PR69195, Reload confused by invalid reg_equiv
[official-gcc.git] / gcc / ira.c
blob5e7a2edf3b4c5af7473ef7e4ebbe28e6b2f6d5ca
1 /* Integrated Register Allocator (IRA) entry point.
2 Copyright (C) 2006-2016 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* The integrated register allocator (IRA) is a
22 regional register allocator performing graph coloring on a top-down
23 traversal of nested regions. Graph coloring in a region is based
24 on Chaitin-Briggs algorithm. It is called integrated because
25 register coalescing, register live range splitting, and choosing a
26 better hard register are done on-the-fly during coloring. Register
27 coalescing and choosing a cheaper hard register is done by hard
28 register preferencing during hard register assigning. The live
29 range splitting is a byproduct of the regional register allocation.
31 Major IRA notions are:
33 o *Region* is a part of CFG where graph coloring based on
34 Chaitin-Briggs algorithm is done. IRA can work on any set of
35 nested CFG regions forming a tree. Currently the regions are
36 the entire function for the root region and natural loops for
37 the other regions. Therefore data structure representing a
38 region is called loop_tree_node.
40 o *Allocno class* is a register class used for allocation of
41 given allocno. It means that only hard register of given
42 register class can be assigned to given allocno. In reality,
43 even smaller subset of (*profitable*) hard registers can be
44 assigned. In rare cases, the subset can be even smaller
45 because our modification of Chaitin-Briggs algorithm requires
46 that sets of hard registers can be assigned to allocnos forms a
47 forest, i.e. the sets can be ordered in a way where any
48 previous set is not intersected with given set or is a superset
49 of given set.
51 o *Pressure class* is a register class belonging to a set of
52 register classes containing all of the hard-registers available
53 for register allocation. The set of all pressure classes for a
54 target is defined in the corresponding machine-description file
55 according some criteria. Register pressure is calculated only
56 for pressure classes and it affects some IRA decisions as
57 forming allocation regions.
59 o *Allocno* represents the live range of a pseudo-register in a
60 region. Besides the obvious attributes like the corresponding
61 pseudo-register number, allocno class, conflicting allocnos and
62 conflicting hard-registers, there are a few allocno attributes
63 which are important for understanding the allocation algorithm:
65 - *Live ranges*. This is a list of ranges of *program points*
66 where the allocno lives. Program points represent places
67 where a pseudo can be born or become dead (there are
68 approximately two times more program points than the insns)
69 and they are represented by integers starting with 0. The
70 live ranges are used to find conflicts between allocnos.
71 They also play very important role for the transformation of
72 the IRA internal representation of several regions into a one
73 region representation. The later is used during the reload
74 pass work because each allocno represents all of the
75 corresponding pseudo-registers.
77 - *Hard-register costs*. This is a vector of size equal to the
78 number of available hard-registers of the allocno class. The
79 cost of a callee-clobbered hard-register for an allocno is
80 increased by the cost of save/restore code around the calls
81 through the given allocno's life. If the allocno is a move
82 instruction operand and another operand is a hard-register of
83 the allocno class, the cost of the hard-register is decreased
84 by the move cost.
86 When an allocno is assigned, the hard-register with minimal
87 full cost is used. Initially, a hard-register's full cost is
88 the corresponding value from the hard-register's cost vector.
89 If the allocno is connected by a *copy* (see below) to
90 another allocno which has just received a hard-register, the
91 cost of the hard-register is decreased. Before choosing a
92 hard-register for an allocno, the allocno's current costs of
93 the hard-registers are modified by the conflict hard-register
94 costs of all of the conflicting allocnos which are not
95 assigned yet.
97 - *Conflict hard-register costs*. This is a vector of the same
98 size as the hard-register costs vector. To permit an
99 unassigned allocno to get a better hard-register, IRA uses
100 this vector to calculate the final full cost of the
101 available hard-registers. Conflict hard-register costs of an
102 unassigned allocno are also changed with a change of the
103 hard-register cost of the allocno when a copy involving the
104 allocno is processed as described above. This is done to
105 show other unassigned allocnos that a given allocno prefers
106 some hard-registers in order to remove the move instruction
107 corresponding to the copy.
109 o *Cap*. If a pseudo-register does not live in a region but
110 lives in a nested region, IRA creates a special allocno called
111 a cap in the outer region. A region cap is also created for a
112 subregion cap.
114 o *Copy*. Allocnos can be connected by copies. Copies are used
115 to modify hard-register costs for allocnos during coloring.
116 Such modifications reflects a preference to use the same
117 hard-register for the allocnos connected by copies. Usually
118 copies are created for move insns (in this case it results in
119 register coalescing). But IRA also creates copies for operands
120 of an insn which should be assigned to the same hard-register
121 due to constraints in the machine description (it usually
122 results in removing a move generated in reload to satisfy
123 the constraints) and copies referring to the allocno which is
124 the output operand of an instruction and the allocno which is
125 an input operand dying in the instruction (creation of such
126 copies results in less register shuffling). IRA *does not*
127 create copies between the same register allocnos from different
128 regions because we use another technique for propagating
129 hard-register preference on the borders of regions.
131 Allocnos (including caps) for the upper region in the region tree
132 *accumulate* information important for coloring from allocnos with
133 the same pseudo-register from nested regions. This includes
134 hard-register and memory costs, conflicts with hard-registers,
135 allocno conflicts, allocno copies and more. *Thus, attributes for
136 allocnos in a region have the same values as if the region had no
137 subregions*. It means that attributes for allocnos in the
138 outermost region corresponding to the function have the same values
139 as though the allocation used only one region which is the entire
140 function. It also means that we can look at IRA work as if the
141 first IRA did allocation for all function then it improved the
142 allocation for loops then their subloops and so on.
144 IRA major passes are:
146 o Building IRA internal representation which consists of the
147 following subpasses:
149 * First, IRA builds regions and creates allocnos (file
150 ira-build.c) and initializes most of their attributes.
152 * Then IRA finds an allocno class for each allocno and
153 calculates its initial (non-accumulated) cost of memory and
154 each hard-register of its allocno class (file ira-cost.c).
156 * IRA creates live ranges of each allocno, calculates register
157 pressure for each pressure class in each region, sets up
158 conflict hard registers for each allocno and info about calls
159 the allocno lives through (file ira-lives.c).
161 * IRA removes low register pressure loops from the regions
162 mostly to speed IRA up (file ira-build.c).
164 * IRA propagates accumulated allocno info from lower region
165 allocnos to corresponding upper region allocnos (file
166 ira-build.c).
168 * IRA creates all caps (file ira-build.c).
170 * Having live-ranges of allocnos and their classes, IRA creates
171 conflicting allocnos for each allocno. Conflicting allocnos
172 are stored as a bit vector or array of pointers to the
173 conflicting allocnos whatever is more profitable (file
174 ira-conflicts.c). At this point IRA creates allocno copies.
176 o Coloring. Now IRA has all necessary info to start graph coloring
177 process. It is done in each region on top-down traverse of the
178 region tree (file ira-color.c). There are following subpasses:
180 * Finding profitable hard registers of corresponding allocno
181 class for each allocno. For example, only callee-saved hard
182 registers are frequently profitable for allocnos living
183 through colors. If the profitable hard register set of
184 allocno does not form a tree based on subset relation, we use
185 some approximation to form the tree. This approximation is
186 used to figure out trivial colorability of allocnos. The
187 approximation is a pretty rare case.
189 * Putting allocnos onto the coloring stack. IRA uses Briggs
190 optimistic coloring which is a major improvement over
191 Chaitin's coloring. Therefore IRA does not spill allocnos at
192 this point. There is some freedom in the order of putting
193 allocnos on the stack which can affect the final result of
194 the allocation. IRA uses some heuristics to improve the
195 order. The major one is to form *threads* from colorable
196 allocnos and push them on the stack by threads. Thread is a
197 set of non-conflicting colorable allocnos connected by
198 copies. The thread contains allocnos from the colorable
199 bucket or colorable allocnos already pushed onto the coloring
200 stack. Pushing thread allocnos one after another onto the
201 stack increases chances of removing copies when the allocnos
202 get the same hard reg.
204 We also use a modification of Chaitin-Briggs algorithm which
205 works for intersected register classes of allocnos. To
206 figure out trivial colorability of allocnos, the mentioned
207 above tree of hard register sets is used. To get an idea how
208 the algorithm works in i386 example, let us consider an
209 allocno to which any general hard register can be assigned.
210 If the allocno conflicts with eight allocnos to which only
211 EAX register can be assigned, given allocno is still
212 trivially colorable because all conflicting allocnos might be
213 assigned only to EAX and all other general hard registers are
214 still free.
216 To get an idea of the used trivial colorability criterion, it
217 is also useful to read article "Graph-Coloring Register
218 Allocation for Irregular Architectures" by Michael D. Smith
219 and Glen Holloway. Major difference between the article
220 approach and approach used in IRA is that Smith's approach
221 takes register classes only from machine description and IRA
222 calculate register classes from intermediate code too
223 (e.g. an explicit usage of hard registers in RTL code for
224 parameter passing can result in creation of additional
225 register classes which contain or exclude the hard
226 registers). That makes IRA approach useful for improving
227 coloring even for architectures with regular register files
228 and in fact some benchmarking shows the improvement for
229 regular class architectures is even bigger than for irregular
230 ones. Another difference is that Smith's approach chooses
231 intersection of classes of all insn operands in which a given
232 pseudo occurs. IRA can use bigger classes if it is still
233 more profitable than memory usage.
235 * Popping the allocnos from the stack and assigning them hard
236 registers. If IRA can not assign a hard register to an
237 allocno and the allocno is coalesced, IRA undoes the
238 coalescing and puts the uncoalesced allocnos onto the stack in
239 the hope that some such allocnos will get a hard register
240 separately. If IRA fails to assign hard register or memory
241 is more profitable for it, IRA spills the allocno. IRA
242 assigns the allocno the hard-register with minimal full
243 allocation cost which reflects the cost of usage of the
244 hard-register for the allocno and cost of usage of the
245 hard-register for allocnos conflicting with given allocno.
247 * Chaitin-Briggs coloring assigns as many pseudos as possible
248 to hard registers. After coloring we try to improve
249 allocation with cost point of view. We improve the
250 allocation by spilling some allocnos and assigning the freed
251 hard registers to other allocnos if it decreases the overall
252 allocation cost.
254 * After allocno assigning in the region, IRA modifies the hard
255 register and memory costs for the corresponding allocnos in
256 the subregions to reflect the cost of possible loads, stores,
257 or moves on the border of the region and its subregions.
258 When default regional allocation algorithm is used
259 (-fira-algorithm=mixed), IRA just propagates the assignment
260 for allocnos if the register pressure in the region for the
261 corresponding pressure class is less than number of available
262 hard registers for given pressure class.
264 o Spill/restore code moving. When IRA performs an allocation
265 by traversing regions in top-down order, it does not know what
266 happens below in the region tree. Therefore, sometimes IRA
267 misses opportunities to perform a better allocation. A simple
268 optimization tries to improve allocation in a region having
269 subregions and containing in another region. If the
270 corresponding allocnos in the subregion are spilled, it spills
271 the region allocno if it is profitable. The optimization
272 implements a simple iterative algorithm performing profitable
273 transformations while they are still possible. It is fast in
274 practice, so there is no real need for a better time complexity
275 algorithm.
277 o Code change. After coloring, two allocnos representing the
278 same pseudo-register outside and inside a region respectively
279 may be assigned to different locations (hard-registers or
280 memory). In this case IRA creates and uses a new
281 pseudo-register inside the region and adds code to move allocno
282 values on the region's borders. This is done during top-down
283 traversal of the regions (file ira-emit.c). In some
284 complicated cases IRA can create a new allocno to move allocno
285 values (e.g. when a swap of values stored in two hard-registers
286 is needed). At this stage, the new allocno is marked as
287 spilled. IRA still creates the pseudo-register and the moves
288 on the region borders even when both allocnos were assigned to
289 the same hard-register. If the reload pass spills a
290 pseudo-register for some reason, the effect will be smaller
291 because another allocno will still be in the hard-register. In
292 most cases, this is better then spilling both allocnos. If
293 reload does not change the allocation for the two
294 pseudo-registers, the trivial move will be removed by
295 post-reload optimizations. IRA does not generate moves for
296 allocnos assigned to the same hard register when the default
297 regional allocation algorithm is used and the register pressure
298 in the region for the corresponding pressure class is less than
299 number of available hard registers for given pressure class.
300 IRA also does some optimizations to remove redundant stores and
301 to reduce code duplication on the region borders.
303 o Flattening internal representation. After changing code, IRA
304 transforms its internal representation for several regions into
305 one region representation (file ira-build.c). This process is
306 called IR flattening. Such process is more complicated than IR
307 rebuilding would be, but is much faster.
309 o After IR flattening, IRA tries to assign hard registers to all
310 spilled allocnos. This is implemented by a simple and fast
311 priority coloring algorithm (see function
312 ira_reassign_conflict_allocnos::ira-color.c). Here new allocnos
313 created during the code change pass can be assigned to hard
314 registers.
316 o At the end IRA calls the reload pass. The reload pass
317 communicates with IRA through several functions in file
318 ira-color.c to improve its decisions in
320 * sharing stack slots for the spilled pseudos based on IRA info
321 about pseudo-register conflicts.
323 * reassigning hard-registers to all spilled pseudos at the end
324 of each reload iteration.
326 * choosing a better hard-register to spill based on IRA info
327 about pseudo-register live ranges and the register pressure
328 in places where the pseudo-register lives.
330 IRA uses a lot of data representing the target processors. These
331 data are initialized in file ira.c.
333 If function has no loops (or the loops are ignored when
334 -fira-algorithm=CB is used), we have classic Chaitin-Briggs
335 coloring (only instead of separate pass of coalescing, we use hard
336 register preferencing). In such case, IRA works much faster
337 because many things are not made (like IR flattening, the
338 spill/restore optimization, and the code change).
340 Literature is worth to read for better understanding the code:
342 o Preston Briggs, Keith D. Cooper, Linda Torczon. Improvements to
343 Graph Coloring Register Allocation.
345 o David Callahan, Brian Koblenz. Register allocation via
346 hierarchical graph coloring.
348 o Keith Cooper, Anshuman Dasgupta, Jason Eckhardt. Revisiting Graph
349 Coloring Register Allocation: A Study of the Chaitin-Briggs and
350 Callahan-Koblenz Algorithms.
352 o Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Global
353 Register Allocation Based on Graph Fusion.
355 o Michael D. Smith and Glenn Holloway. Graph-Coloring Register
356 Allocation for Irregular Architectures
358 o Vladimir Makarov. The Integrated Register Allocator for GCC.
360 o Vladimir Makarov. The top-down register allocator for irregular
361 register file architectures.
366 #include "config.h"
367 #include "system.h"
368 #include "coretypes.h"
369 #include "backend.h"
370 #include "target.h"
371 #include "rtl.h"
372 #include "tree.h"
373 #include "df.h"
374 #include "tm_p.h"
375 #include "insn-config.h"
376 #include "regs.h"
377 #include "ira.h"
378 #include "ira-int.h"
379 #include "diagnostic-core.h"
380 #include "cfgrtl.h"
381 #include "cfgbuild.h"
382 #include "cfgcleanup.h"
383 #include "expr.h"
384 #include "tree-pass.h"
385 #include "output.h"
386 #include "reload.h"
387 #include "cfgloop.h"
388 #include "lra.h"
389 #include "dce.h"
390 #include "dbgcnt.h"
391 #include "rtl-iter.h"
392 #include "shrink-wrap.h"
393 #include "print-rtl.h"
395 struct target_ira default_target_ira;
396 struct target_ira_int default_target_ira_int;
397 #if SWITCHABLE_TARGET
398 struct target_ira *this_target_ira = &default_target_ira;
399 struct target_ira_int *this_target_ira_int = &default_target_ira_int;
400 #endif
402 /* A modified value of flag `-fira-verbose' used internally. */
403 int internal_flag_ira_verbose;
405 /* Dump file of the allocator if it is not NULL. */
406 FILE *ira_dump_file;
408 /* The number of elements in the following array. */
409 int ira_spilled_reg_stack_slots_num;
411 /* The following array contains info about spilled pseudo-registers
412 stack slots used in current function so far. */
413 struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
415 /* Correspondingly overall cost of the allocation, overall cost before
416 reload, cost of the allocnos assigned to hard-registers, cost of
417 the allocnos assigned to memory, cost of loads, stores and register
418 move insns generated for pseudo-register live range splitting (see
419 ira-emit.c). */
420 int64_t ira_overall_cost, overall_cost_before;
421 int64_t ira_reg_cost, ira_mem_cost;
422 int64_t ira_load_cost, ira_store_cost, ira_shuffle_cost;
423 int ira_move_loops_num, ira_additional_jumps_num;
425 /* All registers that can be eliminated. */
427 HARD_REG_SET eliminable_regset;
429 /* Value of max_reg_num () before IRA work start. This value helps
430 us to recognize a situation when new pseudos were created during
431 IRA work. */
432 static int max_regno_before_ira;
434 /* Temporary hard reg set used for a different calculation. */
435 static HARD_REG_SET temp_hard_regset;
437 #define last_mode_for_init_move_cost \
438 (this_target_ira_int->x_last_mode_for_init_move_cost)
441 /* The function sets up the map IRA_REG_MODE_HARD_REGSET. */
442 static void
443 setup_reg_mode_hard_regset (void)
445 int i, m, hard_regno;
447 for (m = 0; m < NUM_MACHINE_MODES; m++)
448 for (hard_regno = 0; hard_regno < FIRST_PSEUDO_REGISTER; hard_regno++)
450 CLEAR_HARD_REG_SET (ira_reg_mode_hard_regset[hard_regno][m]);
451 for (i = hard_regno_nregs[hard_regno][m] - 1; i >= 0; i--)
452 if (hard_regno + i < FIRST_PSEUDO_REGISTER)
453 SET_HARD_REG_BIT (ira_reg_mode_hard_regset[hard_regno][m],
454 hard_regno + i);
459 #define no_unit_alloc_regs \
460 (this_target_ira_int->x_no_unit_alloc_regs)
462 /* The function sets up the three arrays declared above. */
463 static void
464 setup_class_hard_regs (void)
466 int cl, i, hard_regno, n;
467 HARD_REG_SET processed_hard_reg_set;
469 ira_assert (SHRT_MAX >= FIRST_PSEUDO_REGISTER);
470 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
472 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
473 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
474 CLEAR_HARD_REG_SET (processed_hard_reg_set);
475 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
477 ira_non_ordered_class_hard_regs[cl][i] = -1;
478 ira_class_hard_reg_index[cl][i] = -1;
480 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
482 #ifdef REG_ALLOC_ORDER
483 hard_regno = reg_alloc_order[i];
484 #else
485 hard_regno = i;
486 #endif
487 if (TEST_HARD_REG_BIT (processed_hard_reg_set, hard_regno))
488 continue;
489 SET_HARD_REG_BIT (processed_hard_reg_set, hard_regno);
490 if (! TEST_HARD_REG_BIT (temp_hard_regset, hard_regno))
491 ira_class_hard_reg_index[cl][hard_regno] = -1;
492 else
494 ira_class_hard_reg_index[cl][hard_regno] = n;
495 ira_class_hard_regs[cl][n++] = hard_regno;
498 ira_class_hard_regs_num[cl] = n;
499 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
500 if (TEST_HARD_REG_BIT (temp_hard_regset, i))
501 ira_non_ordered_class_hard_regs[cl][n++] = i;
502 ira_assert (ira_class_hard_regs_num[cl] == n);
506 /* Set up global variables defining info about hard registers for the
507 allocation. These depend on USE_HARD_FRAME_P whose TRUE value means
508 that we can use the hard frame pointer for the allocation. */
509 static void
510 setup_alloc_regs (bool use_hard_frame_p)
512 #ifdef ADJUST_REG_ALLOC_ORDER
513 ADJUST_REG_ALLOC_ORDER;
514 #endif
515 COPY_HARD_REG_SET (no_unit_alloc_regs, fixed_reg_set);
516 if (! use_hard_frame_p)
517 SET_HARD_REG_BIT (no_unit_alloc_regs, HARD_FRAME_POINTER_REGNUM);
518 setup_class_hard_regs ();
523 #define alloc_reg_class_subclasses \
524 (this_target_ira_int->x_alloc_reg_class_subclasses)
526 /* Initialize the table of subclasses of each reg class. */
527 static void
528 setup_reg_subclasses (void)
530 int i, j;
531 HARD_REG_SET temp_hard_regset2;
533 for (i = 0; i < N_REG_CLASSES; i++)
534 for (j = 0; j < N_REG_CLASSES; j++)
535 alloc_reg_class_subclasses[i][j] = LIM_REG_CLASSES;
537 for (i = 0; i < N_REG_CLASSES; i++)
539 if (i == (int) NO_REGS)
540 continue;
542 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
543 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
544 if (hard_reg_set_empty_p (temp_hard_regset))
545 continue;
546 for (j = 0; j < N_REG_CLASSES; j++)
547 if (i != j)
549 enum reg_class *p;
551 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[j]);
552 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
553 if (! hard_reg_set_subset_p (temp_hard_regset,
554 temp_hard_regset2))
555 continue;
556 p = &alloc_reg_class_subclasses[j][0];
557 while (*p != LIM_REG_CLASSES) p++;
558 *p = (enum reg_class) i;
565 /* Set up IRA_MEMORY_MOVE_COST and IRA_MAX_MEMORY_MOVE_COST. */
566 static void
567 setup_class_subset_and_memory_move_costs (void)
569 int cl, cl2, mode, cost;
570 HARD_REG_SET temp_hard_regset2;
572 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
573 ira_memory_move_cost[mode][NO_REGS][0]
574 = ira_memory_move_cost[mode][NO_REGS][1] = SHRT_MAX;
575 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
577 if (cl != (int) NO_REGS)
578 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
580 ira_max_memory_move_cost[mode][cl][0]
581 = ira_memory_move_cost[mode][cl][0]
582 = memory_move_cost ((machine_mode) mode,
583 (reg_class_t) cl, false);
584 ira_max_memory_move_cost[mode][cl][1]
585 = ira_memory_move_cost[mode][cl][1]
586 = memory_move_cost ((machine_mode) mode,
587 (reg_class_t) cl, true);
588 /* Costs for NO_REGS are used in cost calculation on the
589 1st pass when the preferred register classes are not
590 known yet. In this case we take the best scenario. */
591 if (ira_memory_move_cost[mode][NO_REGS][0]
592 > ira_memory_move_cost[mode][cl][0])
593 ira_max_memory_move_cost[mode][NO_REGS][0]
594 = ira_memory_move_cost[mode][NO_REGS][0]
595 = ira_memory_move_cost[mode][cl][0];
596 if (ira_memory_move_cost[mode][NO_REGS][1]
597 > ira_memory_move_cost[mode][cl][1])
598 ira_max_memory_move_cost[mode][NO_REGS][1]
599 = ira_memory_move_cost[mode][NO_REGS][1]
600 = ira_memory_move_cost[mode][cl][1];
603 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
604 for (cl2 = (int) N_REG_CLASSES - 1; cl2 >= 0; cl2--)
606 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
607 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
608 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
609 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
610 ira_class_subset_p[cl][cl2]
611 = hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2);
612 if (! hard_reg_set_empty_p (temp_hard_regset2)
613 && hard_reg_set_subset_p (reg_class_contents[cl2],
614 reg_class_contents[cl]))
615 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
617 cost = ira_memory_move_cost[mode][cl2][0];
618 if (cost > ira_max_memory_move_cost[mode][cl][0])
619 ira_max_memory_move_cost[mode][cl][0] = cost;
620 cost = ira_memory_move_cost[mode][cl2][1];
621 if (cost > ira_max_memory_move_cost[mode][cl][1])
622 ira_max_memory_move_cost[mode][cl][1] = cost;
625 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
626 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
628 ira_memory_move_cost[mode][cl][0]
629 = ira_max_memory_move_cost[mode][cl][0];
630 ira_memory_move_cost[mode][cl][1]
631 = ira_max_memory_move_cost[mode][cl][1];
633 setup_reg_subclasses ();
638 /* Define the following macro if allocation through malloc if
639 preferable. */
640 #define IRA_NO_OBSTACK
642 #ifndef IRA_NO_OBSTACK
643 /* Obstack used for storing all dynamic data (except bitmaps) of the
644 IRA. */
645 static struct obstack ira_obstack;
646 #endif
648 /* Obstack used for storing all bitmaps of the IRA. */
649 static struct bitmap_obstack ira_bitmap_obstack;
651 /* Allocate memory of size LEN for IRA data. */
652 void *
653 ira_allocate (size_t len)
655 void *res;
657 #ifndef IRA_NO_OBSTACK
658 res = obstack_alloc (&ira_obstack, len);
659 #else
660 res = xmalloc (len);
661 #endif
662 return res;
665 /* Free memory ADDR allocated for IRA data. */
666 void
667 ira_free (void *addr ATTRIBUTE_UNUSED)
669 #ifndef IRA_NO_OBSTACK
670 /* do nothing */
671 #else
672 free (addr);
673 #endif
677 /* Allocate and returns bitmap for IRA. */
678 bitmap
679 ira_allocate_bitmap (void)
681 return BITMAP_ALLOC (&ira_bitmap_obstack);
684 /* Free bitmap B allocated for IRA. */
685 void
686 ira_free_bitmap (bitmap b ATTRIBUTE_UNUSED)
688 /* do nothing */
693 /* Output information about allocation of all allocnos (except for
694 caps) into file F. */
695 void
696 ira_print_disposition (FILE *f)
698 int i, n, max_regno;
699 ira_allocno_t a;
700 basic_block bb;
702 fprintf (f, "Disposition:");
703 max_regno = max_reg_num ();
704 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
705 for (a = ira_regno_allocno_map[i];
706 a != NULL;
707 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
709 if (n % 4 == 0)
710 fprintf (f, "\n");
711 n++;
712 fprintf (f, " %4d:r%-4d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
713 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
714 fprintf (f, "b%-3d", bb->index);
715 else
716 fprintf (f, "l%-3d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
717 if (ALLOCNO_HARD_REGNO (a) >= 0)
718 fprintf (f, " %3d", ALLOCNO_HARD_REGNO (a));
719 else
720 fprintf (f, " mem");
722 fprintf (f, "\n");
725 /* Outputs information about allocation of all allocnos into
726 stderr. */
727 void
728 ira_debug_disposition (void)
730 ira_print_disposition (stderr);
735 /* Set up ira_stack_reg_pressure_class which is the biggest pressure
736 register class containing stack registers or NO_REGS if there are
737 no stack registers. To find this class, we iterate through all
738 register pressure classes and choose the first register pressure
739 class containing all the stack registers and having the biggest
740 size. */
741 static void
742 setup_stack_reg_pressure_class (void)
744 ira_stack_reg_pressure_class = NO_REGS;
745 #ifdef STACK_REGS
747 int i, best, size;
748 enum reg_class cl;
749 HARD_REG_SET temp_hard_regset2;
751 CLEAR_HARD_REG_SET (temp_hard_regset);
752 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
753 SET_HARD_REG_BIT (temp_hard_regset, i);
754 best = 0;
755 for (i = 0; i < ira_pressure_classes_num; i++)
757 cl = ira_pressure_classes[i];
758 COPY_HARD_REG_SET (temp_hard_regset2, temp_hard_regset);
759 AND_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
760 size = hard_reg_set_size (temp_hard_regset2);
761 if (best < size)
763 best = size;
764 ira_stack_reg_pressure_class = cl;
768 #endif
771 /* Find pressure classes which are register classes for which we
772 calculate register pressure in IRA, register pressure sensitive
773 insn scheduling, and register pressure sensitive loop invariant
774 motion.
