Trivial typo in previous commit ChangeLog.
[official-gcc.git] / gcc / gcse.c
blobd75d459f18b448eaee2797c2ec4633f78828c266
1 /* Global common subexpression elimination/Partial redundancy elimination
2 and global constant/copy propagation for GNU compiler.
3 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
23 /* TODO
24 - reordering of memory allocation and freeing to be more space efficient
25 - do rough calc of how many regs are needed in each block, and a rough
26 calc of how many regs are available in each class and use that to
27 throttle back the code in cases where RTX_COST is minimal.
28 - a store to the same address as a load does not kill the load if the
29 source of the store is also the destination of the load. Handling this
30 allows more load motion, particularly out of loops.
31 - ability to realloc sbitmap vectors would allow one initial computation
32 of reg_set_in_block with only subsequent additions, rather than
33 recomputing it for each pass
37 /* References searched while implementing this.
39 Compilers Principles, Techniques and Tools
40 Aho, Sethi, Ullman
41 Addison-Wesley, 1988
43 Global Optimization by Suppression of Partial Redundancies
44 E. Morel, C. Renvoise
45 communications of the acm, Vol. 22, Num. 2, Feb. 1979
47 A Portable Machine-Independent Global Optimizer - Design and Measurements
48 Frederick Chow
49 Stanford Ph.D. thesis, Dec. 1983
51 A Fast Algorithm for Code Movement Optimization
52 D.M. Dhamdhere
53 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
55 A Solution to a Problem with Morel and Renvoise's
56 Global Optimization by Suppression of Partial Redundancies
57 K-H Drechsler, M.P. Stadel
58 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
60 Practical Adaptation of the Global Optimization
61 Algorithm of Morel and Renvoise
62 D.M. Dhamdhere
63 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
65 Efficiently Computing Static Single Assignment Form and the Control
66 Dependence Graph
67 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
68 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
70 Lazy Code Motion
71 J. Knoop, O. Ruthing, B. Steffen
72 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
74 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
75 Time for Reducible Flow Control
76 Thomas Ball
77 ACM Letters on Programming Languages and Systems,
78 Vol. 2, Num. 1-4, Mar-Dec 1993
80 An Efficient Representation for Sparse Sets
81 Preston Briggs, Linda Torczon
82 ACM Letters on Programming Languages and Systems,
83 Vol. 2, Num. 1-4, Mar-Dec 1993
85 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
86 K-H Drechsler, M.P. Stadel
87 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
89 Partial Dead Code Elimination
90 J. Knoop, O. Ruthing, B. Steffen
91 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
93 Effective Partial Redundancy Elimination
94 P. Briggs, K.D. Cooper
95 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
97 The Program Structure Tree: Computing Control Regions in Linear Time
98 R. Johnson, D. Pearson, K. Pingali
99 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
101 Optimal Code Motion: Theory and Practice
102 J. Knoop, O. Ruthing, B. Steffen
103 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
105 The power of assignment motion
106 J. Knoop, O. Ruthing, B. Steffen
107 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
109 Global code motion / global value numbering
110 C. Click
111 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
113 Value Driven Redundancy Elimination
114 L.T. Simpson
115 Rice University Ph.D. thesis, Apr. 1996
117 Value Numbering
118 L.T. Simpson
119 Massively Scalar Compiler Project, Rice University, Sep. 1996
121 High Performance Compilers for Parallel Computing
122 Michael Wolfe
123 Addison-Wesley, 1996
125 Advanced Compiler Design and Implementation
126 Steven Muchnick
127 Morgan Kaufmann, 1997
129 Building an Optimizing Compiler
130 Robert Morgan
131 Digital Press, 1998
133 People wishing to speed up the code here should read:
134 Elimination Algorithms for Data Flow Analysis
135 B.G. Ryder, M.C. Paull
136 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
138 How to Analyze Large Programs Efficiently and Informatively
139 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
140 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
142 People wishing to do something different can find various possibilities
143 in the above papers and elsewhere.
146 #include "config.h"
147 #include "system.h"
148 #include "coretypes.h"
149 #include "tm.h"
150 #include "toplev.h"
152 #include "rtl.h"
153 #include "tree.h"
154 #include "tm_p.h"
155 #include "regs.h"
156 #include "hard-reg-set.h"
157 #include "flags.h"
158 #include "real.h"
159 #include "insn-config.h"
160 #include "recog.h"
161 #include "basic-block.h"
162 #include "output.h"
163 #include "function.h"
164 #include "expr.h"
165 #include "except.h"
166 #include "ggc.h"
167 #include "params.h"
168 #include "cselib.h"
169 #include "intl.h"
170 #include "obstack.h"
172 /* Propagate flow information through back edges and thus enable PRE's
173 moving loop invariant calculations out of loops.
175 Originally this tended to create worse overall code, but several
176 improvements during the development of PRE seem to have made following
177 back edges generally a win.
179 Note much of the loop invariant code motion done here would normally
180 be done by loop.c, which has more heuristics for when to move invariants
181 out of loops. At some point we might need to move some of those
182 heuristics into gcse.c. */
184 /* We support GCSE via Partial Redundancy Elimination. PRE optimizations
185 are a superset of those done by GCSE.
187 We perform the following steps:
189 1) Compute basic block information.
191 2) Compute table of places where registers are set.
193 3) Perform copy/constant propagation.
195 4) Perform global cse.
197 5) Perform another pass of copy/constant propagation.
199 Two passes of copy/constant propagation are done because the first one
200 enables more GCSE and the second one helps to clean up the copies that
201 GCSE creates. This is needed more for PRE than for Classic because Classic
202 GCSE will try to use an existing register containing the common
203 subexpression rather than create a new one. This is harder to do for PRE
204 because of the code motion (which Classic GCSE doesn't do).
206 Expressions we are interested in GCSE-ing are of the form
207 (set (pseudo-reg) (expression)).
208 Function want_to_gcse_p says what these are.
210 PRE handles moving invariant expressions out of loops (by treating them as
211 partially redundant).
213 Eventually it would be nice to replace cse.c/gcse.c with SSA (static single
214 assignment) based GVN (global value numbering). L. T. Simpson's paper
215 (Rice University) on value numbering is a useful reference for this.
217 **********************
219 We used to support multiple passes but there are diminishing returns in
220 doing so. The first pass usually makes 90% of the changes that are doable.
221 A second pass can make a few more changes made possible by the first pass.
222 Experiments show any further passes don't make enough changes to justify
223 the expense.
225 A study of spec92 using an unlimited number of passes:
226 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
227 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
228 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
230 It was found doing copy propagation between each pass enables further
231 substitutions.
233 PRE is quite expensive in complicated functions because the DFA can take
234 awhile to converge. Hence we only perform one pass. The parameter max-gcse-passes can
235 be modified if one wants to experiment.
237 **********************
239 The steps for PRE are:
241 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
243 2) Perform the data flow analysis for PRE.
245 3) Delete the redundant instructions
247 4) Insert the required copies [if any] that make the partially
248 redundant instructions fully redundant.
250 5) For other reaching expressions, insert an instruction to copy the value
251 to a newly created pseudo that will reach the redundant instruction.
253 The deletion is done first so that when we do insertions we
254 know which pseudo reg to use.
256 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
257 argue it is not. The number of iterations for the algorithm to converge
258 is typically 2-4 so I don't view it as that expensive (relatively speaking).
260 PRE GCSE depends heavily on the second CSE pass to clean up the copies
261 we create. To make an expression reach the place where it's redundant,
262 the result of the expression is copied to a new register, and the redundant
263 expression is deleted by replacing it with this new register. Classic GCSE
264 doesn't have this problem as much as it computes the reaching defs of
265 each register in each block and thus can try to use an existing register.
267 **********************
269 A fair bit of simplicity is created by creating small functions for simple
270 tasks, even when the function is only called in one place. This may
271 measurably slow things down [or may not] by creating more function call
272 overhead than is necessary. The source is laid out so that it's trivial
273 to make the affected functions inline so that one can measure what speed
274 up, if any, can be achieved, and maybe later when things settle things can
275 be rearranged.
277 Help stamp out big monolithic functions! */
279 /* GCSE global vars. */
281 /* -dG dump file. */
282 static FILE *gcse_file;
284 /* Note whether or not we should run jump optimization after gcse. We
285 want to do this for two cases.
287 * If we changed any jumps via cprop.
289 * If we added any labels via edge splitting. */
291 static int run_jump_opt_after_gcse;
293 /* Bitmaps are normally not included in debugging dumps.
294 However it's useful to be able to print them from GDB.
295 We could create special functions for this, but it's simpler to
296 just allow passing stderr to the dump_foo fns. Since stderr can
297 be a macro, we store a copy here. */
298 static FILE *debug_stderr;
300 /* An obstack for our working variables. */
301 static struct obstack gcse_obstack;
303 struct reg_use {rtx reg_rtx; };
305 /* Hash table of expressions. */
307 struct expr
309 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
310 rtx expr;
311 /* Index in the available expression bitmaps. */
312 int bitmap_index;
313 /* Next entry with the same hash. */
314 struct expr *next_same_hash;
315 /* List of anticipatable occurrences in basic blocks in the function.
316 An "anticipatable occurrence" is one that is the first occurrence in the
317 basic block, the operands are not modified in the basic block prior
318 to the occurrence and the output is not used between the start of
319 the block and the occurrence. */
320 struct occr *antic_occr;
321 /* List of available occurrence in basic blocks in the function.
322 An "available occurrence" is one that is the last occurrence in the
323 basic block and the operands are not modified by following statements in
324 the basic block [including this insn]. */
325 struct occr *avail_occr;
326 /* Non-null if the computation is PRE redundant.
327 The value is the newly created pseudo-reg to record a copy of the
328 expression in all the places that reach the redundant copy. */
329 rtx reaching_reg;
332 /* Occurrence of an expression.
333 There is one per basic block. If a pattern appears more than once the
334 last appearance is used [or first for anticipatable expressions]. */
336 struct occr
338 /* Next occurrence of this expression. */
339 struct occr *next;
340 /* The insn that computes the expression. */
341 rtx insn;
342 /* Nonzero if this [anticipatable] occurrence has been deleted. */
343 char deleted_p;
344 /* Nonzero if this [available] occurrence has been copied to
345 reaching_reg. */
346 /* ??? This is mutually exclusive with deleted_p, so they could share
347 the same byte. */
348 char copied_p;
351 /* Expression and copy propagation hash tables.
352 Each hash table is an array of buckets.
353 ??? It is known that if it were an array of entries, structure elements
354 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
355 not clear whether in the final analysis a sufficient amount of memory would
356 be saved as the size of the available expression bitmaps would be larger
357 [one could build a mapping table without holes afterwards though].
358 Someday I'll perform the computation and figure it out. */
360 struct hash_table
362 /* The table itself.
363 This is an array of `expr_hash_table_size' elements. */
364 struct expr **table;
366 /* Size of the hash table, in elements. */
367 unsigned int size;
369 /* Number of hash table elements. */
370 unsigned int n_elems;
372 /* Whether the table is expression of copy propagation one. */
373 int set_p;
376 /* Expression hash table. */
377 static struct hash_table expr_hash_table;
379 /* Copy propagation hash table. */
380 static struct hash_table set_hash_table;
382 /* Mapping of uids to cuids.
383 Only real insns get cuids. */
384 static int *uid_cuid;
386 /* Highest UID in UID_CUID. */
387 static int max_uid;
389 /* Get the cuid of an insn. */
390 #ifdef ENABLE_CHECKING
391 #define INSN_CUID(INSN) (INSN_UID (INSN) > max_uid ? (abort (), 0) : uid_cuid[INSN_UID (INSN)])
392 #else
393 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
394 #endif
396 /* Number of cuids. */
397 static int max_cuid;
399 /* Mapping of cuids to insns. */
400 static rtx *cuid_insn;
402 /* Get insn from cuid. */
403 #define CUID_INSN(CUID) (cuid_insn[CUID])
405 /* Maximum register number in function prior to doing gcse + 1.
406 Registers created during this pass have regno >= max_gcse_regno.
407 This is named with "gcse" to not collide with global of same name. */
408 static unsigned int max_gcse_regno;
410 /* Table of registers that are modified.
412 For each register, each element is a list of places where the pseudo-reg
413 is set.
415 For simplicity, GCSE is done on sets of pseudo-regs only. PRE GCSE only
416 requires knowledge of which blocks kill which regs [and thus could use
417 a bitmap instead of the lists `reg_set_table' uses].
419 `reg_set_table' and could be turned into an array of bitmaps (num-bbs x
420 num-regs) [however perhaps it may be useful to keep the data as is]. One
421 advantage of recording things this way is that `reg_set_table' is fairly
422 sparse with respect to pseudo regs but for hard regs could be fairly dense
423 [relatively speaking]. And recording sets of pseudo-regs in lists speeds
424 up functions like compute_transp since in the case of pseudo-regs we only
425 need to iterate over the number of times a pseudo-reg is set, not over the
426 number of basic blocks [clearly there is a bit of a slow down in the cases
427 where a pseudo is set more than once in a block, however it is believed
428 that the net effect is to speed things up]. This isn't done for hard-regs
429 because recording call-clobbered hard-regs in `reg_set_table' at each
430 function call can consume a fair bit of memory, and iterating over
431 hard-regs stored this way in compute_transp will be more expensive. */
433 typedef struct reg_set
435 /* The next setting of this register. */
436 struct reg_set *next;
437 /* The insn where it was set. */
438 rtx insn;
439 } reg_set;
441 static reg_set **reg_set_table;
443 /* Size of `reg_set_table'.
444 The table starts out at max_gcse_regno + slop, and is enlarged as
445 necessary. */
446 static int reg_set_table_size;
448 /* Amount to grow `reg_set_table' by when it's full. */
449 #define REG_SET_TABLE_SLOP 100
451 /* This is a list of expressions which are MEMs and will be used by load
452 or store motion.
453 Load motion tracks MEMs which aren't killed by
454 anything except itself. (ie, loads and stores to a single location).
455 We can then allow movement of these MEM refs with a little special
456 allowance. (all stores copy the same value to the reaching reg used
457 for the loads). This means all values used to store into memory must have
458 no side effects so we can re-issue the setter value.
459 Store Motion uses this structure as an expression table to track stores
460 which look interesting, and might be moveable towards the exit block. */
462 struct ls_expr
464 struct expr * expr; /* Gcse expression reference for LM. */
465 rtx pattern; /* Pattern of this mem. */
466 rtx pattern_regs; /* List of registers mentioned by the mem. */
467 rtx loads; /* INSN list of loads seen. */
468 rtx stores; /* INSN list of stores seen. */
469 struct ls_expr * next; /* Next in the list. */
470 int invalid; /* Invalid for some reason. */
471 int index; /* If it maps to a bitmap index. */
472 unsigned int hash_index; /* Index when in a hash table. */
473 rtx reaching_reg; /* Register to use when re-writing. */
476 /* Array of implicit set patterns indexed by basic block index. */
477 static rtx *implicit_sets;
479 /* Head of the list of load/store memory refs. */
480 static struct ls_expr * pre_ldst_mems = NULL;
482 /* Bitmap containing one bit for each register in the program.
483 Used when performing GCSE to track which registers have been set since
484 the start of the basic block. */
485 static regset reg_set_bitmap;
487 /* For each block, a bitmap of registers set in the block.
488 This is used by expr_killed_p and compute_transp.
489 It is computed during hash table computation and not by compute_sets
490 as it includes registers added since the last pass (or between cprop and
491 gcse) and it's currently not easy to realloc sbitmap vectors. */
492 static sbitmap *reg_set_in_block;
494 /* Array, indexed by basic block number for a list of insns which modify
495 memory within that block. */
496 static rtx * modify_mem_list;
497 bitmap modify_mem_list_set;
499 /* This array parallels modify_mem_list, but is kept canonicalized. */
500 static rtx * canon_modify_mem_list;
501 bitmap canon_modify_mem_list_set;
502 /* Various variables for statistics gathering. */
504 /* Memory used in a pass.
505 This isn't intended to be absolutely precise. Its intent is only
506 to keep an eye on memory usage. */
507 static int bytes_used;
509 /* GCSE substitutions made. */
510 static int gcse_subst_count;
511 /* Number of copy instructions created. */
512 static int gcse_create_count;
513 /* Number of constants propagated. */
514 static int const_prop_count;
515 /* Number of copys propagated. */
516 static int copy_prop_count;
518 /* These variables are used by classic GCSE.
519 Normally they'd be defined a bit later, but `rd_gen' needs to
520 be declared sooner. */
522 /* Each block has a bitmap of each type.
523 The length of each blocks bitmap is:
525 max_cuid - for reaching definitions
526 n_exprs - for available expressions
528 Thus we view the bitmaps as 2 dimensional arrays. i.e.
529 rd_kill[block_num][cuid_num]
530 ae_kill[block_num][expr_num] */
532 /* For reaching defs */
533 static sbitmap *rd_kill, *rd_gen, *reaching_defs, *rd_out;
535 /* for available exprs */
536 static sbitmap *ae_kill, *ae_gen, *ae_in, *ae_out;
538 /* Objects of this type are passed around by the null-pointer check
539 removal routines. */
540 struct null_pointer_info
542 /* The basic block being processed. */
543 basic_block current_block;
544 /* The first register to be handled in this pass. */
545 unsigned int min_reg;
546 /* One greater than the last register to be handled in this pass. */
547 unsigned int max_reg;
548 sbitmap *nonnull_local;
549 sbitmap *nonnull_killed;
552 static void compute_can_copy (void);
553 static void *gmalloc (size_t) ATTRIBUTE_MALLOC;
554 static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC;
555 static void *grealloc (void *, size_t);
556 static void *gcse_alloc (unsigned long);
557 static void alloc_gcse_mem (rtx);
558 static void free_gcse_mem (void);
559 static void alloc_reg_set_mem (int);
560 static void free_reg_set_mem (void);
561 static int get_bitmap_width (int, int, int);
562 static void record_one_set (int, rtx);
563 static void replace_one_set (int, rtx, rtx);
564 static void record_set_info (rtx, rtx, void *);
565 static void compute_sets (rtx);
566 static void hash_scan_insn (rtx, struct hash_table *, int);
567 static void hash_scan_set (rtx, rtx, struct hash_table *);
568 static void hash_scan_clobber (rtx, rtx, struct hash_table *);
569 static void hash_scan_call (rtx, rtx, struct hash_table *);
570 static int want_to_gcse_p (rtx);
571 static bool gcse_constant_p (rtx);
572 static int oprs_unchanged_p (rtx, rtx, int);
573 static int oprs_anticipatable_p (rtx, rtx);
574 static int oprs_available_p (rtx, rtx);
575 static void insert_expr_in_table (rtx, enum machine_mode, rtx, int, int,
576 struct hash_table *);
577 static void insert_set_in_table (rtx, rtx, struct hash_table *);
578 static unsigned int hash_expr (rtx, enum machine_mode, int *, int);
579 static unsigned int hash_expr_1 (rtx, enum machine_mode, int *);
580 static unsigned int hash_string_1 (const char *);
581 static unsigned int hash_set (int, int);
582 static int expr_equiv_p (rtx, rtx);
583 static void record_last_reg_set_info (rtx, int);
584 static void record_last_mem_set_info (rtx);
585 static void record_last_set_info (rtx, rtx, void *);
586 static void compute_hash_table (struct hash_table *);
587 static void alloc_hash_table (int, struct hash_table *, int);
588 static void free_hash_table (struct hash_table *);
589 static void compute_hash_table_work (struct hash_table *);
590 static void dump_hash_table (FILE *, const char *, struct hash_table *);
591 static struct expr *lookup_expr (rtx, struct hash_table *);
592 static struct expr *lookup_set (unsigned int, struct hash_table *);
593 static struct expr *next_set (unsigned int, struct expr *);
594 static void reset_opr_set_tables (void);
595 static int oprs_not_set_p (rtx, rtx);
596 static void mark_call (rtx);
597 static void mark_set (rtx, rtx);
598 static void mark_clobber (rtx, rtx);
599 static void mark_oprs_set (rtx);
600 static void alloc_cprop_mem (int, int);
601 static void free_cprop_mem (void);
602 static void compute_transp (rtx, int, sbitmap *, int);
603 static void compute_transpout (void);
604 static void compute_local_properties (sbitmap *, sbitmap *, sbitmap *,
605 struct hash_table *);
606 static void compute_cprop_data (void);
607 static void find_used_regs (rtx *, void *);
608 static int try_replace_reg (rtx, rtx, rtx);
609 static struct expr *find_avail_set (int, rtx);
610 static int cprop_jump (basic_block, rtx, rtx, rtx, rtx);
611 static void mems_conflict_for_gcse_p (rtx, rtx, void *);
612 static int load_killed_in_block_p (basic_block, int, rtx, int);
613 static void canon_list_insert (rtx, rtx, void *);
614 static int cprop_insn (rtx, int);
615 static int cprop (int);
616 static void find_implicit_sets (void);
617 static int one_cprop_pass (int, int, int);
618 static bool constprop_register (rtx, rtx, rtx, int);
619 static struct expr *find_bypass_set (int, int);
620 static bool reg_killed_on_edge (rtx, edge);
621 static int bypass_block (basic_block, rtx, rtx);
622 static int bypass_conditional_jumps (void);
623 static void alloc_pre_mem (int, int);
624 static void free_pre_mem (void);
625 static void compute_pre_data (void);
626 static int pre_expr_reaches_here_p (basic_block, struct expr *,
627 basic_block);
628 static void insert_insn_end_bb (struct expr *, basic_block, int);
629 static void pre_insert_copy_insn (struct expr *, rtx);
630 static void pre_insert_copies (void);
631 static int pre_delete (void);
632 static int pre_gcse (void);
633 static int one_pre_gcse_pass (int);
634 static void add_label_notes (rtx, rtx);
635 static void alloc_code_hoist_mem (int, int);
636 static void free_code_hoist_mem (void);
637 static void compute_code_hoist_vbeinout (void);
638 static void compute_code_hoist_data (void);
639 static int hoist_expr_reaches_here_p (basic_block, int, basic_block, char *);
640 static void hoist_code (void);
641 static int one_code_hoisting_pass (void);
642 static void alloc_rd_mem (int, int);
643 static void free_rd_mem (void);
644 static void handle_rd_kill_set (rtx, int, basic_block);
645 static void compute_kill_rd (void);
646 static void compute_rd (void);
647 static void alloc_avail_expr_mem (int, int);
648 static void free_avail_expr_mem (void);
649 static void compute_ae_gen (struct hash_table *);
650 static int expr_killed_p (rtx, basic_block);
651 static void compute_ae_kill (sbitmap *, sbitmap *, struct hash_table *);
652 static int expr_reaches_here_p (struct occr *, struct expr *, basic_block,
653 int);
654 static rtx computing_insn (struct expr *, rtx);
655 static int def_reaches_here_p (rtx, rtx);
656 static int can_disregard_other_sets (struct reg_set **, rtx, int);
657 static int handle_avail_expr (rtx, struct expr *);
658 static int classic_gcse (void);
659 static int one_classic_gcse_pass (int);
660 static void invalidate_nonnull_info (rtx, rtx, void *);
661 static int delete_null_pointer_checks_1 (unsigned int *, sbitmap *, sbitmap *,
662 struct null_pointer_info *);
663 static rtx process_insert_insn (struct expr *);
664 static int pre_edge_insert (struct edge_list *, struct expr **);
665 static int expr_reaches_here_p_work (struct occr *, struct expr *,
666 basic_block, int, char *);
667 static int pre_expr_reaches_here_p_work (basic_block, struct expr *,
668 basic_block, char *);
669 static struct ls_expr * ldst_entry (rtx);
670 static void free_ldst_entry (struct ls_expr *);
671 static void free_ldst_mems (void);
672 static void print_ldst_list (FILE *);
673 static struct ls_expr * find_rtx_in_ldst (rtx);
674 static int enumerate_ldsts (void);
675 static inline struct ls_expr * first_ls_expr (void);
676 static inline struct ls_expr * next_ls_expr (struct ls_expr *);
677 static int simple_mem (rtx);
678 static void invalidate_any_buried_refs (rtx);
679 static void compute_ld_motion_mems (void);
680 static void trim_ld_motion_mems (void);
681 static void update_ld_motion_stores (struct expr *);
682 static void reg_set_info (rtx, rtx, void *);
683 static void reg_clear_last_set (rtx, rtx, void *);
684 static bool store_ops_ok (rtx, int *);
685 static rtx extract_mentioned_regs (rtx);
686 static rtx extract_mentioned_regs_helper (rtx, rtx);
687 static void find_moveable_store (rtx, int *, int *);
688 static int compute_store_table (void);
689 static bool load_kills_store (rtx, rtx, int);
690 static bool find_loads (rtx, rtx, int);
691 static bool store_killed_in_insn (rtx, rtx, rtx, int);
692 static bool store_killed_after (rtx, rtx, rtx, basic_block, int *, rtx *);
693 static bool store_killed_before (rtx, rtx, rtx, basic_block, int *);
694 static void build_store_vectors (void);
695 static void insert_insn_start_bb (rtx, basic_block);
696 static int insert_store (struct ls_expr *, edge);
697 static void remove_reachable_equiv_notes (basic_block, struct ls_expr *);
698 static void replace_store_insn (rtx, rtx, basic_block, struct ls_expr *);
699 static void delete_store (struct ls_expr *, basic_block);
700 static void free_store_memory (void);
701 static void store_motion (void);
702 static void free_insn_expr_list_list (rtx *);
703 static void clear_modify_mem_tables (void);
704 static void free_modify_mem_tables (void);
705 static rtx gcse_emit_move_after (rtx, rtx, rtx);
706 static void local_cprop_find_used_regs (rtx *, void *);
707 static bool do_local_cprop (rtx, rtx, int, rtx*);
708 static bool adjust_libcall_notes (rtx, rtx, rtx, rtx*);
709 static void local_cprop_pass (int);
710 static bool is_too_expensive (const char *);
713 /* Entry point for global common subexpression elimination.
714 F is the first instruction in the function. */
717 gcse_main (rtx f, FILE *file)
719 int changed, pass;
720 /* Bytes used at start of pass. */
721 int initial_bytes_used;
722 /* Maximum number of bytes used by a pass. */
723 int max_pass_bytes;
724 /* Point to release obstack data from for each pass. */
725 char *gcse_obstack_bottom;
727 /* We do not construct an accurate cfg in functions which call
728 setjmp, so just punt to be safe. */
729 if (current_function_calls_setjmp)
730 return 0;
732 /* Assume that we do not need to run jump optimizations after gcse. */
733 run_jump_opt_after_gcse = 0;
735 /* For calling dump_foo fns from gdb. */
736 debug_stderr = stderr;
737 gcse_file = file;
739 /* Identify the basic block information for this function, including
740 successors and predecessors. */
741 max_gcse_regno = max_reg_num ();
743 if (file)
744 dump_flow_info (file);
746 /* Return if there's nothing to do, or it is too expensive. */
747 if (n_basic_blocks <= 1 || is_too_expensive (_("GCSE disabled")))
748 return 0;
750 gcc_obstack_init (&gcse_obstack);
751 bytes_used = 0;
753 /* We need alias. */
754 init_alias_analysis ();
755 /* Record where pseudo-registers are set. This data is kept accurate
756 during each pass. ??? We could also record hard-reg information here
757 [since it's unchanging], however it is currently done during hash table
758 computation.
760 It may be tempting to compute MEM set information here too, but MEM sets
761 will be subject to code motion one day and thus we need to compute
762 information about memory sets when we build the hash tables. */
764 alloc_reg_set_mem (max_gcse_regno);
765 compute_sets (f);
767 pass = 0;
768 initial_bytes_used = bytes_used;
769 max_pass_bytes = 0;
770 gcse_obstack_bottom = gcse_alloc (1);
771 changed = 1;
772 while (changed && pass < MAX_GCSE_PASSES)
774 changed = 0;
775 if (file)
776 fprintf (file, "GCSE pass %d\n\n", pass + 1);
778 /* Initialize bytes_used to the space for the pred/succ lists,
779 and the reg_set_table data. */
780 bytes_used = initial_bytes_used;
782 /* Each pass may create new registers, so recalculate each time. */
783 max_gcse_regno = max_reg_num ();
785 alloc_gcse_mem (f);
787 /* Don't allow constant propagation to modify jumps
788 during this pass. */
789 changed = one_cprop_pass (pass + 1, 0, 0);
791 if (optimize_size)
792 changed |= one_classic_gcse_pass (pass + 1);
793 else
795 changed |= one_pre_gcse_pass (pass + 1);
796 /* We may have just created new basic blocks. Release and
797 recompute various things which are sized on the number of
798 basic blocks. */
799 if (changed)
801 free_modify_mem_tables ();
802 modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
803 canon_modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
805 free_reg_set_mem ();
806 alloc_reg_set_mem (max_reg_num ());
807 compute_sets (f);
808 run_jump_opt_after_gcse = 1;
811 if (max_pass_bytes < bytes_used)
812 max_pass_bytes = bytes_used;
814 /* Free up memory, then reallocate for code hoisting. We can
815 not re-use the existing allocated memory because the tables
816 will not have info for the insns or registers created by
817 partial redundancy elimination. */
818 free_gcse_mem ();
820 /* It does not make sense to run code hoisting unless we are optimizing
821 for code size -- it rarely makes programs faster, and can make
822 them bigger if we did partial redundancy elimination (when optimizing
823 for space, we use a classic gcse algorithm instead of partial
824 redundancy algorithms). */
825 if (optimize_size)
827 max_gcse_regno = max_reg_num ();
828 alloc_gcse_mem (f);
829 changed |= one_code_hoisting_pass ();
830 free_gcse_mem ();
832 if (max_pass_bytes < bytes_used)
833 max_pass_bytes = bytes_used;
836 if (file)
838 fprintf (file, "\n");
839 fflush (file);
842 obstack_free (&gcse_obstack, gcse_obstack_bottom);
843 pass++;
846 /* Do one last pass of copy propagation, including cprop into
847 conditional jumps. */
849 max_gcse_regno = max_reg_num ();
850 alloc_gcse_mem (f);
851 /* This time, go ahead and allow cprop to alter jumps. */
852 one_cprop_pass (pass + 1, 1, 0);
853 free_gcse_mem ();
855 if (file)
857 fprintf (file, "GCSE of %s: %d basic blocks, ",
858 current_function_name (), n_basic_blocks);
859 fprintf (file, "%d pass%s, %d bytes\n\n",
860 pass, pass > 1 ? "es" : "", max_pass_bytes);
863 obstack_free (&gcse_obstack, NULL);
864 free_reg_set_mem ();
865 /* We are finished with alias. */
866 end_alias_analysis ();
867 allocate_reg_info (max_reg_num (), FALSE, FALSE);
869 if (!optimize_size && flag_gcse_sm)
870 store_motion ();
872 /* Record where pseudo-registers are set. */
873 return run_jump_opt_after_gcse;
876 /* Misc. utilities. */
878 /* Nonzero for each mode that supports (set (reg) (reg)).
879 This is trivially true for integer and floating point values.
880 It may or may not be true for condition codes. */
881 static char can_copy[(int) NUM_MACHINE_MODES];
883 /* Compute which modes support reg/reg copy operations. */
885 static void
886 compute_can_copy (void)
888 int i;
889 #ifndef AVOID_CCMODE_COPIES
890 rtx reg, insn;
891 #endif
892 memset (can_copy, 0, NUM_MACHINE_MODES);
894 start_sequence ();
895 for (i = 0; i < NUM_MACHINE_MODES; i++)
896 if (GET_MODE_CLASS (i) == MODE_CC)
898 #ifdef AVOID_CCMODE_COPIES
899 can_copy[i] = 0;
900 #else
901 reg = gen_rtx_REG ((enum machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
902 insn = emit_insn (gen_rtx_SET (VOIDmode, reg, reg));
903 if (recog (PATTERN (insn), insn, NULL) >= 0)
904 can_copy[i] = 1;
905 #endif
907 else
908 can_copy[i] = 1;
910 end_sequence ();
913 /* Returns whether the mode supports reg/reg copy operations. */
915 bool
916 can_copy_p (enum machine_mode mode)
918 static bool can_copy_init_p = false;
920 if (! can_copy_init_p)
922 compute_can_copy ();
923 can_copy_init_p = true;
926 return can_copy[mode] != 0;
929 /* Cover function to xmalloc to record bytes allocated. */
931 static void *
932 gmalloc (size_t size)
934 bytes_used += size;
935 return xmalloc (size);
938 /* Cover function to xcalloc to record bytes allocated. */
940 static void *
941 gcalloc (size_t nelem, size_t elsize)
943 bytes_used += nelem * elsize;
944 return xcalloc (nelem, elsize);
947 /* Cover function to xrealloc.
948 We don't record the additional size since we don't know it.
949 It won't affect memory usage stats much anyway. */
951 static void *
952 grealloc (void *ptr, size_t size)
954 return xrealloc (ptr, size);
957 /* Cover function to obstack_alloc. */
959 static void *
960 gcse_alloc (unsigned long size)
962 bytes_used += size;
963 return obstack_alloc (&gcse_obstack, size);
966 /* Allocate memory for the cuid mapping array,
967 and reg/memory set tracking tables.
969 This is called at the start of each pass. */
971 static void
972 alloc_gcse_mem (rtx f)
974 int i;
975 rtx insn;
977 /* Find the largest UID and create a mapping from UIDs to CUIDs.
978 CUIDs are like UIDs except they increase monotonically, have no gaps,
979 and only apply to real insns. */
981 max_uid = get_max_uid ();
982 uid_cuid = gcalloc (max_uid + 1, sizeof (int));
983 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
985 if (INSN_P (insn))
986 uid_cuid[INSN_UID (insn)] = i++;
987 else
988 uid_cuid[INSN_UID (insn)] = i;
991 /* Create a table mapping cuids to insns. */
993 max_cuid = i;
994 cuid_insn = gcalloc (max_cuid + 1, sizeof (rtx));
995 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
996 if (INSN_P (insn))
997 CUID_INSN (i++) = insn;
999 /* Allocate vars to track sets of regs. */
1000 reg_set_bitmap = BITMAP_XMALLOC ();
1002 /* Allocate vars to track sets of regs, memory per block. */
1003 reg_set_in_block = sbitmap_vector_alloc (last_basic_block, max_gcse_regno);
1004 /* Allocate array to keep a list of insns which modify memory in each
1005 basic block. */
1006 modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
1007 canon_modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
1008 modify_mem_list_set = BITMAP_XMALLOC ();
1009 canon_modify_mem_list_set = BITMAP_XMALLOC ();
1012 /* Free memory allocated by alloc_gcse_mem. */
1014 static void
1015 free_gcse_mem (void)
1017 free (uid_cuid);
1018 free (cuid_insn);
1020 BITMAP_XFREE (reg_set_bitmap);
1022 sbitmap_vector_free (reg_set_in_block);
1023 free_modify_mem_tables ();
1024 BITMAP_XFREE (modify_mem_list_set);
1025 BITMAP_XFREE (canon_modify_mem_list_set);
1028 /* Many of the global optimization algorithms work by solving dataflow
1029 equations for various expressions. Initially, some local value is
1030 computed for each expression in each block. Then, the values across the
1031 various blocks are combined (by following flow graph edges) to arrive at
1032 global values. Conceptually, each set of equations is independent. We
1033 may therefore solve all the equations in parallel, solve them one at a
1034 time, or pick any intermediate approach.
