PR ipa/64481
[official-gcc.git] / gcc / ada / exp_pakd.adb
blobd0836118851176582265a3485bca5eba69d517a1
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- E X P _ P A K D --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Einfo; use Einfo;
29 with Errout; use Errout;
30 with Exp_Dbug; use Exp_Dbug;
31 with Exp_Util; use Exp_Util;
32 with Layout; use Layout;
33 with Lib.Xref; use Lib.Xref;
34 with Namet; use Namet;
35 with Nlists; use Nlists;
36 with Nmake; use Nmake;
37 with Opt; use Opt;
38 with Sem; use Sem;
39 with Sem_Aux; use Sem_Aux;
40 with Sem_Ch3; use Sem_Ch3;
41 with Sem_Ch8; use Sem_Ch8;
42 with Sem_Ch13; use Sem_Ch13;
43 with Sem_Eval; use Sem_Eval;
44 with Sem_Res; use Sem_Res;
45 with Sem_Util; use Sem_Util;
46 with Sinfo; use Sinfo;
47 with Snames; use Snames;
48 with Stand; use Stand;
49 with Targparm; use Targparm;
50 with Tbuild; use Tbuild;
51 with Ttypes; use Ttypes;
52 with Uintp; use Uintp;
54 package body Exp_Pakd is
56 ---------------------------
57 -- Endian Considerations --
58 ---------------------------
60 -- As described in the specification, bit numbering in a packed array
61 -- is consistent with bit numbering in a record representation clause,
62 -- and hence dependent on the endianness of the machine:
64 -- For little-endian machines, element zero is at the right hand end
65 -- (low order end) of a bit field.
67 -- For big-endian machines, element zero is at the left hand end
68 -- (high order end) of a bit field.
70 -- The shifts that are used to right justify a field therefore differ in
71 -- the two cases. For the little-endian case, we can simply use the bit
72 -- number (i.e. the element number * element size) as the count for a right
73 -- shift. For the big-endian case, we have to subtract the shift count from
74 -- an appropriate constant to use in the right shift. We use rotates
75 -- instead of shifts (which is necessary in the store case to preserve
76 -- other fields), and we expect that the backend will be able to change the
77 -- right rotate into a left rotate, avoiding the subtract, if the machine
78 -- architecture provides such an instruction.
80 -----------------------
81 -- Local Subprograms --
82 -----------------------
84 procedure Compute_Linear_Subscript
85 (Atyp : Entity_Id;
86 N : Node_Id;
87 Subscr : out Node_Id);
88 -- Given a constrained array type Atyp, and an indexed component node N
89 -- referencing an array object of this type, build an expression of type
90 -- Standard.Integer representing the zero-based linear subscript value.
91 -- This expression includes any required range checks.
93 procedure Convert_To_PAT_Type (Aexp : Node_Id);
94 -- Given an expression of a packed array type, builds a corresponding
95 -- expression whose type is the implementation type used to represent
96 -- the packed array. Aexp is analyzed and resolved on entry and on exit.
98 procedure Get_Base_And_Bit_Offset
99 (N : Node_Id;
100 Base : out Node_Id;
101 Offset : out Node_Id);
102 -- Given a node N for a name which involves a packed array reference,
103 -- return the base object of the reference and build an expression of
104 -- type Standard.Integer representing the zero-based offset in bits
105 -- from Base'Address to the first bit of the reference.
107 function Known_Aligned_Enough (Obj : Node_Id; Csiz : Nat) return Boolean;
108 -- There are two versions of the Set routines, the ones used when the
109 -- object is known to be sufficiently well aligned given the number of
110 -- bits, and the ones used when the object is not known to be aligned.
111 -- This routine is used to determine which set to use. Obj is a reference
112 -- to the object, and Csiz is the component size of the packed array.
113 -- True is returned if the alignment of object is known to be sufficient,
114 -- defined as 1 for odd bit sizes, 4 for bit sizes divisible by 4, and
115 -- 2 otherwise.
117 function Make_Shift_Left (N : Node_Id; S : Node_Id) return Node_Id;
118 -- Build a left shift node, checking for the case of a shift count of zero
120 function Make_Shift_Right (N : Node_Id; S : Node_Id) return Node_Id;
121 -- Build a right shift node, checking for the case of a shift count of zero
123 function RJ_Unchecked_Convert_To
124 (Typ : Entity_Id;
125 Expr : Node_Id) return Node_Id;
126 -- The packed array code does unchecked conversions which in some cases
127 -- may involve non-discrete types with differing sizes. The semantics of
128 -- such conversions is potentially endianness dependent, and the effect
129 -- we want here for such a conversion is to do the conversion in size as
130 -- though numeric items are involved, and we extend or truncate on the
131 -- left side. This happens naturally in the little-endian case, but in
132 -- the big endian case we can get left justification, when what we want
133 -- is right justification. This routine does the unchecked conversion in
134 -- a stepwise manner to ensure that it gives the expected result. Hence
135 -- the name (RJ = Right justified). The parameters Typ and Expr are as
136 -- for the case of a normal Unchecked_Convert_To call.
138 procedure Setup_Enumeration_Packed_Array_Reference (N : Node_Id);
139 -- This routine is called in the Get and Set case for arrays that are
140 -- packed but not bit-packed, meaning that they have at least one
141 -- subscript that is of an enumeration type with a non-standard
142 -- representation. This routine modifies the given node to properly
143 -- reference the corresponding packed array type.
145 procedure Setup_Inline_Packed_Array_Reference
146 (N : Node_Id;
147 Atyp : Entity_Id;
148 Obj : in out Node_Id;
149 Cmask : out Uint;
150 Shift : out Node_Id);
151 -- This procedure performs common processing on the N_Indexed_Component
152 -- parameter given as N, whose prefix is a reference to a packed array.
153 -- This is used for the get and set when the component size is 1, 2, 4,
154 -- or for other component sizes when the packed array type is a modular
155 -- type (i.e. the cases that are handled with inline code).
157 -- On entry:
159 -- N is the N_Indexed_Component node for the packed array reference
161 -- Atyp is the constrained array type (the actual subtype has been
162 -- computed if necessary to obtain the constraints, but this is still
163 -- the original array type, not the Packed_Array_Impl_Type value).
165 -- Obj is the object which is to be indexed. It is always of type Atyp.
167 -- On return:
169 -- Obj is the object containing the desired bit field. It is of type
170 -- Unsigned, Long_Unsigned, or Long_Long_Unsigned, and is either the
171 -- entire value, for the small static case, or the proper selected byte
172 -- from the array in the large or dynamic case. This node is analyzed
173 -- and resolved on return.
175 -- Shift is a node representing the shift count to be used in the
176 -- rotate right instruction that positions the field for access.
177 -- This node is analyzed and resolved on return.
179 -- Cmask is a mask corresponding to the width of the component field.
180 -- Its value is 2 ** Csize - 1 (e.g. 2#1111# for component size of 4).
182 -- Note: in some cases the call to this routine may generate actions
183 -- (for handling multi-use references and the generation of the packed
184 -- array type on the fly). Such actions are inserted into the tree
185 -- directly using Insert_Action.
187 function Revert_Storage_Order (N : Node_Id) return Node_Id;
188 -- Perform appropriate justification and byte ordering adjustments for N,
189 -- an element of a packed array type, when both the component type and
190 -- the enclosing packed array type have reverse scalar storage order.
191 -- On little-endian targets, the value is left justified before byte
192 -- swapping. The Etype of the returned expression is an integer type of
193 -- an appropriate power-of-2 size.
195 --------------------------
196 -- Revert_Storage_Order --
197 --------------------------
199 function Revert_Storage_Order (N : Node_Id) return Node_Id is
200 Loc : constant Source_Ptr := Sloc (N);
201 T : constant Entity_Id := Etype (N);
202 T_Size : constant Uint := RM_Size (T);
204 Swap_RE : RE_Id;
205 Swap_F : Entity_Id;
206 Swap_T : Entity_Id;
207 -- Swapping function
209 Arg : Node_Id;
210 Adjusted : Node_Id;
211 Shift : Uint;
213 begin
214 if T_Size <= 8 then
216 -- Array component size is less than a byte: no swapping needed
218 Swap_F := Empty;
219 Swap_T := RTE (RE_Unsigned_8);
221 else
222 -- Select byte swapping function depending on array component size
224 if T_Size <= 16 then
225 Swap_RE := RE_Bswap_16;
227 elsif T_Size <= 32 then
228 Swap_RE := RE_Bswap_32;
230 else pragma Assert (T_Size <= 64);
231 Swap_RE := RE_Bswap_64;
232 end if;
234 Swap_F := RTE (Swap_RE);
235 Swap_T := Etype (Swap_F);
237 end if;
239 Shift := Esize (Swap_T) - T_Size;
241 Arg := RJ_Unchecked_Convert_To (Swap_T, N);
243 if not Bytes_Big_Endian and then Shift > Uint_0 then
244 Arg :=
245 Make_Op_Shift_Left (Loc,
246 Left_Opnd => Arg,
247 Right_Opnd => Make_Integer_Literal (Loc, Shift));
248 end if;
250 if Present (Swap_F) then
251 Adjusted :=
252 Make_Function_Call (Loc,
253 Name => New_Occurrence_Of (Swap_F, Loc),
254 Parameter_Associations => New_List (Arg));
255 else
256 Adjusted := Arg;
257 end if;
259 Set_Etype (Adjusted, Swap_T);
260 return Adjusted;
261 end Revert_Storage_Order;
263 ------------------------------
264 -- Compute_Linear_Subscript --
265 ------------------------------
267 procedure Compute_Linear_Subscript
268 (Atyp : Entity_Id;
269 N : Node_Id;
270 Subscr : out Node_Id)
272 Loc : constant Source_Ptr := Sloc (N);
273 Oldsub : Node_Id;
274 Newsub : Node_Id;
275 Indx : Node_Id;
276 Styp : Entity_Id;
278 begin
279 Subscr := Empty;
281 -- Loop through dimensions
283 Indx := First_Index (Atyp);
284 Oldsub := First (Expressions (N));
286 while Present (Indx) loop
287 Styp := Etype (Indx);
288 Newsub := Relocate_Node (Oldsub);
290 -- Get expression for the subscript value. First, if Do_Range_Check
291 -- is set on a subscript, then we must do a range check against the
292 -- original bounds (not the bounds of the packed array type). We do
293 -- this by introducing a subtype conversion.
295 if Do_Range_Check (Newsub)
296 and then Etype (Newsub) /= Styp
297 then
298 Newsub := Convert_To (Styp, Newsub);
299 end if;
301 -- Now evolve the expression for the subscript. First convert
302 -- the subscript to be zero based and of an integer type.
304 -- Case of integer type, where we just subtract to get lower bound
306 if Is_Integer_Type (Styp) then
308 -- If length of integer type is smaller than standard integer,
309 -- then we convert to integer first, then do the subtract
311 -- Integer (subscript) - Integer (Styp'First)
313 if Esize (Styp) < Esize (Standard_Integer) then
314 Newsub :=
315 Make_Op_Subtract (Loc,
316 Left_Opnd => Convert_To (Standard_Integer, Newsub),
317 Right_Opnd =>
318 Convert_To (Standard_Integer,
319 Make_Attribute_Reference (Loc,
320 Prefix => New_Occurrence_Of (Styp, Loc),
321 Attribute_Name => Name_First)));
323 -- For larger integer types, subtract first, then convert to
324 -- integer, this deals with strange long long integer bounds.