776 To make register pressure calculation easy, we always use
777 non-intersected register pressure classes. A move of hard
778 registers from one register pressure class is not more expensive
779 than load and store of the hard registers. Most likely an allocno
780 class will be a subset of a register pressure class and in many
781 cases a register pressure class. That makes usage of register
782 pressure classes a good approximation to find a high register
783 pressure. */
784 static void
785 setup_pressure_classes (void)
787 int cost, i, n, curr;
788 int cl, cl2;
789 enum reg_class pressure_classes[N_REG_CLASSES];
790 int m;
791 HARD_REG_SET temp_hard_regset2;
792 bool insert_p;
794 n = 0;
795 for (cl = 0; cl < N_REG_CLASSES; cl++)
797 if (ira_class_hard_regs_num[cl] == 0)
798 continue;
799 if (ira_class_hard_regs_num[cl] != 1
800 /* A register class without subclasses may contain a few
801 hard registers and movement between them is costly
802 (e.g. SPARC FPCC registers). We still should consider it
803 as a candidate for a pressure class. */
804 && alloc_reg_class_subclasses[cl][0] < cl)
806 /* Check that the moves between any hard registers of the
807 current class are not more expensive for a legal mode
808 than load/store of the hard registers of the current
809 class. Such class is a potential candidate to be a
810 register pressure class. */
811 for (m = 0; m < NUM_MACHINE_MODES; m++)
813 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
814 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
815 AND_COMPL_HARD_REG_SET (temp_hard_regset,
816 ira_prohibited_class_mode_regs[cl][m]);
817 if (hard_reg_set_empty_p (temp_hard_regset))
818 continue;
819 ira_init_register_move_cost_if_necessary ((machine_mode) m);
820 cost = ira_register_move_cost[m][cl][cl];
821 if (cost <= ira_max_memory_move_cost[m][cl][1]
822 || cost <= ira_max_memory_move_cost[m][cl][0])
823 break;
825 if (m >= NUM_MACHINE_MODES)
826 continue;
828 curr = 0;
829 insert_p = true;
830 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
831 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
832 /* Remove so far added pressure classes which are subset of the
833 current candidate class. Prefer GENERAL_REGS as a pressure
834 register class to another class containing the same
835 allocatable hard registers. We do this because machine
836 dependent cost hooks might give wrong costs for the latter
837 class but always give the right cost for the former class
838 (GENERAL_REGS). */
839 for (i = 0; i < n; i++)
841 cl2 = pressure_classes[i];
842 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
843 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
844 if (hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2)
845 && (! hard_reg_set_equal_p (temp_hard_regset, temp_hard_regset2)
846 || cl2 == (int) GENERAL_REGS))
848 pressure_classes[curr++] = (enum reg_class) cl2;
849 insert_p = false;
850 continue;
852 if (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset)
853 && (! hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset)
854 || cl == (int) GENERAL_REGS))
855 continue;
856 if (hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset))
857 insert_p = false;
858 pressure_classes[curr++] = (enum reg_class) cl2;
860 /* If the current candidate is a subset of a so far added
861 pressure class, don't add it to the list of the pressure
862 classes. */
863 if (insert_p)
864 pressure_classes[curr++] = (enum reg_class) cl;
865 n = curr;
867 #ifdef ENABLE_IRA_CHECKING
869 HARD_REG_SET ignore_hard_regs;
871 /* Check pressure classes correctness: here we check that hard
872 registers from all register pressure classes contains all hard
873 registers available for the allocation. */
874 CLEAR_HARD_REG_SET (temp_hard_regset);
875 CLEAR_HARD_REG_SET (temp_hard_regset2);
876 COPY_HARD_REG_SET (ignore_hard_regs, no_unit_alloc_regs);
877 for (cl = 0; cl < LIM_REG_CLASSES; cl++)
879 /* For some targets (like MIPS with MD_REGS), there are some
880 classes with hard registers available for allocation but
881 not able to hold value of any mode. */
882 for (m = 0; m < NUM_MACHINE_MODES; m++)
883 if (contains_reg_of_mode[cl][m])
884 break;
885 if (m >= NUM_MACHINE_MODES)
887 IOR_HARD_REG_SET (ignore_hard_regs, reg_class_contents[cl]);
888 continue;
890 for (i = 0; i < n; i++)
891 if ((int) pressure_classes[i] == cl)
892 break;
893 IOR_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
894 if (i < n)
895 IOR_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
897 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
898 /* Some targets (like SPARC with ICC reg) have allocatable regs
899 for which no reg class is defined. */
900 if (REGNO_REG_CLASS (i) == NO_REGS)
901 SET_HARD_REG_BIT (ignore_hard_regs, i);
902 AND_COMPL_HARD_REG_SET (temp_hard_regset, ignore_hard_regs);
903 AND_COMPL_HARD_REG_SET (temp_hard_regset2, ignore_hard_regs);
904 ira_assert (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset));
906 #endif
907 ira_pressure_classes_num = 0;
908 for (i = 0; i < n; i++)
910 cl = (int) pressure_classes[i];
911 ira_reg_pressure_class_p[cl] = true;
912 ira_pressure_classes[ira_pressure_classes_num++] = (enum reg_class) cl;
914 setup_stack_reg_pressure_class ();
917 /* Set up IRA_UNIFORM_CLASS_P. Uniform class is a register class
918 whose register move cost between any registers of the class is the
919 same as for all its subclasses. We use the data to speed up the
920 2nd pass of calculations of allocno costs. */
921 static void
922 setup_uniform_class_p (void)
924 int i, cl, cl2, m;
926 for (cl = 0; cl < N_REG_CLASSES; cl++)
928 ira_uniform_class_p[cl] = false;
929 if (ira_class_hard_regs_num[cl] == 0)
930 continue;
931 /* We can not use alloc_reg_class_subclasses here because move
932 cost hooks does not take into account that some registers are
933 unavailable for the subtarget. E.g. for i686, INT_SSE_REGS
934 is element of alloc_reg_class_subclasses for GENERAL_REGS
935 because SSE regs are unavailable. */
936 for (i = 0; (cl2 = reg_class_subclasses[cl][i]) != LIM_REG_CLASSES; i++)
938 if (ira_class_hard_regs_num[cl2] == 0)
939 continue;
940 for (m = 0; m < NUM_MACHINE_MODES; m++)
941 if (contains_reg_of_mode[cl][m] && contains_reg_of_mode[cl2][m])
943 ira_init_register_move_cost_if_necessary ((machine_mode) m);
944 if (ira_register_move_cost[m][cl][cl]
945 != ira_register_move_cost[m][cl2][cl2])
946 break;
948 if (m < NUM_MACHINE_MODES)
949 break;
951 if (cl2 == LIM_REG_CLASSES)
952 ira_uniform_class_p[cl] = true;
956 /* Set up IRA_ALLOCNO_CLASSES, IRA_ALLOCNO_CLASSES_NUM,
957 IRA_IMPORTANT_CLASSES, and IRA_IMPORTANT_CLASSES_NUM.
959 Target may have many subtargets and not all target hard registers can
960 be used for allocation, e.g. x86 port in 32-bit mode can not use
961 hard registers introduced in x86-64 like r8-r15). Some classes
962 might have the same allocatable hard registers, e.g. INDEX_REGS
963 and GENERAL_REGS in x86 port in 32-bit mode. To decrease different
964 calculations efforts we introduce allocno classes which contain
965 unique non-empty sets of allocatable hard-registers.
967 Pseudo class cost calculation in ira-costs.c is very expensive.
968 Therefore we are trying to decrease number of classes involved in
969 such calculation. Register classes used in the cost calculation
970 are called important classes. They are allocno classes and other
971 non-empty classes whose allocatable hard register sets are inside
972 of an allocno class hard register set. From the first sight, it
973 looks like that they are just allocno classes. It is not true. In
974 example of x86-port in 32-bit mode, allocno classes will contain
975 GENERAL_REGS but not LEGACY_REGS (because allocatable hard
976 registers are the same for the both classes). The important
977 classes will contain GENERAL_REGS and LEGACY_REGS. It is done
978 because a machine description insn constraint may refers for
979 LEGACY_REGS and code in ira-costs.c is mostly base on investigation
980 of the insn constraints. */
981 static void
982 setup_allocno_and_important_classes (void)
984 int i, j, n, cl;
985 bool set_p;
986 HARD_REG_SET temp_hard_regset2;
987 static enum reg_class classes[LIM_REG_CLASSES + 1];
989 n = 0;
990 /* Collect classes which contain unique sets of allocatable hard
991 registers. Prefer GENERAL_REGS to other classes containing the
992 same set of hard registers. */
993 for (i = 0; i < LIM_REG_CLASSES; i++)
995 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
996 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
997 for (j = 0; j < n; j++)
999 cl = classes[j];
1000 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
1001 AND_COMPL_HARD_REG_SET (temp_hard_regset2,
1002 no_unit_alloc_regs);
1003 if (hard_reg_set_equal_p (temp_hard_regset,
1004 temp_hard_regset2))
1005 break;
1007 if (j >= n)
1008 classes[n++] = (enum reg_class) i;
1009 else if (i == GENERAL_REGS)
1010 /* Prefer general regs. For i386 example, it means that
1011 we prefer GENERAL_REGS over INDEX_REGS or LEGACY_REGS
1012 (all of them consists of the same available hard
1013 registers). */
1014 classes[j] = (enum reg_class) i;
1016 classes[n] = LIM_REG_CLASSES;
1018 /* Set up classes which can be used for allocnos as classes
1019 containing non-empty unique sets of allocatable hard
1020 registers. */
1021 ira_allocno_classes_num = 0;
1022 for (i = 0; (cl = classes[i]) != LIM_REG_CLASSES; i++)
1023 if (ira_class_hard_regs_num[cl] > 0)
1024 ira_allocno_classes[ira_allocno_classes_num++] = (enum reg_class) cl;
1025 ira_important_classes_num = 0;
1026 /* Add non-allocno classes containing to non-empty set of
1027 allocatable hard regs. */
1028 for (cl = 0; cl < N_REG_CLASSES; cl++)
1029 if (ira_class_hard_regs_num[cl] > 0)
1031 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1032 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1033 set_p = false;
1034 for (j = 0; j < ira_allocno_classes_num; j++)
1036 COPY_HARD_REG_SET (temp_hard_regset2,
1037 reg_class_contents[ira_allocno_classes[j]]);
1038 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
1039 if ((enum reg_class) cl == ira_allocno_classes[j])
1040 break;
1041 else if (hard_reg_set_subset_p (temp_hard_regset,
1042 temp_hard_regset2))
1043 set_p = true;
1045 if (set_p && j >= ira_allocno_classes_num)
1046 ira_important_classes[ira_important_classes_num++]
1047 = (enum reg_class) cl;
1049 /* Now add allocno classes to the important classes. */
1050 for (j = 0; j < ira_allocno_classes_num; j++)
1051 ira_important_classes[ira_important_classes_num++]
1052 = ira_allocno_classes[j];
1053 for (cl = 0; cl < N_REG_CLASSES; cl++)
1055 ira_reg_allocno_class_p[cl] = false;
1056 ira_reg_pressure_class_p[cl] = false;
1058 for (j = 0; j < ira_allocno_classes_num; j++)
1059 ira_reg_allocno_class_p[ira_allocno_classes[j]] = true;
1060 setup_pressure_classes ();
1061 setup_uniform_class_p ();
1064 /* Setup translation in CLASS_TRANSLATE of all classes into a class
1065 given by array CLASSES of length CLASSES_NUM. The function is used
1066 make translation any reg class to an allocno class or to an
1067 pressure class. This translation is necessary for some
1068 calculations when we can use only allocno or pressure classes and
1069 such translation represents an approximate representation of all
1070 classes.
1072 The translation in case when allocatable hard register set of a
1073 given class is subset of allocatable hard register set of a class
1074 in CLASSES is pretty simple. We use smallest classes from CLASSES
1075 containing a given class. If allocatable hard register set of a
1076 given class is not a subset of any corresponding set of a class
1077 from CLASSES, we use the cheapest (with load/store point of view)
1078 class from CLASSES whose set intersects with given class set. */
1079 static void
1080 setup_class_translate_array (enum reg_class *class_translate,
1081 int classes_num, enum reg_class *classes)
1083 int cl, mode;
1084 enum reg_class aclass, best_class, *cl_ptr;
1085 int i, cost, min_cost, best_cost;
1087 for (cl = 0; cl < N_REG_CLASSES; cl++)
1088 class_translate[cl] = NO_REGS;
1090 for (i = 0; i < classes_num; i++)
1092 aclass = classes[i];
1093 for (cl_ptr = &alloc_reg_class_subclasses[aclass][0];
1094 (cl = *cl_ptr) != LIM_REG_CLASSES;
1095 cl_ptr++)
1096 if (class_translate[cl] == NO_REGS)
1097 class_translate[cl] = aclass;
1098 class_translate[aclass] = aclass;
1100 /* For classes which are not fully covered by one of given classes
1101 (in other words covered by more one given class), use the
1102 cheapest class. */
1103 for (cl = 0; cl < N_REG_CLASSES; cl++)
1105 if (cl == NO_REGS || class_translate[cl] != NO_REGS)
1106 continue;
1107 best_class = NO_REGS;
1108 best_cost = INT_MAX;
1109 for (i = 0; i < classes_num; i++)
1111 aclass = classes[i];
1112 COPY_HARD_REG_SET (temp_hard_regset,
1113 reg_class_contents[aclass]);
1114 AND_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1115 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1116 if (! hard_reg_set_empty_p (temp_hard_regset))
1118 min_cost = INT_MAX;
1119 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1121 cost = (ira_memory_move_cost[mode][aclass][0]
1122 + ira_memory_move_cost[mode][aclass][1]);
1123 if (min_cost > cost)
1124 min_cost = cost;
1126 if (best_class == NO_REGS || best_cost > min_cost)
1128 best_class = aclass;
1129 best_cost = min_cost;
1133 class_translate[cl] = best_class;
1137 /* Set up array IRA_ALLOCNO_CLASS_TRANSLATE and
1138 IRA_PRESSURE_CLASS_TRANSLATE. */
1139 static void
1140 setup_class_translate (void)
1142 setup_class_translate_array (ira_allocno_class_translate,
1143 ira_allocno_classes_num, ira_allocno_classes);
1144 setup_class_translate_array (ira_pressure_class_translate,
1145 ira_pressure_classes_num, ira_pressure_classes);
1148 /* Order numbers of allocno classes in original target allocno class
1149 array, -1 for non-allocno classes. */
1150 static int allocno_class_order[N_REG_CLASSES];
1152 /* The function used to sort the important classes. */
1153 static int
1154 comp_reg_classes_func (const void *v1p, const void *v2p)
1156 enum reg_class cl1 = *(const enum reg_class *) v1p;
1157 enum reg_class cl2 = *(const enum reg_class *) v2p;
1158 enum reg_class tcl1, tcl2;
1159 int diff;
1161 tcl1 = ira_allocno_class_translate[cl1];
1162 tcl2 = ira_allocno_class_translate[cl2];
1163 if (tcl1 != NO_REGS && tcl2 != NO_REGS
1164 && (diff = allocno_class_order[tcl1] - allocno_class_order[tcl2]) != 0)
1165 return diff;
1166 return (int) cl1 - (int) cl2;
1169 /* For correct work of function setup_reg_class_relation we need to
1170 reorder important classes according to the order of their allocno
1171 classes. It places important classes containing the same
1172 allocatable hard register set adjacent to each other and allocno
1173 class with the allocatable hard register set right after the other
1174 important classes with the same set.
