MATCH: Improve `A CMP 0 ? A : -A` set of patterns to use bitwise_equal_p.
[official-gcc.git] / gcc / ada / sem_util.ads
blobdda71e402b2b2d3af033e35bc95b70fc40eab9ed
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ U T I L --
6 -- --
7 -- S p e c --
8 -- --
9 -- Copyright (C) 1992-2023, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 -- Package containing utility procedures used throughout the semantics
28 with Aspects; use Aspects;
29 with Atree; use Atree;
30 with Einfo; use Einfo;
31 with Einfo.Entities; use Einfo.Entities;
32 with Exp_Tss; use Exp_Tss;
33 with Namet; use Namet;
34 with Opt; use Opt;
35 with Snames; use Snames;
36 with Types; use Types;
37 with Uintp; use Uintp;
38 with Urealp; use Urealp;
40 package Sem_Util is
42 function Abstract_Interface_List (Typ : Entity_Id) return List_Id;
43 -- The list of interfaces implemented by Typ. Empty if there are none,
44 -- including the cases where there can't be any because e.g. the type is
45 -- not tagged.
47 function Acquire_Warning_Match_String (Str_Lit : Node_Id) return String;
48 -- Used by pragma Warnings (Off, string), and Warn_As_Error (string) to get
49 -- the given string argument, adding leading and trailing asterisks if they
50 -- are not already present. Str_Lit is the static value of the pragma
51 -- argument.
53 procedure Add_Access_Type_To_Process (E : Entity_Id; A : Entity_Id);
54 -- Add A to the list of access types to process when expanding the
55 -- freeze node of E.
57 procedure Add_Global_Declaration (N : Node_Id);
58 -- These procedures adds a declaration N at the library level, to be
59 -- elaborated before any other code in the unit. It is used for example
60 -- for the entity that marks whether a unit has been elaborated. The
61 -- declaration is added to the Declarations list of the Aux_Decls_Node
62 -- for the current unit. The declarations are added in the current scope,
63 -- so the caller should push a new scope as required before the call.
65 function Add_Suffix (E : Entity_Id; Suffix : Character) return Name_Id;
66 -- Returns the name of E adding Suffix
68 function Address_Integer_Convert_OK (T1, T2 : Entity_Id) return Boolean;
69 -- Given two types, returns True if we are in Allow_Integer_Address mode
70 -- and one of the types is (a descendant of) System.Address (and this type
71 -- is private), and the other type is any integer type.
73 function Address_Value (N : Node_Id) return Node_Id;
74 -- Return the underlying value of the expression N of an address clause
76 function Addressable (V : Uint) return Boolean;
77 function Addressable (V : Int) return Boolean;
78 pragma Inline (Addressable);
79 -- Returns True if the value of V is the word size or an addressable factor
80 -- or multiple of the word size (typically 8, 16, 32, 64 or 128).
82 procedure Aggregate_Constraint_Checks
83 (Exp : Node_Id;
84 Check_Typ : Entity_Id);
85 -- Checks expression Exp against subtype Check_Typ. If Exp is an aggregate
86 -- and Check_Typ a constrained record type with discriminants, we generate
87 -- the appropriate discriminant checks. If Exp is an array aggregate then
88 -- emit the appropriate length checks. If Exp is a scalar type, or a string
89 -- literal, Exp is changed into Check_Typ'(Exp) to ensure that range checks
90 -- are performed at run time. Also used for expressions in the argument of
91 -- 'Update, which shares some of the features of an aggregate.
93 function Alignment_In_Bits (E : Entity_Id) return Uint;
94 -- If the alignment of the type or object E is currently known to the
95 -- compiler, then this function returns the alignment value in bits.
96 -- Otherwise Uint_0 is returned, indicating that the alignment of the
97 -- entity is not yet known to the compiler.
99 function All_Composite_Constraints_Static (Constr : Node_Id) return Boolean;
100 -- Used to implement pragma Restrictions (No_Dynamic_Sized_Objects).
101 -- Given a constraint or subtree of a constraint on a composite
102 -- subtype/object, returns True if there are no nonstatic constraints,
103 -- which might cause objects to be created with dynamic size.
104 -- Called for subtype declarations (including implicit ones created for
105 -- subtype indications in object declarations, as well as discriminated
106 -- record aggregate cases). For record aggregates, only records containing
107 -- discriminant-dependent arrays matter, because the discriminants must be
108 -- static when governing a variant part. Access discriminants are
109 -- irrelevant. Also called for array aggregates, but only named notation,
110 -- because those are the only dynamic cases.
112 procedure Append_Entity_Name (Buf : in out Bounded_String; E : Entity_Id);
113 -- Recursive procedure to construct string for qualified name of enclosing
114 -- program unit. The qualification stops at an enclosing scope has no
115 -- source name (block or loop). If entity is a subprogram instance, skip
116 -- enclosing wrapper package. The name is appended to Buf.
118 procedure Append_Inherited_Subprogram (S : Entity_Id);
119 -- If the parent of the operation is declared in the visible part of
120 -- the current scope, the inherited operation is visible even though the
121 -- derived type that inherits the operation may be completed in the private
122 -- part of the current package.
124 procedure Apply_Compile_Time_Constraint_Error
125 (N : Node_Id;
126 Msg : String;
127 Reason : RT_Exception_Code;
128 Ent : Entity_Id := Empty;
129 Typ : Entity_Id := Empty;
130 Loc : Source_Ptr := No_Location;
131 Warn : Boolean := False;
132 Emit_Message : Boolean := True);
133 -- N is a subexpression that will raise Constraint_Error when evaluated
134 -- at run time. Msg is a message that explains the reason for raising the
135 -- exception. The last character is ? if the message is always a warning,
136 -- even in Ada 95, and is not a ? if the message represents an illegality
137 -- (because of violation of static expression rules) in Ada 95 (but not
138 -- in Ada 83). Typically this routine posts all messages at the Sloc of
139 -- node N. However, if Loc /= No_Location, Loc is the Sloc used to output
140 -- the message. After posting the appropriate message, this routine
141 -- replaces the expression with an appropriate N_Raise_Constraint_Error
142 -- node using the given Reason code. This node is then marked as being
143 -- static if the original node is static, but sets the flag
144 -- Raises_Constraint_Error, preventing further evaluation. The error
145 -- message may contain a } or & insertion character. This normally
146 -- references Etype (N), unless the Ent argument is given explicitly, in
147 -- which case it is used instead. The type of the raise node that is built
148 -- is normally Etype (N), but if the Typ parameter is present, this is used
149 -- instead. Warn is normally False. If it is True then the message is
150 -- treated as a warning even though it does not end with a ? (this is used
151 -- when the caller wants to parameterize whether an error or warning is
152 -- given), or when the message should be treated as a warning even when
153 -- SPARK_Mode is On (which otherwise would force an error).
154 -- If Emit_Message is False, then do not emit any message.
156 function Async_Readers_Enabled (Id : Entity_Id) return Boolean;
157 -- Id should be the entity of a state abstraction, an object, or a type.
158 -- Returns True iff Id is subject to external property Async_Readers.
160 function Async_Writers_Enabled (Id : Entity_Id) return Boolean;
161 -- Id should be the entity of a state abstraction, an object, or a type.
162 -- Returns True iff Id is subject to external property Async_Writers.
164 function Available_Full_View_Of_Component (T : Entity_Id) return Boolean;
165 -- If at the point of declaration an array type has a private or limited
166 -- component, several array operations are not available on the type, and
167 -- the array type is flagged accordingly. If in the immediate scope of
168 -- the array type the component becomes non-private or non-limited, these
169 -- operations become available. This can happen if the scopes of both types
170 -- are open, and the scope of the array is not outside the scope of the
171 -- component.
173 procedure Bad_Aspect
174 (N : Node_Id;
175 Nam : Name_Id;
176 Warn : Boolean := False);
177 -- Called when node N is expected to contain a valid aspect name, and
178 -- Nam is found instead. If Warn is set True this is a warning, else this
179 -- is an error.
181 procedure Bad_Attribute
182 (N : Node_Id;
183 Nam : Name_Id;
184 Warn : Boolean := False);
185 -- Called when node N is expected to contain a valid attribute name, and
186 -- Nam is found instead. If Warn is set True this is a warning, else this
187 -- is an error.
189 procedure Bad_Predicated_Subtype_Use
190 (Msg : String;
191 N : Node_Id;
192 Typ : Entity_Id;
193 Suggest_Static : Boolean := False);
194 -- This is called when Typ, a predicated subtype, is used in a context
195 -- which does not allow the use of a predicated subtype. Msg is passed to
196 -- Error_Msg_FE to output an appropriate message using N as the location,
197 -- and Typ as the entity. The caller must set up any insertions other than
198 -- the & for the type itself. Note that if Typ is a generic actual type,
199 -- then the message will be output as a warning, and a raise Program_Error
200 -- is inserted using Insert_Action with node N as the insertion point. Node
201 -- N also supplies the source location for construction of the raise node.
202 -- If Typ does not have any predicates, the call has no effect. Set flag
203 -- Suggest_Static when the context warrants an advice on how to avoid the
204 -- use error.
206 function Bad_Unordered_Enumeration_Reference
207 (N : Node_Id;
208 T : Entity_Id) return Boolean;
209 -- Node N contains a potentially dubious reference to type T, either an
210 -- explicit comparison, or an explicit range. This function returns True
211 -- if the type T is an enumeration type for which No pragma Order has been
212 -- given, and the reference N is not in the same extended source unit as
213 -- the declaration of T.
215 function Begin_Keyword_Location (N : Node_Id) return Source_Ptr;
216 -- Given block statement, entry body, package body, subprogram body, or
217 -- task body N, return the closest source location to the "begin" keyword.
219 function Build_Actual_Subtype
220 (T : Entity_Id;
221 N : Node_Or_Entity_Id) return Node_Id;
222 -- Build an anonymous subtype for an entity or expression, using the
223 -- bounds of the entity or the discriminants of the enclosing record.
224 -- T is the type for which the actual subtype is required, and N is either
225 -- a defining identifier, or any subexpression.
227 function Build_Actual_Subtype_Of_Component
228 (T : Entity_Id;
229 N : Node_Id) return Node_Id;
230 -- Determine whether a selected component has a type that depends on
231 -- discriminants, and build actual subtype for it if so.
233 -- Handling of inherited primitives whose ancestors have class-wide
234 -- pre/postconditions.
236 -- If a primitive operation of a parent type has a class-wide pre/post-
237 -- condition that includes calls to other primitives, and that operation
238 -- is inherited by a descendant type that also overrides some of these
239 -- other primitives, the condition that applies to the inherited
240 -- operation has a modified condition in which the overridden primitives
241 -- have been replaced by the primitives of the descendent type. A call
242 -- to the inherited operation cannot be simply a call to the parent
243 -- operation (with an appropriate conversion) as is the case for other
244 -- inherited operations, but must appear with a wrapper subprogram to which
245 -- the modified conditions apply. Furthermore the call to the parent
246 -- operation must not be subject to the original class-wide condition,
247 -- given that modified conditions apply. To implement these semantics
248 -- economically we create a subprogram body (a "class-wide clone") to
249 -- which no pre/postconditions apply, and we create bodies for the
250 -- original and the inherited operation that have their respective
251 -- pre/postconditions and simply call the clone. The following operations
252 -- take care of constructing declaration and body of the clone, and
253 -- building the calls to it within the appropriate wrappers.
255 procedure Build_Constrained_Itype
256 (N : Node_Id;
257 Typ : Entity_Id;
258 New_Assoc_List : List_Id);
259 -- Build a constrained itype for the newly created record aggregate N and
260 -- set it as a type of N. The itype will have Typ as its base type and
261 -- will be constrained by the values of discriminants from the component
262 -- association list New_Assoc_List.
264 -- ??? This code used to be pretty much a copy of Build_Subtype, but now
265 -- those two routines behave differently for types with unknown
266 -- discriminants. They are both exported in from this package in the hope
267 -- to eventually unify them (a not duplicate them even more until then).
269 -- ??? Performance WARNING. The current implementation creates a new itype
270 -- for all aggregates whose base type is discriminated. This means that
271 -- for record aggregates nested inside an array aggregate we will create
272 -- a new itype for each record aggregate if the array component type has
273 -- discriminants. For large aggregates this may be a problem. What should
274 -- be done in this case is to reuse itypes as much as possible.
276 function Build_Default_Subtype
277 (T : Entity_Id;
278 N : Node_Id) return Entity_Id;
279 -- If T is an unconstrained type with defaulted discriminants, build a
280 -- subtype constrained by the default values, insert the subtype
281 -- declaration in the tree before N, and return the entity of that
282 -- subtype. Otherwise, simply return T.
284 function Build_Default_Subtype_OK (T : Entity_Id) return Boolean;
285 -- When analyzing components or object declarations, it is possible, in
286 -- some cases, to build subtypes for discriminated types. This is
287 -- worthwhile to avoid the backend allocating the maximum possible size for
288 -- objects of the type.
289 -- In particular, when T is limited, the discriminants and therefore the
290 -- size of an object of type T cannot change. Furthermore, if T is definite
291 -- with statically initialized defaulted discriminants, we are able and
292 -- want to build a constrained subtype of the right size.
294 function Build_Discriminal_Subtype_Of_Component
295 (T : Entity_Id) return Node_Id;
296 -- Determine whether a record component has a type that depends on
297 -- discriminants, and build actual subtype for it if so.
299 procedure Build_Elaboration_Entity (N : Node_Id; Spec_Id : Entity_Id);
300 -- Given a compilation unit node N, allocate an elaboration counter for
301 -- the compilation unit, and install it in the Elaboration_Entity field
302 -- of Spec_Id, the entity for the compilation unit.
304 procedure Build_Explicit_Dereference
305 (Expr : Node_Id;
306 Disc : Entity_Id);
307 -- AI05-139: Names with implicit dereference. If the expression N is a
308 -- reference type and the context imposes the corresponding designated
309 -- type, convert N into N.Disc.all. Such expressions are always over-
310 -- loaded with both interpretations, and the dereference interpretation
311 -- carries the name of the reference discriminant.
313 function Build_Overriding_Spec
314 (Op : Entity_Id;
315 Typ : Entity_Id) return Node_Id;
316 -- Build a subprogram specification for the wrapper of an inherited
317 -- operation with a modified pre- or postcondition (See AI12-0113).
318 -- Op is the parent operation, and Typ is the descendant type that
319 -- inherits the operation.
321 function Build_Subtype
322 (Related_Node : Node_Id;
323 Loc : Source_Ptr;
324 Typ : Entity_Id;
325 Constraints : List_Id)
326 return Entity_Id;
327 -- Typ is an array or discriminated type, Constraints is a list of
328 -- constraints that apply to Typ. This routine builds the constrained
329 -- subtype using Loc as the source location and attached this subtype
330 -- declaration to Related_Node. The returned subtype inherits predicates
331 -- from Typ.
333 -- ??? The routine is mostly a duplicate of Build_Constrained_Itype, so be
334 -- careful which of the two better suits your needs (and certainly do not
335 -- duplicate their code).
337 function Cannot_Raise_Constraint_Error (Expr : Node_Id) return Boolean;
338 -- Returns True if the expression cannot possibly raise Constraint_Error.
339 -- The response is conservative in the sense that a result of False does
340 -- not necessarily mean that CE could be raised, but a response of True
341 -- means that for sure CE cannot be raised.
343 procedure Check_Ambiguous_Aggregate (Call : Node_Id);
344 -- Additional information on an ambiguous call in Ada_2022 when a
345 -- subprogram call has an actual that is an aggregate, and the
346 -- presence of container aggregates (or types with the corresponding
347 -- aspect) provides an additional interpretation. Message indicates
348 -- that an aggregate actual should carry a type qualification.
350 procedure Check_Dynamically_Tagged_Expression
351 (Expr : Node_Id;
352 Typ : Entity_Id;
353 Related_Nod : Node_Id);
354 -- Check wrong use of dynamically tagged expression
356 procedure Check_Fully_Declared (T : Entity_Id; N : Node_Id);
357 -- Verify that the full declaration of type T has been seen. If not, place
358 -- error message on node N. Used in object declarations, type conversions
359 -- and qualified expressions.
361 procedure Check_Function_With_Address_Parameter (Subp_Id : Entity_Id);
362 -- A subprogram that has an Address parameter and is declared in a Pure
363 -- package is not considered Pure, because the parameter may be used as a
364 -- pointer and the referenced data may change even if the address value
365 -- itself does not.
366 -- If the programmer gave an explicit Pure_Function pragma, then we respect
367 -- the pragma and leave the subprogram Pure.
369 procedure Check_Function_Writable_Actuals (N : Node_Id);
370 -- (Ada 2012): If the construct N has two or more direct constituents that
371 -- are names or expressions whose evaluation may occur in an arbitrary
372 -- order, at least one of which contains a function call with an in out or
373 -- out parameter, then the construct is legal only if: for each name that
374 -- is passed as a parameter of mode in out or out to some inner function
375 -- call C2 (not including the construct N itself), there is no other name
376 -- anywhere within a direct constituent of the construct C other than
377 -- the one containing C2, that is known to refer to the same object (RM
378 -- 6.4.1(6.17/3)).
380 procedure Check_Implicit_Dereference (N : Node_Id; Typ : Entity_Id);
381 -- AI05-139-2: Accessors and iterators for containers. This procedure
382 -- checks whether T is a reference type, and if so it adds an interprettion
383 -- to N whose type is the designated type of the reference_discriminant.
384 -- If N is a generalized indexing operation, the interpretation is added
385 -- both to the corresponding function call, and to the indexing node.
387 procedure Check_Internal_Protected_Use (N : Node_Id; Nam : Entity_Id);
388 -- Within a protected function, the current object is a constant, and
389 -- internal calls to a procedure or entry are illegal. Similarly, other
390 -- uses of a protected procedure in a renaming or a generic instantiation
391 -- in the context of a protected function are illegal (AI05-0225).
393 procedure Check_Later_Vs_Basic_Declarations
394 (Decls : List_Id;
395 During_Parsing : Boolean);
396 -- If During_Parsing is True, check for misplacement of later vs basic
397 -- declarations in Ada 83. If During_Parsing is False, and the SPARK
398 -- restriction is set, do the same: although SPARK 95 removes the
399 -- distinction between initial and later declarative items, the distinction
400 -- remains in the Examiner (JB01-005). Note that the Examiner does not
401 -- count package declarations in later declarative items.
403 procedure Check_No_Hidden_State (Id : Entity_Id);
404 -- Determine whether object or state Id introduces a hidden state. If this
405 -- is the case, emit an error.
407 procedure Check_Inherited_Nonoverridable_Aspects
408 (Inheritor : Entity_Id;
409 Interface_List : List_Id;
410 Parent_Type : Entity_Id);
411 -- Verify consistency of inherited nonoverridable aspects
412 -- when aspects are inherited from more than one source.
413 -- Parent_Type may be void (e.g., for a tagged task/protected type
414 -- whose declaration includes a non-empty interface list).
415 -- In the error case, error message is associate with Inheritor;
416 -- Inheritor parameter is otherwise unused.
418 procedure Check_Nonvolatile_Function_Profile (Func_Id : Entity_Id);
419 -- Verify that the profile of nonvolatile function Func_Id does not contain
420 -- effectively volatile parameters or return type for reading.
422 function Check_Parents (N : Node_Id; List : Elist_Id) return Boolean;
423 -- Return True if all the occurrences of subtree N referencing entities in
424 -- the given List have the right value in their Parent field.
426 procedure Check_Part_Of_Reference (Var_Id : Entity_Id; Ref : Node_Id);
427 -- Verify the legality of reference Ref to variable Var_Id when the
428 -- variable is a constituent of a single protected/task type.
430 procedure Check_Potentially_Blocking_Operation (N : Node_Id);
431 -- N is one of the statement forms that is a potentially blocking
432 -- operation. If it appears within a protected action, emit warning.
434 procedure Check_Previous_Null_Procedure
435 (Decl : Node_Id;
436 Prev : Entity_Id);
437 -- A null procedure or a subprogram renaming can complete a previous
438 -- declaration, unless that previous declaration is itself a null
439 -- procedure. This must be treated specially because the analysis of
440 -- the null procedure leaves the corresponding entity as having no
441 -- completion, because its completion is provided by a generated body
442 -- inserted after all other declarations.
444 procedure Check_Result_And_Post_State (Subp_Id : Entity_Id);
445 -- Determine whether the contract of subprogram Subp_Id mentions attribute
446 -- 'Result and it contains an expression that evaluates differently in pre-
447 -- and post-state.
449 procedure Check_State_Refinements
450 (Context : Node_Id;
451 Is_Main_Unit : Boolean := False);
452 -- Verify that all abstract states declared in a block statement, entry
453 -- body, package body, protected body, subprogram body, task body, or a
454 -- package declaration denoted by Context have proper refinement. Emit an
455 -- error if this is not the case. Flag Is_Main_Unit should be set when
456 -- Context denotes the main compilation unit.
458 procedure Check_Unused_Body_States (Body_Id : Entity_Id);
459 -- Verify that all abstract states and objects declared in the state space
460 -- of package body Body_Id are used as constituents. Emit an error if this
461 -- is not the case.
463 procedure Check_Unprotected_Access
464 (Context : Node_Id;
465 Expr : Node_Id);
466 -- Check whether the expression is a pointer to a protected component,
467 -- and the context is external to the protected operation, to warn against
468 -- a possible unlocked access to data.
470 procedure Check_Volatility_Compatibility
471 (Id1, Id2 : Entity_Id;
472 Description_1, Description_2 : String;
473 Srcpos_Bearer : Node_Id);
474 -- Id1 and Id2 should each be the entity of a state abstraction, a
475 -- variable, or a type (i.e., something suitable for passing to
476 -- Async_Readers_Enabled and similar functions).