326 -- Integer (subscript - Styp'First)
328 else
329 Newsub :=
330 Convert_To (Standard_Integer,
331 Make_Op_Subtract (Loc,
332 Left_Opnd => Newsub,
333 Right_Opnd =>
334 Make_Attribute_Reference (Loc,
335 Prefix => New_Occurrence_Of (Styp, Loc),
336 Attribute_Name => Name_First)));
337 end if;
339 -- For the enumeration case, we have to use 'Pos to get the value
340 -- to work with before subtracting the lower bound.
342 -- Integer (Styp'Pos (subscr)) - Integer (Styp'Pos (Styp'First));
344 -- This is not quite right for bizarre cases where the size of the
345 -- enumeration type is > Integer'Size bits due to rep clause ???
347 else
348 pragma Assert (Is_Enumeration_Type (Styp));
350 Newsub :=
351 Make_Op_Subtract (Loc,
352 Left_Opnd => Convert_To (Standard_Integer,
353 Make_Attribute_Reference (Loc,
354 Prefix => New_Occurrence_Of (Styp, Loc),
355 Attribute_Name => Name_Pos,
356 Expressions => New_List (Newsub))),
358 Right_Opnd =>
359 Convert_To (Standard_Integer,
360 Make_Attribute_Reference (Loc,
361 Prefix => New_Occurrence_Of (Styp, Loc),
362 Attribute_Name => Name_Pos,
363 Expressions => New_List (
364 Make_Attribute_Reference (Loc,
365 Prefix => New_Occurrence_Of (Styp, Loc),
366 Attribute_Name => Name_First)))));
367 end if;
369 Set_Paren_Count (Newsub, 1);
371 -- For the first subscript, we just copy that subscript value
373 if No (Subscr) then
374 Subscr := Newsub;
376 -- Otherwise, we must multiply what we already have by the current
377 -- stride and then add in the new value to the evolving subscript.
379 else
380 Subscr :=
381 Make_Op_Add (Loc,
382 Left_Opnd =>
383 Make_Op_Multiply (Loc,
384 Left_Opnd => Subscr,
385 Right_Opnd =>
386 Make_Attribute_Reference (Loc,
387 Attribute_Name => Name_Range_Length,
388 Prefix => New_Occurrence_Of (Styp, Loc))),
389 Right_Opnd => Newsub);
390 end if;
392 -- Move to next subscript
394 Next_Index (Indx);
395 Next (Oldsub);
396 end loop;
397 end Compute_Linear_Subscript;
399 -------------------------
400 -- Convert_To_PAT_Type --
401 -------------------------
403 -- The PAT is always obtained from the actual subtype
405 procedure Convert_To_PAT_Type (Aexp : Node_Id) is
406 Act_ST : Entity_Id;
408 begin
409 Convert_To_Actual_Subtype (Aexp);
410 Act_ST := Underlying_Type (Etype (Aexp));
411 Create_Packed_Array_Impl_Type (Act_ST);
413 -- Just replace the etype with the packed array type. This works because
414 -- the expression will not be further analyzed, and Gigi considers the
415 -- two types equivalent in any case.
417 -- This is not strictly the case ??? If the reference is an actual in
418 -- call, the expansion of the prefix is delayed, and must be reanalyzed,
419 -- see Reset_Packed_Prefix. On the other hand, if the prefix is a simple
420 -- array reference, reanalysis can produce spurious type errors when the
421 -- PAT type is replaced again with the original type of the array. Same
422 -- for the case of a dereference. Ditto for function calls: expansion
423 -- may introduce additional actuals which will trigger errors if call is
424 -- reanalyzed. The following is correct and minimal, but the handling of
425 -- more complex packed expressions in actuals is confused. Probably the
426 -- problem only remains for actuals in calls.
428 Set_Etype (Aexp, Packed_Array_Impl_Type (Act_ST));
430 if Is_Entity_Name (Aexp)
431 or else
432 (Nkind (Aexp) = N_Indexed_Component
433 and then Is_Entity_Name (Prefix (Aexp)))
434 or else Nkind_In (Aexp, N_Explicit_Dereference, N_Function_Call)
435 then
436 Set_Analyzed (Aexp);
437 end if;
438 end Convert_To_PAT_Type;
440 -----------------------------------
441 -- Create_Packed_Array_Impl_Type --
442 -----------------------------------
444 procedure Create_Packed_Array_Impl_Type (Typ : Entity_Id) is
445 Loc : constant Source_Ptr := Sloc (Typ);
446 Ctyp : constant Entity_Id := Component_Type (Typ);
447 Csize : constant Uint := Component_Size (Typ);
449 Ancest : Entity_Id;
450 PB_Type : Entity_Id;
451 PASize : Uint;
452 Decl : Node_Id;
453 PAT : Entity_Id;
454 Len_Dim : Node_Id;
455 Len_Expr : Node_Id;
456 Len_Bits : Uint;
457 Bits_U1 : Node_Id;
458 PAT_High : Node_Id;
459 Btyp : Entity_Id;
460 Lit : Node_Id;
462 procedure Install_PAT;
463 -- This procedure is called with Decl set to the declaration for the
464 -- packed array type. It creates the type and installs it as required.
466 procedure Set_PB_Type;
467 -- Sets PB_Type to Packed_Bytes{1,2,4} as required by the alignment
468 -- requirements (see documentation in the spec of this package).
470 -----------------
471 -- Install_PAT --
472 -----------------
474 procedure Install_PAT is
475 Pushed_Scope : Boolean := False;
477 begin
478 -- We do not want to put the declaration we have created in the tree
479 -- since it is often hard, and sometimes impossible to find a proper
480 -- place for it (the impossible case arises for a packed array type
481 -- with bounds depending on the discriminant, a declaration cannot
482 -- be put inside the record, and the reference to the discriminant
483 -- cannot be outside the record).
485 -- The solution is to analyze the declaration while temporarily
486 -- attached to the tree at an appropriate point, and then we install
487 -- the resulting type as an Itype in the packed array type field of
488 -- the original type, so that no explicit declaration is required.
490 -- Note: the packed type is created in the scope of its parent type.
491 -- There are at least some cases where the current scope is deeper,
492 -- and so when this is the case, we temporarily reset the scope
493 -- for the definition. This is clearly safe, since the first use
494 -- of the packed array type will be the implicit reference from
495 -- the corresponding unpacked type when it is elaborated.
497 if Is_Itype (Typ) then
498 Set_Parent (Decl, Associated_Node_For_Itype (Typ));
499 else
500 Set_Parent (Decl, Declaration_Node (Typ));
501 end if;
503 if Scope (Typ) /= Current_Scope then
504 Push_Scope (Scope (Typ));
505 Pushed_Scope := True;
506 end if;
508 Set_Is_Itype (PAT, True);
509 Set_Packed_Array_Impl_Type (Typ, PAT);
510 Analyze (Decl, Suppress => All_Checks);
512 if Pushed_Scope then
513 Pop_Scope;
514 end if;
516 -- Set Esize and RM_Size to the actual size of the packed object
517 -- Do not reset RM_Size if already set, as happens in the case of
518 -- a modular type.
520 if Unknown_Esize (PAT) then
521 Set_Esize (PAT, PASize);
522 end if;
524 if Unknown_RM_Size (PAT) then
525 Set_RM_Size (PAT, PASize);
526 end if;
528 Adjust_Esize_Alignment (PAT);
530 -- Set remaining fields of packed array type
532 Init_Alignment (PAT);
533 Set_Parent (PAT, Empty);
534 Set_Associated_Node_For_Itype (PAT, Typ);
535 Set_Is_Packed_Array_Impl_Type (PAT, True);
536 Set_Original_Array_Type (PAT, Typ);
538 -- For a non-bit-packed array, propagate reverse storage order
539 -- flag from original base type to packed array base type.
541 if not Is_Bit_Packed_Array (Typ) then
542 Set_Reverse_Storage_Order
543 (Etype (PAT), Reverse_Storage_Order (Base_Type (Typ)));
544 end if;
546 -- We definitely do not want to delay freezing for packed array
547 -- types. This is of particular importance for the itypes that are
548 -- generated for record components depending on discriminants where
549 -- there is no place to put the freeze node.
551 Set_Has_Delayed_Freeze (PAT, False);
552 Set_Has_Delayed_Freeze (Etype (PAT), False);
554 -- If we did allocate a freeze node, then clear out the reference
555 -- since it is obsolete (should we delete the freeze node???)
557 Set_Freeze_Node (PAT, Empty);
558 Set_Freeze_Node (Etype (PAT), Empty);
559 end Install_PAT;
561 -----------------
562 -- Set_PB_Type --
563 -----------------
565 procedure Set_PB_Type is
566 begin
567 -- If the user has specified an explicit alignment for the
568 -- type or component, take it into account.
570 if Csize <= 2 or else Csize = 4 or else Csize mod 2 /= 0
571 or else Alignment (Typ) = 1
572 or else Component_Alignment (Typ) = Calign_Storage_Unit
573 then
574 PB_Type := RTE (RE_Packed_Bytes1);
576 elsif Csize mod 4 /= 0
577 or else Alignment (Typ) = 2
578 then
579 PB_Type := RTE (RE_Packed_Bytes2);
581 else
582 PB_Type := RTE (RE_Packed_Bytes4);
583 end if;
584 end Set_PB_Type;
586 -- Start of processing for Create_Packed_Array_Impl_Type
588 begin
589 -- If we already have a packed array type, nothing to do
591 if Present (Packed_Array_Impl_Type (Typ)) then
592 return;
593 end if;
595 -- If our immediate ancestor subtype is constrained, and it already
596 -- has a packed array type, then just share the same type, since the
597 -- bounds must be the same. If the ancestor is not an array type but
598 -- a private type, as can happen with multiple instantiations, create
599 -- a new packed type, to avoid privacy issues.
601 if Ekind (Typ) = E_Array_Subtype then
602 Ancest := Ancestor_Subtype (Typ);
604 if Present (Ancest)
605 and then Is_Array_Type (Ancest)
606 and then Is_Constrained (Ancest)
607 and then Present (Packed_Array_Impl_Type (Ancest))
608 then
609 Set_Packed_Array_Impl_Type (Typ, Packed_Array_Impl_Type (Ancest));
610 return;
611 end if;
612 end if;
614 -- We preset the result type size from the size of the original array
615 -- type, since this size clearly belongs to the packed array type. The
616 -- size of the conceptual unpacked type is always set to unknown.
618 PASize := RM_Size (Typ);
620 -- Case of an array where at least one index is of an enumeration
621 -- type with a non-standard representation, but the component size
622 -- is not appropriate for bit packing. This is the case where we
623 -- have Is_Packed set (we would never be in this unit otherwise),
624 -- but Is_Bit_Packed_Array is false.
626 -- Note that if the component size is appropriate for bit packing,
627 -- then the circuit for the computation of the subscript properly
628 -- deals with the non-standard enumeration type case by taking the
629 -- Pos anyway.