1036 When you're going to need N two-dimensional bitmaps, each X (say, the
1037 number of blocks) by Y (say, the number of expressions), call this
1038 function. It's not important what X and Y represent; only that Y
1039 correspond to the things that can be done in parallel. This function will
1040 return an appropriate chunking factor C; you should solve C sets of
1041 equations in parallel. By going through this function, we can easily
1042 trade space against time; by solving fewer equations in parallel we use
1043 less space. */
1045 static int
1046 get_bitmap_width (int n, int x, int y)
1048 /* It's not really worth figuring out *exactly* how much memory will
1049 be used by a particular choice. The important thing is to get
1050 something approximately right. */
1051 size_t max_bitmap_memory = 10 * 1024 * 1024;
1053 /* The number of bytes we'd use for a single column of minimum
1054 width. */
1055 size_t column_size = n * x * sizeof (SBITMAP_ELT_TYPE);
1057 /* Often, it's reasonable just to solve all the equations in
1058 parallel. */
1059 if (column_size * SBITMAP_SET_SIZE (y) <= max_bitmap_memory)
1060 return y;
1062 /* Otherwise, pick the largest width we can, without going over the
1063 limit. */
1064 return SBITMAP_ELT_BITS * ((max_bitmap_memory + column_size - 1)
1065 / column_size);
1068 /* Compute the local properties of each recorded expression.
1070 Local properties are those that are defined by the block, irrespective of
1071 other blocks.
1073 An expression is transparent in a block if its operands are not modified
1074 in the block.
1076 An expression is computed (locally available) in a block if it is computed
1077 at least once and expression would contain the same value if the
1078 computation was moved to the end of the block.
1080 An expression is locally anticipatable in a block if it is computed at
1081 least once and expression would contain the same value if the computation
1082 was moved to the beginning of the block.
1084 We call this routine for cprop, pre and code hoisting. They all compute
1085 basically the same information and thus can easily share this code.
1087 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
1088 properties. If NULL, then it is not necessary to compute or record that
1089 particular property.
1091 TABLE controls which hash table to look at. If it is set hash table,
1092 additionally, TRANSP is computed as ~TRANSP, since this is really cprop's
1093 ABSALTERED. */
1095 static void
1096 compute_local_properties (sbitmap *transp, sbitmap *comp, sbitmap *antloc, struct hash_table *table)
1098 unsigned int i;
1100 /* Initialize any bitmaps that were passed in. */
1101 if (transp)
1103 if (table->set_p)
1104 sbitmap_vector_zero (transp, last_basic_block);
1105 else
1106 sbitmap_vector_ones (transp, last_basic_block);
1109 if (comp)
1110 sbitmap_vector_zero (comp, last_basic_block);
1111 if (antloc)
1112 sbitmap_vector_zero (antloc, last_basic_block);
1114 for (i = 0; i < table->size; i++)
1116 struct expr *expr;
1118 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1120 int indx = expr->bitmap_index;
1121 struct occr *occr;
1123 /* The expression is transparent in this block if it is not killed.
1124 We start by assuming all are transparent [none are killed], and
1125 then reset the bits for those that are. */
1126 if (transp)
1127 compute_transp (expr->expr, indx, transp, table->set_p);
1129 /* The occurrences recorded in antic_occr are exactly those that
1130 we want to set to nonzero in ANTLOC. */
1131 if (antloc)
1132 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
1134 SET_BIT (antloc[BLOCK_NUM (occr->insn)], indx);
1136 /* While we're scanning the table, this is a good place to
1137 initialize this. */
1138 occr->deleted_p = 0;
1141 /* The occurrences recorded in avail_occr are exactly those that
1142 we want to set to nonzero in COMP. */
1143 if (comp)
1144 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
1146 SET_BIT (comp[BLOCK_NUM (occr->insn)], indx);
1148 /* While we're scanning the table, this is a good place to
1149 initialize this. */
1150 occr->copied_p = 0;
1153 /* While we're scanning the table, this is a good place to
1154 initialize this. */
1155 expr->reaching_reg = 0;
1160 /* Register set information.
1162 `reg_set_table' records where each register is set or otherwise
1163 modified. */
1165 static struct obstack reg_set_obstack;
1167 static void
1168 alloc_reg_set_mem (int n_regs)
1170 reg_set_table_size = n_regs + REG_SET_TABLE_SLOP;
1171 reg_set_table = gcalloc (reg_set_table_size, sizeof (struct reg_set *));
1173 gcc_obstack_init (&reg_set_obstack);
1176 static void
1177 free_reg_set_mem (void)
1179 free (reg_set_table);
1180 obstack_free (&reg_set_obstack, NULL);
1183 /* An OLD_INSN that used to set REGNO was replaced by NEW_INSN.
1184 Update the corresponding `reg_set_table' entry accordingly.
1185 We assume that NEW_INSN is not already recorded in reg_set_table[regno]. */
1187 static void
1188 replace_one_set (int regno, rtx old_insn, rtx new_insn)
1190 struct reg_set *reg_info;
1191 if (regno >= reg_set_table_size)
1192 return;
1193 for (reg_info = reg_set_table[regno]; reg_info; reg_info = reg_info->next)
1194 if (reg_info->insn == old_insn)
1196 reg_info->insn = new_insn;
1197 break;
1201 /* Record REGNO in the reg_set table. */
1203 static void
1204 record_one_set (int regno, rtx insn)
1206 /* Allocate a new reg_set element and link it onto the list. */
1207 struct reg_set *new_reg_info;
1209 /* If the table isn't big enough, enlarge it. */
1210 if (regno >= reg_set_table_size)
1212 int new_size = regno + REG_SET_TABLE_SLOP;
1214 reg_set_table = grealloc (reg_set_table,
1215 new_size * sizeof (struct reg_set *));
1216 memset (reg_set_table + reg_set_table_size, 0,
1217 (new_size - reg_set_table_size) * sizeof (struct reg_set *));
1218 reg_set_table_size = new_size;
1221 new_reg_info = obstack_alloc (&reg_set_obstack, sizeof (struct reg_set));
1222 bytes_used += sizeof (struct reg_set);
1223 new_reg_info->insn = insn;
1224 new_reg_info->next = reg_set_table[regno];
1225 reg_set_table[regno] = new_reg_info;
1228 /* Called from compute_sets via note_stores to handle one SET or CLOBBER in
1229 an insn. The DATA is really the instruction in which the SET is
1230 occurring. */
1232 static void
1233 record_set_info (rtx dest, rtx setter ATTRIBUTE_UNUSED, void *data)
1235 rtx record_set_insn = (rtx) data;
1237 if (GET_CODE (dest) == REG && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
1238 record_one_set (REGNO (dest), record_set_insn);
1241 /* Scan the function and record each set of each pseudo-register.
1243 This is called once, at the start of the gcse pass. See the comments for
1244 `reg_set_table' for further documentation. */
1246 static void
1247 compute_sets (rtx f)
1249 rtx insn;
1251 for (insn = f; insn != 0; insn = NEXT_INSN (insn))
1252 if (INSN_P (insn))
1253 note_stores (PATTERN (insn), record_set_info, insn);
1256 /* Hash table support. */
1258 struct reg_avail_info
1260 basic_block last_bb;
1261 int first_set;
1262 int last_set;
1265 static struct reg_avail_info *reg_avail_info;
1266 static basic_block current_bb;
1269 /* See whether X, the source of a set, is something we want to consider for
1270 GCSE. */
1272 static GTY(()) rtx test_insn;
1273 static int
1274 want_to_gcse_p (rtx x)
1276 int num_clobbers = 0;
1277 int icode;
1279 switch (GET_CODE (x))
1281 case REG:
1282 case SUBREG:
1283 case CONST_INT:
1284 case CONST_DOUBLE:
1285 case CONST_VECTOR:
1286 case CALL:
1287 case CONSTANT_P_RTX:
1288 return 0;
1290 default:
1291 break;
1294 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
1295 if (general_operand (x, GET_MODE (x)))
1296 return 1;
1297 else if (GET_MODE (x) == VOIDmode)
1298 return 0;
1300 /* Otherwise, check if we can make a valid insn from it. First initialize
1301 our test insn if we haven't already. */
1302 if (test_insn == 0)
1304 test_insn
1305 = make_insn_raw (gen_rtx_SET (VOIDmode,
1306 gen_rtx_REG (word_mode,
1307 FIRST_PSEUDO_REGISTER * 2),
1308 const0_rtx));
1309 NEXT_INSN (test_insn) = PREV_INSN (test_insn) = 0;
1312 /* Now make an insn like the one we would make when GCSE'ing and see if
1313 valid. */
1314 PUT_MODE (SET_DEST (PATTERN (test_insn)), GET_MODE (x));
1315 SET_SRC (PATTERN (test_insn)) = x;
1316 return ((icode = recog (PATTERN (test_insn), test_insn, &num_clobbers)) >= 0
1317 && (num_clobbers == 0 || ! added_clobbers_hard_reg_p (icode)));
1320 /* Return nonzero if the operands of expression X are unchanged from the
1321 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
1322 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
1324 static int
1325 oprs_unchanged_p (rtx x, rtx insn, int avail_p)
1327 int i, j;
1328 enum rtx_code code;
1329 const char *fmt;
1331 if (x == 0)
1332 return 1;
1334 code = GET_CODE (x);
1335 switch (code)
1337 case REG:
1339 struct reg_avail_info *info = &reg_avail_info[REGNO (x)];
1341 if (info->last_bb != current_bb)
1342 return 1;
1343 if (avail_p)
1344 return info->last_set < INSN_CUID (insn);
1345 else
1346 return info->first_set >= INSN_CUID (insn);
1349 case MEM:
1350 if (load_killed_in_block_p (current_bb, INSN_CUID (insn),
1351 x, avail_p))
1352 return 0;
1353 else
1354 return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
1356 case PRE_DEC:
1357 case PRE_INC:
1358 case POST_DEC:
1359 case POST_INC:
1360 case PRE_MODIFY:
1361 case POST_MODIFY:
1362 return 0;
1364 case PC:
1365 case CC0: /*FIXME*/
1366 case CONST:
1367 case CONST_INT:
1368 case CONST_DOUBLE:
1369 case CONST_VECTOR:
1370 case SYMBOL_REF:
1371 case LABEL_REF:
1372 case ADDR_VEC:
1373 case ADDR_DIFF_VEC:
1374 return 1;
1376 default:
1377 break;
1380 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
1382 if (fmt[i] == 'e')
1384 /* If we are about to do the last recursive call needed at this
1385 level, change it into iteration. This function is called enough
1386 to be worth it. */
1387 if (i == 0)
1388 return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
1390 else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
1391 return 0;
1393 else if (fmt[i] == 'E')
1394 for (j = 0; j < XVECLEN (x, i); j++)
1395 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
1396 return 0;
1399 return 1;
1402 /* Used for communication between mems_conflict_for_gcse_p and
1403 load_killed_in_block_p. Nonzero if mems_conflict_for_gcse_p finds a
1404 conflict between two memory references. */
1405 static int gcse_mems_conflict_p;
1407 /* Used for communication between mems_conflict_for_gcse_p and
1408 load_killed_in_block_p. A memory reference for a load instruction,
1409 mems_conflict_for_gcse_p will see if a memory store conflicts with
1410 this memory load. */
1411 static rtx gcse_mem_operand;
1413 /* DEST is the output of an instruction. If it is a memory reference, and
1414 possibly conflicts with the load found in gcse_mem_operand, then set
1415 gcse_mems_conflict_p to a nonzero value. */
1417 static void
1418 mems_conflict_for_gcse_p (rtx dest, rtx setter ATTRIBUTE_UNUSED,
1419 void *data ATTRIBUTE_UNUSED)
1421 while (GET_CODE (dest) == SUBREG
1422 || GET_CODE (dest) == ZERO_EXTRACT
1423 || GET_CODE (dest) == SIGN_EXTRACT
1424 || GET_CODE (dest) == STRICT_LOW_PART)
1425 dest = XEXP (dest, 0);
1427 /* If DEST is not a MEM, then it will not conflict with the load. Note
1428 that function calls are assumed to clobber memory, but are handled
1429 elsewhere. */
1430 if (GET_CODE (dest) != MEM)
1431 return;
1433 /* If we are setting a MEM in our list of specially recognized MEMs,
1434 don't mark as killed this time. */
1436 if (expr_equiv_p (dest, gcse_mem_operand) && pre_ldst_mems != NULL)
1438 if (!find_rtx_in_ldst (dest))
1439 gcse_mems_conflict_p = 1;
1440 return;
1443 if (true_dependence (dest, GET_MODE (dest), gcse_mem_operand,
1444 rtx_addr_varies_p))
1445 gcse_mems_conflict_p = 1;
1448 /* Return nonzero if the expression in X (a memory reference) is killed
1449 in block BB before or after the insn with the CUID in UID_LIMIT.
1450 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1451 before UID_LIMIT.
1453 To check the entire block, set UID_LIMIT to max_uid + 1 and
1454 AVAIL_P to 0. */
1456 static int
1457 load_killed_in_block_p (basic_block bb, int uid_limit, rtx x, int avail_p)
1459 rtx list_entry = modify_mem_list[bb->index];
1460 while (list_entry)
1462 rtx setter;
1463 /* Ignore entries in the list that do not apply. */
1464 if ((avail_p
1465 && INSN_CUID (XEXP (list_entry, 0)) < uid_limit)
1466 || (! avail_p
1467 && INSN_CUID (XEXP (list_entry, 0)) > uid_limit))
1469 list_entry = XEXP (list_entry, 1);
1470 continue;
1473 setter = XEXP (list_entry, 0);
1475 /* If SETTER is a call everything is clobbered. Note that calls
1476 to pure functions are never put on the list, so we need not
1477 worry about them. */
1478 if (GET_CODE (setter) == CALL_INSN)
1479 return 1;
1481 /* SETTER must be an INSN of some kind that sets memory. Call
1482 note_stores to examine each hunk of memory that is modified.
1484 The note_stores interface is pretty limited, so we have to
1485 communicate via global variables. Yuk. */
1486 gcse_mem_operand = x;
1487 gcse_mems_conflict_p = 0;
1488 note_stores (PATTERN (setter), mems_conflict_for_gcse_p, NULL);
1489 if (gcse_mems_conflict_p)
1490 return 1;
1491 list_entry = XEXP (list_entry, 1);
1493 return 0;
1496 /* Return nonzero if the operands of expression X are unchanged from
1497 the start of INSN's basic block up to but not including INSN. */
1499 static int
1500 oprs_anticipatable_p (rtx x, rtx insn)
1502 return oprs_unchanged_p (x, insn, 0);
1505 /* Return nonzero if the operands of expression X are unchanged from
1506 INSN to the end of INSN's basic block. */
1508 static int
1509 oprs_available_p (rtx x, rtx insn)
1511 return oprs_unchanged_p (x, insn, 1);
1514 /* Hash expression X.
1516 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1517 indicating if a volatile operand is found or if the expression contains
1518 something we don't want to insert in the table. HASH_TABLE_SIZE is
1519 the current size of the hash table to be probed.
1521 ??? One might want to merge this with canon_hash. Later. */
1523 static unsigned int
1524 hash_expr (rtx x, enum machine_mode mode, int *do_not_record_p,
1525 int hash_table_size)
1527 unsigned int hash;
1529 *do_not_record_p = 0;
1531 hash = hash_expr_1 (x, mode, do_not_record_p);
1532 return hash % hash_table_size;
1535 /* Hash a string. Just add its bytes up. */
1537 static inline unsigned
1538 hash_string_1 (const char *ps)
1540 unsigned hash = 0;
1541 const unsigned char *p = (const unsigned char *) ps;
1543 if (p)
1544 while (*p)
1545 hash += *p++;
1547 return hash;
1550 /* Subroutine of hash_expr to do the actual work. */
1552 static unsigned int
1553 hash_expr_1 (rtx x, enum machine_mode mode, int *do_not_record_p)
1555 int i, j;
1556 unsigned hash = 0;
1557 enum rtx_code code;
1558 const char *fmt;
1560 /* Used to turn recursion into iteration. We can't rely on GCC's
1561 tail-recursion elimination since we need to keep accumulating values
1562 in HASH. */
1564 if (x == 0)
1565 return hash;
1567 repeat:
1568 code = GET_CODE (x);
1569 switch (code)
1571 case REG:
1572 hash += ((unsigned int) REG << 7) + REGNO (x);
1573 return hash;
1575 case CONST_INT:
1576 hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
1577 + (unsigned int) INTVAL (x));
1578 return hash;
1580 case CONST_DOUBLE:
1581 /* This is like the general case, except that it only counts
1582 the integers representing the constant. */
1583 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
1584 if (GET_MODE (x) != VOIDmode)
1585 for (i = 2; i < GET_RTX_LENGTH (CONST_DOUBLE); i++)
1586 hash += (unsigned int) XWINT (x, i);
1587 else
1588 hash += ((unsigned int) CONST_DOUBLE_LOW (x)
1589 + (unsigned int) CONST_DOUBLE_HIGH (x));
1590 return hash;
1592 case CONST_VECTOR:
1594 int units;
1595 rtx elt;
1597 units = CONST_VECTOR_NUNITS (x);
1599 for (i = 0; i < units; ++i)
1601 elt = CONST_VECTOR_ELT (x, i);
1602 hash += hash_expr_1 (elt, GET_MODE (elt), do_not_record_p);
1605 return hash;
1608 /* Assume there is only one rtx object for any given label. */
1609 case LABEL_REF:
1610 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
1611 differences and differences between each stage's debugging dumps. */
1612 hash += (((unsigned int) LABEL_REF << 7)
1613 + CODE_LABEL_NUMBER (XEXP (x, 0)));
1614 return hash;
1616 case SYMBOL_REF:
1618 /* Don't hash on the symbol's address to avoid bootstrap differences.
1619 Different hash values may cause expressions to be recorded in
1620 different orders and thus different registers to be used in the
1621 final assembler. This also avoids differences in the dump files
1622 between various stages. */
1623 unsigned int h = 0;
1624 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
1626 while (*p)
1627 h += (h << 7) + *p++; /* ??? revisit */
1629 hash += ((unsigned int) SYMBOL_REF << 7) + h;
1630 return hash;
1633 case MEM:
1634 if (MEM_VOLATILE_P (x))
1636 *do_not_record_p = 1;
1637 return 0;
1640 hash += (unsigned int) MEM;
1641 /* We used alias set for hashing, but this is not good, since the alias
1642 set may differ in -fprofile-arcs and -fbranch-probabilities compilation
1643 causing the profiles to fail to match. */
1644 x = XEXP (x, 0);
1645 goto repeat;
1647 case PRE_DEC:
1648 case PRE_INC:
1649 case POST_DEC:
1650 case POST_INC:
1651 case PC:
1652 case CC0:
1653 case CALL:
1654 case UNSPEC_VOLATILE:
1655 *do_not_record_p = 1;
1656 return 0;
1658 case ASM_OPERANDS:
1659 if (MEM_VOLATILE_P (x))
1661 *do_not_record_p = 1;
1662 return 0;
1664 else
1666 /* We don't want to take the filename and line into account. */
1667 hash += (unsigned) code + (unsigned) GET_MODE (x)
1668 + hash_string_1 (ASM_OPERANDS_TEMPLATE (x))
1669 + hash_string_1 (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
1670 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
1672 if (ASM_OPERANDS_INPUT_LENGTH (x))
1674 for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
1676 hash += (hash_expr_1 (ASM_OPERANDS_INPUT (x, i),
1677 GET_MODE (ASM_OPERANDS_INPUT (x, i)),
1678 do_not_record_p)
1679 + hash_string_1 (ASM_OPERANDS_INPUT_CONSTRAINT
1680 (x, i)));
1683 hash += hash_string_1 (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
1684 x = ASM_OPERANDS_INPUT (x, 0);
1685 mode = GET_MODE (x);
1686 goto repeat;
1688 return hash;
1691 default:
1692 break;
1695 hash += (unsigned) code + (unsigned) GET_MODE (x);
1696 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
1698 if (fmt[i] == 'e')
1700 /* If we are about to do the last recursive call
1701 needed at this level, change it into iteration.
1702 This function is called enough to be worth it. */
1703 if (i == 0)
1705 x = XEXP (x, i);
1706 goto repeat;
1709 hash += hash_expr_1 (XEXP (x, i), 0, do_not_record_p);
1710 if (*do_not_record_p)
1711 return 0;
1714 else if (fmt[i] == 'E')
1715 for (j = 0; j < XVECLEN (x, i); j++)
1717 hash += hash_expr_1 (XVECEXP (x, i, j), 0, do_not_record_p);
1718 if (*do_not_record_p)
1719 return 0;
1722 else if (fmt[i] == 's')
1723 hash += hash_string_1 (XSTR (x, i));
1724 else if (fmt[i] == 'i')
1725 hash += (unsigned int) XINT (x, i);
1726 else
1727 abort ();
1730 return hash;
1733 /* Hash a set of register REGNO.
1735 Sets are hashed on the register that is set. This simplifies the PRE copy
1736 propagation code.
1738 ??? May need to make things more elaborate. Later, as necessary. */
1740 static unsigned int
1741 hash_set (int regno, int hash_table_size)
1743 unsigned int hash;
1745 hash = regno;
1746 return hash % hash_table_size;
1749 /* Return nonzero if exp1 is equivalent to exp2.
1750 ??? Borrowed from cse.c. Might want to remerge with cse.c. Later. */
1752 static int
1753 expr_equiv_p (rtx x, rtx y)
1755 int i, j;
1756 enum rtx_code code;
1757 const char *fmt;
1759 if (x == y)
1760 return 1;
1762 if (x == 0 || y == 0)
1763 return 0;
1765 code = GET_CODE (x);
1766 if (code != GET_CODE (y))
1767 return 0;
1769 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1770 if (GET_MODE (x) != GET_MODE (y))
1771 return 0;
1773 switch (code)
1775 case PC:
1776 case CC0:
1777 case CONST_INT:
1778 return 0;
1780 case LABEL_REF:
1781 return XEXP (x, 0) == XEXP (y, 0);
1783 case SYMBOL_REF:
1784 return XSTR (x, 0) == XSTR (y, 0);
1786 case REG:
1787 return REGNO (x) == REGNO (y);
1789 case MEM:
1790 /* Can't merge two expressions in different alias sets, since we can
1791 decide that the expression is transparent in a block when it isn't,
1792 due to it being set with the different alias set. */
1793 if (MEM_ALIAS_SET (x) != MEM_ALIAS_SET (y))
1794 return 0;
1796 /* A volatile mem should not be considered equivalent to any other. */
1797 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
1798 return 0;
1799 break;
1801 /* For commutative operations, check both orders. */
1802 case PLUS:
1803 case MULT:
1804 case AND:
1805 case IOR:
1806 case XOR:
1807 case NE:
1808 case EQ:
1809 return ((expr_equiv_p (XEXP (x, 0), XEXP (y, 0))
1810 && expr_equiv_p (XEXP (x, 1), XEXP (y, 1)))
1811 || (expr_equiv_p (XEXP (x, 0), XEXP (y, 1))
1812 && expr_equiv_p (XEXP (x, 1), XEXP (y, 0))));
1814 case ASM_OPERANDS:
1815 /* We don't use the generic code below because we want to
1816 disregard filename and line numbers. */
1818 /* A volatile asm isn't equivalent to any other. */
1819 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
1820 return 0;
1822 if (GET_MODE (x) != GET_MODE (y)
1823 || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
1824 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
1825 ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
1826 || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
1827 || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
1828 return 0;
1830 if (ASM_OPERANDS_INPUT_LENGTH (x))
1832 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
1833 if (! expr_equiv_p (ASM_OPERANDS_INPUT (x, i),
1834 ASM_OPERANDS_INPUT (y, i))
1835 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
1836 ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
1837 return 0;
1840 return 1;
1842 default:
1843 break;
1846 /* Compare the elements. If any pair of corresponding elements
1847 fail to match, return 0 for the whole thing. */
1849 fmt = GET_RTX_FORMAT (code);
1850 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1852 switch (fmt[i])
1854 case 'e':
1855 if (! expr_equiv_p (XEXP (x, i), XEXP (y, i)))
1856 return 0;
1857 break;
1859 case 'E':
1860 if (XVECLEN (x, i) != XVECLEN (y, i))
1861 return 0;
1862 for (j = 0; j < XVECLEN (x, i); j++)
1863 if (! expr_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
1864 return 0;
1865 break;
1867 case 's':
1868 if (strcmp (XSTR (x, i), XSTR (y, i)))
1869 return 0;
1870 break;
1872 case 'i':
1873 if (XINT (x, i) != XINT (y, i))
1874 return 0;
1875 break;
1877 case 'w':
1878 if (XWINT (x, i) != XWINT (y, i))
1879 return 0;
1880 break;
1882 case '0':
1883 break;
1885 default:
1886 abort ();
1890 return 1;
1893 /* Insert expression X in INSN in the hash TABLE.
1894 If it is already present, record it as the last occurrence in INSN's
1895 basic block.
1897 MODE is the mode of the value X is being stored into.
1898 It is only used if X is a CONST_INT.
1900 ANTIC_P is nonzero if X is an anticipatable expression.
1901 AVAIL_P is nonzero if X is an available expression. */
1903 static void
1904 insert_expr_in_table (rtx x, enum machine_mode mode, rtx insn, int antic_p,
1905 int avail_p, struct hash_table *table)
1907 int found, do_not_record_p;
1908 unsigned int hash;
1909 struct expr *cur_expr, *last_expr = NULL;
1910 struct occr *antic_occr, *avail_occr;
1911 struct occr *last_occr = NULL;
1913 hash = hash_expr (x, mode, &do_not_record_p, table->size);
1915 /* Do not insert expression in table if it contains volatile operands,
1916 or if hash_expr determines the expression is something we don't want
1917 to or can't handle. */
1918 if (do_not_record_p)
1919 return;
1921 cur_expr = table->table[hash];
1922 found = 0;
1924 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1926 /* If the expression isn't found, save a pointer to the end of
1927 the list. */
1928 last_expr = cur_expr;
1929 cur_expr = cur_expr->next_same_hash;
1932 if (! found)
1934 cur_expr = gcse_alloc (sizeof (struct expr));
1935 bytes_used += sizeof (struct expr);
1936 if (table->table[hash] == NULL)
1937 /* This is the first pattern that hashed to this index. */
1938 table->table[hash] = cur_expr;
1939 else
1940 /* Add EXPR to end of this hash chain. */
1941 last_expr->next_same_hash = cur_expr;
1943 /* Set the fields of the expr element. */
1944 cur_expr->expr = x;
1945 cur_expr->bitmap_index = table->n_elems++;
1946 cur_expr->next_same_hash = NULL;
1947 cur_expr->antic_occr = NULL;
1948 cur_expr->avail_occr = NULL;
1951 /* Now record the occurrence(s). */
1952 if (antic_p)
1954 antic_occr = cur_expr->antic_occr;
1956 /* Search for another occurrence in the same basic block. */
1957 while (antic_occr && BLOCK_NUM (antic_occr->insn) != BLOCK_NUM (insn))
1959 /* If an occurrence isn't found, save a pointer to the end of
1960 the list. */
1961 last_occr = antic_occr;
1962 antic_occr = antic_occr->next;
1965 if (antic_occr)
1966 /* Found another instance of the expression in the same basic block.
1967 Prefer the currently recorded one. We want the first one in the
1968 block and the block is scanned from start to end. */
1969 ; /* nothing to do */
1970 else
1972 /* First occurrence of this expression in this basic block. */
1973 antic_occr = gcse_alloc (sizeof (struct occr));
1974 bytes_used += sizeof (struct occr);
1975 /* First occurrence of this expression in any block? */
1976 if (cur_expr->antic_occr == NULL)
1977 cur_expr->antic_occr = antic_occr;
1978 else
1979 last_occr->next = antic_occr;
1981 antic_occr->insn = insn;
1982 antic_occr->next = NULL;
1983 antic_occr->deleted_p = 0;
1987 if (avail_p)
1989 avail_occr = cur_expr->avail_occr;
1991 /* Search for another occurrence in the same basic block. */
1992 while (avail_occr && BLOCK_NUM (avail_occr->insn) != BLOCK_NUM (insn))
1994 /* If an occurrence isn't found, save a pointer to the end of
1995 the list. */
1996 last_occr = avail_occr;
1997 avail_occr = avail_occr->next;
2000 if (avail_occr)
2001 /* Found another instance of the expression in the same basic block.
2002 Prefer this occurrence to the currently recorded one. We want
2003 the last one in the block and the block is scanned from start
2004 to end. */
2005 avail_occr->insn = insn;
2006 else
2008 /* First occurrence of this expression in this basic block. */
2009 avail_occr = gcse_alloc (sizeof (struct occr));
2010 bytes_used += sizeof (struct occr);
2012 /* First occurrence of this expression in any block? */
2013 if (cur_expr->avail_occr == NULL)
2014 cur_expr->avail_occr = avail_occr;
2015 else
2016 last_occr->next = avail_occr;
2018 avail_occr->insn = insn;
2019 avail_occr->next = NULL;
2020 avail_occr->deleted_p = 0;
2025 /* Insert pattern X in INSN in the hash table.
2026 X is a SET of a reg to either another reg or a constant.
2027 If it is already present, record it as the last occurrence in INSN's
2028 basic block. */
2030 static void
2031 insert_set_in_table (rtx x, rtx insn, struct hash_table *table)
2033 int found;
2034 unsigned int hash;
2035 struct expr *cur_expr, *last_expr = NULL;
2036 struct occr *cur_occr, *last_occr = NULL;
2038 if (GET_CODE (x) != SET
2039 || GET_CODE (SET_DEST (x)) != REG)
2040 abort ();
2042 hash = hash_set (REGNO (SET_DEST (x)), table->size);
2044 cur_expr = table->table[hash];
2045 found = 0;
2047 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
2049 /* If the expression isn't found, save a pointer to the end of
2050 the list. */
2051 last_expr = cur_expr;
2052 cur_expr = cur_expr->next_same_hash;
2055 if (! found)
2057 cur_expr = gcse_alloc (sizeof (struct expr));
2058 bytes_used += sizeof (struct expr);
2059 if (table->table[hash] == NULL)
2060 /* This is the first pattern that hashed to this index. */
2061 table->table[hash] = cur_expr;
2062 else
2063 /* Add EXPR to end of this hash chain. */
2064 last_expr->next_same_hash = cur_expr;
2066 /* Set the fields of the expr element.
2067 We must copy X because it can be modified when copy propagation is
2068 performed on its operands. */
2069 cur_expr->expr = copy_rtx (x);
2070 cur_expr->bitmap_index = table->n_elems++;
2071 cur_expr->next_same_hash = NULL;
2072 cur_expr->antic_occr = NULL;
2073 cur_expr->avail_occr = NULL;
2076 /* Now record the occurrence. */
2077 cur_occr = cur_expr->avail_occr;
2079 /* Search for another occurrence in the same basic block. */
2080 while (cur_occr && BLOCK_NUM (cur_occr->insn) != BLOCK_NUM (insn))
2082 /* If an occurrence isn't found, save a pointer to the end of
2083 the list. */
2084 last_occr = cur_occr;
2085 cur_occr = cur_occr->next;
2088 if (cur_occr)
2089 /* Found another instance of the expression in the same basic block.
2090 Prefer this occurrence to the currently recorded one. We want the
2091 last one in the block and the block is scanned from start to end. */
2092 cur_occr->insn = insn;
2093 else
2095 /* First occurrence of this expression in this basic block. */
2096 cur_occr = gcse_alloc (sizeof (struct occr));
2097 bytes_used += sizeof (struct occr);
2099 /* First occurrence of this expression in any block? */
2100 if (cur_expr->avail_occr == NULL)
2101 cur_expr->avail_occr = cur_occr;
2102 else
2103 last_occr->next = cur_occr;
2105 cur_occr->insn = insn;
2106 cur_occr->next = NULL;
2107 cur_occr->deleted_p = 0;
2111 /* Determine whether the rtx X should be treated as a constant for
2112 the purposes of GCSE's constant propagation. */
2114 static bool
2115 gcse_constant_p (rtx x)
2117 /* Consider a COMPARE of two integers constant. */
2118 if (GET_CODE (x) == COMPARE
2119 && GET_CODE (XEXP (x, 0)) == CONST_INT
2120 && GET_CODE (XEXP (x, 1)) == CONST_INT)
2121 return true;
2124 /* Consider a COMPARE of the same registers is a constant
2125 if they are not floating point registers. */
2126 if (GET_CODE(x) == COMPARE
2127 && GET_CODE (XEXP (x, 0)) == REG
2128 && GET_CODE (XEXP (x, 1)) == REG
2129 && REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 1))
2130 && ! FLOAT_MODE_P (GET_MODE (XEXP (x, 0)))
2131 && ! FLOAT_MODE_P (GET_MODE (XEXP (x, 1))))
2132 return true;
2134 if (GET_CODE (x) == CONSTANT_P_RTX)
2135 return false;
2137 return CONSTANT_P (x);
2140 /* Scan pattern PAT of INSN and add an entry to the hash TABLE (set or
2141 expression one). */
2143 static void
2144 hash_scan_set (rtx pat, rtx insn, struct hash_table *table)
2146 rtx src = SET_SRC (pat);
2147 rtx dest = SET_DEST (pat);
2148 rtx note;
2150 if (GET_CODE (src) == CALL)
2151 hash_scan_call (src, insn, table);
2153 else if (GET_CODE (dest) == REG)
2155 unsigned int regno = REGNO (dest);
2156 rtx tmp;
2158 /* If this is a single set and we are doing constant propagation,
2159 see if a REG_NOTE shows this equivalent to a constant. */
2160 if (table->set_p && (note = find_reg_equal_equiv_note (insn)) != 0
2161 && gcse_constant_p (XEXP (note, 0)))
2162 src = XEXP (note, 0), pat = gen_rtx_SET (VOIDmode, dest, src);
2164 /* Only record sets of pseudo-regs in the hash table. */
2165 if (! table->set_p
2166 && regno >= FIRST_PSEUDO_REGISTER
2167 /* Don't GCSE something if we can't do a reg/reg copy. */
2168 && can_copy_p (GET_MODE (dest))
2169 /* GCSE commonly inserts instruction after the insn. We can't
2170 do that easily for EH_REGION notes so disable GCSE on these
2171 for now. */
2172 && !find_reg_note (insn, REG_EH_REGION, NULL_RTX)
2173 /* Is SET_SRC something we want to gcse? */
2174 && want_to_gcse_p (src)
2175 /* Don't CSE a nop. */
2176 && ! set_noop_p (pat)
2177 /* Don't GCSE if it has attached REG_EQUIV note.
