* arm/arm.h: (CPP_SPEC): Define __ARMEB__, __ARMEL__, and
[official-gcc.git] / gcc / calls.c
blob03442793ac8fbd2c31004e75c6fc52392015da0c
1 /* Convert function calls to rtl insns, for GNU C compiler.
2 Copyright (C) 1989, 92, 93, 94, 95, 1996 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
21 #include "config.h"
22 #include "rtl.h"
23 #include "tree.h"
24 #include "flags.h"
25 #include "expr.h"
26 #ifdef __STDC__
27 #include <stdarg.h>
28 #else
29 #include <varargs.h>
30 #endif
31 #include "insn-flags.h"
33 /* Decide whether a function's arguments should be processed
34 from first to last or from last to first.
36 They should if the stack and args grow in opposite directions, but
37 only if we have push insns. */
39 #ifdef PUSH_ROUNDING
41 #if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
42 #define PUSH_ARGS_REVERSED /* If it's last to first */
43 #endif
45 #endif
47 /* Like STACK_BOUNDARY but in units of bytes, not bits. */
48 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
50 /* Data structure and subroutines used within expand_call. */
52 struct arg_data
54 /* Tree node for this argument. */
55 tree tree_value;
56 /* Mode for value; TYPE_MODE unless promoted. */
57 enum machine_mode mode;
58 /* Current RTL value for argument, or 0 if it isn't precomputed. */
59 rtx value;
60 /* Initially-compute RTL value for argument; only for const functions. */
61 rtx initial_value;
62 /* Register to pass this argument in, 0 if passed on stack, or an
63 EXPR_LIST if the arg is to be copied into multiple different
64 registers. */
65 rtx reg;
66 /* If REG was promoted from the actual mode of the argument expression,
67 indicates whether the promotion is sign- or zero-extended. */
68 int unsignedp;
69 /* Number of registers to use. 0 means put the whole arg in registers.
70 Also 0 if not passed in registers. */
71 int partial;
72 /* Non-zero if argument must be passed on stack.
73 Note that some arguments may be passed on the stack
74 even though pass_on_stack is zero, just because FUNCTION_ARG says so.
75 pass_on_stack identifies arguments that *cannot* go in registers. */
76 int pass_on_stack;
77 /* Offset of this argument from beginning of stack-args. */
78 struct args_size offset;
79 /* Similar, but offset to the start of the stack slot. Different from
80 OFFSET if this arg pads downward. */
81 struct args_size slot_offset;
82 /* Size of this argument on the stack, rounded up for any padding it gets,
83 parts of the argument passed in registers do not count.
84 If REG_PARM_STACK_SPACE is defined, then register parms
85 are counted here as well. */
86 struct args_size size;
87 /* Location on the stack at which parameter should be stored. The store
88 has already been done if STACK == VALUE. */
89 rtx stack;
90 /* Location on the stack of the start of this argument slot. This can
91 differ from STACK if this arg pads downward. This location is known
92 to be aligned to FUNCTION_ARG_BOUNDARY. */
93 rtx stack_slot;
94 #ifdef ACCUMULATE_OUTGOING_ARGS
95 /* Place that this stack area has been saved, if needed. */
96 rtx save_area;
97 #endif
98 /* If an argument's alignment does not permit direct copying into registers,
99 copy in smaller-sized pieces into pseudos. These are stored in a
100 block pointed to by this field. The next field says how many
101 word-sized pseudos we made. */
102 rtx *aligned_regs;
103 int n_aligned_regs;
106 #ifdef ACCUMULATE_OUTGOING_ARGS
107 /* A vector of one char per byte of stack space. A byte if non-zero if
108 the corresponding stack location has been used.
109 This vector is used to prevent a function call within an argument from
110 clobbering any stack already set up. */
111 static char *stack_usage_map;
113 /* Size of STACK_USAGE_MAP. */
114 static int highest_outgoing_arg_in_use;
116 /* stack_arg_under_construction is nonzero when an argument may be
117 initialized with a constructor call (including a C function that
118 returns a BLKmode struct) and expand_call must take special action
119 to make sure the object being constructed does not overlap the
120 argument list for the constructor call. */
121 int stack_arg_under_construction;
122 #endif
124 static int calls_function PROTO((tree, int));
125 static int calls_function_1 PROTO((tree, int));
126 static void emit_call_1 PROTO((rtx, tree, tree, int, int, rtx, rtx,
127 int, rtx, int));
128 static void store_one_arg PROTO ((struct arg_data *, rtx, int, int,
129 tree, int));
131 /* If WHICH is 1, return 1 if EXP contains a call to the built-in function
132 `alloca'.
134 If WHICH is 0, return 1 if EXP contains a call to any function.
135 Actually, we only need return 1 if evaluating EXP would require pushing
136 arguments on the stack, but that is too difficult to compute, so we just
137 assume any function call might require the stack. */
139 static tree calls_function_save_exprs;
141 static int
142 calls_function (exp, which)
143 tree exp;
144 int which;
146 int val;
147 calls_function_save_exprs = 0;
148 val = calls_function_1 (exp, which);
149 calls_function_save_exprs = 0;
150 return val;
153 static int
154 calls_function_1 (exp, which)
155 tree exp;
156 int which;
158 register int i;
159 enum tree_code code = TREE_CODE (exp);
160 int type = TREE_CODE_CLASS (code);
161 int length = tree_code_length[(int) code];
163 /* If this code is language-specific, we don't know what it will do. */
164 if ((int) code >= NUM_TREE_CODES)
165 return 1;
167 /* Only expressions and references can contain calls. */
168 if (type != 'e' && type != '<' && type != '1' && type != '2' && type != 'r'
169 && type != 'b')
170 return 0;
172 switch (code)
174 case CALL_EXPR:
175 if (which == 0)
176 return 1;
177 else if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
178 && (TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
179 == FUNCTION_DECL))
181 tree fndecl = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
183 if ((DECL_BUILT_IN (fndecl)
184 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA)
185 || (DECL_SAVED_INSNS (fndecl)
186 && (FUNCTION_FLAGS (DECL_SAVED_INSNS (fndecl))
187 & FUNCTION_FLAGS_CALLS_ALLOCA)))
188 return 1;
191 /* Third operand is RTL. */
192 length = 2;
193 break;
195 case SAVE_EXPR:
196 if (SAVE_EXPR_RTL (exp) != 0)
197 return 0;
198 if (value_member (exp, calls_function_save_exprs))
199 return 0;
200 calls_function_save_exprs = tree_cons (NULL_TREE, exp,
201 calls_function_save_exprs);
202 return (TREE_OPERAND (exp, 0) != 0
203 && calls_function_1 (TREE_OPERAND (exp, 0), which));
205 case BLOCK:
207 register tree local;
209 for (local = BLOCK_VARS (exp); local; local = TREE_CHAIN (local))
210 if (DECL_INITIAL (local) != 0
211 && calls_function_1 (DECL_INITIAL (local), which))
212 return 1;
215 register tree subblock;
217 for (subblock = BLOCK_SUBBLOCKS (exp);
218 subblock;
219 subblock = TREE_CHAIN (subblock))
220 if (calls_function_1 (subblock, which))
221 return 1;
223 return 0;
225 case METHOD_CALL_EXPR:
226 length = 3;
227 break;
229 case WITH_CLEANUP_EXPR:
230 length = 1;
231 break;
233 case RTL_EXPR:
234 return 0;
237 for (i = 0; i < length; i++)
238 if (TREE_OPERAND (exp, i) != 0
239 && calls_function_1 (TREE_OPERAND (exp, i), which))
240 return 1;
242 return 0;
245 /* Force FUNEXP into a form suitable for the address of a CALL,
246 and return that as an rtx. Also load the static chain register
247 if FNDECL is a nested function.
249 CALL_FUSAGE points to a variable holding the prospective
250 CALL_INSN_FUNCTION_USAGE information. */
253 prepare_call_address (funexp, fndecl, call_fusage, reg_parm_seen)
254 rtx funexp;
255 tree fndecl;
256 rtx *call_fusage;
257 int reg_parm_seen;
259 rtx static_chain_value = 0;
261 funexp = protect_from_queue (funexp, 0);
263 if (fndecl != 0)
264 /* Get possible static chain value for nested function in C. */
265 static_chain_value = lookup_static_chain (fndecl);
267 /* Make a valid memory address and copy constants thru pseudo-regs,
268 but not for a constant address if -fno-function-cse. */
269 if (GET_CODE (funexp) != SYMBOL_REF)
270 funexp =
271 #ifdef SMALL_REGISTER_CLASSES
272 /* If we are using registers for parameters, force the
273 function address into a register now. */
274 reg_parm_seen ? force_not_mem (memory_address (FUNCTION_MODE, funexp))
276 #endif
277 memory_address (FUNCTION_MODE, funexp);
278 else
280 #ifndef NO_FUNCTION_CSE
281 if (optimize && ! flag_no_function_cse)
282 #ifdef NO_RECURSIVE_FUNCTION_CSE
283 if (fndecl != current_function_decl)
284 #endif
285 funexp = force_reg (Pmode, funexp);
286 #endif
289 if (static_chain_value != 0)
291 emit_move_insn (static_chain_rtx, static_chain_value);
293 if (GET_CODE (static_chain_rtx) == REG)
294 use_reg (call_fusage, static_chain_rtx);
297 return funexp;
300 /* Generate instructions to call function FUNEXP,
301 and optionally pop the results.
302 The CALL_INSN is the first insn generated.
304 FNDECL is the declaration node of the function. This is given ot the
305 macro RETURN_POPS_ARGS to determine whether this function pops its own args.
307 FUNTYPE is the data type of the function, or, for a library call,
308 the identifier for the name of the call. This is given to the
309 macro RETURN_POPS_ARGS to determine whether this function pops its own args.
311 STACK_SIZE is the number of bytes of arguments on the stack,
312 rounded up to STACK_BOUNDARY; zero if the size is variable.
313 This is both to put into the call insn and
314 to generate explicit popping code if necessary.
316 STRUCT_VALUE_SIZE is the number of bytes wanted in a structure value.
317 It is zero if this call doesn't want a structure value.
319 NEXT_ARG_REG is the rtx that results from executing
320 FUNCTION_ARG (args_so_far, VOIDmode, void_type_node, 1)
321 just after all the args have had their registers assigned.
322 This could be whatever you like, but normally it is the first
323 arg-register beyond those used for args in this call,
324 or 0 if all the arg-registers are used in this call.
325 It is passed on to `gen_call' so you can put this info in the call insn.
327 VALREG is a hard register in which a value is returned,
328 or 0 if the call does not return a value.
330 OLD_INHIBIT_DEFER_POP is the value that `inhibit_defer_pop' had before
331 the args to this call were processed.
332 We restore `inhibit_defer_pop' to that value.
334 CALL_FUSAGE is either empty or an EXPR_LIST of USE expressions that
335 denote registers used by the called function.