631 if not Is_Bit_Packed_Array (Typ) then
633 -- Here we build a declaration:
635 -- type tttP is array (index1, index2, ...) of component_type
637 -- where index1, index2, are the index types. These are the same
638 -- as the index types of the original array, except for the non-
639 -- standard representation enumeration type case, where we have
640 -- two subcases.
642 -- For the unconstrained array case, we use
644 -- Natural range <>
646 -- For the constrained case, we use
648 -- Natural range Enum_Type'Pos (Enum_Type'First) ..
649 -- Enum_Type'Pos (Enum_Type'Last);
651 -- Note that tttP is created even if no index subtype is a non
652 -- standard enumeration, because we still need to remove padding
653 -- normally inserted for component alignment.
655 PAT :=
656 Make_Defining_Identifier (Loc,
657 Chars => New_External_Name (Chars (Typ), 'P'));
659 Set_Packed_Array_Impl_Type (Typ, PAT);
661 declare
662 Indexes : constant List_Id := New_List;
663 Indx : Node_Id;
664 Indx_Typ : Entity_Id;
665 Enum_Case : Boolean;
666 Typedef : Node_Id;
668 begin
669 Indx := First_Index (Typ);
671 while Present (Indx) loop
672 Indx_Typ := Etype (Indx);
674 Enum_Case := Is_Enumeration_Type (Indx_Typ)
675 and then Has_Non_Standard_Rep (Indx_Typ);
677 -- Unconstrained case
679 if not Is_Constrained (Typ) then
680 if Enum_Case then
681 Indx_Typ := Standard_Natural;
682 end if;
684 Append_To (Indexes, New_Occurrence_Of (Indx_Typ, Loc));
686 -- Constrained case
688 else
689 if not Enum_Case then
690 Append_To (Indexes, New_Occurrence_Of (Indx_Typ, Loc));
692 else
693 Append_To (Indexes,
694 Make_Subtype_Indication (Loc,
695 Subtype_Mark =>
696 New_Occurrence_Of (Standard_Natural, Loc),
697 Constraint =>
698 Make_Range_Constraint (Loc,
699 Range_Expression =>
700 Make_Range (Loc,
701 Low_Bound =>
702 Make_Attribute_Reference (Loc,
703 Prefix =>
704 New_Occurrence_Of (Indx_Typ, Loc),
705 Attribute_Name => Name_Pos,
706 Expressions => New_List (
707 Make_Attribute_Reference (Loc,
708 Prefix =>
709 New_Occurrence_Of (Indx_Typ, Loc),
710 Attribute_Name => Name_First))),
712 High_Bound =>
713 Make_Attribute_Reference (Loc,
714 Prefix =>
715 New_Occurrence_Of (Indx_Typ, Loc),
716 Attribute_Name => Name_Pos,
717 Expressions => New_List (
718 Make_Attribute_Reference (Loc,
719 Prefix =>
720 New_Occurrence_Of (Indx_Typ, Loc),
721 Attribute_Name => Name_Last)))))));
723 end if;
724 end if;
726 Next_Index (Indx);
727 end loop;
729 if not Is_Constrained (Typ) then
730 Typedef :=
731 Make_Unconstrained_Array_Definition (Loc,
732 Subtype_Marks => Indexes,
733 Component_Definition =>
734 Make_Component_Definition (Loc,
735 Aliased_Present => False,
736 Subtype_Indication =>
737 New_Occurrence_Of (Ctyp, Loc)));
739 else
740 Typedef :=
741 Make_Constrained_Array_Definition (Loc,
742 Discrete_Subtype_Definitions => Indexes,
743 Component_Definition =>
744 Make_Component_Definition (Loc,
745 Aliased_Present => False,
746 Subtype_Indication =>
747 New_Occurrence_Of (Ctyp, Loc)));
748 end if;
750 Decl :=
751 Make_Full_Type_Declaration (Loc,
752 Defining_Identifier => PAT,
753 Type_Definition => Typedef);
754 end;
756 -- Set type as packed array type and install it
758 Set_Is_Packed_Array_Impl_Type (PAT);
759 Install_PAT;
760 return;
762 -- Case of bit-packing required for unconstrained array. We create
763 -- a subtype that is equivalent to use Packed_Bytes{1,2,4} as needed.
765 elsif not Is_Constrained (Typ) then
767 -- When generating standard DWARF, the ___XP suffix will be stripped
768 -- by the back-end but generate it anyway to ease compiler debugging.
769 -- This will help to distinguish implementation types from original
770 -- packed arrays.
772 PAT :=
773 Make_Defining_Identifier (Loc,
774 Chars => Make_Packed_Array_Impl_Type_Name (Typ, Csize));
776 Set_Packed_Array_Impl_Type (Typ, PAT);
777 Set_PB_Type;
779 Decl :=
780 Make_Subtype_Declaration (Loc,
781 Defining_Identifier => PAT,
782 Subtype_Indication => New_Occurrence_Of (PB_Type, Loc));
783 Install_PAT;
784 return;
786 -- Remaining code is for the case of bit-packing for constrained array
788 -- The name of the packed array subtype is
790 -- ttt___XPsss
792 -- where sss is the component size in bits and ttt is the name of
793 -- the parent packed type.
795 else
796 PAT :=
797 Make_Defining_Identifier (Loc,
798 Chars => Make_Packed_Array_Impl_Type_Name (Typ, Csize));
800 Set_Packed_Array_Impl_Type (Typ, PAT);
802 -- Build an expression for the length of the array in bits.
803 -- This is the product of the length of each of the dimensions
805 declare
806 J : Nat := 1;
808 begin
809 Len_Expr := Empty; -- suppress junk warning
811 loop
812 Len_Dim :=
813 Make_Attribute_Reference (Loc,
814 Attribute_Name => Name_Length,
815 Prefix => New_Occurrence_Of (Typ, Loc),
816 Expressions => New_List (
817 Make_Integer_Literal (Loc, J)));
819 if J = 1 then
820 Len_Expr := Len_Dim;
822 else
823 Len_Expr :=
824 Make_Op_Multiply (Loc,
825 Left_Opnd => Len_Expr,
826 Right_Opnd => Len_Dim);
827 end if;
829 J := J + 1;
830 exit when J > Number_Dimensions (Typ);
831 end loop;
832 end;
834 -- Temporarily attach the length expression to the tree and analyze
835 -- and resolve it, so that we can test its value. We assume that the
836 -- total length fits in type Integer. This expression may involve
837 -- discriminants, so we treat it as a default/per-object expression.
839 Set_Parent (Len_Expr, Typ);
840 Preanalyze_Spec_Expression (Len_Expr, Standard_Long_Long_Integer);
842 -- Use a modular type if possible. We can do this if we have
843 -- static bounds, and the length is small enough, and the length
844 -- is not zero. We exclude the zero length case because the size
845 -- of things is always at least one, and the zero length object
846 -- would have an anomalous size.
848 if Compile_Time_Known_Value (Len_Expr) then
849 Len_Bits := Expr_Value (Len_Expr) * Csize;
851 -- Check for size known to be too large
853 if Len_Bits >
854 Uint_2 ** (Standard_Integer_Size - 1) * System_Storage_Unit
855 then
856 if System_Storage_Unit = 8 then
857 Error_Msg_N
858 ("packed array size cannot exceed " &
859 "Integer''Last bytes", Typ);
860 else
861 Error_Msg_N
862 ("packed array size cannot exceed " &
863 "Integer''Last storage units", Typ);
864 end if;
866 -- Reset length to arbitrary not too high value to continue
868 Len_Expr := Make_Integer_Literal (Loc, 65535);
869 Analyze_And_Resolve (Len_Expr, Standard_Long_Long_Integer);
870 end if;
872 -- We normally consider small enough to mean no larger than the
873 -- value of System_Max_Binary_Modulus_Power, checking that in the
874 -- case of values longer than word size, we have long shifts.
876 if Len_Bits > 0
877 and then
878 (Len_Bits <= System_Word_Size
879 or else (Len_Bits <= System_Max_Binary_Modulus_Power
880 and then Support_Long_Shifts_On_Target))
881 then
882 -- We can use the modular type, it has the form:
884 -- subtype tttPn is btyp
885 -- range 0 .. 2 ** ((Typ'Length (1)
886 -- * ... * Typ'Length (n)) * Csize) - 1;
888 -- The bounds are statically known, and btyp is one of the
889 -- unsigned types, depending on the length.
891 if Len_Bits <= Standard_Short_Short_Integer_Size then
892 Btyp := RTE (RE_Short_Short_Unsigned);
894 elsif Len_Bits <= Standard_Short_Integer_Size then
895 Btyp := RTE (RE_Short_Unsigned);
897 elsif Len_Bits <= Standard_Integer_Size then
898 Btyp := RTE (RE_Unsigned);
900 elsif Len_Bits <= Standard_Long_Integer_Size then
901 Btyp := RTE (RE_Long_Unsigned);
903 else
904 Btyp := RTE (RE_Long_Long_Unsigned);
905 end if;
907 Lit := Make_Integer_Literal (Loc, 2 ** Len_Bits - 1);
908 Set_Print_In_Hex (Lit);
910 Decl :=
911 Make_Subtype_Declaration (Loc,
912 Defining_Identifier => PAT,
913 Subtype_Indication =>
914 Make_Subtype_Indication (Loc,
915 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
917 Constraint =>
918 Make_Range_Constraint (Loc,
919 Range_Expression =>
920 Make_Range (Loc,
921 Low_Bound =>
922 Make_Integer_Literal (Loc, 0),
923 High_Bound => Lit))));
925 if PASize = Uint_0 then
926 PASize := Len_Bits;
927 end if;
929 Install_PAT;
931 -- Propagate a given alignment to the modular type. This can
932 -- cause it to be under-aligned, but that's OK.
934 if Present (Alignment_Clause (Typ)) then
935 Set_Alignment (PAT, Alignment (Typ));
936 end if;
938 return;
939 end if;
940 end if;
942 -- Could not use a modular type, for all other cases, we build
943 -- a packed array subtype:
945 -- subtype tttPn is
946 -- System.Packed_Bytes{1,2,4} (0 .. (Bits + 7) / 8 - 1);
948 -- Bits is the length of the array in bits
950 Set_PB_Type;
952 Bits_U1 :=
953 Make_Op_Add (Loc,
954 Left_Opnd =>
955 Make_Op_Multiply (Loc,
956 Left_Opnd =>
957 Make_Integer_Literal (Loc, Csize),
958 Right_Opnd => Len_Expr),
960 Right_Opnd =>
961 Make_Integer_Literal (Loc, 7));
963 Set_Paren_Count (Bits_U1, 1);
965 PAT_High :=
966 Make_Op_Subtract (Loc,
967 Left_Opnd =>
968 Make_Op_Divide (Loc,
969 Left_Opnd => Bits_U1,
970 Right_Opnd => Make_Integer_Literal (Loc, 8)),
971 Right_Opnd => Make_Integer_Literal (Loc, 1));
973 Decl :=
974 Make_Subtype_Declaration (Loc,
975 Defining_Identifier => PAT,
976 Subtype_Indication =>
977 Make_Subtype_Indication (Loc,
978 Subtype_Mark => New_Occurrence_Of (PB_Type, Loc),
979 Constraint =>
980 Make_Index_Or_Discriminant_Constraint (Loc,
981 Constraints => New_List (
982 Make_Range (Loc,
983 Low_Bound =>
984 Make_Integer_Literal (Loc, 0),
985 High_Bound =>
986 Convert_To (Standard_Integer, PAT_High))))));
988 Install_PAT;
990 -- Currently the code in this unit requires that packed arrays
991 -- represented by non-modular arrays of bytes be on a byte
992 -- boundary for bit sizes handled by System.Pack_nn units.