2178 At this point this only function parameters should have
2179 REG_EQUIV notes and if the argument slot is used somewhere
2180 explicitly, it means address of parameter has been taken,
2181 so we should not extend the lifetime of the pseudo. */
2182 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
2183 || GET_CODE (XEXP (note, 0)) != MEM))
2185 /* An expression is not anticipatable if its operands are
2186 modified before this insn or if this is not the only SET in
2187 this insn. */
2188 int antic_p = oprs_anticipatable_p (src, insn) && single_set (insn);
2189 /* An expression is not available if its operands are
2190 subsequently modified, including this insn. It's also not
2191 available if this is a branch, because we can't insert
2192 a set after the branch. */
2193 int avail_p = (oprs_available_p (src, insn)
2194 && ! JUMP_P (insn));
2196 insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p, table);
2199 /* Record sets for constant/copy propagation. */
2200 else if (table->set_p
2201 && regno >= FIRST_PSEUDO_REGISTER
2202 && ((GET_CODE (src) == REG
2203 && REGNO (src) >= FIRST_PSEUDO_REGISTER
2204 && can_copy_p (GET_MODE (dest))
2205 && REGNO (src) != regno)
2206 || gcse_constant_p (src))
2207 /* A copy is not available if its src or dest is subsequently
2208 modified. Here we want to search from INSN+1 on, but
2209 oprs_available_p searches from INSN on. */
2210 && (insn == BB_END (BLOCK_FOR_INSN (insn))
2211 || ((tmp = next_nonnote_insn (insn)) != NULL_RTX
2212 && oprs_available_p (pat, tmp))))
2213 insert_set_in_table (pat, insn, table);
2215 /* In case of store we want to consider the memory value as available in
2216 the REG stored in that memory. This makes it possible to remove
2217 redundant loads from due to stores to the same location. */
2218 else if (flag_gcse_las && GET_CODE (src) == REG && GET_CODE (dest) == MEM)
2220 unsigned int regno = REGNO (src);
2222 /* Do not do this for constant/copy propagation. */
2223 if (! table->set_p
2224 /* Only record sets of pseudo-regs in the hash table. */
2225 && regno >= FIRST_PSEUDO_REGISTER
2226 /* Don't GCSE something if we can't do a reg/reg copy. */
2227 && can_copy_p (GET_MODE (src))
2228 /* GCSE commonly inserts instruction after the insn. We can't
2229 do that easily for EH_REGION notes so disable GCSE on these
2230 for now. */
2231 && ! find_reg_note (insn, REG_EH_REGION, NULL_RTX)
2232 /* Is SET_DEST something we want to gcse? */
2233 && want_to_gcse_p (dest)
2234 /* Don't CSE a nop. */
2235 && ! set_noop_p (pat)
2236 /* Don't GCSE if it has attached REG_EQUIV note.
2237 At this point this only function parameters should have
2238 REG_EQUIV notes and if the argument slot is used somewhere
2239 explicitly, it means address of parameter has been taken,
2240 so we should not extend the lifetime of the pseudo. */
2241 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
2242 || GET_CODE (XEXP (note, 0)) != MEM))
2244 /* Stores are never anticipatable. */
2245 int antic_p = 0;
2246 /* An expression is not available if its operands are
2247 subsequently modified, including this insn. It's also not
2248 available if this is a branch, because we can't insert
2249 a set after the branch. */
2250 int avail_p = oprs_available_p (dest, insn)
2251 && ! JUMP_P (insn);
2253 /* Record the memory expression (DEST) in the hash table. */
2254 insert_expr_in_table (dest, GET_MODE (dest), insn,
2255 antic_p, avail_p, table);
2260 static void
2261 hash_scan_clobber (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
2262 struct hash_table *table ATTRIBUTE_UNUSED)
2264 /* Currently nothing to do. */
2267 static void
2268 hash_scan_call (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
2269 struct hash_table *table ATTRIBUTE_UNUSED)
2271 /* Currently nothing to do. */
2274 /* Process INSN and add hash table entries as appropriate.
2276 Only available expressions that set a single pseudo-reg are recorded.
2278 Single sets in a PARALLEL could be handled, but it's an extra complication
2279 that isn't dealt with right now. The trick is handling the CLOBBERs that
2280 are also in the PARALLEL. Later.
2282 If SET_P is nonzero, this is for the assignment hash table,
2283 otherwise it is for the expression hash table.
2284 If IN_LIBCALL_BLOCK nonzero, we are in a libcall block, and should
2285 not record any expressions. */
2287 static void
2288 hash_scan_insn (rtx insn, struct hash_table *table, int in_libcall_block)
2290 rtx pat = PATTERN (insn);
2291 int i;
2293 if (in_libcall_block)
2294 return;
2296 /* Pick out the sets of INSN and for other forms of instructions record
2297 what's been modified. */
2299 if (GET_CODE (pat) == SET)
2300 hash_scan_set (pat, insn, table);
2301 else if (GET_CODE (pat) == PARALLEL)
2302 for (i = 0; i < XVECLEN (pat, 0); i++)
2304 rtx x = XVECEXP (pat, 0, i);
2306 if (GET_CODE (x) == SET)
2307 hash_scan_set (x, insn, table);
2308 else if (GET_CODE (x) == CLOBBER)
2309 hash_scan_clobber (x, insn, table);
2310 else if (GET_CODE (x) == CALL)
2311 hash_scan_call (x, insn, table);
2314 else if (GET_CODE (pat) == CLOBBER)
2315 hash_scan_clobber (pat, insn, table);
2316 else if (GET_CODE (pat) == CALL)
2317 hash_scan_call (pat, insn, table);
2320 static void
2321 dump_hash_table (FILE *file, const char *name, struct hash_table *table)
2323 int i;
2324 /* Flattened out table, so it's printed in proper order. */
2325 struct expr **flat_table;
2326 unsigned int *hash_val;
2327 struct expr *expr;
2329 flat_table = xcalloc (table->n_elems, sizeof (struct expr *));
2330 hash_val = xmalloc (table->n_elems * sizeof (unsigned int));
2332 for (i = 0; i < (int) table->size; i++)
2333 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
2335 flat_table[expr->bitmap_index] = expr;
2336 hash_val[expr->bitmap_index] = i;
2339 fprintf (file, "%s hash table (%d buckets, %d entries)\n",
2340 name, table->size, table->n_elems);
2342 for (i = 0; i < (int) table->n_elems; i++)
2343 if (flat_table[i] != 0)
2345 expr = flat_table[i];
2346 fprintf (file, "Index %d (hash value %d)\n ",
2347 expr->bitmap_index, hash_val[i]);
2348 print_rtl (file, expr->expr);
2349 fprintf (file, "\n");
2352 fprintf (file, "\n");
2354 free (flat_table);
2355 free (hash_val);
2358 /* Record register first/last/block set information for REGNO in INSN.
2360 first_set records the first place in the block where the register
2361 is set and is used to compute "anticipatability".
2363 last_set records the last place in the block where the register
2364 is set and is used to compute "availability".
2366 last_bb records the block for which first_set and last_set are
2367 valid, as a quick test to invalidate them.
2369 reg_set_in_block records whether the register is set in the block
2370 and is used to compute "transparency". */
2372 static void
2373 record_last_reg_set_info (rtx insn, int regno)
2375 struct reg_avail_info *info = &reg_avail_info[regno];
2376 int cuid = INSN_CUID (insn);
2378 info->last_set = cuid;
2379 if (info->last_bb != current_bb)
2381 info->last_bb = current_bb;
2382 info->first_set = cuid;
2383 SET_BIT (reg_set_in_block[current_bb->index], regno);
2388 /* Record all of the canonicalized MEMs of record_last_mem_set_info's insn.
2389 Note we store a pair of elements in the list, so they have to be
2390 taken off pairwise. */
2392 static void
2393 canon_list_insert (rtx dest ATTRIBUTE_UNUSED, rtx unused1 ATTRIBUTE_UNUSED,
2394 void * v_insn)
2396 rtx dest_addr, insn;
2397 int bb;
2399 while (GET_CODE (dest) == SUBREG
2400 || GET_CODE (dest) == ZERO_EXTRACT
2401 || GET_CODE (dest) == SIGN_EXTRACT
2402 || GET_CODE (dest) == STRICT_LOW_PART)
2403 dest = XEXP (dest, 0);
2405 /* If DEST is not a MEM, then it will not conflict with a load. Note
2406 that function calls are assumed to clobber memory, but are handled
2407 elsewhere. */
2409 if (GET_CODE (dest) != MEM)
2410 return;
2412 dest_addr = get_addr (XEXP (dest, 0));
2413 dest_addr = canon_rtx (dest_addr);
2414 insn = (rtx) v_insn;
2415 bb = BLOCK_NUM (insn);
2417 canon_modify_mem_list[bb] =
2418 alloc_EXPR_LIST (VOIDmode, dest_addr, canon_modify_mem_list[bb]);
2419 canon_modify_mem_list[bb] =
2420 alloc_EXPR_LIST (VOIDmode, dest, canon_modify_mem_list[bb]);
2421 bitmap_set_bit (canon_modify_mem_list_set, bb);
2424 /* Record memory modification information for INSN. We do not actually care
2425 about the memory location(s) that are set, or even how they are set (consider
2426 a CALL_INSN). We merely need to record which insns modify memory. */
2428 static void
2429 record_last_mem_set_info (rtx insn)
2431 int bb = BLOCK_NUM (insn);
2433 /* load_killed_in_block_p will handle the case of calls clobbering
2434 everything. */
2435 modify_mem_list[bb] = alloc_INSN_LIST (insn, modify_mem_list[bb]);
2436 bitmap_set_bit (modify_mem_list_set, bb);
2438 if (GET_CODE (insn) == CALL_INSN)
2440 /* Note that traversals of this loop (other than for free-ing)
2441 will break after encountering a CALL_INSN. So, there's no
2442 need to insert a pair of items, as canon_list_insert does. */
2443 canon_modify_mem_list[bb] =
2444 alloc_INSN_LIST (insn, canon_modify_mem_list[bb]);
2445 bitmap_set_bit (canon_modify_mem_list_set, bb);
2447 else
2448 note_stores (PATTERN (insn), canon_list_insert, (void*) insn);
2451 /* Called from compute_hash_table via note_stores to handle one
2452 SET or CLOBBER in an insn. DATA is really the instruction in which
2453 the SET is taking place. */
2455 static void
2456 record_last_set_info (rtx dest, rtx setter ATTRIBUTE_UNUSED, void *data)
2458 rtx last_set_insn = (rtx) data;
2460 if (GET_CODE (dest) == SUBREG)
2461 dest = SUBREG_REG (dest);
2463 if (GET_CODE (dest) == REG)
2464 record_last_reg_set_info (last_set_insn, REGNO (dest));
2465 else if (GET_CODE (dest) == MEM
2466 /* Ignore pushes, they clobber nothing. */
2467 && ! push_operand (dest, GET_MODE (dest)))
2468 record_last_mem_set_info (last_set_insn);
2471 /* Top level function to create an expression or assignment hash table.
2473 Expression entries are placed in the hash table if
2474 - they are of the form (set (pseudo-reg) src),
2475 - src is something we want to perform GCSE on,
2476 - none of the operands are subsequently modified in the block
2478 Assignment entries are placed in the hash table if
2479 - they are of the form (set (pseudo-reg) src),
2480 - src is something we want to perform const/copy propagation on,
2481 - none of the operands or target are subsequently modified in the block
2483 Currently src must be a pseudo-reg or a const_int.
2485 TABLE is the table computed. */
2487 static void
2488 compute_hash_table_work (struct hash_table *table)
2490 unsigned int i;
2492 /* While we compute the hash table we also compute a bit array of which
2493 registers are set in which blocks.
2494 ??? This isn't needed during const/copy propagation, but it's cheap to
2495 compute. Later. */
2496 sbitmap_vector_zero (reg_set_in_block, last_basic_block);
2498 /* re-Cache any INSN_LIST nodes we have allocated. */
2499 clear_modify_mem_tables ();
2500 /* Some working arrays used to track first and last set in each block. */
2501 reg_avail_info = gmalloc (max_gcse_regno * sizeof (struct reg_avail_info));
2503 for (i = 0; i < max_gcse_regno; ++i)
2504 reg_avail_info[i].last_bb = NULL;
2506 FOR_EACH_BB (current_bb)
2508 rtx insn;
2509 unsigned int regno;
2510 int in_libcall_block;
2512 /* First pass over the instructions records information used to
2513 determine when registers and memory are first and last set.
2514 ??? hard-reg reg_set_in_block computation
2515 could be moved to compute_sets since they currently don't change. */
2517 for (insn = BB_HEAD (current_bb);
2518 insn && insn != NEXT_INSN (BB_END (current_bb));
2519 insn = NEXT_INSN (insn))
2521 if (! INSN_P (insn))
2522 continue;
2524 if (GET_CODE (insn) == CALL_INSN)
2526 bool clobbers_all = false;
2527 #ifdef NON_SAVING_SETJMP
2528 if (NON_SAVING_SETJMP
2529 && find_reg_note (insn, REG_SETJMP, NULL_RTX))
2530 clobbers_all = true;
2531 #endif
2533 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
2534 if (clobbers_all
2535 || TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
2536 record_last_reg_set_info (insn, regno);
2538 mark_call (insn);
2541 note_stores (PATTERN (insn), record_last_set_info, insn);
2544 /* Insert implicit sets in the hash table. */
2545 if (table->set_p
2546 && implicit_sets[current_bb->index] != NULL_RTX)
2547 hash_scan_set (implicit_sets[current_bb->index],
2548 BB_HEAD (current_bb), table);
2550 /* The next pass builds the hash table. */
2552 for (insn = BB_HEAD (current_bb), in_libcall_block = 0;
2553 insn && insn != NEXT_INSN (BB_END (current_bb));
2554 insn = NEXT_INSN (insn))
2555 if (INSN_P (insn))
2557 if (find_reg_note (insn, REG_LIBCALL, NULL_RTX))
2558 in_libcall_block = 1;
2559 else if (table->set_p && find_reg_note (insn, REG_RETVAL, NULL_RTX))
2560 in_libcall_block = 0;
2561 hash_scan_insn (insn, table, in_libcall_block);
2562 if (!table->set_p && find_reg_note (insn, REG_RETVAL, NULL_RTX))
2563 in_libcall_block = 0;
2567 free (reg_avail_info);
2568 reg_avail_info = NULL;
2571 /* Allocate space for the set/expr hash TABLE.
2572 N_INSNS is the number of instructions in the function.
2573 It is used to determine the number of buckets to use.
2574 SET_P determines whether set or expression table will
2575 be created. */
2577 static void
2578 alloc_hash_table (int n_insns, struct hash_table *table, int set_p)
2580 int n;
2582 table->size = n_insns / 4;
2583 if (table->size < 11)
2584 table->size = 11;
2586 /* Attempt to maintain efficient use of hash table.
2587 Making it an odd number is simplest for now.
2588 ??? Later take some measurements. */
2589 table->size |= 1;
2590 n = table->size * sizeof (struct expr *);
2591 table->table = gmalloc (n);
2592 table->set_p = set_p;
2595 /* Free things allocated by alloc_hash_table. */
2597 static void
2598 free_hash_table (struct hash_table *table)
2600 free (table->table);
2603 /* Compute the hash TABLE for doing copy/const propagation or
2604 expression hash table. */
2606 static void
2607 compute_hash_table (struct hash_table *table)
2609 /* Initialize count of number of entries in hash table. */
2610 table->n_elems = 0;
2611 memset (table->table, 0, table->size * sizeof (struct expr *));
2613 compute_hash_table_work (table);
2616 /* Expression tracking support. */
2618 /* Lookup pattern PAT in the expression TABLE.
2619 The result is a pointer to the table entry, or NULL if not found. */
2621 static struct expr *
2622 lookup_expr (rtx pat, struct hash_table *table)
2624 int do_not_record_p;
2625 unsigned int hash = hash_expr (pat, GET_MODE (pat), &do_not_record_p,
2626 table->size);
2627 struct expr *expr;
2629 if (do_not_record_p)
2630 return NULL;
2632 expr = table->table[hash];
2634 while (expr && ! expr_equiv_p (expr->expr, pat))
2635 expr = expr->next_same_hash;
2637 return expr;
2640 /* Lookup REGNO in the set TABLE. The result is a pointer to the
2641 table entry, or NULL if not found. */
2643 static struct expr *
2644 lookup_set (unsigned int regno, struct hash_table *table)
2646 unsigned int hash = hash_set (regno, table->size);
2647 struct expr *expr;
2649 expr = table->table[hash];
2651 while (expr && REGNO (SET_DEST (expr->expr)) != regno)
2652 expr = expr->next_same_hash;
2654 return expr;
2657 /* Return the next entry for REGNO in list EXPR. */
2659 static struct expr *
2660 next_set (unsigned int regno, struct expr *expr)
2663 expr = expr->next_same_hash;
2664 while (expr && REGNO (SET_DEST (expr->expr)) != regno);
2666 return expr;
2669 /* Like free_INSN_LIST_list or free_EXPR_LIST_list, except that the node
2670 types may be mixed. */
2672 static void
2673 free_insn_expr_list_list (rtx *listp)
2675 rtx list, next;
2677 for (list = *listp; list ; list = next)
2679 next = XEXP (list, 1);
2680 if (GET_CODE (list) == EXPR_LIST)
2681 free_EXPR_LIST_node (list);
2682 else
2683 free_INSN_LIST_node (list);
2686 *listp = NULL;
2689 /* Clear canon_modify_mem_list and modify_mem_list tables. */
2690 static void
2691 clear_modify_mem_tables (void)
2693 int i;
2695 EXECUTE_IF_SET_IN_BITMAP
2696 (modify_mem_list_set, 0, i, free_INSN_LIST_list (modify_mem_list + i));
2697 bitmap_clear (modify_mem_list_set);
2699 EXECUTE_IF_SET_IN_BITMAP
2700 (canon_modify_mem_list_set, 0, i,
2701 free_insn_expr_list_list (canon_modify_mem_list + i));
2702 bitmap_clear (canon_modify_mem_list_set);
2705 /* Release memory used by modify_mem_list_set and canon_modify_mem_list_set. */
2707 static void
2708 free_modify_mem_tables (void)
2710 clear_modify_mem_tables ();
2711 free (modify_mem_list);
2712 free (canon_modify_mem_list);
2713 modify_mem_list = 0;
2714 canon_modify_mem_list = 0;
2717 /* Reset tables used to keep track of what's still available [since the
2718 start of the block]. */
2720 static void
2721 reset_opr_set_tables (void)
2723 /* Maintain a bitmap of which regs have been set since beginning of
2724 the block. */
2725 CLEAR_REG_SET (reg_set_bitmap);
2727 /* Also keep a record of the last instruction to modify memory.
2728 For now this is very trivial, we only record whether any memory
2729 location has been modified. */
2730 clear_modify_mem_tables ();
2733 /* Return nonzero if the operands of X are not set before INSN in
2734 INSN's basic block. */
2736 static int
2737 oprs_not_set_p (rtx x, rtx insn)
2739 int i, j;
2740 enum rtx_code code;
2741 const char *fmt;
2743 if (x == 0)
2744 return 1;
2746 code = GET_CODE (x);
2747 switch (code)
2749 case PC:
2750 case CC0:
2751 case CONST:
2752 case CONST_INT:
2753 case CONST_DOUBLE:
2754 case CONST_VECTOR:
2755 case SYMBOL_REF:
2756 case LABEL_REF:
2757 case ADDR_VEC:
2758 case ADDR_DIFF_VEC:
2759 return 1;
2761 case MEM:
2762 if (load_killed_in_block_p (BLOCK_FOR_INSN (insn),
2763 INSN_CUID (insn), x, 0))
2764 return 0;
2765 else
2766 return oprs_not_set_p (XEXP (x, 0), insn);
2768 case REG:
2769 return ! REGNO_REG_SET_P (reg_set_bitmap, REGNO (x));
2771 default:
2772 break;
2775 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2777 if (fmt[i] == 'e')
2779 /* If we are about to do the last recursive call
2780 needed at this level, change it into iteration.
2781 This function is called enough to be worth it. */
2782 if (i == 0)
2783 return oprs_not_set_p (XEXP (x, i), insn);
2785 if (! oprs_not_set_p (XEXP (x, i), insn))
2786 return 0;
2788 else if (fmt[i] == 'E')
2789 for (j = 0; j < XVECLEN (x, i); j++)
2790 if (! oprs_not_set_p (XVECEXP (x, i, j), insn))
2791 return 0;
2794 return 1;
2797 /* Mark things set by a CALL. */
2799 static void
2800 mark_call (rtx insn)
2802 if (! CONST_OR_PURE_CALL_P (insn))
2803 record_last_mem_set_info (insn);
2806 /* Mark things set by a SET. */
2808 static void
2809 mark_set (rtx pat, rtx insn)
2811 rtx dest = SET_DEST (pat);
2813 while (GET_CODE (dest) == SUBREG
2814 || GET_CODE (dest) == ZERO_EXTRACT
2815 || GET_CODE (dest) == SIGN_EXTRACT
2816 || GET_CODE (dest) == STRICT_LOW_PART)
2817 dest = XEXP (dest, 0);
2819 if (GET_CODE (dest) == REG)
2820 SET_REGNO_REG_SET (reg_set_bitmap, REGNO (dest));
2821 else if (GET_CODE (dest) == MEM)
2822 record_last_mem_set_info (insn);
2824 if (GET_CODE (SET_SRC (pat)) == CALL)
2825 mark_call (insn);
2828 /* Record things set by a CLOBBER. */
2830 static void
2831 mark_clobber (rtx pat, rtx insn)
2833 rtx clob = XEXP (pat, 0);
2835 while (GET_CODE (clob) == SUBREG || GET_CODE (clob) == STRICT_LOW_PART)
2836 clob = XEXP (clob, 0);
2838 if (GET_CODE (clob) == REG)
2839 SET_REGNO_REG_SET (reg_set_bitmap, REGNO (clob));
2840 else
2841 record_last_mem_set_info (insn);
2844 /* Record things set by INSN.
2845 This data is used by oprs_not_set_p. */
2847 static void
2848 mark_oprs_set (rtx insn)
2850 rtx pat = PATTERN (insn);
2851 int i;
2853 if (GET_CODE (pat) == SET)
2854 mark_set (pat, insn);
2855 else if (GET_CODE (pat) == PARALLEL)
2856 for (i = 0; i < XVECLEN (pat, 0); i++)
2858 rtx x = XVECEXP (pat, 0, i);
2860 if (GET_CODE (x) == SET)
2861 mark_set (x, insn);
2862 else if (GET_CODE (x) == CLOBBER)
2863 mark_clobber (x, insn);
2864 else if (GET_CODE (x) == CALL)
2865 mark_call (insn);
2868 else if (GET_CODE (pat) == CLOBBER)
2869 mark_clobber (pat, insn);
2870 else if (GET_CODE (pat) == CALL)
2871 mark_call (insn);
2875 /* Classic GCSE reaching definition support. */
2877 /* Allocate reaching def variables. */
2879 static void
2880 alloc_rd_mem (int n_blocks, int n_insns)
2882 rd_kill = sbitmap_vector_alloc (n_blocks, n_insns);
2883 sbitmap_vector_zero (rd_kill, n_blocks);
2885 rd_gen = sbitmap_vector_alloc (n_blocks, n_insns);
2886 sbitmap_vector_zero (rd_gen, n_blocks);
2888 reaching_defs = sbitmap_vector_alloc (n_blocks, n_insns);
2889 sbitmap_vector_zero (reaching_defs, n_blocks);
2891 rd_out = sbitmap_vector_alloc (n_blocks, n_insns);
2892 sbitmap_vector_zero (rd_out, n_blocks);
2895 /* Free reaching def variables. */
2897 static void
2898 free_rd_mem (void)
2900 sbitmap_vector_free (rd_kill);
2901 sbitmap_vector_free (rd_gen);
2902 sbitmap_vector_free (reaching_defs);
2903 sbitmap_vector_free (rd_out);
2906 /* Add INSN to the kills of BB. REGNO, set in BB, is killed by INSN. */
2908 static void
2909 handle_rd_kill_set (rtx insn, int regno, basic_block bb)
2911 struct reg_set *this_reg;
2913 for (this_reg = reg_set_table[regno]; this_reg; this_reg = this_reg ->next)
2914 if (BLOCK_NUM (this_reg->insn) != BLOCK_NUM (insn))
2915 SET_BIT (rd_kill[bb->index], INSN_CUID (this_reg->insn));
2918 /* Compute the set of kill's for reaching definitions. */
2920 static void
2921 compute_kill_rd (void)
2923 int cuid;
2924 unsigned int regno;
2925 int i;
2926 basic_block bb;
2928 /* For each block
2929 For each set bit in `gen' of the block (i.e each insn which
2930 generates a definition in the block)
2931 Call the reg set by the insn corresponding to that bit regx
2932 Look at the linked list starting at reg_set_table[regx]
2933 For each setting of regx in the linked list, which is not in
2934 this block
2935 Set the bit in `kill' corresponding to that insn. */
2936 FOR_EACH_BB (bb)
2937 for (cuid = 0; cuid < max_cuid; cuid++)
2938 if (TEST_BIT (rd_gen[bb->index], cuid))
2940 rtx insn = CUID_INSN (cuid);
2941 rtx pat = PATTERN (insn);
2943 if (GET_CODE (insn) == CALL_INSN)
2945 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
2946 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
2947 handle_rd_kill_set (insn, regno, bb);
2950 if (GET_CODE (pat) == PARALLEL)
2952 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
2954 enum rtx_code code = GET_CODE (XVECEXP (pat, 0, i));
2956 if ((code == SET || code == CLOBBER)
2957 && GET_CODE (XEXP (XVECEXP (pat, 0, i), 0)) == REG)
2958 handle_rd_kill_set (insn,
2959 REGNO (XEXP (XVECEXP (pat, 0, i), 0)),
2960 bb);
2963 else if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == REG)
2964 /* Each setting of this register outside of this block
2965 must be marked in the set of kills in this block. */
2966 handle_rd_kill_set (insn, REGNO (SET_DEST (pat)), bb);
2970 /* Compute the reaching definitions as in
2971 Compilers Principles, Techniques, and Tools. Aho, Sethi, Ullman,
2972 Chapter 10. It is the same algorithm as used for computing available
2973 expressions but applied to the gens and kills of reaching definitions. */
2975 static void
2976 compute_rd (void)
2978 int changed, passes;
2979 basic_block bb;
2981 FOR_EACH_BB (bb)
2982 sbitmap_copy (rd_out[bb->index] /*dst*/, rd_gen[bb->index] /*src*/);
2984 passes = 0;
2985 changed = 1;
2986 while (changed)
2988 changed = 0;
2989 FOR_EACH_BB (bb)
2991 sbitmap_union_of_preds (reaching_defs[bb->index], rd_out, bb->index);
2992 changed |= sbitmap_union_of_diff_cg (rd_out[bb->index], rd_gen[bb->index],
2993 reaching_defs[bb->index], rd_kill[bb->index]);
2995 passes++;
2998 if (gcse_file)
2999 fprintf (gcse_file, "reaching def computation: %d passes\n", passes);
3002 /* Classic GCSE available expression support. */
3004 /* Allocate memory for available expression computation. */
3006 static void
3007 alloc_avail_expr_mem (int n_blocks, int n_exprs)
3009 ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
3010 sbitmap_vector_zero (ae_kill, n_blocks);
3012 ae_gen = sbitmap_vector_alloc (n_blocks, n_exprs);
3013 sbitmap_vector_zero (ae_gen, n_blocks);
3015 ae_in = sbitmap_vector_alloc (n_blocks, n_exprs);
3016 sbitmap_vector_zero (ae_in, n_blocks);
3018 ae_out = sbitmap_vector_alloc (n_blocks, n_exprs);
3019 sbitmap_vector_zero (ae_out, n_blocks);
3022 static void
3023 free_avail_expr_mem (void)
3025 sbitmap_vector_free (ae_kill);
3026 sbitmap_vector_free (ae_gen);
3027 sbitmap_vector_free (ae_in);
3028 sbitmap_vector_free (ae_out);
3031 /* Compute the set of available expressions generated in each basic block. */
3033 static void
3034 compute_ae_gen (struct hash_table *expr_hash_table)
3036 unsigned int i;
3037 struct expr *expr;
3038 struct occr *occr;
3040 /* For each recorded occurrence of each expression, set ae_gen[bb][expr].
3041 This is all we have to do because an expression is not recorded if it
3042 is not available, and the only expressions we want to work with are the
3043 ones that are recorded. */
3044 for (i = 0; i < expr_hash_table->size; i++)
3045 for (expr = expr_hash_table->table[i]; expr != 0; expr = expr->next_same_hash)
3046 for (occr = expr->avail_occr; occr != 0; occr = occr->next)
3047 SET_BIT (ae_gen[BLOCK_NUM (occr->insn)], expr->bitmap_index);
3050 /* Return nonzero if expression X is killed in BB. */
3052 static int
3053 expr_killed_p (rtx x, basic_block bb)
3055 int i, j;
3056 enum rtx_code code;
3057 const char *fmt;
3059 if (x == 0)
3060 return 1;
3062 code = GET_CODE (x);
3063 switch (code)
3065 case REG:
3066 return TEST_BIT (reg_set_in_block[bb->index], REGNO (x));
3068 case MEM:
3069 if (load_killed_in_block_p (bb, get_max_uid () + 1, x, 0))
3070 return 1;
3071 else
3072 return expr_killed_p (XEXP (x, 0), bb);
3074 case PC:
3075 case CC0: /*FIXME*/
3076 case CONST:
3077 case CONST_INT:
3078 case CONST_DOUBLE:
3079 case CONST_VECTOR:
3080 case SYMBOL_REF:
3081 case LABEL_REF:
3082 case ADDR_VEC:
3083 case ADDR_DIFF_VEC:
3084 return 0;
3086 default:
3087 break;
3090 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
3092 if (fmt[i] == 'e')
3094 /* If we are about to do the last recursive call
3095 needed at this level, change it into iteration.
3096 This function is called enough to be worth it. */
3097 if (i == 0)
3098 return expr_killed_p (XEXP (x, i), bb);
3099 else if (expr_killed_p (XEXP (x, i), bb))
3100 return 1;
3102 else if (fmt[i] == 'E')
3103 for (j = 0; j < XVECLEN (x, i); j++)
3104 if (expr_killed_p (XVECEXP (x, i, j), bb))
3105 return 1;
3108 return 0;
3111 /* Compute the set of available expressions killed in each basic block. */
3113 static void
3114 compute_ae_kill (sbitmap *ae_gen, sbitmap *ae_kill,
3115 struct hash_table *expr_hash_table)
3117 basic_block bb;
3118 unsigned int i;
3119 struct expr *expr;
3121 FOR_EACH_BB (bb)
3122 for (i = 0; i < expr_hash_table->size; i++)
3123 for (expr = expr_hash_table->table[i]; expr; expr = expr->next_same_hash)
3125 /* Skip EXPR if generated in this block. */
3126 if (TEST_BIT (ae_gen[bb->index], expr->bitmap_index))
3127 continue;
3129 if (expr_killed_p (expr->expr, bb))
3130 SET_BIT (ae_kill[bb->index], expr->bitmap_index);
3134 /* Actually perform the Classic GCSE optimizations. */
3136 /* Return nonzero if occurrence OCCR of expression EXPR reaches block BB.
3138 CHECK_SELF_LOOP is nonzero if we should consider a block reaching itself
3139 as a positive reach. We want to do this when there are two computations
3140 of the expression in the block.
3142 VISITED is a pointer to a working buffer for tracking which BB's have
3143 been visited. It is NULL for the top-level call.
3145 We treat reaching expressions that go through blocks containing the same
3146 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
3147 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
3148 2 as not reaching. The intent is to improve the probability of finding
3149 only one reaching expression and to reduce register lifetimes by picking
3150 the closest such expression. */
3152 static int
3153 expr_reaches_here_p_work (struct occr *occr, struct expr *expr,
3154 basic_block bb, int check_self_loop, char *visited)
3156 edge pred;
3158 for (pred = bb->pred; pred != NULL; pred = pred->pred_next)
3160 basic_block pred_bb = pred->src;
3162 if (visited[pred_bb->index])
3163 /* This predecessor has already been visited. Nothing to do. */
3165 else if (pred_bb == bb)
3167 /* BB loops on itself. */
3168 if (check_self_loop
3169 && TEST_BIT (ae_gen[pred_bb->index], expr->bitmap_index)
3170 && BLOCK_NUM (occr->insn) == pred_bb->index)
3171 return 1;
3173 visited[pred_bb->index] = 1;
3176 /* Ignore this predecessor if it kills the expression. */
3177 else if (TEST_BIT (ae_kill[pred_bb->index], expr->bitmap_index))
3178 visited[pred_bb->index] = 1;
3180 /* Does this predecessor generate this expression? */
3181 else if (TEST_BIT (ae_gen[pred_bb->index], expr->bitmap_index))
3183 /* Is this the occurrence we're looking for?
3184 Note that there's only one generating occurrence per block
3185 so we just need to check the block number. */
3186 if (BLOCK_NUM (occr->insn) == pred_bb->index)
3187 return 1;
3189 visited[pred_bb->index] = 1;
3192 /* Neither gen nor kill. */
3193 else
3195 visited[pred_bb->index] = 1;
3196 if (expr_reaches_here_p_work (occr, expr, pred_bb, check_self_loop,
3197 visited))
3199 return 1;
3203 /* All paths have been checked. */
3204 return 0;
3207 /* This wrapper for expr_reaches_here_p_work() is to ensure that any
3208 memory allocated for that function is returned. */
3210 static int
3211 expr_reaches_here_p (struct occr *occr, struct expr *expr, basic_block bb,
3212 int check_self_loop)
3214 int rval;
3215 char *visited = xcalloc (last_basic_block, 1);
3217 rval = expr_reaches_here_p_work (occr, expr, bb, check_self_loop, visited);
3219 free (visited);
3220 return rval;
3223 /* Return the instruction that computes EXPR that reaches INSN's basic block.
3224 If there is more than one such instruction, return NULL.
3226 Called only by handle_avail_expr. */
3228 static rtx
3229 computing_insn (struct expr *expr, rtx insn)
3231 basic_block bb = BLOCK_FOR_INSN (insn);
3233 if (expr->avail_occr->next == NULL)
3235 if (BLOCK_FOR_INSN (expr->avail_occr->insn) == bb)
3236 /* The available expression is actually itself
3237 (i.e. a loop in the flow graph) so do nothing. */
3238 return NULL;
3240 /* (FIXME) Case that we found a pattern that was created by
3241 a substitution that took place. */
3242 return expr->avail_occr->insn;
3244 else
3246 /* Pattern is computed more than once.
3247 Search backwards from this insn to see how many of these
3248 computations actually reach this insn. */
3249 struct occr *occr;
3250 rtx insn_computes_expr = NULL;
3251 int can_reach = 0;
3253 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
3255 if (BLOCK_FOR_INSN (occr->insn) == bb)
3257 /* The expression is generated in this block.