1176 In example from comments of function
1177 setup_allocno_and_important_classes, it places LEGACY_REGS and
1178 GENERAL_REGS close to each other and GENERAL_REGS is after
1179 LEGACY_REGS. */
1180 static void
1181 reorder_important_classes (void)
1183 int i;
1185 for (i = 0; i < N_REG_CLASSES; i++)
1186 allocno_class_order[i] = -1;
1187 for (i = 0; i < ira_allocno_classes_num; i++)
1188 allocno_class_order[ira_allocno_classes[i]] = i;
1189 qsort (ira_important_classes, ira_important_classes_num,
1190 sizeof (enum reg_class), comp_reg_classes_func);
1191 for (i = 0; i < ira_important_classes_num; i++)
1192 ira_important_class_nums[ira_important_classes[i]] = i;
1195 /* Set up IRA_REG_CLASS_SUBUNION, IRA_REG_CLASS_SUPERUNION,
1196 IRA_REG_CLASS_SUPER_CLASSES, IRA_REG_CLASSES_INTERSECT, and
1197 IRA_REG_CLASSES_INTERSECT_P. For the meaning of the relations,
1198 please see corresponding comments in ira-int.h. */
1199 static void
1200 setup_reg_class_relations (void)
1202 int i, cl1, cl2, cl3;
1203 HARD_REG_SET intersection_set, union_set, temp_set2;
1204 bool important_class_p[N_REG_CLASSES];
1206 memset (important_class_p, 0, sizeof (important_class_p));
1207 for (i = 0; i < ira_important_classes_num; i++)
1208 important_class_p[ira_important_classes[i]] = true;
1209 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1211 ira_reg_class_super_classes[cl1][0] = LIM_REG_CLASSES;
1212 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1214 ira_reg_classes_intersect_p[cl1][cl2] = false;
1215 ira_reg_class_intersect[cl1][cl2] = NO_REGS;
1216 ira_reg_class_subset[cl1][cl2] = NO_REGS;
1217 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl1]);
1218 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1219 COPY_HARD_REG_SET (temp_set2, reg_class_contents[cl2]);
1220 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1221 if (hard_reg_set_empty_p (temp_hard_regset)
1222 && hard_reg_set_empty_p (temp_set2))
1224 /* The both classes have no allocatable hard registers
1225 -- take all class hard registers into account and use
1226 reg_class_subunion and reg_class_superunion. */
1227 for (i = 0;; i++)
1229 cl3 = reg_class_subclasses[cl1][i];
1230 if (cl3 == LIM_REG_CLASSES)
1231 break;
1232 if (reg_class_subset_p (ira_reg_class_intersect[cl1][cl2],
1233 (enum reg_class) cl3))
1234 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1236 ira_reg_class_subunion[cl1][cl2] = reg_class_subunion[cl1][cl2];
1237 ira_reg_class_superunion[cl1][cl2] = reg_class_superunion[cl1][cl2];
1238 continue;
1240 ira_reg_classes_intersect_p[cl1][cl2]
1241 = hard_reg_set_intersect_p (temp_hard_regset, temp_set2);
1242 if (important_class_p[cl1] && important_class_p[cl2]
1243 && hard_reg_set_subset_p (temp_hard_regset, temp_set2))
1245 /* CL1 and CL2 are important classes and CL1 allocatable
1246 hard register set is inside of CL2 allocatable hard
1247 registers -- make CL1 a superset of CL2. */
1248 enum reg_class *p;
1250 p = &ira_reg_class_super_classes[cl1][0];
1251 while (*p != LIM_REG_CLASSES)
1252 p++;
1253 *p++ = (enum reg_class) cl2;
1254 *p = LIM_REG_CLASSES;
1256 ira_reg_class_subunion[cl1][cl2] = NO_REGS;
1257 ira_reg_class_superunion[cl1][cl2] = NO_REGS;
1258 COPY_HARD_REG_SET (intersection_set, reg_class_contents[cl1]);
1259 AND_HARD_REG_SET (intersection_set, reg_class_contents[cl2]);
1260 AND_COMPL_HARD_REG_SET (intersection_set, no_unit_alloc_regs);
1261 COPY_HARD_REG_SET (union_set, reg_class_contents[cl1]);
1262 IOR_HARD_REG_SET (union_set, reg_class_contents[cl2]);
1263 AND_COMPL_HARD_REG_SET (union_set, no_unit_alloc_regs);
1264 for (cl3 = 0; cl3 < N_REG_CLASSES; cl3++)
1266 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl3]);
1267 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1268 if (hard_reg_set_subset_p (temp_hard_regset, intersection_set))
1270 /* CL3 allocatable hard register set is inside of
1271 intersection of allocatable hard register sets
1272 of CL1 and CL2. */
1273 if (important_class_p[cl3])
1275 COPY_HARD_REG_SET
1276 (temp_set2,
1277 reg_class_contents
1278 [(int) ira_reg_class_intersect[cl1][cl2]]);
1279 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1280 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1281 /* If the allocatable hard register sets are
1282 the same, prefer GENERAL_REGS or the
1283 smallest class for debugging
1284 purposes. */
1285 || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
1286 && (cl3 == GENERAL_REGS
1287 || ((ira_reg_class_intersect[cl1][cl2]
1288 != GENERAL_REGS)
1289 && hard_reg_set_subset_p
1290 (reg_class_contents[cl3],
1291 reg_class_contents
1292 [(int)
1293 ira_reg_class_intersect[cl1][cl2]])))))
1294 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1296 COPY_HARD_REG_SET
1297 (temp_set2,
1298 reg_class_contents[(int) ira_reg_class_subset[cl1][cl2]]);
1299 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1300 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1301 /* Ignore unavailable hard registers and prefer
1302 smallest class for debugging purposes. */
1303 || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
1304 && hard_reg_set_subset_p
1305 (reg_class_contents[cl3],
1306 reg_class_contents
1307 [(int) ira_reg_class_subset[cl1][cl2]])))
1308 ira_reg_class_subset[cl1][cl2] = (enum reg_class) cl3;
1310 if (important_class_p[cl3]
1311 && hard_reg_set_subset_p (temp_hard_regset, union_set))
1313 /* CL3 allocatable hard register set is inside of
1314 union of allocatable hard register sets of CL1
1315 and CL2. */
1316 COPY_HARD_REG_SET
1317 (temp_set2,
1318 reg_class_contents[(int) ira_reg_class_subunion[cl1][cl2]]);
1319 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1320 if (ira_reg_class_subunion[cl1][cl2] == NO_REGS
1321 || (hard_reg_set_subset_p (temp_set2, temp_hard_regset)
1323 && (! hard_reg_set_equal_p (temp_set2,
1324 temp_hard_regset)
1325 || cl3 == GENERAL_REGS
1326 /* If the allocatable hard register sets are the
1327 same, prefer GENERAL_REGS or the smallest
1328 class for debugging purposes. */
1329 || (ira_reg_class_subunion[cl1][cl2] != GENERAL_REGS
1330 && hard_reg_set_subset_p
1331 (reg_class_contents[cl3],
1332 reg_class_contents
1333 [(int) ira_reg_class_subunion[cl1][cl2]])))))
1334 ira_reg_class_subunion[cl1][cl2] = (enum reg_class) cl3;
1336 if (hard_reg_set_subset_p (union_set, temp_hard_regset))
1338 /* CL3 allocatable hard register set contains union
1339 of allocatable hard register sets of CL1 and
1340 CL2. */
1341 COPY_HARD_REG_SET
1342 (temp_set2,
1343 reg_class_contents[(int) ira_reg_class_superunion[cl1][cl2]]);
1344 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1345 if (ira_reg_class_superunion[cl1][cl2] == NO_REGS
1346 || (hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1348 && (! hard_reg_set_equal_p (temp_set2,
1349 temp_hard_regset)
1350 || cl3 == GENERAL_REGS
1351 /* If the allocatable hard register sets are the
1352 same, prefer GENERAL_REGS or the smallest
1353 class for debugging purposes. */
1354 || (ira_reg_class_superunion[cl1][cl2] != GENERAL_REGS
1355 && hard_reg_set_subset_p
1356 (reg_class_contents[cl3],
1357 reg_class_contents
1358 [(int) ira_reg_class_superunion[cl1][cl2]])))))
1359 ira_reg_class_superunion[cl1][cl2] = (enum reg_class) cl3;
1366 /* Output all uniform and important classes into file F. */
1367 static void
1368 print_uniform_and_important_classes (FILE *f)
1370 int i, cl;
1372 fprintf (f, "Uniform classes:\n");
1373 for (cl = 0; cl < N_REG_CLASSES; cl++)
1374 if (ira_uniform_class_p[cl])
1375 fprintf (f, " %s", reg_class_names[cl]);
1376 fprintf (f, "\nImportant classes:\n");
1377 for (i = 0; i < ira_important_classes_num; i++)
1378 fprintf (f, " %s", reg_class_names[ira_important_classes[i]]);
1379 fprintf (f, "\n");
1382 /* Output all possible allocno or pressure classes and their
1383 translation map into file F. */
1384 static void
1385 print_translated_classes (FILE *f, bool pressure_p)
1387 int classes_num = (pressure_p
1388 ? ira_pressure_classes_num : ira_allocno_classes_num);
1389 enum reg_class *classes = (pressure_p
1390 ? ira_pressure_classes : ira_allocno_classes);
1391 enum reg_class *class_translate = (pressure_p
1392 ? ira_pressure_class_translate
1393 : ira_allocno_class_translate);
1394 int i;
1396 fprintf (f, "%s classes:\n", pressure_p ? "Pressure" : "Allocno");
1397 for (i = 0; i < classes_num; i++)
1398 fprintf (f, " %s", reg_class_names[classes[i]]);
1399 fprintf (f, "\nClass translation:\n");
1400 for (i = 0; i < N_REG_CLASSES; i++)
1401 fprintf (f, " %s -> %s\n", reg_class_names[i],
1402 reg_class_names[class_translate[i]]);
1405 /* Output all possible allocno and translation classes and the
1406 translation maps into stderr. */
1407 void
1408 ira_debug_allocno_classes (void)
1410 print_uniform_and_important_classes (stderr);
1411 print_translated_classes (stderr, false);
1412 print_translated_classes (stderr, true);
1415 /* Set up different arrays concerning class subsets, allocno and
1416 important classes. */
1417 static void
1418 find_reg_classes (void)
1420 setup_allocno_and_important_classes ();
1421 setup_class_translate ();
1422 reorder_important_classes ();
1423 setup_reg_class_relations ();
1428 /* Set up the array above. */
1429 static void
1430 setup_hard_regno_aclass (void)
1432 int i;
1434 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1436 #if 1
1437 ira_hard_regno_allocno_class[i]
1438 = (TEST_HARD_REG_BIT (no_unit_alloc_regs, i)
1439 ? NO_REGS
1440 : ira_allocno_class_translate[REGNO_REG_CLASS (i)]);
1441 #else
1442 int j;
1443 enum reg_class cl;
1444 ira_hard_regno_allocno_class[i] = NO_REGS;
1445 for (j = 0; j < ira_allocno_classes_num; j++)
1447 cl = ira_allocno_classes[j];
1448 if (ira_class_hard_reg_index[cl][i] >= 0)
1450 ira_hard_regno_allocno_class[i] = cl;
1451 break;
1454 #endif
1460 /* Form IRA_REG_CLASS_MAX_NREGS and IRA_REG_CLASS_MIN_NREGS maps. */
1461 static void
1462 setup_reg_class_nregs (void)
1464 int i, cl, cl2, m;
1466 for (m = 0; m < MAX_MACHINE_MODE; m++)
1468 for (cl = 0; cl < N_REG_CLASSES; cl++)
1469 ira_reg_class_max_nregs[cl][m]
1470 = ira_reg_class_min_nregs[cl][m]
1471 = targetm.class_max_nregs ((reg_class_t) cl, (machine_mode) m);
1472 for (cl = 0; cl < N_REG_CLASSES; cl++)
1473 for (i = 0;
1474 (cl2 = alloc_reg_class_subclasses[cl][i]) != LIM_REG_CLASSES;
1475 i++)
1476 if (ira_reg_class_min_nregs[cl2][m]
1477 < ira_reg_class_min_nregs[cl][m])
1478 ira_reg_class_min_nregs[cl][m] = ira_reg_class_min_nregs[cl2][m];
1484 /* Set up IRA_PROHIBITED_CLASS_MODE_REGS and IRA_CLASS_SINGLETON.
1485 This function is called once IRA_CLASS_HARD_REGS has been initialized. */
1486 static void
1487 setup_prohibited_class_mode_regs (void)
1489 int j, k, hard_regno, cl, last_hard_regno, count;
1491 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1493 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1494 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1495 for (j = 0; j < NUM_MACHINE_MODES; j++)
1497 count = 0;
1498 last_hard_regno = -1;
1499 CLEAR_HARD_REG_SET (ira_prohibited_class_mode_regs[cl][j]);
1500 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1502 hard_regno = ira_class_hard_regs[cl][k];
1503 if (! HARD_REGNO_MODE_OK (hard_regno, (machine_mode) j))
1504 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1505 hard_regno);
1506 else if (in_hard_reg_set_p (temp_hard_regset,
1507 (machine_mode) j, hard_regno))
1509 last_hard_regno = hard_regno;
1510 count++;
1513 ira_class_singleton[cl][j] = (count == 1 ? last_hard_regno : -1);
1518 /* Clarify IRA_PROHIBITED_CLASS_MODE_REGS by excluding hard registers
1519 spanning from one register pressure class to another one. It is
1520 called after defining the pressure classes. */
1521 static void
1522 clarify_prohibited_class_mode_regs (void)
1524 int j, k, hard_regno, cl, pclass, nregs;
1526 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1527 for (j = 0; j < NUM_MACHINE_MODES; j++)
1529 CLEAR_HARD_REG_SET (ira_useful_class_mode_regs[cl][j]);
1530 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1532 hard_regno = ira_class_hard_regs[cl][k];
1533 if (TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j], hard_regno))
1534 continue;
1535 nregs = hard_regno_nregs[hard_regno][j];
1536 if (hard_regno + nregs > FIRST_PSEUDO_REGISTER)
1538 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1539 hard_regno);
1540 continue;
1542 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
1543 for (nregs-- ;nregs >= 0; nregs--)
1544 if (((enum reg_class) pclass
1545 != ira_pressure_class_translate[REGNO_REG_CLASS
1546 (hard_regno + nregs)]))
1548 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1549 hard_regno);
1550 break;
1552 if (!TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1553 hard_regno))
1554 add_to_hard_reg_set (&ira_useful_class_mode_regs[cl][j],
1555 (machine_mode) j, hard_regno);
1560 /* Allocate and initialize IRA_REGISTER_MOVE_COST, IRA_MAY_MOVE_IN_COST
1561 and IRA_MAY_MOVE_OUT_COST for MODE. */
1562 void
1563 ira_init_register_move_cost (machine_mode mode)
1565 static unsigned short last_move_cost[N_REG_CLASSES][N_REG_CLASSES];
1566 bool all_match = true;
1567 unsigned int cl1, cl2;
1569 ira_assert (ira_register_move_cost[mode] == NULL
1570 && ira_may_move_in_cost[mode] == NULL
1571 && ira_may_move_out_cost[mode] == NULL);
1572 ira_assert (have_regs_of_mode[mode]);
1573 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1574 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1576 int cost;
1577 if (!contains_reg_of_mode[cl1][mode]
1578 || !contains_reg_of_mode[cl2][mode])
1580 if ((ira_reg_class_max_nregs[cl1][mode]
1581 > ira_class_hard_regs_num[cl1])
1582 || (ira_reg_class_max_nregs[cl2][mode]
1583 > ira_class_hard_regs_num[cl2]))
1584 cost = 65535;
1585 else
1586 cost = (ira_memory_move_cost[mode][cl1][0]
1587 + ira_memory_move_cost[mode][cl2][1]) * 2;
1589 else
1591 cost = register_move_cost (mode, (enum reg_class) cl1,
1592 (enum reg_class) cl2);
1593 ira_assert (cost < 65535);
1595 all_match &= (last_move_cost[cl1][cl2] == cost);
1596 last_move_cost[cl1][cl2] = cost;
1598 if (all_match && last_mode_for_init_move_cost != -1)
1600 ira_register_move_cost[mode]
1601 = ira_register_move_cost[last_mode_for_init_move_cost];
1602 ira_may_move_in_cost[mode]
1603 = ira_may_move_in_cost[last_mode_for_init_move_cost];
1604 ira_may_move_out_cost[mode]
1605 = ira_may_move_out_cost[last_mode_for_init_move_cost];
1606 return;
1608 last_mode_for_init_move_cost = mode;
1609 ira_register_move_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1610 ira_may_move_in_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1611 ira_may_move_out_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1612 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1613 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1615 int cost;
1616 enum reg_class *p1, *p2;
1618 if (last_move_cost[cl1][cl2] == 65535)
1620 ira_register_move_cost[mode][cl1][cl2] = 65535;
1621 ira_may_move_in_cost[mode][cl1][cl2] = 65535;
1622 ira_may_move_out_cost[mode][cl1][cl2] = 65535;
1624 else
1626 cost = last_move_cost[cl1][cl2];
1628 for (p2 = &reg_class_subclasses[cl2][0];
1629 *p2 != LIM_REG_CLASSES; p2++)
1630 if (ira_class_hard_regs_num[*p2] > 0
1631 && (ira_reg_class_max_nregs[*p2][mode]
1632 <= ira_class_hard_regs_num[*p2]))
1633 cost = MAX (cost, ira_register_move_cost[mode][cl1][*p2]);
1635 for (p1 = &reg_class_subclasses[cl1][0];
1636 *p1 != LIM_REG_CLASSES; p1++)
1637 if (ira_class_hard_regs_num[*p1] > 0
1638 && (ira_reg_class_max_nregs[*p1][mode]
1639 <= ira_class_hard_regs_num[*p1]))
1640 cost = MAX (cost, ira_register_move_cost[mode][*p1][cl2]);
1642 ira_assert (cost <= 65535);
1643 ira_register_move_cost[mode][cl1][cl2] = cost;
1645 if (ira_class_subset_p[cl1][cl2])
1646 ira_may_move_in_cost[mode][cl1][cl2] = 0;
1647 else
1648 ira_may_move_in_cost[mode][cl1][cl2] = cost;
1650 if (ira_class_subset_p[cl2][cl1])
1651 ira_may_move_out_cost[mode][cl1][cl2] = 0;
1652 else
1653 ira_may_move_out_cost[mode][cl1][cl2] = cost;
1660 /* This is called once during compiler work. It sets up
1661 different arrays whose values don't depend on the compiled
1662 function. */
1663 void
1664 ira_init_once (void)
1666 ira_init_costs_once ();
1667 lra_init_once ();
1670 /* Free ira_max_register_move_cost, ira_may_move_in_cost and
1671 ira_may_move_out_cost for each mode. */
1672 void
1673 target_ira_int::free_register_move_costs (void)
1675 int mode, i;
1677 /* Reset move_cost and friends, making sure we only free shared
1678 table entries once. */
1679 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1680 if (x_ira_register_move_cost[mode])
1682 for (i = 0;
1683 i < mode && (x_ira_register_move_cost[i]
1684 != x_ira_register_move_cost[mode]);
1685 i++)
1687 if (i == mode)
1689 free (x_ira_register_move_cost[mode]);
1690 free (x_ira_may_move_in_cost[mode]);
1691 free (x_ira_may_move_out_cost[mode]);
1694 memset (x_ira_register_move_cost, 0, sizeof x_ira_register_move_cost);
1695 memset (x_ira_may_move_in_cost, 0, sizeof x_ira_may_move_in_cost);
1696 memset (x_ira_may_move_out_cost, 0, sizeof x_ira_may_move_out_cost);
1697 last_mode_for_init_move_cost = -1;
1700 target_ira_int::~target_ira_int ()
1702 free_ira_costs ();
1703 free_register_move_costs ();
1706 /* This is called every time when register related information is
1707 changed. */
1708 void
1709 ira_init (void)
1711 this_target_ira_int->free_register_move_costs ();
1712 setup_reg_mode_hard_regset ();
1713 setup_alloc_regs (flag_omit_frame_pointer != 0);
1714 setup_class_subset_and_memory_move_costs ();
1715 setup_reg_class_nregs ();
1716 setup_prohibited_class_mode_regs ();
1717 find_reg_classes ();
1718 clarify_prohibited_class_mode_regs ();
1719 setup_hard_regno_aclass ();
1720 ira_init_costs ();
1724 #define ira_prohibited_mode_move_regs_initialized_p \
1725 (this_target_ira_int->x_ira_prohibited_mode_move_regs_initialized_p)
1727 /* Set up IRA_PROHIBITED_MODE_MOVE_REGS. */
1728 static void
1729 setup_prohibited_mode_move_regs (void)
1731 int i, j;
1732 rtx test_reg1, test_reg2, move_pat;
1733 rtx_insn *move_insn;
1735 if (ira_prohibited_mode_move_regs_initialized_p)
1736 return;
1737 ira_prohibited_mode_move_regs_initialized_p = true;
1738 test_reg1 = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
1739 test_reg2 = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 2);
1740 move_pat = gen_rtx_SET (test_reg1, test_reg2);
1741 move_insn = gen_rtx_INSN (VOIDmode, 0, 0, 0, move_pat, 0, -1, 0);
1742 for (i = 0; i < NUM_MACHINE_MODES; i++)
1744 SET_HARD_REG_SET (ira_prohibited_mode_move_regs[i]);
1745 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1747 if (! HARD_REGNO_MODE_OK (j, (machine_mode) i))
1748 continue;
1749 set_mode_and_regno (test_reg1, (machine_mode) i, j);
1750 set_mode_and_regno (test_reg2, (machine_mode) i, j);
1751 INSN_CODE (move_insn) = -1;
1752 recog_memoized (move_insn);
1753 if (INSN_CODE (move_insn) < 0)
1754 continue;
1755 extract_insn (move_insn);
1756 /* We don't know whether the move will be in code that is optimized
1757 for size or speed, so consider all enabled alternatives. */
1758 if (! constrain_operands (1, get_enabled_alternatives (move_insn)))
1759 continue;
1760 CLEAR_HARD_REG_BIT (ira_prohibited_mode_move_regs[i], j);
1767 /* Setup possible alternatives in ALTS for INSN. */
1768 void
1769 ira_setup_alts (rtx_insn *insn, HARD_REG_SET &alts)
1771 /* MAP nalt * nop -> start of constraints for given operand and
1772 alternative. */
1773 static vec<const char *> insn_constraints;
1774 int nop, nalt;
1775 bool curr_swapped;
1776 const char *p;
1777 int commutative = -1;
1779 extract_insn (insn);
1780 alternative_mask preferred = get_preferred_alternatives (insn);
1781 CLEAR_HARD_REG_SET (alts);
1782 insn_constraints.release ();
1783 insn_constraints.safe_grow_cleared (recog_data.n_operands
1784 * recog_data.n_alternatives + 1);
1785 /* Check that the hard reg set is enough for holding all
1786 alternatives. It is hard to imagine the situation when the
1787 assertion is wrong. */
1788 ira_assert (recog_data.n_alternatives
1789 <= (int) MAX (sizeof (HARD_REG_ELT_TYPE) * CHAR_BIT,
1790 FIRST_PSEUDO_REGISTER));
1791 for (curr_swapped = false;; curr_swapped = true)
1793 /* Calculate some data common for all alternatives to speed up the
1794 function. */
1795 for (nop = 0; nop < recog_data.n_operands; nop++)
1797 for (nalt = 0, p = recog_data.constraints[nop];
1798 nalt < recog_data.n_alternatives;
1799 nalt++)
1801 insn_constraints[nop * recog_data.n_alternatives + nalt] = p;
1802 while (*p && *p != ',')
1804 /* We only support one commutative marker, the first
1805 one. We already set commutative above. */
1806 if (*p == '%' && commutative < 0)
1807 commutative = nop;
1808 p++;
1810 if (*p)
1811 p++;
1814 for (nalt = 0; nalt < recog_data.n_alternatives; nalt++)
1816 if (!TEST_BIT (preferred, nalt)
1817 || TEST_HARD_REG_BIT (alts, nalt))
1818 continue;
1820 for (nop = 0; nop < recog_data.n_operands; nop++)
1822 int c, len;
1824 rtx op = recog_data.operand[nop];
1825 p = insn_constraints[nop * recog_data.n_alternatives + nalt];
1826 if (*p == 0 || *p == ',')
1827 continue;
1830 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
1832 case '#':
1833 case ',':
1834 c = '\0';
1835 case '\0':
1836 len = 0;
1837 break;
1839 case '%':
1840 /* The commutative modifier is handled above. */
1841 break;
1843 case '0': case '1': case '2': case '3': case '4':
1844 case '5': case '6': case '7': case '8': case '9':
1845 goto op_success;
1846 break;
1848 case 'g':
1849 goto op_success;
1850 break;
1852 default:
1854 enum constraint_num cn = lookup_constraint (p);
1855 switch (get_constraint_type (cn))
1857 case CT_REGISTER:
1858 if (reg_class_for_constraint (cn) != NO_REGS)
1859 goto op_success;
1860 break;
1862 case CT_CONST_INT:
1863 if (CONST_INT_P (op)
1864 && (insn_const_int_ok_for_constraint
1865 (INTVAL (op), cn)))
1866 goto op_success;
1867 break;
1869 case CT_ADDRESS:
1870 case CT_MEMORY:
1871 case CT_SPECIAL_MEMORY:
1872 goto op_success;
1874 case CT_FIXED_FORM:
1875 if (constraint_satisfied_p (op, cn))
1876 goto op_success;
1877 break;
1879 break;
1882 while (p += len, c);
1883 break;
1884 op_success:
1887 if (nop >= recog_data.n_operands)
1888 SET_HARD_REG_BIT (alts, nalt);
1890 if (commutative < 0)
1891 break;
1892 /* Swap forth and back to avoid changing recog_data. */
1893 std::swap (recog_data.operand[commutative],
1894 recog_data.operand[commutative + 1]);
1895 if (curr_swapped)
1896 break;
1900 /* Return the number of the output non-early clobber operand which
1901 should be the same in any case as operand with number OP_NUM (or
1902 negative value if there is no such operand). The function takes
1903 only really possible alternatives into consideration. */
1905 ira_get_dup_out_num (int op_num, HARD_REG_SET &alts)
1907 int curr_alt, c, original, dup;
1908 bool ignore_p, use_commut_op_p;
1909 const char *str;
1911 if (op_num < 0 || recog_data.n_alternatives == 0)
1912 return -1;
1913 /* We should find duplications only for input operands. */
1914 if (recog_data.operand_type[op_num] != OP_IN)
1915 return -1;
1916 str = recog_data.constraints[op_num];
1917 use_commut_op_p = false;
1918 for (;;)
1920 rtx op = recog_data.operand[op_num];
1922 for (curr_alt = 0, ignore_p = !TEST_HARD_REG_BIT (alts, curr_alt),
1923 original = -1;;)
1925 c = *str;
1926 if (c == '\0')
1927 break;
1928 if (c == '#')
1929 ignore_p = true;
1930 else if (c == ',')
1932 curr_alt++;
1933 ignore_p = !TEST_HARD_REG_BIT (alts, curr_alt);
1935 else if (! ignore_p)
1936 switch (c)
1938 case 'g':
1939 goto fail;
1940 default:
1942 enum constraint_num cn = lookup_constraint (str);
1943 enum reg_class cl = reg_class_for_constraint (cn);
1944 if (cl != NO_REGS
1945 && !targetm.class_likely_spilled_p (cl))
1946 goto fail;
1947 if (constraint_satisfied_p (op, cn))
1948 goto fail;
1949 break;
1952 case '0': case '1': case '2': case '3': case '4':
1953 case '5': case '6': case '7': case '8': case '9':
1954 if (original != -1 && original != c)
1955 goto fail;
1956 original = c;
1957 break;
1959 str += CONSTRAINT_LEN (c, str);
1961 if (original == -1)
1962 goto fail;
1963 dup = -1;
1964 for (ignore_p = false, str = recog_data.constraints[original - '0'];
1965 *str != 0;
1966 str++)
1967 if (ignore_p)
1969 if (*str == ',')
1970 ignore_p = false;
1972 else if (*str == '#')
1973 ignore_p = true;
1974 else if (! ignore_p)
1976 if (*str == '=')
1977 dup = original - '0';
1978 /* It is better ignore an alternative with early clobber. */
1979 else if (*str == '&')
1980 goto fail;
1982 if (dup >= 0)
1983 return dup;
1984 fail:
1985 if (use_commut_op_p)
1986 break;
1987 use_commut_op_p = true;
1988 if (recog_data.constraints[op_num][0] == '%')
1989 str = recog_data.constraints[op_num + 1];
1990 else if (op_num > 0 && recog_data.constraints[op_num - 1][0] == '%')
1991 str = recog_data.constraints[op_num - 1];
1992 else
1993 break;
1995 return -1;
2000 /* Search forward to see if the source register of a copy insn dies
2001 before either it or the destination register is modified, but don't
2002 scan past the end of the basic block. If so, we can replace the
2003 source with the destination and let the source die in the copy
2004 insn.