337 IS_CONST is true if this is a `const' call. */
339 static void
340 emit_call_1 (funexp, fndecl, funtype, stack_size, struct_value_size,
341 next_arg_reg, valreg, old_inhibit_defer_pop, call_fusage,
342 is_const)
343 rtx funexp;
344 tree fndecl;
345 tree funtype;
346 int stack_size;
347 int struct_value_size;
348 rtx next_arg_reg;
349 rtx valreg;
350 int old_inhibit_defer_pop;
351 rtx call_fusage;
352 int is_const;
354 rtx stack_size_rtx = GEN_INT (stack_size);
355 rtx struct_value_size_rtx = GEN_INT (struct_value_size);
356 rtx call_insn;
357 int already_popped = 0;
359 /* Ensure address is valid. SYMBOL_REF is already valid, so no need,
360 and we don't want to load it into a register as an optimization,
361 because prepare_call_address already did it if it should be done. */
362 if (GET_CODE (funexp) != SYMBOL_REF)
363 funexp = memory_address (FUNCTION_MODE, funexp);
365 #ifndef ACCUMULATE_OUTGOING_ARGS
366 #if defined (HAVE_call_pop) && defined (HAVE_call_value_pop)
367 if (HAVE_call_pop && HAVE_call_value_pop
368 && (RETURN_POPS_ARGS (fndecl, funtype, stack_size) > 0
369 || stack_size == 0))
371 rtx n_pop = GEN_INT (RETURN_POPS_ARGS (fndecl, funtype, stack_size));
372 rtx pat;
374 /* If this subroutine pops its own args, record that in the call insn
375 if possible, for the sake of frame pointer elimination. */
377 if (valreg)
378 pat = gen_call_value_pop (valreg,
379 gen_rtx (MEM, FUNCTION_MODE, funexp),
380 stack_size_rtx, next_arg_reg, n_pop);
381 else
382 pat = gen_call_pop (gen_rtx (MEM, FUNCTION_MODE, funexp),
383 stack_size_rtx, next_arg_reg, n_pop);
385 emit_call_insn (pat);
386 already_popped = 1;
388 else
389 #endif
390 #endif
392 #if defined (HAVE_call) && defined (HAVE_call_value)
393 if (HAVE_call && HAVE_call_value)
395 if (valreg)
396 emit_call_insn (gen_call_value (valreg,
397 gen_rtx (MEM, FUNCTION_MODE, funexp),
398 stack_size_rtx, next_arg_reg,
399 NULL_RTX));
400 else
401 emit_call_insn (gen_call (gen_rtx (MEM, FUNCTION_MODE, funexp),
402 stack_size_rtx, next_arg_reg,
403 struct_value_size_rtx));
405 else
406 #endif
407 abort ();
409 /* Find the CALL insn we just emitted. */
410 for (call_insn = get_last_insn ();
411 call_insn && GET_CODE (call_insn) != CALL_INSN;
412 call_insn = PREV_INSN (call_insn))
415 if (! call_insn)
416 abort ();
418 /* Put the register usage information on the CALL. If there is already
419 some usage information, put ours at the end. */
420 if (CALL_INSN_FUNCTION_USAGE (call_insn))
422 rtx link;
424 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
425 link = XEXP (link, 1))
428 XEXP (link, 1) = call_fusage;
430 else
431 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
433 /* If this is a const call, then set the insn's unchanging bit. */
434 if (is_const)
435 CONST_CALL_P (call_insn) = 1;
437 /* Restore this now, so that we do defer pops for this call's args
438 if the context of the call as a whole permits. */
439 inhibit_defer_pop = old_inhibit_defer_pop;
441 #ifndef ACCUMULATE_OUTGOING_ARGS
442 /* If returning from the subroutine does not automatically pop the args,
443 we need an instruction to pop them sooner or later.
444 Perhaps do it now; perhaps just record how much space to pop later.
446 If returning from the subroutine does pop the args, indicate that the
447 stack pointer will be changed. */
449 if (stack_size != 0 && RETURN_POPS_ARGS (fndecl, funtype, stack_size) > 0)
451 if (!already_popped)
452 CALL_INSN_FUNCTION_USAGE (call_insn) =
453 gen_rtx (EXPR_LIST, VOIDmode,
454 gen_rtx (CLOBBER, VOIDmode, stack_pointer_rtx),
455 CALL_INSN_FUNCTION_USAGE (call_insn));
456 stack_size -= RETURN_POPS_ARGS (fndecl, funtype, stack_size);
457 stack_size_rtx = GEN_INT (stack_size);
460 if (stack_size != 0)
462 if (flag_defer_pop && inhibit_defer_pop == 0 && !is_const)
463 pending_stack_adjust += stack_size;
464 else
465 adjust_stack (stack_size_rtx);
467 #endif
470 /* Generate all the code for a function call
471 and return an rtx for its value.
472 Store the value in TARGET (specified as an rtx) if convenient.
473 If the value is stored in TARGET then TARGET is returned.
474 If IGNORE is nonzero, then we ignore the value of the function call. */
477 expand_call (exp, target, ignore)
478 tree exp;
479 rtx target;
480 int ignore;
482 /* List of actual parameters. */
483 tree actparms = TREE_OPERAND (exp, 1);
484 /* RTX for the function to be called. */
485 rtx funexp;
486 /* Tree node for the function to be called (not the address!). */
487 tree funtree;
488 /* Data type of the function. */
489 tree funtype;
490 /* Declaration of the function being called,
491 or 0 if the function is computed (not known by name). */
492 tree fndecl = 0;
493 char *name = 0;
495 /* Register in which non-BLKmode value will be returned,
496 or 0 if no value or if value is BLKmode. */
497 rtx valreg;
498 /* Address where we should return a BLKmode value;
499 0 if value not BLKmode. */
500 rtx structure_value_addr = 0;
501 /* Nonzero if that address is being passed by treating it as
502 an extra, implicit first parameter. Otherwise,
503 it is passed by being copied directly into struct_value_rtx. */
504 int structure_value_addr_parm = 0;
505 /* Size of aggregate value wanted, or zero if none wanted
506 or if we are using the non-reentrant PCC calling convention
507 or expecting the value in registers. */
508 int struct_value_size = 0;
509 /* Nonzero if called function returns an aggregate in memory PCC style,
510 by returning the address of where to find it. */
511 int pcc_struct_value = 0;
513 /* Number of actual parameters in this call, including struct value addr. */
514 int num_actuals;
515 /* Number of named args. Args after this are anonymous ones
516 and they must all go on the stack. */
517 int n_named_args;
518 /* Count arg position in order args appear. */
519 int argpos;
521 /* Vector of information about each argument.
522 Arguments are numbered in the order they will be pushed,
523 not the order they are written. */
524 struct arg_data *args;
526 /* Total size in bytes of all the stack-parms scanned so far. */
527 struct args_size args_size;
528 /* Size of arguments before any adjustments (such as rounding). */
529 struct args_size original_args_size;
530 /* Data on reg parms scanned so far. */
531 CUMULATIVE_ARGS args_so_far;
532 /* Nonzero if a reg parm has been scanned. */
533 int reg_parm_seen;
534 /* Nonzero if this is an indirect function call. */
535 int current_call_is_indirect = 0;
537 /* Nonzero if we must avoid push-insns in the args for this call.
538 If stack space is allocated for register parameters, but not by the
539 caller, then it is preallocated in the fixed part of the stack frame.
540 So the entire argument block must then be preallocated (i.e., we
541 ignore PUSH_ROUNDING in that case). */
543 #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
544 int must_preallocate = 1;
545 #else
546 #ifdef PUSH_ROUNDING
547 int must_preallocate = 0;
548 #else
549 int must_preallocate = 1;
550 #endif
551 #endif
553 /* Size of the stack reserved for parameter registers. */
554 int reg_parm_stack_space = 0;
556 /* 1 if scanning parms front to back, -1 if scanning back to front. */
557 int inc;
558 /* Address of space preallocated for stack parms
559 (on machines that lack push insns), or 0 if space not preallocated. */
560 rtx argblock = 0;
562 /* Nonzero if it is plausible that this is a call to alloca. */
563 int may_be_alloca;
564 /* Nonzero if this is a call to setjmp or a related function. */
565 int returns_twice;
566 /* Nonzero if this is a call to `longjmp'. */
567 int is_longjmp;
568 /* Nonzero if this is a call to an inline function. */
569 int is_integrable = 0;
570 /* Nonzero if this is a call to a `const' function.
571 Note that only explicitly named functions are handled as `const' here. */
572 int is_const = 0;
573 /* Nonzero if this is a call to a `volatile' function. */
574 int is_volatile = 0;
575 #if defined(ACCUMULATE_OUTGOING_ARGS) && defined(REG_PARM_STACK_SPACE)
576 /* Define the boundary of the register parm stack space that needs to be
577 save, if any. */
578 int low_to_save = -1, high_to_save;
579 rtx save_area = 0; /* Place that it is saved */
580 #endif
582 #ifdef ACCUMULATE_OUTGOING_ARGS
583 int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
584 char *initial_stack_usage_map = stack_usage_map;
585 #endif
587 rtx old_stack_level = 0;
588 int old_pending_adj = 0;
589 int old_stack_arg_under_construction;
590 int old_inhibit_defer_pop = inhibit_defer_pop;
591 tree old_cleanups = cleanups_this_call;
592 rtx call_fusage = 0;
593 register tree p;
594 register int i, j;
596 /* See if we can find a DECL-node for the actual function.
597 As a result, decide whether this is a call to an integrable function. */
599 p = TREE_OPERAND (exp, 0);
600 if (TREE_CODE (p) == ADDR_EXPR)
602 fndecl = TREE_OPERAND (p, 0);
603 if (TREE_CODE (fndecl) != FUNCTION_DECL)
604 fndecl = 0;
605 else
607 if (!flag_no_inline
608 && fndecl != current_function_decl
609 && DECL_INLINE (fndecl)
610 && DECL_SAVED_INSNS (fndecl)
611 && RTX_INTEGRATED_P (DECL_SAVED_INSNS (fndecl)))
612 is_integrable = 1;
613 else if (! TREE_ADDRESSABLE (fndecl))
615 /* In case this function later becomes inlinable,
616 record that there was already a non-inline call to it.