3258 The only time we care about this is when the expression
3259 is generated later in the block [and thus there's a loop].
3260 We let the normal cse pass handle the other cases. */
3261 if (INSN_CUID (insn) < INSN_CUID (occr->insn)
3262 && expr_reaches_here_p (occr, expr, bb, 1))
3264 can_reach++;
3265 if (can_reach > 1)
3266 return NULL;
3268 insn_computes_expr = occr->insn;
3271 else if (expr_reaches_here_p (occr, expr, bb, 0))
3273 can_reach++;
3274 if (can_reach > 1)
3275 return NULL;
3277 insn_computes_expr = occr->insn;
3281 if (insn_computes_expr == NULL)
3282 abort ();
3284 return insn_computes_expr;
3288 /* Return nonzero if the definition in DEF_INSN can reach INSN.
3289 Only called by can_disregard_other_sets. */
3291 static int
3292 def_reaches_here_p (rtx insn, rtx def_insn)
3294 rtx reg;
3296 if (TEST_BIT (reaching_defs[BLOCK_NUM (insn)], INSN_CUID (def_insn)))
3297 return 1;
3299 if (BLOCK_NUM (insn) == BLOCK_NUM (def_insn))
3301 if (INSN_CUID (def_insn) < INSN_CUID (insn))
3303 if (GET_CODE (PATTERN (def_insn)) == PARALLEL)
3304 return 1;
3305 else if (GET_CODE (PATTERN (def_insn)) == CLOBBER)
3306 reg = XEXP (PATTERN (def_insn), 0);
3307 else if (GET_CODE (PATTERN (def_insn)) == SET)
3308 reg = SET_DEST (PATTERN (def_insn));
3309 else
3310 abort ();
3312 return ! reg_set_between_p (reg, NEXT_INSN (def_insn), insn);
3314 else
3315 return 0;
3318 return 0;
3321 /* Return nonzero if *ADDR_THIS_REG can only have one value at INSN. The
3322 value returned is the number of definitions that reach INSN. Returning a
3323 value of zero means that [maybe] more than one definition reaches INSN and
3324 the caller can't perform whatever optimization it is trying. i.e. it is
3325 always safe to return zero. */
3327 static int
3328 can_disregard_other_sets (struct reg_set **addr_this_reg, rtx insn, int for_combine)
3330 int number_of_reaching_defs = 0;
3331 struct reg_set *this_reg;
3333 for (this_reg = *addr_this_reg; this_reg != 0; this_reg = this_reg->next)
3334 if (def_reaches_here_p (insn, this_reg->insn))
3336 number_of_reaching_defs++;
3337 /* Ignore parallels for now. */
3338 if (GET_CODE (PATTERN (this_reg->insn)) == PARALLEL)
3339 return 0;
3341 if (!for_combine
3342 && (GET_CODE (PATTERN (this_reg->insn)) == CLOBBER
3343 || ! rtx_equal_p (SET_SRC (PATTERN (this_reg->insn)),
3344 SET_SRC (PATTERN (insn)))))
3345 /* A setting of the reg to a different value reaches INSN. */
3346 return 0;
3348 if (number_of_reaching_defs > 1)
3350 /* If in this setting the value the register is being set to is
3351 equal to the previous value the register was set to and this
3352 setting reaches the insn we are trying to do the substitution
3353 on then we are ok. */
3354 if (GET_CODE (PATTERN (this_reg->insn)) == CLOBBER)
3355 return 0;
3356 else if (! rtx_equal_p (SET_SRC (PATTERN (this_reg->insn)),
3357 SET_SRC (PATTERN (insn))))
3358 return 0;
3361 *addr_this_reg = this_reg;
3364 return number_of_reaching_defs;
3367 /* Expression computed by insn is available and the substitution is legal,
3368 so try to perform the substitution.
3370 The result is nonzero if any changes were made. */
3372 static int
3373 handle_avail_expr (rtx insn, struct expr *expr)
3375 rtx pat, insn_computes_expr, expr_set;
3376 rtx to;
3377 struct reg_set *this_reg;
3378 int found_setting, use_src;
3379 int changed = 0;
3381 /* We only handle the case where one computation of the expression
3382 reaches this instruction. */
3383 insn_computes_expr = computing_insn (expr, insn);
3384 if (insn_computes_expr == NULL)
3385 return 0;
3386 expr_set = single_set (insn_computes_expr);
3387 /* The set might be in a parallel with multiple sets; we could
3388 probably handle that, but there's currently no easy way to find
3389 the relevant sub-expression. */
3390 if (!expr_set)
3391 return 0;
3393 found_setting = 0;
3394 use_src = 0;
3396 /* At this point we know only one computation of EXPR outside of this
3397 block reaches this insn. Now try to find a register that the
3398 expression is computed into. */
3399 if (GET_CODE (SET_SRC (expr_set)) == REG)
3401 /* This is the case when the available expression that reaches
3402 here has already been handled as an available expression. */
3403 unsigned int regnum_for_replacing
3404 = REGNO (SET_SRC (expr_set));
3406 /* If the register was created by GCSE we can't use `reg_set_table',
3407 however we know it's set only once. */
3408 if (regnum_for_replacing >= max_gcse_regno
3409 /* If the register the expression is computed into is set only once,
3410 or only one set reaches this insn, we can use it. */
3411 || (((this_reg = reg_set_table[regnum_for_replacing]),
3412 this_reg->next == NULL)
3413 || can_disregard_other_sets (&this_reg, insn, 0)))
3415 use_src = 1;
3416 found_setting = 1;
3420 if (!found_setting)
3422 unsigned int regnum_for_replacing
3423 = REGNO (SET_DEST (expr_set));
3425 /* This shouldn't happen. */
3426 if (regnum_for_replacing >= max_gcse_regno)
3427 abort ();
3429 this_reg = reg_set_table[regnum_for_replacing];
3431 /* If the register the expression is computed into is set only once,
3432 or only one set reaches this insn, use it. */
3433 if (this_reg->next == NULL
3434 || can_disregard_other_sets (&this_reg, insn, 0))
3435 found_setting = 1;
3438 if (found_setting)
3440 pat = PATTERN (insn);
3441 if (use_src)
3442 to = SET_SRC (expr_set);
3443 else
3444 to = SET_DEST (expr_set);
3445 changed = validate_change (insn, &SET_SRC (pat), to, 0);
3447 /* We should be able to ignore the return code from validate_change but
3448 to play it safe we check. */
3449 if (changed)
3451 gcse_subst_count++;
3452 if (gcse_file != NULL)
3454 fprintf (gcse_file, "GCSE: Replacing the source in insn %d with",
3455 INSN_UID (insn));
3456 fprintf (gcse_file, " reg %d %s insn %d\n",
3457 REGNO (to), use_src ? "from" : "set in",
3458 INSN_UID (insn_computes_expr));
3463 /* The register that the expr is computed into is set more than once. */
3464 else if (1 /*expensive_op(this_pattrn->op) && do_expensive_gcse)*/)
3466 /* Insert an insn after insnx that copies the reg set in insnx
3467 into a new pseudo register call this new register REGN.
3468 From insnb until end of basic block or until REGB is set
3469 replace all uses of REGB with REGN. */
3470 rtx new_insn;
3472 to = gen_reg_rtx (GET_MODE (SET_DEST (expr_set)));
3474 /* Generate the new insn. */
3475 /* ??? If the change fails, we return 0, even though we created
3476 an insn. I think this is ok. */
3477 new_insn
3478 = emit_insn_after (gen_rtx_SET (VOIDmode, to,
3479 SET_DEST (expr_set)),
3480 insn_computes_expr);
3482 /* Keep register set table up to date. */
3483 record_one_set (REGNO (to), new_insn);
3485 gcse_create_count++;
3486 if (gcse_file != NULL)
3488 fprintf (gcse_file, "GCSE: Creating insn %d to copy value of reg %d",
3489 INSN_UID (NEXT_INSN (insn_computes_expr)),
3490 REGNO (SET_SRC (PATTERN (NEXT_INSN (insn_computes_expr)))));
3491 fprintf (gcse_file, ", computed in insn %d,\n",
3492 INSN_UID (insn_computes_expr));
3493 fprintf (gcse_file, " into newly allocated reg %d\n",
3494 REGNO (to));
3497 pat = PATTERN (insn);
3499 /* Do register replacement for INSN. */
3500 changed = validate_change (insn, &SET_SRC (pat),
3501 SET_DEST (PATTERN
3502 (NEXT_INSN (insn_computes_expr))),
3505 /* We should be able to ignore the return code from validate_change but
3506 to play it safe we check. */
3507 if (changed)
3509 gcse_subst_count++;
3510 if (gcse_file != NULL)
3512 fprintf (gcse_file,
3513 "GCSE: Replacing the source in insn %d with reg %d ",
3514 INSN_UID (insn),
3515 REGNO (SET_DEST (PATTERN (NEXT_INSN
3516 (insn_computes_expr)))));
3517 fprintf (gcse_file, "set in insn %d\n",
3518 INSN_UID (insn_computes_expr));
3523 return changed;
3526 /* Perform classic GCSE. This is called by one_classic_gcse_pass after all
3527 the dataflow analysis has been done.
3529 The result is nonzero if a change was made. */
3531 static int
3532 classic_gcse (void)
3534 int changed;
3535 rtx insn;
3536 basic_block bb;
3538 /* Note we start at block 1. */
3540 if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
3541 return 0;
3543 changed = 0;
3544 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb, EXIT_BLOCK_PTR, next_bb)
3546 /* Reset tables used to keep track of what's still valid [since the
3547 start of the block]. */
3548 reset_opr_set_tables ();
3550 for (insn = BB_HEAD (bb);
3551 insn != NULL && insn != NEXT_INSN (BB_END (bb));
3552 insn = NEXT_INSN (insn))
3554 /* Is insn of form (set (pseudo-reg) ...)? */
3555 if (GET_CODE (insn) == INSN
3556 && GET_CODE (PATTERN (insn)) == SET
3557 && GET_CODE (SET_DEST (PATTERN (insn))) == REG
3558 && REGNO (SET_DEST (PATTERN (insn))) >= FIRST_PSEUDO_REGISTER)
3560 rtx pat = PATTERN (insn);
3561 rtx src = SET_SRC (pat);
3562 struct expr *expr;
3564 if (want_to_gcse_p (src)
3565 /* Is the expression recorded? */
3566 && ((expr = lookup_expr (src, &expr_hash_table)) != NULL)
3567 /* Is the expression available [at the start of the
3568 block]? */
3569 && TEST_BIT (ae_in[bb->index], expr->bitmap_index)
3570 /* Are the operands unchanged since the start of the
3571 block? */
3572 && oprs_not_set_p (src, insn))
3573 changed |= handle_avail_expr (insn, expr);
3576 /* Keep track of everything modified by this insn. */
3577 /* ??? Need to be careful w.r.t. mods done to INSN. */
3578 if (INSN_P (insn))
3579 mark_oprs_set (insn);
3583 return changed;
3586 /* Top level routine to perform one classic GCSE pass.
3588 Return nonzero if a change was made. */
3590 static int
3591 one_classic_gcse_pass (int pass)
3593 int changed = 0;
3595 gcse_subst_count = 0;
3596 gcse_create_count = 0;
3598 alloc_hash_table (max_cuid, &expr_hash_table, 0);
3599 alloc_rd_mem (last_basic_block, max_cuid);
3600 compute_hash_table (&expr_hash_table);
3601 if (gcse_file)
3602 dump_hash_table (gcse_file, "Expression", &expr_hash_table);
3604 if (expr_hash_table.n_elems > 0)
3606 compute_kill_rd ();
3607 compute_rd ();
3608 alloc_avail_expr_mem (last_basic_block, expr_hash_table.n_elems);
3609 compute_ae_gen (&expr_hash_table);
3610 compute_ae_kill (ae_gen, ae_kill, &expr_hash_table);
3611 compute_available (ae_gen, ae_kill, ae_out, ae_in);
3612 changed = classic_gcse ();
3613 free_avail_expr_mem ();
3616 free_rd_mem ();
3617 free_hash_table (&expr_hash_table);
3619 if (gcse_file)
3621 fprintf (gcse_file, "\n");
3622 fprintf (gcse_file, "GCSE of %s, pass %d: %d bytes needed, %d substs,",
3623 current_function_name (), pass, bytes_used, gcse_subst_count);
3624 fprintf (gcse_file, "%d insns created\n", gcse_create_count);
3627 return changed;
3630 /* Compute copy/constant propagation working variables. */
3632 /* Local properties of assignments. */
3633 static sbitmap *cprop_pavloc;
3634 static sbitmap *cprop_absaltered;
3636 /* Global properties of assignments (computed from the local properties). */
3637 static sbitmap *cprop_avin;
3638 static sbitmap *cprop_avout;
3640 /* Allocate vars used for copy/const propagation. N_BLOCKS is the number of
3641 basic blocks. N_SETS is the number of sets. */
3643 static void
3644 alloc_cprop_mem (int n_blocks, int n_sets)
3646 cprop_pavloc = sbitmap_vector_alloc (n_blocks, n_sets);
3647 cprop_absaltered = sbitmap_vector_alloc (n_blocks, n_sets);
3649 cprop_avin = sbitmap_vector_alloc (n_blocks, n_sets);
3650 cprop_avout = sbitmap_vector_alloc (n_blocks, n_sets);
3653 /* Free vars used by copy/const propagation. */
3655 static void
3656 free_cprop_mem (void)
3658 sbitmap_vector_free (cprop_pavloc);
3659 sbitmap_vector_free (cprop_absaltered);
3660 sbitmap_vector_free (cprop_avin);
3661 sbitmap_vector_free (cprop_avout);
3664 /* For each block, compute whether X is transparent. X is either an
3665 expression or an assignment [though we don't care which, for this context
3666 an assignment is treated as an expression]. For each block where an
3667 element of X is modified, set (SET_P == 1) or reset (SET_P == 0) the INDX
3668 bit in BMAP. */
3670 static void
3671 compute_transp (rtx x, int indx, sbitmap *bmap, int set_p)
3673 int i, j;
3674 basic_block bb;
3675 enum rtx_code code;
3676 reg_set *r;
3677 const char *fmt;
3679 /* repeat is used to turn tail-recursion into iteration since GCC
3680 can't do it when there's no return value. */
3681 repeat:
3683 if (x == 0)
3684 return;
3686 code = GET_CODE (x);
3687 switch (code)
3689 case REG:
3690 if (set_p)
3692 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
3694 FOR_EACH_BB (bb)
3695 if (TEST_BIT (reg_set_in_block[bb->index], REGNO (x)))
3696 SET_BIT (bmap[bb->index], indx);
3698 else
3700 for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
3701 SET_BIT (bmap[BLOCK_NUM (r->insn)], indx);
3704 else
3706 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
3708 FOR_EACH_BB (bb)
3709 if (TEST_BIT (reg_set_in_block[bb->index], REGNO (x)))
3710 RESET_BIT (bmap[bb->index], indx);
3712 else
3714 for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
3715 RESET_BIT (bmap[BLOCK_NUM (r->insn)], indx);
3719 return;
3721 case MEM:
3722 FOR_EACH_BB (bb)
3724 rtx list_entry = canon_modify_mem_list[bb->index];
3726 while (list_entry)
3728 rtx dest, dest_addr;
3730 if (GET_CODE (XEXP (list_entry, 0)) == CALL_INSN)
3732 if (set_p)
3733 SET_BIT (bmap[bb->index], indx);
3734 else
3735 RESET_BIT (bmap[bb->index], indx);
3736 break;
3738 /* LIST_ENTRY must be an INSN of some kind that sets memory.
3739 Examine each hunk of memory that is modified. */
3741 dest = XEXP (list_entry, 0);
3742 list_entry = XEXP (list_entry, 1);
3743 dest_addr = XEXP (list_entry, 0);
3745 if (canon_true_dependence (dest, GET_MODE (dest), dest_addr,
3746 x, rtx_addr_varies_p))
3748 if (set_p)
3749 SET_BIT (bmap[bb->index], indx);
3750 else
3751 RESET_BIT (bmap[bb->index], indx);
3752 break;
3754 list_entry = XEXP (list_entry, 1);
3758 x = XEXP (x, 0);
3759 goto repeat;
3761 case PC:
3762 case CC0: /*FIXME*/
3763 case CONST:
3764 case CONST_INT:
3765 case CONST_DOUBLE:
3766 case CONST_VECTOR:
3767 case SYMBOL_REF:
3768 case LABEL_REF:
3769 case ADDR_VEC:
3770 case ADDR_DIFF_VEC:
3771 return;
3773 default:
3774 break;
3777 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
3779 if (fmt[i] == 'e')
3781 /* If we are about to do the last recursive call
3782 needed at this level, change it into iteration.
3783 This function is called enough to be worth it. */
3784 if (i == 0)
3786 x = XEXP (x, i);
3787 goto repeat;
3790 compute_transp (XEXP (x, i), indx, bmap, set_p);
3792 else if (fmt[i] == 'E')
3793 for (j = 0; j < XVECLEN (x, i); j++)
3794 compute_transp (XVECEXP (x, i, j), indx, bmap, set_p);
3798 /* Top level routine to do the dataflow analysis needed by copy/const
3799 propagation. */
3801 static void
3802 compute_cprop_data (void)
3804 compute_local_properties (cprop_absaltered, cprop_pavloc, NULL, &set_hash_table);
3805 compute_available (cprop_pavloc, cprop_absaltered,
3806 cprop_avout, cprop_avin);
3809 /* Copy/constant propagation. */
3811 /* Maximum number of register uses in an insn that we handle. */
3812 #define MAX_USES 8
3814 /* Table of uses found in an insn.
3815 Allocated statically to avoid alloc/free complexity and overhead. */
3816 static struct reg_use reg_use_table[MAX_USES];
3818 /* Index into `reg_use_table' while building it. */
3819 static int reg_use_count;
3821 /* Set up a list of register numbers used in INSN. The found uses are stored
3822 in `reg_use_table'. `reg_use_count' is initialized to zero before entry,
3823 and contains the number of uses in the table upon exit.
3825 ??? If a register appears multiple times we will record it multiple times.
3826 This doesn't hurt anything but it will slow things down. */
3828 static void
3829 find_used_regs (rtx *xptr, void *data ATTRIBUTE_UNUSED)
3831 int i, j;
3832 enum rtx_code code;
3833 const char *fmt;
3834 rtx x = *xptr;
3836 /* repeat is used to turn tail-recursion into iteration since GCC
3837 can't do it when there's no return value. */
3838 repeat:
3839 if (x == 0)
3840 return;
3842 code = GET_CODE (x);
3843 if (REG_P (x))
3845 if (reg_use_count == MAX_USES)
3846 return;
3848 reg_use_table[reg_use_count].reg_rtx = x;
3849 reg_use_count++;
3852 /* Recursively scan the operands of this expression. */
3854 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
3856 if (fmt[i] == 'e')
3858 /* If we are about to do the last recursive call
3859 needed at this level, change it into iteration.
3860 This function is called enough to be worth it. */
3861 if (i == 0)
3863 x = XEXP (x, 0);
3864 goto repeat;
3867 find_used_regs (&XEXP (x, i), data);
3869 else if (fmt[i] == 'E')
3870 for (j = 0; j < XVECLEN (x, i); j++)
3871 find_used_regs (&XVECEXP (x, i, j), data);
3875 /* Try to replace all non-SET_DEST occurrences of FROM in INSN with TO.
3876 Returns nonzero is successful. */
3878 static int
3879 try_replace_reg (rtx from, rtx to, rtx insn)
3881 rtx note = find_reg_equal_equiv_note (insn);
3882 rtx src = 0;
3883 int success = 0;
3884 rtx set = single_set (insn);
3886 validate_replace_src_group (from, to, insn);
3887 if (num_changes_pending () && apply_change_group ())
3888 success = 1;
3890 /* Try to simplify SET_SRC if we have substituted a constant. */
3891 if (success && set && CONSTANT_P (to))
3893 src = simplify_rtx (SET_SRC (set));
3895 if (src)
3896 validate_change (insn, &SET_SRC (set), src, 0);
3899 /* If there is already a NOTE, update the expression in it with our
3900 replacement. */
3901 if (note != 0)
3902 XEXP (note, 0) = simplify_replace_rtx (XEXP (note, 0), from, to);
3904 if (!success && set && reg_mentioned_p (from, SET_SRC (set)))
3906 /* If above failed and this is a single set, try to simplify the source of
3907 the set given our substitution. We could perhaps try this for multiple
3908 SETs, but it probably won't buy us anything. */
3909 src = simplify_replace_rtx (SET_SRC (set), from, to);
3911 if (!rtx_equal_p (src, SET_SRC (set))
3912 && validate_change (insn, &SET_SRC (set), src, 0))
3913 success = 1;
3915 /* If we've failed to do replacement, have a single SET, don't already
3916 have a note, and have no special SET, add a REG_EQUAL note to not
3917 lose information. */
3918 if (!success && note == 0 && set != 0
3919 && GET_CODE (XEXP (set, 0)) != ZERO_EXTRACT
3920 && GET_CODE (XEXP (set, 0)) != SIGN_EXTRACT)
3921 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
3924 /* REG_EQUAL may get simplified into register.
3925 We don't allow that. Remove that note. This code ought
3926 not to happen, because previous code ought to synthesize
3927 reg-reg move, but be on the safe side. */
3928 if (note && REG_P (XEXP (note, 0)))
3929 remove_note (insn, note);
3931 return success;
3934 /* Find a set of REGNOs that are available on entry to INSN's block. Returns
3935 NULL no such set is found. */
3937 static struct expr *
3938 find_avail_set (int regno, rtx insn)
3940 /* SET1 contains the last set found that can be returned to the caller for
3941 use in a substitution. */
3942 struct expr *set1 = 0;
3944 /* Loops are not possible here. To get a loop we would need two sets
3945 available at the start of the block containing INSN. ie we would
3946 need two sets like this available at the start of the block:
3948 (set (reg X) (reg Y))
3949 (set (reg Y) (reg X))
3951 This can not happen since the set of (reg Y) would have killed the
3952 set of (reg X) making it unavailable at the start of this block. */
3953 while (1)
3955 rtx src;
3956 struct expr *set = lookup_set (regno, &set_hash_table);
3958 /* Find a set that is available at the start of the block
3959 which contains INSN. */
3960 while (set)
3962 if (TEST_BIT (cprop_avin[BLOCK_NUM (insn)], set->bitmap_index))
3963 break;
3964 set = next_set (regno, set);
3967 /* If no available set was found we've reached the end of the
3968 (possibly empty) copy chain. */
3969 if (set == 0)
3970 break;
3972 if (GET_CODE (set->expr) != SET)
3973 abort ();
3975 src = SET_SRC (set->expr);
3977 /* We know the set is available.
3978 Now check that SRC is ANTLOC (i.e. none of the source operands
3979 have changed since the start of the block).
3981 If the source operand changed, we may still use it for the next
3982 iteration of this loop, but we may not use it for substitutions. */
3984 if (gcse_constant_p (src) || oprs_not_set_p (src, insn))
3985 set1 = set;
3987 /* If the source of the set is anything except a register, then
3988 we have reached the end of the copy chain. */
3989 if (GET_CODE (src) != REG)
3990 break;
3992 /* Follow the copy chain, ie start another iteration of the loop
3993 and see if we have an available copy into SRC. */
3994 regno = REGNO (src);
3997 /* SET1 holds the last set that was available and anticipatable at
3998 INSN. */
3999 return set1;
4002 /* Subroutine of cprop_insn that tries to propagate constants into
4003 JUMP_INSNS. JUMP must be a conditional jump. If SETCC is non-NULL
4004 it is the instruction that immediately precedes JUMP, and must be a
4005 single SET of a register. FROM is what we will try to replace,
4006 SRC is the constant we will try to substitute for it. Returns nonzero
4007 if a change was made. */
4009 static int
4010 cprop_jump (basic_block bb, rtx setcc, rtx jump, rtx from, rtx src)
4012 rtx new, set_src, note_src;
4013 rtx set = pc_set (jump);
4014 rtx note = find_reg_equal_equiv_note (jump);
4016 if (note)
4018 note_src = XEXP (note, 0);
4019 if (GET_CODE (note_src) == EXPR_LIST)
4020 note_src = NULL_RTX;
4022 else note_src = NULL_RTX;
4024 /* Prefer REG_EQUAL notes except those containing EXPR_LISTs. */
4025 set_src = note_src ? note_src : SET_SRC (set);
4027 /* First substitute the SETCC condition into the JUMP instruction,
4028 then substitute that given values into this expanded JUMP. */
4029 if (setcc != NULL_RTX
4030 && !modified_between_p (from, setcc, jump)
4031 && !modified_between_p (src, setcc, jump))
4033 rtx setcc_src;
4034 rtx setcc_set = single_set (setcc);
4035 rtx setcc_note = find_reg_equal_equiv_note (setcc);
4036 setcc_src = (setcc_note && GET_CODE (XEXP (setcc_note, 0)) != EXPR_LIST)
4037 ? XEXP (setcc_note, 0) : SET_SRC (setcc_set);
4038 set_src = simplify_replace_rtx (set_src, SET_DEST (setcc_set),
4039 setcc_src);
4041 else
4042 setcc = NULL_RTX;
4044 new = simplify_replace_rtx (set_src, from, src);
4046 /* If no simplification can be made, then try the next register. */
4047 if (rtx_equal_p (new, SET_SRC (set)))
4048 return 0;
4050 /* If this is now a no-op delete it, otherwise this must be a valid insn. */
4051 if (new == pc_rtx)
4052 delete_insn (jump);
4053 else
4055 /* Ensure the value computed inside the jump insn to be equivalent
4056 to one computed by setcc. */
4057 if (setcc && modified_in_p (new, setcc))
4058 return 0;
4059 if (! validate_change (jump, &SET_SRC (set), new, 0))
4061 /* When (some) constants are not valid in a comparison, and there
4062 are two registers to be replaced by constants before the entire
4063 comparison can be folded into a constant, we need to keep
4064 intermediate information in REG_EQUAL notes. For targets with
4065 separate compare insns, such notes are added by try_replace_reg.
4066 When we have a combined compare-and-branch instruction, however,
4067 we need to attach a note to the branch itself to make this
4068 optimization work. */
4070 if (!rtx_equal_p (new, note_src))
4071 set_unique_reg_note (jump, REG_EQUAL, copy_rtx (new));
4072 return 0;
4075 /* Remove REG_EQUAL note after simplification. */
4076 if (note_src)
4077 remove_note (jump, note);
4079 /* If this has turned into an unconditional jump,
4080 then put a barrier after it so that the unreachable
4081 code will be deleted. */
4082 if (GET_CODE (SET_SRC (set)) == LABEL_REF)
4083 emit_barrier_after (jump);
4086 #ifdef HAVE_cc0
4087 /* Delete the cc0 setter. */
4088 if (setcc != NULL && CC0_P (SET_DEST (single_set (setcc))))
4089 delete_insn (setcc);
4090 #endif
4092 run_jump_opt_after_gcse = 1;
4094 const_prop_count++;
4095 if (gcse_file != NULL)
4097 fprintf (gcse_file,
4098 "CONST-PROP: Replacing reg %d in jump_insn %d with constant ",
4099 REGNO (from), INSN_UID (jump));
4100 print_rtl (gcse_file, src);
4101 fprintf (gcse_file, "\n");
4103 purge_dead_edges (bb);
4105 return 1;
4108 static bool
4109 constprop_register (rtx insn, rtx from, rtx to, int alter_jumps)
4111 rtx sset;
4113 /* Check for reg or cc0 setting instructions followed by
4114 conditional branch instructions first. */
4115 if (alter_jumps
4116 && (sset = single_set (insn)) != NULL
4117 && NEXT_INSN (insn)
4118 && any_condjump_p (NEXT_INSN (insn)) && onlyjump_p (NEXT_INSN (insn)))
4120 rtx dest = SET_DEST (sset);
4121 if ((REG_P (dest) || CC0_P (dest))
4122 && cprop_jump (BLOCK_FOR_INSN (insn), insn, NEXT_INSN (insn), from, to))
4123 return 1;
4126 /* Handle normal insns next. */
4127 if (GET_CODE (insn) == INSN
4128 && try_replace_reg (from, to, insn))
4129 return 1;
4131 /* Try to propagate a CONST_INT into a conditional jump.
4132 We're pretty specific about what we will handle in this
4133 code, we can extend this as necessary over time.
4135 Right now the insn in question must look like
4136 (set (pc) (if_then_else ...)) */
4137 else if (alter_jumps && any_condjump_p (insn) && onlyjump_p (insn))
4138 return cprop_jump (BLOCK_FOR_INSN (insn), NULL, insn, from, to);
4139 return 0;
4142 /* Perform constant and copy propagation on INSN.
4143 The result is nonzero if a change was made. */
4145 static int
4146 cprop_insn (rtx insn, int alter_jumps)
4148 struct reg_use *reg_used;
4149 int changed = 0;
4150 rtx note;
4152 if (!INSN_P (insn))
4153 return 0;
4155 reg_use_count = 0;
4156 note_uses (&PATTERN (insn), find_used_regs, NULL);
4158 note = find_reg_equal_equiv_note (insn);
4160 /* We may win even when propagating constants into notes. */
4161 if (note)
4162 find_used_regs (&XEXP (note, 0), NULL);
4164 for (reg_used = &reg_use_table[0]; reg_use_count > 0;
4165 reg_used++, reg_use_count--)
4167 unsigned int regno = REGNO (reg_used->reg_rtx);
4168 rtx pat, src;
4169 struct expr *set;
4171 /* Ignore registers created by GCSE.
4172 We do this because ... */
4173 if (regno >= max_gcse_regno)
4174 continue;
4176 /* If the register has already been set in this block, there's
4177 nothing we can do. */
4178 if (! oprs_not_set_p (reg_used->reg_rtx, insn))
4179 continue;
4181 /* Find an assignment that sets reg_used and is available
4182 at the start of the block. */
4183 set = find_avail_set (regno, insn);
4184 if (! set)
4185 continue;
4187 pat = set->expr;
4188 /* ??? We might be able to handle PARALLELs. Later. */
4189 if (GET_CODE (pat) != SET)
4190 abort ();
4192 src = SET_SRC (pat);
4194 /* Constant propagation. */
4195 if (gcse_constant_p (src))
4197 if (constprop_register (insn, reg_used->reg_rtx, src, alter_jumps))
4199 changed = 1;
4200 const_prop_count++;
4201 if (gcse_file != NULL)
4203 fprintf (gcse_file, "GLOBAL CONST-PROP: Replacing reg %d in ", regno);
4204 fprintf (gcse_file, "insn %d with constant ", INSN_UID (insn));
4205 print_rtl (gcse_file, src);
4206 fprintf (gcse_file, "\n");
4208 if (INSN_DELETED_P (insn))
4209 return 1;
4212 else if (GET_CODE (src) == REG
4213 && REGNO (src) >= FIRST_PSEUDO_REGISTER
4214 && REGNO (src) != regno)
4216 if (try_replace_reg (reg_used->reg_rtx, src, insn))
4218 changed = 1;
4219 copy_prop_count++;
4220 if (gcse_file != NULL)
4222 fprintf (gcse_file, "GLOBAL COPY-PROP: Replacing reg %d in insn %d",
4223 regno, INSN_UID (insn));
4224 fprintf (gcse_file, " with reg %d\n", REGNO (src));
4227 /* The original insn setting reg_used may or may not now be
4228 deletable. We leave the deletion to flow. */
4229 /* FIXME: If it turns out that the insn isn't deletable,
4230 then we may have unnecessarily extended register lifetimes
4231 and made things worse. */
4236 return changed;
4239 /* Like find_used_regs, but avoid recording uses that appear in
4240 input-output contexts such as zero_extract or pre_dec. This
4241 restricts the cases we consider to those for which local cprop
4242 can legitimately make replacements. */
4244 static void
4245 local_cprop_find_used_regs (rtx *xptr, void *data)
4247 rtx x = *xptr;
4249 if (x == 0)
4250 return;
4252 switch (GET_CODE (x))
4254 case ZERO_EXTRACT:
4255 case SIGN_EXTRACT:
4256 case STRICT_LOW_PART:
4257 return;
4259 case PRE_DEC:
4260 case PRE_INC:
4261 case POST_DEC:
4262 case POST_INC:
4263 case PRE_MODIFY:
4264 case POST_MODIFY:
4265 /* Can only legitimately appear this early in the context of
4266 stack pushes for function arguments, but handle all of the
4267 codes nonetheless. */
4268 return;
4270 case SUBREG:
4271 /* Setting a subreg of a register larger than word_mode leaves
4272 the non-written words unchanged. */
4273 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) > BITS_PER_WORD)
4274 return;
4275 break;
4277 default:
4278 break;
4281 find_used_regs (xptr, data);
4284 /* LIBCALL_SP is a zero-terminated array of insns at the end of a libcall;
4285 their REG_EQUAL notes need updating. */
4287 static bool
4288 do_local_cprop (rtx x, rtx insn, int alter_jumps, rtx *libcall_sp)
4290 rtx newreg = NULL, newcnst = NULL;
4292 /* Rule out USE instructions and ASM statements as we don't want to
4293 change the hard registers mentioned. */
4294 if (GET_CODE (x) == REG
4295 && (REGNO (x) >= FIRST_PSEUDO_REGISTER
4296 || (GET_CODE (PATTERN (insn)) != USE
4297 && asm_noperands (PATTERN (insn)) < 0)))
4299 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0);
4300 struct elt_loc_list *l;
4302 if (!val)
4303 return false;
4304 for (l = val->locs; l; l = l->next)
4306 rtx this_rtx = l->loc;
4307 rtx note;
4309 if (l->in_libcall)
4310 continue;
4312 if (gcse_constant_p (this_rtx))
4313 newcnst = this_rtx;
4314 if (REG_P (this_rtx) && REGNO (this_rtx) >= FIRST_PSEUDO_REGISTER
4315 /* Don't copy propagate if it has attached REG_EQUIV note.