2006 This will reduce the number of registers live in that range and may
2007 enable the destination and the source coalescing, thus often saving
2008 one register in addition to a register-register copy. */
2010 static void
2011 decrease_live_ranges_number (void)
2013 basic_block bb;
2014 rtx_insn *insn;
2015 rtx set, src, dest, dest_death, note;
2016 rtx_insn *p, *q;
2017 int sregno, dregno;
2019 if (! flag_expensive_optimizations)
2020 return;
2022 if (ira_dump_file)
2023 fprintf (ira_dump_file, "Starting decreasing number of live ranges...\n");
2025 FOR_EACH_BB_FN (bb, cfun)
2026 FOR_BB_INSNS (bb, insn)
2028 set = single_set (insn);
2029 if (! set)
2030 continue;
2031 src = SET_SRC (set);
2032 dest = SET_DEST (set);
2033 if (! REG_P (src) || ! REG_P (dest)
2034 || find_reg_note (insn, REG_DEAD, src))
2035 continue;
2036 sregno = REGNO (src);
2037 dregno = REGNO (dest);
2039 /* We don't want to mess with hard regs if register classes
2040 are small. */
2041 if (sregno == dregno
2042 || (targetm.small_register_classes_for_mode_p (GET_MODE (src))
2043 && (sregno < FIRST_PSEUDO_REGISTER
2044 || dregno < FIRST_PSEUDO_REGISTER))
2045 /* We don't see all updates to SP if they are in an
2046 auto-inc memory reference, so we must disallow this
2047 optimization on them. */
2048 || sregno == STACK_POINTER_REGNUM
2049 || dregno == STACK_POINTER_REGNUM)
2050 continue;
2052 dest_death = NULL_RTX;
2054 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
2056 if (! INSN_P (p))
2057 continue;
2058 if (BLOCK_FOR_INSN (p) != bb)
2059 break;
2061 if (reg_set_p (src, p) || reg_set_p (dest, p)
2062 /* If SRC is an asm-declared register, it must not be
2063 replaced in any asm. Unfortunately, the REG_EXPR
2064 tree for the asm variable may be absent in the SRC
2065 rtx, so we can't check the actual register
2066 declaration easily (the asm operand will have it,
2067 though). To avoid complicating the test for a rare
2068 case, we just don't perform register replacement
2069 for a hard reg mentioned in an asm. */
2070 || (sregno < FIRST_PSEUDO_REGISTER
2071 && asm_noperands (PATTERN (p)) >= 0
2072 && reg_overlap_mentioned_p (src, PATTERN (p)))
2073 /* Don't change hard registers used by a call. */
2074 || (CALL_P (p) && sregno < FIRST_PSEUDO_REGISTER
2075 && find_reg_fusage (p, USE, src))
2076 /* Don't change a USE of a register. */
2077 || (GET_CODE (PATTERN (p)) == USE
2078 && reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
2079 break;
2081 /* See if all of SRC dies in P. This test is slightly
2082 more conservative than it needs to be. */
2083 if ((note = find_regno_note (p, REG_DEAD, sregno))
2084 && GET_MODE (XEXP (note, 0)) == GET_MODE (src))
2086 int failed = 0;
2088 /* We can do the optimization. Scan forward from INSN
2089 again, replacing regs as we go. Set FAILED if a
2090 replacement can't be done. In that case, we can't
2091 move the death note for SRC. This should be
2092 rare. */
2094 /* Set to stop at next insn. */
2095 for (q = next_real_insn (insn);
2096 q != next_real_insn (p);
2097 q = next_real_insn (q))
2099 if (reg_overlap_mentioned_p (src, PATTERN (q)))
2101 /* If SRC is a hard register, we might miss
2102 some overlapping registers with
2103 validate_replace_rtx, so we would have to
2104 undo it. We can't if DEST is present in
2105 the insn, so fail in that combination of
2106 cases. */
2107 if (sregno < FIRST_PSEUDO_REGISTER
2108 && reg_mentioned_p (dest, PATTERN (q)))
2109 failed = 1;
2111 /* Attempt to replace all uses. */
2112 else if (!validate_replace_rtx (src, dest, q))
2113 failed = 1;
2115 /* If this succeeded, but some part of the
2116 register is still present, undo the
2117 replacement. */
2118 else if (sregno < FIRST_PSEUDO_REGISTER
2119 && reg_overlap_mentioned_p (src, PATTERN (q)))
2121 validate_replace_rtx (dest, src, q);
2122 failed = 1;
2126 /* If DEST dies here, remove the death note and
2127 save it for later. Make sure ALL of DEST dies
2128 here; again, this is overly conservative. */
2129 if (! dest_death
2130 && (dest_death = find_regno_note (q, REG_DEAD, dregno)))
2132 if (GET_MODE (XEXP (dest_death, 0)) == GET_MODE (dest))
2133 remove_note (q, dest_death);
2134 else
2136 failed = 1;
2137 dest_death = 0;
2142 if (! failed)
2144 /* Move death note of SRC from P to INSN. */
2145 remove_note (p, note);
2146 XEXP (note, 1) = REG_NOTES (insn);
2147 REG_NOTES (insn) = note;
2150 /* DEST is also dead if INSN has a REG_UNUSED note for
2151 DEST. */
2152 if (! dest_death
2153 && (dest_death
2154 = find_regno_note (insn, REG_UNUSED, dregno)))
2156 PUT_REG_NOTE_KIND (dest_death, REG_DEAD);
2157 remove_note (insn, dest_death);
2160 /* Put death note of DEST on P if we saw it die. */
2161 if (dest_death)
2163 XEXP (dest_death, 1) = REG_NOTES (p);
2164 REG_NOTES (p) = dest_death;
2166 break;
2169 /* If SRC is a hard register which is set or killed in
2170 some other way, we can't do this optimization. */
2171 else if (sregno < FIRST_PSEUDO_REGISTER && dead_or_set_p (p, src))
2172 break;
2179 /* Return nonzero if REGNO is a particularly bad choice for reloading X. */
2180 static bool
2181 ira_bad_reload_regno_1 (int regno, rtx x)
2183 int x_regno, n, i;
2184 ira_allocno_t a;
2185 enum reg_class pref;
2187 /* We only deal with pseudo regs. */
2188 if (! x || GET_CODE (x) != REG)
2189 return false;
2191 x_regno = REGNO (x);
2192 if (x_regno < FIRST_PSEUDO_REGISTER)
2193 return false;
2195 /* If the pseudo prefers REGNO explicitly, then do not consider
2196 REGNO a bad spill choice. */
2197 pref = reg_preferred_class (x_regno);
2198 if (reg_class_size[pref] == 1)
2199 return !TEST_HARD_REG_BIT (reg_class_contents[pref], regno);
2201 /* If the pseudo conflicts with REGNO, then we consider REGNO a
2202 poor choice for a reload regno. */
2203 a = ira_regno_allocno_map[x_regno];
2204 n = ALLOCNO_NUM_OBJECTS (a);
2205 for (i = 0; i < n; i++)
2207 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2208 if (TEST_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno))
2209 return true;
2211 return false;
2214 /* Return nonzero if REGNO is a particularly bad choice for reloading
2215 IN or OUT. */
2216 bool
2217 ira_bad_reload_regno (int regno, rtx in, rtx out)
2219 return (ira_bad_reload_regno_1 (regno, in)
2220 || ira_bad_reload_regno_1 (regno, out));
2223 /* Add register clobbers from asm statements. */
2224 static void
2225 compute_regs_asm_clobbered (void)
2227 basic_block bb;
2229 FOR_EACH_BB_FN (bb, cfun)
2231 rtx_insn *insn;
2232 FOR_BB_INSNS_REVERSE (bb, insn)
2234 df_ref def;
2236 if (NONDEBUG_INSN_P (insn) && extract_asm_operands (PATTERN (insn)))
2237 FOR_EACH_INSN_DEF (def, insn)
2239 unsigned int dregno = DF_REF_REGNO (def);
2240 if (HARD_REGISTER_NUM_P (dregno))
2241 add_to_hard_reg_set (&crtl->asm_clobbers,
2242 GET_MODE (DF_REF_REAL_REG (def)),
2243 dregno);
2250 /* Set up ELIMINABLE_REGSET, IRA_NO_ALLOC_REGS, and
2251 REGS_EVER_LIVE. */
2252 void
2253 ira_setup_eliminable_regset (void)
2255 #ifdef ELIMINABLE_REGS
2256 int i;
2257 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
2258 #endif
2259 /* FIXME: If EXIT_IGNORE_STACK is set, we will not save and restore
2260 sp for alloca. So we can't eliminate the frame pointer in that
2261 case. At some point, we should improve this by emitting the
2262 sp-adjusting insns for this case. */
2263 frame_pointer_needed
2264 = (! flag_omit_frame_pointer
2265 || (cfun->calls_alloca && EXIT_IGNORE_STACK)
2266 /* We need the frame pointer to catch stack overflow exceptions if
2267 the stack pointer is moving (as for the alloca case just above). */
2268 || (STACK_CHECK_MOVING_SP
2269 && flag_stack_check
2270 && flag_exceptions
2271 && cfun->can_throw_non_call_exceptions)
2272 || crtl->accesses_prior_frames
2273 || (SUPPORTS_STACK_ALIGNMENT && crtl->stack_realign_needed)
2274 /* We need a frame pointer for all Cilk Plus functions that use
2275 Cilk keywords. */
2276 || (flag_cilkplus && cfun->is_cilk_function)
2277 || targetm.frame_pointer_required ());
2279 /* The chance that FRAME_POINTER_NEEDED is changed from inspecting
2280 RTL is very small. So if we use frame pointer for RA and RTL
2281 actually prevents this, we will spill pseudos assigned to the
2282 frame pointer in LRA. */
2284 if (frame_pointer_needed)
2285 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
2287 COPY_HARD_REG_SET (ira_no_alloc_regs, no_unit_alloc_regs);
2288 CLEAR_HARD_REG_SET (eliminable_regset);
2290 compute_regs_asm_clobbered ();
2292 /* Build the regset of all eliminable registers and show we can't
2293 use those that we already know won't be eliminated. */
2294 #ifdef ELIMINABLE_REGS
2295 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
2297 bool cannot_elim
2298 = (! targetm.can_eliminate (eliminables[i].from, eliminables[i].to)
2299 || (eliminables[i].to == STACK_POINTER_REGNUM && frame_pointer_needed));
2301 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, eliminables[i].from))
2303 SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);
2305 if (cannot_elim)
2306 SET_HARD_REG_BIT (ira_no_alloc_regs, eliminables[i].from);
2308 else if (cannot_elim)
2309 error ("%s cannot be used in asm here",
2310 reg_names[eliminables[i].from]);
2311 else
2312 df_set_regs_ever_live (eliminables[i].from, true);
2314 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
2316 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
2318 SET_HARD_REG_BIT (eliminable_regset, HARD_FRAME_POINTER_REGNUM);
2319 if (frame_pointer_needed)
2320 SET_HARD_REG_BIT (ira_no_alloc_regs, HARD_FRAME_POINTER_REGNUM);
2322 else if (frame_pointer_needed)
2323 error ("%s cannot be used in asm here",
2324 reg_names[HARD_FRAME_POINTER_REGNUM]);
2325 else
2326 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
2329 #else
2330 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
2332 SET_HARD_REG_BIT (eliminable_regset, FRAME_POINTER_REGNUM);
2333 if (frame_pointer_needed)
2334 SET_HARD_REG_BIT (ira_no_alloc_regs, FRAME_POINTER_REGNUM);
2336 else if (frame_pointer_needed)
2337 error ("%s cannot be used in asm here", reg_names[FRAME_POINTER_REGNUM]);
2338 else
2339 df_set_regs_ever_live (FRAME_POINTER_REGNUM, true);
2340 #endif
2345 /* Vector of substitutions of register numbers,
2346 used to map pseudo regs into hardware regs.
2347 This is set up as a result of register allocation.
2348 Element N is the hard reg assigned to pseudo reg N,
2349 or is -1 if no hard reg was assigned.
2350 If N is a hard reg number, element N is N. */
2351 short *reg_renumber;
2353 /* Set up REG_RENUMBER and CALLER_SAVE_NEEDED (used by reload) from
2354 the allocation found by IRA. */
2355 static void
2356 setup_reg_renumber (void)
2358 int regno, hard_regno;
2359 ira_allocno_t a;
2360 ira_allocno_iterator ai;
2362 caller_save_needed = 0;
2363 FOR_EACH_ALLOCNO (a, ai)
2365 if (ira_use_lra_p && ALLOCNO_CAP_MEMBER (a) != NULL)
2366 continue;
2367 /* There are no caps at this point. */
2368 ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
2369 if (! ALLOCNO_ASSIGNED_P (a))
2370 /* It can happen if A is not referenced but partially anticipated
2371 somewhere in a region. */
2372 ALLOCNO_ASSIGNED_P (a) = true;
2373 ira_free_allocno_updated_costs (a);
2374 hard_regno = ALLOCNO_HARD_REGNO (a);
2375 regno = ALLOCNO_REGNO (a);
2376 reg_renumber[regno] = (hard_regno < 0 ? -1 : hard_regno);
2377 if (hard_regno >= 0)
2379 int i, nwords;
2380 enum reg_class pclass;
2381 ira_object_t obj;
2383 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
2384 nwords = ALLOCNO_NUM_OBJECTS (a);
2385 for (i = 0; i < nwords; i++)
2387 obj = ALLOCNO_OBJECT (a, i);
2388 IOR_COMPL_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
2389 reg_class_contents[pclass]);
2391 if (ALLOCNO_CALLS_CROSSED_NUM (a) != 0
2392 && ira_hard_reg_set_intersection_p (hard_regno, ALLOCNO_MODE (a),
2393 call_used_reg_set))
2395 ira_assert (!optimize || flag_caller_saves
2396 || (ALLOCNO_CALLS_CROSSED_NUM (a)
2397 == ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a))
2398 || regno >= ira_reg_equiv_len
2399 || ira_equiv_no_lvalue_p (regno));
2400 caller_save_needed = 1;
2406 /* Set up allocno assignment flags for further allocation
2407 improvements. */
2408 static void
2409 setup_allocno_assignment_flags (void)
2411 int hard_regno;
2412 ira_allocno_t a;
2413 ira_allocno_iterator ai;
2415 FOR_EACH_ALLOCNO (a, ai)
2417 if (! ALLOCNO_ASSIGNED_P (a))
2418 /* It can happen if A is not referenced but partially anticipated
2419 somewhere in a region. */
2420 ira_free_allocno_updated_costs (a);
2421 hard_regno = ALLOCNO_HARD_REGNO (a);
2422 /* Don't assign hard registers to allocnos which are destination
2423 of removed store at the end of loop. It has no sense to keep
2424 the same value in different hard registers. It is also
2425 impossible to assign hard registers correctly to such
2426 allocnos because the cost info and info about intersected
2427 calls are incorrect for them. */
2428 ALLOCNO_ASSIGNED_P (a) = (hard_regno >= 0
2429 || ALLOCNO_EMIT_DATA (a)->mem_optimized_dest_p
2430 || (ALLOCNO_MEMORY_COST (a)
2431 - ALLOCNO_CLASS_COST (a)) < 0);
2432 ira_assert
2433 (hard_regno < 0
2434 || ira_hard_reg_in_set_p (hard_regno, ALLOCNO_MODE (a),
2435 reg_class_contents[ALLOCNO_CLASS (a)]));
2439 /* Evaluate overall allocation cost and the costs for using hard
2440 registers and memory for allocnos. */
2441 static void
2442 calculate_allocation_cost (void)
2444 int hard_regno, cost;
2445 ira_allocno_t a;
2446 ira_allocno_iterator ai;
2448 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
2449 FOR_EACH_ALLOCNO (a, ai)
2451 hard_regno = ALLOCNO_HARD_REGNO (a);
2452 ira_assert (hard_regno < 0
2453 || (ira_hard_reg_in_set_p
2454 (hard_regno, ALLOCNO_MODE (a),
2455 reg_class_contents[ALLOCNO_CLASS (a)])));
2456 if (hard_regno < 0)
2458 cost = ALLOCNO_MEMORY_COST (a);
2459 ira_mem_cost += cost;
2461 else if (ALLOCNO_HARD_REG_COSTS (a) != NULL)
2463 cost = (ALLOCNO_HARD_REG_COSTS (a)
2464 [ira_class_hard_reg_index
2465 [ALLOCNO_CLASS (a)][hard_regno]]);
2466 ira_reg_cost += cost;
2468 else
2470 cost = ALLOCNO_CLASS_COST (a);
2471 ira_reg_cost += cost;
2473 ira_overall_cost += cost;
2476 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
2478 fprintf (ira_dump_file,
2479 "+++Costs: overall %" PRId64
2480 ", reg %" PRId64
2481 ", mem %" PRId64
2482 ", ld %" PRId64
2483 ", st %" PRId64
2484 ", move %" PRId64,
2485 ira_overall_cost, ira_reg_cost, ira_mem_cost,
2486 ira_load_cost, ira_store_cost, ira_shuffle_cost);
2487 fprintf (ira_dump_file, "\n+++ move loops %d, new jumps %d\n",
2488 ira_move_loops_num, ira_additional_jumps_num);
2493 #ifdef ENABLE_IRA_CHECKING
2494 /* Check the correctness of the allocation. We do need this because
2495 of complicated code to transform more one region internal
2496 representation into one region representation. */
2497 static void
2498 check_allocation (void)
2500 ira_allocno_t a;
2501 int hard_regno, nregs, conflict_nregs;
2502 ira_allocno_iterator ai;
2504 FOR_EACH_ALLOCNO (a, ai)
2506 int n = ALLOCNO_NUM_OBJECTS (a);
2507 int i;
2509 if (ALLOCNO_CAP_MEMBER (a) != NULL
2510 || (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0)
2511 continue;
2512 nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (a)];
2513 if (nregs == 1)
2514 /* We allocated a single hard register. */
2515 n = 1;
2516 else if (n > 1)
2517 /* We allocated multiple hard registers, and we will test
2518 conflicts in a granularity of single hard regs. */
2519 nregs = 1;
2521 for (i = 0; i < n; i++)
2523 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2524 ira_object_t conflict_obj;
2525 ira_object_conflict_iterator oci;
2526 int this_regno = hard_regno;
2527 if (n > 1)
2529 if (REG_WORDS_BIG_ENDIAN)
2530 this_regno += n - i - 1;
2531 else
2532 this_regno += i;
2534 FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
2536 ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
2537 int conflict_hard_regno = ALLOCNO_HARD_REGNO (conflict_a);
2538 if (conflict_hard_regno < 0)
2539 continue;
2541 conflict_nregs
2542 = (hard_regno_nregs
2543 [conflict_hard_regno][ALLOCNO_MODE (conflict_a)]);
2545 if (ALLOCNO_NUM_OBJECTS (conflict_a) > 1
2546 && conflict_nregs == ALLOCNO_NUM_OBJECTS (conflict_a))
2548 if (REG_WORDS_BIG_ENDIAN)
2549 conflict_hard_regno += (ALLOCNO_NUM_OBJECTS (conflict_a)
2550 - OBJECT_SUBWORD (conflict_obj) - 1);
2551 else
2552 conflict_hard_regno += OBJECT_SUBWORD (conflict_obj);
2553 conflict_nregs = 1;
2556 if ((conflict_hard_regno <= this_regno
2557 && this_regno < conflict_hard_regno + conflict_nregs)
2558 || (this_regno <= conflict_hard_regno
2559 && conflict_hard_regno < this_regno + nregs))
2561 fprintf (stderr, "bad allocation for %d and %d\n",
2562 ALLOCNO_REGNO (a), ALLOCNO_REGNO (conflict_a));
2563 gcc_unreachable ();
2569 #endif
2571 /* Allocate REG_EQUIV_INIT. Set up it from IRA_REG_EQUIV which should
2572 be already calculated. */
2573 static void
2574 setup_reg_equiv_init (void)
2576 int i;
2577 int max_regno = max_reg_num ();
2579 for (i = 0; i < max_regno; i++)
2580 reg_equiv_init (i) = ira_reg_equiv[i].init_insns;
2583 /* Update equiv regno from movement of FROM_REGNO to TO_REGNO. INSNS
2584 are insns which were generated for such movement. It is assumed
2585 that FROM_REGNO and TO_REGNO always have the same value at the
2586 point of any move containing such registers. This function is used
2587 to update equiv info for register shuffles on the region borders
2588 and for caller save/restore insns. */
2589 void
2590 ira_update_equiv_info_by_shuffle_insn (int to_regno, int from_regno, rtx_insn *insns)
2592 rtx_insn *insn;
2593 rtx x, note;
2595 if (! ira_reg_equiv[from_regno].defined_p
2596 && (! ira_reg_equiv[to_regno].defined_p
2597 || ((x = ira_reg_equiv[to_regno].memory) != NULL_RTX
2598 && ! MEM_READONLY_P (x))))
2599 return;
2600 insn = insns;
2601 if (NEXT_INSN (insn) != NULL_RTX)
2603 if (! ira_reg_equiv[to_regno].defined_p)
2605 ira_assert (ira_reg_equiv[to_regno].init_insns == NULL_RTX);
2606 return;
2608 ira_reg_equiv[to_regno].defined_p = false;
2609 ira_reg_equiv[to_regno].memory
2610 = ira_reg_equiv[to_regno].constant
2611 = ira_reg_equiv[to_regno].invariant
2612 = ira_reg_equiv[to_regno].init_insns = NULL;
2613 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2614 fprintf (ira_dump_file,
2615 " Invalidating equiv info for reg %d\n", to_regno);
2616 return;
2618 /* It is possible that FROM_REGNO still has no equivalence because
2619 in shuffles to_regno<-from_regno and from_regno<-to_regno the 2nd
2620 insn was not processed yet. */
2621 if (ira_reg_equiv[from_regno].defined_p)
2623 ira_reg_equiv[to_regno].defined_p = true;
2624 if ((x = ira_reg_equiv[from_regno].memory) != NULL_RTX)
2626 ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX
2627 && ira_reg_equiv[from_regno].constant == NULL_RTX);
2628 ira_assert (ira_reg_equiv[to_regno].memory == NULL_RTX
2629 || rtx_equal_p (ira_reg_equiv[to_regno].memory, x));
2630 ira_reg_equiv[to_regno].memory = x;
2631 if (! MEM_READONLY_P (x))
2632 /* We don't add the insn to insn init list because memory
2633 equivalence is just to say what memory is better to use
2634 when the pseudo is spilled. */
2635 return;
2637 else if ((x = ira_reg_equiv[from_regno].constant) != NULL_RTX)
2639 ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX);
2640 ira_assert (ira_reg_equiv[to_regno].constant == NULL_RTX
2641 || rtx_equal_p (ira_reg_equiv[to_regno].constant, x));
2642 ira_reg_equiv[to_regno].constant = x;
2644 else
2646 x = ira_reg_equiv[from_regno].invariant;
2647 ira_assert (x != NULL_RTX);
2648 ira_assert (ira_reg_equiv[to_regno].invariant == NULL_RTX
2649 || rtx_equal_p (ira_reg_equiv[to_regno].invariant, x));
2650 ira_reg_equiv[to_regno].invariant = x;
2652 if (find_reg_note (insn, REG_EQUIV, x) == NULL_RTX)
2654 note = set_unique_reg_note (insn, REG_EQUIV, x);
2655 gcc_assert (note != NULL_RTX);
2656 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2658 fprintf (ira_dump_file,
2659 " Adding equiv note to insn %u for reg %d ",
2660 INSN_UID (insn), to_regno);
2661 dump_value_slim (ira_dump_file, x, 1);
2662 fprintf (ira_dump_file, "\n");
2666 ira_reg_equiv[to_regno].init_insns
2667 = gen_rtx_INSN_LIST (VOIDmode, insn,
2668 ira_reg_equiv[to_regno].init_insns);
2669 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2670 fprintf (ira_dump_file,
2671 " Adding equiv init move insn %u to reg %d\n",
2672 INSN_UID (insn), to_regno);
2675 /* Fix values of array REG_EQUIV_INIT after live range splitting done
2676 by IRA. */
2677 static void
2678 fix_reg_equiv_init (void)
2680 int max_regno = max_reg_num ();
2681 int i, new_regno, max;
2682 rtx set;
2683 rtx_insn_list *x, *next, *prev;
2684 rtx_insn *insn;
2686 if (max_regno_before_ira < max_regno)
2688 max = vec_safe_length (reg_equivs);
2689 grow_reg_equivs ();
2690 for (i = FIRST_PSEUDO_REGISTER; i < max; i++)
2691 for (prev = NULL, x = reg_equiv_init (i);
2692 x != NULL_RTX;
2693 x = next)
2695 next = x->next ();
2696 insn = x->insn ();
2697 set = single_set (insn);
2698 ira_assert (set != NULL_RTX
2699 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))));
2700 if (REG_P (SET_DEST (set))
2701 && ((int) REGNO (SET_DEST (set)) == i
2702 || (int) ORIGINAL_REGNO (SET_DEST (set)) == i))
2703 new_regno = REGNO (SET_DEST (set));
2704 else if (REG_P (SET_SRC (set))
2705 && ((int) REGNO (SET_SRC (set)) == i
2706 || (int) ORIGINAL_REGNO (SET_SRC (set)) == i))
2707 new_regno = REGNO (SET_SRC (set));
2708 else
2709 gcc_unreachable ();
2710 if (new_regno == i)
2711 prev = x;
2712 else
2714 /* Remove the wrong list element. */
2715 if (prev == NULL_RTX)
2716 reg_equiv_init (i) = next;
2717 else
2718 XEXP (prev, 1) = next;
2719 XEXP (x, 1) = reg_equiv_init (new_regno);
2720 reg_equiv_init (new_regno) = x;
2726 #ifdef ENABLE_IRA_CHECKING
2727 /* Print redundant memory-memory copies. */
2728 static void
2729 print_redundant_copies (void)
2731 int hard_regno;
2732 ira_allocno_t a;
2733 ira_copy_t cp, next_cp;
2734 ira_allocno_iterator ai;
2736 FOR_EACH_ALLOCNO (a, ai)
2738 if (ALLOCNO_CAP_MEMBER (a) != NULL)
2739 /* It is a cap. */
2740 continue;
2741 hard_regno = ALLOCNO_HARD_REGNO (a);
2742 if (hard_regno >= 0)
2743 continue;
2744 for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
2745 if (cp->first == a)
2746 next_cp = cp->next_first_allocno_copy;
2747 else
2749 next_cp = cp->next_second_allocno_copy;
2750 if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL
2751 && cp->insn != NULL_RTX
2752 && ALLOCNO_HARD_REGNO (cp->first) == hard_regno)
2753 fprintf (ira_dump_file,
2754 " Redundant move from %d(freq %d):%d\n",
2755 INSN_UID (cp->insn), cp->freq, hard_regno);
2759 #endif
2761 /* Setup preferred and alternative classes for new pseudo-registers
2762 created by IRA starting with START. */
2763 static void
2764 setup_preferred_alternate_classes_for_new_pseudos (int start)
2766 int i, old_regno;
2767 int max_regno = max_reg_num ();
2769 for (i = start; i < max_regno; i++)
2771 old_regno = ORIGINAL_REGNO (regno_reg_rtx[i]);
2772 ira_assert (i != old_regno);
2773 setup_reg_classes (i, reg_preferred_class (old_regno),
2774 reg_alternate_class (old_regno),
2775 reg_allocno_class (old_regno));
2776 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
2777 fprintf (ira_dump_file,
2778 " New r%d: setting preferred %s, alternative %s\n",
2779 i, reg_class_names[reg_preferred_class (old_regno)],
2780 reg_class_names[reg_alternate_class (old_regno)]);
2785 /* The number of entries allocated in reg_info. */
2786 static int allocated_reg_info_size;
2788 /* Regional allocation can create new pseudo-registers. This function
2789 expands some arrays for pseudo-registers. */
2790 static void
2791 expand_reg_info (void)
2793 int i;
2794 int size = max_reg_num ();
2796 resize_reg_info ();
2797 for (i = allocated_reg_info_size; i < size; i++)
2798 setup_reg_classes (i, GENERAL_REGS, ALL_REGS, GENERAL_REGS);
2799 setup_preferred_alternate_classes_for_new_pseudos (allocated_reg_info_size);
2800 allocated_reg_info_size = size;
2803 /* Return TRUE if there is too high register pressure in the function.
