");