4316 At this point this only function parameters should have
4317 REG_EQUIV notes and if the argument slot is used somewhere
4318 explicitly, it means address of parameter has been taken,
4319 so we should not extend the lifetime of the pseudo. */
4320 && (!(note = find_reg_note (l->setting_insn, REG_EQUIV, NULL_RTX))
4321 || GET_CODE (XEXP (note, 0)) != MEM))
4322 newreg = this_rtx;
4324 if (newcnst && constprop_register (insn, x, newcnst, alter_jumps))
4326 /* If we find a case where we can't fix the retval REG_EQUAL notes
4327 match the new register, we either have to abandon this replacement
4328 or fix delete_trivially_dead_insns to preserve the setting insn,
4329 or make it delete the REG_EUAQL note, and fix up all passes that
4330 require the REG_EQUAL note there. */
4331 if (!adjust_libcall_notes (x, newcnst, insn, libcall_sp))
4332 abort ();
4333 if (gcse_file != NULL)
4335 fprintf (gcse_file, "LOCAL CONST-PROP: Replacing reg %d in ",
4336 REGNO (x));
4337 fprintf (gcse_file, "insn %d with constant ",
4338 INSN_UID (insn));
4339 print_rtl (gcse_file, newcnst);
4340 fprintf (gcse_file, "\n");
4342 const_prop_count++;
4343 return true;
4345 else if (newreg && newreg != x && try_replace_reg (x, newreg, insn))
4347 adjust_libcall_notes (x, newreg, insn, libcall_sp);
4348 if (gcse_file != NULL)
4350 fprintf (gcse_file,
4351 "LOCAL COPY-PROP: Replacing reg %d in insn %d",
4352 REGNO (x), INSN_UID (insn));
4353 fprintf (gcse_file, " with reg %d\n", REGNO (newreg));
4355 copy_prop_count++;
4356 return true;
4359 return false;
4362 /* LIBCALL_SP is a zero-terminated array of insns at the end of a libcall;
4363 their REG_EQUAL notes need updating to reflect that OLDREG has been
4364 replaced with NEWVAL in INSN. Return true if all substitutions could
4365 be made. */
4366 static bool
4367 adjust_libcall_notes (rtx oldreg, rtx newval, rtx insn, rtx *libcall_sp)
4369 rtx end;
4371 while ((end = *libcall_sp++))
4373 rtx note = find_reg_equal_equiv_note (end);
4375 if (! note)
4376 continue;
4378 if (REG_P (newval))
4380 if (reg_set_between_p (newval, PREV_INSN (insn), end))
4384 note = find_reg_equal_equiv_note (end);
4385 if (! note)
4386 continue;
4387 if (reg_mentioned_p (newval, XEXP (note, 0)))
4388 return false;
4390 while ((end = *libcall_sp++));
4391 return true;
4394 XEXP (note, 0) = replace_rtx (XEXP (note, 0), oldreg, newval);
4395 insn = end;
4397 return true;
4400 #define MAX_NESTED_LIBCALLS 9
4402 static void
4403 local_cprop_pass (int alter_jumps)
4405 rtx insn;
4406 struct reg_use *reg_used;
4407 rtx libcall_stack[MAX_NESTED_LIBCALLS + 1], *libcall_sp;
4408 bool changed = false;
4410 cselib_init (false);
4411 libcall_sp = &libcall_stack[MAX_NESTED_LIBCALLS];
4412 *libcall_sp = 0;
4413 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4415 if (INSN_P (insn))
4417 rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
4419 if (note)
4421 if (libcall_sp == libcall_stack)
4422 abort ();
4423 *--libcall_sp = XEXP (note, 0);
4425 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
4426 if (note)
4427 libcall_sp++;
4428 note = find_reg_equal_equiv_note (insn);
4431 reg_use_count = 0;
4432 note_uses (&PATTERN (insn), local_cprop_find_used_regs, NULL);
4433 if (note)
4434 local_cprop_find_used_regs (&XEXP (note, 0), NULL);
4436 for (reg_used = &reg_use_table[0]; reg_use_count > 0;
4437 reg_used++, reg_use_count--)
4438 if (do_local_cprop (reg_used->reg_rtx, insn, alter_jumps,
4439 libcall_sp))
4441 changed = true;
4442 break;
4444 if (INSN_DELETED_P (insn))
4445 break;
4447 while (reg_use_count);
4449 cselib_process_insn (insn);
4451 cselib_finish ();
4452 /* Global analysis may get into infinite loops for unreachable blocks. */
4453 if (changed && alter_jumps)
4455 delete_unreachable_blocks ();
4456 free_reg_set_mem ();
4457 alloc_reg_set_mem (max_reg_num ());
4458 compute_sets (get_insns ());
4462 /* Forward propagate copies. This includes copies and constants. Return
4463 nonzero if a change was made. */
4465 static int
4466 cprop (int alter_jumps)
4468 int changed;
4469 basic_block bb;
4470 rtx insn;
4472 /* Note we start at block 1. */
4473 if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
4475 if (gcse_file != NULL)
4476 fprintf (gcse_file, "\n");
4477 return 0;
4480 changed = 0;
4481 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb, EXIT_BLOCK_PTR, next_bb)
4483 /* Reset tables used to keep track of what's still valid [since the
4484 start of the block]. */
4485 reset_opr_set_tables ();
4487 for (insn = BB_HEAD (bb);
4488 insn != NULL && insn != NEXT_INSN (BB_END (bb));
4489 insn = NEXT_INSN (insn))
4490 if (INSN_P (insn))
4492 changed |= cprop_insn (insn, alter_jumps);
4494 /* Keep track of everything modified by this insn. */
4495 /* ??? Need to be careful w.r.t. mods done to INSN. Don't
4496 call mark_oprs_set if we turned the insn into a NOTE. */
4497 if (GET_CODE (insn) != NOTE)
4498 mark_oprs_set (insn);
4502 if (gcse_file != NULL)
4503 fprintf (gcse_file, "\n");
4505 return changed;
4508 /* Similar to get_condition, only the resulting condition must be
4509 valid at JUMP, instead of at EARLIEST.
4511 This differs from noce_get_condition in ifcvt.c in that we prefer not to
4512 settle for the condition variable in the jump instruction being integral.
4513 We prefer to be able to record the value of a user variable, rather than
4514 the value of a temporary used in a condition. This could be solved by
4515 recording the value of *every* register scaned by canonicalize_condition,
4516 but this would require some code reorganization. */
4519 fis_get_condition (rtx jump)
4521 rtx cond, set, tmp, insn, earliest;
4522 bool reverse;
4524 if (! any_condjump_p (jump))
4525 return NULL_RTX;
4527 set = pc_set (jump);
4528 cond = XEXP (SET_SRC (set), 0);
4530 /* If this branches to JUMP_LABEL when the condition is false,
4531 reverse the condition. */
4532 reverse = (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
4533 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump));
4535 /* Use canonicalize_condition to do the dirty work of manipulating
4536 MODE_CC values and COMPARE rtx codes. */
4537 tmp = canonicalize_condition (jump, cond, reverse, &earliest, NULL_RTX,
4538 false);
4539 if (!tmp)
4540 return NULL_RTX;
4542 /* Verify that the given condition is valid at JUMP by virtue of not
4543 having been modified since EARLIEST. */
4544 for (insn = earliest; insn != jump; insn = NEXT_INSN (insn))
4545 if (INSN_P (insn) && modified_in_p (tmp, insn))
4546 break;
4547 if (insn == jump)
4548 return tmp;
4550 /* The condition was modified. See if we can get a partial result
4551 that doesn't follow all the reversals. Perhaps combine can fold
4552 them together later. */
4553 tmp = XEXP (tmp, 0);
4554 if (!REG_P (tmp) || GET_MODE_CLASS (GET_MODE (tmp)) != MODE_INT)
4555 return NULL_RTX;
4556 tmp = canonicalize_condition (jump, cond, reverse, &earliest, tmp,
4557 false);
4558 if (!tmp)
4559 return NULL_RTX;
4561 /* For sanity's sake, re-validate the new result. */
4562 for (insn = earliest; insn != jump; insn = NEXT_INSN (insn))
4563 if (INSN_P (insn) && modified_in_p (tmp, insn))
4564 return NULL_RTX;
4566 return tmp;
4569 /* Check the comparison COND to see if we can safely form an implicit set from
4570 it. COND is either an EQ or NE comparison. */
4572 static bool
4573 implicit_set_cond_p (rtx cond)
4575 enum machine_mode mode = GET_MODE (XEXP (cond, 0));
4576 rtx cst = XEXP (cond, 1);
4578 /* We can't perform this optimization if either operand might be or might
4579 contain a signed zero. */
4580 if (HONOR_SIGNED_ZEROS (mode))
4582 /* It is sufficient to check if CST is or contains a zero. We must
4583 handle float, complex, and vector. If any subpart is a zero, then
4584 the optimization can't be performed. */
4585 /* ??? The complex and vector checks are not implemented yet. We just
4586 always return zero for them. */
4587 if (GET_CODE (cst) == CONST_DOUBLE)
4589 REAL_VALUE_TYPE d;
4590 REAL_VALUE_FROM_CONST_DOUBLE (d, cst);
4591 if (REAL_VALUES_EQUAL (d, dconst0))
4592 return 0;
4594 else
4595 return 0;
4598 return gcse_constant_p (cst);
4601 /* Find the implicit sets of a function. An "implicit set" is a constraint
4602 on the value of a variable, implied by a conditional jump. For example,
4603 following "if (x == 2)", the then branch may be optimized as though the
4604 conditional performed an "explicit set", in this example, "x = 2". This
4605 function records the set patterns that are implicit at the start of each
4606 basic block. */
4608 static void
4609 find_implicit_sets (void)
4611 basic_block bb, dest;
4612 unsigned int count;
4613 rtx cond, new;
4615 count = 0;
4616 FOR_EACH_BB (bb)
4617 /* Check for more than one successor. */
4618 if (bb->succ && bb->succ->succ_next)
4620 cond = fis_get_condition (BB_END (bb));
4622 if (cond
4623 && (GET_CODE (cond) == EQ || GET_CODE (cond) == NE)
4624 && GET_CODE (XEXP (cond, 0)) == REG
4625 && REGNO (XEXP (cond, 0)) >= FIRST_PSEUDO_REGISTER
4626 && implicit_set_cond_p (cond))
4628 dest = GET_CODE (cond) == EQ ? BRANCH_EDGE (bb)->dest
4629 : FALLTHRU_EDGE (bb)->dest;
4631 if (dest && ! dest->pred->pred_next
4632 && dest != EXIT_BLOCK_PTR)
4634 new = gen_rtx_SET (VOIDmode, XEXP (cond, 0),
4635 XEXP (cond, 1));
4636 implicit_sets[dest->index] = new;
4637 if (gcse_file)
4639 fprintf(gcse_file, "Implicit set of reg %d in ",
4640 REGNO (XEXP (cond, 0)));
4641 fprintf(gcse_file, "basic block %d\n", dest->index);
4643 count++;
4648 if (gcse_file)
4649 fprintf (gcse_file, "Found %d implicit sets\n", count);
4652 /* Perform one copy/constant propagation pass.
4653 PASS is the pass count. If CPROP_JUMPS is true, perform constant
4654 propagation into conditional jumps. If BYPASS_JUMPS is true,
4655 perform conditional jump bypassing optimizations. */
4657 static int
4658 one_cprop_pass (int pass, int cprop_jumps, int bypass_jumps)
4660 int changed = 0;
4662 const_prop_count = 0;
4663 copy_prop_count = 0;
4665 local_cprop_pass (cprop_jumps);
4667 /* Determine implicit sets. */
4668 implicit_sets = xcalloc (last_basic_block, sizeof (rtx));
4669 find_implicit_sets ();
4671 alloc_hash_table (max_cuid, &set_hash_table, 1);
4672 compute_hash_table (&set_hash_table);
4674 /* Free implicit_sets before peak usage. */
4675 free (implicit_sets);
4676 implicit_sets = NULL;
4678 if (gcse_file)
4679 dump_hash_table (gcse_file, "SET", &set_hash_table);
4680 if (set_hash_table.n_elems > 0)
4682 alloc_cprop_mem (last_basic_block, set_hash_table.n_elems);
4683 compute_cprop_data ();
4684 changed = cprop (cprop_jumps);
4685 if (bypass_jumps)
4686 changed |= bypass_conditional_jumps ();
4687 free_cprop_mem ();
4690 free_hash_table (&set_hash_table);
4692 if (gcse_file)
4694 fprintf (gcse_file, "CPROP of %s, pass %d: %d bytes needed, ",
4695 current_function_name (), pass, bytes_used);
4696 fprintf (gcse_file, "%d const props, %d copy props\n\n",
4697 const_prop_count, copy_prop_count);
4699 /* Global analysis may get into infinite loops for unreachable blocks. */
4700 if (changed && cprop_jumps)
4701 delete_unreachable_blocks ();
4703 return changed;
4706 /* Bypass conditional jumps. */
4708 /* The value of last_basic_block at the beginning of the jump_bypass
4709 pass. The use of redirect_edge_and_branch_force may introduce new
4710 basic blocks, but the data flow analysis is only valid for basic
4711 block indices less than bypass_last_basic_block. */
4713 static int bypass_last_basic_block;
4715 /* Find a set of REGNO to a constant that is available at the end of basic
4716 block BB. Returns NULL if no such set is found. Based heavily upon
4717 find_avail_set. */
4719 static struct expr *
4720 find_bypass_set (int regno, int bb)
4722 struct expr *result = 0;
4724 for (;;)
4726 rtx src;
4727 struct expr *set = lookup_set (regno, &set_hash_table);
4729 while (set)
4731 if (TEST_BIT (cprop_avout[bb], set->bitmap_index))
4732 break;
4733 set = next_set (regno, set);
4736 if (set == 0)
4737 break;
4739 if (GET_CODE (set->expr) != SET)
4740 abort ();
4742 src = SET_SRC (set->expr);
4743 if (gcse_constant_p (src))
4744 result = set;
4746 if (GET_CODE (src) != REG)
4747 break;
4749 regno = REGNO (src);
4751 return result;
4755 /* Subroutine of bypass_block that checks whether a pseudo is killed by
4756 any of the instructions inserted on an edge. Jump bypassing places
4757 condition code setters on CFG edges using insert_insn_on_edge. This
4758 function is required to check that our data flow analysis is still
4759 valid prior to commit_edge_insertions. */
4761 static bool
4762 reg_killed_on_edge (rtx reg, edge e)
4764 rtx insn;
4766 for (insn = e->insns; insn; insn = NEXT_INSN (insn))
4767 if (INSN_P (insn) && reg_set_p (reg, insn))
4768 return true;
4770 return false;
4773 /* Subroutine of bypass_conditional_jumps that attempts to bypass the given
4774 basic block BB which has more than one predecessor. If not NULL, SETCC
4775 is the first instruction of BB, which is immediately followed by JUMP_INSN
4776 JUMP. Otherwise, SETCC is NULL, and JUMP is the first insn of BB.
4777 Returns nonzero if a change was made.
4779 During the jump bypassing pass, we may place copies of SETCC instructions
4780 on CFG edges. The following routine must be careful to pay attention to
4781 these inserted insns when performing its transformations. */
4783 static int
4784 bypass_block (basic_block bb, rtx setcc, rtx jump)
4786 rtx insn, note;
4787 edge e, enext, edest;
4788 int i, change;
4789 int may_be_loop_header;
4791 insn = (setcc != NULL) ? setcc : jump;
4793 /* Determine set of register uses in INSN. */
4794 reg_use_count = 0;
4795 note_uses (&PATTERN (insn), find_used_regs, NULL);
4796 note = find_reg_equal_equiv_note (insn);
4797 if (note)
4798 find_used_regs (&XEXP (note, 0), NULL);
4800 may_be_loop_header = false;
4801 for (e = bb->pred; e; e = e->pred_next)
4802 if (e->flags & EDGE_DFS_BACK)
4804 may_be_loop_header = true;
4805 break;
4808 change = 0;
4809 for (e = bb->pred; e; e = enext)
4811 enext = e->pred_next;
4812 if (e->flags & EDGE_COMPLEX)
4813 continue;
4815 /* We can't redirect edges from new basic blocks. */
4816 if (e->src->index >= bypass_last_basic_block)
4817 continue;
4819 /* The irreducible loops created by redirecting of edges entering the
4820 loop from outside would decrease effectiveness of some of the following
4821 optimizations, so prevent this. */
4822 if (may_be_loop_header
4823 && !(e->flags & EDGE_DFS_BACK))
4824 continue;
4826 for (i = 0; i < reg_use_count; i++)
4828 struct reg_use *reg_used = &reg_use_table[i];
4829 unsigned int regno = REGNO (reg_used->reg_rtx);
4830 basic_block dest, old_dest;
4831 struct expr *set;
4832 rtx src, new;
4834 if (regno >= max_gcse_regno)
4835 continue;
4837 set = find_bypass_set (regno, e->src->index);
4839 if (! set)
4840 continue;
4842 /* Check the data flow is valid after edge insertions. */
4843 if (e->insns && reg_killed_on_edge (reg_used->reg_rtx, e))
4844 continue;
4846 src = SET_SRC (pc_set (jump));
4848 if (setcc != NULL)
4849 src = simplify_replace_rtx (src,
4850 SET_DEST (PATTERN (setcc)),
4851 SET_SRC (PATTERN (setcc)));
4853 new = simplify_replace_rtx (src, reg_used->reg_rtx,
4854 SET_SRC (set->expr));
4856 /* Jump bypassing may have already placed instructions on
4857 edges of the CFG. We can't bypass an outgoing edge that
4858 has instructions associated with it, as these insns won't
4859 get executed if the incoming edge is redirected. */
4861 if (new == pc_rtx)
4863 edest = FALLTHRU_EDGE (bb);
4864 dest = edest->insns ? NULL : edest->dest;
4866 else if (GET_CODE (new) == LABEL_REF)
4868 dest = BLOCK_FOR_INSN (XEXP (new, 0));
4869 /* Don't bypass edges containing instructions. */
4870 for (edest = bb->succ; edest; edest = edest->succ_next)
4871 if (edest->dest == dest && edest->insns)
4873 dest = NULL;
4874 break;
4877 else
4878 dest = NULL;
4880 /* Avoid unification of the edge with other edges from original
4881 branch. We would end up emitting the instruction on "both"
4882 edges. */
4884 if (dest && setcc && !CC0_P (SET_DEST (PATTERN (setcc))))
4886 edge e2;
4887 for (e2 = e->src->succ; e2; e2 = e2->succ_next)
4888 if (e2->dest == dest)
4890 dest = NULL;
4891 break;
4895 old_dest = e->dest;
4896 if (dest != NULL
4897 && dest != old_dest
4898 && dest != EXIT_BLOCK_PTR)
4900 redirect_edge_and_branch_force (e, dest);
4902 /* Copy the register setter to the redirected edge.
4903 Don't copy CC0 setters, as CC0 is dead after jump. */
4904 if (setcc)
4906 rtx pat = PATTERN (setcc);
4907 if (!CC0_P (SET_DEST (pat)))
4908 insert_insn_on_edge (copy_insn (pat), e);
4911 if (gcse_file != NULL)
4913 fprintf (gcse_file, "JUMP-BYPASS: Proved reg %d in jump_insn %d equals constant ",
4914 regno, INSN_UID (jump));
4915 print_rtl (gcse_file, SET_SRC (set->expr));
4916 fprintf (gcse_file, "\nBypass edge from %d->%d to %d\n",
4917 e->src->index, old_dest->index, dest->index);
4919 change = 1;
4920 break;
4924 return change;
4927 /* Find basic blocks with more than one predecessor that only contain a
4928 single conditional jump. If the result of the comparison is known at
4929 compile-time from any incoming edge, redirect that edge to the
4930 appropriate target. Returns nonzero if a change was made.
4932 This function is now mis-named, because we also handle indirect jumps. */
4934 static int
4935 bypass_conditional_jumps (void)
4937 basic_block bb;
4938 int changed;
4939 rtx setcc;
4940 rtx insn;
4941 rtx dest;
4943 /* Note we start at block 1. */
4944 if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
4945 return 0;
4947 bypass_last_basic_block = last_basic_block;
4948 mark_dfs_back_edges ();
4950 changed = 0;
4951 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb,
4952 EXIT_BLOCK_PTR, next_bb)
4954 /* Check for more than one predecessor. */
4955 if (bb->pred && bb->pred->pred_next)
4957 setcc = NULL_RTX;
4958 for (insn = BB_HEAD (bb);
4959 insn != NULL && insn != NEXT_INSN (BB_END (bb));
4960 insn = NEXT_INSN (insn))
4961 if (GET_CODE (insn) == INSN)
4963 if (setcc)
4964 break;
4965 if (GET_CODE (PATTERN (insn)) != SET)
4966 break;
4968 dest = SET_DEST (PATTERN (insn));
4969 if (REG_P (dest) || CC0_P (dest))
4970 setcc = insn;
4971 else
4972 break;
4974 else if (GET_CODE (insn) == JUMP_INSN)
4976 if ((any_condjump_p (insn) || computed_jump_p (insn))
4977 && onlyjump_p (insn))
4978 changed |= bypass_block (bb, setcc, insn);
4979 break;
4981 else if (INSN_P (insn))
4982 break;
4986 /* If we bypassed any register setting insns, we inserted a
4987 copy on the redirected edge. These need to be committed. */
4988 if (changed)
4989 commit_edge_insertions();
4991 return changed;
4994 /* Compute PRE+LCM working variables. */
4996 /* Local properties of expressions. */
4997 /* Nonzero for expressions that are transparent in the block. */
4998 static sbitmap *transp;
5000 /* Nonzero for expressions that are transparent at the end of the block.
5001 This is only zero for expressions killed by abnormal critical edge
5002 created by a calls. */
5003 static sbitmap *transpout;
5005 /* Nonzero for expressions that are computed (available) in the block. */
5006 static sbitmap *comp;
5008 /* Nonzero for expressions that are locally anticipatable in the block. */
5009 static sbitmap *antloc;
5011 /* Nonzero for expressions where this block is an optimal computation
5012 point. */
5013 static sbitmap *pre_optimal;
5015 /* Nonzero for expressions which are redundant in a particular block. */
5016 static sbitmap *pre_redundant;
5018 /* Nonzero for expressions which should be inserted on a specific edge. */
5019 static sbitmap *pre_insert_map;
5021 /* Nonzero for expressions which should be deleted in a specific block. */
5022 static sbitmap *pre_delete_map;
5024 /* Contains the edge_list returned by pre_edge_lcm. */
5025 static struct edge_list *edge_list;
5027 /* Redundant insns. */
5028 static sbitmap pre_redundant_insns;
5030 /* Allocate vars used for PRE analysis. */
5032 static void
5033 alloc_pre_mem (int n_blocks, int n_exprs)
5035 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
5036 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
5037 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
5039 pre_optimal = NULL;
5040 pre_redundant = NULL;
5041 pre_insert_map = NULL;
5042 pre_delete_map = NULL;
5043 ae_in = NULL;
5044 ae_out = NULL;
5045 ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
5047 /* pre_insert and pre_delete are allocated later. */
5050 /* Free vars used for PRE analysis. */
5052 static void
5053 free_pre_mem (void)
5055 sbitmap_vector_free (transp);
5056 sbitmap_vector_free (comp);
5058 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
5060 if (pre_optimal)
5061 sbitmap_vector_free (pre_optimal);
5062 if (pre_redundant)
5063 sbitmap_vector_free (pre_redundant);
5064 if (pre_insert_map)
5065 sbitmap_vector_free (pre_insert_map);
5066 if (pre_delete_map)
5067 sbitmap_vector_free (pre_delete_map);
5068 if (ae_in)
5069 sbitmap_vector_free (ae_in);
5070 if (ae_out)
5071 sbitmap_vector_free (ae_out);
5073 transp = comp = NULL;
5074 pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
5075 ae_in = ae_out = NULL;
5078 /* Top level routine to do the dataflow analysis needed by PRE. */
5080 static void
5081 compute_pre_data (void)
5083 sbitmap trapping_expr;
5084 basic_block bb;
5085 unsigned int ui;
5087 compute_local_properties (transp, comp, antloc, &expr_hash_table);
5088 sbitmap_vector_zero (ae_kill, last_basic_block);
5090 /* Collect expressions which might trap. */
5091 trapping_expr = sbitmap_alloc (expr_hash_table.n_elems);
5092 sbitmap_zero (trapping_expr);
5093 for (ui = 0; ui < expr_hash_table.size; ui++)
5095 struct expr *e;
5096 for (e = expr_hash_table.table[ui]; e != NULL; e = e->next_same_hash)
5097 if (may_trap_p (e->expr))
5098 SET_BIT (trapping_expr, e->bitmap_index);
5101 /* Compute ae_kill for each basic block using:
5103 ~(TRANSP | COMP)
5105 This is significantly faster than compute_ae_kill. */
5107 FOR_EACH_BB (bb)
5109 edge e;
5111 /* If the current block is the destination of an abnormal edge, we
5112 kill all trapping expressions because we won't be able to properly
5113 place the instruction on the edge. So make them neither
5114 anticipatable nor transparent. This is fairly conservative. */
5115 for (e = bb->pred; e ; e = e->pred_next)
5116 if (e->flags & EDGE_ABNORMAL)
5118 sbitmap_difference (antloc[bb->index], antloc[bb->index], trapping_expr);
5119 sbitmap_difference (transp[bb->index], transp[bb->index], trapping_expr);
5120 break;
5123 sbitmap_a_or_b (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
5124 sbitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
5127 edge_list = pre_edge_lcm (gcse_file, expr_hash_table.n_elems, transp, comp, antloc,
5128 ae_kill, &pre_insert_map, &pre_delete_map);
5129 sbitmap_vector_free (antloc);
5130 antloc = NULL;
5131 sbitmap_vector_free (ae_kill);
5132 ae_kill = NULL;
5133 sbitmap_free (trapping_expr);
5136 /* PRE utilities */
5138 /* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
5139 block BB.
5141 VISITED is a pointer to a working buffer for tracking which BB's have
5142 been visited. It is NULL for the top-level call.
5144 We treat reaching expressions that go through blocks containing the same
5145 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
5146 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
5147 2 as not reaching. The intent is to improve the probability of finding
5148 only one reaching expression and to reduce register lifetimes by picking
5149 the closest such expression. */
5151 static int
5152 pre_expr_reaches_here_p_work (basic_block occr_bb, struct expr *expr, basic_block bb, char *visited)
5154 edge pred;
5156 for (pred = bb->pred; pred != NULL; pred = pred->pred_next)
5158 basic_block pred_bb = pred->src;
5160 if (pred->src == ENTRY_BLOCK_PTR
5161 /* Has predecessor has already been visited? */
5162 || visited[pred_bb->index])
5163 ;/* Nothing to do. */
5165 /* Does this predecessor generate this expression? */
5166 else if (TEST_BIT (comp[pred_bb->index], expr->bitmap_index))
5168 /* Is this the occurrence we're looking for?
5169 Note that there's only one generating occurrence per block
5170 so we just need to check the block number. */
5171 if (occr_bb == pred_bb)
5172 return 1;
5174 visited[pred_bb->index] = 1;
5176 /* Ignore this predecessor if it kills the expression. */
5177 else if (! TEST_BIT (transp[pred_bb->index], expr->bitmap_index))
5178 visited[pred_bb->index] = 1;
5180 /* Neither gen nor kill. */
5181 else
5183 visited[pred_bb->index] = 1;
5184 if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
5185 return 1;
5189 /* All paths have been checked. */
5190 return 0;
5193 /* The wrapper for pre_expr_reaches_here_work that ensures that any
5194 memory allocated for that function is returned. */
5196 static int
5197 pre_expr_reaches_here_p (basic_block occr_bb, struct expr *expr, basic_block bb)
5199 int rval;
5200 char *visited = xcalloc (last_basic_block, 1);
5202 rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
5204 free (visited);
5205 return rval;
5209 /* Given an expr, generate RTL which we can insert at the end of a BB,
5210 or on an edge. Set the block number of any insns generated to
5211 the value of BB. */
5213 static rtx
5214 process_insert_insn (struct expr *expr)
5216 rtx reg = expr->reaching_reg;
5217 rtx exp = copy_rtx (expr->expr);
5218 rtx pat;
5220 start_sequence ();
5222 /* If the expression is something that's an operand, like a constant,
5223 just copy it to a register. */
5224 if (general_operand (exp, GET_MODE (reg)))
5225 emit_move_insn (reg, exp);
5227 /* Otherwise, make a new insn to compute this expression and make sure the
5228 insn will be recognized (this also adds any needed CLOBBERs). Copy the
5229 expression to make sure we don't have any sharing issues. */
5230 else if (insn_invalid_p (emit_insn (gen_rtx_SET (VOIDmode, reg, exp))))
5231 abort ();
5233 pat = get_insns ();
5234 end_sequence ();
5236 return pat;
5239 /* Add EXPR to the end of basic block BB.
5241 This is used by both the PRE and code hoisting.
5243 For PRE, we want to verify that the expr is either transparent
5244 or locally anticipatable in the target block. This check makes
5245 no sense for code hoisting. */
5247 static void
5248 insert_insn_end_bb (struct expr *expr, basic_block bb, int pre)
5250 rtx insn = BB_END (bb);
5251 rtx new_insn;
5252 rtx reg = expr->reaching_reg;
5253 int regno = REGNO (reg);
5254 rtx pat, pat_end;
5256 pat = process_insert_insn (expr);
5257 if (pat == NULL_RTX || ! INSN_P (pat))
5258 abort ();
5260 pat_end = pat;
5261 while (NEXT_INSN (pat_end) != NULL_RTX)
5262 pat_end = NEXT_INSN (pat_end);
5264 /* If the last insn is a jump, insert EXPR in front [taking care to
5265 handle cc0, etc. properly]. Similarly we need to care trapping
5266 instructions in presence of non-call exceptions. */
5268 if (GET_CODE (insn) == JUMP_INSN
5269 || (GET_CODE (insn) == INSN
5270 && (bb->succ->succ_next || (bb->succ->flags & EDGE_ABNORMAL))))
5272 #ifdef HAVE_cc0
5273 rtx note;
5274 #endif
5275 /* It should always be the case that we can put these instructions
5276 anywhere in the basic block with performing PRE optimizations.
5277 Check this. */
5278 if (GET_CODE (insn) == INSN && pre
5279 && !TEST_BIT (antloc[bb->index], expr->bitmap_index)
5280 && !TEST_BIT (transp[bb->index], expr->bitmap_index))
5281 abort ();
5283 /* If this is a jump table, then we can't insert stuff here. Since
5284 we know the previous real insn must be the tablejump, we insert
5285 the new instruction just before the tablejump. */
5286 if (GET_CODE (PATTERN (insn)) == ADDR_VEC
5287 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
5288 insn = prev_real_insn (insn);
5290 #ifdef HAVE_cc0
5291 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
5292 if cc0 isn't set. */
5293 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
5294 if (note)
5295 insn = XEXP (note, 0);
5296 else
5298 rtx maybe_cc0_setter = prev_nonnote_insn (insn);
5299 if (maybe_cc0_setter
5300 && INSN_P (maybe_cc0_setter)
5301 && sets_cc0_p (PATTERN (maybe_cc0_setter)))
5302 insn = maybe_cc0_setter;
5304 #endif
5305 /* FIXME: What if something in cc0/jump uses value set in new insn? */
5306 new_insn = emit_insn_before (pat, insn);
5309 /* Likewise if the last insn is a call, as will happen in the presence
5310 of exception handling. */
5311 else if (GET_CODE (insn) == CALL_INSN
5312 && (bb->succ->succ_next || (bb->succ->flags & EDGE_ABNORMAL)))
5314 /* Keeping in mind SMALL_REGISTER_CLASSES and parameters in registers,
5315 we search backward and place the instructions before the first
5316 parameter is loaded. Do this for everyone for consistency and a
5317 presumption that we'll get better code elsewhere as well.
5319 It should always be the case that we can put these instructions
5320 anywhere in the basic block with performing PRE optimizations.
5321 Check this. */
5323 if (pre
5324 && !TEST_BIT (antloc[bb->index], expr->bitmap_index)
5325 && !TEST_BIT (transp[bb->index], expr->bitmap_index))
5326 abort ();
5328 /* Since different machines initialize their parameter registers
5329 in different orders, assume nothing. Collect the set of all
5330 parameter registers. */
5331 insn = find_first_parameter_load (insn, BB_HEAD (bb));
5333 /* If we found all the parameter loads, then we want to insert
5334 before the first parameter load.
5336 If we did not find all the parameter loads, then we might have
5337 stopped on the head of the block, which could be a CODE_LABEL.
5338 If we inserted before the CODE_LABEL, then we would be putting
5339 the insn in the wrong basic block. In that case, put the insn
5340 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
5341 while (GET_CODE (insn) == CODE_LABEL
5342 || NOTE_INSN_BASIC_BLOCK_P (insn))
5343 insn = NEXT_INSN (insn);
5345 new_insn = emit_insn_before (pat, insn);
5347 else
5348 new_insn = emit_insn_after (pat, insn);
5350 while (1)
5352 if (INSN_P (pat))
5354 add_label_notes (PATTERN (pat), new_insn);
5355 note_stores (PATTERN (pat), record_set_info, pat);
5357 if (pat == pat_end)
5358 break;
5359 pat = NEXT_INSN (pat);
5362 gcse_create_count++;
5364 if (gcse_file)
5366 fprintf (gcse_file, "PRE/HOIST: end of bb %d, insn %d, ",
5367 bb->index, INSN_UID (new_insn));
5368 fprintf (gcse_file, "copying expression %d to reg %d\n",
5369 expr->bitmap_index, regno);
5373 /* Insert partially redundant expressions on edges in the CFG to make
5374 the expressions fully redundant. */
5376 static int
5377 pre_edge_insert (struct edge_list *edge_list, struct expr **index_map)
5379 int e, i, j, num_edges, set_size, did_insert = 0;
5380 sbitmap *inserted;
5382 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
5383 if it reaches any of the deleted expressions. */
5385 set_size = pre_insert_map[0]->size;
5386 num_edges = NUM_EDGES (edge_list);
5387 inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems);
5388 sbitmap_vector_zero (inserted, num_edges);
5390 for (e = 0; e < num_edges; e++)
5392 int indx;
5393 basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
5395 for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
5397 SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
5399 for (j = indx; insert && j < (int) expr_hash_table.n_elems; j++, insert >>= 1)
5400 if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
5402 struct expr *expr = index_map[j];
5403 struct occr *occr;
5405 /* Now look at each deleted occurrence of this expression. */
5406 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
5408 if (! occr->deleted_p)
5409 continue;
5411 /* Insert this expression on this edge if if it would
5412 reach the deleted occurrence in BB. */
5413 if (!TEST_BIT (inserted[e], j))
5415 rtx insn;
5416 edge eg = INDEX_EDGE (edge_list, e);
5418 /* We can't insert anything on an abnormal and
5419 critical edge, so we insert the insn at the end of
5420 the previous block. There are several alternatives
5421 detailed in Morgans book P277 (sec 10.5) for
5422 handling this situation. This one is easiest for
5423 now. */
5425 if ((eg->flags & EDGE_ABNORMAL) == EDGE_ABNORMAL)
5426 insert_insn_end_bb (index_map[j], bb, 0);
5427 else
5429 insn = process_insert_insn (index_map[j]);
5430 insert_insn_on_edge (insn, eg);
5433 if (gcse_file)
5435 fprintf (gcse_file, "PRE/HOIST: edge (%d,%d), ",
5436 bb->index,
5437 INDEX_EDGE_SUCC_BB (edge_list, e)->index);
5438 fprintf (gcse_file, "copy expression %d\n",
5439 expr->bitmap_index);
5442 update_ld_motion_stores (expr);
5443 SET_BIT (inserted[e], j);
5444 did_insert = 1;
5445 gcse_create_count++;
5452 sbitmap_vector_free (inserted);
5453 return did_insert;
5456 /* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
5457 Given "old_reg <- expr" (INSN), instead of adding after it
5458 reaching_reg <- old_reg
5459 it's better to do the following:
5460 reaching_reg <- expr
5461 old_reg <- reaching_reg
5462 because this way copy propagation can discover additional PRE
5463 opportunities. But if this fails, we try the old way.