618 Use abstraction instead of setting TREE_ADDRESSABLE
619 directly. */
620 if (DECL_INLINE (fndecl) && warn_inline && !flag_no_inline
621 && optimize > 0)
623 warning_with_decl (fndecl, "can't inline call to `%s'");
624 warning ("called from here");
626 mark_addressable (fndecl);
629 if (TREE_READONLY (fndecl) && ! TREE_THIS_VOLATILE (fndecl)
630 && TYPE_MODE (TREE_TYPE (exp)) != VOIDmode)
631 is_const = 1;
633 if (TREE_THIS_VOLATILE (fndecl))
634 is_volatile = 1;
638 /* If we don't have specific function to call, see if we have a
639 constant or `noreturn' function from the type. */
640 if (fndecl == 0)
642 is_const = TREE_READONLY (TREE_TYPE (TREE_TYPE (p)));
643 is_volatile = TREE_THIS_VOLATILE (TREE_TYPE (TREE_TYPE (p)));
646 #ifdef REG_PARM_STACK_SPACE
647 #ifdef MAYBE_REG_PARM_STACK_SPACE
648 reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE;
649 #else
650 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
651 #endif
652 #endif
654 /* Warn if this value is an aggregate type,
655 regardless of which calling convention we are using for it. */
656 if (warn_aggregate_return && AGGREGATE_TYPE_P (TREE_TYPE (exp)))
657 warning ("function call has aggregate value");
659 /* Set up a place to return a structure. */
661 /* Cater to broken compilers. */
662 if (aggregate_value_p (exp))
664 /* This call returns a big structure. */
665 is_const = 0;
667 #ifdef PCC_STATIC_STRUCT_RETURN
669 pcc_struct_value = 1;
670 /* Easier than making that case work right. */
671 if (is_integrable)
673 /* In case this is a static function, note that it has been
674 used. */
675 if (! TREE_ADDRESSABLE (fndecl))
676 mark_addressable (fndecl);
677 is_integrable = 0;
680 #else /* not PCC_STATIC_STRUCT_RETURN */
682 struct_value_size = int_size_in_bytes (TREE_TYPE (exp));
684 if (target && GET_CODE (target) == MEM)
685 structure_value_addr = XEXP (target, 0);
686 else
688 /* Assign a temporary on the stack to hold the value. */
690 /* For variable-sized objects, we must be called with a target
691 specified. If we were to allocate space on the stack here,
692 we would have no way of knowing when to free it. */
694 if (struct_value_size < 0)
695 abort ();
697 structure_value_addr
698 = XEXP (assign_stack_temp (BLKmode, struct_value_size, 1), 0);
699 MEM_IN_STRUCT_P (structure_value_addr)
700 = AGGREGATE_TYPE_P (TREE_TYPE (exp));
701 target = 0;
704 #endif /* not PCC_STATIC_STRUCT_RETURN */
707 /* If called function is inline, try to integrate it. */
709 if (is_integrable)
711 rtx temp;
712 rtx before_call = get_last_insn ();
714 temp = expand_inline_function (fndecl, actparms, target,
715 ignore, TREE_TYPE (exp),
716 structure_value_addr);
718 /* If inlining succeeded, return. */
719 if ((HOST_WIDE_INT) temp != -1)
721 if (flag_short_temps)
723 /* Perform all cleanups needed for the arguments of this
724 call (i.e. destructors in C++). It is ok if these
725 destructors clobber RETURN_VALUE_REG, because the
726 only time we care about this is when TARGET is that
727 register. But in C++, we take care to never return
728 that register directly. */
729 expand_cleanups_to (old_cleanups);
732 #ifdef ACCUMULATE_OUTGOING_ARGS
733 /* If the outgoing argument list must be preserved, push
734 the stack before executing the inlined function if it
735 makes any calls. */
737 for (i = reg_parm_stack_space - 1; i >= 0; i--)
738 if (i < highest_outgoing_arg_in_use && stack_usage_map[i] != 0)
739 break;
741 if (stack_arg_under_construction || i >= 0)
743 rtx insn = NEXT_INSN (before_call), seq;
745 /* Look for a call in the inline function code.
746 If OUTGOING_ARGS_SIZE (DECL_SAVED_INSNS (fndecl)) is
747 nonzero then there is a call and it is not necessary
748 to scan the insns. */
750 if (OUTGOING_ARGS_SIZE (DECL_SAVED_INSNS (fndecl)) == 0)
751 for (; insn; insn = NEXT_INSN (insn))
752 if (GET_CODE (insn) == CALL_INSN)
753 break;
755 if (insn)
757 /* Reserve enough stack space so that the largest
758 argument list of any function call in the inline
759 function does not overlap the argument list being
760 evaluated. This is usually an overestimate because
761 allocate_dynamic_stack_space reserves space for an
762 outgoing argument list in addition to the requested
763 space, but there is no way to ask for stack space such
764 that an argument list of a certain length can be
765 safely constructed. */
767 int adjust = OUTGOING_ARGS_SIZE (DECL_SAVED_INSNS (fndecl));
768 #ifdef REG_PARM_STACK_SPACE
769 /* Add the stack space reserved for register arguments
770 in the inline function. What is really needed is the
771 largest value of reg_parm_stack_space in the inline
772 function, but that is not available. Using the current
773 value of reg_parm_stack_space is wrong, but gives
774 correct results on all supported machines. */
775 adjust += reg_parm_stack_space;
776 #endif
777 start_sequence ();
778 emit_stack_save (SAVE_BLOCK, &old_stack_level, NULL_RTX);
779 allocate_dynamic_stack_space (GEN_INT (adjust),
780 NULL_RTX, BITS_PER_UNIT);
781 seq = get_insns ();
782 end_sequence ();
783 emit_insns_before (seq, NEXT_INSN (before_call));
784 emit_stack_restore (SAVE_BLOCK, old_stack_level, NULL_RTX);
787 #endif
789 /* If the result is equivalent to TARGET, return TARGET to simplify
790 checks in store_expr. They can be equivalent but not equal in the
791 case of a function that returns BLKmode. */
792 if (temp != target && rtx_equal_p (temp, target))
793 return target;
794 return temp;
797 /* If inlining failed, mark FNDECL as needing to be compiled
798 separately after all. If function was declared inline,
799 give a warning. */
800 if (DECL_INLINE (fndecl) && warn_inline && !flag_no_inline
801 && optimize > 0 && ! TREE_ADDRESSABLE (fndecl))
803 warning_with_decl (fndecl, "inlining failed in call to `%s'");
804 warning ("called from here");
806 mark_addressable (fndecl);
809 /* When calling a const function, we must pop the stack args right away,
810 so that the pop is deleted or moved with the call. */
811 if (is_const)
812 NO_DEFER_POP;
814 function_call_count++;
816 if (fndecl && DECL_NAME (fndecl))
817 name = IDENTIFIER_POINTER (DECL_NAME (fndecl));
819 /* On some machines (such as the PA) indirect calls have a different
820 calling convention than normal calls. FUNCTION_ARG in the target
821 description can look at current_call_is_indirect to determine which
822 calling convention to use. */
823 current_call_is_indirect = (fndecl == 0);
824 #if 0
825 = TREE_CODE (TREE_OPERAND (exp, 0)) == NON_LVALUE_EXPR ? 1 : 0;
826 #endif
828 #if 0
829 /* Unless it's a call to a specific function that isn't alloca,
830 if it has one argument, we must assume it might be alloca. */
832 may_be_alloca =
833 (!(fndecl != 0 && strcmp (name, "alloca"))
834 && actparms != 0
835 && TREE_CHAIN (actparms) == 0);
836 #else
837 /* We assume that alloca will always be called by name. It
838 makes no sense to pass it as a pointer-to-function to
839 anything that does not understand its behavior. */
840 may_be_alloca =
841 (name && ((IDENTIFIER_LENGTH (DECL_NAME (fndecl)) == 6
842 && name[0] == 'a'
843 && ! strcmp (name, "alloca"))
844 || (IDENTIFIER_LENGTH (DECL_NAME (fndecl)) == 16
845 && name[0] == '_'
846 && ! strcmp (name, "__builtin_alloca"))));
847 #endif
849 /* See if this is a call to a function that can return more than once
850 or a call to longjmp. */
852 returns_twice = 0;
853 is_longjmp = 0;
855 if (name != 0 && IDENTIFIER_LENGTH (DECL_NAME (fndecl)) <= 15)
857 char *tname = name;
859 /* Disregard prefix _, __ or __x. */
860 if (name[0] == '_')
862 if (name[1] == '_' && name[2] == 'x')
863 tname += 3;
864 else if (name[1] == '_')
865 tname += 2;
866 else
867 tname += 1;
870 if (tname[0] == 's')
872 returns_twice
873 = ((tname[1] == 'e'
874 && (! strcmp (tname, "setjmp")
875 || ! strcmp (tname, "setjmp_syscall")))
876 || (tname[1] == 'i'
877 && ! strcmp (tname, "sigsetjmp"))
878 || (tname[1] == 'a'
879 && ! strcmp (tname, "savectx")));
880 if (tname[1] == 'i'
881 && ! strcmp (tname, "siglongjmp"))
882 is_longjmp = 1;
884 else if ((tname[0] == 'q' && tname[1] == 's'
885 && ! strcmp (tname, "qsetjmp"))
886 || (tname[0] == 'v' && tname[1] == 'f'
887 && ! strcmp (tname, "vfork")))
888 returns_twice = 1;
890 else if (tname[0] == 'l' && tname[1] == 'o'
891 && ! strcmp (tname, "longjmp"))
892 is_longjmp = 1;
895 if (may_be_alloca)
896 current_function_calls_alloca = 1;
898 /* Don't let pending stack adjusts add up to too much.
899 Also, do all pending adjustments now
900 if there is any chance this might be a call to alloca. */
902 if (pending_stack_adjust >= 32
903 || (pending_stack_adjust > 0 && may_be_alloca))
904 do_pending_stack_adjust ();
906 /* Operand 0 is a pointer-to-function; get the type of the function. */
907 funtype = TREE_TYPE (TREE_OPERAND (exp, 0));
908 if (TREE_CODE (funtype) != POINTER_TYPE)
909 abort ();
910 funtype = TREE_TYPE (funtype);
912 /* Push the temporary stack slot level so that we can free any temporaries
913 we make. */
914 push_temp_slots ();
916 /* Start updating where the next arg would go. */
917 INIT_CUMULATIVE_ARGS (args_so_far, funtype, NULL_RTX);
919 /* If struct_value_rtx is 0, it means pass the address
920 as if it were an extra parameter. */
921 if (structure_value_addr && struct_value_rtx == 0)
923 /* If structure_value_addr is a REG other than
924 virtual_outgoing_args_rtx, we can use always use it. If it
925 is not a REG, we must always copy it into a register.
926 If it is virtual_outgoing_args_rtx, we must copy it to another
927 register in some cases. */
928 rtx temp = (GET_CODE (structure_value_addr) != REG
929 #ifdef ACCUMULATE_OUTGOING_ARGS
930 || (stack_arg_under_construction
931 && structure_value_addr == virtual_outgoing_args_rtx)
932 #endif
933 ? copy_addr_to_reg (structure_value_addr)
934 : structure_value_addr);
936 actparms
937 = tree_cons (error_mark_node,
938 make_tree (build_pointer_type (TREE_TYPE (funtype)),
939 temp),
940 actparms);
941 structure_value_addr_parm = 1;
944 /* Count the arguments and set NUM_ACTUALS. */
945 for (p = actparms, i = 0; p; p = TREE_CHAIN (p)) i++;
946 num_actuals = i;
948 /* Compute number of named args.
949 Normally, don't include the last named arg if anonymous args follow.
950 We do include the last named arg if STRICT_ARGUMENT_NAMING is defined.
951 (If no anonymous args follow, the result of list_length is actually
952 one too large. This is harmless.)
954 If SETUP_INCOMING_VARARGS is defined and STRICT_ARGUMENT_NAMING is not,
955 this machine will be able to place unnamed args that were passed in
956 registers into the stack. So treat all args as named. This allows the
957 insns emitting for a specific argument list to be independent of the
958 function declaration.
960 If SETUP_INCOMING_VARARGS is not defined, we do not have any reliable
961 way to pass unnamed args in registers, so we must force them into
962 memory. */
963 #if !defined(SETUP_INCOMING_VARARGS) || defined(STRICT_ARGUMENT_NAMING)
964 if (TYPE_ARG_TYPES (funtype) != 0)
965 n_named_args
966 = (list_length (TYPE_ARG_TYPES (funtype))
967 #ifndef STRICT_ARGUMENT_NAMING
968 /* Don't include the last named arg. */
970 #endif
971 /* Count the struct value address, if it is passed as a parm. */
972 + structure_value_addr_parm);
973 else
974 #endif
975 /* If we know nothing, treat all args as named. */
976 n_named_args = num_actuals;
978 /* Make a vector to hold all the information about each arg. */
979 args = (struct arg_data *) alloca (num_actuals * sizeof (struct arg_data));
980 bzero ((char *) args, num_actuals * sizeof (struct arg_data));
982 args_size.constant = 0;
983 args_size.var = 0;
985 /* In this loop, we consider args in the order they are written.