2804 It is used to decide when stack slot sharing is worth to do. */
2805 static bool
2806 too_high_register_pressure_p (void)
2808 int i;
2809 enum reg_class pclass;
2811 for (i = 0; i < ira_pressure_classes_num; i++)
2813 pclass = ira_pressure_classes[i];
2814 if (ira_loop_tree_root->reg_pressure[pclass] > 10000)
2815 return true;
2817 return false;
2822 /* Indicate that hard register number FROM was eliminated and replaced with
2823 an offset from hard register number TO. The status of hard registers live
2824 at the start of a basic block is updated by replacing a use of FROM with
2825 a use of TO. */
2827 void
2828 mark_elimination (int from, int to)
2830 basic_block bb;
2831 bitmap r;
2833 FOR_EACH_BB_FN (bb, cfun)
2835 r = DF_LR_IN (bb);
2836 if (bitmap_bit_p (r, from))
2838 bitmap_clear_bit (r, from);
2839 bitmap_set_bit (r, to);
2841 if (! df_live)
2842 continue;
2843 r = DF_LIVE_IN (bb);
2844 if (bitmap_bit_p (r, from))
2846 bitmap_clear_bit (r, from);
2847 bitmap_set_bit (r, to);
2854 /* The length of the following array. */
2855 int ira_reg_equiv_len;
2857 /* Info about equiv. info for each register. */
2858 struct ira_reg_equiv_s *ira_reg_equiv;
2860 /* Expand ira_reg_equiv if necessary. */
2861 void
2862 ira_expand_reg_equiv (void)
2864 int old = ira_reg_equiv_len;
2866 if (ira_reg_equiv_len > max_reg_num ())
2867 return;
2868 ira_reg_equiv_len = max_reg_num () * 3 / 2 + 1;
2869 ira_reg_equiv
2870 = (struct ira_reg_equiv_s *) xrealloc (ira_reg_equiv,
2871 ira_reg_equiv_len
2872 * sizeof (struct ira_reg_equiv_s));
2873 gcc_assert (old < ira_reg_equiv_len);
2874 memset (ira_reg_equiv + old, 0,
2875 sizeof (struct ira_reg_equiv_s) * (ira_reg_equiv_len - old));
2878 static void
2879 init_reg_equiv (void)
2881 ira_reg_equiv_len = 0;
2882 ira_reg_equiv = NULL;
2883 ira_expand_reg_equiv ();
2886 static void
2887 finish_reg_equiv (void)
2889 free (ira_reg_equiv);
2894 struct equivalence
2896 /* Set when a REG_EQUIV note is found or created. Use to
2897 keep track of what memory accesses might be created later,
2898 e.g. by reload. */
2899 rtx replacement;
2900 rtx *src_p;
2902 /* The list of each instruction which initializes this register.
2904 NULL indicates we know nothing about this register's equivalence
2905 properties.
2907 An INSN_LIST with a NULL insn indicates this pseudo is already
2908 known to not have a valid equivalence. */
2909 rtx_insn_list *init_insns;
2911 /* Loop depth is used to recognize equivalences which appear
2912 to be present within the same loop (or in an inner loop). */
2913 short loop_depth;
2914 /* Nonzero if this had a preexisting REG_EQUIV note. */
2915 unsigned char is_arg_equivalence : 1;
2916 /* Set when an attempt should be made to replace a register
2917 with the associated src_p entry. */
2918 unsigned char replace : 1;
2919 /* Set if this register has no known equivalence. */
2920 unsigned char no_equiv : 1;
2923 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
2924 structure for that register. */
2925 static struct equivalence *reg_equiv;
2927 /* Used for communication between the following two functions: contains
2928 a MEM that we wish to ensure remains unchanged. */
2929 static rtx equiv_mem;
2931 /* Set nonzero if EQUIV_MEM is modified. */
2932 static int equiv_mem_modified;
2934 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
2935 Called via note_stores. */
2936 static void
2937 validate_equiv_mem_from_store (rtx dest, const_rtx set ATTRIBUTE_UNUSED,
2938 void *data ATTRIBUTE_UNUSED)
2940 if ((REG_P (dest)
2941 && reg_overlap_mentioned_p (dest, equiv_mem))
2942 || (MEM_P (dest)
2943 && anti_dependence (equiv_mem, dest)))
2944 equiv_mem_modified = 1;
2947 /* Verify that no store between START and the death of REG invalidates
2948 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
2949 by storing into an overlapping memory location, or with a non-const
2950 CALL_INSN.
2952 Return 1 if MEMREF remains valid. */
2953 static int
2954 validate_equiv_mem (rtx_insn *start, rtx reg, rtx memref)
2956 rtx_insn *insn;
2957 rtx note;
2959 equiv_mem = memref;
2960 equiv_mem_modified = 0;
2962 /* If the memory reference has side effects or is volatile, it isn't a
2963 valid equivalence. */
2964 if (side_effects_p (memref))
2965 return 0;
2967 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
2969 if (! INSN_P (insn))
2970 continue;
2972 if (find_reg_note (insn, REG_DEAD, reg))
2973 return 1;
2975 /* This used to ignore readonly memory and const/pure calls. The problem
2976 is the equivalent form may reference a pseudo which gets assigned a
2977 call clobbered hard reg. When we later replace REG with its
2978 equivalent form, the value in the call-clobbered reg has been
2979 changed and all hell breaks loose. */
2980 if (CALL_P (insn))
2981 return 0;
2983 note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);
2985 /* If a register mentioned in MEMREF is modified via an
2986 auto-increment, we lose the equivalence. Do the same if one
2987 dies; although we could extend the life, it doesn't seem worth
2988 the trouble. */
2990 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2991 if ((REG_NOTE_KIND (note) == REG_INC
2992 || REG_NOTE_KIND (note) == REG_DEAD)
2993 && REG_P (XEXP (note, 0))
2994 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
2995 return 0;
2998 return 0;
3001 /* Returns zero if X is known to be invariant. */
3002 static int
3003 equiv_init_varies_p (rtx x)
3005 RTX_CODE code = GET_CODE (x);
3006 int i;
3007 const char *fmt;
3009 switch (code)
3011 case MEM:
3012 return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
3014 case CONST:
3015 CASE_CONST_ANY:
3016 case SYMBOL_REF:
3017 case LABEL_REF:
3018 return 0;
3020 case REG:
3021 return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
3023 case ASM_OPERANDS:
3024 if (MEM_VOLATILE_P (x))
3025 return 1;
3027 /* Fall through. */
3029 default:
3030 break;
3033 fmt = GET_RTX_FORMAT (code);
3034 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3035 if (fmt[i] == 'e')
3037 if (equiv_init_varies_p (XEXP (x, i)))
3038 return 1;
3040 else if (fmt[i] == 'E')
3042 int j;
3043 for (j = 0; j < XVECLEN (x, i); j++)
3044 if (equiv_init_varies_p (XVECEXP (x, i, j)))
3045 return 1;
3048 return 0;
3051 /* Returns nonzero if X (used to initialize register REGNO) is movable.
3052 X is only movable if the registers it uses have equivalent initializations
3053 which appear to be within the same loop (or in an inner loop) and movable
3054 or if they are not candidates for local_alloc and don't vary. */
3055 static int
3056 equiv_init_movable_p (rtx x, int regno)
3058 int i, j;
3059 const char *fmt;
3060 enum rtx_code code = GET_CODE (x);
3062 switch (code)
3064 case SET:
3065 return equiv_init_movable_p (SET_SRC (x), regno);
3067 case CC0:
3068 case CLOBBER:
3069 return 0;
3071 case PRE_INC:
3072 case PRE_DEC:
3073 case POST_INC:
3074 case POST_DEC:
3075 case PRE_MODIFY:
3076 case POST_MODIFY:
3077 return 0;
3079 case REG:
3080 return ((reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
3081 && reg_equiv[REGNO (x)].replace)
3082 || (REG_BASIC_BLOCK (REGNO (x)) < NUM_FIXED_BLOCKS
3083 && ! rtx_varies_p (x, 0)));
3085 case UNSPEC_VOLATILE:
3086 return 0;
3088 case ASM_OPERANDS:
3089 if (MEM_VOLATILE_P (x))
3090 return 0;
3092 /* Fall through. */
3094 default:
3095 break;
3098 fmt = GET_RTX_FORMAT (code);
3099 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3100 switch (fmt[i])
3102 case 'e':
3103 if (! equiv_init_movable_p (XEXP (x, i), regno))
3104 return 0;
3105 break;
3106 case 'E':
3107 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3108 if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
3109 return 0;
3110 break;
3113 return 1;
3116 /* TRUE if X uses any registers for which reg_equiv[REGNO].replace is
3117 true. */
3118 static int
3119 contains_replace_regs (rtx x)
3121 int i, j;
3122 const char *fmt;
3123 enum rtx_code code = GET_CODE (x);
3125 switch (code)
3127 case CONST:
3128 case LABEL_REF:
3129 case SYMBOL_REF:
3130 CASE_CONST_ANY:
3131 case PC:
3132 case CC0:
3133 case HIGH:
3134 return 0;
3136 case REG:
3137 return reg_equiv[REGNO (x)].replace;
3139 default:
3140 break;
3143 fmt = GET_RTX_FORMAT (code);
3144 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3145 switch (fmt[i])
3147 case 'e':
3148 if (contains_replace_regs (XEXP (x, i)))
3149 return 1;
3150 break;
3151 case 'E':
3152 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3153 if (contains_replace_regs (XVECEXP (x, i, j)))
3154 return 1;
3155 break;
3158 return 0;
3161 /* TRUE if X references a memory location that would be affected by a store
3162 to MEMREF. */
3163 static int
3164 memref_referenced_p (rtx memref, rtx x)
3166 int i, j;
3167 const char *fmt;
3168 enum rtx_code code = GET_CODE (x);
3170 switch (code)
3172 case CONST:
3173 case LABEL_REF:
3174 case SYMBOL_REF:
3175 CASE_CONST_ANY:
3176 case PC:
3177 case CC0:
3178 case HIGH:
3179 case LO_SUM:
3180 return 0;
3182 case REG:
3183 return (reg_equiv[REGNO (x)].replacement
3184 && memref_referenced_p (memref,
3185 reg_equiv[REGNO (x)].replacement));
3187 case MEM:
3188 if (true_dependence (memref, VOIDmode, x))
3189 return 1;
3190 break;
3192 case SET:
3193 /* If we are setting a MEM, it doesn't count (its address does), but any
3194 other SET_DEST that has a MEM in it is referencing the MEM. */
3195 if (MEM_P (SET_DEST (x)))
3197 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
3198 return 1;
3200 else if (memref_referenced_p (memref, SET_DEST (x)))
3201 return 1;
3203 return memref_referenced_p (memref, SET_SRC (x));
3205 default:
3206 break;
3209 fmt = GET_RTX_FORMAT (code);
3210 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3211 switch (fmt[i])
3213 case 'e':
3214 if (memref_referenced_p (memref, XEXP (x, i)))
3215 return 1;
3216 break;
3217 case 'E':
3218 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3219 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
3220 return 1;
3221 break;
3224 return 0;
3227 /* TRUE if some insn in the range (START, END] references a memory location
3228 that would be affected by a store to MEMREF. */
3229 static int
3230 memref_used_between_p (rtx memref, rtx_insn *start, rtx_insn *end)
3232 rtx_insn *insn;
3234 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
3235 insn = NEXT_INSN (insn))
3237 if (!NONDEBUG_INSN_P (insn))
3238 continue;
3240 if (memref_referenced_p (memref, PATTERN (insn)))
3241 return 1;
3243 /* Nonconst functions may access memory. */
3244 if (CALL_P (insn) && (! RTL_CONST_CALL_P (insn)))
3245 return 1;
3248 return 0;
3251 /* Mark REG as having no known equivalence.
3252 Some instructions might have been processed before and furnished
3253 with REG_EQUIV notes for this register; these notes will have to be
3254 removed.
3255 STORE is the piece of RTL that does the non-constant / conflicting
3256 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
3257 but needs to be there because this function is called from note_stores. */
3258 static void
3259 no_equiv (rtx reg, const_rtx store ATTRIBUTE_UNUSED,
3260 void *data ATTRIBUTE_UNUSED)
3262 int regno;
3263 rtx_insn_list *list;
3265 if (!REG_P (reg))
3266 return;
3267 regno = REGNO (reg);
3268 reg_equiv[regno].no_equiv = 1;
3269 list = reg_equiv[regno].init_insns;
3270 if (list && list->insn () == NULL)
3271 return;
3272 reg_equiv[regno].init_insns = gen_rtx_INSN_LIST (VOIDmode, NULL_RTX, NULL);
3273 reg_equiv[regno].replacement = NULL_RTX;
3274 /* This doesn't matter for equivalences made for argument registers, we
3275 should keep their initialization insns. */
3276 if (reg_equiv[regno].is_arg_equivalence)
3277 return;
3278 ira_reg_equiv[regno].defined_p = false;
3279 ira_reg_equiv[regno].init_insns = NULL;
3280 for (; list; list = list->next ())
3282 rtx_insn *insn = list->insn ();
3283 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
3287 /* Check whether the SUBREG is a paradoxical subreg and set the result
3288 in PDX_SUBREGS. */
3290 static void
3291 set_paradoxical_subreg (rtx_insn *insn, bool *pdx_subregs)
3293 subrtx_iterator::array_type array;
3294 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
3296 const_rtx subreg = *iter;
3297 if (GET_CODE (subreg) == SUBREG)
3299 const_rtx reg = SUBREG_REG (subreg);
3300 if (REG_P (reg) && paradoxical_subreg_p (subreg))
3301 pdx_subregs[REGNO (reg)] = true;
3306 /* In DEBUG_INSN location adjust REGs from CLEARED_REGS bitmap to the
3307 equivalent replacement. */
3309 static rtx
3310 adjust_cleared_regs (rtx loc, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
3312 if (REG_P (loc))
3314 bitmap cleared_regs = (bitmap) data;
3315 if (bitmap_bit_p (cleared_regs, REGNO (loc)))
3316 return simplify_replace_fn_rtx (copy_rtx (*reg_equiv[REGNO (loc)].src_p),
3317 NULL_RTX, adjust_cleared_regs, data);
3319 return NULL_RTX;
3322 /* Find registers that are equivalent to a single value throughout the
3323 compilation (either because they can be referenced in memory or are
3324 set once from a single constant). Lower their priority for a
3325 register.
3327 If such a register is only referenced once, try substituting its
3328 value into the using insn. If it succeeds, we can eliminate the
3329 register completely.
3331 Initialize init_insns in ira_reg_equiv array. */
3332 static void
3333 update_equiv_regs (void)
3335 rtx_insn *insn;
3336 basic_block bb;
3337 int loop_depth;
3338 bitmap cleared_regs;
3339 bool *pdx_subregs;
3341 /* Use pdx_subregs to show whether a reg is used in a paradoxical
3342 subreg. */
3343 pdx_subregs = XCNEWVEC (bool, max_regno);
3345 reg_equiv = XCNEWVEC (struct equivalence, max_regno);
3346 grow_reg_equivs ();
3348 init_alias_analysis ();
3350 /* Scan insns and set pdx_subregs[regno] if the reg is used in a
3351 paradoxical subreg. Don't set such reg equivalent to a mem,
3352 because lra will not substitute such equiv memory in order to
3353 prevent access beyond allocated memory for paradoxical memory subreg. */
3354 FOR_EACH_BB_FN (bb, cfun)
3355 FOR_BB_INSNS (bb, insn)
3356 if (NONDEBUG_INSN_P (insn))
3357 set_paradoxical_subreg (insn, pdx_subregs);
3359 /* Scan the insns and find which registers have equivalences. Do this
3360 in a separate scan of the insns because (due to -fcse-follow-jumps)
3361 a register can be set below its use. */
3362 FOR_EACH_BB_FN (bb, cfun)
3364 loop_depth = bb_loop_depth (bb);
3366 for (insn = BB_HEAD (bb);
3367 insn != NEXT_INSN (BB_END (bb));
3368 insn = NEXT_INSN (insn))
3370 rtx note;
3371 rtx set;
3372 rtx dest, src;
3373 int regno;
3375 if (! INSN_P (insn))
3376 continue;
3378 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3379 if (REG_NOTE_KIND (note) == REG_INC)
3380 no_equiv (XEXP (note, 0), note, NULL);
3382 set = single_set (insn);
3384 /* If this insn contains more (or less) than a single SET,
3385 only mark all destinations as having no known equivalence. */
3386 if (set == NULL_RTX
3387 || side_effects_p (SET_SRC (set)))
3389 note_stores (PATTERN (insn), no_equiv, NULL);
3390 continue;
3392 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
3394 int i;
3396 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
3398 rtx part = XVECEXP (PATTERN (insn), 0, i);
3399 if (part != set)
3400 note_stores (part, no_equiv, NULL);
3404 dest = SET_DEST (set);
3405 src = SET_SRC (set);
3407 /* See if this is setting up the equivalence between an argument
3408 register and its stack slot. */
3409 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3410 if (note)
3412 gcc_assert (REG_P (dest));
3413 regno = REGNO (dest);
3415 /* Note that we don't want to clear init_insns in
3416 ira_reg_equiv even if there are multiple sets of this
3417 register. */
3418 reg_equiv[regno].is_arg_equivalence = 1;
3420 /* The insn result can have equivalence memory although
3421 the equivalence is not set up by the insn. We add
3422 this insn to init insns as it is a flag for now that
3423 regno has an equivalence. We will remove the insn
3424 from init insn list later. */
3425 if (rtx_equal_p (src, XEXP (note, 0)) || MEM_P (XEXP (note, 0)))
3426 ira_reg_equiv[regno].init_insns
3427 = gen_rtx_INSN_LIST (VOIDmode, insn,
3428 ira_reg_equiv[regno].init_insns);
3430 /* Continue normally in case this is a candidate for
3431 replacements. */
3434 if (!optimize)
3435 continue;
3437 /* We only handle the case of a pseudo register being set
3438 once, or always to the same value. */
3439 /* ??? The mn10200 port breaks if we add equivalences for
3440 values that need an ADDRESS_REGS register and set them equivalent
3441 to a MEM of a pseudo. The actual problem is in the over-conservative
3442 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
3443 calculate_needs, but we traditionally work around this problem
3444 here by rejecting equivalences when the destination is in a register
3445 that's likely spilled. This is fragile, of course, since the
3446 preferred class of a pseudo depends on all instructions that set
3447 or use it. */
3449 if (!REG_P (dest)
3450 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
3451 || (reg_equiv[regno].init_insns
3452 && reg_equiv[regno].init_insns->insn () == NULL)
3453 || (targetm.class_likely_spilled_p (reg_preferred_class (regno))
3454 && MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence))
3456 /* This might be setting a SUBREG of a pseudo, a pseudo that is
3457 also set somewhere else to a constant. */
3458 note_stores (set, no_equiv, NULL);
3459 continue;
3462 /* Don't set reg (if pdx_subregs[regno] == true) equivalent to a mem. */
3463 if (MEM_P (src) && pdx_subregs[regno])
3465 note_stores (set, no_equiv, NULL);
3466 continue;
3469 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3471 /* cse sometimes generates function invariants, but doesn't put a
3472 REG_EQUAL note on the insn. Since this note would be redundant,
3473 there's no point creating it earlier than here. */
3474 if (! note && ! rtx_varies_p (src, 0))
3475 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
3477 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
3478 since it represents a function call. */
3479 if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
3480 note = NULL_RTX;
3482 if (DF_REG_DEF_COUNT (regno) != 1)
3484 bool equal_p = true;
3485 rtx_insn_list *list;
3487 /* If we have already processed this pseudo and determined it
3488 can not have an equivalence, then honor that decision. */
3489 if (reg_equiv[regno].no_equiv)
3490 continue;
3492 if (! note
3493 || rtx_varies_p (XEXP (note, 0), 0)
3494 || (reg_equiv[regno].replacement
3495 && ! rtx_equal_p (XEXP (note, 0),
3496 reg_equiv[regno].replacement)))
3498 no_equiv (dest, set, NULL);
3499 continue;
3502 list = reg_equiv[regno].init_insns;
3503 for (; list; list = list->next ())
3505 rtx note_tmp;
3506 rtx_insn *insn_tmp;
3508 insn_tmp = list->insn ();
3509 note_tmp = find_reg_note (insn_tmp, REG_EQUAL, NULL_RTX);
3510 gcc_assert (note_tmp);
3511 if (! rtx_equal_p (XEXP (note, 0), XEXP (note_tmp, 0)))
3513 equal_p = false;
3514 break;
3518 if (! equal_p)
3520 no_equiv (dest, set, NULL);
3521 continue;
3525 /* Record this insn as initializing this register. */
3526 reg_equiv[regno].init_insns
3527 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
3529 /* If this register is known to be equal to a constant, record that
3530 it is always equivalent to the constant. */
3531 if (DF_REG_DEF_COUNT (regno) == 1
3532 && note && ! rtx_varies_p (XEXP (note, 0), 0))
3534 rtx note_value = XEXP (note, 0);
3535 remove_note (insn, note);
3536 set_unique_reg_note (insn, REG_EQUIV, note_value);
3539 /* If this insn introduces a "constant" register, decrease the priority
3540 of that register. Record this insn if the register is only used once
3541 more and the equivalence value is the same as our source.