5464 When "expr" is a store, i.e.
5465 given "MEM <- old_reg", instead of adding after it
5466 reaching_reg <- old_reg
5467 it's better to add it before as follows:
5468 reaching_reg <- old_reg
5469 MEM <- reaching_reg. */
5471 static void
5472 pre_insert_copy_insn (struct expr *expr, rtx insn)
5474 rtx reg = expr->reaching_reg;
5475 int regno = REGNO (reg);
5476 int indx = expr->bitmap_index;
5477 rtx pat = PATTERN (insn);
5478 rtx set, new_insn;
5479 rtx old_reg;
5480 int i;
5482 /* This block matches the logic in hash_scan_insn. */
5483 if (GET_CODE (pat) == SET)
5484 set = pat;
5485 else if (GET_CODE (pat) == PARALLEL)
5487 /* Search through the parallel looking for the set whose
5488 source was the expression that we're interested in. */
5489 set = NULL_RTX;
5490 for (i = 0; i < XVECLEN (pat, 0); i++)
5492 rtx x = XVECEXP (pat, 0, i);
5493 if (GET_CODE (x) == SET
5494 && expr_equiv_p (SET_SRC (x), expr->expr))
5496 set = x;
5497 break;
5501 else
5502 abort ();
5504 if (GET_CODE (SET_DEST (set)) == REG)
5506 old_reg = SET_DEST (set);
5507 /* Check if we can modify the set destination in the original insn. */
5508 if (validate_change (insn, &SET_DEST (set), reg, 0))
5510 new_insn = gen_move_insn (old_reg, reg);
5511 new_insn = emit_insn_after (new_insn, insn);
5513 /* Keep register set table up to date. */
5514 replace_one_set (REGNO (old_reg), insn, new_insn);
5515 record_one_set (regno, insn);
5517 else
5519 new_insn = gen_move_insn (reg, old_reg);
5520 new_insn = emit_insn_after (new_insn, insn);
5522 /* Keep register set table up to date. */
5523 record_one_set (regno, new_insn);
5526 else /* This is possible only in case of a store to memory. */
5528 old_reg = SET_SRC (set);
5529 new_insn = gen_move_insn (reg, old_reg);
5531 /* Check if we can modify the set source in the original insn. */
5532 if (validate_change (insn, &SET_SRC (set), reg, 0))
5533 new_insn = emit_insn_before (new_insn, insn);
5534 else
5535 new_insn = emit_insn_after (new_insn, insn);
5537 /* Keep register set table up to date. */
5538 record_one_set (regno, new_insn);
5541 gcse_create_count++;
5543 if (gcse_file)
5544 fprintf (gcse_file,
5545 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
5546 BLOCK_NUM (insn), INSN_UID (new_insn), indx,
5547 INSN_UID (insn), regno);
5550 /* Copy available expressions that reach the redundant expression
5551 to `reaching_reg'. */
5553 static void
5554 pre_insert_copies (void)
5556 unsigned int i, added_copy;
5557 struct expr *expr;
5558 struct occr *occr;
5559 struct occr *avail;
5561 /* For each available expression in the table, copy the result to
5562 `reaching_reg' if the expression reaches a deleted one.
5564 ??? The current algorithm is rather brute force.
5565 Need to do some profiling. */
5567 for (i = 0; i < expr_hash_table.size; i++)
5568 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
5570 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
5571 we don't want to insert a copy here because the expression may not
5572 really be redundant. So only insert an insn if the expression was
5573 deleted. This test also avoids further processing if the
5574 expression wasn't deleted anywhere. */
5575 if (expr->reaching_reg == NULL)
5576 continue;
5578 /* Set when we add a copy for that expression. */
5579 added_copy = 0;
5581 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
5583 if (! occr->deleted_p)
5584 continue;
5586 for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
5588 rtx insn = avail->insn;
5590 /* No need to handle this one if handled already. */
5591 if (avail->copied_p)
5592 continue;
5594 /* Don't handle this one if it's a redundant one. */
5595 if (TEST_BIT (pre_redundant_insns, INSN_CUID (insn)))
5596 continue;
5598 /* Or if the expression doesn't reach the deleted one. */
5599 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
5600 expr,
5601 BLOCK_FOR_INSN (occr->insn)))
5602 continue;
5604 added_copy = 1;
5606 /* Copy the result of avail to reaching_reg. */
5607 pre_insert_copy_insn (expr, insn);
5608 avail->copied_p = 1;
5612 if (added_copy)
5613 update_ld_motion_stores (expr);
5617 /* Emit move from SRC to DEST noting the equivalence with expression computed
5618 in INSN. */
5619 static rtx
5620 gcse_emit_move_after (rtx src, rtx dest, rtx insn)
5622 rtx new;
5623 rtx set = single_set (insn), set2;
5624 rtx note;
5625 rtx eqv;
5627 /* This should never fail since we're creating a reg->reg copy
5628 we've verified to be valid. */
5630 new = emit_insn_after (gen_move_insn (dest, src), insn);
5632 /* Note the equivalence for local CSE pass. */
5633 set2 = single_set (new);
5634 if (!set2 || !rtx_equal_p (SET_DEST (set2), dest))
5635 return new;
5636 if ((note = find_reg_equal_equiv_note (insn)))
5637 eqv = XEXP (note, 0);
5638 else
5639 eqv = SET_SRC (set);
5641 set_unique_reg_note (new, REG_EQUAL, copy_insn_1 (eqv));
5643 return new;
5646 /* Delete redundant computations.
5647 Deletion is done by changing the insn to copy the `reaching_reg' of
5648 the expression into the result of the SET. It is left to later passes
5649 (cprop, cse2, flow, combine, regmove) to propagate the copy or eliminate it.
5651 Returns nonzero if a change is made. */
5653 static int
5654 pre_delete (void)
5656 unsigned int i;
5657 int changed;
5658 struct expr *expr;
5659 struct occr *occr;
5661 changed = 0;
5662 for (i = 0; i < expr_hash_table.size; i++)
5663 for (expr = expr_hash_table.table[i];
5664 expr != NULL;
5665 expr = expr->next_same_hash)
5667 int indx = expr->bitmap_index;
5669 /* We only need to search antic_occr since we require
5670 ANTLOC != 0. */
5672 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
5674 rtx insn = occr->insn;
5675 rtx set;
5676 basic_block bb = BLOCK_FOR_INSN (insn);
5678 /* We only delete insns that have a single_set. */
5679 if (TEST_BIT (pre_delete_map[bb->index], indx)
5680 && (set = single_set (insn)) != 0)
5682 /* Create a pseudo-reg to store the result of reaching
5683 expressions into. Get the mode for the new pseudo from
5684 the mode of the original destination pseudo. */
5685 if (expr->reaching_reg == NULL)
5686 expr->reaching_reg
5687 = gen_reg_rtx (GET_MODE (SET_DEST (set)));
5689 gcse_emit_move_after (expr->reaching_reg, SET_DEST (set), insn);
5690 delete_insn (insn);
5691 occr->deleted_p = 1;
5692 SET_BIT (pre_redundant_insns, INSN_CUID (insn));
5693 changed = 1;
5694 gcse_subst_count++;
5696 if (gcse_file)
5698 fprintf (gcse_file,
5699 "PRE: redundant insn %d (expression %d) in ",
5700 INSN_UID (insn), indx);
5701 fprintf (gcse_file, "bb %d, reaching reg is %d\n",
5702 bb->index, REGNO (expr->reaching_reg));
5708 return changed;
5711 /* Perform GCSE optimizations using PRE.
5712 This is called by one_pre_gcse_pass after all the dataflow analysis
5713 has been done.
5715 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
5716 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
5717 Compiler Design and Implementation.
5719 ??? A new pseudo reg is created to hold the reaching expression. The nice
5720 thing about the classical approach is that it would try to use an existing
5721 reg. If the register can't be adequately optimized [i.e. we introduce
5722 reload problems], one could add a pass here to propagate the new register
5723 through the block.
5725 ??? We don't handle single sets in PARALLELs because we're [currently] not
5726 able to copy the rest of the parallel when we insert copies to create full
5727 redundancies from partial redundancies. However, there's no reason why we
5728 can't handle PARALLELs in the cases where there are no partial
5729 redundancies. */
5731 static int
5732 pre_gcse (void)
5734 unsigned int i;
5735 int did_insert, changed;
5736 struct expr **index_map;
5737 struct expr *expr;
5739 /* Compute a mapping from expression number (`bitmap_index') to
5740 hash table entry. */
5742 index_map = xcalloc (expr_hash_table.n_elems, sizeof (struct expr *));
5743 for (i = 0; i < expr_hash_table.size; i++)
5744 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
5745 index_map[expr->bitmap_index] = expr;
5747 /* Reset bitmap used to track which insns are redundant. */
5748 pre_redundant_insns = sbitmap_alloc (max_cuid);
5749 sbitmap_zero (pre_redundant_insns);
5751 /* Delete the redundant insns first so that
5752 - we know what register to use for the new insns and for the other
5753 ones with reaching expressions
5754 - we know which insns are redundant when we go to create copies */
5756 changed = pre_delete ();
5758 did_insert = pre_edge_insert (edge_list, index_map);
5760 /* In other places with reaching expressions, copy the expression to the
5761 specially allocated pseudo-reg that reaches the redundant expr. */
5762 pre_insert_copies ();
5763 if (did_insert)
5765 commit_edge_insertions ();
5766 changed = 1;
5769 free (index_map);
5770 sbitmap_free (pre_redundant_insns);
5771 return changed;
5774 /* Top level routine to perform one PRE GCSE pass.
5776 Return nonzero if a change was made. */
5778 static int
5779 one_pre_gcse_pass (int pass)
5781 int changed = 0;
5783 gcse_subst_count = 0;
5784 gcse_create_count = 0;
5786 alloc_hash_table (max_cuid, &expr_hash_table, 0);
5787 add_noreturn_fake_exit_edges ();
5788 if (flag_gcse_lm)
5789 compute_ld_motion_mems ();
5791 compute_hash_table (&expr_hash_table);
5792 trim_ld_motion_mems ();
5793 if (gcse_file)
5794 dump_hash_table (gcse_file, "Expression", &expr_hash_table);
5796 if (expr_hash_table.n_elems > 0)
5798 alloc_pre_mem (last_basic_block, expr_hash_table.n_elems);
5799 compute_pre_data ();
5800 changed |= pre_gcse ();
5801 free_edge_list (edge_list);
5802 free_pre_mem ();
5805 free_ldst_mems ();
5806 remove_fake_edges ();
5807 free_hash_table (&expr_hash_table);
5809 if (gcse_file)
5811 fprintf (gcse_file, "\nPRE GCSE of %s, pass %d: %d bytes needed, ",
5812 current_function_name (), pass, bytes_used);
5813 fprintf (gcse_file, "%d substs, %d insns created\n",
5814 gcse_subst_count, gcse_create_count);
5817 return changed;
5820 /* If X contains any LABEL_REF's, add REG_LABEL notes for them to INSN.
5821 If notes are added to an insn which references a CODE_LABEL, the
5822 LABEL_NUSES count is incremented. We have to add REG_LABEL notes,
5823 because the following loop optimization pass requires them. */
5825 /* ??? This is very similar to the loop.c add_label_notes function. We
5826 could probably share code here. */
5828 /* ??? If there was a jump optimization pass after gcse and before loop,
5829 then we would not need to do this here, because jump would add the
5830 necessary REG_LABEL notes. */
5832 static void
5833 add_label_notes (rtx x, rtx insn)
5835 enum rtx_code code = GET_CODE (x);
5836 int i, j;
5837 const char *fmt;
5839 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
5841 /* This code used to ignore labels that referred to dispatch tables to
5842 avoid flow generating (slightly) worse code.
5844 We no longer ignore such label references (see LABEL_REF handling in
5845 mark_jump_label for additional information). */
5847 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL, XEXP (x, 0),
5848 REG_NOTES (insn));
5849 if (LABEL_P (XEXP (x, 0)))
5850 LABEL_NUSES (XEXP (x, 0))++;
5851 return;
5854 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
5856 if (fmt[i] == 'e')
5857 add_label_notes (XEXP (x, i), insn);
5858 else if (fmt[i] == 'E')
5859 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5860 add_label_notes (XVECEXP (x, i, j), insn);
5864 /* Compute transparent outgoing information for each block.
5866 An expression is transparent to an edge unless it is killed by
5867 the edge itself. This can only happen with abnormal control flow,
5868 when the edge is traversed through a call. This happens with
5869 non-local labels and exceptions.
5871 This would not be necessary if we split the edge. While this is
5872 normally impossible for abnormal critical edges, with some effort
5873 it should be possible with exception handling, since we still have
5874 control over which handler should be invoked. But due to increased
5875 EH table sizes, this may not be worthwhile. */
5877 static void
5878 compute_transpout (void)
5880 basic_block bb;
5881 unsigned int i;
5882 struct expr *expr;
5884 sbitmap_vector_ones (transpout, last_basic_block);
5886 FOR_EACH_BB (bb)
5888 /* Note that flow inserted a nop a the end of basic blocks that
5889 end in call instructions for reasons other than abnormal
5890 control flow. */
5891 if (GET_CODE (BB_END (bb)) != CALL_INSN)
5892 continue;
5894 for (i = 0; i < expr_hash_table.size; i++)
5895 for (expr = expr_hash_table.table[i]; expr ; expr = expr->next_same_hash)
5896 if (GET_CODE (expr->expr) == MEM)
5898 if (GET_CODE (XEXP (expr->expr, 0)) == SYMBOL_REF
5899 && CONSTANT_POOL_ADDRESS_P (XEXP (expr->expr, 0)))
5900 continue;
5902 /* ??? Optimally, we would use interprocedural alias
5903 analysis to determine if this mem is actually killed
5904 by this call. */
5905 RESET_BIT (transpout[bb->index], expr->bitmap_index);
5910 /* Removal of useless null pointer checks */
5912 /* Called via note_stores. X is set by SETTER. If X is a register we must
5913 invalidate nonnull_local and set nonnull_killed. DATA is really a
5914 `null_pointer_info *'.
5916 We ignore hard registers. */
5918 static void
5919 invalidate_nonnull_info (rtx x, rtx setter ATTRIBUTE_UNUSED, void *data)
5921 unsigned int regno;
5922 struct null_pointer_info *npi = (struct null_pointer_info *) data;
5924 while (GET_CODE (x) == SUBREG)
5925 x = SUBREG_REG (x);
5927 /* Ignore anything that is not a register or is a hard register. */
5928 if (GET_CODE (x) != REG
5929 || REGNO (x) < npi->min_reg
5930 || REGNO (x) >= npi->max_reg)
5931 return;
5933 regno = REGNO (x) - npi->min_reg;
5935 RESET_BIT (npi->nonnull_local[npi->current_block->index], regno);
5936 SET_BIT (npi->nonnull_killed[npi->current_block->index], regno);
5939 /* Do null-pointer check elimination for the registers indicated in
5940 NPI. NONNULL_AVIN and NONNULL_AVOUT are pre-allocated sbitmaps;
5941 they are not our responsibility to free. */
5943 static int
5944 delete_null_pointer_checks_1 (unsigned int *block_reg, sbitmap *nonnull_avin,
5945 sbitmap *nonnull_avout,
5946 struct null_pointer_info *npi)
5948 basic_block bb, current_block;
5949 sbitmap *nonnull_local = npi->nonnull_local;
5950 sbitmap *nonnull_killed = npi->nonnull_killed;
5951 int something_changed = 0;
5953 /* Compute local properties, nonnull and killed. A register will have
5954 the nonnull property if at the end of the current block its value is
5955 known to be nonnull. The killed property indicates that somewhere in
5956 the block any information we had about the register is killed.
5958 Note that a register can have both properties in a single block. That
5959 indicates that it's killed, then later in the block a new value is
5960 computed. */
5961 sbitmap_vector_zero (nonnull_local, last_basic_block);
5962 sbitmap_vector_zero (nonnull_killed, last_basic_block);
5964 FOR_EACH_BB (current_block)
5966 rtx insn, stop_insn;
5968 /* Set the current block for invalidate_nonnull_info. */
5969 npi->current_block = current_block;
5971 /* Scan each insn in the basic block looking for memory references and
5972 register sets. */
5973 stop_insn = NEXT_INSN (BB_END (current_block));
5974 for (insn = BB_HEAD (current_block);
5975 insn != stop_insn;
5976 insn = NEXT_INSN (insn))
5978 rtx set;
5979 rtx reg;
5981 /* Ignore anything that is not a normal insn. */
5982 if (! INSN_P (insn))
5983 continue;
5985 /* Basically ignore anything that is not a simple SET. We do have
5986 to make sure to invalidate nonnull_local and set nonnull_killed
5987 for such insns though. */
5988 set = single_set (insn);
5989 if (!set)
5991 note_stores (PATTERN (insn), invalidate_nonnull_info, npi);
5992 continue;
5995 /* See if we've got a usable memory load. We handle it first
5996 in case it uses its address register as a dest (which kills
5997 the nonnull property). */
5998 if (GET_CODE (SET_SRC (set)) == MEM
5999 && GET_CODE ((reg = XEXP (SET_SRC (set), 0))) == REG
6000 && REGNO (reg) >= npi->min_reg
6001 && REGNO (reg) < npi->max_reg)
6002 SET_BIT (nonnull_local[current_block->index],
6003 REGNO (reg) - npi->min_reg);
6005 /* Now invalidate stuff clobbered by this insn. */
6006 note_stores (PATTERN (insn), invalidate_nonnull_info, npi);
6008 /* And handle stores, we do these last since any sets in INSN can
6009 not kill the nonnull property if it is derived from a MEM
6010 appearing in a SET_DEST. */
6011 if (GET_CODE (SET_DEST (set)) == MEM
6012 && GET_CODE ((reg = XEXP (SET_DEST (set), 0))) == REG
6013 && REGNO (reg) >= npi->min_reg
6014 && REGNO (reg) < npi->max_reg)
6015 SET_BIT (nonnull_local[current_block->index],
6016 REGNO (reg) - npi->min_reg);
6020 /* Now compute global properties based on the local properties. This
6021 is a classic global availability algorithm. */
6022 compute_available (nonnull_local, nonnull_killed,
6023 nonnull_avout, nonnull_avin);
6025 /* Now look at each bb and see if it ends with a compare of a value
6026 against zero. */
6027 FOR_EACH_BB (bb)
6029 rtx last_insn = BB_END (bb);
6030 rtx condition, earliest;
6031 int compare_and_branch;
6033 /* Since MIN_REG is always at least FIRST_PSEUDO_REGISTER, and
6034 since BLOCK_REG[BB] is zero if this block did not end with a
6035 comparison against zero, this condition works. */
6036 if (block_reg[bb->index] < npi->min_reg
6037 || block_reg[bb->index] >= npi->max_reg)
6038 continue;
6040 /* LAST_INSN is a conditional jump. Get its condition. */
6041 condition = get_condition (last_insn, &earliest, false);
6043 /* If we can't determine the condition then skip. */
6044 if (! condition)
6045 continue;
6047 /* Is the register known to have a nonzero value? */
6048 if (!TEST_BIT (nonnull_avout[bb->index], block_reg[bb->index] - npi->min_reg))
6049 continue;
6051 /* Try to compute whether the compare/branch at the loop end is one or
6052 two instructions. */
6053 if (earliest == last_insn)
6054 compare_and_branch = 1;
6055 else if (earliest == prev_nonnote_insn (last_insn))
6056 compare_and_branch = 2;
6057 else
6058 continue;
6060 /* We know the register in this comparison is nonnull at exit from
6061 this block. We can optimize this comparison. */
6062 if (GET_CODE (condition) == NE)
6064 rtx new_jump;
6066 new_jump = emit_jump_insn_after (gen_jump (JUMP_LABEL (last_insn)),
6067 last_insn);
6068 JUMP_LABEL (new_jump) = JUMP_LABEL (last_insn);
6069 LABEL_NUSES (JUMP_LABEL (new_jump))++;
6070 emit_barrier_after (new_jump);
6073 something_changed = 1;
6074 delete_insn (last_insn);
6075 #ifdef HAVE_cc0
6076 if (compare_and_branch == 2)
6077 delete_insn (earliest);
6078 #endif
6079 purge_dead_edges (bb);
6081 /* Don't check this block again. (Note that BB_END is
6082 invalid here; we deleted the last instruction in the
6083 block.) */
6084 block_reg[bb->index] = 0;
6087 return something_changed;
6090 /* Find EQ/NE comparisons against zero which can be (indirectly) evaluated
6091 at compile time.
6093 This is conceptually similar to global constant/copy propagation and
6094 classic global CSE (it even uses the same dataflow equations as cprop).
6096 If a register is used as memory address with the form (mem (reg)), then we
6097 know that REG can not be zero at that point in the program. Any instruction
6098 which sets REG "kills" this property.
6100 So, if every path leading to a conditional branch has an available memory
6101 reference of that form, then we know the register can not have the value
6102 zero at the conditional branch.
6104 So we merely need to compute the local properties and propagate that data
6105 around the cfg, then optimize where possible.
6107 We run this pass two times. Once before CSE, then again after CSE. This
6108 has proven to be the most profitable approach. It is rare for new
6109 optimization opportunities of this nature to appear after the first CSE
6110 pass.
6112 This could probably be integrated with global cprop with a little work. */
6115 delete_null_pointer_checks (rtx f ATTRIBUTE_UNUSED)
6117 sbitmap *nonnull_avin, *nonnull_avout;
6118 unsigned int *block_reg;
6119 basic_block bb;
6120 int reg;
6121 int regs_per_pass;
6122 int max_reg = max_reg_num ();
6123 struct null_pointer_info npi;
6124 int something_changed = 0;
6126 /* If we have only a single block, or it is too expensive, give up. */
6127 if (n_basic_blocks <= 1
6128 || is_too_expensive (_ ("NULL pointer checks disabled")))
6129 return 0;
6131 /* We need four bitmaps, each with a bit for each register in each
6132 basic block. */
6133 regs_per_pass = get_bitmap_width (4, last_basic_block, max_reg);
6135 /* Allocate bitmaps to hold local and global properties. */
6136 npi.nonnull_local = sbitmap_vector_alloc (last_basic_block, regs_per_pass);
6137 npi.nonnull_killed = sbitmap_vector_alloc (last_basic_block, regs_per_pass);
6138 nonnull_avin = sbitmap_vector_alloc (last_basic_block, regs_per_pass);
6139 nonnull_avout = sbitmap_vector_alloc (last_basic_block, regs_per_pass);
6141 /* Go through the basic blocks, seeing whether or not each block
6142 ends with a conditional branch whose condition is a comparison
6143 against zero. Record the register compared in BLOCK_REG. */
6144 block_reg = xcalloc (last_basic_block, sizeof (int));
6145 FOR_EACH_BB (bb)
6147 rtx last_insn = BB_END (bb);
6148 rtx condition, earliest, reg;
6150 /* We only want conditional branches. */
6151 if (GET_CODE (last_insn) != JUMP_INSN
6152 || !any_condjump_p (last_insn)
6153 || !onlyjump_p (last_insn))
6154 continue;
6156 /* LAST_INSN is a conditional jump. Get its condition. */
6157 condition = get_condition (last_insn, &earliest, false);
6159 /* If we were unable to get the condition, or it is not an equality
6160 comparison against zero then there's nothing we can do. */
6161 if (!condition
6162 || (GET_CODE (condition) != NE && GET_CODE (condition) != EQ)
6163 || GET_CODE (XEXP (condition, 1)) != CONST_INT
6164 || (XEXP (condition, 1)
6165 != CONST0_RTX (GET_MODE (XEXP (condition, 0)))))
6166 continue;
6168 /* We must be checking a register against zero. */
6169 reg = XEXP (condition, 0);
6170 if (GET_CODE (reg) != REG)
6171 continue;
6173 block_reg[bb->index] = REGNO (reg);
6176 /* Go through the algorithm for each block of registers. */
6177 for (reg = FIRST_PSEUDO_REGISTER; reg < max_reg; reg += regs_per_pass)
6179 npi.min_reg = reg;
6180 npi.max_reg = MIN (reg + regs_per_pass, max_reg);
6181 something_changed |= delete_null_pointer_checks_1 (block_reg,
6182 nonnull_avin,
6183 nonnull_avout,
6184 &npi);
6187 /* Free the table of registers compared at the end of every block. */
6188 free (block_reg);
6190 /* Free bitmaps. */
6191 sbitmap_vector_free (npi.nonnull_local);
6192 sbitmap_vector_free (npi.nonnull_killed);
6193 sbitmap_vector_free (nonnull_avin);
6194 sbitmap_vector_free (nonnull_avout);
6196 return something_changed;
6199 /* Code Hoisting variables and subroutines. */
6201 /* Very busy expressions. */
6202 static sbitmap *hoist_vbein;
6203 static sbitmap *hoist_vbeout;
6205 /* Hoistable expressions. */
6206 static sbitmap *hoist_exprs;
6208 /* ??? We could compute post dominators and run this algorithm in
6209 reverse to perform tail merging, doing so would probably be
6210 more effective than the tail merging code in jump.c.
6212 It's unclear if tail merging could be run in parallel with
6213 code hoisting. It would be nice. */
6215 /* Allocate vars used for code hoisting analysis. */
6217 static void
6218 alloc_code_hoist_mem (int n_blocks, int n_exprs)
6220 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
6221 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
6222 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
6224 hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
6225 hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
6226 hoist_exprs = sbitmap_vector_alloc (n_blocks, n_exprs);
6227 transpout = sbitmap_vector_alloc (n_blocks, n_exprs);
6230 /* Free vars used for code hoisting analysis. */
6232 static void
6233 free_code_hoist_mem (void)
6235 sbitmap_vector_free (antloc);
6236 sbitmap_vector_free (transp);
6237 sbitmap_vector_free (comp);
6239 sbitmap_vector_free (hoist_vbein);
6240 sbitmap_vector_free (hoist_vbeout);
6241 sbitmap_vector_free (hoist_exprs);
6242 sbitmap_vector_free (transpout);
6244 free_dominance_info (CDI_DOMINATORS);
6247 /* Compute the very busy expressions at entry/exit from each block.
6249 An expression is very busy if all paths from a given point
6250 compute the expression. */
6252 static void
6253 compute_code_hoist_vbeinout (void)
6255 int changed, passes;
6256 basic_block bb;
6258 sbitmap_vector_zero (hoist_vbeout, last_basic_block);
6259 sbitmap_vector_zero (hoist_vbein, last_basic_block);
6261 passes = 0;
6262 changed = 1;
6264 while (changed)
6266 changed = 0;
6268 /* We scan the blocks in the reverse order to speed up
6269 the convergence. */
6270 FOR_EACH_BB_REVERSE (bb)
6272 changed |= sbitmap_a_or_b_and_c_cg (hoist_vbein[bb->index], antloc[bb->index],
6273 hoist_vbeout[bb->index], transp[bb->index]);
6274 if (bb->next_bb != EXIT_BLOCK_PTR)
6275 sbitmap_intersection_of_succs (hoist_vbeout[bb->index], hoist_vbein, bb->index);
6278 passes++;
6281 if (gcse_file)
6282 fprintf (gcse_file, "hoisting vbeinout computation: %d passes\n", passes);
6285 /* Top level routine to do the dataflow analysis needed by code hoisting. */
6287 static void
6288 compute_code_hoist_data (void)
6290 compute_local_properties (transp, comp, antloc, &expr_hash_table);
6291 compute_transpout ();
6292 compute_code_hoist_vbeinout ();
6293 calculate_dominance_info (CDI_DOMINATORS);
6294 if (gcse_file)
6295 fprintf (gcse_file, "\n");
6298 /* Determine if the expression identified by EXPR_INDEX would
6299 reach BB unimpared if it was placed at the end of EXPR_BB.
6301 It's unclear exactly what Muchnick meant by "unimpared". It seems
6302 to me that the expression must either be computed or transparent in
6303 *every* block in the path(s) from EXPR_BB to BB. Any other definition
6304 would allow the expression to be hoisted out of loops, even if
6305 the expression wasn't a loop invariant.
6307 Contrast this to reachability for PRE where an expression is
6308 considered reachable if *any* path reaches instead of *all*
6309 paths. */
6311 static int
6312 hoist_expr_reaches_here_p (basic_block expr_bb, int expr_index, basic_block bb, char *visited)
6314 edge pred;
6315 int visited_allocated_locally = 0;
6318 if (visited == NULL)
6320 visited_allocated_locally = 1;
6321 visited = xcalloc (last_basic_block, 1);
6324 for (pred = bb->pred; pred != NULL; pred = pred->pred_next)
6326 basic_block pred_bb = pred->src;
6328 if (pred->src == ENTRY_BLOCK_PTR)
6329 break;
6330 else if (pred_bb == expr_bb)
6331 continue;
6332 else if (visited[pred_bb->index])
6333 continue;
6335 /* Does this predecessor generate this expression? */
6336 else if (TEST_BIT (comp[pred_bb->index], expr_index))
6337 break;
6338 else if (! TEST_BIT (transp[pred_bb->index], expr_index))
6339 break;
6341 /* Not killed. */
6342 else
6344 visited[pred_bb->index] = 1;
6345 if (! hoist_expr_reaches_here_p (expr_bb, expr_index,
6346 pred_bb, visited))
6347 break;
6350 if (visited_allocated_locally)
6351 free (visited);
6353 return (pred == NULL);
6356 /* Actually perform code hoisting. */
6358 static void
6359 hoist_code (void)
6361 basic_block bb, dominated;
6362 basic_block *domby;
6363 unsigned int domby_len;
6364 unsigned int i,j;
6365 struct expr **index_map;
6366 struct expr *expr;
6368 sbitmap_vector_zero (hoist_exprs, last_basic_block);
6370 /* Compute a mapping from expression number (`bitmap_index') to
6371 hash table entry. */
6373 index_map = xcalloc (expr_hash_table.n_elems, sizeof (struct expr *));
6374 for (i = 0; i < expr_hash_table.size; i++)
6375 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
6376 index_map[expr->bitmap_index] = expr;
6378 /* Walk over each basic block looking for potentially hoistable
6379 expressions, nothing gets hoisted from the entry block. */
6380 FOR_EACH_BB (bb)
6382 int found = 0;
6383 int insn_inserted_p;
6385 domby_len = get_dominated_by (CDI_DOMINATORS, bb, &domby);
6386 /* Examine each expression that is very busy at the exit of this
6387 block. These are the potentially hoistable expressions. */
6388 for (i = 0; i < hoist_vbeout[bb->index]->n_bits; i++)
6390 int hoistable = 0;
6392 if (TEST_BIT (hoist_vbeout[bb->index], i)
6393 && TEST_BIT (transpout[bb->index], i))
6395 /* We've found a potentially hoistable expression, now
6396 we look at every block BB dominates to see if it
6397 computes the expression. */
6398 for (j = 0; j < domby_len; j++)
6400 dominated = domby[j];
6401 /* Ignore self dominance. */
6402 if (bb == dominated)
6403 continue;
6404 /* We've found a dominated block, now see if it computes
6405 the busy expression and whether or not moving that
6406 expression to the "beginning" of that block is safe. */
6407 if (!TEST_BIT (antloc[dominated->index], i))
6408 continue;
6410 /* Note if the expression would reach the dominated block
6411 unimpared if it was placed at the end of BB.
6413 Keep track of how many times this expression is hoistable
6414 from a dominated block into BB. */
6415 if (hoist_expr_reaches_here_p (bb, i, dominated, NULL))
6416 hoistable++;
6419 /* If we found more than one hoistable occurrence of this
6420 expression, then note it in the bitmap of expressions to
6421 hoist. It makes no sense to hoist things which are computed
6422 in only one BB, and doing so tends to pessimize register
6423 allocation. One could increase this value to try harder
6424 to avoid any possible code expansion due to register
6425 allocation issues; however experiments have shown that
6426 the vast majority of hoistable expressions are only movable
6427 from two successors, so raising this threshold is likely
6428 to nullify any benefit we get from code hoisting. */
6429 if (hoistable > 1)
6431 SET_BIT (hoist_exprs[bb->index], i);
6432 found = 1;
6436 /* If we found nothing to hoist, then quit now. */
6437 if (! found)
6439 free (domby);
6440 continue;
6443 /* Loop over all the hoistable expressions. */
6444 for (i = 0; i < hoist_exprs[bb->index]->n_bits; i++)
6446 /* We want to insert the expression into BB only once, so
6447 note when we've inserted it. */
6448 insn_inserted_p = 0;
6450 /* These tests should be the same as the tests above. */
6451 if (TEST_BIT (hoist_vbeout[bb->index], i))
6453 /* We've found a potentially hoistable expression, now
6454 we look at every block BB dominates to see if it
6455 computes the expression. */
6456 for (j = 0; j < domby_len; j++)
6458 dominated = domby[j];
6459 /* Ignore self dominance. */
6460 if (bb == dominated)
6461 continue;
6463 /* We've found a dominated block, now see if it computes
6464 the busy expression and whether or not moving that
6465 expression to the "beginning" of that block is safe. */
6466 if (!TEST_BIT (antloc[dominated->index], i))
6467 continue;
6469 /* The expression is computed in the dominated block and
6470 it would be safe to compute it at the start of the
6471 dominated block. Now we have to determine if the
6472 expression would reach the dominated block if it was
6473 placed at the end of BB. */
6474 if (hoist_expr_reaches_here_p (bb, i, dominated, NULL))
6476 struct expr *expr = index_map[i];
6477 struct occr *occr = expr->antic_occr;
6478 rtx insn;
6479 rtx set;
6481 /* Find the right occurrence of this expression. */
6482 while (BLOCK_FOR_INSN (occr->insn) != dominated && occr)
6483 occr = occr->next;
6485 /* Should never happen. */
6486 if (!occr)
6487 abort ();
6489 insn = occr->insn;
6491 set = single_set (insn);
6492 if (! set)
6493 abort ();
6495 /* Create a pseudo-reg to store the result of reaching
6496 expressions into. Get the mode for the new pseudo
6497 from the mode of the original destination pseudo. */
6498 if (expr->reaching_reg == NULL)
6499 expr->reaching_reg
6500 = gen_reg_rtx (GET_MODE (SET_DEST (set)));
6502 gcse_emit_move_after (expr->reaching_reg, SET_DEST (set), insn);
6503 delete_insn (insn);
6504 occr->deleted_p = 1;
6505 if (!insn_inserted_p)
6507 insert_insn_end_bb (index_map[i], bb, 0);
6508 insn_inserted_p = 1;
6514 free (domby);
6517 free (index_map);
6520 /* Top level routine to perform one code hoisting (aka unification) pass
6522 Return nonzero if a change was made. */
6524 static int
6525 one_code_hoisting_pass (void)
6527 int changed = 0;
6529 alloc_hash_table (max_cuid, &expr_hash_table, 0);
6530 compute_hash_table (&expr_hash_table);
6531 if (gcse_file)
6532 dump_hash_table (gcse_file, "Code Hosting Expressions", &expr_hash_table);
6534 if (expr_hash_table.n_elems > 0)
6536 alloc_code_hoist_mem (last_basic_block, expr_hash_table.n_elems);
6537 compute_code_hoist_data ();
6538 hoist_code ();
6539 free_code_hoist_mem ();
6542 free_hash_table (&expr_hash_table);
6544 return changed;
6547 /* Here we provide the things required to do store motion towards
6548 the exit. In order for this to be effective, gcse also needed to
6549 be taught how to move a load when it is kill only by a store to itself.