986 We fill up ARGS from the front or from the back if necessary
987 so that in any case the first arg to be pushed ends up at the front. */
989 #ifdef PUSH_ARGS_REVERSED
990 i = num_actuals - 1, inc = -1;
991 /* In this case, must reverse order of args
992 so that we compute and push the last arg first. */
993 #else
994 i = 0, inc = 1;
995 #endif
997 /* I counts args in order (to be) pushed; ARGPOS counts in order written. */
998 for (p = actparms, argpos = 0; p; p = TREE_CHAIN (p), i += inc, argpos++)
1000 tree type = TREE_TYPE (TREE_VALUE (p));
1001 int unsignedp;
1002 enum machine_mode mode;
1004 args[i].tree_value = TREE_VALUE (p);
1006 /* Replace erroneous argument with constant zero. */
1007 if (type == error_mark_node || TYPE_SIZE (type) == 0)
1008 args[i].tree_value = integer_zero_node, type = integer_type_node;
1010 /* If TYPE is a transparent union, pass things the way we would
1011 pass the first field of the union. We have already verified that
1012 the modes are the same. */
1013 if (TYPE_TRANSPARENT_UNION (type))
1014 type = TREE_TYPE (TYPE_FIELDS (type));
1016 /* Decide where to pass this arg.
1018 args[i].reg is nonzero if all or part is passed in registers.
1020 args[i].partial is nonzero if part but not all is passed in registers,
1021 and the exact value says how many words are passed in registers.
1023 args[i].pass_on_stack is nonzero if the argument must at least be
1024 computed on the stack. It may then be loaded back into registers
1025 if args[i].reg is nonzero.
1027 These decisions are driven by the FUNCTION_... macros and must agree
1028 with those made by function.c. */
1030 /* See if this argument should be passed by invisible reference. */
1031 if ((TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST
1032 && contains_placeholder_p (TYPE_SIZE (type)))
1033 || TREE_ADDRESSABLE (type)
1034 #ifdef FUNCTION_ARG_PASS_BY_REFERENCE
1035 || FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far, TYPE_MODE (type),
1036 type, argpos < n_named_args)
1037 #endif
1040 #ifdef FUNCTION_ARG_CALLEE_COPIES
1041 if (FUNCTION_ARG_CALLEE_COPIES (args_so_far, TYPE_MODE (type), type,
1042 argpos < n_named_args)
1043 /* If it's in a register, we must make a copy of it too. */
1044 /* ??? Is this a sufficient test? Is there a better one? */
1045 && !(TREE_CODE (args[i].tree_value) == VAR_DECL
1046 && REG_P (DECL_RTL (args[i].tree_value)))
1047 && ! TREE_ADDRESSABLE (type))
1049 args[i].tree_value = build1 (ADDR_EXPR,
1050 build_pointer_type (type),
1051 args[i].tree_value);
1052 type = build_pointer_type (type);
1054 else
1055 #endif
1057 /* We make a copy of the object and pass the address to the
1058 function being called. */
1059 rtx copy;
1061 if (TYPE_SIZE (type) == 0
1062 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1064 /* This is a variable-sized object. Make space on the stack
1065 for it. */
1066 rtx size_rtx = expr_size (TREE_VALUE (p));
1068 if (old_stack_level == 0)
1070 emit_stack_save (SAVE_BLOCK, &old_stack_level, NULL_RTX);
1071 old_pending_adj = pending_stack_adjust;
1072 pending_stack_adjust = 0;
1075 copy = gen_rtx (MEM, BLKmode,
1076 allocate_dynamic_stack_space (size_rtx,
1077 NULL_RTX,
1078 TYPE_ALIGN (type)));
1080 else
1082 int size = int_size_in_bytes (type);
1083 copy = assign_stack_temp (TYPE_MODE (type), size, 0);
1086 MEM_IN_STRUCT_P (copy) = AGGREGATE_TYPE_P (type);
1088 store_expr (args[i].tree_value, copy, 0);
1090 args[i].tree_value = build1 (ADDR_EXPR,
1091 build_pointer_type (type),
1092 make_tree (type, copy));
1093 type = build_pointer_type (type);
1097 mode = TYPE_MODE (type);
1098 unsignedp = TREE_UNSIGNED (type);
1100 #ifdef PROMOTE_FUNCTION_ARGS
1101 mode = promote_mode (type, mode, &unsignedp, 1);
1102 #endif
1104 args[i].unsignedp = unsignedp;
1105 args[i].mode = mode;
1106 args[i].reg = FUNCTION_ARG (args_so_far, mode, type,
1107 argpos < n_named_args);
1108 #ifdef FUNCTION_ARG_PARTIAL_NREGS
1109 if (args[i].reg)
1110 args[i].partial
1111 = FUNCTION_ARG_PARTIAL_NREGS (args_so_far, mode, type,
1112 argpos < n_named_args);
1113 #endif
1115 args[i].pass_on_stack = MUST_PASS_IN_STACK (mode, type);
1117 /* If FUNCTION_ARG returned an (expr_list (nil) FOO), it means that
1118 we are to pass this arg in the register(s) designated by FOO, but
1119 also to pass it in the stack. */
1120 if (args[i].reg && GET_CODE (args[i].reg) == EXPR_LIST
1121 && XEXP (args[i].reg, 0) == 0)
1122 args[i].pass_on_stack = 1, args[i].reg = XEXP (args[i].reg, 1);
1124 /* If this is an addressable type, we must preallocate the stack
1125 since we must evaluate the object into its final location.
1127 If this is to be passed in both registers and the stack, it is simpler
1128 to preallocate. */
1129 if (TREE_ADDRESSABLE (type)
1130 || (args[i].pass_on_stack && args[i].reg != 0))
1131 must_preallocate = 1;
1133 /* If this is an addressable type, we cannot pre-evaluate it. Thus,
1134 we cannot consider this function call constant. */
1135 if (TREE_ADDRESSABLE (type))
1136 is_const = 0;
1138 /* Compute the stack-size of this argument. */
1139 if (args[i].reg == 0 || args[i].partial != 0
1140 #ifdef REG_PARM_STACK_SPACE
1141 || reg_parm_stack_space > 0
1142 #endif
1143 || args[i].pass_on_stack)
1144 locate_and_pad_parm (mode, type,
1145 #ifdef STACK_PARMS_IN_REG_PARM_AREA
1147 #else
1148 args[i].reg != 0,
1149 #endif
1150 fndecl, &args_size, &args[i].offset,
1151 &args[i].size);
1153 #ifndef ARGS_GROW_DOWNWARD
1154 args[i].slot_offset = args_size;
1155 #endif
1157 #ifndef REG_PARM_STACK_SPACE
1158 /* If a part of the arg was put into registers,
1159 don't include that part in the amount pushed. */
1160 if (! args[i].pass_on_stack)
1161 args[i].size.constant -= ((args[i].partial * UNITS_PER_WORD)
1162 / (PARM_BOUNDARY / BITS_PER_UNIT)
1163 * (PARM_BOUNDARY / BITS_PER_UNIT));
1164 #endif
1166 /* Update ARGS_SIZE, the total stack space for args so far. */
1168 args_size.constant += args[i].size.constant;
1169 if (args[i].size.var)
1171 ADD_PARM_SIZE (args_size, args[i].size.var);
1174 /* Since the slot offset points to the bottom of the slot,
1175 we must record it after incrementing if the args grow down. */
1176 #ifdef ARGS_GROW_DOWNWARD
1177 args[i].slot_offset = args_size;
1179 args[i].slot_offset.constant = -args_size.constant;
1180 if (args_size.var)
1182 SUB_PARM_SIZE (args[i].slot_offset, args_size.var);
1184 #endif
1186 /* Increment ARGS_SO_FAR, which has info about which arg-registers
1187 have been used, etc. */
1189 FUNCTION_ARG_ADVANCE (args_so_far, TYPE_MODE (type), type,
1190 argpos < n_named_args);
1193 #ifdef FINAL_REG_PARM_STACK_SPACE
1194 reg_parm_stack_space = FINAL_REG_PARM_STACK_SPACE (args_size.constant,
1195 args_size.var);
1196 #endif
1198 /* Compute the actual size of the argument block required. The variable
1199 and constant sizes must be combined, the size may have to be rounded,
1200 and there may be a minimum required size. */
1202 original_args_size = args_size;
1203 if (args_size.var)
1205 /* If this function requires a variable-sized argument list, don't try to
1206 make a cse'able block for this call. We may be able to do this
1207 eventually, but it is too complicated to keep track of what insns go
1208 in the cse'able block and which don't. */
1210 is_const = 0;
1211 must_preallocate = 1;
1213 args_size.var = ARGS_SIZE_TREE (args_size);
1214 args_size.constant = 0;
1216 #ifdef STACK_BOUNDARY
1217 if (STACK_BOUNDARY != BITS_PER_UNIT)
1218 args_size.var = round_up (args_size.var, STACK_BYTES);
1219 #endif
1221 #ifdef REG_PARM_STACK_SPACE
1222 if (reg_parm_stack_space > 0)
1224 args_size.var
1225 = size_binop (MAX_EXPR, args_size.var,
1226 size_int (REG_PARM_STACK_SPACE (fndecl)));
1228 #ifndef OUTGOING_REG_PARM_STACK_SPACE
1229 /* The area corresponding to register parameters is not to count in
1230 the size of the block we need. So make the adjustment. */
1231 args_size.var
1232 = size_binop (MINUS_EXPR, args_size.var,
1233 size_int (reg_parm_stack_space));
1234 #endif
1236 #endif
1238 else
1240 #ifdef STACK_BOUNDARY
1241 args_size.constant = (((args_size.constant + (STACK_BYTES - 1))
1242 / STACK_BYTES) * STACK_BYTES);
1243 #endif
1245 #ifdef REG_PARM_STACK_SPACE
1246 args_size.constant = MAX (args_size.constant,
1247 reg_parm_stack_space);
1248 #ifdef MAYBE_REG_PARM_STACK_SPACE
1249 if (reg_parm_stack_space == 0)
1250 args_size.constant = 0;
1251 #endif
1252 #ifndef OUTGOING_REG_PARM_STACK_SPACE
1253 args_size.constant -= reg_parm_stack_space;
1254 #endif
1255 #endif
1258 /* See if we have or want to preallocate stack space.
1260 If we would have to push a partially-in-regs parm
1261 before other stack parms, preallocate stack space instead.
1263 If the size of some parm is not a multiple of the required stack
1264 alignment, we must preallocate.
1266 If the total size of arguments that would otherwise create a copy in
1267 a temporary (such as a CALL) is more than half the total argument list
1268 size, preallocation is faster.
1270 Another reason to preallocate is if we have a machine (like the m88k)
1271 where stack alignment is required to be maintained between every
1272 pair of insns, not just when the call is made. However, we assume here
1273 that such machines either do not have push insns (and hence preallocation
1274 would occur anyway) or the problem is taken care of with
1275 PUSH_ROUNDING. */
1277 if (! must_preallocate)
1279 int partial_seen = 0;
1280 int copy_to_evaluate_size = 0;
1282 for (i = 0; i < num_actuals && ! must_preallocate; i++)
1284 if (args[i].partial > 0 && ! args[i].pass_on_stack)
1285 partial_seen = 1;
1286 else if (partial_seen && args[i].reg == 0)
1287 must_preallocate = 1;
1289 if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode
1290 && (TREE_CODE (args[i].tree_value) == CALL_EXPR
1291 || TREE_CODE (args[i].tree_value) == TARGET_EXPR
1292 || TREE_CODE (args[i].tree_value) == COND_EXPR
1293 || TREE_ADDRESSABLE (TREE_TYPE (args[i].tree_value))))
1294 copy_to_evaluate_size
1295 += int_size_in_bytes (TREE_TYPE (args[i].tree_value));
1298 if (copy_to_evaluate_size * 2 >= args_size.constant
1299 && args_size.constant > 0)
1300 must_preallocate = 1;
1303 /* If the structure value address will reference the stack pointer, we must
1304 stabilize it. We don't need to do this if we know that we are not going
1305 to adjust the stack pointer in processing this call. */
1307 if (structure_value_addr
1308 && (reg_mentioned_p (virtual_stack_dynamic_rtx, structure_value_addr)
1309 || reg_mentioned_p (virtual_outgoing_args_rtx, structure_value_addr))
1310 && (args_size.var
1311 #ifndef ACCUMULATE_OUTGOING_ARGS
1312 || args_size.constant
1313 #endif
1315 structure_value_addr = copy_to_reg (structure_value_addr);
1317 /* If this function call is cse'able, precompute all the parameters.