3543 The latter condition is checked for two reasons: First, it is an
3544 indication that it may be more efficient to actually emit the insn
3545 as written (if no registers are available, reload will substitute
3546 the equivalence). Secondly, it avoids problems with any registers
3547 dying in this insn whose death notes would be missed.
3549 If we don't have a REG_EQUIV note, see if this insn is loading
3550 a register used only in one basic block from a MEM. If so, and the
3551 MEM remains unchanged for the life of the register, add a REG_EQUIV
3552 note. */
3553 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3555 if (note == NULL_RTX && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3556 && MEM_P (SET_SRC (set))
3557 && validate_equiv_mem (insn, dest, SET_SRC (set)))
3558 note = set_unique_reg_note (insn, REG_EQUIV, copy_rtx (SET_SRC (set)));
3560 if (note)
3562 int regno = REGNO (dest);
3563 rtx x = XEXP (note, 0);
3565 /* If we haven't done so, record for reload that this is an
3566 equivalencing insn. */
3567 if (!reg_equiv[regno].is_arg_equivalence)
3568 ira_reg_equiv[regno].init_insns
3569 = gen_rtx_INSN_LIST (VOIDmode, insn,
3570 ira_reg_equiv[regno].init_insns);
3572 reg_equiv[regno].replacement = x;
3573 reg_equiv[regno].src_p = &SET_SRC (set);
3574 reg_equiv[regno].loop_depth = (short) loop_depth;
3576 /* Don't mess with things live during setjmp. */
3577 if (REG_LIVE_LENGTH (regno) >= 0 && optimize)
3579 /* Note that the statement below does not affect the priority
3580 in local-alloc! */
3581 REG_LIVE_LENGTH (regno) *= 2;
3583 /* If the register is referenced exactly twice, meaning it is
3584 set once and used once, indicate that the reference may be
3585 replaced by the equivalence we computed above. Do this
3586 even if the register is only used in one block so that
3587 dependencies can be handled where the last register is
3588 used in a different block (i.e. HIGH / LO_SUM sequences)
3589 and to reduce the number of registers alive across
3590 calls. */
3592 if (REG_N_REFS (regno) == 2
3593 && (rtx_equal_p (x, src)
3594 || ! equiv_init_varies_p (src))
3595 && NONJUMP_INSN_P (insn)
3596 && equiv_init_movable_p (PATTERN (insn), regno))
3597 reg_equiv[regno].replace = 1;
3603 if (!optimize)
3604 goto out;
3606 /* A second pass, to gather additional equivalences with memory. This needs
3607 to be done after we know which registers we are going to replace. */
3609 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3611 rtx set, src, dest;
3612 unsigned regno;
3614 if (! INSN_P (insn))
3615 continue;
3617 set = single_set (insn);
3618 if (! set)
3619 continue;
3621 dest = SET_DEST (set);
3622 src = SET_SRC (set);
3624 /* If this sets a MEM to the contents of a REG that is only used
3625 in a single basic block, see if the register is always equivalent
3626 to that memory location and if moving the store from INSN to the
3627 insn that set REG is safe. If so, put a REG_EQUIV note on the
3628 initializing insn.
3630 Don't add a REG_EQUIV note if the insn already has one. The existing
3631 REG_EQUIV is likely more useful than the one we are adding.
3633 If one of the regs in the address has reg_equiv[REGNO].replace set,
3634 then we can't add this REG_EQUIV note. The reg_equiv[REGNO].replace
3635 optimization may move the set of this register immediately before
3636 insn, which puts it after reg_equiv[REGNO].init_insns, and hence
3637 the mention in the REG_EQUIV note would be to an uninitialized
3638 pseudo. */
3640 if (MEM_P (dest) && REG_P (src)
3641 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
3642 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3643 && DF_REG_DEF_COUNT (regno) == 1
3644 && reg_equiv[regno].init_insns != NULL
3645 && reg_equiv[regno].init_insns->insn () != NULL
3646 && ! find_reg_note (XEXP (reg_equiv[regno].init_insns, 0),
3647 REG_EQUIV, NULL_RTX)
3648 && ! contains_replace_regs (XEXP (dest, 0))
3649 && ! pdx_subregs[regno])
3651 rtx_insn *init_insn =
3652 as_a <rtx_insn *> (XEXP (reg_equiv[regno].init_insns, 0));
3653 if (validate_equiv_mem (init_insn, src, dest)
3654 && ! memref_used_between_p (dest, init_insn, insn)
3655 /* Attaching a REG_EQUIV note will fail if INIT_INSN has
3656 multiple sets. */
3657 && set_unique_reg_note (init_insn, REG_EQUIV, copy_rtx (dest)))
3659 /* This insn makes the equivalence, not the one initializing
3660 the register. */
3661 ira_reg_equiv[regno].init_insns
3662 = gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
3663 df_notes_rescan (init_insn);
3668 cleared_regs = BITMAP_ALLOC (NULL);
3669 /* Now scan all regs killed in an insn to see if any of them are
3670 registers only used that once. If so, see if we can replace the
3671 reference with the equivalent form. If we can, delete the
3672 initializing reference and this register will go away. If we
3673 can't replace the reference, and the initializing reference is
3674 within the same loop (or in an inner loop), then move the register
3675 initialization just before the use, so that they are in the same
3676 basic block. */
3677 FOR_EACH_BB_REVERSE_FN (bb, cfun)
3679 loop_depth = bb_loop_depth (bb);
3680 for (insn = BB_END (bb);
3681 insn != PREV_INSN (BB_HEAD (bb));
3682 insn = PREV_INSN (insn))
3684 rtx link;
3686 if (! INSN_P (insn))
3687 continue;
3689 /* Don't substitute into jumps. indirect_jump_optimize does
3690 this for anything we are prepared to handle. */
3691 if (JUMP_P (insn))
3692 continue;
3694 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
3696 if (REG_NOTE_KIND (link) == REG_DEAD
3697 /* Make sure this insn still refers to the register. */
3698 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
3700 int regno = REGNO (XEXP (link, 0));
3701 rtx equiv_insn;
3703 if (! reg_equiv[regno].replace
3704 || reg_equiv[regno].loop_depth < (short) loop_depth
3705 /* There is no sense to move insns if live range
3706 shrinkage or register pressure-sensitive
3707 scheduling were done because it will not
3708 improve allocation but worsen insn schedule
3709 with a big probability. */
3710 || flag_live_range_shrinkage
3711 || (flag_sched_pressure && flag_schedule_insns))
3712 continue;
3714 /* reg_equiv[REGNO].replace gets set only when
3715 REG_N_REFS[REGNO] is 2, i.e. the register is set
3716 once and used once. (If it were only set, but
3717 not used, flow would have deleted the setting
3718 insns.) Hence there can only be one insn in
3719 reg_equiv[REGNO].init_insns. */
3720 gcc_assert (reg_equiv[regno].init_insns
3721 && !XEXP (reg_equiv[regno].init_insns, 1));
3722 equiv_insn = XEXP (reg_equiv[regno].init_insns, 0);
3724 /* We may not move instructions that can throw, since
3725 that changes basic block boundaries and we are not
3726 prepared to adjust the CFG to match. */
3727 if (can_throw_internal (equiv_insn))
3728 continue;
3730 if (asm_noperands (PATTERN (equiv_insn)) < 0
3731 && validate_replace_rtx (regno_reg_rtx[regno],
3732 *(reg_equiv[regno].src_p), insn))
3734 rtx equiv_link;
3735 rtx last_link;
3736 rtx note;
3738 /* Find the last note. */
3739 for (last_link = link; XEXP (last_link, 1);
3740 last_link = XEXP (last_link, 1))
3743 /* Append the REG_DEAD notes from equiv_insn. */
3744 equiv_link = REG_NOTES (equiv_insn);
3745 while (equiv_link)
3747 note = equiv_link;
3748 equiv_link = XEXP (equiv_link, 1);
3749 if (REG_NOTE_KIND (note) == REG_DEAD)
3751 remove_note (equiv_insn, note);
3752 XEXP (last_link, 1) = note;
3753 XEXP (note, 1) = NULL_RTX;
3754 last_link = note;
3758 remove_death (regno, insn);
3759 SET_REG_N_REFS (regno, 0);
3760 REG_FREQ (regno) = 0;
3761 delete_insn (equiv_insn);
3763 reg_equiv[regno].init_insns
3764 = reg_equiv[regno].init_insns->next ();
3766 ira_reg_equiv[regno].init_insns = NULL;
3767 bitmap_set_bit (cleared_regs, regno);
3769 /* Move the initialization of the register to just before
3770 INSN. Update the flow information. */
3771 else if (prev_nondebug_insn (insn) != equiv_insn)
3773 rtx_insn *new_insn;
3775 new_insn = emit_insn_before (PATTERN (equiv_insn), insn);
3776 REG_NOTES (new_insn) = REG_NOTES (equiv_insn);
3777 REG_NOTES (equiv_insn) = 0;
3778 /* Rescan it to process the notes. */
3779 df_insn_rescan (new_insn);
3781 /* Make sure this insn is recognized before
3782 reload begins, otherwise
3783 eliminate_regs_in_insn will die. */
3784 INSN_CODE (new_insn) = INSN_CODE (equiv_insn);
3786 delete_insn (equiv_insn);
3788 XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
3790 REG_BASIC_BLOCK (regno) = bb->index;
3791 REG_N_CALLS_CROSSED (regno) = 0;
3792 REG_FREQ_CALLS_CROSSED (regno) = 0;
3793 REG_N_THROWING_CALLS_CROSSED (regno) = 0;
3794 REG_LIVE_LENGTH (regno) = 2;
3796 if (insn == BB_HEAD (bb))
3797 BB_HEAD (bb) = PREV_INSN (insn);
3799 ira_reg_equiv[regno].init_insns
3800 = gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX);
3801 bitmap_set_bit (cleared_regs, regno);
3808 if (!bitmap_empty_p (cleared_regs))
3810 FOR_EACH_BB_FN (bb, cfun)
3812 bitmap_and_compl_into (DF_LR_IN (bb), cleared_regs);
3813 bitmap_and_compl_into (DF_LR_OUT (bb), cleared_regs);
3814 if (! df_live)
3815 continue;
3816 bitmap_and_compl_into (DF_LIVE_IN (bb), cleared_regs);
3817 bitmap_and_compl_into (DF_LIVE_OUT (bb), cleared_regs);
3820 /* Last pass - adjust debug insns referencing cleared regs. */
3821 if (MAY_HAVE_DEBUG_INSNS)
3822 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3823 if (DEBUG_INSN_P (insn))
3825 rtx old_loc = INSN_VAR_LOCATION_LOC (insn);
3826 INSN_VAR_LOCATION_LOC (insn)
3827 = simplify_replace_fn_rtx (old_loc, NULL_RTX,
3828 adjust_cleared_regs,
3829 (void *) cleared_regs);
3830 if (old_loc != INSN_VAR_LOCATION_LOC (insn))
3831 df_insn_rescan (insn);
3835 BITMAP_FREE (cleared_regs);
3837 out:
3838 /* Clean up. */
3840 end_alias_analysis ();
3841 free (reg_equiv);
3842 free (pdx_subregs);
3845 /* A pass over indirect jumps, converting simple cases to direct jumps. */
3846 static void
3847 indirect_jump_optimize (void)
3849 basic_block bb;
3850 bool rebuild_p = false;
3852 FOR_EACH_BB_REVERSE_FN (bb, cfun)
3854 rtx_insn *insn = BB_END (bb);
3855 if (!JUMP_P (insn))
3856 continue;
3858 rtx x = pc_set (insn);
3859 if (!x || !REG_P (SET_SRC (x)))
3860 continue;
3862 int regno = REGNO (SET_SRC (x));
3863 if (DF_REG_DEF_COUNT (regno) == 1)
3865 rtx_insn *def_insn = DF_REF_INSN (DF_REG_DEF_CHAIN (regno));
3866 rtx note = find_reg_note (def_insn, REG_LABEL_OPERAND, NULL_RTX);
3868 if (note)
3870 rtx lab = gen_rtx_LABEL_REF (Pmode, XEXP (note, 0));
3871 if (validate_replace_rtx (SET_SRC (x), lab, insn))
3872 rebuild_p = true;
3877 if (rebuild_p)
3879 timevar_push (TV_JUMP);
3880 rebuild_jump_labels (get_insns ());
3881 if (purge_all_dead_edges ())
3882 delete_unreachable_blocks ();
3883 timevar_pop (TV_JUMP);
3887 /* Set up fields memory, constant, and invariant from init_insns in
3888 the structures of array ira_reg_equiv. */
3889 static void
3890 setup_reg_equiv (void)
3892 int i;
3893 rtx_insn_list *elem, *prev_elem, *next_elem;
3894 rtx_insn *insn;
3895 rtx set, x;
3897 for (i = FIRST_PSEUDO_REGISTER; i < ira_reg_equiv_len; i++)
3898 for (prev_elem = NULL, elem = ira_reg_equiv[i].init_insns;
3899 elem;
3900 prev_elem = elem, elem = next_elem)
3902 next_elem = elem->next ();
3903 insn = elem->insn ();
3904 set = single_set (insn);
3906 /* Init insns can set up equivalence when the reg is a destination or
3907 a source (in this case the destination is memory). */
3908 if (set != 0 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))))
3910 if ((x = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL)
3912 x = XEXP (x, 0);
3913 if (REG_P (SET_DEST (set))
3914 && REGNO (SET_DEST (set)) == (unsigned int) i
3915 && ! rtx_equal_p (SET_SRC (set), x) && MEM_P (x))
3917 /* This insn reporting the equivalence but
3918 actually not setting it. Remove it from the
3919 list. */
3920 if (prev_elem == NULL)
3921 ira_reg_equiv[i].init_insns = next_elem;
3922 else
3923 XEXP (prev_elem, 1) = next_elem;
3924 elem = prev_elem;
3927 else if (REG_P (SET_DEST (set))
3928 && REGNO (SET_DEST (set)) == (unsigned int) i)
3929 x = SET_SRC (set);
3930 else
3932 gcc_assert (REG_P (SET_SRC (set))
3933 && REGNO (SET_SRC (set)) == (unsigned int) i);
3934 x = SET_DEST (set);
3936 if (! function_invariant_p (x)
3937 || ! flag_pic
3938 /* A function invariant is often CONSTANT_P but may
3939 include a register. We promise to only pass
3940 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P. */
3941 || (CONSTANT_P (x) && LEGITIMATE_PIC_OPERAND_P (x)))
3943 /* It can happen that a REG_EQUIV note contains a MEM
3944 that is not a legitimate memory operand. As later
3945 stages of reload assume that all addresses found in
3946 the lra_regno_equiv_* arrays were originally
3947 legitimate, we ignore such REG_EQUIV notes. */
3948 if (memory_operand (x, VOIDmode))
3950 ira_reg_equiv[i].defined_p = true;
3951 ira_reg_equiv[i].memory = x;
3952 continue;
3954 else if (function_invariant_p (x))
3956 machine_mode mode;
3958 mode = GET_MODE (SET_DEST (set));
3959 if (GET_CODE (x) == PLUS
3960 || x == frame_pointer_rtx || x == arg_pointer_rtx)
3961 /* This is PLUS of frame pointer and a constant,
3962 or fp, or argp. */
3963 ira_reg_equiv[i].invariant = x;
3964 else if (targetm.legitimate_constant_p (mode, x))
3965 ira_reg_equiv[i].constant = x;
3966 else
3968 ira_reg_equiv[i].memory = force_const_mem (mode, x);
3969 if (ira_reg_equiv[i].memory == NULL_RTX)
3971 ira_reg_equiv[i].defined_p = false;
3972 ira_reg_equiv[i].init_insns = NULL;
3973 break;
3976 ira_reg_equiv[i].defined_p = true;
3977 continue;
3981 ira_reg_equiv[i].defined_p = false;
3982 ira_reg_equiv[i].init_insns = NULL;
3983 break;
3989 /* Print chain C to FILE. */
3990 static void
3991 print_insn_chain (FILE *file, struct insn_chain *c)
3993 fprintf (file, "insn=%d, ", INSN_UID (c->insn));
3994 bitmap_print (file, &c->live_throughout, "live_throughout: ", ", ");
3995 bitmap_print (file, &c->dead_or_set, "dead_or_set: ", "\n");
3999 /* Print all reload_insn_chains to FILE. */
4000 static void
4001 print_insn_chains (FILE *file)
4003 struct insn_chain *c;
4004 for (c = reload_insn_chain; c ; c = c->next)
4005 print_insn_chain (file, c);
4008 /* Return true if pseudo REGNO should be added to set live_throughout
4009 or dead_or_set of the insn chains for reload consideration. */
4010 static bool
4011 pseudo_for_reload_consideration_p (int regno)
4013 /* Consider spilled pseudos too for IRA because they still have a
4014 chance to get hard-registers in the reload when IRA is used. */
4015 return (reg_renumber[regno] >= 0 || ira_conflicts_p);
4018 /* Init LIVE_SUBREGS[ALLOCNUM] and LIVE_SUBREGS_USED[ALLOCNUM] using
4019 REG to the number of nregs, and INIT_VALUE to get the
4020 initialization. ALLOCNUM need not be the regno of REG. */
4021 static void
4022 init_live_subregs (bool init_value, sbitmap *live_subregs,
4023 bitmap live_subregs_used, int allocnum, rtx reg)
4025 unsigned int regno = REGNO (SUBREG_REG (reg));
4026 int size = GET_MODE_SIZE (GET_MODE (regno_reg_rtx[regno]));
4028 gcc_assert (size > 0);
4030 /* Been there, done that. */
4031 if (bitmap_bit_p (live_subregs_used, allocnum))
4032 return;
4034 /* Create a new one. */
4035 if (live_subregs[allocnum] == NULL)
4036 live_subregs[allocnum] = sbitmap_alloc (size);
4038 /* If the entire reg was live before blasting into subregs, we need
4039 to init all of the subregs to ones else init to 0. */
4040 if (init_value)
4041 bitmap_ones (live_subregs[allocnum]);
4042 else
4043 bitmap_clear (live_subregs[allocnum]);
4045 bitmap_set_bit (live_subregs_used, allocnum);
4048 /* Walk the insns of the current function and build reload_insn_chain,
4049 and record register life information. */
4050 static void
4051 build_insn_chain (void)
4053 unsigned int i;
4054 struct insn_chain **p = &reload_insn_chain;
4055 basic_block bb;
4056 struct insn_chain *c = NULL;
4057 struct insn_chain *next = NULL;
4058 bitmap live_relevant_regs = BITMAP_ALLOC (NULL);
4059 bitmap elim_regset = BITMAP_ALLOC (NULL);
4060 /* live_subregs is a vector used to keep accurate information about
4061 which hardregs are live in multiword pseudos. live_subregs and
4062 live_subregs_used are indexed by pseudo number. The live_subreg
4063 entry for a particular pseudo is only used if the corresponding
4064 element is non zero in live_subregs_used. The sbitmap size of
4065 live_subreg[allocno] is number of bytes that the pseudo can
4066 occupy. */
4067 sbitmap *live_subregs = XCNEWVEC (sbitmap, max_regno);
4068 bitmap live_subregs_used = BITMAP_ALLOC (NULL);
4070 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4071 if (TEST_HARD_REG_BIT (eliminable_regset, i))
4072 bitmap_set_bit (elim_regset, i);
4073 FOR_EACH_BB_REVERSE_FN (bb, cfun)
4075 bitmap_iterator bi;
4076 rtx_insn *insn;
4078 CLEAR_REG_SET (live_relevant_regs);
4079 bitmap_clear (live_subregs_used);
4081 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb), 0, i, bi)
4083 if (i >= FIRST_PSEUDO_REGISTER)
4084 break;
4085 bitmap_set_bit (live_relevant_regs, i);
4088 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb),
4089 FIRST_PSEUDO_REGISTER, i, bi)
4091 if (pseudo_for_reload_consideration_p (i))
4092 bitmap_set_bit (live_relevant_regs, i);
4095 FOR_BB_INSNS_REVERSE (bb, insn)
4097 if (!NOTE_P (insn) && !BARRIER_P (insn))
4099 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4100 df_ref def, use;
4102 c = new_insn_chain ();
4103 c->next = next;
4104 next = c;
4105 *p = c;
4106 p = &c->prev;
4108 c->insn = insn;
4109 c->block = bb->index;
4111 if (NONDEBUG_INSN_P (insn))
4112 FOR_EACH_INSN_INFO_DEF (def, insn_info)
4114 unsigned int regno = DF_REF_REGNO (def);
4116 /* Ignore may clobbers because these are generated
4117 from calls. However, every other kind of def is
4118 added to dead_or_set. */
4119 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
4121 if (regno < FIRST_PSEUDO_REGISTER)
4123 if (!fixed_regs[regno])
4124 bitmap_set_bit (&c->dead_or_set, regno);
4126 else if (pseudo_for_reload_consideration_p (regno))
4127 bitmap_set_bit (&c->dead_or_set, regno);
4130 if ((regno < FIRST_PSEUDO_REGISTER
4131 || reg_renumber[regno] >= 0
4132 || ira_conflicts_p)
4133 && (!DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)))
4135 rtx reg = DF_REF_REG (def);
4137 /* We can model subregs, but not if they are
4138 wrapped in ZERO_EXTRACTS. */
4139 if (GET_CODE (reg) == SUBREG
4140 && !DF_REF_FLAGS_IS_SET (def, DF_REF_ZERO_EXTRACT))
4142 unsigned int start = SUBREG_BYTE (reg);
4143 unsigned int last = start
4144 + GET_MODE_SIZE (GET_MODE (reg));
4146 init_live_subregs
4147 (bitmap_bit_p (live_relevant_regs, regno),
4148 live_subregs, live_subregs_used, regno, reg);
4150 if (!DF_REF_FLAGS_IS_SET
4151 (def, DF_REF_STRICT_LOW_PART))
4153 /* Expand the range to cover entire words.