477 -- Does nothing if SPARK_Mode /= On. Otherwise, flags a legality violation
478 -- if one or more of the four volatility-related aspects is False for Id1
479 -- and True for Id2. The two descriptions are included in the error message
480 -- text; the source position for the generated message is determined by
481 -- Srcpos_Bearer.
483 function Choice_List (N : Node_Id) return List_Id;
484 -- Utility to retrieve the choices of a Component_Association or the
485 -- Discrete_Choices of an Iterated_Component_Association. For various
486 -- reasons these nodes have a different structure even though they play
487 -- similar roles in array aggregates.
489 type Condition_Kind is
490 (Ignored_Class_Precondition,
491 Ignored_Class_Postcondition,
492 Class_Precondition,
493 Class_Postcondition);
494 -- Kind of class-wide conditions
496 function Class_Condition
497 (Kind : Condition_Kind;
498 Subp : Entity_Id) return Node_Id;
499 -- Class-wide Kind condition of Subp
501 function Collect_Body_States (Body_Id : Entity_Id) return Elist_Id;
502 -- Gather the entities of all abstract states and objects declared in the
503 -- body state space of package body Body_Id.
505 procedure Collect_Interfaces
506 (T : Entity_Id;
507 Ifaces_List : out Elist_Id;
508 Exclude_Parents : Boolean := False;
509 Use_Full_View : Boolean := True);
510 -- Ada 2005 (AI-251): Collect whole list of abstract interfaces that are
511 -- directly or indirectly implemented by T. Exclude_Parents is used to
512 -- avoid the addition of inherited interfaces to the generated list.
513 -- Use_Full_View is used to collect the interfaces using the full-view
514 -- (if available).
516 procedure Collect_Interface_Components
517 (Tagged_Type : Entity_Id;
518 Components_List : out Elist_Id);
519 -- Ada 2005 (AI-251): Collect all the tag components associated with the
520 -- secondary dispatch tables of a tagged type.
522 procedure Collect_Interfaces_Info
523 (T : Entity_Id;
524 Ifaces_List : out Elist_Id;
525 Components_List : out Elist_Id;
526 Tags_List : out Elist_Id);
527 -- Ada 2005 (AI-251): Collect all the interfaces associated with T plus
528 -- the record component and tag associated with each of these interfaces.
529 -- On exit Ifaces_List, Components_List and Tags_List have the same number
530 -- of elements, and elements at the same position on these tables provide
531 -- information on the same interface type.
533 procedure Collect_Parents
534 (T : Entity_Id;
535 List : out Elist_Id;
536 Use_Full_View : Boolean := True);
537 -- Collect all the parents of Typ. Use_Full_View is used to collect them
538 -- using the full-view of private parents (if available).
540 function Collect_Primitive_Operations (T : Entity_Id) return Elist_Id;
541 -- Called upon type derivation and extension. We scan the declarative part
542 -- in which the type appears, and collect subprograms that have one
543 -- subsidiary subtype of the type. These subprograms can only appear after
544 -- the type itself.
546 function Compile_Time_Constraint_Error
547 (N : Node_Id;
548 Msg : String;
549 Ent : Entity_Id := Empty;
550 Loc : Source_Ptr := No_Location;
551 Warn : Boolean := False;
552 Extra_Msg : String := "") return Node_Id;
553 -- This is similar to Apply_Compile_Time_Constraint_Error in that it
554 -- generates a warning (or error) message in the same manner, but it does
555 -- not replace any nodes. For convenience, the function always returns its
556 -- first argument. The message is a warning if the message ends with ?, or
557 -- we are operating in Ada 83 mode, or the Warn parameter is set to True.
558 -- If Extra_Msg is not a null string, then it's associated with N and
559 -- emitted immediately after the main message (and before output of any
560 -- message indicating that Constraint_Error will be raised).
562 procedure Compute_Returns_By_Ref (Func : Entity_Id);
563 -- Set the Returns_By_Ref flag on Func if appropriate
565 generic
566 with function Predicate (Typ : Entity_Id) return Boolean;
567 function Collect_Types_In_Hierarchy
568 (Typ : Entity_Id;
569 Examine_Components : Boolean := False) return Elist_Id;
570 -- Inspect the ancestor and progenitor types of Typ and Typ itself -
571 -- collecting those for which function Predicate is True. The resulting
572 -- list is ordered in a type-to-ultimate-ancestor fashion.
574 -- When Examine_Components is True, components types in the hierarchy also
575 -- get collected.
577 procedure Conditional_Delay (New_Ent, Old_Ent : Entity_Id);
578 -- Sets the Has_Delayed_Freeze flag of New_Ent if the Delayed_Freeze flag
579 -- of Old_Ent is set and Old_Ent has not yet been Frozen (i.e. Is_Frozen is
580 -- False).
582 function Copy_Component_List
583 (R_Typ : Entity_Id;
584 Loc : Source_Ptr) return List_Id;
585 -- Copy components from record type R_Typ that come from source. Used to
586 -- create a new compatible record type. Loc is the source location assigned
587 -- to the created nodes.
589 procedure Copy_Ghost_Aspect (From : Node_Id; To : Node_Id);
590 -- Copy the Ghost aspect if present in the aspect specifications of node
591 -- From to node To. On entry it is assumed that To does not have aspect
592 -- specifications. If From has no aspects, the routine has no effect.
594 function Copy_Parameter_List (Subp_Id : Entity_Id) return List_Id;
595 -- Utility to create a parameter profile for a new subprogram spec, when
596 -- the subprogram has a body that acts as spec. This is done for some cases
597 -- of inlining, and for private protected ops. Also used to create bodies
598 -- for stubbed subprograms.
600 procedure Copy_SPARK_Mode_Aspect (From : Node_Id; To : Node_Id);
601 -- Copy the SPARK_Mode aspect if present in the aspect specifications
602 -- of node From to node To. On entry it is assumed that To does not have
603 -- aspect specifications. If From has no aspects, the routine has no
604 -- effect.
606 function Copy_Subprogram_Spec
607 (Spec : Node_Id;
608 New_Sloc : Source_Ptr := No_Location) return Node_Id;
609 -- Replicate a function or a procedure specification denoted by Spec. The
610 -- resulting tree is an exact duplicate of the original tree. New entities
611 -- are created for the unit name and the formal parameters. For definition
612 -- of New_Sloc, see the comment for New_Copy_Tree.
614 function Corresponding_Generic_Type (T : Entity_Id) return Entity_Id;
615 -- If a type is a generic actual type, return the corresponding formal in
616 -- the generic parent unit. There is no direct link in the tree for this
617 -- attribute, except in the case of formal private and derived types.
618 -- Possible optimization???
620 function Corresponding_Primitive_Op
621 (Ancestor_Op : Entity_Id;
622 Descendant_Type : Entity_Id) return Entity_Id;
623 -- Given a primitive subprogram of a first type and a (distinct)
624 -- descendant type of that type, find the corresponding primitive
625 -- subprogram of the descendant type.
627 function Current_Entity (N : Node_Id) return Entity_Id;
628 pragma Inline (Current_Entity);
629 -- Find the currently visible definition for a given identifier, that is to
630 -- say the first entry in the visibility chain for the Chars of N.
632 function Current_Entity_In_Scope (N : Name_Id) return Entity_Id;
633 function Current_Entity_In_Scope (N : Node_Id) return Entity_Id;
634 -- Find whether there is a previous definition for name or identifier N in
635 -- the current scope. Because declarations for a scope are not necessarily
636 -- contiguous (e.g. for packages) the first entry on the visibility chain
637 -- for N is not necessarily in the current scope.
639 function Current_Scope return Entity_Id;
640 -- Get entity representing current scope
642 function Current_Scope_No_Loops return Entity_Id;
643 -- Return the current scope ignoring internally generated loops
645 procedure Add_Block_Identifier
646 (N : Node_Id;
647 Id : out Entity_Id;
648 Scope : Entity_Id := Current_Scope);
649 -- Given a block statement N, generate an internal E_Block label and make
650 -- it the identifier of the block. Scope denotes the scope in which the
651 -- generated entity Id is created and defaults to the current scope. If the
652 -- block already has an identifier, Id returns the entity of its label.
654 function Current_Subprogram return Entity_Id;
655 -- Returns current enclosing subprogram. If Current_Scope is a subprogram,
656 -- then that is what is returned, otherwise the Enclosing_Subprogram of the
657 -- Current_Scope is returned. The returned value is Empty if this is called
658 -- from a library package which is not within any subprogram.
660 function CW_Or_Needs_Finalization (Typ : Entity_Id) return Boolean;
661 -- True if Typ is a class-wide type or requires finalization actions. Same
662 -- as Needs_Finalization except with pragma Restrictions (No_Finalization),
663 -- in which case we know that class-wide objects do not need finalization.
665 function Defining_Entity (N : Node_Id) return Entity_Id;
666 -- Given a declaration N, returns the associated defining entity. If the
667 -- declaration has a specification, the entity is obtained from the
668 -- specification. If the declaration has a defining unit name, then the
669 -- defining entity is obtained from the defining unit name ignoring any
670 -- child unit prefixes.
672 -- Iterator loops also have a defining entity, which holds the list of
673 -- local entities declared during loop expansion. These entities need
674 -- debugging information, generated through Qualify_Entity_Names, and
675 -- the loop declaration must be placed in the table Name_Qualify_Units.
677 -- WARNING: There is a matching C declaration of this subprogram in fe.h
679 function Defining_Entity_Or_Empty (N : Node_Id) return Entity_Id;
680 -- This is equivalent to Defining_Entity but it returns Empty for nodes
681 -- without an entity instead of raising Program_Error.
683 function Denotes_Discriminant
684 (N : Node_Id;
685 Check_Concurrent : Boolean := False) return Boolean;
686 -- Returns True if node N is an Entity_Name node for a discriminant. If the
687 -- flag Check_Concurrent is true, function also returns true when N denotes
688 -- the discriminal of the discriminant of a concurrent type. This is needed
689 -- to disable some optimizations on private components of protected types,
690 -- and constraint checks on entry families constrained by discriminants.
692 function Denotes_Same_Object (A1, A2 : Node_Id) return Boolean;
693 -- Detect suspicious overlapping between actuals in a call, when both are
694 -- writable (RM 2012 6.4.1(6.4/3)).
696 function Denotes_Same_Prefix (A1, A2 : Node_Id) return Boolean;
697 -- Functions to detect suspicious overlapping between actuals in a call,
698 -- when one of them is writable. The predicates are those proposed in
699 -- AI05-0144, to detect dangerous order dependence in complex calls.
700 -- I would add a parameter Warn which enables more extensive testing of
701 -- cases as we find appropriate when we are only warning ??? Or perhaps
702 -- return an indication of (Error, Warn, OK) ???
704 function Denotes_Variable (N : Node_Id) return Boolean;
705 -- Returns True if node N denotes a single variable without parentheses
707 function Depends_On_Discriminant (N : Node_Id) return Boolean;
708 -- Returns True if N denotes a discriminant or if N is a range, a subtype
709 -- indication or a scalar subtype where one of the bounds is a
710 -- discriminant.
712 function Derivation_Too_Early_To_Inherit
713 (Typ : Entity_Id; Streaming_Op : TSS_Name_Type) return Boolean;
714 -- Returns True if Typ is a derived type, the given Streaming_Op
715 -- (one of Read, Write, Input, or Output) is explicitly specified
716 -- for Typ's parent type, and that attribute specification is *not*
717 -- inherited by Typ because the declaration of Typ precedes that
718 -- of the attribute specification.
720 function Designate_Same_Unit
721 (Name1 : Node_Id;
722 Name2 : Node_Id) return Boolean;
723 -- Returns True if Name1 and Name2 designate the same unit name; each of
724 -- these names is supposed to be a selected component name, an expanded
725 -- name, a defining program unit name or an identifier.
727 procedure Diagnose_Iterated_Component_Association (N : Node_Id);
728 -- Emit an error if iterated component association N is actually an illegal
729 -- quantified expression lacking a quantifier.
731 function Discriminated_Size (Comp : Entity_Id) return Boolean;
732 -- If a component size is not static then a warning will be emitted
733 -- in Ravenscar or other restricted contexts. When a component is non-
734 -- static because of a discriminant constraint we can specialize the
735 -- warning by mentioning discriminants explicitly. This was created for
736 -- private components of protected objects, but is generally useful when
737 -- restriction No_Implicit_Heap_Allocation is active.
739 function Effective_Reads_Enabled (Id : Entity_Id) return Boolean;
740 -- Id should be the entity of a state abstraction, an object, or a type.
741 -- Returns True iff Id is subject to external property Effective_Reads.
743 function Effective_Writes_Enabled (Id : Entity_Id) return Boolean;
744 -- Id should be the entity of a state abstraction, an object, or a type.
745 -- Returns True iff Id is subject to external property Effective_Writes.
747 function Enclosing_Comp_Unit_Node (N : Node_Id) return Node_Id;
748 -- Returns the enclosing N_Compilation_Unit node that is the root of a
749 -- subtree containing N.
751 function Enclosing_CPP_Parent (Typ : Entity_Id) return Entity_Id;
752 -- Returns the closest ancestor of Typ that is a CPP type.
754 function Enclosing_Declaration (N : Node_Id) return Node_Id;
755 -- Returns the declaration node enclosing N (including possibly N itself),
756 -- if any, or Empty otherwise.
758 function Enclosing_Declaration_Or_Statement (N : Node_Id) return Node_Id;
759 -- Return the nearest enclosing declaration or statement that houses
760 -- arbitrary node N.
762 function Enclosing_Generic_Body (N : Node_Id) return Node_Id;
763 -- Returns the Node_Id associated with the innermost enclosing generic
764 -- body, if any. If none, then returns Empty.
766 function Enclosing_Generic_Unit (N : Node_Id) return Node_Id;
767 -- Returns the Node_Id associated with the innermost enclosing generic
768 -- unit, if any. If none, then returns Empty.
770 function Enclosing_HSS (Stmt : Node_Id) return Node_Id;
771 -- Returns the nearest handled sequence of statements that encloses a given
772 -- statement, or Empty.
774 function Enclosing_Lib_Unit_Entity
775 (E : Entity_Id := Current_Scope) return Entity_Id;
776 -- Returns the entity of enclosing library unit node which is the root of
777 -- the current scope (which must not be Standard_Standard, and the caller
778 -- is responsible for ensuring this condition) or other specified entity.
780 function Enclosing_Lib_Unit_Node (N : Node_Id) return Node_Id;
781 -- Returns the N_Compilation_Unit node of the library unit that is directly
782 -- or indirectly (through a subunit) at the root of a subtree containing
783 -- N. This may be either the same as Enclosing_Comp_Unit_Node, or if
784 -- Enclosing_Comp_Unit_Node returns a subunit, then the corresponding
785 -- library unit. If no such item is found, returns Empty.
787 function Enclosing_Package (N : Node_Or_Entity_Id) return Entity_Id;
788 -- Utility function to return the Ada entity of the package enclosing
789 -- the entity or node N, if any. Returns Empty if no enclosing package.
791 function Enclosing_Package_Or_Subprogram (E : Entity_Id) return Entity_Id;
792 -- Returns the entity of the package or subprogram enclosing E, if any.
793 -- Returns Empty if no enclosing package or subprogram.
795 function Enclosing_Subprogram (N : Node_Or_Entity_Id) return Entity_Id;
796 -- Utility function to return the Ada entity of the subprogram enclosing
797 -- N, if any. Returns Empty if no enclosing subprogram.
799 function End_Keyword_Location (N : Node_Id) return Source_Ptr;
800 -- Given block statement, entry body, package body, package declaration,
801 -- protected body, [single] protected type declaration, subprogram body,
802 -- task body, or [single] task type declaration N, return the closest
803 -- source location of the "end" keyword.
805 procedure Ensure_Freeze_Node (E : Entity_Id);
806 -- Make sure a freeze node is allocated for entity E. If necessary, build
807 -- and initialize a new freeze node and set Has_Delayed_Freeze True for E.
809 procedure Enter_Name (Def_Id : Entity_Id);
810 -- Insert new name in symbol table of current scope with check for
811 -- duplications (error message is issued if a conflict is found).
812 -- Note: Enter_Name is not used for most overloadable entities, instead
813 -- they are entered using Sem_Ch6.Enter_Overloaded_Entity. However,
814 -- this is used for SOME overloadable entities, such as enumeration
815 -- literals and certain operator symbols.
817 function Entity_Of (N : Node_Id) return Entity_Id;
818 -- Obtain the entity of arbitrary node N. If N is a renaming, return the
819 -- entity of the earliest renamed source abstract state or whole object.
820 -- If no suitable entity is available, return Empty. This routine carries
821 -- out actions that are tied to SPARK semantics.
823 function Exceptions_OK return Boolean;
824 -- Determine whether exceptions are allowed to be caught, propagated, or
825 -- raised.
827 procedure Explain_Limited_Type (T : Entity_Id; N : Node_Id);
828 -- This procedure is called after issuing a message complaining about an
829 -- inappropriate use of limited type T. If useful, it adds additional
830 -- continuation lines to the message explaining why type T is limited.
831 -- Messages are placed at node N.
833 function Expression_Of_Expression_Function
834 (Subp : Entity_Id) return Node_Id;
835 -- Return the expression of expression function Subp
837 type Extensions_Visible_Mode is
838 (Extensions_Visible_None,
839 -- Extensions_Visible does not yield a mode when SPARK_Mode is off. This
840 -- value acts as a default in a non-SPARK compilation.
842 Extensions_Visible_False,
843 -- A value of "False" signifies that Extensions_Visible is either
844 -- missing or the pragma is present and the value of its Boolean
845 -- expression is False.
847 Extensions_Visible_True);
848 -- A value of "True" signifies that Extensions_Visible is present and
849 -- the value of its Boolean expression is True.
851 function Extensions_Visible_Status
852 (Id : Entity_Id) return Extensions_Visible_Mode;
853 -- Given the entity of a subprogram or formal parameter subject to pragma
854 -- Extensions_Visible, return the Boolean value denoted by the expression
855 -- of the pragma.
857 procedure Find_Actual
858 (N : Node_Id;
859 Formal : out Entity_Id;
860 Call : out Node_Id);
861 -- Determines if the node N is an actual parameter of a function or a
862 -- procedure call. If so, then Formal points to the entity for the formal
863 -- (Ekind is E_In_Parameter, E_Out_Parameter, or E_In_Out_Parameter) and
864 -- Call is set to the node for the corresponding call. If the node N is not
865 -- an actual parameter then Formal and Call are set to Empty.
867 function Find_Body_Discriminal
868 (Spec_Discriminant : Entity_Id) return Entity_Id;
869 -- Given a discriminant of the record type that implements a task or
870 -- protected type, return the discriminal of the corresponding discriminant
871 -- of the actual concurrent type.
873 function Find_Corresponding_Discriminant
874 (Id : Node_Id;
875 Typ : Entity_Id) return Entity_Id;
876 -- Because discriminants may have different names in a generic unit and in
877 -- an instance, they are resolved positionally when possible. A reference
878 -- to a discriminant carries the discriminant that it denotes when it is
879 -- analyzed. Subsequent uses of this id on a different type denotes the
880 -- discriminant at the same position in this new type.
882 function Find_DIC_Type (Typ : Entity_Id) return Entity_Id;
883 -- Subsidiary to all Build_DIC_Procedure_xxx routines. Find the type which
884 -- defines the Default_Initial_Condition pragma of type Typ. This is either
885 -- Typ itself or a parent type when the pragma is inherited.
887 function Find_Enclosing_Iterator_Loop (Id : Entity_Id) return Entity_Id;
888 -- Find the nearest iterator loop which encloses arbitrary entity Id. If
889 -- such a loop exists, return the entity of its identifier (E_Loop scope),
890 -- otherwise return Empty.
892 function Find_Enclosing_Scope (N : Node_Id) return Scope_Kind_Id with
893 Post => Find_Enclosing_Scope'Result /= N;
894 -- Find the nearest scope which encloses arbitrary node N
896 function Find_Loop_In_Conditional_Block (N : Node_Id) return Node_Id;
897 -- Find the nested loop statement in a conditional block. Loops subject to
898 -- attribute 'Loop_Entry are transformed into blocks. Parts of the original
899 -- loop are nested within the block.
901 procedure Find_Overlaid_Entity
902 (N : Node_Id;
903 Ent : out Entity_Id;
904 Off : out Boolean);
905 -- The node N should be an address representation clause. Determines if the
906 -- target expression is the address of an entity with an optional offset.
907 -- If so, set Ent to the entity and, if there is an offset, set Off to
908 -- True, otherwise to False. If it is not possible to determine that the
909 -- address is of this form, then set Ent to Empty.
911 function Find_Parameter_Type (Param : Node_Id) return Entity_Id;
912 -- Return the type of formal parameter Param as determined by its
913 -- specification.
915 -- The following type describes the placement of an arbitrary entity with
916 -- respect to SPARK visible / hidden state space.
918 type State_Space_Kind is
919 (Not_In_Package,
920 -- An entity is not in the visible, private or body state space when
921 -- the immediate enclosing construct is not a package.
923 Visible_State_Space,
924 -- An entity is in the visible state space when it appears immediately
925 -- within the visible declarations of a package or when it appears in
926 -- the visible state space of a nested package which in turn is declared
927 -- in the visible declarations of an enclosing package:
929 -- package Pack is
930 -- Visible_Variable : ...
931 -- package Nested
932 -- with Abstract_State => Visible_State
933 -- is
934 -- Visible_Nested_Variable : ...
935 -- end Nested;
936 -- end Pack;
938 -- Entities associated with a package instantiation inherit the state
939 -- space from the instance placement:
941 -- generic
942 -- package Gen is
943 -- Generic_Variable : ...