1318 Note that if the parameter is constructed into a temporary, this will
1319 cause an additional copy because the parameter will be constructed
1320 into a temporary location and then copied into the outgoing arguments.
1321 If a parameter contains a call to alloca and this function uses the
1322 stack, precompute the parameter. */
1324 /* If we preallocated the stack space, and some arguments must be passed
1325 on the stack, then we must precompute any parameter which contains a
1326 function call which will store arguments on the stack.
1327 Otherwise, evaluating the parameter may clobber previous parameters
1328 which have already been stored into the stack. */
1330 for (i = 0; i < num_actuals; i++)
1331 if (is_const
1332 || ((args_size.var != 0 || args_size.constant != 0)
1333 && calls_function (args[i].tree_value, 1))
1334 || (must_preallocate && (args_size.var != 0 || args_size.constant != 0)
1335 && calls_function (args[i].tree_value, 0)))
1337 /* If this is an addressable type, we cannot pre-evaluate it. */
1338 if (TREE_ADDRESSABLE (TREE_TYPE (args[i].tree_value)))
1339 abort ();
1341 push_temp_slots ();
1343 args[i].initial_value = args[i].value
1344 = expand_expr (args[i].tree_value, NULL_RTX, VOIDmode, 0);
1346 preserve_temp_slots (args[i].value);
1347 pop_temp_slots ();
1349 /* ANSI doesn't require a sequence point here,
1350 but PCC has one, so this will avoid some problems. */
1351 emit_queue ();
1353 args[i].initial_value = args[i].value
1354 = protect_from_queue (args[i].initial_value, 0);
1356 if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) != args[i].mode)
1357 args[i].value
1358 = convert_modes (args[i].mode,
1359 TYPE_MODE (TREE_TYPE (args[i].tree_value)),
1360 args[i].value, args[i].unsignedp);
1363 /* Now we are about to start emitting insns that can be deleted
1364 if a libcall is deleted. */
1365 if (is_const)
1366 start_sequence ();
1368 /* If we have no actual push instructions, or shouldn't use them,
1369 make space for all args right now. */
1371 if (args_size.var != 0)
1373 if (old_stack_level == 0)
1375 emit_stack_save (SAVE_BLOCK, &old_stack_level, NULL_RTX);
1376 old_pending_adj = pending_stack_adjust;
1377 pending_stack_adjust = 0;
1378 #ifdef ACCUMULATE_OUTGOING_ARGS
1379 /* stack_arg_under_construction says whether a stack arg is
1380 being constructed at the old stack level. Pushing the stack
1381 gets a clean outgoing argument block. */
1382 old_stack_arg_under_construction = stack_arg_under_construction;
1383 stack_arg_under_construction = 0;
1384 #endif
1386 argblock = push_block (ARGS_SIZE_RTX (args_size), 0, 0);
1388 else
1390 /* Note that we must go through the motions of allocating an argument
1391 block even if the size is zero because we may be storing args
1392 in the area reserved for register arguments, which may be part of
1393 the stack frame. */
1395 int needed = args_size.constant;
1397 /* Store the maximum argument space used. It will be pushed by the
1398 prologue (if ACCUMULATE_OUTGOING_ARGS, or stack overflow checking). */
1400 if (needed > current_function_outgoing_args_size)
1401 current_function_outgoing_args_size = needed;
1403 if (must_preallocate)
1405 #ifdef ACCUMULATE_OUTGOING_ARGS
1406 /* Since the stack pointer will never be pushed, it is possible for
1407 the evaluation of a parm to clobber something we have already
1408 written to the stack. Since most function calls on RISC machines
1409 do not use the stack, this is uncommon, but must work correctly.
1411 Therefore, we save any area of the stack that was already written
1412 and that we are using. Here we set up to do this by making a new
1413 stack usage map from the old one. The actual save will be done
1414 by store_one_arg.
1416 Another approach might be to try to reorder the argument
1417 evaluations to avoid this conflicting stack usage. */
1419 #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
1420 /* Since we will be writing into the entire argument area, the
1421 map must be allocated for its entire size, not just the part that
1422 is the responsibility of the caller. */
1423 needed += reg_parm_stack_space;
1424 #endif
1426 #ifdef ARGS_GROW_DOWNWARD
1427 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
1428 needed + 1);
1429 #else
1430 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
1431 needed);
1432 #endif
1433 stack_usage_map = (char *) alloca (highest_outgoing_arg_in_use);
1435 if (initial_highest_arg_in_use)
1436 bcopy (initial_stack_usage_map, stack_usage_map,
1437 initial_highest_arg_in_use);
1439 if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
1440 bzero (&stack_usage_map[initial_highest_arg_in_use],
1441 highest_outgoing_arg_in_use - initial_highest_arg_in_use);
1442 needed = 0;
1444 /* The address of the outgoing argument list must not be copied to a
1445 register here, because argblock would be left pointing to the
1446 wrong place after the call to allocate_dynamic_stack_space below.
1449 argblock = virtual_outgoing_args_rtx;
1451 #else /* not ACCUMULATE_OUTGOING_ARGS */
1452 if (inhibit_defer_pop == 0)
1454 /* Try to reuse some or all of the pending_stack_adjust
1455 to get this space. Maybe we can avoid any pushing. */
1456 if (needed > pending_stack_adjust)
1458 needed -= pending_stack_adjust;
1459 pending_stack_adjust = 0;
1461 else
1463 pending_stack_adjust -= needed;
1464 needed = 0;
1467 /* Special case this because overhead of `push_block' in this
1468 case is non-trivial. */
1469 if (needed == 0)
1470 argblock = virtual_outgoing_args_rtx;
1471 else
1472 argblock = push_block (GEN_INT (needed), 0, 0);
1474 /* We only really need to call `copy_to_reg' in the case where push
1475 insns are going to be used to pass ARGBLOCK to a function
1476 call in ARGS. In that case, the stack pointer changes value
1477 from the allocation point to the call point, and hence
1478 the value of VIRTUAL_OUTGOING_ARGS_RTX changes as well.
1479 But might as well always do it. */
1480 argblock = copy_to_reg (argblock);
1481 #endif /* not ACCUMULATE_OUTGOING_ARGS */
1485 #ifdef ACCUMULATE_OUTGOING_ARGS
1486 /* The save/restore code in store_one_arg handles all cases except one:
1487 a constructor call (including a C function returning a BLKmode struct)
1488 to initialize an argument. */
1489 if (stack_arg_under_construction)
1491 #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
1492 rtx push_size = GEN_INT (reg_parm_stack_space + args_size.constant);
1493 #else
1494 rtx push_size = GEN_INT (args_size.constant);
1495 #endif
1496 if (old_stack_level == 0)
1498 emit_stack_save (SAVE_BLOCK, &old_stack_level, NULL_RTX);
1499 old_pending_adj = pending_stack_adjust;
1500 pending_stack_adjust = 0;
1501 /* stack_arg_under_construction says whether a stack arg is
1502 being constructed at the old stack level. Pushing the stack
1503 gets a clean outgoing argument block. */
1504 old_stack_arg_under_construction = stack_arg_under_construction;
1505 stack_arg_under_construction = 0;
1506 /* Make a new map for the new argument list. */
1507 stack_usage_map = (char *)alloca (highest_outgoing_arg_in_use);
1508 bzero (stack_usage_map, highest_outgoing_arg_in_use);
1509 highest_outgoing_arg_in_use = 0;
1511 allocate_dynamic_stack_space (push_size, NULL_RTX, BITS_PER_UNIT);
1513 /* If argument evaluation might modify the stack pointer, copy the
1514 address of the argument list to a register. */
1515 for (i = 0; i < num_actuals; i++)
1516 if (args[i].pass_on_stack)
1518 argblock = copy_addr_to_reg (argblock);
1519 break;
1521 #endif
1524 /* If we preallocated stack space, compute the address of each argument.
1525 We need not ensure it is a valid memory address here; it will be
1526 validized when it is used. */
1527 if (argblock)
1529 rtx arg_reg = argblock;
1530 int arg_offset = 0;
1532 if (GET_CODE (argblock) == PLUS)
1533 arg_reg = XEXP (argblock, 0), arg_offset = INTVAL (XEXP (argblock, 1));
1535 for (i = 0; i < num_actuals; i++)
1537 rtx offset = ARGS_SIZE_RTX (args[i].offset);
1538 rtx slot_offset = ARGS_SIZE_RTX (args[i].slot_offset);
1539 rtx addr;
1541 /* Skip this parm if it will not be passed on the stack. */
1542 if (! args[i].pass_on_stack && args[i].reg != 0)
1543 continue;
1545 if (GET_CODE (offset) == CONST_INT)
1546 addr = plus_constant (arg_reg, INTVAL (offset));
1547 else
1548 addr = gen_rtx (PLUS, Pmode, arg_reg, offset);
1550 addr = plus_constant (addr, arg_offset);
1551 args[i].stack = gen_rtx (MEM, args[i].mode, addr);
1552 MEM_IN_STRUCT_P (args[i].stack)
1553 = AGGREGATE_TYPE_P (TREE_TYPE (args[i].tree_value));
1555 if (GET_CODE (slot_offset) == CONST_INT)
1556 addr = plus_constant (arg_reg, INTVAL (slot_offset));
1557 else
1558 addr = gen_rtx (PLUS, Pmode, arg_reg, slot_offset);
1560 addr = plus_constant (addr, arg_offset);
1561 args[i].stack_slot = gen_rtx (MEM, args[i].mode, addr);
1565 #ifdef PUSH_ARGS_REVERSED
1566 #ifdef STACK_BOUNDARY
1567 /* If we push args individually in reverse order, perform stack alignment
1568 before the first push (the last arg). */
1569 if (argblock == 0)
1570 anti_adjust_stack (GEN_INT (args_size.constant
1571 - original_args_size.constant));
1572 #endif
1573 #endif
1575 /* Don't try to defer pops if preallocating, not even from the first arg,
1576 since ARGBLOCK probably refers to the SP. */
1577 if (argblock)
1578 NO_DEFER_POP;
1580 /* Get the function to call, in the form of RTL. */
1581 if (fndecl)
1583 /* If this is the first use of the function, see if we need to
1584 make an external definition for it. */
1585 if (! TREE_USED (fndecl))
1587 assemble_external (fndecl);
1588 TREE_USED (fndecl) = 1;
1591 /* Get a SYMBOL_REF rtx for the function address. */
1592 funexp = XEXP (DECL_RTL (fndecl), 0);
1594 else
1595 /* Generate an rtx (probably a pseudo-register) for the address. */
1597 push_temp_slots ();
1598 funexp = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, VOIDmode, 0);
1599 pop_temp_slots (); /* FUNEXP can't be BLKmode */
1600 emit_queue ();
1603 /* Figure out the register where the value, if any, will come back. */
1604 valreg = 0;
1605 if (TYPE_MODE (TREE_TYPE (exp)) != VOIDmode
1606 && ! structure_value_addr)
1608 if (pcc_struct_value)
1609 valreg = hard_function_value (build_pointer_type (TREE_TYPE (exp)),
1610 fndecl);
1611 else
1612 valreg = hard_function_value (TREE_TYPE (exp), fndecl);
1615 /* Precompute all register parameters. It isn't safe to compute anything
1616 once we have started filling any specific hard regs. */
1617 reg_parm_seen = 0;
1618 for (i = 0; i < num_actuals; i++)
1619 if (args[i].reg != 0 && ! args[i].pass_on_stack)
1621 reg_parm_seen = 1;
1623 if (args[i].value == 0)
1625 push_temp_slots ();
1626 args[i].value = expand_expr (args[i].tree_value, NULL_RTX,
1627 VOIDmode, 0);
1628 preserve_temp_slots (args[i].value);
1629 pop_temp_slots ();
1631 /* ANSI doesn't require a sequence point here,
1632 but PCC has one, so this will avoid some problems. */
1633 emit_queue ();
1636 /* If we are to promote the function arg to a wider mode,
1637 do it now. */
1639 if (args[i].mode != TYPE_MODE (TREE_TYPE (args[i].tree_value)))
1640 args[i].value
1641 = convert_modes (args[i].mode,
1642 TYPE_MODE (TREE_TYPE (args[i].tree_value)),
1643 args[i].value, args[i].unsignedp);
1645 /* If the value is expensive, and we are inside an appropriately
1646 short loop, put the value into a pseudo and then put the pseudo
1647 into the hard reg.