993 -- That's because these units assume the array being accessed
994 -- starts on a byte boundary.
996 if Get_Id (UI_To_Int (Csize)) /= RE_Null then
997 Set_Must_Be_On_Byte_Boundary (Typ);
998 end if;
999 end if;
1000 end Create_Packed_Array_Impl_Type;
1002 -----------------------------------
1003 -- Expand_Bit_Packed_Element_Set --
1004 -----------------------------------
1006 procedure Expand_Bit_Packed_Element_Set (N : Node_Id) is
1007 Loc : constant Source_Ptr := Sloc (N);
1008 Lhs : constant Node_Id := Name (N);
1010 Ass_OK : constant Boolean := Assignment_OK (Lhs);
1011 -- Used to preserve assignment OK status when assignment is rewritten
1013 Rhs : Node_Id := Expression (N);
1014 -- Initially Rhs is the right hand side value, it will be replaced
1015 -- later by an appropriate unchecked conversion for the assignment.
1017 Obj : Node_Id;
1018 Atyp : Entity_Id;
1019 PAT : Entity_Id;
1020 Ctyp : Entity_Id;
1021 Csiz : Int;
1022 Cmask : Uint;
1024 Shift : Node_Id;
1025 -- The expression for the shift value that is required
1027 Shift_Used : Boolean := False;
1028 -- Set True if Shift has been used in the generated code at least once,
1029 -- so that it must be duplicated if used again.
1031 New_Lhs : Node_Id;
1032 New_Rhs : Node_Id;
1034 Rhs_Val_Known : Boolean;
1035 Rhs_Val : Uint;
1036 -- If the value of the right hand side as an integer constant is
1037 -- known at compile time, Rhs_Val_Known is set True, and Rhs_Val
1038 -- contains the value. Otherwise Rhs_Val_Known is set False, and
1039 -- the Rhs_Val is undefined.
1041 function Get_Shift return Node_Id;
1042 -- Function used to get the value of Shift, making sure that it
1043 -- gets duplicated if the function is called more than once.
1045 ---------------
1046 -- Get_Shift --
1047 ---------------
1049 function Get_Shift return Node_Id is
1050 begin
1051 -- If we used the shift value already, then duplicate it. We
1052 -- set a temporary parent in case actions have to be inserted.
1054 if Shift_Used then
1055 Set_Parent (Shift, N);
1056 return Duplicate_Subexpr_No_Checks (Shift);
1058 -- If first time, use Shift unchanged, and set flag for first use
1060 else
1061 Shift_Used := True;
1062 return Shift;
1063 end if;
1064 end Get_Shift;
1066 -- Start of processing for Expand_Bit_Packed_Element_Set
1068 begin
1069 pragma Assert (Is_Bit_Packed_Array (Etype (Prefix (Lhs))));
1071 Obj := Relocate_Node (Prefix (Lhs));
1072 Convert_To_Actual_Subtype (Obj);
1073 Atyp := Etype (Obj);
1074 PAT := Packed_Array_Impl_Type (Atyp);
1075 Ctyp := Component_Type (Atyp);
1076 Csiz := UI_To_Int (Component_Size (Atyp));
1078 -- We remove side effects, in case the rhs modifies the lhs, because we
1079 -- are about to transform the rhs into an expression that first READS
1080 -- the lhs, so we can do the necessary shifting and masking. Example:
1081 -- "X(2) := F(...);" where F modifies X(3). Otherwise, the side effect
1082 -- will be lost.
1084 Remove_Side_Effects (Rhs);
1086 -- We convert the right hand side to the proper subtype to ensure
1087 -- that an appropriate range check is made (since the normal range
1088 -- check from assignment will be lost in the transformations). This
1089 -- conversion is analyzed immediately so that subsequent processing
1090 -- can work with an analyzed Rhs (and e.g. look at its Etype)
1092 -- If the right-hand side is a string literal, create a temporary for
1093 -- it, constant-folding is not ready to wrap the bit representation
1094 -- of a string literal.
1096 if Nkind (Rhs) = N_String_Literal then
1097 declare
1098 Decl : Node_Id;
1099 begin
1100 Decl :=
1101 Make_Object_Declaration (Loc,
1102 Defining_Identifier => Make_Temporary (Loc, 'T', Rhs),
1103 Object_Definition => New_Occurrence_Of (Ctyp, Loc),
1104 Expression => New_Copy_Tree (Rhs));
1106 Insert_Actions (N, New_List (Decl));
1107 Rhs := New_Occurrence_Of (Defining_Identifier (Decl), Loc);
1108 end;
1109 end if;
1111 Rhs := Convert_To (Ctyp, Rhs);
1112 Set_Parent (Rhs, N);
1114 -- If we are building the initialization procedure for a packed array,
1115 -- and Initialize_Scalars is enabled, each component assignment is an
1116 -- out-of-range value by design. Compile this value without checks,
1117 -- because a call to the array init_proc must not raise an exception.
1119 -- Condition is not consistent with description above, Within_Init_Proc
1120 -- is True also when we are building the IP for a record or protected
1121 -- type that has a packed array component???
1123 if Within_Init_Proc
1124 and then Initialize_Scalars
1125 then
1126 Analyze_And_Resolve (Rhs, Ctyp, Suppress => All_Checks);
1127 else
1128 Analyze_And_Resolve (Rhs, Ctyp);
1129 end if;
1131 -- For the AAMP target, indexing of certain packed array is passed
1132 -- through to the back end without expansion, because the expansion
1133 -- results in very inefficient code on that target. This allows the
1134 -- GNAAMP back end to generate specialized macros that support more
1135 -- efficient indexing of packed arrays with components having sizes
1136 -- that are small powers of two.
1138 if AAMP_On_Target
1139 and then (Csiz = 1 or else Csiz = 2 or else Csiz = 4)
1140 then
1141 return;
1142 end if;
1144 -- Case of component size 1,2,4 or any component size for the modular
1145 -- case. These are the cases for which we can inline the code.
1147 if Csiz = 1 or else Csiz = 2 or else Csiz = 4
1148 or else (Present (PAT) and then Is_Modular_Integer_Type (PAT))
1149 then
1150 Setup_Inline_Packed_Array_Reference (Lhs, Atyp, Obj, Cmask, Shift);
1152 -- The statement to be generated is:
1154 -- Obj := atyp!((Obj and Mask1) or (shift_left (rhs, Shift)))
1156 -- or in the case of a freestanding Reverse_Storage_Order object,
1158 -- Obj := Swap (atyp!((Swap (Obj) and Mask1)
1159 -- or (shift_left (rhs, Shift))))
1161 -- where Mask1 is obtained by shifting Cmask left Shift bits
1162 -- and then complementing the result.
1164 -- the "and Mask1" is omitted if rhs is constant and all 1 bits
1166 -- the "or ..." is omitted if rhs is constant and all 0 bits
1168 -- rhs is converted to the appropriate type
1170 -- The result is converted back to the array type, since
1171 -- otherwise we lose knowledge of the packed nature.
1173 -- Determine if right side is all 0 bits or all 1 bits
1175 if Compile_Time_Known_Value (Rhs) then
1176 Rhs_Val := Expr_Rep_Value (Rhs);
1177 Rhs_Val_Known := True;
1179 -- The following test catches the case of an unchecked conversion of
1180 -- an integer literal. This results from optimizing aggregates of
1181 -- packed types.
1183 elsif Nkind (Rhs) = N_Unchecked_Type_Conversion
1184 and then Compile_Time_Known_Value (Expression (Rhs))
1185 then
1186 Rhs_Val := Expr_Rep_Value (Expression (Rhs));
1187 Rhs_Val_Known := True;
1189 else
1190 Rhs_Val := No_Uint;
1191 Rhs_Val_Known := False;
1192 end if;
1194 -- Some special checks for the case where the right hand value is
1195 -- known at compile time. Basically we have to take care of the
1196 -- implicit conversion to the subtype of the component object.
1198 if Rhs_Val_Known then
1200 -- If we have a biased component type then we must manually do the
1201 -- biasing, since we are taking responsibility in this case for
1202 -- constructing the exact bit pattern to be used.
1204 if Has_Biased_Representation (Ctyp) then
1205 Rhs_Val := Rhs_Val - Expr_Rep_Value (Type_Low_Bound (Ctyp));
1206 end if;
1208 -- For a negative value, we manually convert the two's complement
1209 -- value to a corresponding unsigned value, so that the proper
1210 -- field width is maintained. If we did not do this, we would
1211 -- get too many leading sign bits later on.
1213 if Rhs_Val < 0 then
1214 Rhs_Val := 2 ** UI_From_Int (Csiz) + Rhs_Val;
1215 end if;
1216 end if;
1218 -- Now create copies removing side effects. Note that in some complex
1219 -- cases, this may cause the fact that we have already set a packed
1220 -- array type on Obj to get lost. So we save the type of Obj, and
1221 -- make sure it is reset properly.
1223 New_Lhs := Duplicate_Subexpr (Obj, Name_Req => True);
1224 New_Rhs := Duplicate_Subexpr_No_Checks (Obj);
1226 -- First we deal with the "and"
1228 if not Rhs_Val_Known or else Rhs_Val /= Cmask then
1229 declare
1230 Mask1 : Node_Id;
1231 Lit : Node_Id;
1233 begin
1234 if Compile_Time_Known_Value (Shift) then
1235 Mask1 :=
1236 Make_Integer_Literal (Loc,
1237 Modulus (Etype (Obj)) - 1 -
1238 (Cmask * (2 ** Expr_Value (Get_Shift))));
1239 Set_Print_In_Hex (Mask1);
1241 else
1242 Lit := Make_Integer_Literal (Loc, Cmask);
1243 Set_Print_In_Hex (Lit);
1244 Mask1 :=
1245 Make_Op_Not (Loc,
1246 Right_Opnd => Make_Shift_Left (Lit, Get_Shift));
1247 end if;
1249 New_Rhs :=
1250 Make_Op_And (Loc,
1251 Left_Opnd => New_Rhs,
1252 Right_Opnd => Mask1);
1253 end;
1254 end if;
1256 -- Then deal with the "or"
1258 if not Rhs_Val_Known or else Rhs_Val /= 0 then
1259 declare
1260 Or_Rhs : Node_Id;
1262 procedure Fixup_Rhs;
1263 -- Adjust Rhs by bias if biased representation for components
1264 -- or remove extraneous high order sign bits if signed.
1266 procedure Fixup_Rhs is
1267 Etyp : constant Entity_Id := Etype (Rhs);
1269 begin
1270 -- For biased case, do the required biasing by simply
1271 -- converting to the biased subtype (the conversion
1272 -- will generate the required bias).
1274 if Has_Biased_Representation (Ctyp) then
1275 Rhs := Convert_To (Ctyp, Rhs);
1277 -- For a signed integer type that is not biased, generate
1278 -- a conversion to unsigned to strip high order sign bits.