944 -- end Gen;
946 -- with Gen;
947 -- package Pack is
948 -- package Inst is new Gen;
949 -- -- Generic_Variable is in the visible state space of Pack
950 -- end Pack;
952 Private_State_Space,
953 -- An entity is in the private state space when it appears immediately
954 -- within the private declarations of a package or when it appears in
955 -- the visible state space of a nested package which in turn is declared
956 -- in the private declarations of an enclosing package:
958 -- package Pack is
959 -- private
960 -- Private_Variable : ...
961 -- package Nested
962 -- with Abstract_State => Private_State
963 -- is
964 -- Private_Nested_Variable : ...
965 -- end Nested;
966 -- end Pack;
968 -- The same placement principle applies to package instantiations
970 Body_State_Space);
971 -- An entity is in the body state space when it appears immediately
972 -- within the declarations of a package body or when it appears in the
973 -- visible state space of a nested package which in turn is declared in
974 -- the declarations of an enclosing package body:
976 -- package body Pack is
977 -- Body_Variable : ...
978 -- package Nested
979 -- with Abstract_State => Body_State
980 -- is
981 -- Body_Nested_Variable : ...
982 -- end Nested;
983 -- end Pack;
985 -- The same placement principle applies to package instantiations
987 procedure Find_Placement_In_State_Space
988 (Item_Id : Entity_Id;
989 Placement : out State_Space_Kind;
990 Pack_Id : out Entity_Id);
991 -- Determine the state space placement of an item. Item_Id denotes the
992 -- entity of an abstract state, object, or package instantiation. Placement
993 -- captures the precise placement of the item in the enclosing state space.
994 -- If the state space is that of a package, Pack_Id denotes its entity,
995 -- otherwise Pack_Id is Empty.
997 function Find_Primitive_Eq (Typ : Entity_Id) return Entity_Id;
998 -- Locate primitive equality for type if it exists. Return Empty if it is
999 -- not available.
1001 function Find_Specific_Type (CW : Entity_Id) return Entity_Id;
1002 -- Find specific type of a class-wide type, and handle the case of an
1003 -- incomplete type coming either from a limited_with clause or from an
1004 -- incomplete type declaration. If resulting type is private return its
1005 -- full view.
1007 function Find_Static_Alternative (N : Node_Id) return Node_Id;
1008 -- N is a case statement whose expression is a compile-time value.
1009 -- Determine the alternative chosen, so that the code of non-selected
1010 -- alternatives, and the warnings that may apply to them, are removed.
1012 function First_Actual (Node : Node_Id) return Node_Id;
1013 -- Node is an N_Function_Call, N_Procedure_Call_Statement or
1014 -- N_Entry_Call_Statement node. The result returned is the first actual
1015 -- parameter in declaration order (not the order of parameters as they
1016 -- appeared in the source, which can be quite different as a result of the
1017 -- use of named parameters). Empty is returned for a call with no
1018 -- parameters. The procedure for iterating through the actuals in
1019 -- declaration order is to use this function to find the first actual, and
1020 -- then use Next_Actual to obtain the next actual in declaration order.
1021 -- Note that the value returned is always the expression (not the
1022 -- N_Parameter_Association nodes, even if named association is used).
1024 -- WARNING: There is a matching C declaration of this subprogram in fe.h
1026 function First_Global
1027 (Subp : Entity_Id;
1028 Global_Mode : Name_Id;
1029 Refined : Boolean := False) return Node_Id;
1030 -- Returns the first global item of mode Global_Mode (which can be
1031 -- Name_Input, Name_Output, Name_In_Out or Name_Proof_In) associated to
1032 -- subprogram Subp, or Empty otherwise. If Refined is True, the global item
1033 -- is retrieved from the Refined_Global aspect/pragma associated to the
1034 -- body of Subp if present. Next_Global can be used to get the next global
1035 -- item with the same mode.
1037 function Fix_Msg (Id : Entity_Id; Msg : String) return String;
1038 -- Replace all occurrences of a particular word in string Msg depending on
1039 -- the Ekind of Id as follows:
1040 -- * Replace "subprogram" with
1041 -- - "entry" when Id is an entry [family]
1042 -- - "task type" when Id is a single task object, task type or task
1043 -- body.
1044 -- * Replace "protected" with
1045 -- - "task" when Id is a single task object, task type or task body
1046 -- All other non-matching words remain as is
1048 function From_Nested_Package (T : Entity_Id) return Boolean;
1049 -- A type declared in a nested package may be frozen by a declaration
1050 -- appearing after the package but before the package is frozen. If the
1051 -- type has aspects that generate subprograms, these may contain references
1052 -- to entities local to the nested package. In that case the package must
1053 -- be installed on the scope stack to prevent spurious visibility errors.
1055 procedure Gather_Components
1056 (Typ : Entity_Id;
1057 Comp_List : Node_Id;
1058 Governed_By : List_Id;
1059 Into : Elist_Id;
1060 Report_Errors : out Boolean;
1061 Allow_Compile_Time : Boolean := False;
1062 Include_Interface_Tag : Boolean := False);
1063 -- The purpose of this procedure is to gather the valid components in a
1064 -- record type according to the values of its discriminants, in order to
1065 -- validate the components of a record aggregate.
1067 -- Typ is the type of the aggregate when its constrained discriminants
1068 -- need to be collected, otherwise it is Empty.
1070 -- Comp_List is an N_Component_List node.
1072 -- Governed_By is a list of N_Component_Association nodes, where each
1073 -- choice list contains the name of a discriminant and the expression
1074 -- field gives its value. The values of the discriminants governing
1075 -- the (possibly nested) variant parts in Comp_List are found in this
1076 -- Component_Association List.
1078 -- Into is the list where the valid components are appended. Note that
1079 -- Into need not be an Empty list. If it's not, components are attached
1080 -- to its tail.
1082 -- Report_Errors is set to True if the values of the discriminants are
1083 -- insufficiently static (see body for details of what that means).
1085 -- Allow_Compile_Time if set to True, allows compile time known values in
1086 -- Governed_By expressions in addition to static expressions.
1088 -- Include_Interface_Tag if set to True, gather any interface tag
1089 -- component, otherwise exclude them.
1091 -- This procedure is also used when building a record subtype. If the
1092 -- discriminant constraint of the subtype is static, the components of the
1093 -- subtype are only those of the variants selected by the values of the
1094 -- discriminants. Otherwise all components of the parent must be included
1095 -- in the subtype for semantic analysis.
1097 function Get_Actual_Subtype (N : Node_Id) return Entity_Id;
1098 -- Given a node for an expression, obtain the actual subtype of the
1099 -- expression. In the case of a parameter where the formal is an
1100 -- unconstrained array or discriminated type, this will be the previously
1101 -- constructed subtype of the actual. Note that this is not quite the
1102 -- "Actual Subtype" of the RM, since it is always a constrained type, i.e.
1103 -- it is the subtype of the value of the actual. The actual subtype is also
1104 -- returned in other cases where it has already been constructed for an
1105 -- object. Otherwise the expression type is returned unchanged, except for
1106 -- the case of an unconstrained array type, where an actual subtype is
1107 -- created, using Insert_Actions if necessary to insert any associated
1108 -- actions.
1110 function Get_Actual_Subtype_If_Available (N : Node_Id) return Entity_Id;
1111 -- This is like Get_Actual_Subtype, except that it never constructs an
1112 -- actual subtype. If an actual subtype is already available, i.e. the
1113 -- Actual_Subtype field of the corresponding entity is set, then it is
1114 -- returned. Otherwise the Etype of the node is returned.
1116 function Get_Body_From_Stub (N : Node_Id) return Node_Id;
1117 -- Return the body node for a stub
1119 function Get_Cursor_Type
1120 (Aspect : Node_Id;
1121 Typ : Entity_Id) return Entity_Id;
1122 -- Find Cursor type in scope of type Typ with Iterable aspect, by locating
1123 -- primitive operation First. For use in resolving the other primitive
1124 -- operations of an Iterable type and expanding loops and quantified
1125 -- expressions over formal containers.
1127 function Get_Cursor_Type (Typ : Entity_Id) return Entity_Id;
1128 -- Find Cursor type in scope of type Typ with Iterable aspect, by locating
1129 -- primitive operation First. For use after resolving the primitive
1130 -- operations of an Iterable type.
1132 function Get_Default_External_Name (E : Node_Or_Entity_Id) return Node_Id;
1133 -- This is used to construct the string literal node representing a
1134 -- default external name, i.e. one that is constructed from the name of an
1135 -- entity, or (in the case of extended DEC import/export pragmas) an
1136 -- identifier provided as the external name. Letters in the name are
1137 -- according to the setting of Opt.External_Name_Default_Casing.
1139 function Get_Enclosing_Object (N : Node_Id) return Entity_Id;
1140 -- If expression N references a part of an object, return this object.
1141 -- Otherwise return Empty. Expression N should have been resolved already.
1143 function Get_Enclosing_Deep_Object (N : Node_Id) return Entity_Id;
1144 -- If expression N references a reachable part of an object (as defined in
1145 -- SPARK RM 6.9), return this object. Otherwise return Empty. It is similar
1146 -- to Get_Enclosing_Object, but treats pointer dereference like component
1147 -- selection. Expression N should have been resolved already.
1149 function Get_Generic_Entity (N : Node_Id) return Entity_Id;
1150 -- Returns the true generic entity in an instantiation. If the name in the
1151 -- instantiation is a renaming, the function returns the renamed generic.
1153 function Get_Incomplete_View_Of_Ancestor (E : Entity_Id) return Entity_Id;
1154 -- Implements the notion introduced ever-so briefly in RM 7.3.1 (5.2/3):
1155 -- in a child unit a derived type is within the derivation class of an
1156 -- ancestor declared in a parent unit, even if there is an intermediate
1157 -- derivation that does not see the full view of that ancestor.
1159 procedure Get_Index_Bounds
1160 (N : Node_Id;
1161 L : out Node_Id;
1162 H : out Node_Id;
1163 Use_Full_View : Boolean := False);
1164 -- This procedure assigns to L and H respectively the values of the low and
1165 -- high bounds of node N, which must be a range, subtype indication, or the
1166 -- name of a scalar subtype. The result in L, H may be set to Error if
1167 -- there was an earlier error in the range.
1168 -- Use_Full_View is intended for use by clients other than the compiler
1169 -- (specifically, gnat2scil) to indicate that we want the full view if
1170 -- the index type turns out to be a partial view; this case should not
1171 -- arise during normal compilation of semantically correct programs.
1173 type Range_Nodes is record
1174 First, Last : Node_Id; -- First and Last nodes of a discrete_range
1175 end record;
1177 type Range_Values is record
1178 First, Last : Uint; -- First and Last values of a discrete_range
1179 end record;
1181 function Get_Index_Bounds
1182 (N : Node_Id;
1183 Use_Full_View : Boolean := False) return Range_Nodes;
1184 -- Same as the above procedure, but returns the result as a record.
1185 -- ???This should probably replace the procedure.
1187 function Get_Index_Bounds
1188 (N : Node_Id;
1189 Use_Full_View : Boolean := False) return Range_Values;
1190 -- Same as the above function, but returns the values, which must be known
1191 -- at compile time.
1193 procedure Get_Interfacing_Aspects
1194 (Iface_Asp : Node_Id;
1195 Conv_Asp : out Node_Id;
1196 EN_Asp : out Node_Id;
1197 Expo_Asp : out Node_Id;
1198 Imp_Asp : out Node_Id;
1199 LN_Asp : out Node_Id;
1200 Do_Checks : Boolean := False);
1201 -- Given a single interfacing aspect Iface_Asp, retrieve other interfacing
1202 -- aspects that apply to the same related entity. The aspects considered by
1203 -- this routine are as follows:
1205 -- Conv_Asp - aspect Convention
1206 -- EN_Asp - aspect External_Name
1207 -- Expo_Asp - aspect Export
1208 -- Imp_Asp - aspect Import
1209 -- LN_Asp - aspect Link_Name
1211 -- When flag Do_Checks is set, this routine will flag duplicate uses of
1212 -- aspects.
1214 function Get_Enum_Lit_From_Pos
1215 (T : Entity_Id;
1216 Pos : Uint;
1217 Loc : Source_Ptr) return Node_Id;
1218 -- This function returns an identifier denoting the E_Enumeration_Literal
1219 -- entity for the specified value from the enumeration type or subtype T.
1220 -- The second argument is the Pos value. Constraint_Error is raised if
1221 -- argument Pos is not in range. The third argument supplies a source
1222 -- location for constructed nodes returned by this function. If No_Location
1223 -- is supplied as source location, the location of the returned node is
1224 -- copied from the original source location for the enumeration literal,
1225 -- when available.
1227 function Get_Iterable_Type_Primitive
1228 (Typ : Entity_Id;
1229 Nam : Name_Id) return Entity_Id;
1230 -- Retrieve one of the primitives First, Last, Next, Previous, Has_Element,
1231 -- Element from the value of the Iterable aspect of a type.
1233 function Get_Library_Unit_Name (Decl_Node : Node_Id) return String_Id;
1234 -- Return the full expanded name of the library unit declared by Decl_Node
1236 function Get_Max_Queue_Length (Id : Entity_Id) return Uint;
1237 -- Return the argument of pragma Max_Queue_Length or zero if the annotation
1238 -- is not present. It is assumed that Id denotes an entry.
1240 function Get_Name_Entity_Id (Id : Name_Id) return Entity_Id;
1241 pragma Inline (Get_Name_Entity_Id);
1242 -- An entity value is associated with each name in the name table. The
1243 -- Get_Name_Entity_Id function fetches the Entity_Id of this entity, which
1244 -- is the innermost visible entity with the given name. See the body of
1245 -- Sem_Ch8 for further details on handling of entity visibility.
1247 function Get_Name_From_CTC_Pragma (N : Node_Id) return String_Id;
1248 -- Return the Name component of Test_Case pragma N
1249 -- Bad name now that this no longer applies to Contract_Case ???
1251 function Get_Parent_Entity (Unit : Node_Id) return Entity_Id;
1252 -- Get defining entity of parent unit of a child unit. In most cases this
1253 -- is the defining entity of the unit, but for a child instance whose
1254 -- parent needs a body for inlining, the instantiation node of the parent
1255 -- has not yet been rewritten as a package declaration, and the entity has
1256 -- to be retrieved from the Instance_Spec of the unit.
1258 function Get_Pragma_Id (N : Node_Id) return Pragma_Id;
1259 pragma Inline (Get_Pragma_Id);
1260 -- Obtains the Pragma_Id from Pragma_Name_Unmapped (N)
1262 function Get_Qualified_Name
1263 (Id : Entity_Id;
1264 Suffix : Entity_Id := Empty) return Name_Id;
1265 -- Obtain the fully qualified form of entity Id. The format is:
1266 -- scope_of_id-1__scope_of_id__chars_of_id__chars_of_suffix
1268 function Get_Qualified_Name
1269 (Nam : Name_Id;
1270 Suffix : Name_Id := No_Name;
1271 Scop : Entity_Id := Current_Scope) return Name_Id;
1272 -- Obtain the fully qualified form of name Nam assuming it appears in scope
1273 -- Scop. The format is:
1274 -- scop-1__scop__nam__suffix
1276 procedure Get_Reason_String (N : Node_Id);
1277 -- Recursive routine to analyze reason argument for pragma Warnings. The
1278 -- value of the reason argument is appended to the current string using
1279 -- Store_String_Chars. The reason argument is expected to be a string
1280 -- literal or concatenation of string literals. An error is given for
1281 -- any other form.
1283 function Get_Reference_Discriminant (Typ : Entity_Id) return Entity_Id;
1284 -- If Typ has Implicit_Dereference, return discriminant specified in the
1285 -- corresponding aspect.
1287 function Get_Referenced_Object (N : Node_Id) return Node_Id;
1288 -- Given an arbitrary node, return the renamed object if the node
1289 -- represents a renamed object; otherwise return the node unchanged.
1290 -- The node can represent an arbitrary expression or any other kind of
1291 -- node (such as the name of a type).
1293 function Get_Renamed_Entity (E : Entity_Id) return Entity_Id;
1294 -- Given an entity for an exception, package, subprogram or generic unit,
1295 -- returns the ultimately renamed entity if this is a renaming. If this is
1296 -- not a renamed entity, returns its argument. It is an error to call this
1297 -- with any other kind of entity.
1299 function Get_Return_Object (N : Node_Id) return Entity_Id;
1300 -- Given an extended return statement, return the corresponding return
1301 -- object, identified as the one for which Is_Return_Object = True.
1303 function Get_Subprogram_Entity (Nod : Node_Id) return Entity_Id;
1304 -- Nod is either a procedure call statement, or a function call, or an
1305 -- accept statement node. This procedure finds the Entity_Id of the related
1306 -- subprogram or entry and returns it, or if no subprogram can be found,
1307 -- returns Empty.
1309 function Get_Task_Body_Procedure (E : Entity_Id) return Entity_Id;
1310 -- Given an entity for a task type or subtype, retrieves the
1311 -- Task_Body_Procedure field from the corresponding task type declaration.
1313 function Get_User_Defined_Equality (E : Entity_Id) return Entity_Id;
1314 -- For a type entity, return the entity of the primitive equality function
1315 -- for the type if it exists, otherwise return Empty.
1317 procedure Get_Views
1318 (Typ : Entity_Id;
1319 Priv_Typ : out Entity_Id;
1320 Full_Typ : out Entity_Id;
1321 UFull_Typ : out Entity_Id;
1322 CRec_Typ : out Entity_Id);
1323 -- Obtain the partial and full views of type Typ and in addition any extra
1324 -- types the full views may have. The return entities are as follows:
1326 -- Priv_Typ - the partial view (a private type)
1327 -- Full_Typ - the full view
1328 -- UFull_Typ - the underlying full view, if the full view is private
1329 -- CRec_Typ - the corresponding record type of the full views
1331 function Get_Fullest_View
1332 (E : Entity_Id;
1333 Include_PAT : Boolean := True;
1334 Recurse : Boolean := True) return Entity_Id;
1335 -- Get the fullest possible view of E, looking through private, limited,
1336 -- packed array and other implementation types. If Include_PAT is False,
1337 -- don't look inside packed array types. If Recurse is False, just
1338 -- go down one level (so it's no longer the "fullest" view).
1340 type Alignment_Result is (Known_Compatible, Unknown, Known_Incompatible);
1341 -- Result of Has_Compatible_Alignment test, description found below. Note
1342 -- that the values are arranged in increasing order of problematicness.
1344 function Has_Compatible_Alignment
1345 (Obj : Entity_Id;
1346 Expr : Node_Id;
1347 Layout_Done : Boolean) return Alignment_Result;
1348 -- Obj is an object entity, and expr is a node for an object reference. If
1349 -- the alignment of the object referenced by Expr is known to be compatible
1350 -- with the alignment of Obj (i.e. is larger or the same), then the result
1351 -- is Known_Compatible. If the alignment of the object referenced by Expr
1352 -- is known to be less than the alignment of Obj, then Known_Incompatible
1353 -- is returned. If neither condition can be reliably established at compile
1354 -- time, then Unknown is returned. If Layout_Done is True, the function can
1355 -- assume that the information on size and alignment of types and objects
1356 -- is present in the tree. This is used to determine if alignment checks
1357 -- are required for address clauses (Layout_Done is False in this case) as
1358 -- well as to issue appropriate warnings for them in the post compilation
1359 -- phase (Layout_Done is True in this case).
1361 -- Note: Known_Incompatible does not mean that at run time the alignment
1362 -- of Expr is known to be wrong for Obj, just that it can be determined
1363 -- that alignments have been explicitly or implicitly specified which are
1364 -- incompatible (whereas Unknown means that even this is not known). The
1365 -- appropriate reaction of a caller to Known_Incompatible is to treat it as
1366 -- Unknown, but issue a warning that there may be an alignment error.
1368 function Has_Declarations (N : Node_Id) return Boolean;
1369 -- Determines if the node can have declarations
1371 function Has_Defaulted_Discriminants (Typ : Entity_Id) return Boolean;
1372 -- Simple predicate to test for defaulted discriminants
1374 function Has_Denormals (E : Entity_Id) return Boolean;
1375 -- Determines if the floating-point type E supports denormal numbers.
1376 -- Returns False if E is not a floating-point type.
1378 function Has_Discriminant_Dependent_Constraint
1379 (Comp : Entity_Id) return Boolean;
1380 -- Returns True if and only if Comp has a constrained subtype that depends
1381 -- on a discriminant.
1383 function Has_Effectively_Volatile_Profile
1384 (Subp_Id : Entity_Id) return Boolean;
1385 -- Determine whether subprogram Subp_Id has an effectively volatile formal
1386 -- parameter for reading or returns an effectively volatile value for
1387 -- reading.
1389 function Has_Full_Default_Initialization (Typ : Entity_Id) return Boolean;
1390 -- Determine whether type Typ defines "full default initialization" as
1391 -- specified by SPARK RM 3.1. To qualify as such, the type must be
1392 -- * A scalar type with specified Default_Value
1393 -- * An array-of-scalar type with specified Default_Component_Value
1394 -- * An array type whose element type defines full default initialization
1395 -- * A protected type, record type or type extension whose components
1396 -- either include a default expression or have a type which defines
1397 -- full default initialization. In the case of type extensions, the
1398 -- parent type defines full default initialization.
1399 -- * A task type
1400 -- * A private type with pragma Default_Initial_Condition that provides
1401 -- full default initialization.
1402 -- This function is not used in GNATprove anymore, but is used in CodePeer.