1649 For small register classes, also do this if this call uses
1650 register parameters. This is to avoid reload conflicts while
1651 loading the parameters registers. */
1653 if ((! (GET_CODE (args[i].value) == REG
1654 || (GET_CODE (args[i].value) == SUBREG
1655 && GET_CODE (SUBREG_REG (args[i].value)) == REG)))
1656 && args[i].mode != BLKmode
1657 && rtx_cost (args[i].value, SET) > 2
1658 #ifdef SMALL_REGISTER_CLASSES
1659 && (reg_parm_seen || preserve_subexpressions_p ())
1660 #else
1661 && preserve_subexpressions_p ()
1662 #endif
1664 args[i].value = copy_to_mode_reg (args[i].mode, args[i].value);
1667 #if defined(ACCUMULATE_OUTGOING_ARGS) && defined(REG_PARM_STACK_SPACE)
1668 /* The argument list is the property of the called routine and it
1669 may clobber it. If the fixed area has been used for previous
1670 parameters, we must save and restore it.
1672 Here we compute the boundary of the that needs to be saved, if any. */
1674 #ifdef ARGS_GROW_DOWNWARD
1675 for (i = 0; i < reg_parm_stack_space + 1; i++)
1676 #else
1677 for (i = 0; i < reg_parm_stack_space; i++)
1678 #endif
1680 if (i >= highest_outgoing_arg_in_use
1681 || stack_usage_map[i] == 0)
1682 continue;
1684 if (low_to_save == -1)
1685 low_to_save = i;
1687 high_to_save = i;
1690 if (low_to_save >= 0)
1692 int num_to_save = high_to_save - low_to_save + 1;
1693 enum machine_mode save_mode
1694 = mode_for_size (num_to_save * BITS_PER_UNIT, MODE_INT, 1);
1695 rtx stack_area;
1697 /* If we don't have the required alignment, must do this in BLKmode. */
1698 if ((low_to_save & (MIN (GET_MODE_SIZE (save_mode),
1699 BIGGEST_ALIGNMENT / UNITS_PER_WORD) - 1)))
1700 save_mode = BLKmode;
1702 stack_area = gen_rtx (MEM, save_mode,
1703 memory_address (save_mode,
1705 #ifdef ARGS_GROW_DOWNWARD
1706 plus_constant (argblock,
1707 - high_to_save)
1708 #else
1709 plus_constant (argblock,
1710 low_to_save)
1711 #endif
1713 if (save_mode == BLKmode)
1715 save_area = assign_stack_temp (BLKmode, num_to_save, 0);
1716 MEM_IN_STRUCT_P (save_area) = 0;
1717 emit_block_move (validize_mem (save_area), stack_area,
1718 GEN_INT (num_to_save),
1719 PARM_BOUNDARY / BITS_PER_UNIT);
1721 else
1723 save_area = gen_reg_rtx (save_mode);
1724 emit_move_insn (save_area, stack_area);
1727 #endif
1730 /* Now store (and compute if necessary) all non-register parms.
1731 These come before register parms, since they can require block-moves,
1732 which could clobber the registers used for register parms.
1733 Parms which have partial registers are not stored here,
1734 but we do preallocate space here if they want that. */
1736 for (i = 0; i < num_actuals; i++)
1737 if (args[i].reg == 0 || args[i].pass_on_stack)
1738 store_one_arg (&args[i], argblock, may_be_alloca,
1739 args_size.var != 0, fndecl, reg_parm_stack_space);
1741 /* If we have a parm that is passed in registers but not in memory
1742 and whose alignment does not permit a direct copy into registers,
1743 make a group of pseudos that correspond to each register that we
1744 will later fill. */
1746 if (STRICT_ALIGNMENT)
1747 for (i = 0; i < num_actuals; i++)
1748 if (args[i].reg != 0 && ! args[i].pass_on_stack
1749 && args[i].mode == BLKmode
1750 && (TYPE_ALIGN (TREE_TYPE (args[i].tree_value))
1751 < MIN (BIGGEST_ALIGNMENT, BITS_PER_WORD)))
1753 int bytes = int_size_in_bytes (TREE_TYPE (args[i].tree_value));
1754 int big_endian_correction = 0;
1756 args[i].n_aligned_regs
1757 = args[i].partial ? args[i].partial
1758 : (bytes + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
1760 args[i].aligned_regs = (rtx *) alloca (sizeof (rtx)
1761 * args[i].n_aligned_regs);
1763 /* Structures smaller than a word are aligned to the least
1764 significant byte (to the right). On a BYTES_BIG_ENDIAN machine,
1765 this means we must skip the empty high order bytes when
1766 calculating the bit offset. */
1767 if (BYTES_BIG_ENDIAN && bytes < UNITS_PER_WORD)
1768 big_endian_correction = (BITS_PER_WORD - (bytes * BITS_PER_UNIT));
1770 for (j = 0; j < args[i].n_aligned_regs; j++)
1772 rtx reg = gen_reg_rtx (word_mode);
1773 rtx word = operand_subword_force (args[i].value, j, BLKmode);
1774 int bitsize = TYPE_ALIGN (TREE_TYPE (args[i].tree_value));
1775 int bitpos;
1777 args[i].aligned_regs[j] = reg;
1779 /* Clobber REG and move each partword into it. Ensure we don't
1780 go past the end of the structure. Note that the loop below
1781 works because we've already verified that padding
1782 and endianness are compatible. */
1784 emit_insn (gen_rtx (CLOBBER, VOIDmode, reg));
1786 for (bitpos = 0;
1787 bitpos < BITS_PER_WORD && bytes > 0;
1788 bitpos += bitsize, bytes -= bitsize / BITS_PER_UNIT)
1790 int xbitpos = bitpos + big_endian_correction;
1792 store_bit_field (reg, bitsize, xbitpos, word_mode,
1793 extract_bit_field (word, bitsize, bitpos, 1,
1794 NULL_RTX, word_mode,
1795 word_mode,
1796 bitsize / BITS_PER_UNIT,
1797 BITS_PER_WORD),
1798 bitsize / BITS_PER_UNIT, BITS_PER_WORD);
1803 /* Now store any partially-in-registers parm.
1804 This is the last place a block-move can happen. */
1805 if (reg_parm_seen)
1806 for (i = 0; i < num_actuals; i++)
1807 if (args[i].partial != 0 && ! args[i].pass_on_stack)
1808 store_one_arg (&args[i], argblock, may_be_alloca,
1809 args_size.var != 0, fndecl, reg_parm_stack_space);
1811 #ifndef PUSH_ARGS_REVERSED
1812 #ifdef STACK_BOUNDARY
1813 /* If we pushed args in forward order, perform stack alignment
1814 after pushing the last arg. */
1815 if (argblock == 0)
1816 anti_adjust_stack (GEN_INT (args_size.constant
1817 - original_args_size.constant));
1818 #endif
1819 #endif
1821 /* If register arguments require space on the stack and stack space
1822 was not preallocated, allocate stack space here for arguments
1823 passed in registers. */
1824 #if ! defined(ACCUMULATE_OUTGOING_ARGS) && defined(OUTGOING_REG_PARM_STACK_SPACE)
1825 if (must_preallocate == 0 && reg_parm_stack_space > 0)
1826 anti_adjust_stack (GEN_INT (reg_parm_stack_space));
1827 #endif
1829 /* Pass the function the address in which to return a structure value. */
1830 if (structure_value_addr && ! structure_value_addr_parm)
1832 emit_move_insn (struct_value_rtx,
1833 force_reg (Pmode,
1834 force_operand (structure_value_addr,
1835 NULL_RTX)));
1836 if (GET_CODE (struct_value_rtx) == REG)
1837 use_reg (&call_fusage, struct_value_rtx);
1840 funexp = prepare_call_address (funexp, fndecl, &call_fusage, reg_parm_seen);
1842 /* Now do the register loads required for any wholly-register parms or any
1843 parms which are passed both on the stack and in a register. Their
1844 expressions were already evaluated.
1846 Mark all register-parms as living through the call, putting these USE
1847 insns in the CALL_INSN_FUNCTION_USAGE field. */
1849 for (i = 0; i < num_actuals; i++)
1851 rtx list = args[i].reg;
1852 int partial = args[i].partial;
1854 while (list)
1856 rtx reg;
1857 int nregs;
1859 /* Process each register that needs to get this arg. */
1860 if (GET_CODE (list) == EXPR_LIST)
1861 reg = XEXP (list, 0), list = XEXP (list, 1);
1862 else
1863 reg = list, list = 0;
1865 /* Set to non-negative if must move a word at a time, even if just
1866 one word (e.g, partial == 1 && mode == DFmode). Set to -1 if
1867 we just use a normal move insn. This value can be zero if the
1868 argument is a zero size structure with no fields. */
1869 nregs = (partial ? partial
1870 : (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode
1871 ? ((int_size_in_bytes (TREE_TYPE (args[i].tree_value))
1872 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
1873 : -1));
1875 /* If simple case, just do move. If normal partial, store_one_arg
1876 has already loaded the register for us. In all other cases,
1877 load the register(s) from memory. */
1879 if (nregs == -1)
1880 emit_move_insn (reg, args[i].value);
1882 /* If we have pre-computed the values to put in the registers in
1883 the case of non-aligned structures, copy them in now. */
1885 else if (args[i].n_aligned_regs != 0)
1886 for (j = 0; j < args[i].n_aligned_regs; j++)
1887 emit_move_insn (gen_rtx (REG, word_mode, REGNO (reg) + j),
1888 args[i].aligned_regs[j]);
1890 else if (args[i].partial == 0 || args[i].pass_on_stack)
1891 move_block_to_reg (REGNO (reg),
1892 validize_mem (args[i].value), nregs,
1893 args[i].mode);
1895 if (nregs == -1)
1896 use_reg (&call_fusage, reg);
1897 else
1898 use_regs (&call_fusage, REGNO (reg), nregs == 0 ? 1 : nregs);
1900 /* PARTIAL referred only to the first register, so clear it for the
1901 next time. */
1902 partial = 0;
1906 /* Perform postincrements before actually calling the function. */
1907 emit_queue ();
1909 /* All arguments and registers used for the call must be set up by now! */
1911 /* Generate the actual call instruction. */
1912 emit_call_1 (funexp, fndecl, funtype, args_size.constant, struct_value_size,
1913 FUNCTION_ARG (args_so_far, VOIDmode, void_type_node, 1),
1914 valreg, old_inhibit_defer_pop, call_fusage, is_const);
1916 /* If call is cse'able, make appropriate pair of reg-notes around it.