1280 elsif Is_Signed_Integer_Type (Ctyp) then
1281 Rhs := Unchecked_Convert_To (RTE (Bits_Id (Csiz)), Rhs);
1282 end if;
1284 -- Set Etype, since it can be referenced before the node is
1285 -- completely analyzed.
1287 Set_Etype (Rhs, Etyp);
1289 -- We now need to do an unchecked conversion of the
1290 -- result to the target type, but it is important that
1291 -- this conversion be a right justified conversion and
1292 -- not a left justified conversion.
1294 Rhs := RJ_Unchecked_Convert_To (Etype (Obj), Rhs);
1295 end Fixup_Rhs;
1297 begin
1298 if Rhs_Val_Known
1299 and then Compile_Time_Known_Value (Get_Shift)
1300 then
1301 Or_Rhs :=
1302 Make_Integer_Literal (Loc,
1303 Rhs_Val * (2 ** Expr_Value (Get_Shift)));
1304 Set_Print_In_Hex (Or_Rhs);
1306 else
1307 -- We have to convert the right hand side to Etype (Obj).
1308 -- A special case arises if what we have now is a Val
1309 -- attribute reference whose expression type is Etype (Obj).
1310 -- This happens for assignments of fields from the same
1311 -- array. In this case we get the required right hand side
1312 -- by simply removing the inner attribute reference.
1314 if Nkind (Rhs) = N_Attribute_Reference
1315 and then Attribute_Name (Rhs) = Name_Val
1316 and then Etype (First (Expressions (Rhs))) = Etype (Obj)
1317 then
1318 Rhs := Relocate_Node (First (Expressions (Rhs)));
1319 Fixup_Rhs;
1321 -- If the value of the right hand side is a known integer
1322 -- value, then just replace it by an untyped constant,
1323 -- which will be properly retyped when we analyze and
1324 -- resolve the expression.
1326 elsif Rhs_Val_Known then
1328 -- Note that Rhs_Val has already been normalized to
1329 -- be an unsigned value with the proper number of bits.
1331 Rhs := Make_Integer_Literal (Loc, Rhs_Val);
1333 -- Otherwise we need an unchecked conversion
1335 else
1336 Fixup_Rhs;
1337 end if;
1339 Or_Rhs := Make_Shift_Left (Rhs, Get_Shift);
1340 end if;
1342 if Nkind (New_Rhs) = N_Op_And then
1343 Set_Paren_Count (New_Rhs, 1);
1344 Set_Etype (New_Rhs, Etype (Left_Opnd (New_Rhs)));
1345 end if;
1347 New_Rhs :=
1348 Make_Op_Or (Loc,
1349 Left_Opnd => New_Rhs,
1350 Right_Opnd => Or_Rhs);
1351 end;
1352 end if;
1354 -- Now do the rewrite
1356 Rewrite (N,
1357 Make_Assignment_Statement (Loc,
1358 Name => New_Lhs,
1359 Expression =>
1360 Unchecked_Convert_To (Etype (New_Lhs), New_Rhs)));
1361 Set_Assignment_OK (Name (N), Ass_OK);
1363 -- All other component sizes for non-modular case
1365 else
1366 -- We generate
1368 -- Set_nn (Arr'address, Subscr, Bits_nn!(Rhs))
1370 -- where Subscr is the computed linear subscript
1372 declare
1373 Bits_nn : constant Entity_Id := RTE (Bits_Id (Csiz));
1374 Set_nn : Entity_Id;
1375 Subscr : Node_Id;
1376 Atyp : Entity_Id;
1377 Rev_SSO : Node_Id;
1379 begin
1380 if No (Bits_nn) then
1382 -- Error, most likely High_Integrity_Mode restriction
1384 return;
1385 end if;
1387 -- Acquire proper Set entity. We use the aligned or unaligned
1388 -- case as appropriate.
1390 if Known_Aligned_Enough (Obj, Csiz) then
1391 Set_nn := RTE (Set_Id (Csiz));
1392 else
1393 Set_nn := RTE (SetU_Id (Csiz));
1394 end if;
1396 -- Now generate the set reference
1398 Obj := Relocate_Node (Prefix (Lhs));
1399 Convert_To_Actual_Subtype (Obj);
1400 Atyp := Etype (Obj);
1401 Compute_Linear_Subscript (Atyp, Lhs, Subscr);
1403 -- Set indication of whether the packed array has reverse SSO
1405 Rev_SSO :=
1406 New_Occurrence_Of
1407 (Boolean_Literals (Reverse_Storage_Order (Atyp)), Loc);
1409 -- Below we must make the assumption that Obj is
1410 -- at least byte aligned, since otherwise its address
1411 -- cannot be taken. The assumption holds since the
1412 -- only arrays that can be misaligned are small packed
1413 -- arrays which are implemented as a modular type, and
1414 -- that is not the case here.
1416 Rewrite (N,
1417 Make_Procedure_Call_Statement (Loc,
1418 Name => New_Occurrence_Of (Set_nn, Loc),
1419 Parameter_Associations => New_List (
1420 Make_Attribute_Reference (Loc,
1421 Prefix => Obj,
1422 Attribute_Name => Name_Address),
1423 Subscr,
1424 Unchecked_Convert_To (Bits_nn, Convert_To (Ctyp, Rhs)),
1425 Rev_SSO)));
1427 end;
1428 end if;
1430 Analyze (N, Suppress => All_Checks);
1431 end Expand_Bit_Packed_Element_Set;
1433 -------------------------------------
1434 -- Expand_Packed_Address_Reference --
1435 -------------------------------------
1437 procedure Expand_Packed_Address_Reference (N : Node_Id) is
1438 Loc : constant Source_Ptr := Sloc (N);
1439 Base : Node_Id;
1440 Offset : Node_Id;
1442 begin
1443 -- We build an expression that has the form
1445 -- outer_object'Address
1446 -- + (linear-subscript * component_size for each array reference
1447 -- + field'Bit_Position for each record field
1448 -- + ...
1449 -- + ...) / Storage_Unit;
1451 Get_Base_And_Bit_Offset (Prefix (N), Base, Offset);
1453 Rewrite (N,
1454 Unchecked_Convert_To (RTE (RE_Address),
1455 Make_Op_Add (Loc,
1456 Left_Opnd =>
1457 Unchecked_Convert_To (RTE (RE_Integer_Address),
1458 Make_Attribute_Reference (Loc,
1459 Prefix => Base,
1460 Attribute_Name => Name_Address)),
1462 Right_Opnd =>
1463 Unchecked_Convert_To (RTE (RE_Integer_Address),
1464 Make_Op_Divide (Loc,
1465 Left_Opnd => Offset,
1466 Right_Opnd =>
1467 Make_Integer_Literal (Loc, System_Storage_Unit))))));
1469 Analyze_And_Resolve (N, RTE (RE_Address));
1470 end Expand_Packed_Address_Reference;
1472 ---------------------------------
1473 -- Expand_Packed_Bit_Reference --
1474 ---------------------------------
1476 procedure Expand_Packed_Bit_Reference (N : Node_Id) is
1477 Loc : constant Source_Ptr := Sloc (N);
1478 Base : Node_Id;
1479 Offset : Node_Id;
1481 begin
1482 -- We build an expression that has the form
1484 -- (linear-subscript * component_size for each array reference
1485 -- + field'Bit_Position for each record field
1486 -- + ...
1487 -- + ...) mod Storage_Unit;
1489 Get_Base_And_Bit_Offset (Prefix (N), Base, Offset);
1491 Rewrite (N,
1492 Unchecked_Convert_To (Universal_Integer,
1493 Make_Op_Mod (Loc,
1494 Left_Opnd => Offset,
1495 Right_Opnd => Make_Integer_Literal (Loc, System_Storage_Unit))));
1497 Analyze_And_Resolve (N, Universal_Integer);
1498 end Expand_Packed_Bit_Reference;
1500 ------------------------------------
1501 -- Expand_Packed_Boolean_Operator --
1502 ------------------------------------
1504 -- This routine expands "a op b" for the packed cases
1506 procedure Expand_Packed_Boolean_Operator (N : Node_Id) is
1507 Loc : constant Source_Ptr := Sloc (N);
1508 Typ : constant Entity_Id := Etype (N);
1509 L : constant Node_Id := Relocate_Node (Left_Opnd (N));
1510 R : constant Node_Id := Relocate_Node (Right_Opnd (N));
1512 Ltyp : Entity_Id;
1513 Rtyp : Entity_Id;
1514 PAT : Entity_Id;
1516 begin
1517 Convert_To_Actual_Subtype (L);
1518 Convert_To_Actual_Subtype (R);
1520 Ensure_Defined (Etype (L), N);
1521 Ensure_Defined (Etype (R), N);
1523 Apply_Length_Check (R, Etype (L));
1525 Ltyp := Etype (L);
1526 Rtyp := Etype (R);
1528 -- Deal with silly case of XOR where the subcomponent has a range
1529 -- True .. True where an exception must be raised.
1531 if Nkind (N) = N_Op_Xor then
1532 Silly_Boolean_Array_Xor_Test (N, Rtyp);
1533 end if;
1535 -- Now that that silliness is taken care of, get packed array type
1537 Convert_To_PAT_Type (L);
1538 Convert_To_PAT_Type (R);
1540 PAT := Etype (L);
1542 -- For the modular case, we expand a op b into
1544 -- rtyp!(pat!(a) op pat!(b))
1546 -- where rtyp is the Etype of the left operand. Note that we do not
1547 -- convert to the base type, since this would be unconstrained, and
1548 -- hence not have a corresponding packed array type set.
1550 -- Note that both operands must be modular for this code to be used
1552 if Is_Modular_Integer_Type (PAT)
1553 and then
1554 Is_Modular_Integer_Type (Etype (R))
1555 then
1556 declare
1557 P : Node_Id;
1559 begin
1560 if Nkind (N) = N_Op_And then
1561 P := Make_Op_And (Loc, L, R);
1563 elsif Nkind (N) = N_Op_Or then
1564 P := Make_Op_Or (Loc, L, R);
1566 else -- Nkind (N) = N_Op_Xor
1567 P := Make_Op_Xor (Loc, L, R);
1568 end if;
1570 Rewrite (N, Unchecked_Convert_To (Ltyp, P));
1571 end;
1573 -- For the array case, we insert the actions
1575 -- Result : Ltype;
1577 -- System.Bit_Ops.Bit_And/Or/Xor
1578 -- (Left'Address,
1579 -- Ltype'Length * Ltype'Component_Size;
1580 -- Right'Address,
1581 -- Rtype'Length * Rtype'Component_Size
1582 -- Result'Address);
1584 -- where Left and Right are the Packed_Bytes{1,2,4} operands and
1585 -- the second argument and fourth arguments are the lengths of the
1586 -- operands in bits. Then we replace the expression by a reference
1587 -- to Result.
1589 -- Note that if we are mixing a modular and array operand, everything
1590 -- works fine, since we ensure that the modular representation has the
1591 -- same physical layout as the array representation (that's what the
1592 -- left justified modular stuff in the big-endian case is about).