1404 function Has_Fully_Default_Initializing_DIC_Pragma
1405 (Typ : Entity_Id) return Boolean;
1406 -- Determine whether type Typ has a suitable Default_Initial_Condition
1407 -- pragma which provides the full default initialization of the type.
1409 function Has_Inferable_Discriminants (N : Node_Id) return Boolean;
1410 -- Ada 2005 (AI-216): A view of an Unchecked_Union object has inferable
1411 -- discriminants if it has a constrained nominal type, unless the object
1412 -- is a component of an enclosing Unchecked_Union object that is subject
1413 -- to a per-object constraint and the enclosing object lacks inferable
1414 -- discriminants.
1416 -- An expression of an Unchecked_Union type has inferable discriminants
1417 -- if it is either a name of an object with inferable discriminants or a
1418 -- qualified expression whose subtype mark denotes a constrained subtype.
1420 function Has_Infinities (E : Entity_Id) return Boolean;
1421 -- Determines if the range of the floating-point type E includes
1422 -- infinities. Returns False if E is not a floating-point type.
1424 function Has_Interfaces
1425 (T : Entity_Id;
1426 Use_Full_View : Boolean := True) return Boolean;
1427 -- Where T is a concurrent type or a record type, returns true if T covers
1428 -- any abstract interface types. In case of private types the argument
1429 -- Use_Full_View controls if the check is done using its full view (if
1430 -- available).
1432 function Has_Max_Queue_Length (Id : Entity_Id) return Boolean;
1433 -- Determine whether Id is subject to pragma Max_Queue_Length. It is
1434 -- assumed that Id denotes an entry.
1436 function Has_No_Obvious_Side_Effects (N : Node_Id) return Boolean;
1437 -- This is a simple minded function for determining whether an expression
1438 -- has no obvious side effects. It is used only for determining whether
1439 -- warnings are needed in certain situations, and is not guaranteed to
1440 -- be accurate in either direction. Exceptions may mean an expression
1441 -- does in fact have side effects, but this may be ignored and True is
1442 -- returned, or a complex expression may in fact be side effect free
1443 -- but we don't recognize it here and return False. The Side_Effect_Free
1444 -- routine in Remove_Side_Effects is much more extensive and perhaps could
1445 -- be shared, so that this routine would be more accurate.
1447 function Has_Non_Null_Refinement (Id : Entity_Id) return Boolean;
1448 -- Determine whether abstract state Id has at least one nonnull constituent
1449 -- as expressed in pragma Refined_State. This function does not take into
1450 -- account the visible refinement region of abstract state Id.
1452 function Has_Non_Trivial_Precondition (Subp : Entity_Id) return Boolean;
1453 -- Determine whether subprogram Subp has a class-wide precondition that is
1454 -- not statically True.
1456 function Has_Null_Body (Proc_Id : Entity_Id) return Boolean;
1457 -- Determine whether the body of procedure Proc_Id contains a sole null
1458 -- statement, possibly followed by an optional return. Used to optimize
1459 -- useless calls to assertion checks.
1461 function Has_Null_Exclusion (N : Node_Id) return Boolean;
1462 -- Determine whether node N has a null exclusion
1464 function Has_Null_Refinement (Id : Entity_Id) return Boolean;
1465 -- Determine whether abstract state Id has a null refinement as expressed
1466 -- in pragma Refined_State. This function does not take into account the
1467 -- visible refinement region of abstract state Id.
1469 function Has_Non_Null_Statements (L : List_Id) return Boolean;
1470 -- Return True if L has non-null statements
1472 function Side_Effect_Free_Statements (L : List_Id) return Boolean;
1473 -- Return True if L has no statements with side effects
1475 function Side_Effect_Free_Loop (N : Node_Id) return Boolean;
1476 -- Return True if the loop has no side effect and can therefore be
1477 -- marked for removal. Return False if N is not a N_Loop_Statement.
1479 function Is_Container_Aggregate (Exp : Node_Id) return Boolean;
1480 -- Is the given expression a container aggregate?
1482 function Is_Newly_Constructed
1483 (Exp : Node_Id; Context_Requires_NC : Boolean) return Boolean;
1484 -- Indicates whether a given expression is "newly constructed" (RM 4.4).
1485 -- Context_Requires_NC determines the result returned for cases like a
1486 -- raise expression or a conditional expression where some-but-not-all
1487 -- operative constituents are newly constructed. Thus, this is a
1488 -- somewhat unusual predicate in that the result required in order to
1489 -- satisfy whatever legality rule is being checked can influence the
1490 -- result of the predicate. Context_Requires_NC might be True for
1491 -- something like the "newly constructed" rule for a limited expression
1492 -- of a return statement, and False for something like the
1493 -- "newly constructed" rule pertaining to a limited object renaming in a
1494 -- declare expression. Eventually, the code to implement every
1495 -- RM legality rule requiring/prohibiting a "newly constructed" expression
1496 -- should be implemented by calling this function; that's not done yet.
1497 -- The function name doesn't quite match the RM definition of the term if
1498 -- Context_Requires_NC = False; in that case, "Might_Be_Newly_Constructed"
1499 -- might be a more accurate name.
1501 function Is_Prim_Of_Abst_Type_With_Nonstatic_CW_Pre_Post
1502 (Subp : Entity_Id) return Boolean;
1503 -- Return True if Subp is a primitive of an abstract type, where the
1504 -- primitive has a class-wide pre- or postcondition whose expression
1505 -- is nonstatic.
1507 function Has_Overriding_Initialize (T : Entity_Id) return Boolean;
1508 -- Predicate to determine whether a controlled type has a user-defined
1509 -- Initialize primitive (and, in Ada 2012, whether that primitive is
1510 -- non-null), which causes the type to not have preelaborable
1511 -- initialization.
1513 function Has_Preelaborable_Initialization
1514 (E : Entity_Id;
1515 Preelab_Init_Expr : Node_Id := Empty) return Boolean;
1516 -- Return True iff type E has preelaborable initialization as defined in
1517 -- Ada 2005 (see AI-161 for details of the definition of this attribute).
1518 -- If Preelab_Init_Expr is present, indicates that the function should
1519 -- presume that for any subcomponent of E that is of a formal private or
1520 -- derived type that is referenced by a Preelaborable_Initialization
1521 -- attribute within the expression Preelab_Init_Expr, the formal type has
1522 -- preelaborable initialization (RM 10.2.1(11.8/5) and AI12-0409).
1524 function Has_Prefix (N : Node_Id) return Boolean;
1525 -- Return True if N has attribute Prefix
1527 function Has_Private_Component (Type_Id : Entity_Id) return Boolean;
1528 -- Check if a type has a (sub)component of a private type that has not
1529 -- yet received a full declaration.
1531 function Has_Relaxed_Initialization (E : Entity_Id) return Boolean;
1532 -- Returns True iff entity E is subject to the Relaxed_Initialization
1533 -- aspect. Entity E can be either type, variable, constant, subprogram,
1534 -- entry or an abstract state. For private types and deferred constants
1535 -- E should be the private view, because aspect can only be attached there.
1537 function Has_Signed_Zeros (E : Entity_Id) return Boolean;
1538 -- Determines if the floating-point type E supports signed zeros.
1539 -- Returns False if E is not a floating-point type.
1541 function Has_Significant_Contract (Subp_Id : Entity_Id) return Boolean;
1542 -- Determine whether subprogram [body] Subp_Id has a significant contract.
1543 -- All subprograms have a N_Contract node, but this does not mean that the
1544 -- contract is useful.
1546 function Has_Static_Array_Bounds (Typ : Node_Id) return Boolean;
1547 -- Return whether an array type has static bounds
1549 function Has_Static_Non_Empty_Array_Bounds (Typ : Node_Id) return Boolean;
1550 -- Determine whether array type Typ has static non-empty bounds
1552 function Has_Stream (T : Entity_Id) return Boolean;
1553 -- Tests if type T is derived from Ada.Streams.Root_Stream_Type, or in the
1554 -- case of a composite type, has a component for which this predicate is
1555 -- True, and if so returns True. Otherwise a result of False means that
1556 -- there is no Stream type in sight. For a private type, the test is
1557 -- applied to the underlying type (or returns False if there is no
1558 -- underlying type).
1560 function Has_Suffix (E : Entity_Id; Suffix : Character) return Boolean;
1561 -- Returns true if the last character of E is Suffix. Used in Assertions.
1563 function Has_Tagged_Component (Typ : Entity_Id) return Boolean;
1564 -- Returns True if Typ is a composite type (array or record) that is either
1565 -- a tagged type or has a subcomponent that is tagged. Returns False for a
1566 -- noncomposite type, or if no tagged subcomponents are present.
1568 function Has_Undefined_Reference (Expr : Node_Id) return Boolean;
1569 -- Given arbitrary expression Expr, determine whether it contains at
1570 -- least one name whose entity is Any_Id.
1572 function Has_Effectively_Volatile_Component
1573 (Typ : Entity_Id) return Boolean;
1574 -- Given arbitrary type Typ, determine whether it contains at least one
1575 -- effectively volatile component.
1577 function Has_Volatile_Component (Typ : Entity_Id) return Boolean;
1578 -- Given arbitrary type Typ, determine whether it contains at least one
1579 -- volatile component.
1581 function Implementation_Kind (Subp : Entity_Id) return Name_Id;
1582 -- Subp is a subprogram marked with pragma Implemented. Return the specific
1583 -- implementation requirement which the pragma imposes. The return value is
1584 -- either Name_By_Any, Name_By_Entry or Name_By_Protected_Procedure.
1586 function Implements_Interface
1587 (Typ_Ent : Entity_Id;
1588 Iface_Ent : Entity_Id;
1589 Exclude_Parents : Boolean := False) return Boolean;
1590 -- Returns true if the Typ_Ent implements interface Iface_Ent
1592 function Implicitly_Designated_Type (Typ : Entity_Id) return Entity_Id;
1593 -- Called when Typ is the type of the prefix of an implicit dereference.
1594 -- Return the designated type of Typ, taking into account that this type
1595 -- may be a limited view, when the nonlimited view is visible.
1597 function In_Assertion_Expression_Pragma (N : Node_Id) return Boolean;
1598 -- Returns True if node N appears within a pragma that acts as an assertion
1599 -- expression. See Sem_Prag for the list of qualifying pragmas.
1601 function In_Check_Node (N : Node_Id) return Boolean;
1602 -- Return True if N is part of a N_Raise_xxx_Error node
1604 function In_Generic_Formal_Package (E : Entity_Id) return Boolean;
1605 -- Returns True if entity E is inside a generic formal package
1607 function In_Generic_Scope (E : Entity_Id) return Boolean;
1608 -- Returns True if entity E is inside a generic scope
1610 function In_Instance return Boolean;
1611 -- Returns True if the current scope is within a generic instance
1613 function In_Instance_Body return Boolean;
1614 -- Returns True if current scope is within the body of an instance, where
1615 -- several semantic checks (e.g. accessibility checks) are relaxed.
1617 function In_Instance_Not_Visible return Boolean;
1618 -- Returns True if current scope is with the private part or the body of
1619 -- an instance. Other semantic checks are suppressed in this context.
1621 function In_Instance_Visible_Part
1622 (Id : Entity_Id := Current_Scope) return Boolean;
1623 -- Returns True if arbitrary entity Id is within the visible part of a
1624 -- package instance, where several additional semantic checks apply.
1626 function In_Package_Body return Boolean;
1627 -- Returns True if current scope is within a package body
1629 function In_Pragma_Expression (N : Node_Id; Nam : Name_Id) return Boolean;
1630 -- Returns true if the expression N occurs within a pragma with name Nam
1632 function In_Pre_Post_Condition
1633 (N : Node_Id; Class_Wide_Only : Boolean := False) return Boolean;
1634 -- Returns True if node N appears within a pre/postcondition pragma. Note
1635 -- the pragma Check equivalents are NOT considered. If Class_Wide_Only is
1636 -- True, then tests for N appearing within a class-wide pre/postcondition.
1638 function In_Quantified_Expression (N : Node_Id) return Boolean;
1639 -- Returns true if the expression N occurs within a quantified expression
1641 function In_Return_Value (Expr : Node_Id) return Boolean;
1642 -- Returns true if the expression Expr occurs within a simple return
1643 -- statement or is part of an assignment to the return object in an
1644 -- extended return statement.
1646 function In_Reverse_Storage_Order_Object (N : Node_Id) return Boolean;
1647 -- Returns True if N denotes a component or subcomponent in a record or
1648 -- array that has Reverse_Storage_Order.
1650 function In_Same_Declarative_Part
1651 (Context : Node_Id;
1652 N : Node_Id) return Boolean;
1653 -- True if the node N appears within the same declarative part denoted by
1654 -- the node Context.
1656 function In_Subprogram_Or_Concurrent_Unit return Boolean;
1657 -- Determines if the current scope is within a subprogram compilation unit
1658 -- (inside a subprogram declaration, subprogram body, or generic subprogram
1659 -- declaration) or within a task or protected body. The test is for
1660 -- appearing anywhere within such a construct (that is it does not need
1661 -- to be directly within).
1663 function In_Subtree (N : Node_Id; Root : Node_Id) return Boolean;
1664 -- Determine whether node N is within the subtree rooted at Root
1666 function In_Subtree
1667 (N : Node_Id;
1668 Root1 : Node_Id;
1669 Root2 : Node_Id) return Boolean;
1670 -- Determine whether node N is within the subtree rooted at Root1 or Root2.
1671 -- This version is more efficient than calling the single root version of
1672 -- Is_Subtree twice.
1674 function In_Statement_Condition_With_Actions (N : Node_Id) return Boolean;
1675 -- Returns true if the expression N occurs within the condition of a
1676 -- statement node with actions. Subsidiary to inlining for GNATprove, where
1677 -- inlining of function calls in such expressions would expand the called
1678 -- body into actions list of the condition node. GNATprove cannot yet cope
1679 -- with such a complex AST.
1681 function In_Visible_Part (Scope_Id : Entity_Id) return Boolean;
1682 -- Determine whether a declaration occurs within the visible part of a
1683 -- package specification. The package must be on the scope stack, and the
1684 -- corresponding private part must not.
1686 function Incomplete_Or_Partial_View (Id : Entity_Id) return Entity_Id;
1687 -- Given the entity of a constant or a type, retrieve the incomplete or
1688 -- partial view of the same entity. Note that Id may not have a partial
1689 -- view in which case the function returns Empty.
1691 function Incomplete_View_From_Limited_With
1692 (Typ : Entity_Id) return Entity_Id;
1693 -- Typ is a type entity. This normally returns Typ. However, if there is
1694 -- an incomplete view of this entity that comes from a limited-with'ed
1695 -- package, then this returns that incomplete view.
1697 function Indexed_Component_Bit_Offset (N : Node_Id) return Uint;
1698 -- Given an N_Indexed_Component node, return the first bit position of the
1699 -- component if it is known at compile time. A value of No_Uint means that
1700 -- either the value is not yet known before back-end processing or it is
1701 -- not known at compile time after back-end processing.
1703 procedure Inherit_Predicate_Flags
1704 (Subt, Par : Entity_Id;
1705 Only_Flags : Boolean := False);
1706 -- Propagate static and dynamic predicate flags from a parent to the
1707 -- subtype in a subtype declaration with and without constraints, or from
1708 -- a parent to the derived type in a derived type declaration. Only_Flags
1709 -- is True in the case of a derived type declaration to inherit only the
1710 -- flags, not the predicate functions.
1712 procedure Inherit_Rep_Item_Chain (Typ : Entity_Id; From_Typ : Entity_Id);
1713 -- Inherit the rep item chain of type From_Typ without clobbering any
1714 -- existing rep items on Typ's chain. Typ is the destination type.
1716 function Inherits_From_Tagged_Full_View (Typ : Entity_Id) return Boolean;
1717 pragma Inline (Inherits_From_Tagged_Full_View);
1718 -- Return True if Typ is an untagged private type completed with a
1719 -- derivation of an untagged private type declaration whose full view
1720 -- is a tagged type.
1722 procedure Insert_Explicit_Dereference (N : Node_Id);
1723 -- In a context that requires a composite or subprogram type and where a
1724 -- prefix is an access type, rewrite the access type node N (which is the
1725 -- prefix, e.g. of an indexed component) as an explicit dereference.
1727 procedure Inspect_Deferred_Constant_Completion (Decls : List_Id);
1728 -- Examine all deferred constants in the declaration list Decls and check
1729 -- whether they have been completed by a full constant declaration or an
1730 -- Import pragma. Emit the error message if that is not the case.
1732 procedure Install_Elaboration_Model (Unit_Id : Entity_Id);
1733 -- Install the elaboration model specified by pragma Elaboration_Checks
1734 -- associated with compilation unit Unit_Id. No action is taken when the
1735 -- unit lacks such pragma.
1737 procedure Install_Generic_Formals (Subp_Id : Entity_Id);
1738 -- Install both the generic formal parameters and the formal parameters of
1739 -- generic subprogram Subp_Id into visibility.
1741 procedure Install_SPARK_Mode (Mode : SPARK_Mode_Type; Prag : Node_Id);
1742 -- Establish the SPARK_Mode and SPARK_Mode_Pragma currently in effect
1744 function Invalid_Scalar_Value
1745 (Loc : Source_Ptr;
1746 Scal_Typ : Scalar_Id) return Node_Id;
1747 -- Obtain the invalid value for scalar type Scal_Typ as either specified by
1748 -- pragma Initialize_Scalars or by the binder. Return an expression created
1749 -- at source location Loc, which denotes the invalid value.
1751 function Is_Access_Subprogram_Wrapper (E : Entity_Id) return Boolean;
1752 -- True if E is the constructed wrapper for an access_to_subprogram
1753 -- type with Pre/Postconditions.
1755 function Is_Access_Variable (E : Entity_Id) return Boolean;
1756 -- Determines if type E is an access-to-variable
1758 function Is_Actual_In_Out_Parameter (N : Node_Id) return Boolean;
1759 -- Determines if N is an actual parameter of in-out mode in a subprogram
1760 -- call.
1762 function Is_Actual_Out_Parameter (N : Node_Id) return Boolean;
1763 -- Determines if N is an actual parameter of out mode in a subprogram call
1765 function Is_Actual_Out_Or_In_Out_Parameter (N : Node_Id) return Boolean;
1766 -- Determines if N is an actual parameter of out or in out mode in a
1767 -- subprogram call.
1769 function Is_Actual_Parameter (N : Node_Id) return Boolean;
1770 -- Determines if N is an actual parameter in a subprogram or entry call
1772 function Is_Aliased_View (Obj : Node_Id) return Boolean;
1773 -- Determine if Obj is an aliased view, i.e. the name of an object to which
1774 -- 'Access or 'Unchecked_Access can apply. Note that this routine uses the
1775 -- rules of the language, it does not take into account the restriction
1776 -- No_Implicit_Aliasing, so it can return True if the restriction is active
1777 -- and Obj violates the restriction. The caller is responsible for calling
1778 -- Restrict.Check_No_Implicit_Aliasing if True is returned, but there is a
1779 -- requirement for obeying the restriction in the call context.
1781 function Is_Ancestor_Package
1782 (E1 : Entity_Id;
1783 E2 : Entity_Id) return Boolean;
1784 -- Determine whether package E1 is an ancestor of E2
1786 function Is_Atomic_Object (N : Node_Id) return Boolean;
1787 -- Determine whether arbitrary node N denotes a reference to an atomic
1788 -- object as per RM C.6(7) and the crucial remark in RM C.6(8).
1790 function Is_Attribute_Loop_Entry (N : Node_Id) return Boolean;
1791 -- Determine whether node N denotes attribute 'Loop_Entry
1793 function Is_Attribute_Old (N : Node_Id) return Boolean;
1794 -- Determine whether node N denotes attribute 'Old
1796 function Is_Attribute_Result (N : Node_Id) return Boolean;
1797 -- Determine whether node N denotes attribute 'Result
1799 function Is_Attribute_Update (N : Node_Id) return Boolean;
1800 -- Determine whether node N denotes attribute 'Update
1802 function Is_Body_Or_Package_Declaration (N : Node_Id) return Boolean
1803 with Inline;
1804 -- Determine whether node N denotes a body or a package declaration
1806 function Is_Bounded_String (T : Entity_Id) return Boolean;
1807 -- True if T is a bounded string type. Used to make sure "=" composes
1808 -- properly for bounded string types (see 4.5.2(32.1/1)).
1810 function Is_By_Protected_Procedure (Id : Entity_Id) return Boolean;
1811 -- Determine whether entity Id denotes a procedure with synchronization
1812 -- kind By_Protected_Procedure.
1814 function Is_Confirming (Aspect : Nonoverridable_Aspect_Id;
1815 Aspect_Spec_1, Aspect_Spec_2 : Node_Id)
1816 return Boolean;
1817 -- Returns true if the two specifications of the given
1818 -- nonoverridable aspect are compatible.
1820 function Is_Conjunction_Of_Formal_Preelab_Init_Attributes
1821 (Expr : Node_Id) return Boolean;
1822 -- Returns True if Expr is a Preelaborable_Initialization attribute applied
1823 -- to a formal type, or a sequence of two or more such attributes connected
1824 -- by "and" operators, or if the Original_Node of Expr or its constituents
1825 -- is such an attribute.
1827 function Is_Constant_Bound (Exp : Node_Id) return Boolean;
1828 -- Exp is the expression for an array bound. Determines whether the
1829 -- bound is a compile-time known value, or a constant entity, or an
1830 -- enumeration literal, or an expression composed of constant-bound
1831 -- subexpressions which are evaluated by means of standard operators.
1833 function Is_Container_Element (Exp : Node_Id) return Boolean;
1834 -- This routine recognizes expressions that denote an element of one of
1835 -- the predefined containers, when the source only contains an indexing
1836 -- operation and an implicit dereference is inserted by the compiler.