1917 Test valreg so we don't crash; may safely ignore `const'
1918 if return type is void. */
1919 if (is_const && valreg != 0)
1921 rtx note = 0;
1922 rtx temp = gen_reg_rtx (GET_MODE (valreg));
1923 rtx insns;
1925 /* Construct an "equal form" for the value which mentions all the
1926 arguments in order as well as the function name. */
1927 #ifdef PUSH_ARGS_REVERSED
1928 for (i = 0; i < num_actuals; i++)
1929 note = gen_rtx (EXPR_LIST, VOIDmode, args[i].initial_value, note);
1930 #else
1931 for (i = num_actuals - 1; i >= 0; i--)
1932 note = gen_rtx (EXPR_LIST, VOIDmode, args[i].initial_value, note);
1933 #endif
1934 note = gen_rtx (EXPR_LIST, VOIDmode, funexp, note);
1936 insns = get_insns ();
1937 end_sequence ();
1939 emit_libcall_block (insns, temp, valreg, note);
1941 valreg = temp;
1943 else if (is_const)
1945 /* Otherwise, just write out the sequence without a note. */
1946 rtx insns = get_insns ();
1948 end_sequence ();
1949 emit_insns (insns);
1952 /* For calls to `setjmp', etc., inform flow.c it should complain
1953 if nonvolatile values are live. */
1955 if (returns_twice)
1957 emit_note (name, NOTE_INSN_SETJMP);
1958 current_function_calls_setjmp = 1;
1961 if (is_longjmp)
1962 current_function_calls_longjmp = 1;
1964 /* Notice functions that cannot return.
1965 If optimizing, insns emitted below will be dead.
1966 If not optimizing, they will exist, which is useful
1967 if the user uses the `return' command in the debugger. */
1969 if (is_volatile || is_longjmp)
1970 emit_barrier ();
1972 /* If value type not void, return an rtx for the value. */
1974 /* If there are cleanups to be called, don't use a hard reg as target. */
1975 if (cleanups_this_call != old_cleanups
1976 && target && REG_P (target)
1977 && REGNO (target) < FIRST_PSEUDO_REGISTER)
1978 target = 0;
1980 if (TYPE_MODE (TREE_TYPE (exp)) == VOIDmode
1981 || ignore)
1983 target = const0_rtx;
1985 else if (structure_value_addr)
1987 if (target == 0 || GET_CODE (target) != MEM)
1989 target = gen_rtx (MEM, TYPE_MODE (TREE_TYPE (exp)),
1990 memory_address (TYPE_MODE (TREE_TYPE (exp)),
1991 structure_value_addr));
1992 MEM_IN_STRUCT_P (target) = AGGREGATE_TYPE_P (TREE_TYPE (exp));
1995 else if (pcc_struct_value)
1997 if (target == 0)
1999 /* We used leave the value in the location that it is
2000 returned in, but that causes problems if it is used more
2001 than once in one expression. Rather than trying to track
2002 when a copy is required, we always copy when TARGET is
2003 not specified. This calling sequence is only used on
2004 a few machines and TARGET is usually nonzero. */
2005 if (TYPE_MODE (TREE_TYPE (exp)) == BLKmode)
2007 target = assign_stack_temp (BLKmode,
2008 int_size_in_bytes (TREE_TYPE (exp)),
2011 MEM_IN_STRUCT_P (target) = AGGREGATE_TYPE_P (TREE_TYPE (exp));
2013 /* Save this temp slot around the pop below. */
2014 preserve_temp_slots (target);
2016 else
2017 target = gen_reg_rtx (TYPE_MODE (TREE_TYPE (exp)));
2020 if (TYPE_MODE (TREE_TYPE (exp)) != BLKmode)
2021 emit_move_insn (target, gen_rtx (MEM, TYPE_MODE (TREE_TYPE (exp)),
2022 copy_to_reg (valreg)));
2023 else
2024 emit_block_move (target, gen_rtx (MEM, BLKmode, copy_to_reg (valreg)),
2025 expr_size (exp),
2026 TYPE_ALIGN (TREE_TYPE (exp)) / BITS_PER_UNIT);
2028 else if (target && GET_MODE (target) == TYPE_MODE (TREE_TYPE (exp))
2029 && GET_MODE (target) == GET_MODE (valreg))
2030 /* TARGET and VALREG cannot be equal at this point because the latter
2031 would not have REG_FUNCTION_VALUE_P true, while the former would if
2032 it were referring to the same register.
2034 If they refer to the same register, this move will be a no-op, except
2035 when function inlining is being done. */
2036 emit_move_insn (target, valreg);
2037 else if (TYPE_MODE (TREE_TYPE (exp)) == BLKmode)
2039 /* Some machines (the PA for example) want to return all small
2040 structures in registers regardless of the structure's alignment.
2042 Deal with them explicitly by copying from the return registers
2043 into the target MEM locations. */
2044 int bytes = int_size_in_bytes (TREE_TYPE (exp));
2045 int n_regs = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
2046 int i;
2047 enum machine_mode tmpmode;
2048 rtx src, dst;
2049 int bitsize = MIN (TYPE_ALIGN (TREE_TYPE (exp)), BITS_PER_WORD);
2050 int bitpos, xbitpos, big_endian_correction = 0;
2052 if (target == 0)
2054 target = assign_stack_temp (BLKmode, bytes, 0);
2055 MEM_IN_STRUCT_P (target) = AGGREGATE_TYPE_P (TREE_TYPE (exp));
2056 preserve_temp_slots (target);
2059 /* This code assumes valreg is at least a full word. If it isn't,
2060 copy it into a new pseudo which is a full word. */
2061 if (GET_MODE (valreg) != BLKmode
2062 && GET_MODE_SIZE (GET_MODE (valreg)) < UNITS_PER_WORD)
2063 valreg = convert_to_mode (SImode, valreg,
2064 TREE_UNSIGNED (TREE_TYPE (exp)));
2066 /* Structures whose size is not a multiple of a word are aligned
2067 to the least significant byte (to the right). On a BYTES_BIG_ENDIAN
2068 machine, this means we must skip the empty high order bytes when
2069 calculating the bit offset. */
2070 if (BYTES_BIG_ENDIAN && bytes % UNITS_PER_WORD)
2071 big_endian_correction = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD)
2072 * BITS_PER_UNIT));
2074 /* Copy the structure BITSIZE bites at a time.
2076 We could probably emit more efficient code for machines
2077 which do not use strict alignment, but it doesn't seem
2078 worth the effort at the current time. */
2079 for (bitpos = 0, xbitpos = big_endian_correction;
2080 bitpos < bytes * BITS_PER_UNIT;
2081 bitpos += bitsize, xbitpos += bitsize)
2084 /* We need a new source operand each time xbitpos is on a
2085 word boundary and when xbitpos == big_endian_correction
2086 (the first time through). */
2087 if (xbitpos % BITS_PER_WORD == 0
2088 || xbitpos == big_endian_correction)
2089 src = operand_subword_force (valreg,
2090 xbitpos / BITS_PER_WORD,
2091 BLKmode);
2093 /* We need a new destination operand each time bitpos is on
2094 a word boundary. */
2095 if (bitpos % BITS_PER_WORD == 0)
2096 dst = operand_subword (target, bitpos / BITS_PER_WORD, 1, BLKmode);
2098 /* Use xbitpos for the source extraction (right justified) and
2099 xbitpos for the destination store (left justified). */
2100 store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, word_mode,
2101 extract_bit_field (src, bitsize,
2102 xbitpos % BITS_PER_WORD, 1,
2103 NULL_RTX, word_mode,
2104 word_mode,
2105 bitsize / BITS_PER_UNIT,
2106 BITS_PER_WORD),
2107 bitsize / BITS_PER_UNIT, BITS_PER_WORD);
2110 else
2111 target = copy_to_reg (valreg);
2113 #ifdef PROMOTE_FUNCTION_RETURN
2114 /* If we promoted this return value, make the proper SUBREG. TARGET
2115 might be const0_rtx here, so be careful. */
2116 if (GET_CODE (target) == REG
2117 && TYPE_MODE (TREE_TYPE (exp)) != BLKmode
2118 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
2120 tree type = TREE_TYPE (exp);
2121 int unsignedp = TREE_UNSIGNED (type);
2123 /* If we don't promote as expected, something is wrong. */
2124 if (GET_MODE (target)
2125 != promote_mode (type, TYPE_MODE (type), &unsignedp, 1))
2126 abort ();
2128 target = gen_rtx (SUBREG, TYPE_MODE (type), target, 0);
2129 SUBREG_PROMOTED_VAR_P (target) = 1;
2130 SUBREG_PROMOTED_UNSIGNED_P (target) = unsignedp;
2132 #endif
2134 if (flag_short_temps)
2136 /* Perform all cleanups needed for the arguments of this call
2137 (i.e. destructors in C++). */
2138 expand_cleanups_to (old_cleanups);
2141 /* If size of args is variable or this was a constructor call for a stack
2142 argument, restore saved stack-pointer value. */
2144 if (old_stack_level)
2146 emit_stack_restore (SAVE_BLOCK, old_stack_level, NULL_RTX);
2147 pending_stack_adjust = old_pending_adj;
2148 #ifdef ACCUMULATE_OUTGOING_ARGS
2149 stack_arg_under_construction = old_stack_arg_under_construction;
2150 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
2151 stack_usage_map = initial_stack_usage_map;
2152 #endif
2154 #ifdef ACCUMULATE_OUTGOING_ARGS
2155 else
2157 #ifdef REG_PARM_STACK_SPACE
2158 if (save_area)
2160 enum machine_mode save_mode = GET_MODE (save_area);
2161 rtx stack_area
2162 = gen_rtx (MEM, save_mode,
2163 memory_address (save_mode,
2164 #ifdef ARGS_GROW_DOWNWARD
2165 plus_constant (argblock, - high_to_save)
2166 #else
2167 plus_constant (argblock, low_to_save)
2168 #endif
2171 if (save_mode != BLKmode)
2172 emit_move_insn (stack_area, save_area);
2173 else
2174 emit_block_move (stack_area, validize_mem (save_area),
2175 GEN_INT (high_to_save - low_to_save + 1),
2176 PARM_BOUNDARY / BITS_PER_UNIT);
2178 #endif
2180 /* If we saved any argument areas, restore them. */
2181 for (i = 0; i < num_actuals; i++)
2182 if (args[i].save_area)
2184 enum machine_mode save_mode = GET_MODE (args[i].save_area);
2185 rtx stack_area
2186 = gen_rtx (MEM, save_mode,
2187 memory_address (save_mode,
2188 XEXP (args[i].stack_slot, 0)));
2190 if (save_mode != BLKmode)
2191 emit_move_insn (stack_area, args[i].save_area);
2192 else
2193 emit_block_move (stack_area, validize_mem (args[i].save_area),
2194 GEN_INT (args[i].size.constant),
2195 PARM_BOUNDARY / BITS_PER_UNIT);
2198 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
2199 stack_usage_map = initial_stack_usage_map;
2201 #endif
2203 /* If this was alloca, record the new stack level for nonlocal gotos.