1594 else
1595 declare
1596 Result_Ent : constant Entity_Id := Make_Temporary (Loc, 'T');
1597 E_Id : RE_Id;
1599 begin
1600 if Nkind (N) = N_Op_And then
1601 E_Id := RE_Bit_And;
1603 elsif Nkind (N) = N_Op_Or then
1604 E_Id := RE_Bit_Or;
1606 else -- Nkind (N) = N_Op_Xor
1607 E_Id := RE_Bit_Xor;
1608 end if;
1610 Insert_Actions (N, New_List (
1612 Make_Object_Declaration (Loc,
1613 Defining_Identifier => Result_Ent,
1614 Object_Definition => New_Occurrence_Of (Ltyp, Loc)),
1616 Make_Procedure_Call_Statement (Loc,
1617 Name => New_Occurrence_Of (RTE (E_Id), Loc),
1618 Parameter_Associations => New_List (
1620 Make_Byte_Aligned_Attribute_Reference (Loc,
1621 Prefix => L,
1622 Attribute_Name => Name_Address),
1624 Make_Op_Multiply (Loc,
1625 Left_Opnd =>
1626 Make_Attribute_Reference (Loc,
1627 Prefix =>
1628 New_Occurrence_Of
1629 (Etype (First_Index (Ltyp)), Loc),
1630 Attribute_Name => Name_Range_Length),
1632 Right_Opnd =>
1633 Make_Integer_Literal (Loc, Component_Size (Ltyp))),
1635 Make_Byte_Aligned_Attribute_Reference (Loc,
1636 Prefix => R,
1637 Attribute_Name => Name_Address),
1639 Make_Op_Multiply (Loc,
1640 Left_Opnd =>
1641 Make_Attribute_Reference (Loc,
1642 Prefix =>
1643 New_Occurrence_Of
1644 (Etype (First_Index (Rtyp)), Loc),
1645 Attribute_Name => Name_Range_Length),
1647 Right_Opnd =>
1648 Make_Integer_Literal (Loc, Component_Size (Rtyp))),
1650 Make_Byte_Aligned_Attribute_Reference (Loc,
1651 Prefix => New_Occurrence_Of (Result_Ent, Loc),
1652 Attribute_Name => Name_Address)))));
1654 Rewrite (N,
1655 New_Occurrence_Of (Result_Ent, Loc));
1656 end;
1657 end if;
1659 Analyze_And_Resolve (N, Typ, Suppress => All_Checks);
1660 end Expand_Packed_Boolean_Operator;
1662 -------------------------------------
1663 -- Expand_Packed_Element_Reference --
1664 -------------------------------------
1666 procedure Expand_Packed_Element_Reference (N : Node_Id) is
1667 Loc : constant Source_Ptr := Sloc (N);
1668 Obj : Node_Id;
1669 Atyp : Entity_Id;
1670 PAT : Entity_Id;
1671 Ctyp : Entity_Id;
1672 Csiz : Int;
1673 Shift : Node_Id;
1674 Cmask : Uint;
1675 Lit : Node_Id;
1676 Arg : Node_Id;
1678 begin
1679 -- If the node is an actual in a call, the prefix has not been fully
1680 -- expanded, to account for the additional expansion for in-out actuals
1681 -- (see expand_actuals for details). If the prefix itself is a packed
1682 -- reference as well, we have to recurse to complete the transformation
1683 -- of the prefix.
1685 if Nkind (Prefix (N)) = N_Indexed_Component
1686 and then not Analyzed (Prefix (N))
1687 and then Is_Bit_Packed_Array (Etype (Prefix (Prefix (N))))
1688 then
1689 Expand_Packed_Element_Reference (Prefix (N));
1690 end if;
1692 -- The prefix may be rewritten below as a conversion. If it is a source
1693 -- entity generate reference to it now, to prevent spurious warnings
1694 -- about unused entities.
1696 if Is_Entity_Name (Prefix (N))
1697 and then Comes_From_Source (Prefix (N))
1698 then
1699 Generate_Reference (Entity (Prefix (N)), Prefix (N), 'r');
1700 end if;
1702 -- If not bit packed, we have the enumeration case, which is easily
1703 -- dealt with (just adjust the subscripts of the indexed component)
1705 -- Note: this leaves the result as an indexed component, which is
1706 -- still a variable, so can be used in the assignment case, as is
1707 -- required in the enumeration case.
1709 if not Is_Bit_Packed_Array (Etype (Prefix (N))) then
1710 Setup_Enumeration_Packed_Array_Reference (N);
1711 return;
1712 end if;
1714 -- Remaining processing is for the bit-packed case
1716 Obj := Relocate_Node (Prefix (N));
1717 Convert_To_Actual_Subtype (Obj);
1718 Atyp := Etype (Obj);
1719 PAT := Packed_Array_Impl_Type (Atyp);
1720 Ctyp := Component_Type (Atyp);
1721 Csiz := UI_To_Int (Component_Size (Atyp));
1723 -- For the AAMP target, indexing of certain packed array is passed
1724 -- through to the back end without expansion, because the expansion
1725 -- results in very inefficient code on that target. This allows the
1726 -- GNAAMP back end to generate specialized macros that support more
1727 -- efficient indexing of packed arrays with components having sizes
1728 -- that are small powers of two.
1730 if AAMP_On_Target
1731 and then (Csiz = 1 or else Csiz = 2 or else Csiz = 4)
1732 then
1733 return;
1734 end if;
1736 -- Case of component size 1,2,4 or any component size for the modular
1737 -- case. These are the cases for which we can inline the code.
1739 if Csiz = 1 or else Csiz = 2 or else Csiz = 4
1740 or else (Present (PAT) and then Is_Modular_Integer_Type (PAT))
1741 then
1742 Setup_Inline_Packed_Array_Reference (N, Atyp, Obj, Cmask, Shift);
1743 Lit := Make_Integer_Literal (Loc, Cmask);
1744 Set_Print_In_Hex (Lit);
1746 -- We generate a shift right to position the field, followed by a
1747 -- masking operation to extract the bit field, and we finally do an
1748 -- unchecked conversion to convert the result to the required target.
1750 -- Note that the unchecked conversion automatically deals with the
1751 -- bias if we are dealing with a biased representation. What will
1752 -- happen is that we temporarily generate the biased representation,
1753 -- but almost immediately that will be converted to the original
1754 -- unbiased component type, and the bias will disappear.
1756 Arg :=
1757 Make_Op_And (Loc,
1758 Left_Opnd => Make_Shift_Right (Obj, Shift),
1759 Right_Opnd => Lit);
1760 Set_Etype (Arg, Ctyp);
1762 -- Component extraction is performed on a native endianness scalar
1763 -- value: if Atyp has reverse storage order, then it has been byte
1764 -- swapped, and if the component being extracted is itself of a
1765 -- composite type with reverse storage order, then we need to swap
1766 -- it back to its expected endianness after extraction.
1768 if Reverse_Storage_Order (Atyp)
1769 and then (Is_Record_Type (Ctyp) or else Is_Array_Type (Ctyp))
1770 and then Reverse_Storage_Order (Ctyp)
1771 then
1772 Arg := Revert_Storage_Order (Arg);
1773 end if;
1775 -- We needed to analyze this before we do the unchecked convert
1776 -- below, but we need it temporarily attached to the tree for
1777 -- this analysis (hence the temporary Set_Parent call).
1779 Set_Parent (Arg, Parent (N));
1780 Analyze_And_Resolve (Arg);
1782 Rewrite (N, RJ_Unchecked_Convert_To (Ctyp, Arg));
1784 -- All other component sizes for non-modular case
1786 else
1787 -- We generate
1789 -- Component_Type!(Get_nn (Arr'address, Subscr))
1791 -- where Subscr is the computed linear subscript
1793 declare
1794 Get_nn : Entity_Id;
1795 Subscr : Node_Id;
1796 Rev_SSO : constant Node_Id :=
1797 New_Occurrence_Of
1798 (Boolean_Literals (Reverse_Storage_Order (Atyp)), Loc);
1800 begin
1801 -- Acquire proper Get entity. We use the aligned or unaligned
1802 -- case as appropriate.
1804 if Known_Aligned_Enough (Obj, Csiz) then
1805 Get_nn := RTE (Get_Id (Csiz));
1806 else
1807 Get_nn := RTE (GetU_Id (Csiz));
1808 end if;
1810 -- Now generate the get reference
1812 Compute_Linear_Subscript (Atyp, N, Subscr);
1814 -- Below we make the assumption that Obj is at least byte
1815 -- aligned, since otherwise its address cannot be taken.
1816 -- The assumption holds since the only arrays that can be
1817 -- misaligned are small packed arrays which are implemented
1818 -- as a modular type, and that is not the case here.
1820 Rewrite (N,
1821 Unchecked_Convert_To (Ctyp,
1822 Make_Function_Call (Loc,
1823 Name => New_Occurrence_Of (Get_nn, Loc),
1824 Parameter_Associations => New_List (
1825 Make_Attribute_Reference (Loc,
1826 Prefix => Obj,
1827 Attribute_Name => Name_Address),
1828 Subscr,
1829 Rev_SSO))));
1830 end;
1831 end if;
1833 Analyze_And_Resolve (N, Ctyp, Suppress => All_Checks);
1834 end Expand_Packed_Element_Reference;
1836 ----------------------
1837 -- Expand_Packed_Eq --
1838 ----------------------
1840 -- Handles expansion of "=" on packed array types
1842 procedure Expand_Packed_Eq (N : Node_Id) is
1843 Loc : constant Source_Ptr := Sloc (N);
1844 L : constant Node_Id := Relocate_Node (Left_Opnd (N));
1845 R : constant Node_Id := Relocate_Node (Right_Opnd (N));
1847 LLexpr : Node_Id;
1848 RLexpr : Node_Id;
1850 Ltyp : Entity_Id;
1851 Rtyp : Entity_Id;
1852 PAT : Entity_Id;
1854 begin
1855 Convert_To_Actual_Subtype (L);
1856 Convert_To_Actual_Subtype (R);
1857 Ltyp := Underlying_Type (Etype (L));
1858 Rtyp := Underlying_Type (Etype (R));
1860 Convert_To_PAT_Type (L);
1861 Convert_To_PAT_Type (R);
1862 PAT := Etype (L);
1864 LLexpr :=
1865 Make_Op_Multiply (Loc,
1866 Left_Opnd =>
1867 Make_Attribute_Reference (Loc,
1868 Prefix => New_Occurrence_Of (Ltyp, Loc),
1869 Attribute_Name => Name_Length),
1870 Right_Opnd =>
1871 Make_Integer_Literal (Loc, Component_Size (Ltyp)));
1873 RLexpr :=
1874 Make_Op_Multiply (Loc,
1875 Left_Opnd =>
1876 Make_Attribute_Reference (Loc,
1877 Prefix => New_Occurrence_Of (Rtyp, Loc),
1878 Attribute_Name => Name_Length),
1879 Right_Opnd =>
1880 Make_Integer_Literal (Loc, Component_Size (Rtyp)));
1882 -- For the modular case, we transform the comparison to:
1884 -- Ltyp'Length = Rtyp'Length and then PAT!(L) = PAT!(R)
1886 -- where PAT is the packed array type. This works fine, since in the
1887 -- modular case we guarantee that the unused bits are always zeroes.