4154 Bytes added here are "don't care". */
4155 start
4156 = start / UNITS_PER_WORD * UNITS_PER_WORD;
4157 last = ((last + UNITS_PER_WORD - 1)
4158 / UNITS_PER_WORD * UNITS_PER_WORD);
4161 /* Ignore the paradoxical bits. */
4162 if (last > SBITMAP_SIZE (live_subregs[regno]))
4163 last = SBITMAP_SIZE (live_subregs[regno]);
4165 while (start < last)
4167 bitmap_clear_bit (live_subregs[regno], start);
4168 start++;
4171 if (bitmap_empty_p (live_subregs[regno]))
4173 bitmap_clear_bit (live_subregs_used, regno);
4174 bitmap_clear_bit (live_relevant_regs, regno);
4176 else
4177 /* Set live_relevant_regs here because
4178 that bit has to be true to get us to
4179 look at the live_subregs fields. */
4180 bitmap_set_bit (live_relevant_regs, regno);
4182 else
4184 /* DF_REF_PARTIAL is generated for
4185 subregs, STRICT_LOW_PART, and
4186 ZERO_EXTRACT. We handle the subreg
4187 case above so here we have to keep from
4188 modeling the def as a killing def. */
4189 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL))
4191 bitmap_clear_bit (live_subregs_used, regno);
4192 bitmap_clear_bit (live_relevant_regs, regno);
4198 bitmap_and_compl_into (live_relevant_regs, elim_regset);
4199 bitmap_copy (&c->live_throughout, live_relevant_regs);
4201 if (NONDEBUG_INSN_P (insn))
4202 FOR_EACH_INSN_INFO_USE (use, insn_info)
4204 unsigned int regno = DF_REF_REGNO (use);
4205 rtx reg = DF_REF_REG (use);
4207 /* DF_REF_READ_WRITE on a use means that this use
4208 is fabricated from a def that is a partial set
4209 to a multiword reg. Here, we only model the
4210 subreg case that is not wrapped in ZERO_EXTRACT
4211 precisely so we do not need to look at the
4212 fabricated use. */
4213 if (DF_REF_FLAGS_IS_SET (use, DF_REF_READ_WRITE)
4214 && !DF_REF_FLAGS_IS_SET (use, DF_REF_ZERO_EXTRACT)
4215 && DF_REF_FLAGS_IS_SET (use, DF_REF_SUBREG))
4216 continue;
4218 /* Add the last use of each var to dead_or_set. */
4219 if (!bitmap_bit_p (live_relevant_regs, regno))
4221 if (regno < FIRST_PSEUDO_REGISTER)
4223 if (!fixed_regs[regno])
4224 bitmap_set_bit (&c->dead_or_set, regno);
4226 else if (pseudo_for_reload_consideration_p (regno))
4227 bitmap_set_bit (&c->dead_or_set, regno);
4230 if (regno < FIRST_PSEUDO_REGISTER
4231 || pseudo_for_reload_consideration_p (regno))
4233 if (GET_CODE (reg) == SUBREG
4234 && !DF_REF_FLAGS_IS_SET (use,
4235 DF_REF_SIGN_EXTRACT
4236 | DF_REF_ZERO_EXTRACT))
4238 unsigned int start = SUBREG_BYTE (reg);
4239 unsigned int last = start
4240 + GET_MODE_SIZE (GET_MODE (reg));
4242 init_live_subregs
4243 (bitmap_bit_p (live_relevant_regs, regno),
4244 live_subregs, live_subregs_used, regno, reg);
4246 /* Ignore the paradoxical bits. */
4247 if (last > SBITMAP_SIZE (live_subregs[regno]))
4248 last = SBITMAP_SIZE (live_subregs[regno]);
4250 while (start < last)
4252 bitmap_set_bit (live_subregs[regno], start);
4253 start++;
4256 else
4257 /* Resetting the live_subregs_used is
4258 effectively saying do not use the subregs
4259 because we are reading the whole
4260 pseudo. */
4261 bitmap_clear_bit (live_subregs_used, regno);
4262 bitmap_set_bit (live_relevant_regs, regno);
4268 /* FIXME!! The following code is a disaster. Reload needs to see the
4269 labels and jump tables that are just hanging out in between
4270 the basic blocks. See pr33676. */
4271 insn = BB_HEAD (bb);
4273 /* Skip over the barriers and cruft. */
4274 while (insn && (BARRIER_P (insn) || NOTE_P (insn)
4275 || BLOCK_FOR_INSN (insn) == bb))
4276 insn = PREV_INSN (insn);
4278 /* While we add anything except barriers and notes, the focus is
4279 to get the labels and jump tables into the
4280 reload_insn_chain. */
4281 while (insn)
4283 if (!NOTE_P (insn) && !BARRIER_P (insn))
4285 if (BLOCK_FOR_INSN (insn))
4286 break;
4288 c = new_insn_chain ();
4289 c->next = next;
4290 next = c;
4291 *p = c;
4292 p = &c->prev;
4294 /* The block makes no sense here, but it is what the old
4295 code did. */
4296 c->block = bb->index;
4297 c->insn = insn;
4298 bitmap_copy (&c->live_throughout, live_relevant_regs);
4300 insn = PREV_INSN (insn);
4304 reload_insn_chain = c;
4305 *p = NULL;
4307 for (i = 0; i < (unsigned int) max_regno; i++)
4308 if (live_subregs[i] != NULL)
4309 sbitmap_free (live_subregs[i]);
4310 free (live_subregs);
4311 BITMAP_FREE (live_subregs_used);
4312 BITMAP_FREE (live_relevant_regs);
4313 BITMAP_FREE (elim_regset);
4315 if (dump_file)
4316 print_insn_chains (dump_file);
4319 /* Examine the rtx found in *LOC, which is read or written to as determined
4320 by TYPE. Return false if we find a reason why an insn containing this
4321 rtx should not be moved (such as accesses to non-constant memory), true
4322 otherwise. */
4323 static bool
4324 rtx_moveable_p (rtx *loc, enum op_type type)
4326 const char *fmt;
4327 rtx x = *loc;
4328 enum rtx_code code = GET_CODE (x);
4329 int i, j;
4331 code = GET_CODE (x);
4332 switch (code)
4334 case CONST:
4335 CASE_CONST_ANY:
4336 case SYMBOL_REF:
4337 case LABEL_REF:
4338 return true;
4340 case PC:
4341 return type == OP_IN;
4343 case CC0:
4344 return false;
4346 case REG:
4347 if (x == frame_pointer_rtx)
4348 return true;
4349 if (HARD_REGISTER_P (x))
4350 return false;
4352 return true;
4354 case MEM:
4355 if (type == OP_IN && MEM_READONLY_P (x))
4356 return rtx_moveable_p (&XEXP (x, 0), OP_IN);
4357 return false;
4359 case SET:
4360 return (rtx_moveable_p (&SET_SRC (x), OP_IN)
4361 && rtx_moveable_p (&SET_DEST (x), OP_OUT));
4363 case STRICT_LOW_PART:
4364 return rtx_moveable_p (&XEXP (x, 0), OP_OUT);
4366 case ZERO_EXTRACT:
4367 case SIGN_EXTRACT:
4368 return (rtx_moveable_p (&XEXP (x, 0), type)
4369 && rtx_moveable_p (&XEXP (x, 1), OP_IN)
4370 && rtx_moveable_p (&XEXP (x, 2), OP_IN));
4372 case CLOBBER:
4373 return rtx_moveable_p (&SET_DEST (x), OP_OUT);
4375 case UNSPEC_VOLATILE:
4376 /* It is a bad idea to consider insns with such rtl
4377 as moveable ones. The insn scheduler also considers them as barrier
4378 for a reason. */
4379 return false;
4381 default:
4382 break;
4385 fmt = GET_RTX_FORMAT (code);
4386 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4388 if (fmt[i] == 'e')
4390 if (!rtx_moveable_p (&XEXP (x, i), type))
4391 return false;
4393 else if (fmt[i] == 'E')
4394 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4396 if (!rtx_moveable_p (&XVECEXP (x, i, j), type))
4397 return false;
4400 return true;
4403 /* A wrapper around dominated_by_p, which uses the information in UID_LUID
4404 to give dominance relationships between two insns I1 and I2. */
4405 static bool
4406 insn_dominated_by_p (rtx i1, rtx i2, int *uid_luid)
4408 basic_block bb1 = BLOCK_FOR_INSN (i1);
4409 basic_block bb2 = BLOCK_FOR_INSN (i2);
4411 if (bb1 == bb2)
4412 return uid_luid[INSN_UID (i2)] < uid_luid[INSN_UID (i1)];
4413 return dominated_by_p (CDI_DOMINATORS, bb1, bb2);
4416 /* Record the range of register numbers added by find_moveable_pseudos. */
4417 int first_moveable_pseudo, last_moveable_pseudo;
4419 /* These two vectors hold data for every register added by
4420 find_movable_pseudos, with index 0 holding data for the
4421 first_moveable_pseudo. */
4422 /* The original home register. */
4423 static vec<rtx> pseudo_replaced_reg;
4425 /* Look for instances where we have an instruction that is known to increase
4426 register pressure, and whose result is not used immediately. If it is
4427 possible to move the instruction downwards to just before its first use,
4428 split its lifetime into two ranges. We create a new pseudo to compute the
4429 value, and emit a move instruction just before the first use. If, after
4430 register allocation, the new pseudo remains unallocated, the function
4431 move_unallocated_pseudos then deletes the move instruction and places
4432 the computation just before the first use.
4434 Such a move is safe and profitable if all the input registers remain live
4435 and unchanged between the original computation and its first use. In such
4436 a situation, the computation is known to increase register pressure, and
4437 moving it is known to at least not worsen it.
4439 We restrict moves to only those cases where a register remains unallocated,
4440 in order to avoid interfering too much with the instruction schedule. As
4441 an exception, we may move insns which only modify their input register
4442 (typically induction variables), as this increases the freedom for our
4443 intended transformation, and does not limit the second instruction
4444 scheduler pass. */
4446 static void
4447 find_moveable_pseudos (void)
4449 unsigned i;
4450 int max_regs = max_reg_num ();
4451 int max_uid = get_max_uid ();
4452 basic_block bb;
4453 int *uid_luid = XNEWVEC (int, max_uid);
4454 rtx_insn **closest_uses = XNEWVEC (rtx_insn *, max_regs);
4455 /* A set of registers which are live but not modified throughout a block. */
4456 bitmap_head *bb_transp_live = XNEWVEC (bitmap_head,
4457 last_basic_block_for_fn (cfun));
4458 /* A set of registers which only exist in a given basic block. */
4459 bitmap_head *bb_local = XNEWVEC (bitmap_head,
4460 last_basic_block_for_fn (cfun));
4461 /* A set of registers which are set once, in an instruction that can be
4462 moved freely downwards, but are otherwise transparent to a block. */
4463 bitmap_head *bb_moveable_reg_sets = XNEWVEC (bitmap_head,
4464 last_basic_block_for_fn (cfun));
4465 bitmap_head live, used, set, interesting, unusable_as_input;
4466 bitmap_iterator bi;
4467 bitmap_initialize (&interesting, 0);
4469 first_moveable_pseudo = max_regs;
4470 pseudo_replaced_reg.release ();
4471 pseudo_replaced_reg.safe_grow_cleared (max_regs);
4473 df_analyze ();
4474 calculate_dominance_info (CDI_DOMINATORS);
4476 i = 0;
4477 bitmap_initialize (&live, 0);
4478 bitmap_initialize (&used, 0);
4479 bitmap_initialize (&set, 0);
4480 bitmap_initialize (&unusable_as_input, 0);
4481 FOR_EACH_BB_FN (bb, cfun)
4483 rtx_insn *insn;
4484 bitmap transp = bb_transp_live + bb->index;
4485 bitmap moveable = bb_moveable_reg_sets + bb->index;
4486 bitmap local = bb_local + bb->index;
4488 bitmap_initialize (local, 0);
4489 bitmap_initialize (transp, 0);
4490 bitmap_initialize (moveable, 0);
4491 bitmap_copy (&live, df_get_live_out (bb));
4492 bitmap_and_into (&live, df_get_live_in (bb));
4493 bitmap_copy (transp, &live);
4494 bitmap_clear (moveable);
4495 bitmap_clear (&live);
4496 bitmap_clear (&used);
4497 bitmap_clear (&set);
4498 FOR_BB_INSNS (bb, insn)
4499 if (NONDEBUG_INSN_P (insn))
4501 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4502 df_ref def, use;
4504 uid_luid[INSN_UID (insn)] = i++;
4506 def = df_single_def (insn_info);
4507 use = df_single_use (insn_info);
4508 if (use
4509 && def
4510 && DF_REF_REGNO (use) == DF_REF_REGNO (def)
4511 && !bitmap_bit_p (&set, DF_REF_REGNO (use))
4512 && rtx_moveable_p (&PATTERN (insn), OP_IN))
4514 unsigned regno = DF_REF_REGNO (use);
4515 bitmap_set_bit (moveable, regno);
4516 bitmap_set_bit (&set, regno);
4517 bitmap_set_bit (&used, regno);
4518 bitmap_clear_bit (transp, regno);
4519 continue;
4521 FOR_EACH_INSN_INFO_USE (use, insn_info)
4523 unsigned regno = DF_REF_REGNO (use);
4524 bitmap_set_bit (&used, regno);
4525 if (bitmap_clear_bit (moveable, regno))
4526 bitmap_clear_bit (transp, regno);
4529 FOR_EACH_INSN_INFO_DEF (def, insn_info)
4531 unsigned regno = DF_REF_REGNO (def);
4532 bitmap_set_bit (&set, regno);
4533 bitmap_clear_bit (transp, regno);
4534 bitmap_clear_bit (moveable, regno);
4539 bitmap_clear (&live);
4540 bitmap_clear (&used);
4541 bitmap_clear (&set);
4543 FOR_EACH_BB_FN (bb, cfun)
4545 bitmap local = bb_local + bb->index;
4546 rtx_insn *insn;
4548 FOR_BB_INSNS (bb, insn)
4549 if (NONDEBUG_INSN_P (insn))
4551 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4552 rtx_insn *def_insn;
4553 rtx closest_use, note;
4554 df_ref def, use;
4555 unsigned regno;
4556 bool all_dominated, all_local;
4557 machine_mode mode;
4559 def = df_single_def (insn_info);
4560 /* There must be exactly one def in this insn. */
4561 if (!def || !single_set (insn))
4562 continue;
4563 /* This must be the only definition of the reg. We also limit
4564 which modes we deal with so that we can assume we can generate
4565 move instructions. */
4566 regno = DF_REF_REGNO (def);
4567 mode = GET_MODE (DF_REF_REG (def));
4568 if (DF_REG_DEF_COUNT (regno) != 1
4569 || !DF_REF_INSN_INFO (def)
4570 || HARD_REGISTER_NUM_P (regno)
4571 || DF_REG_EQ_USE_COUNT (regno) > 0
4572 || (!INTEGRAL_MODE_P (mode) && !FLOAT_MODE_P (mode)))
4573 continue;
4574 def_insn = DF_REF_INSN (def);
4576 for (note = REG_NOTES (def_insn); note; note = XEXP (note, 1))
4577 if (REG_NOTE_KIND (note) == REG_EQUIV && MEM_P (XEXP (note, 0)))
4578 break;
4580 if (note)
4582 if (dump_file)
4583 fprintf (dump_file, "Ignoring reg %d, has equiv memory\n",
4584 regno);
4585 bitmap_set_bit (&unusable_as_input, regno);
4586 continue;
4589 use = DF_REG_USE_CHAIN (regno);
4590 all_dominated = true;
4591 all_local = true;
4592 closest_use = NULL_RTX;
4593 for (; use; use = DF_REF_NEXT_REG (use))
4595 rtx_insn *insn;
4596 if (!DF_REF_INSN_INFO (use))
4598 all_dominated = false;
4599 all_local = false;
4600 break;
4602 insn = DF_REF_INSN (use);
4603 if (DEBUG_INSN_P (insn))
4604 continue;
4605 if (BLOCK_FOR_INSN (insn) != BLOCK_FOR_INSN (def_insn))
4606 all_local = false;
4607 if (!insn_dominated_by_p (insn, def_insn, uid_luid))
4608 all_dominated = false;
4609 if (closest_use != insn && closest_use != const0_rtx)
4611 if (closest_use == NULL_RTX)
4612 closest_use = insn;
4613 else if (insn_dominated_by_p (closest_use, insn, uid_luid))
4614 closest_use = insn;
4615 else if (!insn_dominated_by_p (insn, closest_use, uid_luid))
4616 closest_use = const0_rtx;
4619 if (!all_dominated)
4621 if (dump_file)
4622 fprintf (dump_file, "Reg %d not all uses dominated by set\n",
4623 regno);
4624 continue;
4626 if (all_local)
4627 bitmap_set_bit (local, regno);
4628 if (closest_use == const0_rtx || closest_use == NULL
4629 || next_nonnote_nondebug_insn (def_insn) == closest_use)
4631 if (dump_file)
4632 fprintf (dump_file, "Reg %d uninteresting%s\n", regno,
4633 closest_use == const0_rtx || closest_use == NULL
4634 ? " (no unique first use)" : "");
4635 continue;
4637 if (HAVE_cc0 && reg_referenced_p (cc0_rtx, PATTERN (closest_use)))
4639 if (dump_file)
4640 fprintf (dump_file, "Reg %d: closest user uses cc0\n",
4641 regno);
4642 continue;
4645 bitmap_set_bit (&interesting, regno);
4646 /* If we get here, we know closest_use is a non-NULL insn
4647 (as opposed to const_0_rtx). */
4648 closest_uses[regno] = as_a <rtx_insn *> (closest_use);
4650 if (dump_file && (all_local || all_dominated))
4652 fprintf (dump_file, "Reg %u:", regno);
4653 if (all_local)
4654 fprintf (dump_file, " local to bb %d", bb->index);
4655 if (all_dominated)
4656 fprintf (dump_file, " def dominates all uses");
4657 if (closest_use != const0_rtx)
4658 fprintf (dump_file, " has unique first use");
4659 fputs ("\n", dump_file);
4664 EXECUTE_IF_SET_IN_BITMAP (&interesting, 0, i, bi)
4666 df_ref def = DF_REG_DEF_CHAIN (i);
4667 rtx_insn *def_insn = DF_REF_INSN (def);
4668 basic_block def_block = BLOCK_FOR_INSN (def_insn);
4669 bitmap def_bb_local = bb_local + def_block->index;
4670 bitmap def_bb_moveable = bb_moveable_reg_sets + def_block->index;
4671 bitmap def_bb_transp = bb_transp_live + def_block->index;
4672 bool local_to_bb_p = bitmap_bit_p (def_bb_local, i);
4673 rtx_insn *use_insn = closest_uses[i];
4674 df_ref use;
4675 bool all_ok = true;
4676 bool all_transp = true;
4678 if (!REG_P (DF_REF_REG (def)))
4679 continue;
4681 if (!local_to_bb_p)
4683 if (dump_file)
4684 fprintf (dump_file, "Reg %u not local to one basic block\n",
4686 continue;
4688 if (reg_equiv_init (i) != NULL_RTX)
4690 if (dump_file)
4691 fprintf (dump_file, "Ignoring reg %u with equiv init insn\n",
4693 continue;
4695 if (!rtx_moveable_p (&PATTERN (def_insn), OP_IN))
4697 if (dump_file)
4698 fprintf (dump_file, "Found def insn %d for %d to be not moveable\n",
4699 INSN_UID (def_insn), i);
4700 continue;
4702 if (dump_file)
4703 fprintf (dump_file, "Examining insn %d, def for %d\n",
4704 INSN_UID (def_insn), i);
4705 FOR_EACH_INSN_USE (use, def_insn)
4707 unsigned regno = DF_REF_REGNO (use);
4708 if (bitmap_bit_p (&unusable_as_input, regno))
4710 all_ok = false;
4711 if (dump_file)
4712 fprintf (dump_file, " found unusable input reg %u.\n", regno);
4713 break;
4715 if (!bitmap_bit_p (def_bb_transp, regno))
4717 if (bitmap_bit_p (def_bb_moveable, regno)
4718 && !control_flow_insn_p (use_insn)
4719 && (!HAVE_cc0 || !sets_cc0_p (use_insn)))
4721 if (modified_between_p (DF_REF_REG (use), def_insn, use_insn))
4723 rtx_insn *x = NEXT_INSN (def_insn);
4724 while (!modified_in_p (DF_REF_REG (use), x))
4726 gcc_assert (x != use_insn);
4727 x = NEXT_INSN (x);
4729 if (dump_file)
4730 fprintf (dump_file, " input reg %u modified but insn %d moveable\n",
4731 regno, INSN_UID (x));
4732 emit_insn_after (PATTERN (x), use_insn);
4733 set_insn_deleted (x);
4735 else
4737 if (dump_file)
4738 fprintf (dump_file, " input reg %u modified between def and use\n",
4739 regno);
4740 all_transp = false;
4743 else
4744 all_transp = false;
4747 if (!all_ok)
4748 continue;
4749 if (!dbg_cnt (ira_move))
4750 break;
4751 if (dump_file)
4752 fprintf (dump_file, " all ok%s\n", all_transp ? " and transp" : "");
4754 if (all_transp)
4756 rtx def_reg = DF_REF_REG (def);
4757 rtx newreg = ira_create_new_reg (def_reg);
4758 if (validate_change (def_insn, DF_REF_REAL_LOC (def), newreg, 0))
4760 unsigned nregno = REGNO (newreg);
4761 emit_insn_before (gen_move_insn (def_reg, newreg), use_insn);
4762 nregno -= max_regs;
4763 pseudo_replaced_reg[nregno] = def_reg;
4768 FOR_EACH_BB_FN (bb, cfun)
4770 bitmap_clear (bb_local + bb->index);
4771 bitmap_clear (bb_transp_live + bb->index);
4772 bitmap_clear (bb_moveable_reg_sets + bb->index);
4774 bitmap_clear (&interesting);
4775 bitmap_clear (&unusable_as_input);
4776 free (uid_luid);
4777 free (closest_uses);
4778 free (bb_local);
4779 free (bb_transp_live);
4780 free (bb_moveable_reg_sets);
4782 last_moveable_pseudo = max_reg_num ();
4784 fix_reg_equiv_init ();
4785 expand_reg_info ();
4786 regstat_free_n_sets_and_refs ();
4787 regstat_free_ri ();
4788 regstat_init_n_sets_and_refs ();
4789 regstat_compute_ri ();
4790 free_dominance_info (CDI_DOMINATORS);
4793 /* If SET pattern SET is an assignment from a hard register to a pseudo which
4794 is live at CALL_DOM (if non-NULL, otherwise this check is omitted), return
4795 the destination. Otherwise return NULL. */
4797 static rtx
4798 interesting_dest_for_shprep_1 (rtx set, basic_block call_dom)
4800 rtx src = SET_SRC (set);
4801 rtx dest = SET_DEST (set);
4802 if (!REG_P (src) || !HARD_REGISTER_P (src)
4803 || !REG_P (dest) || HARD_REGISTER_P (dest)
4804 || (call_dom && !bitmap_bit_p (df_get_live_in (call_dom), REGNO (dest))))
4805 return NULL;
4806 return dest;
4809 /* If insn is interesting for parameter range-splitting shrink-wrapping
4810 preparation, i.e. it is a single set from a hard register to a pseudo, which
4811 is live at CALL_DOM (if non-NULL, otherwise this check is omitted), or a
4812 parallel statement with only one such statement, return the destination.