1837 -- In the absence of this optimization, the indexing creates a temporary
1838 -- controlled cursor that sets the tampering bit of the container, and
1839 -- restricts the use of the convenient notation C (X) to contexts that
1840 -- do not check the tampering bit (e.g. C.Include (X, C (Y)). Exp is an
1841 -- explicit dereference. The transformation applies when it has the form
1842 -- F (X).Discr.all.
1844 function Is_Contract_Annotation (Item : Node_Id) return Boolean;
1845 -- Determine whether aspect specification or pragma Item is a contract
1846 -- annotation.
1848 function Is_Controlling_Limited_Procedure
1849 (Proc_Nam : Entity_Id) return Boolean;
1850 -- Ada 2005 (AI-345): Determine whether Proc_Nam is a primitive procedure
1851 -- of a limited interface with a controlling first parameter.
1853 function Is_CPP_Constructor_Call (N : Node_Id) return Boolean;
1854 -- Returns True if N is a call to a CPP constructor
1856 function Is_CCT_Instance
1857 (Ref_Id : Entity_Id;
1858 Context_Id : Entity_Id) return Boolean;
1859 -- Subsidiary to the analysis of pragmas [Refined_]Depends and [Refined_]
1860 -- Global; also used when analyzing default expressions of protected and
1861 -- record components. Determine whether entity Ref_Id (which must represent
1862 -- either a protected type or a task type) denotes the current instance of
1863 -- a concurrent type. Context_Id denotes the associated context where the
1864 -- pragma appears.
1866 function Is_Child_Or_Sibling
1867 (Pack_1 : Entity_Id;
1868 Pack_2 : Entity_Id) return Boolean;
1869 -- Determine the following relations between two arbitrary packages:
1870 -- 1) One package is the parent of a child package
1871 -- 2) Both packages are siblings and share a common parent
1873 function Is_Concurrent_Interface (T : Entity_Id) return Boolean;
1874 -- First determine whether type T is an interface and then check whether
1875 -- it is of protected, synchronized or task kind.
1877 function Is_Current_Instance (N : Node_Id) return Boolean;
1878 -- Predicate is true if N legally denotes a type name within its own
1879 -- declaration. Prior to Ada 2012 this covered only synchronized type
1880 -- declarations. In Ada 2012 it also covers type and subtype declarations
1881 -- with aspects: Invariant, Predicate, and Default_Initial_Condition.
1883 function Is_Current_Instance_Reference_In_Type_Aspect
1884 (N : Node_Id) return Boolean;
1885 -- True if N is a reference to a current instance object that occurs within
1886 -- an aspect_specification for a type or subtype. In this case N will be
1887 -- a formal parameter of a subprogram created for a predicate, invariant,
1888 -- or Default_Initial_Condition aspect.
1890 function Is_Declaration
1891 (N : Node_Id;
1892 Body_OK : Boolean := True;
1893 Concurrent_OK : Boolean := True;
1894 Formal_OK : Boolean := True;
1895 Generic_OK : Boolean := True;
1896 Instantiation_OK : Boolean := True;
1897 Renaming_OK : Boolean := True;
1898 Stub_OK : Boolean := True;
1899 Subprogram_OK : Boolean := True;
1900 Type_OK : Boolean := True) return Boolean;
1901 -- Determine whether arbitrary node N denotes a declaration depending
1902 -- on the allowed subsets of declarations. Set the following flags to
1903 -- consider specific subsets of declarations:
1905 -- * Body_OK - body declarations
1907 -- * Concurrent_OK - concurrent type declarations
1909 -- * Formal_OK - formal declarations
1911 -- * Generic_OK - generic declarations, including generic renamings
1913 -- * Instantiation_OK - generic instantiations
1915 -- * Renaming_OK - renaming declarations, including generic renamings
1917 -- * Stub_OK - stub declarations
1919 -- * Subprogram_OK - entry, expression function, and subprogram
1920 -- declarations.
1922 -- * Type_OK - type declarations, including concurrent types
1924 function Is_Declared_Within_Variant (Comp : Entity_Id) return Boolean;
1925 -- Returns True iff component Comp is declared within a variant part
1927 function Is_Dependent_Component_Of_Mutable_Object
1928 (Object : Node_Id) return Boolean;
1929 -- Returns True if Object is the name of a subcomponent that depends on
1930 -- discriminants of a variable whose nominal subtype is unconstrained and
1931 -- not indefinite, and the variable is not aliased. Otherwise returns
1932 -- False. The nodes passed to this function are assumed to denote objects.
1934 function Is_Dereferenced (N : Node_Id) return Boolean;
1935 -- N is a subexpression node of an access type. This function returns true
1936 -- if N appears as the prefix of a node that does a dereference of the
1937 -- access value (selected/indexed component, explicit dereference or a
1938 -- slice), and false otherwise.
1940 function Is_Descendant_Of (T1 : Entity_Id; T2 : Entity_Id) return Boolean;
1941 -- Returns True if type T1 is a descendant of type T2, and false otherwise.
1942 -- This is the RM definition, a type is a descendant of another type if it
1943 -- is the same type or is derived from a descendant of the other type.
1945 function Is_Descendant_Of_Suspension_Object
1946 (Typ : Entity_Id) return Boolean;
1947 -- Determine whether type Typ is a descendant of type Suspension_Object
1948 -- defined in Ada.Synchronous_Task_Control. This version is different from
1949 -- Is_Descendant_Of as the detection of Suspension_Object does not involve
1950 -- an entity and by extension a call to RTSfind.
1952 function Is_Double_Precision_Floating_Point_Type
1953 (E : Entity_Id) return Boolean;
1954 -- Return whether E is a double precision floating point type,
1955 -- characterized by:
1956 -- . machine_radix = 2
1957 -- . machine_mantissa = 53
1958 -- . machine_emax = 2**10
1959 -- . machine_emin = 3 - machine_emax
1961 function Is_Effectively_Volatile
1962 (Id : Entity_Id;
1963 Ignore_Protected : Boolean := False) return Boolean;
1964 -- Determine whether a type or object denoted by entity Id is effectively
1965 -- volatile (SPARK RM 7.1.2). To qualify as such, the entity must be either
1966 -- * Volatile without No_Caching
1967 -- * An array type subject to aspect Volatile_Components
1968 -- * An array type whose component type is effectively volatile
1969 -- * A protected type
1970 -- * Descendant of type Ada.Synchronous_Task_Control.Suspension_Object
1972 -- If Ignore_Protected is True, then a protected object/type is treated
1973 -- like a non-protected record object/type for computing the result of
1974 -- this query.
1976 function Is_Effectively_Volatile_For_Reading
1977 (Id : Entity_Id;
1978 Ignore_Protected : Boolean := False) return Boolean;
1979 -- Determine whether a type or object denoted by entity Id is effectively
1980 -- volatile for reading (SPARK RM 7.1.2). To qualify as such, the entity
1981 -- must be either
1982 -- * Volatile without No_Caching and have Async_Writers or
1983 -- Effective_Reads set to True
1984 -- * An array type subject to aspect Volatile_Components, unless it has
1985 -- Async_Writers and Effective_Reads set to False
1986 -- * An array type whose component type is effectively volatile for
1987 -- reading
1988 -- * A protected type
1989 -- * Descendant of type Ada.Synchronous_Task_Control.Suspension_Object
1991 -- If Ignore_Protected is True, then a protected object/type is treated
1992 -- like a non-protected record object/type for computing the result of
1993 -- this query.
1995 function Is_Effectively_Volatile_Object
1996 (N : Node_Id) return Boolean;
1997 -- Determine whether an arbitrary node denotes an effectively volatile
1998 -- object (SPARK RM 7.1.2).
2000 function Is_Effectively_Volatile_Object_For_Reading
2001 (N : Node_Id) return Boolean;
2002 -- Determine whether an arbitrary node denotes an effectively volatile
2003 -- object for reading (SPARK RM 7.1.2).
2005 function Is_Entity_Of_Quantified_Expression (Id : Entity_Id) return Boolean;
2006 -- Determine whether entity Id is the entity of a quantified expression
2008 function Is_Entry_Body (Id : Entity_Id) return Boolean;
2009 -- Determine whether entity Id is the body entity of an entry [family]
2011 function Is_Entry_Declaration (Id : Entity_Id) return Boolean;
2012 -- Determine whether entity Id is the spec entity of an entry [family]
2014 function Is_Explicitly_Aliased (N : Node_Id) return Boolean;
2015 -- Determine if a given node N is an explicitly aliased formal parameter.
2017 function Is_Expanded_Priority_Attribute (E : Entity_Id) return Boolean;
2018 -- Check whether a function in a call is an expanded priority attribute,
2019 -- which is transformed into an Rtsfind call to Get_Ceiling. This expansion
2020 -- does not take place in a configurable runtime.
2022 function Is_Expression_Function (Subp : Entity_Id) return Boolean;
2023 -- Determine whether subprogram [body] Subp denotes an expression function
2025 -- WARNING: There is a matching C declaration of this subprogram in fe.h
2027 function Is_Expression_Function_Or_Completion
2028 (Subp : Entity_Id) return Boolean;
2029 -- Determine whether subprogram [body] Subp denotes an expression function
2030 -- or is completed by an expression function body.
2032 function Is_Extended_Precision_Floating_Point_Type
2033 (E : Entity_Id) return Boolean;
2034 -- Return whether E is an extended precision floating point type,
2035 -- characterized by:
2036 -- . machine_radix = 2
2037 -- . machine_mantissa = 64
2038 -- . machine_emax = 2**14
2039 -- . machine_emin = 3 - machine_emax
2041 function Is_EVF_Expression (N : Node_Id) return Boolean;
2042 -- Determine whether node N denotes a reference to a formal parameter of
2043 -- a specific tagged type whose related subprogram is subject to pragma
2044 -- Extensions_Visible with value "False" (SPARK RM 6.1.7). Several other
2045 -- constructs fall under this category:
2046 -- 1) A qualified expression whose operand is EVF
2047 -- 2) A type conversion whose operand is EVF
2048 -- 3) An if expression with at least one EVF dependent_expression
2049 -- 4) A case expression with at least one EVF dependent_expression
2051 function Is_False (U : Opt_Ubool) return Boolean;
2052 pragma Inline (Is_False);
2053 -- True if U is Boolean'Pos (False) (i.e. Uint_0)
2055 function Is_True (U : Opt_Ubool) return Boolean;
2056 pragma Inline (Is_True);
2057 -- True if U is Boolean'Pos (True) (i.e. Uint_1). Also True if U is
2058 -- No_Uint; we allow No_Uint because Static_Boolean returns that in
2059 -- case of error. It doesn't really matter whether the error case is
2060 -- considered True or False, but we don't want this to blow up in that
2061 -- case.
2063 function Is_Fixed_Model_Number (U : Ureal; T : Entity_Id) return Boolean;
2064 -- Returns True iff the number U is a model number of the fixed-point type
2065 -- T, i.e. if it is an exact multiple of Small.
2067 function Is_Full_Access_Object (N : Node_Id) return Boolean;
2068 -- Determine whether arbitrary node N denotes a reference to a full access
2069 -- object as per Ada 2022 RM C.6(8.2).
2071 function Is_Fully_Initialized_Type (Typ : Entity_Id) return Boolean;
2072 -- Typ is a type entity. This function returns true if this type is fully
2073 -- initialized, meaning that an object of the type is fully initialized.
2074 -- Note that initialization resulting from use of pragma Normalize_Scalars
2075 -- does not count. Note that this is only used for the purpose of issuing
2076 -- warnings for objects that are potentially referenced uninitialized. This
2077 -- means that the result returned is not crucial, but should err on the
2078 -- side of thinking things are fully initialized if it does not know.
2080 function Is_Generic_Declaration_Or_Body (Decl : Node_Id) return Boolean;
2081 -- Determine whether arbitrary declaration Decl denotes a generic package,
2082 -- a generic subprogram or a generic body.
2084 function Is_Independent_Object (N : Node_Id) return Boolean;
2085 -- Determine whether arbitrary node N denotes a reference to an independent
2086 -- object as per RM C.6(8).
2088 function Is_Inherited_Operation (E : Entity_Id) return Boolean;
2089 -- E is a subprogram. Return True is E is an implicit operation inherited
2090 -- by a derived type declaration.
2092 function Is_Inlinable_Expression_Function (Subp : Entity_Id) return Boolean;
2093 -- Return True if Subp is an expression function that fulfills all the
2094 -- following requirements for inlining:
2095 -- 1. pragma/aspect Inline_Always
2096 -- 2. No formals
2097 -- 3. No contracts
2098 -- 4. No dispatching primitive
2099 -- 5. Result subtype controlled (or with controlled components)
2100 -- 6. Result subtype not subject to type-invariant checks
2101 -- 7. Result subtype not a class-wide type
2102 -- 8. Return expression naming an object global to the function
2103 -- 9. Nominal subtype of the returned object statically compatible
2104 -- with the result subtype of the expression function.
2106 function Is_Internal_Block (N : Node_Id) return Boolean;
2107 pragma Inline (Is_Internal_Block);
2108 -- Determine if N is an N_Block_Statement with an internal label. See
2109 -- Add_Block_Identifier.
2111 function Is_Iterator (Typ : Entity_Id) return Boolean;
2112 -- AI05-0139-2: Check whether Typ is one of the predefined interfaces in
2113 -- Ada.Iterator_Interfaces, or it is derived from one.
2115 function Is_Iterator_Over_Array (N : Node_Id) return Boolean;
2116 -- N is an iterator specification. Returns True iff N is an iterator over
2117 -- an array, either inside a loop of the form 'for X of A' or a quantified
2118 -- expression of the form 'for all/some X of A' where A is of array type.
2120 function Is_Library_Level_Entity (E : Entity_Id) return Boolean;
2121 -- A library-level declaration is one that is accessible from Standard,
2122 -- i.e. a library unit or an entity declared in a library package.
2124 function Is_Limited_Class_Wide_Type (Typ : Entity_Id) return Boolean;
2125 -- Determine whether a given type is a limited class-wide type, in which
2126 -- case it needs a Master_Id, because extensions of its designated type
2127 -- may include task components. A class-wide type that comes from a
2128 -- limited view must be treated in the same way.
2130 function Is_Local_Variable_Reference (Expr : Node_Id) return Boolean;
2131 -- Determines whether Expr is a reference to a variable or formal parameter
2132 -- of mode OUT or IN OUT of the current enclosing subprogram.
2134 function Is_Master (N : Node_Id) return Boolean;
2135 -- Determine if the given node N constitutes a finalization master
2137 function Is_Name_Reference (N : Node_Id) return Boolean;
2138 -- Determine whether arbitrary node N is a reference to a name. This is
2139 -- similar to Is_Object_Reference but returns True only if N can be renamed
2140 -- without the need for a temporary, the typical example of an object not
2141 -- in this category being a function call.
2143 function Is_Non_Preelaborable_Construct (N : Node_Id) return Boolean;
2144 -- Determine whether arbitrary construct N violates preelaborability as
2145 -- defined in ARM 10.2.1 5-9/3. This routine takes into account both the
2146 -- syntactic and semantic properties of the construct.
2148 function Is_Nontrivial_DIC_Procedure (Id : Entity_Id) return Boolean;
2149 -- Determine whether entity Id denotes the procedure that verifies the
2150 -- assertion expression of pragma Default_Initial_Condition and if it does,
2151 -- the encapsulated expression is nontrivial.
2153 function Is_Null_Extension
2154 (T : Entity_Id; Ignore_Privacy : Boolean := False) return Boolean;
2155 -- Given a tagged type, returns True if argument is a type extension
2156 -- that introduces no new components (discriminant or nondiscriminant).
2157 -- Ignore_Privacy should be True for use in implementing dynamic semantics.
2158 -- Cannot be called with class-wide types.
2160 function Is_Null_Extension_Of
2161 (Descendant, Ancestor : Entity_Id) return Boolean;
2162 -- Given two tagged types, the first a descendant of the second,
2163 -- returns True if every component of Descendant is inherited
2164 -- (directly or indirectly) from Ancestor. Privacy is ignored.
2165 -- Cannot be called with class-wide types.
2167 function Is_Null_Record_Definition (Record_Def : Node_Id) return Boolean;
2168 -- Returns True for an N_Record_Definition node that has no user-defined
2169 -- components (and no variant part).
2171 function Is_Null_Record_Type
2172 (T : Entity_Id; Ignore_Privacy : Boolean := False) return Boolean;
2173 -- Determine whether T is declared with a null record definition, a
2174 -- null component list, or as a type derived from a null record type
2175 -- (with a null extension if tagged). Returns True for interface types,
2176 -- False for discriminated types.
2178 function Is_Object_Image (Prefix : Node_Id) return Boolean;
2179 -- Returns True if an 'Img, 'Image, 'Wide_Image, or 'Wide_Wide_Image
2180 -- attribute is applied to an object.
2182 function Is_Object_Reference (N : Node_Id) return Boolean;
2183 -- Determines if the tree referenced by N represents an object. Both
2184 -- variable and constant objects return True (compare Is_Variable).
2186 function Is_OK_Variable_For_Out_Formal (AV : Node_Id) return Boolean;
2187 -- Used to test if AV is an acceptable formal for an OUT or IN OUT formal.
2188 -- Note that the Is_Variable function is not quite the right test because
2189 -- this is a case in which conversions whose expression is a variable (in
2190 -- the Is_Variable sense) with an untagged type target are considered view
2191 -- conversions and hence variables.
2193 function Is_OK_Volatile_Context
2194 (Context : Node_Id;
2195 Obj_Ref : Node_Id;
2196 Check_Actuals : Boolean) return Boolean;
2197 -- Determine whether node Context denotes a "non-interfering context" (as
2198 -- defined in SPARK RM 7.1.3(10)) where volatile reference Obj_Ref can
2199 -- safely reside. When examining references that might be located within
2200 -- actual parameters of a subprogram call that has not been resolved yet,
2201 -- Check_Actuals should be False; such references will be assumed to be
2202 -- legal. They will need to be checked again after subprogram call has
2203 -- been resolved.
2205 function Is_Package_Contract_Annotation (Item : Node_Id) return Boolean;
2206 -- Determine whether aspect specification or pragma Item is one of the
2207 -- following package contract annotations:
2208 -- Abstract_State
2209 -- Initial_Condition
2210 -- Initializes
2211 -- Refined_State
2213 function Is_Partially_Initialized_Type
2214 (Typ : Entity_Id;
2215 Include_Implicit : Boolean := True) return Boolean;
2216 -- Typ is a type entity. This function returns true if this type is partly
2217 -- initialized, meaning that an object of the type is at least partly
2218 -- initialized (in particular in the record case, that at least one
2219 -- component has an initialization expression, including via Default_Value
2220 -- and Default_Component_Value aspects). Note that initialization
2221 -- resulting from the use of pragma Normalize_Scalars does not count.
2222 -- Include_Implicit controls whether implicit initialization of access
2223 -- values to null, and of discriminant values, is counted as making the
2224 -- type be partially initialized. For the default setting of True, these
2225 -- implicit cases do count, and discriminated types or types containing
2226 -- access values not explicitly initialized will return True. Otherwise
2227 -- if Include_Implicit is False, these cases do not count as making the
2228 -- type be partially initialized.
2230 function Is_Potentially_Unevaluated (N : Node_Id) return Boolean;
2231 -- Predicate to implement definition given in RM 6.1.1 (20/3)
2233 function Is_Potentially_Persistent_Type (T : Entity_Id) return Boolean;
2234 -- Determines if type T is a potentially persistent type. A potentially
2235 -- persistent type is defined (recursively) as a scalar type, an untagged
2236 -- record whose components are all of a potentially persistent type, or an
2237 -- array with all static constraints whose component type is potentially
2238 -- persistent. A private type is potentially persistent if the full type
2239 -- is potentially persistent.
2241 function Is_Predefined_Dispatching_Operation (E : Entity_Id) return Boolean;
2242 -- Ada 2005 (AI-251): Determines if E is a predefined primitive operation
2244 function Is_Predefined_Interface_Primitive (E : Entity_Id) return Boolean;
2245 -- Ada 2005 (AI-345): Returns True if E is one of the predefined primitives
2246 -- required to implement interfaces.
2248 function Is_Predefined_Internal_Operation (E : Entity_Id) return Boolean;
2249 -- Similar to the previous one, but excludes stream operations, because
2250 -- these may be overridden, and need extra formals, like user-defined
2251 -- operations.
2253 function Is_Preelaborable_Aggregate (Aggr : Node_Id) return Boolean;
2254 -- Determine whether aggregate Aggr violates the restrictions of
2255 -- preelaborable constructs as defined in ARM 10.2.1(5-9).
2257 function Is_Preelaborable_Construct (N : Node_Id) return Boolean;
2258 -- Determine whether arbitrary node N violates the restrictions of
2259 -- preelaborable constructs as defined in ARM 10.2.1(5-9). Routine
2260 -- Is_Non_Preelaborable_Construct takes into account the syntactic
2261 -- and semantic properties of N for a more accurate diagnostic.
2263 function Is_Private_Library_Unit (Unit : Entity_Id) return Boolean;
2264 -- Returns True if and only if the library unit is declared with an
2265 -- explicit designation of private.
2267 function Is_Protected_Self_Reference (N : Node_Id) return Boolean;
2268 -- Return True if node N denotes a protected type name which represents
2269 -- the current instance of a protected object according to RM 9.4(21/2).
2271 function Is_RCI_Pkg_Spec_Or_Body (Cunit : Node_Id) return Boolean;
2272 -- Return True if a compilation unit is the specification or the
2273 -- body of a remote call interface package.