1888 -- We do have to compare the lengths because we could be comparing
1889 -- two different subtypes of the same base type.
1891 if Is_Modular_Integer_Type (PAT) then
1892 Rewrite (N,
1893 Make_And_Then (Loc,
1894 Left_Opnd =>
1895 Make_Op_Eq (Loc,
1896 Left_Opnd => LLexpr,
1897 Right_Opnd => RLexpr),
1899 Right_Opnd =>
1900 Make_Op_Eq (Loc,
1901 Left_Opnd => L,
1902 Right_Opnd => R)));
1904 -- For the non-modular case, we call a runtime routine
1906 -- System.Bit_Ops.Bit_Eq
1907 -- (L'Address, L_Length, R'Address, R_Length)
1909 -- where PAT is the packed array type, and the lengths are the lengths
1910 -- in bits of the original packed arrays. This routine takes care of
1911 -- not comparing the unused bits in the last byte.
1913 else
1914 Rewrite (N,
1915 Make_Function_Call (Loc,
1916 Name => New_Occurrence_Of (RTE (RE_Bit_Eq), Loc),
1917 Parameter_Associations => New_List (
1918 Make_Byte_Aligned_Attribute_Reference (Loc,
1919 Prefix => L,
1920 Attribute_Name => Name_Address),
1922 LLexpr,
1924 Make_Byte_Aligned_Attribute_Reference (Loc,
1925 Prefix => R,
1926 Attribute_Name => Name_Address),
1928 RLexpr)));
1929 end if;
1931 Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
1932 end Expand_Packed_Eq;
1934 -----------------------
1935 -- Expand_Packed_Not --
1936 -----------------------
1938 -- Handles expansion of "not" on packed array types
1940 procedure Expand_Packed_Not (N : Node_Id) is
1941 Loc : constant Source_Ptr := Sloc (N);
1942 Typ : constant Entity_Id := Etype (N);
1943 Opnd : constant Node_Id := Relocate_Node (Right_Opnd (N));
1945 Rtyp : Entity_Id;
1946 PAT : Entity_Id;
1947 Lit : Node_Id;
1949 begin
1950 Convert_To_Actual_Subtype (Opnd);
1951 Rtyp := Etype (Opnd);
1953 -- Deal with silly False..False and True..True subtype case
1955 Silly_Boolean_Array_Not_Test (N, Rtyp);
1957 -- Now that the silliness is taken care of, get packed array type
1959 Convert_To_PAT_Type (Opnd);
1960 PAT := Etype (Opnd);
1962 -- For the case where the packed array type is a modular type, "not A"
1963 -- expands simply into:
1965 -- Rtyp!(PAT!(A) xor Mask)
1967 -- where PAT is the packed array type, Mask is a mask of all 1 bits of
1968 -- length equal to the size of this packed type, and Rtyp is the actual
1969 -- actual subtype of the operand.
1971 Lit := Make_Integer_Literal (Loc, 2 ** RM_Size (PAT) - 1);
1972 Set_Print_In_Hex (Lit);
1974 if not Is_Array_Type (PAT) then
1975 Rewrite (N,
1976 Unchecked_Convert_To (Rtyp,
1977 Make_Op_Xor (Loc,
1978 Left_Opnd => Opnd,
1979 Right_Opnd => Lit)));
1981 -- For the array case, we insert the actions
1983 -- Result : Typ;
1985 -- System.Bit_Ops.Bit_Not
1986 -- (Opnd'Address,
1987 -- Typ'Length * Typ'Component_Size,
1988 -- Result'Address);
1990 -- where Opnd is the Packed_Bytes{1,2,4} operand and the second argument
1991 -- is the length of the operand in bits. We then replace the expression
1992 -- with a reference to Result.
1994 else
1995 declare
1996 Result_Ent : constant Entity_Id := Make_Temporary (Loc, 'T');
1998 begin
1999 Insert_Actions (N, New_List (
2000 Make_Object_Declaration (Loc,
2001 Defining_Identifier => Result_Ent,
2002 Object_Definition => New_Occurrence_Of (Rtyp, Loc)),
2004 Make_Procedure_Call_Statement (Loc,
2005 Name => New_Occurrence_Of (RTE (RE_Bit_Not), Loc),
2006 Parameter_Associations => New_List (
2007 Make_Byte_Aligned_Attribute_Reference (Loc,
2008 Prefix => Opnd,
2009 Attribute_Name => Name_Address),
2011 Make_Op_Multiply (Loc,
2012 Left_Opnd =>
2013 Make_Attribute_Reference (Loc,
2014 Prefix =>
2015 New_Occurrence_Of
2016 (Etype (First_Index (Rtyp)), Loc),
2017 Attribute_Name => Name_Range_Length),
2019 Right_Opnd =>
2020 Make_Integer_Literal (Loc, Component_Size (Rtyp))),
2022 Make_Byte_Aligned_Attribute_Reference (Loc,
2023 Prefix => New_Occurrence_Of (Result_Ent, Loc),
2024 Attribute_Name => Name_Address)))));
2026 Rewrite (N, New_Occurrence_Of (Result_Ent, Loc));
2027 end;
2028 end if;
2030 Analyze_And_Resolve (N, Typ, Suppress => All_Checks);
2031 end Expand_Packed_Not;
2033 -----------------------------
2034 -- Get_Base_And_Bit_Offset --
2035 -----------------------------
2037 procedure Get_Base_And_Bit_Offset
2038 (N : Node_Id;
2039 Base : out Node_Id;
2040 Offset : out Node_Id)
2042 Loc : Source_Ptr;
2043 Term : Node_Id;
2044 Atyp : Entity_Id;
2045 Subscr : Node_Id;
2047 begin
2048 Base := N;
2049 Offset := Empty;
2051 -- We build up an expression serially that has the form
2053 -- linear-subscript * component_size for each array reference
2054 -- + field'Bit_Position for each record field
2055 -- + ...
2057 loop
2058 Loc := Sloc (Base);
2060 if Nkind (Base) = N_Indexed_Component then
2061 Convert_To_Actual_Subtype (Prefix (Base));
2062 Atyp := Etype (Prefix (Base));
2063 Compute_Linear_Subscript (Atyp, Base, Subscr);
2065 Term :=
2066 Make_Op_Multiply (Loc,
2067 Left_Opnd => Subscr,
2068 Right_Opnd =>
2069 Make_Attribute_Reference (Loc,
2070 Prefix => New_Occurrence_Of (Atyp, Loc),
2071 Attribute_Name => Name_Component_Size));
2073 elsif Nkind (Base) = N_Selected_Component then
2074 Term :=
2075 Make_Attribute_Reference (Loc,
2076 Prefix => Selector_Name (Base),
2077 Attribute_Name => Name_Bit_Position);
2079 else
2080 return;
2081 end if;
2083 if No (Offset) then
2084 Offset := Term;
2086 else
2087 Offset :=
2088 Make_Op_Add (Loc,
2089 Left_Opnd => Offset,
2090 Right_Opnd => Term);
2091 end if;
2093 Base := Prefix (Base);
2094 end loop;
2095 end Get_Base_And_Bit_Offset;
2097 -------------------------------------
2098 -- Involves_Packed_Array_Reference --
2099 -------------------------------------
2101 function Involves_Packed_Array_Reference (N : Node_Id) return Boolean is
2102 begin
2103 if Nkind (N) = N_Indexed_Component
2104 and then Is_Bit_Packed_Array (Etype (Prefix (N)))
2105 then
2106 return True;
2108 elsif Nkind (N) = N_Selected_Component then
2109 return Involves_Packed_Array_Reference (Prefix (N));
2111 else
2112 return False;
2113 end if;
2114 end Involves_Packed_Array_Reference;
2116 --------------------------
2117 -- Known_Aligned_Enough --
2118 --------------------------
2120 function Known_Aligned_Enough (Obj : Node_Id; Csiz : Nat) return Boolean is
2121 Typ : constant Entity_Id := Etype (Obj);
2123 function In_Partially_Packed_Record (Comp : Entity_Id) return Boolean;
2124 -- If the component is in a record that contains previous packed
2125 -- components, consider it unaligned because the back-end might
2126 -- choose to pack the rest of the record. Lead to less efficient code,
2127 -- but safer vis-a-vis of back-end choices.
2129 --------------------------------
2130 -- In_Partially_Packed_Record --
2131 --------------------------------
2133 function In_Partially_Packed_Record (Comp : Entity_Id) return Boolean is
2134 Rec_Type : constant Entity_Id := Scope (Comp);
2135 Prev_Comp : Entity_Id;
2137 begin
2138 Prev_Comp := First_Entity (Rec_Type);
2139 while Present (Prev_Comp) loop
2140 if Is_Packed (Etype (Prev_Comp)) then
2141 return True;
2143 elsif Prev_Comp = Comp then
2144 return False;
2145 end if;
2147 Next_Entity (Prev_Comp);
2148 end loop;
2150 return False;
2151 end In_Partially_Packed_Record;
2153 -- Start of processing for Known_Aligned_Enough
2155 begin
2156 -- Odd bit sizes don't need alignment anyway
2158 if Csiz mod 2 = 1 then
2159 return True;
2161 -- If we have a specified alignment, see if it is sufficient, if not
2162 -- then we can't possibly be aligned enough in any case.
2164 elsif Known_Alignment (Etype (Obj)) then
2165 -- Alignment required is 4 if size is a multiple of 4, and
2166 -- 2 otherwise (e.g. 12 bits requires 4, 10 bits requires 2)
2168 if Alignment (Etype (Obj)) < 4 - (Csiz mod 4) then
2169 return False;
2170 end if;
2171 end if;
2173 -- OK, alignment should be sufficient, if object is aligned
2175 -- If object is strictly aligned, then it is definitely aligned
2177 if Strict_Alignment (Typ) then
2178 return True;
2180 -- Case of subscripted array reference
2182 elsif Nkind (Obj) = N_Indexed_Component then
2184 -- If we have a pointer to an array, then this is definitely
2185 -- aligned, because pointers always point to aligned versions.
2187 if Is_Access_Type (Etype (Prefix (Obj))) then
2188 return True;
2190 -- Otherwise, go look at the prefix
2192 else
2193 return Known_Aligned_Enough (Prefix (Obj), Csiz);
2194 end if;
2196 -- Case of record field
2198 elsif Nkind (Obj) = N_Selected_Component then
2200 -- What is significant here is whether the record type is packed
2202 if Is_Record_Type (Etype (Prefix (Obj)))
2203 and then Is_Packed (Etype (Prefix (Obj)))
2204 then
2205 return False;
2207 -- Or the component has a component clause which might cause
2208 -- the component to become unaligned (we can't tell if the
2209 -- backend is doing alignment computations).
2211 elsif Present (Component_Clause (Entity (Selector_Name (Obj)))) then
2212 return False;
2214 elsif In_Partially_Packed_Record (Entity (Selector_Name (Obj))) then
2215 return False;
2217 -- In all other cases, go look at prefix
2219 else
2220 return Known_Aligned_Enough (Prefix (Obj), Csiz);
2221 end if;
2223 elsif Nkind (Obj) = N_Type_Conversion then
2224 return Known_Aligned_Enough (Expression (Obj), Csiz);
2226 -- For a formal parameter, it is safer to assume that it is not
2227 -- aligned, because the formal may be unconstrained while the actual
2228 -- is constrained. In this situation, a small constrained packed
2229 -- array, represented in modular form, may be unaligned.