6551 int i;
6552 float a[10];
6554 void foo(float scale)
6556 for (i=0; i<10; i++)
6557 a[i] *= scale;
6560 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
6561 the load out since its live around the loop, and stored at the bottom
6562 of the loop.
6564 The 'Load Motion' referred to and implemented in this file is
6565 an enhancement to gcse which when using edge based lcm, recognizes
6566 this situation and allows gcse to move the load out of the loop.
6568 Once gcse has hoisted the load, store motion can then push this
6569 load towards the exit, and we end up with no loads or stores of 'i'
6570 in the loop. */
6572 /* This will search the ldst list for a matching expression. If it
6573 doesn't find one, we create one and initialize it. */
6575 static struct ls_expr *
6576 ldst_entry (rtx x)
6578 int do_not_record_p = 0;
6579 struct ls_expr * ptr;
6580 unsigned int hash;
6582 hash = hash_expr_1 (x, GET_MODE (x), & do_not_record_p);
6584 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
6585 if (ptr->hash_index == hash && expr_equiv_p (ptr->pattern, x))
6586 return ptr;
6588 ptr = xmalloc (sizeof (struct ls_expr));
6590 ptr->next = pre_ldst_mems;
6591 ptr->expr = NULL;
6592 ptr->pattern = x;
6593 ptr->pattern_regs = NULL_RTX;
6594 ptr->loads = NULL_RTX;
6595 ptr->stores = NULL_RTX;
6596 ptr->reaching_reg = NULL_RTX;
6597 ptr->invalid = 0;
6598 ptr->index = 0;
6599 ptr->hash_index = hash;
6600 pre_ldst_mems = ptr;
6602 return ptr;
6605 /* Free up an individual ldst entry. */
6607 static void
6608 free_ldst_entry (struct ls_expr * ptr)
6610 free_INSN_LIST_list (& ptr->loads);
6611 free_INSN_LIST_list (& ptr->stores);
6613 free (ptr);
6616 /* Free up all memory associated with the ldst list. */
6618 static void
6619 free_ldst_mems (void)
6621 while (pre_ldst_mems)
6623 struct ls_expr * tmp = pre_ldst_mems;
6625 pre_ldst_mems = pre_ldst_mems->next;
6627 free_ldst_entry (tmp);
6630 pre_ldst_mems = NULL;
6633 /* Dump debugging info about the ldst list. */
6635 static void
6636 print_ldst_list (FILE * file)
6638 struct ls_expr * ptr;
6640 fprintf (file, "LDST list: \n");
6642 for (ptr = first_ls_expr(); ptr != NULL; ptr = next_ls_expr (ptr))
6644 fprintf (file, " Pattern (%3d): ", ptr->index);
6646 print_rtl (file, ptr->pattern);
6648 fprintf (file, "\n Loads : ");
6650 if (ptr->loads)
6651 print_rtl (file, ptr->loads);
6652 else
6653 fprintf (file, "(nil)");
6655 fprintf (file, "\n Stores : ");
6657 if (ptr->stores)
6658 print_rtl (file, ptr->stores);
6659 else
6660 fprintf (file, "(nil)");
6662 fprintf (file, "\n\n");
6665 fprintf (file, "\n");
6668 /* Returns 1 if X is in the list of ldst only expressions. */
6670 static struct ls_expr *
6671 find_rtx_in_ldst (rtx x)
6673 struct ls_expr * ptr;
6675 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
6676 if (expr_equiv_p (ptr->pattern, x) && ! ptr->invalid)
6677 return ptr;
6679 return NULL;
6682 /* Assign each element of the list of mems a monotonically increasing value. */
6684 static int
6685 enumerate_ldsts (void)
6687 struct ls_expr * ptr;
6688 int n = 0;
6690 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
6691 ptr->index = n++;
6693 return n;
6696 /* Return first item in the list. */
6698 static inline struct ls_expr *
6699 first_ls_expr (void)
6701 return pre_ldst_mems;
6704 /* Return the next item in the list after the specified one. */
6706 static inline struct ls_expr *
6707 next_ls_expr (struct ls_expr * ptr)
6709 return ptr->next;
6712 /* Load Motion for loads which only kill themselves. */
6714 /* Return true if x is a simple MEM operation, with no registers or
6715 side effects. These are the types of loads we consider for the
6716 ld_motion list, otherwise we let the usual aliasing take care of it. */
6718 static int
6719 simple_mem (rtx x)
6721 if (GET_CODE (x) != MEM)
6722 return 0;
6724 if (MEM_VOLATILE_P (x))
6725 return 0;
6727 if (GET_MODE (x) == BLKmode)
6728 return 0;
6730 /* If we are handling exceptions, we must be careful with memory references
6731 that may trap. If we are not, the behavior is undefined, so we may just
6732 continue. */
6733 if (flag_non_call_exceptions && may_trap_p (x))
6734 return 0;
6736 if (side_effects_p (x))
6737 return 0;
6739 /* Do not consider function arguments passed on stack. */
6740 if (reg_mentioned_p (stack_pointer_rtx, x))
6741 return 0;
6743 if (flag_float_store && FLOAT_MODE_P (GET_MODE (x)))
6744 return 0;
6746 return 1;
6749 /* Make sure there isn't a buried reference in this pattern anywhere.
6750 If there is, invalidate the entry for it since we're not capable
6751 of fixing it up just yet.. We have to be sure we know about ALL
6752 loads since the aliasing code will allow all entries in the
6753 ld_motion list to not-alias itself. If we miss a load, we will get
6754 the wrong value since gcse might common it and we won't know to
6755 fix it up. */
6757 static void
6758 invalidate_any_buried_refs (rtx x)
6760 const char * fmt;
6761 int i, j;
6762 struct ls_expr * ptr;
6764 /* Invalidate it in the list. */
6765 if (GET_CODE (x) == MEM && simple_mem (x))
6767 ptr = ldst_entry (x);
6768 ptr->invalid = 1;
6771 /* Recursively process the insn. */
6772 fmt = GET_RTX_FORMAT (GET_CODE (x));
6774 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6776 if (fmt[i] == 'e')
6777 invalidate_any_buried_refs (XEXP (x, i));
6778 else if (fmt[i] == 'E')
6779 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6780 invalidate_any_buried_refs (XVECEXP (x, i, j));
6784 /* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
6785 being defined as MEM loads and stores to symbols, with no side effects
6786 and no registers in the expression. For a MEM destination, we also
6787 check that the insn is still valid if we replace the destination with a
6788 REG, as is done in update_ld_motion_stores. If there are any uses/defs
6789 which don't match this criteria, they are invalidated and trimmed out
6790 later. */
6792 static void
6793 compute_ld_motion_mems (void)
6795 struct ls_expr * ptr;
6796 basic_block bb;
6797 rtx insn;
6799 pre_ldst_mems = NULL;
6801 FOR_EACH_BB (bb)
6803 for (insn = BB_HEAD (bb);
6804 insn && insn != NEXT_INSN (BB_END (bb));
6805 insn = NEXT_INSN (insn))
6807 if (INSN_P (insn))
6809 if (GET_CODE (PATTERN (insn)) == SET)
6811 rtx src = SET_SRC (PATTERN (insn));
6812 rtx dest = SET_DEST (PATTERN (insn));
6814 /* Check for a simple LOAD... */
6815 if (GET_CODE (src) == MEM && simple_mem (src))
6817 ptr = ldst_entry (src);
6818 if (GET_CODE (dest) == REG)
6819 ptr->loads = alloc_INSN_LIST (insn, ptr->loads);
6820 else
6821 ptr->invalid = 1;
6823 else
6825 /* Make sure there isn't a buried load somewhere. */
6826 invalidate_any_buried_refs (src);
6829 /* Check for stores. Don't worry about aliased ones, they
6830 will block any movement we might do later. We only care
6831 about this exact pattern since those are the only
6832 circumstance that we will ignore the aliasing info. */
6833 if (GET_CODE (dest) == MEM && simple_mem (dest))
6835 ptr = ldst_entry (dest);
6837 if (GET_CODE (src) != MEM
6838 && GET_CODE (src) != ASM_OPERANDS
6839 /* Check for REG manually since want_to_gcse_p
6840 returns 0 for all REGs. */
6841 && (REG_P (src) || want_to_gcse_p (src)))
6842 ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
6843 else
6844 ptr->invalid = 1;
6847 else
6848 invalidate_any_buried_refs (PATTERN (insn));
6854 /* Remove any references that have been either invalidated or are not in the
6855 expression list for pre gcse. */
6857 static void
6858 trim_ld_motion_mems (void)
6860 struct ls_expr * * last = & pre_ldst_mems;
6861 struct ls_expr * ptr = pre_ldst_mems;
6863 while (ptr != NULL)
6865 struct expr * expr;
6867 /* Delete if entry has been made invalid. */
6868 if (! ptr->invalid)
6870 /* Delete if we cannot find this mem in the expression list. */
6871 unsigned int hash = ptr->hash_index % expr_hash_table.size;
6873 for (expr = expr_hash_table.table[hash];
6874 expr != NULL;
6875 expr = expr->next_same_hash)
6876 if (expr_equiv_p (expr->expr, ptr->pattern))
6877 break;
6879 else
6880 expr = (struct expr *) 0;
6882 if (expr)
6884 /* Set the expression field if we are keeping it. */
6885 ptr->expr = expr;
6886 last = & ptr->next;
6887 ptr = ptr->next;
6889 else
6891 *last = ptr->next;
6892 free_ldst_entry (ptr);
6893 ptr = * last;
6897 /* Show the world what we've found. */
6898 if (gcse_file && pre_ldst_mems != NULL)
6899 print_ldst_list (gcse_file);
6902 /* This routine will take an expression which we are replacing with
6903 a reaching register, and update any stores that are needed if
6904 that expression is in the ld_motion list. Stores are updated by
6905 copying their SRC to the reaching register, and then storing
6906 the reaching register into the store location. These keeps the
6907 correct value in the reaching register for the loads. */
6909 static void
6910 update_ld_motion_stores (struct expr * expr)
6912 struct ls_expr * mem_ptr;
6914 if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
6916 /* We can try to find just the REACHED stores, but is shouldn't
6917 matter to set the reaching reg everywhere... some might be
6918 dead and should be eliminated later. */
6920 /* We replace (set mem expr) with (set reg expr) (set mem reg)
6921 where reg is the reaching reg used in the load. We checked in
6922 compute_ld_motion_mems that we can replace (set mem expr) with
6923 (set reg expr) in that insn. */
6924 rtx list = mem_ptr->stores;
6926 for ( ; list != NULL_RTX; list = XEXP (list, 1))
6928 rtx insn = XEXP (list, 0);
6929 rtx pat = PATTERN (insn);
6930 rtx src = SET_SRC (pat);
6931 rtx reg = expr->reaching_reg;
6932 rtx copy, new;
6934 /* If we've already copied it, continue. */
6935 if (expr->reaching_reg == src)
6936 continue;
6938 if (gcse_file)
6940 fprintf (gcse_file, "PRE: store updated with reaching reg ");
6941 print_rtl (gcse_file, expr->reaching_reg);
6942 fprintf (gcse_file, ":\n ");
6943 print_inline_rtx (gcse_file, insn, 8);
6944 fprintf (gcse_file, "\n");
6947 copy = gen_move_insn ( reg, copy_rtx (SET_SRC (pat)));
6948 new = emit_insn_before (copy, insn);
6949 record_one_set (REGNO (reg), new);
6950 SET_SRC (pat) = reg;
6952 /* un-recognize this pattern since it's probably different now. */
6953 INSN_CODE (insn) = -1;
6954 gcse_create_count++;
6959 /* Store motion code. */
6961 #define ANTIC_STORE_LIST(x) ((x)->loads)
6962 #define AVAIL_STORE_LIST(x) ((x)->stores)
6963 #define LAST_AVAIL_CHECK_FAILURE(x) ((x)->reaching_reg)
6965 /* This is used to communicate the target bitvector we want to use in the
6966 reg_set_info routine when called via the note_stores mechanism. */
6967 static int * regvec;
6969 /* And current insn, for the same routine. */
6970 static rtx compute_store_table_current_insn;
6972 /* Used in computing the reverse edge graph bit vectors. */
6973 static sbitmap * st_antloc;
6975 /* Global holding the number of store expressions we are dealing with. */
6976 static int num_stores;
6978 /* Checks to set if we need to mark a register set. Called from
6979 note_stores. */
6981 static void
6982 reg_set_info (rtx dest, rtx setter ATTRIBUTE_UNUSED,
6983 void *data)
6985 sbitmap bb_reg = data;
6987 if (GET_CODE (dest) == SUBREG)
6988 dest = SUBREG_REG (dest);
6990 if (GET_CODE (dest) == REG)
6992 regvec[REGNO (dest)] = INSN_UID (compute_store_table_current_insn);
6993 if (bb_reg)
6994 SET_BIT (bb_reg, REGNO (dest));
6998 /* Clear any mark that says that this insn sets dest. Called from
6999 note_stores. */
7001 static void
7002 reg_clear_last_set (rtx dest, rtx setter ATTRIBUTE_UNUSED,
7003 void *data)
7005 int *dead_vec = data;
7007 if (GET_CODE (dest) == SUBREG)
7008 dest = SUBREG_REG (dest);
7010 if (GET_CODE (dest) == REG &&
7011 dead_vec[REGNO (dest)] == INSN_UID (compute_store_table_current_insn))
7012 dead_vec[REGNO (dest)] = 0;
7015 /* Return zero if some of the registers in list X are killed
7016 due to set of registers in bitmap REGS_SET. */
7018 static bool
7019 store_ops_ok (rtx x, int *regs_set)
7021 rtx reg;
7023 for (; x; x = XEXP (x, 1))
7025 reg = XEXP (x, 0);
7026 if (regs_set[REGNO(reg)])
7027 return false;
7030 return true;
7033 /* Returns a list of registers mentioned in X. */
7034 static rtx
7035 extract_mentioned_regs (rtx x)
7037 return extract_mentioned_regs_helper (x, NULL_RTX);
7040 /* Helper for extract_mentioned_regs; ACCUM is used to accumulate used
7041 registers. */
7042 static rtx
7043 extract_mentioned_regs_helper (rtx x, rtx accum)
7045 int i;
7046 enum rtx_code code;
7047 const char * fmt;
7049 /* Repeat is used to turn tail-recursion into iteration. */
7050 repeat:
7052 if (x == 0)
7053 return accum;
7055 code = GET_CODE (x);
7056 switch (code)
7058 case REG:
7059 return alloc_EXPR_LIST (0, x, accum);
7061 case MEM:
7062 x = XEXP (x, 0);
7063 goto repeat;
7065 case PRE_DEC:
7066 case PRE_INC:
7067 case POST_DEC:
7068 case POST_INC:
7069 /* We do not run this function with arguments having side effects. */
7070 abort ();
7072 case PC:
7073 case CC0: /*FIXME*/
7074 case CONST:
7075 case CONST_INT:
7076 case CONST_DOUBLE:
7077 case CONST_VECTOR:
7078 case SYMBOL_REF:
7079 case LABEL_REF:
7080 case ADDR_VEC:
7081 case ADDR_DIFF_VEC:
7082 return accum;
7084 default:
7085 break;
7088 i = GET_RTX_LENGTH (code) - 1;
7089 fmt = GET_RTX_FORMAT (code);
7091 for (; i >= 0; i--)
7093 if (fmt[i] == 'e')
7095 rtx tem = XEXP (x, i);
7097 /* If we are about to do the last recursive call
7098 needed at this level, change it into iteration. */
7099 if (i == 0)
7101 x = tem;
7102 goto repeat;
7105 accum = extract_mentioned_regs_helper (tem, accum);
7107 else if (fmt[i] == 'E')
7109 int j;
7111 for (j = 0; j < XVECLEN (x, i); j++)
7112 accum = extract_mentioned_regs_helper (XVECEXP (x, i, j), accum);
7116 return accum;
7119 /* Determine whether INSN is MEM store pattern that we will consider moving.
7120 REGS_SET_BEFORE is bitmap of registers set before (and including) the
7121 current insn, REGS_SET_AFTER is bitmap of registers set after (and
7122 including) the insn in this basic block. We must be passing through BB from
7123 head to end, as we are using this fact to speed things up.
7125 The results are stored this way:
7127 -- the first anticipatable expression is added into ANTIC_STORE_LIST
7128 -- if the processed expression is not anticipatable, NULL_RTX is added
7129 there instead, so that we can use it as indicator that no further
7130 expression of this type may be anticipatable
7131 -- if the expression is available, it is added as head of AVAIL_STORE_LIST;
7132 consequently, all of them but this head are dead and may be deleted.
7133 -- if the expression is not available, the insn due to that it fails to be
7134 available is stored in reaching_reg.
7136 The things are complicated a bit by fact that there already may be stores
7137 to the same MEM from other blocks; also caller must take care of the
7138 necessary cleanup of the temporary markers after end of the basic block.
7141 static void
7142 find_moveable_store (rtx insn, int *regs_set_before, int *regs_set_after)
7144 struct ls_expr * ptr;
7145 rtx dest, set, tmp;
7146 int check_anticipatable, check_available;
7147 basic_block bb = BLOCK_FOR_INSN (insn);
7149 set = single_set (insn);
7150 if (!set)
7151 return;
7153 dest = SET_DEST (set);
7155 if (GET_CODE (dest) != MEM || MEM_VOLATILE_P (dest)
7156 || GET_MODE (dest) == BLKmode)
7157 return;
7159 if (side_effects_p (dest))
7160 return;
7162 /* If we are handling exceptions, we must be careful with memory references
7163 that may trap. If we are not, the behavior is undefined, so we may just
7164 continue. */
7165 if (flag_non_call_exceptions && may_trap_p (dest))
7166 return;
7168 ptr = ldst_entry (dest);
7169 if (!ptr->pattern_regs)
7170 ptr->pattern_regs = extract_mentioned_regs (dest);
7172 /* Do not check for anticipatability if we either found one anticipatable
7173 store already, or tested for one and found out that it was killed. */
7174 check_anticipatable = 0;
7175 if (!ANTIC_STORE_LIST (ptr))
7176 check_anticipatable = 1;
7177 else
7179 tmp = XEXP (ANTIC_STORE_LIST (ptr), 0);
7180 if (tmp != NULL_RTX
7181 && BLOCK_FOR_INSN (tmp) != bb)
7182 check_anticipatable = 1;
7184 if (check_anticipatable)
7186 if (store_killed_before (dest, ptr->pattern_regs, insn, bb, regs_set_before))
7187 tmp = NULL_RTX;
7188 else
7189 tmp = insn;
7190 ANTIC_STORE_LIST (ptr) = alloc_INSN_LIST (tmp,
7191 ANTIC_STORE_LIST (ptr));
7194 /* It is not necessary to check whether store is available if we did
7195 it successfully before; if we failed before, do not bother to check
7196 until we reach the insn that caused us to fail. */
7197 check_available = 0;
7198 if (!AVAIL_STORE_LIST (ptr))
7199 check_available = 1;
7200 else
7202 tmp = XEXP (AVAIL_STORE_LIST (ptr), 0);
7203 if (BLOCK_FOR_INSN (tmp) != bb)
7204 check_available = 1;
7206 if (check_available)
7208 /* Check that we have already reached the insn at that the check
7209 failed last time. */
7210 if (LAST_AVAIL_CHECK_FAILURE (ptr))
7212 for (tmp = BB_END (bb);
7213 tmp != insn && tmp != LAST_AVAIL_CHECK_FAILURE (ptr);
7214 tmp = PREV_INSN (tmp))
7215 continue;
7216 if (tmp == insn)
7217 check_available = 0;
7219 else
7220 check_available = store_killed_after (dest, ptr->pattern_regs, insn,
7221 bb, regs_set_after,
7222 &LAST_AVAIL_CHECK_FAILURE (ptr));
7224 if (!check_available)
7225 AVAIL_STORE_LIST (ptr) = alloc_INSN_LIST (insn, AVAIL_STORE_LIST (ptr));
7228 /* Find available and anticipatable stores. */
7230 static int
7231 compute_store_table (void)
7233 int ret;
7234 basic_block bb;
7235 unsigned regno;
7236 rtx insn, pat, tmp;
7237 int *last_set_in, *already_set;
7238 struct ls_expr * ptr, **prev_next_ptr_ptr;
7240 max_gcse_regno = max_reg_num ();
7242 reg_set_in_block = sbitmap_vector_alloc (last_basic_block,
7243 max_gcse_regno);
7244 sbitmap_vector_zero (reg_set_in_block, last_basic_block);
7245 pre_ldst_mems = 0;
7246 last_set_in = xcalloc (max_gcse_regno, sizeof (int));
7247 already_set = xmalloc (sizeof (int) * max_gcse_regno);
7249 /* Find all the stores we care about. */
7250 FOR_EACH_BB (bb)
7252 /* First compute the registers set in this block. */
7253 regvec = last_set_in;
7255 for (insn = BB_HEAD (bb);
7256 insn != NEXT_INSN (BB_END (bb));
7257 insn = NEXT_INSN (insn))
7259 if (! INSN_P (insn))
7260 continue;
7262 if (GET_CODE (insn) == CALL_INSN)
7264 bool clobbers_all = false;
7265 #ifdef NON_SAVING_SETJMP
7266 if (NON_SAVING_SETJMP
7267 && find_reg_note (insn, REG_SETJMP, NULL_RTX))
7268 clobbers_all = true;
7269 #endif
7271 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
7272 if (clobbers_all
7273 || TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
7275 last_set_in[regno] = INSN_UID (insn);
7276 SET_BIT (reg_set_in_block[bb->index], regno);
7280 pat = PATTERN (insn);
7281 compute_store_table_current_insn = insn;
7282 note_stores (pat, reg_set_info, reg_set_in_block[bb->index]);
7285 /* Now find the stores. */
7286 memset (already_set, 0, sizeof (int) * max_gcse_regno);
7287 regvec = already_set;
7288 for (insn = BB_HEAD (bb);
7289 insn != NEXT_INSN (BB_END (bb));
7290 insn = NEXT_INSN (insn))
7292 if (! INSN_P (insn))
7293 continue;
7295 if (GET_CODE (insn) == CALL_INSN)
7297 bool clobbers_all = false;
7298 #ifdef NON_SAVING_SETJMP
7299 if (NON_SAVING_SETJMP
7300 && find_reg_note (insn, REG_SETJMP, NULL_RTX))
7301 clobbers_all = true;
7302 #endif
7304 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
7305 if (clobbers_all
7306 || TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
7307 already_set[regno] = 1;
7310 pat = PATTERN (insn);
7311 note_stores (pat, reg_set_info, NULL);
7313 /* Now that we've marked regs, look for stores. */
7314 find_moveable_store (insn, already_set, last_set_in);
7316 /* Unmark regs that are no longer set. */
7317 compute_store_table_current_insn = insn;
7318 note_stores (pat, reg_clear_last_set, last_set_in);
7319 if (GET_CODE (insn) == CALL_INSN)
7321 bool clobbers_all = false;
7322 #ifdef NON_SAVING_SETJMP
7323 if (NON_SAVING_SETJMP
7324 && find_reg_note (insn, REG_SETJMP, NULL_RTX))
7325 clobbers_all = true;
7326 #endif
7328 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
7329 if ((clobbers_all
7330 || TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
7331 && last_set_in[regno] == INSN_UID (insn))
7332 last_set_in[regno] = 0;
7336 #ifdef ENABLE_CHECKING
7337 /* last_set_in should now be all-zero. */
7338 for (regno = 0; regno < max_gcse_regno; regno++)
7339 if (last_set_in[regno] != 0)
7340 abort ();
7341 #endif
7343 /* Clear temporary marks. */
7344 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
7346 LAST_AVAIL_CHECK_FAILURE(ptr) = NULL_RTX;
7347 if (ANTIC_STORE_LIST (ptr)
7348 && (tmp = XEXP (ANTIC_STORE_LIST (ptr), 0)) == NULL_RTX)
7349 ANTIC_STORE_LIST (ptr) = XEXP (ANTIC_STORE_LIST (ptr), 1);
7353 /* Remove the stores that are not available anywhere, as there will
7354 be no opportunity to optimize them. */
7355 for (ptr = pre_ldst_mems, prev_next_ptr_ptr = &pre_ldst_mems;
7356 ptr != NULL;
7357 ptr = *prev_next_ptr_ptr)
7359 if (!AVAIL_STORE_LIST (ptr))
7361 *prev_next_ptr_ptr = ptr->next;
7362 free_ldst_entry (ptr);
7364 else
7365 prev_next_ptr_ptr = &ptr->next;
7368 ret = enumerate_ldsts ();
7370 if (gcse_file)
7372 fprintf (gcse_file, "ST_avail and ST_antic (shown under loads..)\n");
7373 print_ldst_list (gcse_file);
7376 free (last_set_in);
7377 free (already_set);
7378 return ret;
7381 /* Check to see if the load X is aliased with STORE_PATTERN.
7382 AFTER is true if we are checking the case when STORE_PATTERN occurs
7383 after the X. */
7385 static bool
7386 load_kills_store (rtx x, rtx store_pattern, int after)
7388 if (after)
7389 return anti_dependence (x, store_pattern);
7390 else
7391 return true_dependence (store_pattern, GET_MODE (store_pattern), x,
7392 rtx_addr_varies_p);
7395 /* Go through the entire insn X, looking for any loads which might alias
7396 STORE_PATTERN. Return true if found.
7397 AFTER is true if we are checking the case when STORE_PATTERN occurs
7398 after the insn X. */
7400 static bool
7401 find_loads (rtx x, rtx store_pattern, int after)
7403 const char * fmt;
7404 int i, j;
7405 int ret = false;
7407 if (!x)
7408 return false;
7410 if (GET_CODE (x) == SET)
7411 x = SET_SRC (x);
7413 if (GET_CODE (x) == MEM)
7415 if (load_kills_store (x, store_pattern, after))
7416 return true;
7419 /* Recursively process the insn. */
7420 fmt = GET_RTX_FORMAT (GET_CODE (x));
7422 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0 && !ret; i--)
7424 if (fmt[i] == 'e')
7425 ret |= find_loads (XEXP (x, i), store_pattern, after);
7426 else if (fmt[i] == 'E')
7427 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7428 ret |= find_loads (XVECEXP (x, i, j), store_pattern, after);
7430 return ret;
7433 /* Check if INSN kills the store pattern X (is aliased with it).
7434 AFTER is true if we are checking the case when store X occurs
7435 after the insn. Return true if it it does. */
7437 static bool
7438 store_killed_in_insn (rtx x, rtx x_regs, rtx insn, int after)
7440 rtx reg, base, note;
7442 if (!INSN_P (insn))
7443 return false;
7445 if (GET_CODE (insn) == CALL_INSN)
7447 /* A normal or pure call might read from pattern,
7448 but a const call will not. */
7449 if (! CONST_OR_PURE_CALL_P (insn) || pure_call_p (insn))
7450 return true;
7452 /* But even a const call reads its parameters. Check whether the
7453 base of some of registers used in mem is stack pointer. */
7454 for (reg = x_regs; reg; reg = XEXP (reg, 1))
7456 base = find_base_term (XEXP (reg, 0));
7457 if (!base
7458 || (GET_CODE (base) == ADDRESS
7459 && GET_MODE (base) == Pmode
7460 && XEXP (base, 0) == stack_pointer_rtx))
7461 return true;
7464 return false;
7467 if (GET_CODE (PATTERN (insn)) == SET)
7469 rtx pat = PATTERN (insn);
7470 rtx dest = SET_DEST (pat);
7472 if (GET_CODE (dest) == SIGN_EXTRACT
7473 || GET_CODE (dest) == ZERO_EXTRACT)
7474 dest = XEXP (dest, 0);
7476 /* Check for memory stores to aliased objects. */
7477 if (GET_CODE (dest) == MEM
7478 && !expr_equiv_p (dest, x))
7480 if (after)
7482 if (output_dependence (dest, x))
7483 return true;
7485 else
7487 if (output_dependence (x, dest))
7488 return true;
7491 if (find_loads (SET_SRC (pat), x, after))
7492 return true;
7494 else if (find_loads (PATTERN (insn), x, after))
7495 return true;
7497 /* If this insn has a REG_EQUAL or REG_EQUIV note referencing a memory
7498 location aliased with X, then this insn kills X. */
7499 note = find_reg_equal_equiv_note (insn);
7500 if (! note)
7501 return false;
7502 note = XEXP (note, 0);
7504 /* However, if the note represents a must alias rather than a may
7505 alias relationship, then it does not kill X. */
7506 if (expr_equiv_p (note, x))
7507 return false;
7509 /* See if there are any aliased loads in the note. */
7510 return find_loads (note, x, after);
7513 /* Returns true if the expression X is loaded or clobbered on or after INSN
7514 within basic block BB. REGS_SET_AFTER is bitmap of registers set in
7515 or after the insn. X_REGS is list of registers mentioned in X. If the store
7516 is killed, return the last insn in that it occurs in FAIL_INSN. */
7518 static bool
7519 store_killed_after (rtx x, rtx x_regs, rtx insn, basic_block bb,
7520 int *regs_set_after, rtx *fail_insn)
7522 rtx last = BB_END (bb), act;
7524 if (!store_ops_ok (x_regs, regs_set_after))
7526 /* We do not know where it will happen. */
7527 if (fail_insn)
7528 *fail_insn = NULL_RTX;
7529 return true;
7532 /* Scan from the end, so that fail_insn is determined correctly. */
7533 for (act = last; act != PREV_INSN (insn); act = PREV_INSN (act))
7534 if (store_killed_in_insn (x, x_regs, act, false))
7536 if (fail_insn)
7537 *fail_insn = act;
7538 return true;
7541 return false;
7544 /* Returns true if the expression X is loaded or clobbered on or before INSN
7545 within basic block BB. X_REGS is list of registers mentioned in X.
7546 REGS_SET_BEFORE is bitmap of registers set before or in this insn. */
7547 static bool
7548 store_killed_before (rtx x, rtx x_regs, rtx insn, basic_block bb,
7549 int *regs_set_before)
7551 rtx first = BB_HEAD (bb);
7553 if (!store_ops_ok (x_regs, regs_set_before))
7554 return true;
7556 for ( ; insn != PREV_INSN (first); insn = PREV_INSN (insn))
7557 if (store_killed_in_insn (x, x_regs, insn, true))
7558 return true;
7560 return false;
7563 /* Fill in available, anticipatable, transparent and kill vectors in
7564 STORE_DATA, based on lists of available and anticipatable stores. */
7565 static void
7566 build_store_vectors (void)
7568 basic_block bb;
7569 int *regs_set_in_block;
7570 rtx insn, st;
7571 struct ls_expr * ptr;
7572 unsigned regno;
7574 /* Build the gen_vector. This is any store in the table which is not killed
7575 by aliasing later in its block. */
7576 ae_gen = sbitmap_vector_alloc (last_basic_block, num_stores);
7577 sbitmap_vector_zero (ae_gen, last_basic_block);
7579 st_antloc = sbitmap_vector_alloc (last_basic_block, num_stores);
7580 sbitmap_vector_zero (st_antloc, last_basic_block);
7582 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
7584 for (st = AVAIL_STORE_LIST (ptr); st != NULL; st = XEXP (st, 1))
7586 insn = XEXP (st, 0);
7587 bb = BLOCK_FOR_INSN (insn);
7589 /* If we've already seen an available expression in this block,
7590 we can delete this one (It occurs earlier in the block). We'll
7591 copy the SRC expression to an unused register in case there
7592 are any side effects. */
7593 if (TEST_BIT (ae_gen[bb->index], ptr->index))
7595 rtx r = gen_reg_rtx (GET_MODE (ptr->pattern));
7596 if (gcse_file)
7597 fprintf (gcse_file, "Removing redundant store:\n");
7598 replace_store_insn (r, XEXP (st, 0), bb, ptr);
7599 continue;
7601 SET_BIT (ae_gen[bb->index], ptr->index);
7604 for (st = ANTIC_STORE_LIST (ptr); st != NULL; st = XEXP (st, 1))
7606 insn = XEXP (st, 0);
7607 bb = BLOCK_FOR_INSN (insn);
7608 SET_BIT (st_antloc[bb->index], ptr->index);
7612 ae_kill = sbitmap_vector_alloc (last_basic_block, num_stores);
7613 sbitmap_vector_zero (ae_kill, last_basic_block);
7615 transp = sbitmap_vector_alloc (last_basic_block, num_stores);
7616 sbitmap_vector_zero (transp, last_basic_block);
7617 regs_set_in_block = xmalloc (sizeof (int) * max_gcse_regno);
7619 FOR_EACH_BB (bb)
7621 for (regno = 0; regno < max_gcse_regno; regno++)
7622 regs_set_in_block[regno] = TEST_BIT (reg_set_in_block[bb->index], regno);
7624 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
7626 if (store_killed_after (ptr->pattern, ptr->pattern_regs, BB_HEAD (bb),
7627 bb, regs_set_in_block, NULL))
7629 /* It should not be necessary to consider the expression
7630 killed if it is both anticipatable and available. */
7631 if (!TEST_BIT (st_antloc[bb->index], ptr->index)
7632 || !TEST_BIT (ae_gen[bb->index], ptr->index))
7633 SET_BIT (ae_kill[bb->index], ptr->index);
7635 else
7636 SET_BIT (transp[bb->index], ptr->index);
7640 free (regs_set_in_block);
7642 if (gcse_file)
7644 dump_sbitmap_vector (gcse_file, "st_antloc", "", st_antloc, last_basic_block);
7645 dump_sbitmap_vector (gcse_file, "st_kill", "", ae_kill, last_basic_block);
7646 dump_sbitmap_vector (gcse_file, "Transpt", "", transp, last_basic_block);
7647 dump_sbitmap_vector (gcse_file, "st_avloc", "", ae_gen, last_basic_block);
7651 /* Insert an instruction at the beginning of a basic block, and update
7652 the BB_HEAD if needed. */
7654 static void
7655 insert_insn_start_bb (rtx insn, basic_block bb)
7657 /* Insert at start of successor block. */
7658 rtx prev = PREV_INSN (BB_HEAD (bb));
7659 rtx before = BB_HEAD (bb);
7660 while (before != 0)
7662 if (GET_CODE (before) != CODE_LABEL
7663 && (GET_CODE (before) != NOTE
7664 || NOTE_LINE_NUMBER (before) != NOTE_INSN_BASIC_BLOCK))
7665 break;
7666 prev = before;
7667 if (prev == BB_END (bb))
7668 break;
7669 before = NEXT_INSN (before);
7672 insn = emit_insn_after (insn, prev);
7674 if (gcse_file)
7676 fprintf (gcse_file, "STORE_MOTION insert store at start of BB %d:\n",
7677 bb->index);
7678 print_inline_rtx (gcse_file, insn, 6);
7679 fprintf (gcse_file, "\n");
7683 /* This routine will insert a store on an edge. EXPR is the ldst entry for
7684 the memory reference, and E is the edge to insert it on. Returns nonzero
7685 if an edge insertion was performed. */
7687 static int
7688 insert_store (struct ls_expr * expr, edge e)
7690 rtx reg, insn;
7691 basic_block bb;
7692 edge tmp;
7694 /* We did all the deleted before this insert, so if we didn't delete a
7695 store, then we haven't set the reaching reg yet either. */
7696 if (expr->reaching_reg == NULL_RTX)
7697 return 0;
7699 if (e->flags & EDGE_FAKE)
7700 return 0;
7702 reg = expr->reaching_reg;
7703 insn = gen_move_insn (copy_rtx (expr->pattern), reg);
7705 /* If we are inserting this expression on ALL predecessor edges of a BB,
7706 insert it at the start of the BB, and reset the insert bits on the other
7707 edges so we don't try to insert it on the other edges. */
7708 bb = e->dest;
7709 for (tmp = e->dest->pred; tmp ; tmp = tmp->pred_next)
7710 if (!(tmp->flags & EDGE_FAKE))
7712 int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
7713 if (index == EDGE_INDEX_NO_EDGE)
7714 abort ();
7715 if (! TEST_BIT (pre_insert_map[index], expr->index))
7716 break;
7719 /* If tmp is NULL, we found an insertion on every edge, blank the
7720 insertion vector for these edges, and insert at the start of the BB. */
7721 if (!tmp && bb != EXIT_BLOCK_PTR)
7723 for (tmp = e->dest->pred; tmp ; tmp = tmp->pred_next)
7725 int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
7726 RESET_BIT (pre_insert_map[index], expr->index);
7728 insert_insn_start_bb (insn, bb);
7729 return 0;
7732 /* We can't insert on this edge, so we'll insert at the head of the
7733 successors block. See Morgan, sec 10.5. */
7734 if ((e->flags & EDGE_ABNORMAL) == EDGE_ABNORMAL)
7736 insert_insn_start_bb (insn, bb);
7737 return 0;
7740 insert_insn_on_edge (insn, e);
7742 if (gcse_file)
7744 fprintf (gcse_file, "STORE_MOTION insert insn on edge (%d, %d):\n",
7745 e->src->index, e->dest->index);
7746 print_inline_rtx (gcse_file, insn, 6);
7747 fprintf (gcse_file, "\n");
7750 return 1;
7753 /* Remove any REG_EQUAL or REG_EQUIV notes containing a reference to the
7754 memory location in SMEXPR set in basic block BB.