2275 function Is_Remote_Access_To_Class_Wide_Type (E : Entity_Id) return Boolean;
2276 -- Return True if E is a remote access-to-class-wide type
2278 function Is_Remote_Access_To_Subprogram_Type (E : Entity_Id) return Boolean;
2279 -- Return True if E is a remote access to subprogram type
2281 function Is_Remote_Call (N : Node_Id) return Boolean;
2282 -- Return True if N denotes a potentially remote call
2284 function Is_Renamed_Entry (Proc_Nam : Entity_Id) return Boolean;
2285 -- Return True if Proc_Nam is a procedure renaming of an entry
2287 function Is_Reversible_Iterator (Typ : Entity_Id) return Boolean;
2288 -- AI05-0139-2: Check whether Typ is derived from the predefined interface
2289 -- Ada.Iterator_Interfaces.Reversible_Iterator.
2291 function Is_Single_Concurrent_Object (Id : Entity_Id) return Boolean;
2292 -- Determine whether arbitrary entity Id denotes the anonymous object
2293 -- created for a single protected or single task type.
2295 function Is_Single_Concurrent_Type (Id : Entity_Id) return Boolean;
2296 -- Determine whether arbitrary entity Id denotes a single protected or
2297 -- single task type.
2299 function Is_Single_Concurrent_Type_Declaration (N : Node_Id) return Boolean;
2300 -- Determine whether arbitrary node N denotes the declaration of a single
2301 -- protected type or single task type.
2303 function Is_Single_Precision_Floating_Point_Type
2304 (E : Entity_Id) return Boolean;
2305 -- Return whether E is a single precision floating point type,
2306 -- characterized by:
2307 -- . machine_radix = 2
2308 -- . machine_mantissa = 24
2309 -- . machine_emax = 2**7
2310 -- . machine_emin = 3 - machine_emax
2312 function Is_Single_Protected_Object (Id : Entity_Id) return Boolean;
2313 -- Determine whether arbitrary entity Id denotes the anonymous object
2314 -- created for a single protected type.
2316 function Is_Single_Task_Object (Id : Entity_Id) return Boolean;
2317 -- Determine whether arbitrary entity Id denotes the anonymous object
2318 -- created for a single task type.
2320 function Is_Specific_Tagged_Type (Typ : Entity_Id) return Boolean;
2321 -- Determine whether an arbitrary [private] type is specifically tagged
2323 function Is_Statement (N : Node_Id) return Boolean;
2324 pragma Inline (Is_Statement);
2325 -- Check if the node N is a statement node. Note that this includes
2326 -- the case of procedure call statements (unlike the direct use of
2327 -- the N_Statement_Other_Than_Procedure_Call subtype from Sinfo).
2328 -- Note that a label is *not* a statement, and will return False.
2330 function Is_Static_Discriminant_Component (N : Node_Id) return Boolean;
2331 -- Return True if N is guaranteed to a selected component containing a
2332 -- statically known discriminant.
2333 -- Note that this routine takes a conservative view and may return False
2334 -- in some cases where N would match the criteria. In other words this
2335 -- routine should be used to simplify or optimize the expanded code.
2337 function Is_Static_Function (Subp : Entity_Id) return Boolean;
2338 -- Determine whether subprogram Subp denotes a static function,
2339 -- which is a function with the aspect Static with value True.
2341 function Is_Static_Function_Call (Call : Node_Id) return Boolean;
2342 -- Determine whether Call is a static call to a static function,
2343 -- meaning that the name of the call denotes a static function
2344 -- and all of the call's actual parameters are given by static expressions.
2346 function Is_Subcomponent_Of_Full_Access_Object (N : Node_Id) return Boolean;
2347 -- Determine whether arbitrary node N denotes a reference to a subcomponent
2348 -- of a full access object as per RM C.6(7).
2350 function Is_Subprogram_Contract_Annotation (Item : Node_Id) return Boolean;
2351 -- Determine whether aspect specification or pragma Item is one of the
2352 -- following subprogram contract annotations:
2353 -- Always_Terminates
2354 -- Contract_Cases
2355 -- Depends
2356 -- Exceptional_Cases
2357 -- Extensions_Visible
2358 -- Global
2359 -- Post
2360 -- Post_Class
2361 -- Postcondition
2362 -- Pre
2363 -- Pre_Class
2364 -- Precondition
2365 -- Refined_Depends
2366 -- Refined_Global
2367 -- Refined_Post
2368 -- Subprogram_Variant
2369 -- Test_Case
2371 function Is_Subprogram_Stub_Without_Prior_Declaration
2372 (N : Node_Id) return Boolean;
2373 -- Given an N_Subprogram_Body_Stub node N, return True if N is a subprogram
2374 -- stub with no prior subprogram declaration.
2376 function Is_Suitable_Primitive (Subp_Id : Entity_Id) return Boolean;
2377 -- Determine whether arbitrary subprogram Subp_Id may act as a primitive of
2378 -- an arbitrary tagged type.
2380 function Is_Synchronized_Object (Id : Entity_Id) return Boolean;
2381 -- Determine whether entity Id denotes an object and if it does, whether
2382 -- this object is synchronized as specified in SPARK RM 9.1. To qualify as
2383 -- such, the object must be
2384 -- * Of a type that yields a synchronized object
2385 -- * An atomic object with enabled Async_Writers
2386 -- * A constant not of access-to-variable type
2387 -- * A variable subject to pragma Constant_After_Elaboration
2389 function Is_Synchronized_Tagged_Type (E : Entity_Id) return Boolean;
2390 -- Returns True if E is a synchronized tagged type (AARM 3.9.4 (6/2))
2392 function Is_Transfer (N : Node_Id) return Boolean;
2393 -- Returns True if the node N is a statement which is known to cause an
2394 -- unconditional transfer of control at run time, i.e. the following
2395 -- statement definitely will not be executed.
2397 function Is_Trivial_Boolean (N : Node_Id) return Boolean;
2398 -- Determine whether source node N denotes "True" or "False". Note that
2399 -- this is not true for expressions that got folded to True or False.
2401 function Is_Unchecked_Conversion_Instance (Id : Entity_Id) return Boolean;
2402 -- Determine whether an arbitrary entity denotes an instance of function
2403 -- Ada.Unchecked_Conversion.
2405 function Is_Universal_Numeric_Type (T : Entity_Id) return Boolean;
2406 pragma Inline (Is_Universal_Numeric_Type);
2407 -- True if T is Universal_Integer or Universal_Real
2409 function Is_User_Defined_Equality (Id : Entity_Id) return Boolean;
2410 -- Determine whether an entity denotes a user-defined equality
2412 function Is_User_Defined_Literal
2413 (N : Node_Id;
2414 Typ : Entity_Id) return Boolean;
2415 pragma Inline (Is_User_Defined_Literal);
2416 -- Determine whether N is a user-defined literal for Typ, including
2417 -- the case where N denotes a named number of the appropriate kind
2418 -- when Typ has an Integer_Literal or Real_Literal aspect.
2420 function Is_Validation_Variable_Reference (N : Node_Id) return Boolean;
2421 -- Determine whether N denotes a reference to a variable which captures the
2422 -- value of an object for validation purposes.
2424 function Is_Variable_Size_Array (E : Entity_Id) return Boolean;
2425 -- Returns true if E has variable size components
2427 function Is_Variable_Size_Record (E : Entity_Id) return Boolean;
2428 -- Returns true if E has variable size components
2430 -- WARNING: There is a matching C declaration of this subprogram in fe.h
2432 function Is_Variable
2433 (N : Node_Id;
2434 Use_Original_Node : Boolean := True) return Boolean;
2435 -- Determines if the tree referenced by N represents a variable, i.e. can
2436 -- appear on the left side of an assignment. There is one situation (formal
2437 -- parameters) in which untagged type conversions are also considered
2438 -- variables, but Is_Variable returns False for such cases, since it has
2439 -- no knowledge of the context. Note that this is the point at which
2440 -- Assignment_OK is checked, and True is returned for any tree thus marked.
2441 -- Use_Original_Node is used to perform the test on Original_Node (N). By
2442 -- default is True since this routine is commonly invoked as part of the
2443 -- semantic analysis and it must not be disturbed by the rewriten nodes.
2445 function Is_View_Conversion (N : Node_Id) return Boolean;
2446 -- Returns True if N is a type_conversion whose operand is the name of an
2447 -- object and both its target type and operand type are tagged, or it
2448 -- appears in a call as an actual parameter of mode out or in out
2449 -- (RM 4.6(5/2)).
2451 function Is_Visibly_Controlled (T : Entity_Id) return Boolean;
2452 -- Check whether T is derived from a visibly controlled type. This is true
2453 -- if the root type is declared in Ada.Finalization. If T is derived
2454 -- instead from a private type whose full view is controlled, an explicit
2455 -- Initialize/Adjust/Finalize subprogram does not override the inherited
2456 -- one.
2458 function Is_Volatile_Full_Access_Object_Ref (N : Node_Id) return Boolean;
2459 -- Determine whether arbitrary node N denotes a reference to an object
2460 -- which is Volatile_Full_Access.
2462 function Is_Volatile_Function (Func_Id : Entity_Id) return Boolean;
2463 -- Determine whether [generic] function Func_Id is subject to enabled
2464 -- pragma Volatile_Function. Protected functions are treated as volatile
2465 -- (SPARK RM 7.1.2).
2467 function Is_Volatile_Object_Ref (N : Node_Id) return Boolean;
2468 -- Determine whether arbitrary node N denotes a reference to a volatile
2469 -- object as per RM C.6(8). Note that the test here is for something that
2470 -- is actually declared as volatile, not for an object that gets treated
2471 -- as volatile (see Einfo.Treat_As_Volatile).
2473 generic
2474 with procedure Handle_Parameter (Formal : Entity_Id; Actual : Node_Id);
2475 procedure Iterate_Call_Parameters (Call : Node_Id);
2476 -- Calls Handle_Parameter for each pair of formal and actual parameters of
2477 -- a function, procedure, or entry call.
2479 procedure Kill_Current_Values (Last_Assignment_Only : Boolean := False);
2480 -- This procedure is called to clear all constant indications from all
2481 -- entities in the current scope and in any parent scopes if the current
2482 -- scope is a block or a package (and that recursion continues to the top
2483 -- scope that is not a block or a package). This is used when the
2484 -- sequential flow-of-control assumption is violated (occurrence of a
2485 -- label, head of a loop, or start of an exception handler). The effect of
2486 -- the call is to clear the Current_Value field (but we do not need to
2487 -- clear the Is_True_Constant flag, since that only gets reset if there
2488 -- really is an assignment somewhere in the entity scope). This procedure
2489 -- also calls Kill_All_Checks, since this is a special case of needing to
2490 -- forget saved values. This procedure also clears the Is_Known_Null and
2491 -- Is_Known_Non_Null and Is_Known_Valid flags in variables, constants or
2492 -- parameters since these are also not known to be trustable any more.
2494 -- The Last_Assignment_Only flag is set True to clear only Last_Assignment
2495 -- fields and leave other fields unchanged. This is used when we encounter
2496 -- an unconditional flow of control change (return, goto, raise). In such
2497 -- cases we don't need to clear the current values, since it may be that
2498 -- the flow of control change occurs in a conditional context, and if it
2499 -- is not taken, then it is just fine to keep the current values. But the
2500 -- Last_Assignment field is different, if we have a sequence assign-to-v,
2501 -- conditional-return, assign-to-v, we do not want to complain that the
2502 -- second assignment clobbers the first.
2504 procedure Kill_Current_Values
2505 (Ent : Entity_Id;
2506 Last_Assignment_Only : Boolean := False);
2507 -- This performs the same processing as described above for the form with
2508 -- no argument, but for the specific entity given. The call has no effect
2509 -- if the entity Ent is not for an object. Last_Assignment_Only has the
2510 -- same meaning as for the call with no Ent.
2512 procedure Kill_Size_Check_Code (E : Entity_Id);
2513 -- Called when an address clause or pragma Import is applied to an entity.
2514 -- If the entity is a variable or a constant, and size check code is
2515 -- present, this size check code is killed, since the object will not be
2516 -- allocated by the program.
2518 function Known_Non_Null (N : Node_Id) return Boolean;
2519 -- Given a node N for a subexpression of an access type, determines if
2520 -- this subexpression yields a value that is known at compile time to
2521 -- be non-null and returns True if so. Returns False otherwise. It is
2522 -- an error to call this function if N is not of an access type.
2524 function Known_Null (N : Node_Id) return Boolean;
2525 -- Given a node N for a subexpression of an access type, determines if this
2526 -- subexpression yields a value that is known at compile time to be null
2527 -- and returns True if so. Returns False otherwise. It is an error to call
2528 -- this function if N is not of an access type.
2530 function Known_To_Be_Assigned
2531 (N : Node_Id;
2532 Only_LHS : Boolean := False) return Boolean;
2533 -- The node N is an entity reference. This function determines whether the
2534 -- reference is for sure an assignment of the entity, returning True if
2535 -- so. Only_LHS will modify this behavior such that actuals for out or
2536 -- in out parameters will not be considered assigned.
2538 function Last_Source_Statement (HSS : Node_Id) return Node_Id;
2539 -- HSS is a handled statement sequence. This function returns the last
2540 -- statement in Statements (HSS) that has Comes_From_Source set. If no
2541 -- such statement exists, Empty is returned.
2543 procedure Mark_Coextensions (Context_Nod : Node_Id; Root_Nod : Node_Id);
2544 -- Given a node which designates the context of analysis and an origin in
2545 -- the tree, traverse from Root_Nod and mark all allocators as either
2546 -- dynamic or static depending on Context_Nod. Any incorrect marking is
2547 -- cleaned up during resolution.
2549 procedure Mark_Elaboration_Attributes
2550 (N_Id : Node_Or_Entity_Id;
2551 Checks : Boolean := False;
2552 Level : Boolean := False;
2553 Modes : Boolean := False;
2554 Warnings : Boolean := False);
2555 -- Preserve relevant elaboration-related properties of the context in
2556 -- arbitrary entity or node N_Id. The flags control the properties as
2557 -- follows:
2559 -- Checks - Save the status of Elaboration_Check
2560 -- Level - Save the declaration level of N_Id (if applicable)
2561 -- Modes - Save the Ghost and SPARK modes in effect (if applicable)
2562 -- Warnings - Save the status of Elab_Warnings
2564 procedure Mark_Save_Invocation_Graph_Of_Body;
2565 -- Notify the body of the main unit that the invocation constructs and
2566 -- relations expressed within it must be recorded by the ABE mechanism.
2568 function Matching_Static_Array_Bounds
2569 (L_Typ : Node_Id;
2570 R_Typ : Node_Id) return Boolean;
2571 -- L_Typ and R_Typ are two array types. Returns True when they have the
2572 -- same number of dimensions, and the same static bounds for each index
2573 -- position.
2575 function Might_Raise (N : Node_Id) return Boolean;
2576 -- True if evaluation of N might raise an exception. This is conservative;
2577 -- if we're not sure, we return True. If N is a subprogram body, this is
2578 -- about whether execution of that body can raise.
2580 function Nearest_Class_Condition_Subprogram
2581 (Kind : Condition_Kind;
2582 Spec_Id : Entity_Id) return Entity_Id;
2583 -- Return the nearest ancestor containing the merged class-wide conditions
2584 -- that statically apply to Spec_Id; return Empty otherwise.
2586 function Nearest_Enclosing_Instance (E : Entity_Id) return Entity_Id;
2587 -- Return the entity of the nearest enclosing instance which encapsulates
2588 -- entity E. If no such instance exits, return Empty.
2590 function Needs_Finalization (Typ : Entity_Id) return Boolean;
2591 -- True if Typ requires finalization actions
2593 function Needs_One_Actual (E : Entity_Id) return Boolean;
2594 -- Returns True if a function has defaults for all but its first formal,
2595 -- which is a controlling formal. Used in Ada 2005 mode to solve the
2596 -- syntactic ambiguity that results from an indexing of a function call
2597 -- that returns an array, so that Obj.F (X, Y) may mean F (Ob) (X, Y).
2599 function Needs_Secondary_Stack (Id : Entity_Id) return Boolean;
2600 -- Return true if functions whose result type is Id must return on the
2601 -- secondary stack, i.e. allocate the return object on this stack.
2603 -- WARNING: There is a matching C declaration of this subprogram in fe.h
2605 function Needs_Simple_Initialization
2606 (Typ : Entity_Id;
2607 Consider_IS : Boolean := True) return Boolean;
2608 -- Certain types need initialization even though there is no specific
2609 -- initialization routine:
2610 -- Access types (which need initializing to null)
2611 -- All scalar types if Normalize_Scalars mode set
2612 -- Descendants of standard string types if Normalize_Scalars mode set
2613 -- Scalar types having a Default_Value attribute
2614 -- Regarding Initialize_Scalars mode, this is ignored if Consider_IS is
2615 -- set to False, but if Consider_IS is set to True, then the cases above
2616 -- mentioning Normalize_Scalars also apply for Initialize_Scalars mode.
2618 function Needs_Variable_Reference_Marker
2619 (N : Node_Id;
2620 Calls_OK : Boolean) return Boolean;
2621 -- Determine whether arbitrary node N denotes a reference to a variable
2622 -- which is suitable for SPARK elaboration checks. Flag Calls_OK should
2623 -- be set when the reference is allowed to appear within calls.
2625 function New_Copy_List_Tree (List : List_Id) return List_Id;
2626 -- Copy recursively an analyzed list of nodes. Uses New_Copy_Tree defined
2627 -- below. As for New_Copy_Tree, it is illegal to attempt to copy extended
2628 -- nodes (entities) either directly or indirectly using this function.
2630 function New_Copy_Tree
2631 (Source : Node_Id;
2632 Map : Elist_Id := No_Elist;
2633 New_Sloc : Source_Ptr := No_Location;
2634 New_Scope : Entity_Id := Empty) return Node_Id;
2635 -- Perform a deep copy of the subtree rooted at Source. Entities, itypes,
2636 -- and nodes are handled separately as follows:
2638 -- * A node is replicated by first creating a shallow copy, then copying
2639 -- its syntactic fields, where all Parent pointers of the fields are
2640 -- updated to refer to the copy. In addition, the following semantic
2641 -- fields are recreated after the replication takes place.
2643 -- First_Named_Actual
2644 -- Next_Named_Actual
2645 -- Controlling_Argument
2647 -- If applicable, the Etype field (if any) is updated to refer to a
2648 -- local itype or type (see below).
2650 -- * An entity defined within an N_Expression_With_Actions node in the
2651 -- subtree is given a new entity, and all references to the original
2652 -- entity are updated to refer to the new entity. In addition, the
2653 -- following semantic fields are replicated and/or updated to refer
2654 -- to a local entity or itype.
2656 -- Discriminant_Constraint
2657 -- Etype
2658 -- First_Index
2659 -- Next_Entity
2660 -- Packed_Array_Impl_Type
2661 -- Scalar_Range
2662 -- Scope
2664 -- Note that currently no other expression can define entities.
2666 -- * An itype whose Associated_Node_For_Itype node is in the subtree
2667 -- is given a new entity, and all references to the original itype
2668 -- are updated to refer to the new itype. In addition, the following
2669 -- semantic fields are replicated and/or updated to refer to a local
2670 -- entity or itype.
2672 -- Discriminant_Constraint
2673 -- Etype
2674 -- First_Index
2675 -- Next_Entity
2676 -- Packed_Array_Impl_Type
2677 -- Scalar_Range
2678 -- Scope
2680 -- The Associated_Node_For_Itype is updated to refer to a replicated
2681 -- node.
2683 -- The routine can replicate both analyzed and unanalyzed trees. Copying an
2684 -- Empty or Error node yields the same node.
2686 -- Parameter Map may be used to specify a set of mappings between entities.
2687 -- These mappings are then taken into account when replicating entities.
2688 -- The format of Map must be as follows:
2690 -- old entity 1
2691 -- new entity to replace references to entity 1
2692 -- old entity 2
2693 -- new entity to replace references to entity 2
2694 -- ...
2696 -- Map and its contents are left unchanged.
2698 -- Parameter New_Sloc may be used to specify a new source location for all
2699 -- replicated entities, itypes, and nodes. The Comes_From_Source indicator
2700 -- is defaulted if a new source location is provided.
2702 -- Parameter New_Scope may be used to specify a new scope for all copied
2703 -- entities and itypes.
2705 function New_External_Entity
2706 (Kind : Entity_Kind;
2707 Scope_Id : Entity_Id;
2708 Sloc_Value : Source_Ptr;
2709 Related_Id : Entity_Id;
2710 Suffix : Character;
2711 Suffix_Index : Int := 0;
2712 Prefix : Character := ' ') return Entity_Id;
2713 -- This function creates an N_Defining_Identifier node for an internal
2714 -- created entity, such as an implicit type or subtype, or a record
2715 -- initialization procedure. The entity name is constructed with a call
2716 -- to New_External_Name (Related_Id, Suffix, Suffix_Index, Prefix), so
2717 -- that the generated name may be referenced as a public entry, and the
2718 -- Is_Public flag is set if needed (using Set_Public_Status). If the
2719 -- entity is for a type or subtype, the size/align fields are initialized
2720 -- to unknown (Uint_0).
2722 function New_Internal_Entity
2723 (Kind : Entity_Kind;
2724 Scope_Id : Entity_Id;
2725 Sloc_Value : Source_Ptr;
2726 Id_Char : Character) return Entity_Id;
2727 -- This function is similar to New_External_Entity, except that the
2728 -- name is constructed by New_Internal_Name (Id_Char). This is used
2729 -- when the resulting entity does not have to be referenced as a
2730 -- public entity (and in this case Is_Public is not set).