2231 elsif Is_Entity_Name (Obj) then
2232 return not Is_Formal (Entity (Obj));
2233 else
2235 -- If none of the above, must be aligned
2236 return True;
2237 end if;
2238 end Known_Aligned_Enough;
2240 ---------------------
2241 -- Make_Shift_Left --
2242 ---------------------
2244 function Make_Shift_Left (N : Node_Id; S : Node_Id) return Node_Id is
2245 Nod : Node_Id;
2247 begin
2248 if Compile_Time_Known_Value (S) and then Expr_Value (S) = 0 then
2249 return N;
2250 else
2251 Nod :=
2252 Make_Op_Shift_Left (Sloc (N),
2253 Left_Opnd => N,
2254 Right_Opnd => S);
2255 Set_Shift_Count_OK (Nod, True);
2256 return Nod;
2257 end if;
2258 end Make_Shift_Left;
2260 ----------------------
2261 -- Make_Shift_Right --
2262 ----------------------
2264 function Make_Shift_Right (N : Node_Id; S : Node_Id) return Node_Id is
2265 Nod : Node_Id;
2267 begin
2268 if Compile_Time_Known_Value (S) and then Expr_Value (S) = 0 then
2269 return N;
2270 else
2271 Nod :=
2272 Make_Op_Shift_Right (Sloc (N),
2273 Left_Opnd => N,
2274 Right_Opnd => S);
2275 Set_Shift_Count_OK (Nod, True);
2276 return Nod;
2277 end if;
2278 end Make_Shift_Right;
2280 -----------------------------
2281 -- RJ_Unchecked_Convert_To --
2282 -----------------------------
2284 function RJ_Unchecked_Convert_To
2285 (Typ : Entity_Id;
2286 Expr : Node_Id) return Node_Id
2288 Source_Typ : constant Entity_Id := Etype (Expr);
2289 Target_Typ : constant Entity_Id := Typ;
2291 Src : Node_Id := Expr;
2293 Source_Siz : Nat;
2294 Target_Siz : Nat;
2296 begin
2297 Source_Siz := UI_To_Int (RM_Size (Source_Typ));
2298 Target_Siz := UI_To_Int (RM_Size (Target_Typ));
2300 -- For a little-endian target type stored byte-swapped on a
2301 -- big-endian machine, do not mask to Target_Siz bits.
2303 if Bytes_Big_Endian
2304 and then (Is_Record_Type (Target_Typ)
2305 or else
2306 Is_Array_Type (Target_Typ))
2307 and then Reverse_Storage_Order (Target_Typ)
2308 then
2309 Source_Siz := Target_Siz;
2310 end if;
2312 -- First step, if the source type is not a discrete type, then we first
2313 -- convert to a modular type of the source length, since otherwise, on
2314 -- a big-endian machine, we get left-justification. We do it for little-
2315 -- endian machines as well, because there might be junk bits that are
2316 -- not cleared if the type is not numeric.
2318 if Source_Siz /= Target_Siz
2319 and then not Is_Discrete_Type (Source_Typ)
2320 then
2321 Src := Unchecked_Convert_To (RTE (Bits_Id (Source_Siz)), Src);
2322 end if;
2324 -- In the big endian case, if the lengths of the two types differ, then
2325 -- we must worry about possible left justification in the conversion,
2326 -- and avoiding that is what this is all about.
2328 if Bytes_Big_Endian and then Source_Siz /= Target_Siz then
2330 -- Next step. If the target is not a discrete type, then we first
2331 -- convert to a modular type of the target length, since otherwise,
2332 -- on a big-endian machine, we get left-justification.
2334 if not Is_Discrete_Type (Target_Typ) then
2335 Src := Unchecked_Convert_To (RTE (Bits_Id (Target_Siz)), Src);
2336 end if;
2337 end if;
2339 -- And now we can do the final conversion to the target type
2341 return Unchecked_Convert_To (Target_Typ, Src);
2342 end RJ_Unchecked_Convert_To;
2344 ----------------------------------------------
2345 -- Setup_Enumeration_Packed_Array_Reference --
2346 ----------------------------------------------
2348 -- All we have to do here is to find the subscripts that correspond to the
2349 -- index positions that have non-standard enumeration types and insert a
2350 -- Pos attribute to get the proper subscript value.
2352 -- Finally the prefix must be uncheck-converted to the corresponding packed
2353 -- array type.
2355 -- Note that the component type is unchanged, so we do not need to fiddle
2356 -- with the types (Gigi always automatically takes the packed array type if
2357 -- it is set, as it will be in this case).
2359 procedure Setup_Enumeration_Packed_Array_Reference (N : Node_Id) is
2360 Pfx : constant Node_Id := Prefix (N);
2361 Typ : constant Entity_Id := Etype (N);
2362 Exprs : constant List_Id := Expressions (N);
2363 Expr : Node_Id;
2365 begin
2366 -- If the array is unconstrained, then we replace the array reference
2367 -- with its actual subtype. This actual subtype will have a packed array
2368 -- type with appropriate bounds.
2370 if not Is_Constrained (Packed_Array_Impl_Type (Etype (Pfx))) then
2371 Convert_To_Actual_Subtype (Pfx);
2372 end if;
2374 Expr := First (Exprs);
2375 while Present (Expr) loop
2376 declare
2377 Loc : constant Source_Ptr := Sloc (Expr);
2378 Expr_Typ : constant Entity_Id := Etype (Expr);
2380 begin
2381 if Is_Enumeration_Type (Expr_Typ)
2382 and then Has_Non_Standard_Rep (Expr_Typ)
2383 then
2384 Rewrite (Expr,
2385 Make_Attribute_Reference (Loc,
2386 Prefix => New_Occurrence_Of (Expr_Typ, Loc),
2387 Attribute_Name => Name_Pos,
2388 Expressions => New_List (Relocate_Node (Expr))));
2389 Analyze_And_Resolve (Expr, Standard_Natural);
2390 end if;
2391 end;
2393 Next (Expr);
2394 end loop;
2396 Rewrite (N,
2397 Make_Indexed_Component (Sloc (N),
2398 Prefix =>
2399 Unchecked_Convert_To (Packed_Array_Impl_Type (Etype (Pfx)), Pfx),
2400 Expressions => Exprs));
2402 Analyze_And_Resolve (N, Typ);
2403 end Setup_Enumeration_Packed_Array_Reference;
2405 -----------------------------------------
2406 -- Setup_Inline_Packed_Array_Reference --
2407 -----------------------------------------
2409 procedure Setup_Inline_Packed_Array_Reference
2410 (N : Node_Id;
2411 Atyp : Entity_Id;
2412 Obj : in out Node_Id;
2413 Cmask : out Uint;
2414 Shift : out Node_Id)
2416 Loc : constant Source_Ptr := Sloc (N);
2417 PAT : Entity_Id;
2418 Otyp : Entity_Id;
2419 Csiz : Uint;
2420 Osiz : Uint;
2422 begin
2423 Csiz := Component_Size (Atyp);
2425 Convert_To_PAT_Type (Obj);
2426 PAT := Etype (Obj);
2428 Cmask := 2 ** Csiz - 1;
2430 if Is_Array_Type (PAT) then
2431 Otyp := Component_Type (PAT);
2432 Osiz := Component_Size (PAT);
2434 else
2435 Otyp := PAT;
2437 -- In the case where the PAT is a modular type, we want the actual
2438 -- size in bits of the modular value we use. This is neither the
2439 -- Object_Size nor the Value_Size, either of which may have been
2440 -- reset to strange values, but rather the minimum size. Note that
2441 -- since this is a modular type with full range, the issue of
2442 -- biased representation does not arise.
2444 Osiz := UI_From_Int (Minimum_Size (Otyp));
2445 end if;
2447 Compute_Linear_Subscript (Atyp, N, Shift);
2449 -- If the component size is not 1, then the subscript must be multiplied
2450 -- by the component size to get the shift count.
2452 if Csiz /= 1 then
2453 Shift :=
2454 Make_Op_Multiply (Loc,
2455 Left_Opnd => Make_Integer_Literal (Loc, Csiz),
2456 Right_Opnd => Shift);
2457 end if;
2459 -- If we have the array case, then this shift count must be broken down
2460 -- into a byte subscript, and a shift within the byte.
2462 if Is_Array_Type (PAT) then
2464 declare
2465 New_Shift : Node_Id;
2467 begin
2468 -- We must analyze shift, since we will duplicate it
2470 Set_Parent (Shift, N);
2471 Analyze_And_Resolve
2472 (Shift, Standard_Integer, Suppress => All_Checks);
2474 -- The shift count within the word is
2475 -- shift mod Osiz
2477 New_Shift :=
2478 Make_Op_Mod (Loc,
2479 Left_Opnd => Duplicate_Subexpr (Shift),
2480 Right_Opnd => Make_Integer_Literal (Loc, Osiz));
2482 -- The subscript to be used on the PAT array is
2483 -- shift / Osiz
2485 Obj :=
2486 Make_Indexed_Component (Loc,
2487 Prefix => Obj,
2488 Expressions => New_List (
2489 Make_Op_Divide (Loc,
2490 Left_Opnd => Duplicate_Subexpr (Shift),
2491 Right_Opnd => Make_Integer_Literal (Loc, Osiz))));
2493 Shift := New_Shift;
2494 end;
2496 -- For the modular integer case, the object to be manipulated is the
2497 -- entire array, so Obj is unchanged. Note that we will reset its type
2498 -- to PAT before returning to the caller.
2500 else
2501 null;
2502 end if;
2504 -- The one remaining step is to modify the shift count for the
2505 -- big-endian case. Consider the following example in a byte:
2507 -- xxxxxxxx bits of byte
2508 -- vvvvvvvv bits of value
2509 -- 33221100 little-endian numbering
2510 -- 00112233 big-endian numbering
2512 -- Here we have the case of 2-bit fields
2514 -- For the little-endian case, we already have the proper shift count
2515 -- set, e.g. for element 2, the shift count is 2*2 = 4.
2517 -- For the big endian case, we have to adjust the shift count, computing
2518 -- it as (N - F) - Shift, where N is the number of bits in an element of
2519 -- the array used to implement the packed array, F is the number of bits
2520 -- in a source array element, and Shift is the count so far computed.
2522 -- We also have to adjust if the storage order is reversed
2524 if Bytes_Big_Endian xor Reverse_Storage_Order (Base_Type (Atyp)) then
2525 Shift :=
2526 Make_Op_Subtract (Loc,
2527 Left_Opnd => Make_Integer_Literal (Loc, Osiz - Csiz),
2528 Right_Opnd => Shift);
2529 end if;
2531 Set_Parent (Shift, N);
2532 Set_Parent (Obj, N);
2533 Analyze_And_Resolve (Obj, Otyp, Suppress => All_Checks);
2534 Analyze_And_Resolve (Shift, Standard_Integer, Suppress => All_Checks);
2536 -- Make sure final type of object is the appropriate packed type
2538 Set_Etype (Obj, Otyp);
2540 end Setup_Inline_Packed_Array_Reference;
2542 end Exp_Pakd;