4813 Otherwise return NULL. */
4815 static rtx
4816 interesting_dest_for_shprep (rtx_insn *insn, basic_block call_dom)
4818 if (!INSN_P (insn))
4819 return NULL;
4820 rtx pat = PATTERN (insn);
4821 if (GET_CODE (pat) == SET)
4822 return interesting_dest_for_shprep_1 (pat, call_dom);
4824 if (GET_CODE (pat) != PARALLEL)
4825 return NULL;
4826 rtx ret = NULL;
4827 for (int i = 0; i < XVECLEN (pat, 0); i++)
4829 rtx sub = XVECEXP (pat, 0, i);
4830 if (GET_CODE (sub) == USE || GET_CODE (sub) == CLOBBER)
4831 continue;
4832 if (GET_CODE (sub) != SET
4833 || side_effects_p (sub))
4834 return NULL;
4835 rtx dest = interesting_dest_for_shprep_1 (sub, call_dom);
4836 if (dest && ret)
4837 return NULL;
4838 if (dest)
4839 ret = dest;
4841 return ret;
4844 /* Split live ranges of pseudos that are loaded from hard registers in the
4845 first BB in a BB that dominates all non-sibling call if such a BB can be
4846 found and is not in a loop. Return true if the function has made any
4847 changes. */
4849 static bool
4850 split_live_ranges_for_shrink_wrap (void)
4852 basic_block bb, call_dom = NULL;
4853 basic_block first = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
4854 rtx_insn *insn, *last_interesting_insn = NULL;
4855 bitmap_head need_new, reachable;
4856 vec<basic_block> queue;
4858 if (!SHRINK_WRAPPING_ENABLED)
4859 return false;
4861 bitmap_initialize (&need_new, 0);
4862 bitmap_initialize (&reachable, 0);
4863 queue.create (n_basic_blocks_for_fn (cfun));
4865 FOR_EACH_BB_FN (bb, cfun)
4866 FOR_BB_INSNS (bb, insn)
4867 if (CALL_P (insn) && !SIBLING_CALL_P (insn))
4869 if (bb == first)
4871 bitmap_clear (&need_new);
4872 bitmap_clear (&reachable);
4873 queue.release ();
4874 return false;
4877 bitmap_set_bit (&need_new, bb->index);
4878 bitmap_set_bit (&reachable, bb->index);
4879 queue.quick_push (bb);
4880 break;
4883 if (queue.is_empty ())
4885 bitmap_clear (&need_new);
4886 bitmap_clear (&reachable);
4887 queue.release ();
4888 return false;
4891 while (!queue.is_empty ())
4893 edge e;
4894 edge_iterator ei;
4896 bb = queue.pop ();
4897 FOR_EACH_EDGE (e, ei, bb->succs)
4898 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
4899 && bitmap_set_bit (&reachable, e->dest->index))
4900 queue.quick_push (e->dest);
4902 queue.release ();
4904 FOR_BB_INSNS (first, insn)
4906 rtx dest = interesting_dest_for_shprep (insn, NULL);
4907 if (!dest)
4908 continue;
4910 if (DF_REG_DEF_COUNT (REGNO (dest)) > 1)
4912 bitmap_clear (&need_new);
4913 bitmap_clear (&reachable);
4914 return false;
4917 for (df_ref use = DF_REG_USE_CHAIN (REGNO(dest));
4918 use;
4919 use = DF_REF_NEXT_REG (use))
4921 int ubbi = DF_REF_BB (use)->index;
4922 if (bitmap_bit_p (&reachable, ubbi))
4923 bitmap_set_bit (&need_new, ubbi);
4925 last_interesting_insn = insn;
4928 bitmap_clear (&reachable);
4929 if (!last_interesting_insn)
4931 bitmap_clear (&need_new);
4932 return false;
4935 call_dom = nearest_common_dominator_for_set (CDI_DOMINATORS, &need_new);
4936 bitmap_clear (&need_new);
4937 if (call_dom == first)
4938 return false;
4940 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
4941 while (bb_loop_depth (call_dom) > 0)
4942 call_dom = get_immediate_dominator (CDI_DOMINATORS, call_dom);
4943 loop_optimizer_finalize ();
4945 if (call_dom == first)
4946 return false;
4948 calculate_dominance_info (CDI_POST_DOMINATORS);
4949 if (dominated_by_p (CDI_POST_DOMINATORS, first, call_dom))
4951 free_dominance_info (CDI_POST_DOMINATORS);
4952 return false;
4954 free_dominance_info (CDI_POST_DOMINATORS);
4956 if (dump_file)
4957 fprintf (dump_file, "Will split live ranges of parameters at BB %i\n",
4958 call_dom->index);
4960 bool ret = false;
4961 FOR_BB_INSNS (first, insn)
4963 rtx dest = interesting_dest_for_shprep (insn, call_dom);
4964 if (!dest || dest == pic_offset_table_rtx)
4965 continue;
4967 rtx newreg = NULL_RTX;
4968 df_ref use, next;
4969 for (use = DF_REG_USE_CHAIN (REGNO (dest)); use; use = next)
4971 rtx_insn *uin = DF_REF_INSN (use);
4972 next = DF_REF_NEXT_REG (use);
4974 basic_block ubb = BLOCK_FOR_INSN (uin);
4975 if (ubb == call_dom
4976 || dominated_by_p (CDI_DOMINATORS, ubb, call_dom))
4978 if (!newreg)
4979 newreg = ira_create_new_reg (dest);
4980 validate_change (uin, DF_REF_REAL_LOC (use), newreg, true);
4984 if (newreg)
4986 rtx_insn *new_move = gen_move_insn (newreg, dest);
4987 emit_insn_after (new_move, bb_note (call_dom));
4988 if (dump_file)
4990 fprintf (dump_file, "Split live-range of register ");
4991 print_rtl_single (dump_file, dest);
4993 ret = true;
4996 if (insn == last_interesting_insn)
4997 break;
4999 apply_change_group ();
5000 return ret;
5003 /* Perform the second half of the transformation started in
5004 find_moveable_pseudos. We look for instances where the newly introduced
5005 pseudo remains unallocated, and remove it by moving the definition to
5006 just before its use, replacing the move instruction generated by
5007 find_moveable_pseudos. */
5008 static void
5009 move_unallocated_pseudos (void)
5011 int i;
5012 for (i = first_moveable_pseudo; i < last_moveable_pseudo; i++)
5013 if (reg_renumber[i] < 0)
5015 int idx = i - first_moveable_pseudo;
5016 rtx other_reg = pseudo_replaced_reg[idx];
5017 rtx_insn *def_insn = DF_REF_INSN (DF_REG_DEF_CHAIN (i));
5018 /* The use must follow all definitions of OTHER_REG, so we can
5019 insert the new definition immediately after any of them. */
5020 df_ref other_def = DF_REG_DEF_CHAIN (REGNO (other_reg));
5021 rtx_insn *move_insn = DF_REF_INSN (other_def);
5022 rtx_insn *newinsn = emit_insn_after (PATTERN (def_insn), move_insn);
5023 rtx set;
5024 int success;
5026 if (dump_file)
5027 fprintf (dump_file, "moving def of %d (insn %d now) ",
5028 REGNO (other_reg), INSN_UID (def_insn));
5030 delete_insn (move_insn);
5031 while ((other_def = DF_REG_DEF_CHAIN (REGNO (other_reg))))
5032 delete_insn (DF_REF_INSN (other_def));
5033 delete_insn (def_insn);
5035 set = single_set (newinsn);
5036 success = validate_change (newinsn, &SET_DEST (set), other_reg, 0);
5037 gcc_assert (success);
5038 if (dump_file)
5039 fprintf (dump_file, " %d) rather than keep unallocated replacement %d\n",
5040 INSN_UID (newinsn), i);
5041 SET_REG_N_REFS (i, 0);
5045 /* If the backend knows where to allocate pseudos for hard
5046 register initial values, register these allocations now. */
5047 static void
5048 allocate_initial_values (void)
5050 if (targetm.allocate_initial_value)
5052 rtx hreg, preg, x;
5053 int i, regno;
5055 for (i = 0; HARD_REGISTER_NUM_P (i); i++)
5057 if (! initial_value_entry (i, &hreg, &preg))
5058 break;
5060 x = targetm.allocate_initial_value (hreg);
5061 regno = REGNO (preg);
5062 if (x && REG_N_SETS (regno) <= 1)
5064 if (MEM_P (x))
5065 reg_equiv_memory_loc (regno) = x;
5066 else
5068 basic_block bb;
5069 int new_regno;
5071 gcc_assert (REG_P (x));
5072 new_regno = REGNO (x);
5073 reg_renumber[regno] = new_regno;
5074 /* Poke the regno right into regno_reg_rtx so that even
5075 fixed regs are accepted. */
5076 SET_REGNO (preg, new_regno);
5077 /* Update global register liveness information. */
5078 FOR_EACH_BB_FN (bb, cfun)
5080 if (REGNO_REG_SET_P (df_get_live_in (bb), regno))
5081 SET_REGNO_REG_SET (df_get_live_in (bb), new_regno);
5082 if (REGNO_REG_SET_P (df_get_live_out (bb), regno))
5083 SET_REGNO_REG_SET (df_get_live_out (bb), new_regno);
5089 gcc_checking_assert (! initial_value_entry (FIRST_PSEUDO_REGISTER,
5090 &hreg, &preg));
5095 /* True when we use LRA instead of reload pass for the current
5096 function. */
5097 bool ira_use_lra_p;
5099 /* True if we have allocno conflicts. It is false for non-optimized
5100 mode or when the conflict table is too big. */
5101 bool ira_conflicts_p;
5103 /* Saved between IRA and reload. */
5104 static int saved_flag_ira_share_spill_slots;
5106 /* This is the main entry of IRA. */
5107 static void
5108 ira (FILE *f)
5110 bool loops_p;
5111 int ira_max_point_before_emit;
5112 bool saved_flag_caller_saves = flag_caller_saves;
5113 enum ira_region saved_flag_ira_region = flag_ira_region;
5115 /* Perform target specific PIC register initialization. */
5116 targetm.init_pic_reg ();
5118 ira_conflicts_p = optimize > 0;
5120 ira_use_lra_p = targetm.lra_p ();
5121 /* If there are too many pseudos and/or basic blocks (e.g. 10K
5122 pseudos and 10K blocks or 100K pseudos and 1K blocks), we will
5123 use simplified and faster algorithms in LRA. */
5124 lra_simple_p
5125 = (ira_use_lra_p
5126 && max_reg_num () >= (1 << 26) / last_basic_block_for_fn (cfun));
5127 if (lra_simple_p)
5129 /* It permits to skip live range splitting in LRA. */
5130 flag_caller_saves = false;
5131 /* There is no sense to do regional allocation when we use
5132 simplified LRA. */
5133 flag_ira_region = IRA_REGION_ONE;
5134 ira_conflicts_p = false;
5137 #ifndef IRA_NO_OBSTACK
5138 gcc_obstack_init (&ira_obstack);
5139 #endif
5140 bitmap_obstack_initialize (&ira_bitmap_obstack);
5142 /* LRA uses its own infrastructure to handle caller save registers. */
5143 if (flag_caller_saves && !ira_use_lra_p)
5144 init_caller_save ();
5146 if (flag_ira_verbose < 10)
5148 internal_flag_ira_verbose = flag_ira_verbose;
5149 ira_dump_file = f;
5151 else
5153 internal_flag_ira_verbose = flag_ira_verbose - 10;
5154 ira_dump_file = stderr;
5157 setup_prohibited_mode_move_regs ();
5158 decrease_live_ranges_number ();
5159 df_note_add_problem ();
5161 /* DF_LIVE can't be used in the register allocator, too many other
5162 parts of the compiler depend on using the "classic" liveness
5163 interpretation of the DF_LR problem. See PR38711.
5164 Remove the problem, so that we don't spend time updating it in
5165 any of the df_analyze() calls during IRA/LRA. */
5166 if (optimize > 1)
5167 df_remove_problem (df_live);
5168 gcc_checking_assert (df_live == NULL);
5170 if (flag_checking)
5171 df->changeable_flags |= DF_VERIFY_SCHEDULED;
5173 df_analyze ();
5175 init_reg_equiv ();
5176 if (ira_conflicts_p)
5178 calculate_dominance_info (CDI_DOMINATORS);
5180 if (split_live_ranges_for_shrink_wrap ())
5181 df_analyze ();
5183 free_dominance_info (CDI_DOMINATORS);
5186 df_clear_flags (DF_NO_INSN_RESCAN);
5188 indirect_jump_optimize ();
5189 if (delete_trivially_dead_insns (get_insns (), max_reg_num ()))
5190 df_analyze ();
5192 regstat_init_n_sets_and_refs ();
5193 regstat_compute_ri ();
5195 /* If we are not optimizing, then this is the only place before
5196 register allocation where dataflow is done. And that is needed
5197 to generate these warnings. */
5198 if (warn_clobbered)
5199 generate_setjmp_warnings ();
5201 /* Determine if the current function is a leaf before running IRA
5202 since this can impact optimizations done by the prologue and
5203 epilogue thus changing register elimination offsets. */
5204 crtl->is_leaf = leaf_function_p ();
5206 if (resize_reg_info () && flag_ira_loop_pressure)
5207 ira_set_pseudo_classes (true, ira_dump_file);
5209 update_equiv_regs ();
5210 setup_reg_equiv ();
5211 setup_reg_equiv_init ();
5213 allocated_reg_info_size = max_reg_num ();
5215 /* It is not worth to do such improvement when we use a simple
5216 allocation because of -O0 usage or because the function is too
5217 big. */
5218 if (ira_conflicts_p)
5219 find_moveable_pseudos ();
5221 max_regno_before_ira = max_reg_num ();
5222 ira_setup_eliminable_regset ();
5224 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
5225 ira_load_cost = ira_store_cost = ira_shuffle_cost = 0;
5226 ira_move_loops_num = ira_additional_jumps_num = 0;
5228 ira_assert (current_loops == NULL);
5229 if (flag_ira_region == IRA_REGION_ALL || flag_ira_region == IRA_REGION_MIXED)
5230 loop_optimizer_init (AVOID_CFG_MODIFICATIONS | LOOPS_HAVE_RECORDED_EXITS);
5232 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5233 fprintf (ira_dump_file, "Building IRA IR\n");
5234 loops_p = ira_build ();
5236 ira_assert (ira_conflicts_p || !loops_p);
5238 saved_flag_ira_share_spill_slots = flag_ira_share_spill_slots;
5239 if (too_high_register_pressure_p () || cfun->calls_setjmp)
5240 /* It is just wasting compiler's time to pack spilled pseudos into
5241 stack slots in this case -- prohibit it. We also do this if
5242 there is setjmp call because a variable not modified between
5243 setjmp and longjmp the compiler is required to preserve its
5244 value and sharing slots does not guarantee it. */
5245 flag_ira_share_spill_slots = FALSE;
5247 ira_color ();
5249 ira_max_point_before_emit = ira_max_point;
5251 ira_initiate_emit_data ();
5253 ira_emit (loops_p);
5255 max_regno = max_reg_num ();
5256 if (ira_conflicts_p)
5258 if (! loops_p)
5260 if (! ira_use_lra_p)
5261 ira_initiate_assign ();
5263 else
5265 expand_reg_info ();
5267 if (ira_use_lra_p)
5269 ira_allocno_t a;
5270 ira_allocno_iterator ai;
5272 FOR_EACH_ALLOCNO (a, ai)
5274 int old_regno = ALLOCNO_REGNO (a);
5275 int new_regno = REGNO (ALLOCNO_EMIT_DATA (a)->reg);
5277 ALLOCNO_REGNO (a) = new_regno;
5279 if (old_regno != new_regno)
5280 setup_reg_classes (new_regno, reg_preferred_class (old_regno),
5281 reg_alternate_class (old_regno),
5282 reg_allocno_class (old_regno));
5286 else
5288 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5289 fprintf (ira_dump_file, "Flattening IR\n");
5290 ira_flattening (max_regno_before_ira, ira_max_point_before_emit);
5292 /* New insns were generated: add notes and recalculate live
5293 info. */
5294 df_analyze ();
5296 /* ??? Rebuild the loop tree, but why? Does the loop tree
5297 change if new insns were generated? Can that be handled
5298 by updating the loop tree incrementally? */
5299 loop_optimizer_finalize ();
5300 free_dominance_info (CDI_DOMINATORS);
5301 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
5302 | LOOPS_HAVE_RECORDED_EXITS);
5304 if (! ira_use_lra_p)
5306 setup_allocno_assignment_flags ();
5307 ira_initiate_assign ();
5308 ira_reassign_conflict_allocnos (max_regno);
5313 ira_finish_emit_data ();
5315 setup_reg_renumber ();
5317 calculate_allocation_cost ();
5319 #ifdef ENABLE_IRA_CHECKING
5320 if (ira_conflicts_p)
5321 check_allocation ();
5322 #endif
5324 if (max_regno != max_regno_before_ira)
5326 regstat_free_n_sets_and_refs ();
5327 regstat_free_ri ();
5328 regstat_init_n_sets_and_refs ();
5329 regstat_compute_ri ();
5332 overall_cost_before = ira_overall_cost;
5333 if (! ira_conflicts_p)
5334 grow_reg_equivs ();
5335 else
5337 fix_reg_equiv_init ();
5339 #ifdef ENABLE_IRA_CHECKING
5340 print_redundant_copies ();
5341 #endif
5342 if (! ira_use_lra_p)
5344 ira_spilled_reg_stack_slots_num = 0;
5345 ira_spilled_reg_stack_slots
5346 = ((struct ira_spilled_reg_stack_slot *)
5347 ira_allocate (max_regno
5348 * sizeof (struct ira_spilled_reg_stack_slot)));
5349 memset (ira_spilled_reg_stack_slots, 0,
5350 max_regno * sizeof (struct ira_spilled_reg_stack_slot));
5353 allocate_initial_values ();
5355 /* See comment for find_moveable_pseudos call. */
5356 if (ira_conflicts_p)
5357 move_unallocated_pseudos ();
5359 /* Restore original values. */
5360 if (lra_simple_p)
5362 flag_caller_saves = saved_flag_caller_saves;
5363 flag_ira_region = saved_flag_ira_region;
5367 static void
5368 do_reload (void)
5370 basic_block bb;
5371 bool need_dce;
5372 unsigned pic_offset_table_regno = INVALID_REGNUM;
5374 if (flag_ira_verbose < 10)
5375 ira_dump_file = dump_file;
5377 /* If pic_offset_table_rtx is a pseudo register, then keep it so
5378 after reload to avoid possible wrong usages of hard reg assigned
5379 to it. */
5380 if (pic_offset_table_rtx
5381 && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
5382 pic_offset_table_regno = REGNO (pic_offset_table_rtx);
5384 timevar_push (TV_RELOAD);
5385 if (ira_use_lra_p)
5387 if (current_loops != NULL)
5389 loop_optimizer_finalize ();
5390 free_dominance_info (CDI_DOMINATORS);
5392 FOR_ALL_BB_FN (bb, cfun)
5393 bb->loop_father = NULL;
5394 current_loops = NULL;
5396 ira_destroy ();
5398 lra (ira_dump_file);
5399 /* ???!!! Move it before lra () when we use ira_reg_equiv in
5400 LRA. */
5401 vec_free (reg_equivs);
5402 reg_equivs = NULL;
5403 need_dce = false;
5405 else
5407 df_set_flags (DF_NO_INSN_RESCAN);
5408 build_insn_chain ();
5410 need_dce = reload (get_insns (), ira_conflicts_p);
5413 timevar_pop (TV_RELOAD);
5415 timevar_push (TV_IRA);
5417 if (ira_conflicts_p && ! ira_use_lra_p)
5419 ira_free (ira_spilled_reg_stack_slots);
5420 ira_finish_assign ();
5423 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL
5424 && overall_cost_before != ira_overall_cost)
5425 fprintf (ira_dump_file, "+++Overall after reload %" PRId64 "\n",
5426 ira_overall_cost);
5428 flag_ira_share_spill_slots = saved_flag_ira_share_spill_slots;
5430 if (! ira_use_lra_p)
5432 ira_destroy ();
5433 if (current_loops != NULL)
5435 loop_optimizer_finalize ();
5436 free_dominance_info (CDI_DOMINATORS);
5438 FOR_ALL_BB_FN (bb, cfun)
5439 bb->loop_father = NULL;
5440 current_loops = NULL;
5442 regstat_free_ri ();
5443 regstat_free_n_sets_and_refs ();
5446 if (optimize)
5447 cleanup_cfg (CLEANUP_EXPENSIVE);
5449 finish_reg_equiv ();
5451 bitmap_obstack_release (&ira_bitmap_obstack);
5452 #ifndef IRA_NO_OBSTACK
5453 obstack_free (&ira_obstack, NULL);
5454 #endif
5456 /* The code after the reload has changed so much that at this point
5457 we might as well just rescan everything. Note that
5458 df_rescan_all_insns is not going to help here because it does not
5459 touch the artificial uses and defs. */
5460 df_finish_pass (true);
5461 df_scan_alloc (NULL);
5462 df_scan_blocks ();
5464 if (optimize > 1)
5466 df_live_add_problem ();
5467 df_live_set_all_dirty ();
5470 if (optimize)
5471 df_analyze ();
5473 if (need_dce && optimize)
5474 run_fast_dce ();
5476 /* Diagnose uses of the hard frame pointer when it is used as a global
5477 register. Often we can get away with letting the user appropriate
5478 the frame pointer, but we should let them know when code generation
5479 makes that impossible. */
5480 if (global_regs[HARD_FRAME_POINTER_REGNUM] && frame_pointer_needed)
5482 tree decl = global_regs_decl[HARD_FRAME_POINTER_REGNUM];
5483 error_at (DECL_SOURCE_LOCATION (current_function_decl),
5484 "frame pointer required, but reserved");
5485 inform (DECL_SOURCE_LOCATION (decl), "for %qD", decl);
5488 /* If we are doing generic stack checking, give a warning if this
5489 function's frame size is larger than we expect. */
5490 if (flag_stack_check == GENERIC_STACK_CHECK)
5492 HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
5494 for (int i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5495 if (df_regs_ever_live_p (i) && !fixed_regs[i] && call_used_regs[i])
5496 size += UNITS_PER_WORD;
5498 if (size > STACK_CHECK_MAX_FRAME_SIZE)
5499 warning (0, "frame size too large for reliable stack checking");
5502 if (pic_offset_table_regno != INVALID_REGNUM)
5503 pic_offset_table_rtx = gen_rtx_REG (Pmode, pic_offset_table_regno);
5505 timevar_pop (TV_IRA);
5508 /* Run the integrated register allocator. */
5510 namespace {
5512 const pass_data pass_data_ira =
5514 RTL_PASS, /* type */
5515 "ira", /* name */
5516 OPTGROUP_NONE, /* optinfo_flags */
5517 TV_IRA, /* tv_id */
5518 0, /* properties_required */
5519 0, /* properties_provided */
5520 0, /* properties_destroyed */
5521 0, /* todo_flags_start */
5522 TODO_do_not_ggc_collect, /* todo_flags_finish */
5525 class pass_ira : public rtl_opt_pass
5527 public:
5528 pass_ira (gcc::context *ctxt)
5529 : rtl_opt_pass (pass_data_ira, ctxt)
5532 /* opt_pass methods: */
5533 virtual bool gate (function *)
5535 return !targetm.no_register_allocation;
5537 virtual unsigned int execute (function *)
5539 ira (dump_file);
5540 return 0;
5543 }; // class pass_ira
5545 } // anon namespace
5547 rtl_opt_pass *
5548 make_pass_ira (gcc::context *ctxt)
5550 return new pass_ira (ctxt);
5553 namespace {
5555 const pass_data pass_data_reload =
5557 RTL_PASS, /* type */
5558 "reload", /* name */
5559 OPTGROUP_NONE, /* optinfo_flags */
5560 TV_RELOAD, /* tv_id */
5561 0, /* properties_required */
5562 0, /* properties_provided */
5563 0, /* properties_destroyed */
5564 0, /* todo_flags_start */
5565 0, /* todo_flags_finish */
5568 class pass_reload : public rtl_opt_pass
5570 public:
5571 pass_reload (gcc::context *ctxt)
5572 : rtl_opt_pass (pass_data_reload, ctxt)
5575 /* opt_pass methods: */
5576 virtual bool gate (function *)
5578 return !targetm.no_register_allocation;
5580 virtual unsigned int execute (function *)
5582 do_reload ();
5583 return 0;
5586 }; // class pass_reload
5588 } // anon namespace
5590 rtl_opt_pass *
5591 make_pass_reload (gcc::context *ctxt)
5593 return new pass_reload (ctxt);