2732 function Next_Actual (Actual_Id : Node_Id) return Node_Id;
2733 -- Find next actual parameter in declaration order. As described for
2734 -- First_Actual, this is the next actual in the declaration order, not
2735 -- the call order, so this does not correspond to simply taking the
2736 -- next entry of the Parameter_Associations list. The argument is an
2737 -- actual previously returned by a call to First_Actual or Next_Actual.
2738 -- Note that the result produced is always an expression, not a parameter
2739 -- association node, even if named notation was used.
2741 -- WARNING: There is a matching C declaration of this subprogram in fe.h
2743 procedure Next_Actual (Actual_Id : in out Node_Id);
2744 pragma Inline (Next_Actual);
2745 -- Next_Actual (N) is equivalent to N := Next_Actual (N). Note that we
2746 -- inline this procedural form, but not the functional form above.
2748 function Next_Global (Node : Node_Id) return Node_Id;
2749 -- Node is a global item from a list, obtained through calling First_Global
2750 -- and possibly Next_Global a number of times. Returns the next global item
2751 -- with the same mode.
2753 procedure Next_Global (Node : in out Node_Id);
2754 pragma Inline (Next_Global);
2755 -- Next_Global (N) is equivalent to N := Next_Global (N). Note that we
2756 -- inline this procedural form, but not the functional form above.
2758 function No_Caching_Enabled (Id : Entity_Id) return Boolean;
2759 -- Given any entity Id, determine whether Id is subject to volatility
2760 -- property No_Caching and if it is, the related expression evaluates
2761 -- to True.
2763 function No_Heap_Finalization (Typ : Entity_Id) return Boolean;
2764 -- Determine whether type Typ is subject to pragma No_Heap_Finalization
2766 procedure Normalize_Actuals
2767 (N : Node_Id;
2768 S : Entity_Id;
2769 Report : Boolean;
2770 Success : out Boolean);
2771 -- Reorders lists of actuals according to names of formals, value returned
2772 -- in Success indicates success of reordering. For more details, see body.
2773 -- Errors are reported only if Report is set to True.
2775 procedure Note_Possible_Modification (N : Node_Id; Sure : Boolean);
2776 -- This routine is called if the sub-expression N maybe the target of
2777 -- an assignment (e.g. it is the left side of an assignment, used as
2778 -- an out parameters, or used as prefixes of access attributes). It
2779 -- sets Never_Set_In_Source in the associated entity if there is one,
2780 -- taking into account the rule that in the case of renamed objects,
2781 -- it is the flag in the renamed object that must be set.
2783 -- The parameter Sure is set True if the modification is sure to occur
2784 -- (e.g. target of assignment, or out parameter), and to False if the
2785 -- modification is only potential (e.g. address of entity taken).
2787 function Null_To_Null_Address_Convert_OK
2788 (N : Node_Id;
2789 Typ : Entity_Id := Empty) return Boolean;
2790 -- Return True if we are compiling in relaxed RM semantics mode and:
2791 -- 1) N is a N_Null node and Typ is a descendant of System.Address, or
2792 -- 2) N is a comparison operator, one of the operands is null, and the
2793 -- type of the other operand is a descendant of System.Address.
2795 function Number_Of_Elements_In_Array (T : Entity_Id) return Int;
2796 -- Returns the number of elements in the array T if the index bounds of T
2797 -- is known at compile time. If the bounds are not known at compile time,
2798 -- the function returns the value zero.
2800 function Original_Aspect_Pragma_Name (N : Node_Id) return Name_Id;
2801 -- Retrieve the name of aspect or pragma N, taking into account a possible
2802 -- rewrite and whether the pragma is generated from an aspect as the names
2803 -- may be different. The routine also deals with 'Class in which case it
2804 -- returns the following values:
2806 -- Invariant -> Name_uInvariant
2807 -- Post'Class -> Name_uPost
2808 -- Pre'Class -> Name_uPre
2809 -- Type_Invariant -> Name_uType_Invariant
2810 -- Type_Invariant'Class -> Name_uType_Invariant
2812 function Original_Corresponding_Operation (S : Entity_Id) return Entity_Id;
2813 -- [Ada 2012: AI05-0125-1]: If S is an inherited dispatching primitive S2,
2814 -- or overrides an inherited dispatching primitive S2, the original
2815 -- corresponding operation of S is the original corresponding operation of
2816 -- S2. Otherwise, it is S itself.
2818 function Original_View_In_Visible_Part (Typ : Entity_Id) return Boolean;
2819 -- Returns True if the type Typ has a private view or if the public view
2820 -- appears in the visible part of a package spec.
2822 procedure Output_Entity (Id : Entity_Id);
2823 -- Print entity Id to standard output. The name of the entity appears in
2824 -- fully qualified form.
2826 -- WARNING: this routine should be used in debugging scenarios such as
2827 -- tracking down undefined symbols as it is fairly low level.
2829 procedure Output_Name (Nam : Name_Id; Scop : Entity_Id := Current_Scope);
2830 -- Print name Nam to standard output. The name appears in fully qualified
2831 -- form assuming it appears in scope Scop. Note that this may not reflect
2832 -- the final qualification as the entity which carries the name may be
2833 -- relocated to a different scope.
2835 -- WARNING: this routine should be used in debugging scenarios such as
2836 -- tracking down undefined symbols as it is fairly low level.
2838 function Param_Entity (N : Node_Id) return Entity_Id;
2839 -- Given an expression N, determines if the expression is a reference
2840 -- to a formal (of a subprogram or entry), and if so returns the Id
2841 -- of the corresponding formal entity, otherwise returns Empty. Also
2842 -- handles the case of references to renamings of formals.
2844 function Policy_In_Effect (Policy : Name_Id) return Name_Id;
2845 -- Given a policy, return the policy identifier associated with it. If no
2846 -- such policy is in effect, the value returned is No_Name.
2848 function Predicate_Enabled (Typ : Entity_Id) return Boolean;
2849 -- Return True if a predicate check should be emitted for the given type
2850 -- Typ, taking into account Predicates_Ignored and
2851 -- Predicate_Checks_Suppressed.
2853 function Predicate_Failure_Expression
2854 (Typ : Entity_Id; Inherited_OK : Boolean) return Node_Id;
2855 -- If the given type or subtype is subject to a Predicate_Failure
2856 -- aspect specification, then returns the specified expression.
2857 -- Otherwise, if Inherited_OK is False then returns Empty.
2858 -- Otherwise, if Typ denotes a subtype or a derived type then
2859 -- returns the result of recursing on the ancestor subtype.
2860 -- Otherwise, returns Empty.
2862 function Predicate_Function_Needs_Membership_Parameter (Typ : Entity_Id)
2863 return Boolean is
2864 (Present (Predicate_Failure_Expression (Typ, Inherited_OK => True)));
2865 -- The predicate function for some, but not all, subtypes needs to
2866 -- know whether the predicate is being evaluated as part of a membership
2867 -- test. The predicate function for such a subtype takes an additional
2868 -- boolean to convey this information. This function returns True if this
2869 -- additional parameter is needed. More specifically, this function
2870 -- returns true if the Predicate_Failure aspect is specified for the
2871 -- given subtype or for any of its "ancestor" subtypes.
2873 function Predicate_Tests_On_Arguments (Subp : Entity_Id) return Boolean;
2874 -- Subp is the entity for a subprogram call. This function returns True if
2875 -- predicate tests are required for the arguments in this call (this is the
2876 -- normal case). It returns False for special cases where these predicate
2877 -- tests should be skipped (see body for details).
2879 function Primitive_Names_Match (E1, E2 : Entity_Id) return Boolean;
2880 -- Returns True if the names of both entities correspond with matching
2881 -- primitives. This routine includes support for the case in which one
2882 -- or both entities correspond with entities built by Derive_Subprogram
2883 -- with a special name to avoid being overridden (i.e. return true in case
2884 -- of entities with names "nameP" and "name" or vice versa).
2886 function Private_Component (Type_Id : Entity_Id) return Entity_Id;
2887 -- Returns some private component (if any) of the given Type_Id.
2888 -- Used to enforce the rules on visibility of operations on composite
2889 -- types, that depend on the full view of the component type. For a
2890 -- record type there may be several such components, we just return
2891 -- the first one.
2893 procedure Process_End_Label
2894 (N : Node_Id;
2895 Typ : Character;
2896 Ent : Entity_Id);
2897 -- N is a node whose End_Label is to be processed, generating all
2898 -- appropriate cross-reference entries, and performing style checks
2899 -- for any identifier references in the end label. Typ is either
2900 -- 'e' or 't indicating the type of the cross-reference entity
2901 -- (e for spec, t for body, see Lib.Xref spec for details). The
2902 -- parameter Ent gives the entity to which the End_Label refers,
2903 -- and to which cross-references are to be generated.
2905 procedure Propagate_Concurrent_Flags
2906 (Typ : Entity_Id;
2907 Comp_Typ : Entity_Id);
2908 -- Set Has_Task, Has_Protected, and Has_Timing_Event on Typ when the flags
2909 -- are set on Comp_Typ. This follows the definition of these flags, which
2910 -- are set (recursively) on any composite type that has a component marked
2911 -- by one of these flags. This procedure can only set flags for Typ, and
2912 -- never clear them. Comp_Typ is the type of a component or a parent.
2914 procedure Propagate_DIC_Attributes
2915 (Typ : Entity_Id;
2916 From_Typ : Entity_Id);
2917 -- Inherit all Default_Initial_Condition-related attributes from type
2918 -- From_Typ. Typ is the destination type.
2920 procedure Propagate_Invariant_Attributes
2921 (Typ : Entity_Id;
2922 From_Typ : Entity_Id);
2923 -- Inherit all invariant-related attributes from type From_Typ. Typ is the
2924 -- destination type.
2926 procedure Propagate_Predicate_Attributes
2927 (Typ : Entity_Id;
2928 From_Typ : Entity_Id);
2929 -- Inherit predicate functions and Has_Predicates flag from type From_Typ.
2930 -- Typ is the destination type.
2932 procedure Record_Possible_Part_Of_Reference
2933 (Var_Id : Entity_Id;
2934 Ref : Node_Id);
2935 -- Save reference Ref to variable Var_Id when the variable is subject to
2936 -- pragma Part_Of. If the variable is known to be a constituent of a single
2937 -- protected/task type, the legality of the reference is verified and the
2938 -- save does not take place.
2940 function Referenced (Id : Entity_Id; Expr : Node_Id) return Boolean;
2941 -- Determine whether entity Id is referenced within expression Expr
2943 function References_Generic_Formal_Type (N : Node_Id) return Boolean;
2944 -- Returns True if the expression Expr contains any references to a generic
2945 -- type. This can only happen within a generic template.
2947 procedure Remove_Entity_And_Homonym (Id : Entity_Id);
2948 -- Remove arbitrary entity Id from both the homonym and scope chains. Use
2949 -- Remove_Overloaded_Entity for overloadable entities. Note: the removal
2950 -- performed by this routine does not affect the visibility of existing
2951 -- homonyms.
2953 procedure Remove_Homonym (Id : Entity_Id);
2954 -- Removes entity Id from the homonym chain
2956 procedure Remove_Overloaded_Entity (Id : Entity_Id);
2957 -- Remove arbitrary entity Id from the homonym chain, the scope chain and
2958 -- the primitive operations list of the associated controlling type. Use
2959 -- Remove_Entity for non-overloadable entities. Note: the removal performed
2960 -- by this routine does not affect the visibility of existing homonyms.
2962 function Remove_Suffix (E : Entity_Id; Suffix : Character) return Name_Id;
2963 -- Returns the name of E without Suffix
2965 procedure Replace_Null_By_Null_Address (N : Node_Id);
2966 -- N is N_Null or a binary comparison operator, we are compiling in relaxed
2967 -- RM semantics mode, and one of the operands is null. Replace null with
2968 -- System.Null_Address.
2970 function Rep_To_Pos_Flag (E : Entity_Id; Loc : Source_Ptr) return Node_Id;
2971 -- This is used to construct the second argument in a call to Rep_To_Pos
2972 -- which is True if range checks are enabled (E is an entity to which the
2973 -- Range_Checks_Suppressed test is applied), and False if range checks are
2974 -- suppressed. Loc is the location for the node that is returned (which is
2975 -- a New_Occurrence of the appropriate entity).
2977 -- Note: one might think that it would be fine to always use True and to
2978 -- ignore the suppress in this case, but there is at least one case in the
2979 -- generated code (the code for array assignment in a loop) that depends on
2980 -- this suppression. Anyway, it is generally better to believe a request to
2981 -- suppress exceptions if possible.
2983 procedure Require_Entity (N : Node_Id);
2984 -- N is a node which should have an entity value if it is an entity name.
2985 -- If not, then check if there were previous errors. If so, just fill
2986 -- in with Any_Id and ignore. Otherwise signal a program error exception.
2987 -- This is used as a defense mechanism against ill-formed trees caused by
2988 -- previous errors (particularly in -gnatq mode).
2990 function Requires_Transient_Scope (Typ : Entity_Id) return Boolean;
2991 pragma Inline (Requires_Transient_Scope);
2992 -- Return true if temporaries of Typ need to be wrapped in a transient
2993 -- scope, either because they are allocated on the secondary stack or
2994 -- finalization actions must be generated before the next instruction.
2995 -- Examples of types requiring such wrapping are variable-sized types,
2996 -- including unconstrained arrays, and controlled types.
2998 procedure Reset_Analyzed_Flags (N : Node_Id);
2999 -- Reset the Analyzed flags in all nodes of the tree whose root is N
3001 procedure Restore_SPARK_Mode (Mode : SPARK_Mode_Type; Prag : Node_Id);
3002 -- Set the current SPARK_Mode to Mode and SPARK_Mode_Pragma to Prag. This
3003 -- routine must be used in tandem with Set_SPARK_Mode.
3005 function Returns_Unconstrained_Type (Subp : Entity_Id) return Boolean;
3006 -- Return true if Subp is a function that returns an unconstrained type
3008 function Root_Type_Of_Full_View (T : Entity_Id) return Entity_Id;
3009 -- Similar to attribute Root_Type, but this version always follows the
3010 -- Full_View of a private type (if available) while searching for the
3011 -- ultimate derivation ancestor.
3013 function Safe_To_Capture_Value
3014 (N : Node_Id;
3015 Ent : Entity_Id;
3016 Cond : Boolean := False) return Boolean;
3017 -- The caller is interested in capturing a value (either the current
3018 -- value, an indication that the value is [non-]null or an indication that
3019 -- the value is valid) for the given entity Ent. This value can only be
3020 -- captured if sequential execution semantics can be properly guaranteed so
3021 -- that a subsequent reference will indeed be sure that this current value
3022 -- indication is correct. The node N is the construct that resulted in the
3023 -- possible capture of the value (this is used to check if we are in a
3024 -- conditional).
3026 -- Cond is used to skip the test for being inside a conditional. It is used
3027 -- in the case of capturing values from if/while tests, which already do a
3028 -- proper job of handling scoping issues without this help.
3030 -- The only entities whose values can be captured are OUT and IN OUT formal
3031 -- parameters, and variables unless Cond is True, in which case we also
3032 -- allow IN formals, loop parameters and constants, where we cannot ever
3033 -- capture actual value information, but we can capture conditional tests.
3035 function Same_Name (N1, N2 : Node_Id) return Boolean;
3036 -- Determine if two (possibly expanded) names are the same name. This is
3037 -- a purely syntactic test, and N1 and N2 need not be analyzed.
3039 function Same_Object (Node1, Node2 : Node_Id) return Boolean;
3040 -- Determine if Node1 and Node2 are known to designate the same object.
3041 -- This is a semantic test and both nodes must be fully analyzed. A result
3042 -- of True is decisively correct. A result of False does not necessarily
3043 -- mean that different objects are designated, just that this could not
3044 -- be reliably determined at compile time.
3046 function Same_Or_Aliased_Subprograms
3047 (S : Entity_Id;
3048 E : Entity_Id) return Boolean;
3049 -- Returns True if the subprogram entity S is the same as E or else S is an
3050 -- alias of E.
3052 function Same_Type (T1, T2 : Entity_Id) return Boolean;
3053 -- Determines if T1 and T2 represent exactly the same type. Two types
3054 -- are the same if they are identical, or if one is an unconstrained
3055 -- subtype of the other, or they are both common subtypes of the same
3056 -- type with identical constraints. The result returned is conservative.
3057 -- It is True if the types are known to be the same, but a result of
3058 -- False is indecisive (e.g. the compiler may not be able to tell that
3059 -- two constraints are identical).
3061 function Same_Value (Node1, Node2 : Node_Id) return Boolean;
3062 -- Determines if Node1 and Node2 are known to be the same value, which is
3063 -- true if they are both compile time known values and have the same value,
3064 -- or if they are the same object (in the sense of function Same_Object).
3065 -- A result of False does not necessarily mean they have different values,
3066 -- just that it is not possible to determine they have the same value.
3068 function Scalar_Part_Present (Typ : Entity_Id) return Boolean;
3069 -- Determine whether arbitrary type Typ is a scalar type, or contains at
3070 -- least one scalar subcomponent.
3072 function Scope_Within
3073 (Inner : Entity_Id;
3074 Outer : Entity_Id) return Boolean;
3075 -- Determine whether scope Inner appears within scope Outer. Note that
3076 -- scopes are partially ordered, so Scope_Within (A, B) and Scope_Within
3077 -- (B, A) may both return False.
3079 function Scope_Within_Or_Same
3080 (Inner : Entity_Id;
3081 Outer : Entity_Id) return Boolean;
3082 -- Determine whether scope Inner appears within scope Outer or both denote
3083 -- the same scope. Note that scopes are partially ordered, so Scope_Within
3084 -- (A, B) and Scope_Within (B, A) may both return False.
3086 procedure Set_Current_Entity (E : Entity_Id);
3087 pragma Inline (Set_Current_Entity);
3088 -- Establish the entity E as the currently visible definition of its
3089 -- associated name (i.e. the Node_Id associated with its name).
3091 procedure Set_Debug_Info_Defining_Id (N : Node_Id);
3092 -- Call Set_Debug_Info_Needed on Defining_Identifier (N) if it comes from
3093 -- source or we are in -gnatD mode, where we are debugging generated code.
3095 procedure Set_Debug_Info_Needed (T : Entity_Id);
3096 -- Sets the Debug_Info_Needed flag on entity T , and also on any entities
3097 -- that are needed by T (for an object, the type of the object is needed,
3098 -- and for a type, various subsidiary types are needed -- see body for
3099 -- details). Never has any effect on T if the Debug_Info_Off flag is set.
3100 -- This routine should always be used instead of Set_Needs_Debug_Info to
3101 -- ensure that subsidiary entities are properly handled.
3103 procedure Set_Entity_With_Checks (N : Node_Id; Val : Entity_Id);
3104 -- This procedure has the same calling sequence as Set_Entity, but it
3105 -- performs additional checks as follows:
3107 -- If Style_Check is set, then it calls a style checking routine that
3108 -- can check identifier spelling style.
3110 -- If restriction No_Abort_Statements is set, then it checks that the
3111 -- entity is not Ada.Task_Identification.Abort_Task.
3113 -- If restriction No_Dynamic_Attachment is set, then it checks that the
3114 -- entity is not one of the restricted names for this restriction.
3116 -- If restriction No_Long_Long_Integers is set, then it checks that the
3117 -- entity is not Standard.Long_Long_Integer.
3119 -- If restriction No_Implementation_Identifiers is set, then it checks
3120 -- that the entity is not implementation defined.
3122 procedure Set_Invalid_Scalar_Value
3123 (Scal_Typ : Float_Scalar_Id;
3124 Value : Ureal);
3125 -- Associate invalid value Value with scalar type Scal_Typ as specified by
3126 -- pragma Initialize_Scalars.
3128 procedure Set_Invalid_Scalar_Value
3129 (Scal_Typ : Integer_Scalar_Id;
3130 Value : Uint);
3131 -- Associate invalid value Value with scalar type Scal_Typ as specified by
3132 -- pragma Initialize_Scalars.
3134 procedure Set_Name_Entity_Id (Id : Name_Id; Val : Entity_Id);
3135 pragma Inline (Set_Name_Entity_Id);
3136 -- Sets the Entity_Id value associated with the given name, which is the
3137 -- Id of the innermost visible entity with the given name. See the body
3138 -- of package Sem_Ch8 for further details on the handling of visibility.
3140 procedure Set_Next_Actual (Ass1_Id : Node_Id; Ass2_Id : Node_Id);
3141 -- The arguments may be parameter associations, whose descendants
3142 -- are the optional formal name and the actual parameter. Positional
3143 -- parameters are already members of a list, and do not need to be
3144 -- chained separately. See also First_Actual and Next_Actual.
3146 procedure Set_Optimize_Alignment_Flags (E : Entity_Id);
3147 pragma Inline (Set_Optimize_Alignment_Flags);
3148 -- Sets Optimize_Alignment_Space/Time flags in E from current settings
3150 procedure Set_Public_Status (Id : Entity_Id);
3151 -- If an entity (visible or otherwise) is defined in a library
3152 -- package, or a package that is itself public, then this subprogram
3153 -- labels the entity public as well.
3155 procedure Set_Referenced_Modified (N : Node_Id; Out_Param : Boolean);
3156 -- N is the node for either a left hand side (Out_Param set to False),
3157 -- or an Out or In_Out parameter (Out_Param set to True). If there is
3158 -- an assignable entity being referenced, then the appropriate flag
3159 -- (Referenced_As_LHS if Out_Param is False, Referenced_As_Out_Parameter
3160 -- if Out_Param is True) is set True, and the other flag set False.
3162 procedure Set_Rep_Info (T1 : Entity_Id; T2 : Entity_Id);
3163 pragma Inline (Set_Rep_Info);
3164 -- Copies the Is_Atomic, Is_Independent and Is_Volatile_Full_Access flags
3165 -- from sub(type) entity T2 to (sub)type entity T1, as well as Is_Volatile
3166 -- if T1 is a base type.