7756 This could be rather expensive. */
7758 static void
7759 remove_reachable_equiv_notes (basic_block bb, struct ls_expr *smexpr)
7761 edge *stack = xmalloc (sizeof (edge) * n_basic_blocks), act;
7762 sbitmap visited = sbitmap_alloc (last_basic_block);
7763 int stack_top = 0;
7764 rtx last, insn, note;
7765 rtx mem = smexpr->pattern;
7767 sbitmap_zero (visited);
7768 act = bb->succ;
7770 while (1)
7772 if (!act)
7774 if (!stack_top)
7776 free (stack);
7777 sbitmap_free (visited);
7778 return;
7780 act = stack[--stack_top];
7782 bb = act->dest;
7784 if (bb == EXIT_BLOCK_PTR
7785 || TEST_BIT (visited, bb->index)
7786 || TEST_BIT (ae_kill[bb->index], smexpr->index))
7788 act = act->succ_next;
7789 continue;
7791 SET_BIT (visited, bb->index);
7793 if (TEST_BIT (st_antloc[bb->index], smexpr->index))
7795 for (last = ANTIC_STORE_LIST (smexpr);
7796 BLOCK_FOR_INSN (XEXP (last, 0)) != bb;
7797 last = XEXP (last, 1))
7798 continue;
7799 last = XEXP (last, 0);
7801 else
7802 last = NEXT_INSN (BB_END (bb));
7804 for (insn = BB_HEAD (bb); insn != last; insn = NEXT_INSN (insn))
7805 if (INSN_P (insn))
7807 note = find_reg_equal_equiv_note (insn);
7808 if (!note || !expr_equiv_p (XEXP (note, 0), mem))
7809 continue;
7811 if (gcse_file)
7812 fprintf (gcse_file, "STORE_MOTION drop REG_EQUAL note at insn %d:\n",
7813 INSN_UID (insn));
7814 remove_note (insn, note);
7816 act = act->succ_next;
7817 if (bb->succ)
7819 if (act)
7820 stack[stack_top++] = act;
7821 act = bb->succ;
7826 /* This routine will replace a store with a SET to a specified register. */
7828 static void
7829 replace_store_insn (rtx reg, rtx del, basic_block bb, struct ls_expr *smexpr)
7831 rtx insn, mem, note, set, ptr;
7833 mem = smexpr->pattern;
7834 insn = gen_move_insn (reg, SET_SRC (single_set (del)));
7835 insn = emit_insn_after (insn, del);
7837 if (gcse_file)
7839 fprintf (gcse_file,
7840 "STORE_MOTION delete insn in BB %d:\n ", bb->index);
7841 print_inline_rtx (gcse_file, del, 6);
7842 fprintf (gcse_file, "\nSTORE MOTION replaced with insn:\n ");
7843 print_inline_rtx (gcse_file, insn, 6);
7844 fprintf (gcse_file, "\n");
7847 for (ptr = ANTIC_STORE_LIST (smexpr); ptr; ptr = XEXP (ptr, 1))
7848 if (XEXP (ptr, 0) == del)
7850 XEXP (ptr, 0) = insn;
7851 break;
7853 delete_insn (del);
7855 /* Now we must handle REG_EQUAL notes whose contents is equal to the mem;
7856 they are no longer accurate provided that they are reached by this
7857 definition, so drop them. */
7858 for (; insn != NEXT_INSN (BB_END (bb)); insn = NEXT_INSN (insn))
7859 if (INSN_P (insn))
7861 set = single_set (insn);
7862 if (!set)
7863 continue;
7864 if (expr_equiv_p (SET_DEST (set), mem))
7865 return;
7866 note = find_reg_equal_equiv_note (insn);
7867 if (!note || !expr_equiv_p (XEXP (note, 0), mem))
7868 continue;
7870 if (gcse_file)
7871 fprintf (gcse_file, "STORE_MOTION drop REG_EQUAL note at insn %d:\n",
7872 INSN_UID (insn));
7873 remove_note (insn, note);
7875 remove_reachable_equiv_notes (bb, smexpr);
7879 /* Delete a store, but copy the value that would have been stored into
7880 the reaching_reg for later storing. */
7882 static void
7883 delete_store (struct ls_expr * expr, basic_block bb)
7885 rtx reg, i, del;
7887 if (expr->reaching_reg == NULL_RTX)
7888 expr->reaching_reg = gen_reg_rtx (GET_MODE (expr->pattern));
7890 reg = expr->reaching_reg;
7892 for (i = AVAIL_STORE_LIST (expr); i; i = XEXP (i, 1))
7894 del = XEXP (i, 0);
7895 if (BLOCK_FOR_INSN (del) == bb)
7897 /* We know there is only one since we deleted redundant
7898 ones during the available computation. */
7899 replace_store_insn (reg, del, bb, expr);
7900 break;
7905 /* Free memory used by store motion. */
7907 static void
7908 free_store_memory (void)
7910 free_ldst_mems ();
7912 if (ae_gen)
7913 sbitmap_vector_free (ae_gen);
7914 if (ae_kill)
7915 sbitmap_vector_free (ae_kill);
7916 if (transp)
7917 sbitmap_vector_free (transp);
7918 if (st_antloc)
7919 sbitmap_vector_free (st_antloc);
7920 if (pre_insert_map)
7921 sbitmap_vector_free (pre_insert_map);
7922 if (pre_delete_map)
7923 sbitmap_vector_free (pre_delete_map);
7924 if (reg_set_in_block)
7925 sbitmap_vector_free (reg_set_in_block);
7927 ae_gen = ae_kill = transp = st_antloc = NULL;
7928 pre_insert_map = pre_delete_map = reg_set_in_block = NULL;
7931 /* Perform store motion. Much like gcse, except we move expressions the
7932 other way by looking at the flowgraph in reverse. */
7934 static void
7935 store_motion (void)
7937 basic_block bb;
7938 int x;
7939 struct ls_expr * ptr;
7940 int update_flow = 0;
7942 if (gcse_file)
7944 fprintf (gcse_file, "before store motion\n");
7945 print_rtl (gcse_file, get_insns ());
7948 init_alias_analysis ();
7950 /* Find all the available and anticipatable stores. */
7951 num_stores = compute_store_table ();
7952 if (num_stores == 0)
7954 sbitmap_vector_free (reg_set_in_block);
7955 end_alias_analysis ();
7956 return;
7959 /* Now compute kill & transp vectors. */
7960 build_store_vectors ();
7961 add_noreturn_fake_exit_edges ();
7962 connect_infinite_loops_to_exit ();
7964 edge_list = pre_edge_rev_lcm (gcse_file, num_stores, transp, ae_gen,
7965 st_antloc, ae_kill, &pre_insert_map,
7966 &pre_delete_map);
7968 /* Now we want to insert the new stores which are going to be needed. */
7969 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
7971 FOR_EACH_BB (bb)
7972 if (TEST_BIT (pre_delete_map[bb->index], ptr->index))
7973 delete_store (ptr, bb);
7975 for (x = 0; x < NUM_EDGES (edge_list); x++)
7976 if (TEST_BIT (pre_insert_map[x], ptr->index))
7977 update_flow |= insert_store (ptr, INDEX_EDGE (edge_list, x));
7980 if (update_flow)
7981 commit_edge_insertions ();
7983 free_store_memory ();
7984 free_edge_list (edge_list);
7985 remove_fake_edges ();
7986 end_alias_analysis ();
7990 /* Entry point for jump bypassing optimization pass. */
7993 bypass_jumps (FILE *file)
7995 int changed;
7997 /* We do not construct an accurate cfg in functions which call
7998 setjmp, so just punt to be safe. */
7999 if (current_function_calls_setjmp)
8000 return 0;
8002 /* For calling dump_foo fns from gdb. */
8003 debug_stderr = stderr;
8004 gcse_file = file;
8006 /* Identify the basic block information for this function, including
8007 successors and predecessors. */
8008 max_gcse_regno = max_reg_num ();
8010 if (file)
8011 dump_flow_info (file);
8013 /* Return if there's nothing to do, or it is too expensive. */
8014 if (n_basic_blocks <= 1 || is_too_expensive (_ ("jump bypassing disabled")))
8015 return 0;
8017 gcc_obstack_init (&gcse_obstack);
8018 bytes_used = 0;
8020 /* We need alias. */
8021 init_alias_analysis ();
8023 /* Record where pseudo-registers are set. This data is kept accurate
8024 during each pass. ??? We could also record hard-reg information here
8025 [since it's unchanging], however it is currently done during hash table
8026 computation.
8028 It may be tempting to compute MEM set information here too, but MEM sets
8029 will be subject to code motion one day and thus we need to compute
8030 information about memory sets when we build the hash tables. */
8032 alloc_reg_set_mem (max_gcse_regno);
8033 compute_sets (get_insns ());
8035 max_gcse_regno = max_reg_num ();
8036 alloc_gcse_mem (get_insns ());
8037 changed = one_cprop_pass (1, 1, 1);
8038 free_gcse_mem ();
8040 if (file)
8042 fprintf (file, "BYPASS of %s: %d basic blocks, ",
8043 current_function_name (), n_basic_blocks);
8044 fprintf (file, "%d bytes\n\n", bytes_used);
8047 obstack_free (&gcse_obstack, NULL);
8048 free_reg_set_mem ();
8050 /* We are finished with alias. */
8051 end_alias_analysis ();
8052 allocate_reg_info (max_reg_num (), FALSE, FALSE);
8054 return changed;
8057 /* Return true if the graph is too expensive to optimize. PASS is the
8058 optimization about to be performed. */
8060 static bool
8061 is_too_expensive (const char *pass)
8063 /* Trying to perform global optimizations on flow graphs which have
8064 a high connectivity will take a long time and is unlikely to be
8065 particularly useful.
8067 In normal circumstances a cfg should have about twice as many
8068 edges as blocks. But we do not want to punish small functions
8069 which have a couple switch statements. Rather than simply
8070 threshold the number of blocks, uses something with a more
8071 graceful degradation. */
8072 if (n_edges > 20000 + n_basic_blocks * 4)
8074 if (warn_disabled_optimization)
8075 warning ("%s: %d basic blocks and %d edges/basic block",
8076 pass, n_basic_blocks, n_edges / n_basic_blocks);
8078 return true;
8081 /* If allocating memory for the cprop bitmap would take up too much
8082 storage it's better just to disable the optimization. */
8083 if ((n_basic_blocks
8084 * SBITMAP_SET_SIZE (max_reg_num ())
8085 * sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY)
8087 if (warn_disabled_optimization)
8088 warning ("%s: %d basic blocks and %d registers",
8089 pass, n_basic_blocks, max_reg_num ());
8091 return true;
8094 return false;
8097 /* The following code implements gcse after reload, the purpose of this
8098 pass is to cleanup redundant loads generated by reload and other
8099 optimizations that come after gcse. It searches for simple inter-block
8100 redundancies and tries to eliminate them by adding moves and loads
8101 in cold places. */
8103 /* The following structure holds the information about the occurrences of
8104 the redundant instructions. */
8105 struct unoccr
8107 struct unoccr *next;
8108 edge pred;
8109 rtx insn;
8112 static bool reg_used_on_edge (rtx, edge);
8113 static rtx reg_set_between_after_reload_p (rtx, rtx, rtx);
8114 static rtx reg_used_between_after_reload_p (rtx, rtx, rtx);
8115 static rtx get_avail_load_store_reg (rtx);
8116 static bool is_jump_table_basic_block (basic_block);
8117 static bool bb_has_well_behaved_predecessors (basic_block);
8118 static struct occr* get_bb_avail_insn (basic_block, struct occr *);
8119 static void hash_scan_set_after_reload (rtx, rtx, struct hash_table *);
8120 static void compute_hash_table_after_reload (struct hash_table *);
8121 static void eliminate_partially_redundant_loads (basic_block,
8122 rtx,
8123 struct expr *);
8124 static void gcse_after_reload (void);
8125 static struct occr* get_bb_avail_insn (basic_block, struct occr *);
8126 void gcse_after_reload_main (rtx, FILE *);
8129 /* Check if register REG is used in any insn waiting to be inserted on E.
8130 Assumes no such insn can be a CALL_INSN; if so call reg_used_between_p
8131 with PREV(insn),NEXT(insn) instead of calling
8132 reg_overlap_mentioned_p. */
8134 static bool
8135 reg_used_on_edge (rtx reg, edge e)
8137 rtx insn;
8139 for (insn = e->insns; insn; insn = NEXT_INSN (insn))
8140 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
8141 return true;
8143 return false;
8146 /* Return the insn that sets register REG or clobbers it in between
8147 FROM_INSN and TO_INSN (exclusive of those two).
8148 Just like reg_set_between but for hard registers and not pseudos. */
8150 static rtx
8151 reg_set_between_after_reload_p (rtx reg, rtx from_insn, rtx to_insn)
8153 rtx insn;
8154 int regno;
8156 if (GET_CODE (reg) != REG)
8157 abort ();
8158 regno = REGNO (reg);
8160 /* We are called after register allocation. */
8161 if (regno >= FIRST_PSEUDO_REGISTER)
8162 abort ();
8164 if (from_insn == to_insn)
8165 return NULL_RTX;
8167 for (insn = NEXT_INSN (from_insn);
8168 insn != to_insn;
8169 insn = NEXT_INSN (insn))
8171 if (INSN_P (insn))
8173 if (FIND_REG_INC_NOTE (insn, reg)
8174 || (GET_CODE (insn) == CALL_INSN
8175 && call_used_regs[regno])
8176 || find_reg_fusage (insn, CLOBBER, reg))
8177 return insn;
8179 if (set_of (reg, insn) != NULL_RTX)
8180 return insn;
8182 return NULL_RTX;
8185 /* Return the insn that uses register REG in between FROM_INSN and TO_INSN
8186 (exclusive of those two). Similar to reg_used_between but for hard
8187 registers and not pseudos. */
8189 static rtx
8190 reg_used_between_after_reload_p (rtx reg, rtx from_insn, rtx to_insn)
8192 rtx insn;
8193 int regno;
8195 if (GET_CODE (reg) != REG)
8196 return to_insn;
8197 regno = REGNO (reg);
8199 /* We are called after register allocation. */
8200 if (regno >= FIRST_PSEUDO_REGISTER)
8201 abort ();
8202 if (from_insn == to_insn)
8203 return NULL_RTX;
8205 for (insn = NEXT_INSN (from_insn);
8206 insn != to_insn;
8207 insn = NEXT_INSN (insn))
8208 if (INSN_P (insn)
8209 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
8210 || (GET_CODE (insn) == CALL_INSN
8211 && call_used_regs[regno])
8212 || find_reg_fusage (insn, USE, reg)
8213 || find_reg_fusage (insn, CLOBBER, reg)))
8214 return insn;
8215 return NULL_RTX;
8218 /* Return the loaded/stored register of a load/store instruction. */
8220 static rtx
8221 get_avail_load_store_reg (rtx insn)
8223 if (GET_CODE (SET_DEST (PATTERN (insn))) == REG) /* A load. */
8224 return SET_DEST(PATTERN(insn));
8225 if (GET_CODE (SET_SRC (PATTERN (insn))) == REG) /* A store. */
8226 return SET_SRC (PATTERN (insn));
8227 abort ();
8230 /* Don't handle ABNORMAL edges or jump tables. */
8232 static bool
8233 is_jump_table_basic_block (basic_block bb)
8235 rtx insn = BB_END (bb);
8237 if (GET_CODE (insn) == JUMP_INSN &&
8238 (GET_CODE (PATTERN (insn)) == ADDR_VEC
8239 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC))
8240 return true;
8241 return false;
8244 /* Return nonzero if the predecessors of BB are "well behaved". */
8246 static bool
8247 bb_has_well_behaved_predecessors (basic_block bb)
8249 edge pred;
8251 if (! bb->pred)
8252 return false;
8253 for (pred = bb->pred; pred != NULL; pred = pred->pred_next)
8254 if (((pred->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (pred))
8255 || is_jump_table_basic_block (pred->src))
8256 return false;
8257 return true;
8261 /* Search for the occurrences of expression in BB. */
8263 static struct occr*
8264 get_bb_avail_insn (basic_block bb, struct occr *occr)
8266 for (; occr != NULL; occr = occr->next)
8267 if (BLOCK_FOR_INSN (occr->insn)->index == bb->index)
8268 return occr;
8269 return NULL;
8272 /* Perform partial GCSE pass after reload, try to eliminate redundant loads
8273 created by the reload pass. We try to look for a full or partial
8274 redundant loads fed by one or more loads/stores in predecessor BBs,
8275 and try adding loads to make them fully redundant. We also check if
8276 it's worth adding loads to be able to delete the redundant load.
8278 Algorithm:
8279 1. Build available expressions hash table:
8280 For each load/store instruction, if the loaded/stored memory didn't
8281 change until the end of the basic block add this memory expression to
8282 the hash table.
8283 2. Perform Redundancy elimination:
8284 For each load instruction do the following:
8285 perform partial redundancy elimination, check if it's worth adding
8286 loads to make the load fully redundant. If so add loads and
8287 register copies and delete the load.
8289 Future enhancement:
8290 if loaded register is used/defined between load and some store,
8291 look for some other free register between load and all its stores,
8292 and replace load with a copy from this register to the loaded
8293 register. */
8296 /* This handles the case where several stores feed a partially redundant
8297 load. It checks if the redundancy elimination is possible and if it's
8298 worth it. */
8300 static void
8301 eliminate_partially_redundant_loads (basic_block bb, rtx insn,
8302 struct expr *expr)
8304 edge pred;
8305 rtx avail_insn = NULL_RTX;
8306 rtx avail_reg;
8307 rtx dest, pat;
8308 struct occr *a_occr;
8309 struct unoccr *occr, *avail_occrs = NULL;
8310 struct unoccr *unoccr, *unavail_occrs = NULL;
8311 int npred_ok = 0;
8312 gcov_type ok_count = 0; /* Redundant load execution count. */
8313 gcov_type critical_count = 0; /* Execution count of critical edges. */
8315 /* The execution count of the loads to be added to make the
8316 load fully redundant. */
8317 gcov_type not_ok_count = 0;
8318 basic_block pred_bb;
8320 pat = PATTERN (insn);
8321 dest = SET_DEST (pat);
8322 /* Check that the loaded register is not used, set, or killed from the
8323 beginning of the block. */
8324 if (reg_used_between_after_reload_p (dest,
8325 PREV_INSN (BB_HEAD (bb)), insn)
8326 || reg_set_between_after_reload_p (dest,
8327 PREV_INSN (BB_HEAD (bb)), insn))
8328 return;
8330 /* Check potential for replacing load with copy for predecessors. */
8331 for (pred = bb->pred; pred; pred = pred->pred_next)
8333 rtx next_pred_bb_end;
8335 avail_insn = NULL_RTX;
8336 pred_bb = pred->src;
8337 next_pred_bb_end = NEXT_INSN (BB_END (pred_bb));
8338 for (a_occr = get_bb_avail_insn (pred_bb, expr->avail_occr); a_occr;
8339 a_occr = get_bb_avail_insn (pred_bb, a_occr->next))
8341 /* Check if the loaded register is not used. */
8342 avail_insn = a_occr->insn;
8343 if (! (avail_reg = get_avail_load_store_reg (avail_insn)))
8344 abort ();
8345 /* Make sure we can generate a move from register avail_reg to
8346 dest. */
8347 extract_insn (gen_move_insn (copy_rtx (dest),
8348 copy_rtx (avail_reg)));
8349 if (! constrain_operands (1)
8350 || reg_killed_on_edge (avail_reg, pred)
8351 || reg_used_on_edge (dest, pred))
8353 avail_insn = NULL;
8354 continue;
8356 if (! reg_set_between_after_reload_p (avail_reg, avail_insn,
8357 next_pred_bb_end))
8358 /* AVAIL_INSN remains non-null. */
8359 break;
8360 else
8361 avail_insn = NULL;
8363 if (avail_insn != NULL_RTX)
8365 npred_ok++;
8366 ok_count += pred->count;
8367 if (EDGE_CRITICAL_P (pred))
8368 critical_count += pred->count;
8369 occr = (struct unoccr *) gmalloc (sizeof (struct unoccr));
8370 occr->insn = avail_insn;
8371 occr->pred = pred;
8372 occr->next = avail_occrs;
8373 avail_occrs = occr;
8375 else
8377 not_ok_count += pred->count;
8378 if (EDGE_CRITICAL_P (pred))
8379 critical_count += pred->count;
8380 unoccr = (struct unoccr *) gmalloc (sizeof (struct unoccr));
8381 unoccr->insn = NULL_RTX;
8382 unoccr->pred = pred;
8383 unoccr->next = unavail_occrs;
8384 unavail_occrs = unoccr;
8388 if (npred_ok == 0 /* No load can be replaced by copy. */
8389 || (optimize_size && npred_ok > 1)) /* Prevent exploding the code. */
8390 return;
8392 /* Check if it's worth applying the partial redundancy elimination. */
8393 if (ok_count < GCSE_AFTER_RELOAD_PARTIAL_FRACTION * not_ok_count)
8394 return;
8396 if (ok_count < GCSE_AFTER_RELOAD_CRITICAL_FRACTION * critical_count)
8397 return;
8399 /* Generate moves to the loaded register from where
8400 the memory is available. */
8401 for (occr = avail_occrs; occr; occr = occr->next)
8403 avail_insn = occr->insn;
8404 pred = occr->pred;
8405 /* Set avail_reg to be the register having the value of the
8406 memory. */
8407 avail_reg = get_avail_load_store_reg (avail_insn);
8408 if (! avail_reg)
8409 abort ();
8411 insert_insn_on_edge (gen_move_insn (copy_rtx (dest),
8412 copy_rtx (avail_reg)),
8413 pred);
8415 if (gcse_file)
8416 fprintf (gcse_file,
8417 "GCSE AFTER reload generating move from %d to %d on \
8418 edge from %d to %d\n",
8419 REGNO (avail_reg),
8420 REGNO (dest),
8421 pred->src->index,
8422 pred->dest->index);
8425 /* Regenerate loads where the memory is unavailable. */
8426 for (unoccr = unavail_occrs; unoccr; unoccr = unoccr->next)
8428 pred = unoccr->pred;
8429 insert_insn_on_edge (copy_insn (PATTERN (insn)), pred);
8431 if (gcse_file)
8432 fprintf (gcse_file,
8433 "GCSE AFTER reload: generating on edge from %d to %d\
8434 a copy of load:\n",
8435 pred->src->index,
8436 pred->dest->index);
8439 /* Delete the insn if it is not available in this block and mark it
8440 for deletion if it is available. If insn is available it may help
8441 discover additional redundancies, so mark it for later deletion.*/
8442 for (a_occr = get_bb_avail_insn (bb, expr->avail_occr);
8443 a_occr && (a_occr->insn != insn);
8444 a_occr = get_bb_avail_insn (bb, a_occr->next));
8446 if (!a_occr)
8447 delete_insn (insn);
8448 else
8449 a_occr->deleted_p = 1;
8452 /* Performing the redundancy elimination as described before. */
8454 static void
8455 gcse_after_reload (void)
8457 unsigned int i;
8458 rtx insn;
8459 basic_block bb;
8460 struct expr *expr;
8461 struct occr *occr;
8463 /* Note we start at block 1. */
8465 if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
8466 return;
8468 FOR_BB_BETWEEN (bb,
8469 ENTRY_BLOCK_PTR->next_bb->next_bb,
8470 EXIT_BLOCK_PTR,
8471 next_bb)
8473 if (! bb_has_well_behaved_predecessors (bb))
8474 continue;
8476 /* Do not try this optimization on cold basic blocks. */
8477 if (probably_cold_bb_p (bb))
8478 continue;
8480 reset_opr_set_tables ();
8482 for (insn = BB_HEAD (bb);
8483 insn != NULL
8484 && insn != NEXT_INSN (BB_END (bb));
8485 insn = NEXT_INSN (insn))
8487 /* Is it a load - of the form (set (reg) (mem))? */
8488 if (GET_CODE (insn) == INSN
8489 && GET_CODE (PATTERN (insn)) == SET
8490 && GET_CODE (SET_DEST (PATTERN (insn))) == REG
8491 && GET_CODE (SET_SRC (PATTERN (insn))) == MEM)
8493 rtx pat = PATTERN (insn);
8494 rtx src = SET_SRC (pat);
8495 struct expr *expr;
8497 if (general_operand (src, GET_MODE (src))
8498 /* Is the expression recorded? */
8499 && (expr = lookup_expr (src, &expr_hash_table)) != NULL
8500 /* Are the operands unchanged since the start of the
8501 block? */
8502 && oprs_not_set_p (src, insn)
8503 && ! MEM_VOLATILE_P (src)
8504 && GET_MODE (src) != BLKmode
8505 && !(flag_non_call_exceptions && may_trap_p (src))
8506 && !side_effects_p (src))
8508 /* We now have a load (insn) and an available memory at
8509 its BB start (expr). Try to remove the loads if it is
8510 redundant. */
8511 eliminate_partially_redundant_loads (bb, insn, expr);
8515 /* Keep track of everything modified by this insn. */
8516 if (INSN_P (insn))
8517 mark_oprs_set (insn);
8521 commit_edge_insertions ();
8523 /* Go over the expression hash table and delete insns that were
8524 marked for later deletion. */
8525 for (i = 0; i < expr_hash_table.size; i++)
8527 for (expr = expr_hash_table.table[i];
8528 expr != NULL;
8529 expr = expr->next_same_hash)
8530 for (occr = expr->avail_occr; occr; occr = occr->next)
8531 if (occr->deleted_p)
8532 delete_insn (occr->insn);
8536 /* Scan pattern PAT of INSN and add an entry to the hash TABLE.
8537 After reload we are interested in loads/stores only. */
8539 static void
8540 hash_scan_set_after_reload (rtx pat, rtx insn, struct hash_table *table)
8542 rtx src = SET_SRC (pat);
8543 rtx dest = SET_DEST (pat);
8545 if (GET_CODE (src) != MEM && GET_CODE (dest) != MEM)
8546 return;
8548 if (GET_CODE (dest) == REG)
8550 if (/* Don't GCSE something if we can't do a reg/reg copy. */
8551 can_copy_p (GET_MODE (dest))
8552 /* GCSE commonly inserts instruction after the insn. We can't
8553 do that easily for EH_REGION notes so disable GCSE on these
8554 for now. */
8555 && ! find_reg_note (insn, REG_EH_REGION, NULL_RTX)
8556 /* Is SET_SRC something we want to gcse? */
8557 && general_operand (src, GET_MODE (src))
8558 /* Don't CSE a nop. */
8559 && ! set_noop_p (pat)
8560 && ! JUMP_P (insn))
8562 /* An expression is not available if its operands are
8563 subsequently modified, including this insn. */
8564 if (oprs_available_p (src, insn))
8565 insert_expr_in_table (src, GET_MODE (dest), insn, 0, 1, table);
8568 else if ((GET_CODE (src) == REG))
8570 /* Only record sets of pseudo-regs in the hash table. */
8571 if (/* Don't GCSE something if we can't do a reg/reg copy. */
8572 can_copy_p (GET_MODE (src))
8573 /* GCSE commonly inserts instruction after the insn. We can't
8574 do that easily for EH_REGION notes so disable GCSE on these
8575 for now. */
8576 && ! find_reg_note (insn, REG_EH_REGION, NULL_RTX)
8577 /* Is SET_DEST something we want to gcse? */
8578 && general_operand (dest, GET_MODE (dest))
8579 /* Don't CSE a nop. */
8580 && ! set_noop_p (pat)
8581 &&! JUMP_P (insn)
8582 && ! (flag_float_store && FLOAT_MODE_P (GET_MODE (dest)))
8583 /* Check if the memory expression is killed after insn. */
8584 && ! load_killed_in_block_p (BLOCK_FOR_INSN (insn),
8585 INSN_CUID (insn) + 1,
8586 dest,
8588 && oprs_unchanged_p (XEXP (dest, 0), insn, 1))
8590 insert_expr_in_table (dest, GET_MODE (dest), insn, 0, 1, table);
8596 /* Create hash table of memory expressions available at end of basic
8597 blocks. */
8599 static void
8600 compute_hash_table_after_reload (struct hash_table *table)
8602 unsigned int i;
8604 table->set_p = 0;
8606 /* Initialize count of number of entries in hash table. */
8607 table->n_elems = 0;
8608 memset ((char *) table->table, 0,
8609 table->size * sizeof (struct expr *));
8611 /* While we compute the hash table we also compute a bit array of which
8612 registers are set in which blocks. */
8613 sbitmap_vector_zero (reg_set_in_block, last_basic_block);
8615 /* Re-cache any INSN_LIST nodes we have allocated. */
8616 clear_modify_mem_tables ();
8618 /* Some working arrays used to track first and last set in each block. */
8619 reg_avail_info = (struct reg_avail_info*)
8620 gmalloc (max_gcse_regno * sizeof (struct reg_avail_info));
8622 for (i = 0; i < max_gcse_regno; ++i)
8623 reg_avail_info[i].last_bb = NULL;
8625 FOR_EACH_BB (current_bb)
8627 rtx insn;
8628 unsigned int regno;
8630 /* First pass over the instructions records information used to
8631 determine when registers and memory are first and last set. */
8632 for (insn = BB_HEAD (current_bb);
8633 insn && insn != NEXT_INSN (BB_END (current_bb));
8634 insn = NEXT_INSN (insn))
8636 if (! INSN_P (insn))
8637 continue;
8639 if (GET_CODE (insn) == CALL_INSN)
8641 bool clobbers_all = false;
8643 #ifdef NON_SAVING_SETJMP
8644 if (NON_SAVING_SETJMP
8645 && find_reg_note (insn, REG_SETJMP, NULL_RTX))
8646 clobbers_all = true;
8647 #endif
8649 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
8650 if (clobbers_all
8651 || TEST_HARD_REG_BIT (regs_invalidated_by_call,
8652 regno))
8653 record_last_reg_set_info (insn, regno);
8655 mark_call (insn);
8658 note_stores (PATTERN (insn), record_last_set_info, insn);
8660 if (GET_CODE (PATTERN (insn)) == SET)
8662 rtx src, dest;
8664 src = SET_SRC (PATTERN (insn));
8665 dest = SET_DEST (PATTERN (insn));
8666 if (GET_CODE (src) == MEM && auto_inc_p (XEXP (src, 0)))
8668 regno = REGNO (XEXP (XEXP (src, 0), 0));
8669 record_last_reg_set_info (insn, regno);
8671 if (GET_CODE (dest) == MEM && auto_inc_p (XEXP (dest, 0)))
8673 regno = REGNO (XEXP (XEXP (dest, 0), 0));
8674 record_last_reg_set_info (insn, regno);
8679 /* The next pass builds the hash table. */
8680 for (insn = BB_HEAD (current_bb);
8681 insn && insn != NEXT_INSN (BB_END (current_bb));
8682 insn = NEXT_INSN (insn))
8683 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SET)
8684 if (! find_reg_note (insn, REG_LIBCALL, NULL_RTX))
8685 hash_scan_set_after_reload (PATTERN (insn), insn, table);
8688 free (reg_avail_info);
8689 reg_avail_info = NULL;
8693 /* Main entry point of the GCSE after reload - clean some redundant loads
8694 due to spilling. */
8696 void
8697 gcse_after_reload_main (rtx f, FILE* file)
8699 gcse_subst_count = 0;
8700 gcse_create_count = 0;
8702 gcse_file = file;
8704 gcc_obstack_init (&gcse_obstack);
8705 bytes_used = 0;
8707 /* We need alias. */
8708 init_alias_analysis ();
8710 max_gcse_regno = max_reg_num ();
8712 alloc_reg_set_mem (max_gcse_regno);
8713 alloc_gcse_mem (f);
8714 alloc_hash_table (max_cuid, &expr_hash_table, 0);
8715 compute_hash_table_after_reload (&expr_hash_table);
8717 if (gcse_file)
8718 dump_hash_table (gcse_file, "Expression", &expr_hash_table);
8720 if (expr_hash_table.n_elems > 0)
8721 gcse_after_reload ();
8723 free_hash_table (&expr_hash_table);
8725 free_gcse_mem ();
8726 free_reg_set_mem ();
8728 /* We are finished with alias. */
8729 end_alias_analysis ();
8731 obstack_free (&gcse_obstack, NULL);
8734 #include "gt-gcse.h"