3168 procedure Set_Size_Info (T1, T2 : Entity_Id);
3169 pragma Inline (Set_Size_Info);
3170 -- Copies the Esize field and Has_Biased_Representation flag from sub(type)
3171 -- entity T2 to (sub)type entity T1. Also copies the Is_Unsigned_Type flag
3172 -- in the fixed-point and discrete cases, and also copies the alignment
3173 -- value from T2 to T1. It does NOT copy the RM_Size field, which must be
3174 -- separately set if this is required to be copied also.
3176 procedure Set_SPARK_Mode (Context : Entity_Id);
3177 -- Establish the SPARK_Mode and SPARK_Mode_Pragma (if any) of a package or
3178 -- a subprogram denoted by Context. This routine must be used in tandem
3179 -- with Restore_SPARK_Mode.
3181 function Scope_Is_Transient return Boolean;
3182 -- True if the current scope is transient
3184 function Should_Ignore_Pragma_Par (Prag_Name : Name_Id) return Boolean;
3185 function Should_Ignore_Pragma_Sem (N : Node_Id) return Boolean;
3186 -- True if we should ignore pragmas with the specified name. In particular,
3187 -- this returns True if pragma Ignore_Pragma applies, and we are not in a
3188 -- predefined unit. The _Par version should be called only from the parser;
3189 -- the _Sem version should be called only during semantic analysis.
3191 function Static_Boolean (N : Node_Id) return Opt_Ubool;
3192 -- This function analyzes the given expression node and then resolves it
3193 -- as Standard.Boolean. If the result is static, then Uint_1 or Uint_0 is
3194 -- returned corresponding to the value, otherwise an error message is
3195 -- output and No_Uint is returned.
3197 function Static_Integer (N : Node_Id) return Uint;
3198 -- This function analyzes the given expression node and then resolves it
3199 -- as any integer type. If the result is static, then the value of the
3200 -- universal expression is returned, otherwise an error message is output
3201 -- and a value of No_Uint is returned.
3203 function Statically_Denotes_Entity (N : Node_Id) return Boolean;
3204 -- Return True iff N is a name that "statically denotes" an entity.
3206 function Statically_Denotes_Object (N : Node_Id) return Boolean;
3207 -- Return True iff N is a name that "statically denotes" an object.
3209 function Statically_Different (E1, E2 : Node_Id) return Boolean;
3210 -- Return True if it can be statically determined that the Expressions
3211 -- E1 and E2 refer to different objects
3213 function Statically_Names_Object (N : Node_Id) return Boolean;
3214 -- Return True iff N is a name that "statically names" an object.
3216 function String_From_Numeric_Literal (N : Node_Id) return String_Id;
3217 -- Return the string that corresponds to the numeric literal N as it
3218 -- appears in the source.
3220 function Subject_To_Loop_Entry_Attributes (N : Node_Id) return Boolean;
3221 -- Determine whether node N is a loop statement subject to at least one
3222 -- 'Loop_Entry attribute.
3224 function Support_Atomic_Primitives (Typ : Entity_Id) return Boolean;
3225 -- Return True if Typ supports the GCC built-in atomic operations (i.e. if
3226 -- Typ is properly sized and aligned).
3228 procedure Trace_Scope (N : Node_Id; E : Entity_Id; Msg : String);
3229 -- Print debugging information on entry to each unit being analyzed
3231 procedure Transfer_Entities (From : Entity_Id; To : Entity_Id);
3232 -- Move a list of entities from one scope to another, and recompute
3233 -- Is_Public based upon the new scope.
3235 generic
3236 with function Process (N : Node_Id) return Traverse_Result is <>;
3237 Process_Itypes : Boolean := False;
3238 function Traverse_More_Func (Node : Node_Id) return Traverse_Final_Result;
3239 -- This is a version of Atree.Traverse_Func that not only traverses
3240 -- syntactic children of nodes, but also semantic children which are
3241 -- logically children of the node. This concerns currently lists of
3242 -- action nodes and ranges under Itypes, both inserted by the compiler.
3243 -- Itypes are only traversed when Process_Itypes is True.
3245 generic
3246 with function Process (N : Node_Id) return Traverse_Result is <>;
3247 Process_Itypes : Boolean := False;
3248 procedure Traverse_More_Proc (Node : Node_Id);
3249 pragma Inline (Traverse_More_Proc);
3250 -- This is the same as Traverse_More_Func except that no result is
3251 -- returned, i.e. Traverse_More_Func is called and the result is simply
3252 -- discarded.
3254 function Type_Without_Stream_Operation
3255 (T : Entity_Id;
3256 Op : TSS_Name_Type := TSS_Null) return Entity_Id;
3257 -- AI05-0161: In Ada 2012, if the restriction No_Default_Stream_Attributes
3258 -- is active then we cannot generate stream subprograms for composite types
3259 -- with elementary subcomponents that lack user-defined stream subprograms.
3260 -- This predicate determines whether a type has such an elementary
3261 -- subcomponent. If Op is TSS_Null, a type that lacks either Read or Write
3262 -- prevents the construction of a composite stream operation. If Op is
3263 -- specified we check only for the given stream operation.
3265 function Ultimate_Overlaid_Entity (E : Entity_Id) return Entity_Id;
3266 -- If entity E is overlaying some other entity via an Address clause (which
3267 -- possibly overlays yet another entity via its own Address clause), then
3268 -- return the ultimate overlaid entity. If entity E is not overlaying any
3269 -- other entity (or the overlaid entity cannot be determined statically),
3270 -- then return Empty.
3272 -- Subsidiary to the analysis of object overlays in SPARK.
3274 function Ultimate_Prefix (N : Node_Id) return Node_Id;
3275 -- Obtain the "outermost" prefix of arbitrary node N. Return N if no such
3276 -- prefix exists.
3278 function Unique_Defining_Entity (N : Node_Id) return Entity_Id;
3279 -- Return the entity that represents declaration N, so that different
3280 -- views of the same entity have the same unique defining entity:
3281 -- * private view and full view of a deferred constant
3282 -- --> full view
3283 -- * entry spec and entry body
3284 -- --> entry spec
3285 -- * formal parameter on spec and body
3286 -- --> formal parameter on spec
3287 -- * package spec, body, and body stub
3288 -- --> package spec
3289 -- * protected type, protected body, and protected body stub
3290 -- --> protected type (full view if private)
3291 -- * subprogram spec, body, and body stub
3292 -- --> subprogram spec
3293 -- * task type, task body, and task body stub
3294 -- --> task type (full view if private)
3295 -- * private or incomplete view and full view of a type
3296 -- --> full view
3297 -- In other cases, return the defining entity for N.
3299 function Unique_Entity (E : Entity_Id) return Entity_Id;
3300 -- Return the unique entity for entity E, which would be returned by
3301 -- Unique_Defining_Entity if applied to the enclosing declaration of E.
3303 function Unique_Name (E : Entity_Id) return String;
3304 -- Return a unique name for entity E, which could be used to identify E
3305 -- across compilation units.
3307 Child_Prefix : constant String := "ada___";
3308 -- Prefix for child packages when building a unique name for an entity. It
3309 -- is included here to share between Unique_Name and gnatprove.
3311 function Unit_Is_Visible (U : Entity_Id) return Boolean;
3312 -- Determine whether a compilation unit is visible in the current context,
3313 -- because there is a with_clause that makes the unit available. Used to
3314 -- provide better messages on common visiblity errors on operators.
3316 function Universal_Interpretation (Opnd : Node_Id) return Entity_Id;
3317 -- Yields Universal_Integer or Universal_Real if this is a candidate
3319 function Unqualify (Expr : Node_Id) return Node_Id;
3320 pragma Inline (Unqualify);
3321 -- Removes any qualifications from Expr. For example, for T1'(T2'(X)), this
3322 -- returns X. If Expr is not a qualified expression, returns Expr.
3324 function Unqual_Conv (Expr : Node_Id) return Node_Id;
3325 pragma Inline (Unqual_Conv);
3326 -- Similar to Unqualify, but removes qualified expressions, type
3327 -- conversions, and unchecked conversions.
3329 function Validated_View (Typ : Entity_Id) return Entity_Id;
3330 -- Obtain the "validated view" of arbitrary type Typ which is suitable for
3331 -- verification by attribute 'Valid_Scalars. This view is the type itself
3332 -- or its full view or nonlimited view, while stripping away concurrency,
3333 -- derivations, and privacy.
3335 function Visible_Ancestors (Typ : Entity_Id) return Elist_Id;
3336 -- [Ada 2012:AI-0125-1]: Collect all the visible parents and progenitors
3337 -- of a type extension or private extension declaration. If the full-view
3338 -- of private parents and progenitors is available then it is used to
3339 -- generate the list of visible ancestors; otherwise their partial
3340 -- view is added to the resulting list.
3342 function Within_Init_Proc return Boolean;
3343 -- Determines if Current_Scope is within an init proc
3345 function Within_Protected_Type (E : Entity_Id) return Boolean;
3346 -- Returns True if entity E is declared within a protected type
3348 function Within_Scope (E : Entity_Id; S : Entity_Id) return Boolean;
3349 -- Returns True if entity E is declared within scope S
3351 procedure Warn_On_Hiding_Entity
3352 (N : Node_Id;
3353 Hidden, Visible : Entity_Id;
3354 On_Use_Clause : Boolean);
3355 -- Warn on hiding of an entity, either because a new declaration hides
3356 -- an entity directly visible or potentially visible through a use_clause
3357 -- (On_Use_Clause = False), or because the entity would be potentially
3358 -- visible through a use_clause if it was now hidden by a visible
3359 -- declaration (On_Use_Clause = True). N is the node on which the warning
3360 -- is potentially issued: it is the visible entity in the former case, and
3361 -- the use_clause in the latter case.
3363 procedure Wrong_Type
3364 (Expr : Node_Id;
3365 Expected_Type : Entity_Id;
3366 Multiple : Boolean := False);
3367 -- Output error message for incorrectly typed expression. Expr is the node
3368 -- for the incorrectly typed construct (Etype (Expr) is the type found),
3369 -- and Expected_Type is the entity for the expected type. Note that Expr
3370 -- does not have to be a subexpression, anything with an Etype field may
3371 -- be used. If Multiple is False, do not output the message if an error
3372 -- has already been posted for Expr.
3374 function Yields_Synchronized_Object (Typ : Entity_Id) return Boolean;
3375 -- Determine whether type Typ "yields synchronized object" as specified by
3376 -- SPARK RM 9.1. To qualify as such, a type must be
3377 -- * An array type whose element type yields a synchronized object
3378 -- * A descendant of type Ada.Synchronous_Task_Control.Suspension_Object
3379 -- * A protected type
3380 -- * A record type or type extension without defaulted discriminants
3381 -- whose components are of a type that yields a synchronized object.
3382 -- * A synchronized interface type
3383 -- * A task type
3385 function Yields_Universal_Type (N : Node_Id) return Boolean;
3386 -- Determine whether unanalyzed node N yields a universal type
3388 procedure Preanalyze_Without_Errors (N : Node_Id);
3389 -- Preanalyze N without reporting errors
3391 package Interval_Lists is
3392 type Discrete_Interval is
3393 record
3394 Low, High : Uint;
3395 end record;
3397 type Discrete_Interval_List is
3398 array (Pos range <>) of Discrete_Interval;
3399 -- A sorted (in ascending order) list of non-empty pairwise-disjoint
3400 -- intervals, always with a gap of at least one value between
3401 -- successive intervals (i.e., mergeable intervals are merged).
3402 -- Low bound is one; high bound is nonnegative.
3404 function Aggregate_Intervals (N : Node_Id) return Discrete_Interval_List;
3405 -- Given an array aggregate N, returns the (unique) interval list
3406 -- representing the values of the aggregate choices; if all the array
3407 -- components are covered by the others choice then the length of the
3408 -- result is zero.
3410 function Choice_List_Intervals
3411 (Discrete_Choices : List_Id) return Discrete_Interval_List;
3412 -- Given a discrete choice list, returns the (unique) interval
3413 -- list representing the chosen values.
3415 function Type_Intervals (Typ : Entity_Id) return Discrete_Interval_List;
3416 -- Given a static discrete type or subtype, returns the (unique)
3417 -- interval list representing the values of the type/subtype.
3418 -- If no static predicates are involved, the length of the result
3419 -- will be at most one.
3421 function Is_Subset (Subset, Of_Set : Discrete_Interval_List)
3422 return Boolean;
3423 -- Returns True iff every value belonging to some interval of
3424 -- Subset also belongs to some interval of Of_Set.
3426 -- When we get around to implementing "is statically compatible"
3427 -- correctly for real types with static predicates, we may need
3428 -- an analogous Real_Interval_List type. Most of the language
3429 -- rules that reference "is statically compatible" pertain to
3430 -- discriminants and therefore do not require support for real types;
3431 -- the exception is 12.5.1(8).
3433 Intervals_Error : exception;
3434 -- Raised when the list of non-empty pair-wise disjoint intervals cannot
3435 -- be built.
3436 end Interval_Lists;
3438 package Old_Attr_Util is
3439 -- Operations related to 'Old attribute evaluation. This
3440 -- includes cases where a level of indirection is needed due to
3441 -- conditional evaluation as well as support for the
3442 -- "known on entry" rules.
3444 package Conditional_Evaluation is
3445 function Eligible_For_Conditional_Evaluation
3446 (Expr : Node_Id) return Boolean;
3447 -- Given a subexpression of a Postcondition expression
3448 -- (typically a 'Old attribute reference), returns True if
3449 -- - the expression is conditionally evaluated; and
3450 -- - its determining expressions are all known on entry; and
3451 -- - Ada_Version >= Ada_2022.
3452 -- See RM 6.1.1 for definitions of these terms.
3454 -- Also returns True if Expr is of an anonymous access type;
3455 -- this is just because we want the code that knows how to build
3456 -- 'Old temps in that case to reside in only one place.
3458 function Conditional_Evaluation_Condition
3459 (Expr : Node_Id) return Node_Id;
3460 -- Given an expression which is eligible for conditional evaluation,
3461 -- build a Boolean expression whose value indicates whether the
3462 -- expression should be evaluated.
3463 end Conditional_Evaluation;
3465 package Indirect_Temps is
3466 generic
3467 with procedure Append_Item (N : Node_Id; Is_Eval_Stmt : Boolean);
3468 -- If Is_Eval_Stmt is True, then N is a statement that should
3469 -- only be executed in the case where the 'Old prefix is to be
3470 -- evaluated. If Is_Eval_Stmt is False, then N is a declaration
3471 -- which should be elaborated unconditionally.
3472 -- Client is responsible for ensuring that any appended
3473 -- Eval_Stmt nodes are eventually analyzed.
3475 Append_Decls_In_Reverse_Order : Boolean := False;
3476 -- This parameter is for the convenience of exp_prag.adb, where we
3477 -- want to Prepend rather than Append so it is better to get the
3478 -- Append calls in reverse order.
3480 procedure Declare_Indirect_Temp
3481 (Attr_Prefix : Node_Id; -- prefix of 'Old attribute (or similar?)
3482 Indirect_Temp : out Entity_Id);
3483 -- Indirect_Temp is of an access type; it is unconditionally
3484 -- declared but only conditionally initialized to reference the
3485 -- saved value of Attr_Prefix.
3487 function Indirect_Temp_Needed (Typ : Entity_Id) return Boolean;
3488 -- Returns True for a specific tagged type because the temp must
3489 -- be of the class-wide type in order to preserve the underlying tag.
3491 -- Also returns True in the case of an anonymous access type
3492 -- because we want the code that knows how to deal with
3493 -- this case to reside in only one place.
3495 -- For an unconstrained-but-definite discriminated subtype, returns
3496 -- True if the potential difference in size between an
3497 -- unconstrained object and a constrained object is large.
3498 -- [This part is not implemented yet.]
3500 -- Otherwise, returns False if a declaration of the form
3501 -- Temp : Typ;
3502 -- is legal and side-effect-free (assuming that default
3503 -- initialization is suppressed). For example, returns True if Typ is
3504 -- indefinite, or if Typ has a controlled part.
3507 function Indirect_Temp_Value
3508 (Temp : Entity_Id;
3509 Typ : Entity_Id;
3510 Loc : Source_Ptr) return Node_Id;
3511 -- Evaluate a temp declared by Declare_Indirect_Temp.
3513 function Is_Access_Type_For_Indirect_Temp
3514 (T : Entity_Id) return Boolean;
3515 -- True for an access type that was declared via a call
3516 -- to Declare_Indirect_Temp.
3517 -- Indicates that the given access type should be treated
3518 -- the same with respect to finalization as a
3519 -- user-defined "comes from source" access type.
3521 end Indirect_Temps;
3522 end Old_Attr_Util;
3524 package Storage_Model_Support is
3526 -- This package provides a set of utility functions related to support
3527 -- for the Storage_Model feature. These functions provide an interface
3528 -- that the compiler (in particular back-end phases such as gigi and
3529 -- GNAT-LLVM) can use to easily obtain entities and operations that
3530 -- are specified for types that have aspects Storage_Model_Type or
3531 -- Designated_Storage_Model.
3533 function Has_Storage_Model_Type_Aspect (Typ : Entity_Id) return Boolean;
3534 -- Returns True iff Typ specifies aspect Storage_Model_Type
3536 -- WARNING: There is a matching C declaration of this subprogram in fe.h
3538 function Has_Designated_Storage_Model_Aspect
3539 (Typ : Entity_Id) return Boolean;
3540 -- Returns True iff Typ specifies aspect Designated_Storage_Model
3542 -- WARNING: There is a matching C declaration of this subprogram in fe.h
3544 function Storage_Model_Object (Typ : Entity_Id) return Entity_Id;
3545 -- Given an access type Typ with aspect Designated_Storage_Model,
3546 -- returns the storage-model object associated with that type.
3547 -- The object Entity_Ids returned by this function can be passed
3548 -- other functions declared in this interface to retrieve operations
3549 -- associated with Storage_Model_Type aspect of the object's type.
3551 -- WARNING: There is a matching C declaration of this subprogram in fe.h
3553 function Storage_Model_Type (Obj : Entity_Id) return Entity_Id;
3554 -- Given an object Obj of a type specifying aspect Storage_Model_Type,
3555 -- returns that type.
3557 function Get_Storage_Model_Type_Entity
3558 (SM_Obj_Or_Type : Entity_Id;
3559 Nam : Name_Id) return Entity_Id;
3560 -- Given a type with aspect Storage_Model_Type or an object of such a
3561 -- type, and Nam denoting the name of one of the argument kinds allowed
3562 -- for that aspect, returns the Entity_Id corresponding to the entity
3563 -- associated with Nam in the aspect. If an entity was not explicitly
3564 -- specified for Nam, then returns Empty, except that in the defaulted
3565 -- Address_Type case, System.Address will be returned, and in the
3566 -- defaulted Null_Address case, System.Null_Address will be returned.
3567 -- (Note: This function is modeled on Get_Iterable_Type_Primitive.)
3569 function Storage_Model_Address_Type
3570 (SM_Obj_Or_Type : Entity_Id) return Entity_Id;
3571 -- Given a type with aspect Storage_Model_Type or an object of such a
3572 -- type, returns the type specified for the Address_Type choice in that
3573 -- aspect; returns type System.Address if the address type was not
3574 -- explicitly specified (indicating use of the native memory model).
3576 function Storage_Model_Null_Address
3577 (SM_Obj_Or_Type : Entity_Id) return Entity_Id;
3578 -- Given a type with aspect Storage_Model_Type or an object of such a
3579 -- type, returns the constant specified for the Null_Address choice in
3580 -- that aspect; returns Empty if the constant object isn't specified,
3581 -- unless the native memory model is in use (System.Address), in which
3582 -- case it returns System.Null_Address.
3584 function Storage_Model_Allocate
3585 (SM_Obj_Or_Type : Entity_Id) return Entity_Id;
3586 -- Given a type with aspect Storage_Model_Type or an object of such a
3587 -- type, returns the procedure specified for the Allocate choice in that
3588 -- aspect; returns Empty if the procedure isn't specified.
3590 function Storage_Model_Deallocate
3591 (SM_Obj_Or_Type : Entity_Id) return Entity_Id;
3592 -- Given a type with aspect Storage_Model_Type or an object of such a
3593 -- type, returns the procedure specified for the Deallocate choice in
3594 -- that aspect; returns Empty if the procedure isn't specified.
3596 function Storage_Model_Copy_From
3597 (SM_Obj_Or_Type : Entity_Id) return Entity_Id;
3598 -- Given a type with aspect Storage_Model_Type or an object of such a
3599 -- type, returns the procedure specified for the Copy_From choice in
3600 -- that aspect; returns Empty if the procedure isn't specified.
3602 -- WARNING: There is a matching C declaration of this subprogram in fe.h
3604 function Storage_Model_Copy_To
3605 (SM_Obj_Or_Type : Entity_Id) return Entity_Id;
3606 -- Given a type with aspect Storage_Model_Type or an object of such a
3607 -- type, returns the procedure specified for the Copy_To choice in that
3608 -- aspect; returns Empty if the procedure isn't specified.
3610 -- WARNING: There is a matching C declaration of this subprogram in fe.h
3612 function Storage_Model_Storage_Size
3613 (SM_Obj_Or_Type : Entity_Id) return Entity_Id;
3614 -- Given a type with aspect Storage_Model_Type or an object of such a
3615 -- type, returns the function specified for the Storage_Size choice in
3616 -- that aspect; returns Empty if the procedure isn't specified.
3618 end Storage_Model_Support;
3620 end Sem_Util;