2204 Check for the handler slots since we might not have a save area
2205 for non-local gotos. */
2207 if (may_be_alloca && nonlocal_goto_handler_slot != 0)
2208 emit_stack_save (SAVE_NONLOCAL, &nonlocal_goto_stack_level, NULL_RTX);
2210 pop_temp_slots ();
2212 return target;
2215 /* Output a library call to function FUN (a SYMBOL_REF rtx)
2216 (emitting the queue unless NO_QUEUE is nonzero),
2217 for a value of mode OUTMODE,
2218 with NARGS different arguments, passed as alternating rtx values
2219 and machine_modes to convert them to.
2220 The rtx values should have been passed through protect_from_queue already.
2222 NO_QUEUE will be true if and only if the library call is a `const' call
2223 which will be enclosed in REG_LIBCALL/REG_RETVAL notes; it is equivalent
2224 to the variable is_const in expand_call.
2226 NO_QUEUE must be true for const calls, because if it isn't, then
2227 any pending increment will be emitted between REG_LIBCALL/REG_RETVAL notes,
2228 and will be lost if the libcall sequence is optimized away.
2230 NO_QUEUE must be false for non-const calls, because if it isn't, the
2231 call insn will have its CONST_CALL_P bit set, and it will be incorrectly
2232 optimized. For instance, the instruction scheduler may incorrectly
2233 move memory references across the non-const call. */
2235 void
2236 emit_library_call VPROTO((rtx orgfun, int no_queue, enum machine_mode outmode,
2237 int nargs, ...))
2239 #ifndef __STDC__
2240 rtx orgfun;
2241 int no_queue;
2242 enum machine_mode outmode;
2243 int nargs;
2244 #endif
2245 va_list p;
2246 /* Total size in bytes of all the stack-parms scanned so far. */
2247 struct args_size args_size;
2248 /* Size of arguments before any adjustments (such as rounding). */
2249 struct args_size original_args_size;
2250 register int argnum;
2251 rtx fun;
2252 int inc;
2253 int count;
2254 rtx argblock = 0;
2255 CUMULATIVE_ARGS args_so_far;
2256 struct arg { rtx value; enum machine_mode mode; rtx reg; int partial;
2257 struct args_size offset; struct args_size size; };
2258 struct arg *argvec;
2259 int old_inhibit_defer_pop = inhibit_defer_pop;
2260 rtx call_fusage = 0;
2261 /* library calls are never indirect calls. */
2262 int current_call_is_indirect = 0;
2264 VA_START (p, nargs);
2266 #ifndef __STDC__
2267 orgfun = va_arg (p, rtx);
2268 no_queue = va_arg (p, int);
2269 outmode = va_arg (p, enum machine_mode);
2270 nargs = va_arg (p, int);
2271 #endif
2273 fun = orgfun;
2275 /* Copy all the libcall-arguments out of the varargs data
2276 and into a vector ARGVEC.
2278 Compute how to pass each argument. We only support a very small subset
2279 of the full argument passing conventions to limit complexity here since
2280 library functions shouldn't have many args. */
2282 argvec = (struct arg *) alloca (nargs * sizeof (struct arg));
2284 INIT_CUMULATIVE_ARGS (args_so_far, NULL_TREE, fun);
2286 args_size.constant = 0;
2287 args_size.var = 0;
2289 push_temp_slots ();
2291 for (count = 0; count < nargs; count++)
2293 rtx val = va_arg (p, rtx);
2294 enum machine_mode mode = va_arg (p, enum machine_mode);
2296 /* We cannot convert the arg value to the mode the library wants here;
2297 must do it earlier where we know the signedness of the arg. */
2298 if (mode == BLKmode
2299 || (GET_MODE (val) != mode && GET_MODE (val) != VOIDmode))
2300 abort ();
2302 /* On some machines, there's no way to pass a float to a library fcn.
2303 Pass it as a double instead. */
2304 #ifdef LIBGCC_NEEDS_DOUBLE
2305 if (LIBGCC_NEEDS_DOUBLE && mode == SFmode)
2306 val = convert_modes (DFmode, SFmode, val, 0), mode = DFmode;
2307 #endif
2309 /* There's no need to call protect_from_queue, because
2310 either emit_move_insn or emit_push_insn will do that. */
2312 /* Make sure it is a reasonable operand for a move or push insn. */
2313 if (GET_CODE (val) != REG && GET_CODE (val) != MEM
2314 && ! (CONSTANT_P (val) && LEGITIMATE_CONSTANT_P (val)))
2315 val = force_operand (val, NULL_RTX);
2317 #ifdef FUNCTION_ARG_PASS_BY_REFERENCE
2318 if (FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far, mode, NULL_TREE, 1))
2320 /* We do not support FUNCTION_ARG_CALLEE_COPIES here since it can
2321 be viewed as just an efficiency improvement. */
2322 rtx slot = assign_stack_temp (mode, GET_MODE_SIZE (mode), 0);
2323 emit_move_insn (slot, val);
2324 val = force_operand (XEXP (slot, 0), NULL_RTX);
2325 mode = Pmode;
2327 #endif
2329 argvec[count].value = val;
2330 argvec[count].mode = mode;
2332 argvec[count].reg = FUNCTION_ARG (args_so_far, mode, NULL_TREE, 1);
2333 if (argvec[count].reg && GET_CODE (argvec[count].reg) == EXPR_LIST)
2334 abort ();
2335 #ifdef FUNCTION_ARG_PARTIAL_NREGS
2336 argvec[count].partial
2337 = FUNCTION_ARG_PARTIAL_NREGS (args_so_far, mode, NULL_TREE, 1);
2338 #else
2339 argvec[count].partial = 0;
2340 #endif
2342 locate_and_pad_parm (mode, NULL_TREE,
2343 argvec[count].reg && argvec[count].partial == 0,
2344 NULL_TREE, &args_size, &argvec[count].offset,
2345 &argvec[count].size);
2347 if (argvec[count].size.var)
2348 abort ();
2350 #ifndef REG_PARM_STACK_SPACE
2351 if (argvec[count].partial)
2352 argvec[count].size.constant -= argvec[count].partial * UNITS_PER_WORD;
2353 #endif
2355 if (argvec[count].reg == 0 || argvec[count].partial != 0
2356 #ifdef REG_PARM_STACK_SPACE
2357 || 1
2358 #endif
2360 args_size.constant += argvec[count].size.constant;
2362 #ifdef ACCUMULATE_OUTGOING_ARGS
2363 /* If this arg is actually passed on the stack, it might be
2364 clobbering something we already put there (this library call might
2365 be inside the evaluation of an argument to a function whose call
2366 requires the stack). This will only occur when the library call
2367 has sufficient args to run out of argument registers. Abort in
2368 this case; if this ever occurs, code must be added to save and
2369 restore the arg slot. */
2371 if (argvec[count].reg == 0 || argvec[count].partial != 0)
2372 abort ();
2373 #endif
2375 FUNCTION_ARG_ADVANCE (args_so_far, mode, (tree)0, 1);
2377 va_end (p);
2379 /* If this machine requires an external definition for library
2380 functions, write one out. */
2381 assemble_external_libcall (fun);
2383 original_args_size = args_size;
2384 #ifdef STACK_BOUNDARY
2385 args_size.constant = (((args_size.constant + (STACK_BYTES - 1))
2386 / STACK_BYTES) * STACK_BYTES);
2387 #endif
2389 #ifdef REG_PARM_STACK_SPACE
2390 args_size.constant = MAX (args_size.constant,
2391 REG_PARM_STACK_SPACE (NULL_TREE));
2392 #ifndef OUTGOING_REG_PARM_STACK_SPACE
2393 args_size.constant -= REG_PARM_STACK_SPACE (NULL_TREE);
2394 #endif
2395 #endif
2397 if (args_size.constant > current_function_outgoing_args_size)
2398 current_function_outgoing_args_size = args_size.constant;
2400 #ifdef ACCUMULATE_OUTGOING_ARGS
2401 args_size.constant = 0;
2402 #endif
2404 #ifndef PUSH_ROUNDING
2405 argblock = push_block (GEN_INT (args_size.constant), 0, 0);
2406 #endif
2408 #ifdef PUSH_ARGS_REVERSED
2409 #ifdef STACK_BOUNDARY
2410 /* If we push args individually in reverse order, perform stack alignment
2411 before the first push (the last arg). */
2412 if (argblock == 0)
2413 anti_adjust_stack (GEN_INT (args_size.constant
2414 - original_args_size.constant));
2415 #endif
2416 #endif
2418 #ifdef PUSH_ARGS_REVERSED
2419 inc = -1;
2420 argnum = nargs - 1;
2421 #else
2422 inc = 1;
2423 argnum = 0;
2424 #endif
2426 /* Push the args that need to be pushed. */
2428 for (count = 0; count < nargs; count++, argnum += inc)
2430 register enum machine_mode mode = argvec[argnum].mode;
2431 register rtx val = argvec[argnum].value;
2432 rtx reg = argvec[argnum].reg;
2433 int partial = argvec[argnum].partial;
2435 if (! (reg != 0 && partial == 0))
2436 emit_push_insn (val, mode, NULL_TREE, NULL_RTX, 0, partial, reg, 0,
2437 argblock, GEN_INT (argvec[count].offset.constant));
2438 NO_DEFER_POP;
2441 #ifndef PUSH_ARGS_REVERSED
2442 #ifdef STACK_BOUNDARY
2443 /* If we pushed args in forward order, perform stack alignment
2444 after pushing the last arg. */
2445 if (argblock == 0)
2446 anti_adjust_stack (GEN_INT (args_size.constant
2447 - original_args_size.constant));
2448 #endif
2449 #endif
2451 #ifdef PUSH_ARGS_REVERSED
2452 argnum = nargs - 1;
2453 #else
2454 argnum = 0;
2455 #endif
2457 fun = prepare_call_address (fun, NULL_TREE, &call_fusage, 0);
2459 /* Now load any reg parms into their regs. */
2461 for (count = 0; count < nargs; count++, argnum += inc)
2463 register enum machine_mode mode = argvec[argnum].mode;
2464 register rtx val = argvec[argnum].value;
2465 rtx reg = argvec[argnum].reg;
2466 int partial = argvec[argnum].partial;
2468 if (reg != 0 && partial == 0)
2469 emit_move_insn (reg, val);
2470 NO_DEFER_POP;
2473 /* For version 1.37, try deleting this entirely. */
2474 if (! no_queue)
2475 emit_queue ();
2477 /* Any regs containing parms remain in use through the call. */
2478 for (count = 0; count < nargs; count++)
2479 if (argvec[count].reg != 0)
2480 use_reg (&call_fusage, argvec[count].reg);
2482 /* Don't allow popping to be deferred, since then
2483 cse'ing of library calls could delete a call and leave the pop. */
2484 NO_DEFER_POP;
2486 /* We pass the old value of inhibit_defer_pop + 1 to emit_call_1, which
2487 will set inhibit_defer_pop to that value. */
2489 emit_call_1 (fun,
2490 get_identifier (XSTR (orgfun, 0)),
2491 get_identifier (XSTR (orgfun, 0)), args_size.constant, 0,
2492 FUNCTION_ARG (args_so_far, VOIDmode, void_type_node, 1),
2493 outmode != VOIDmode ? hard_libcall_value (outmode) : NULL_RTX,
2494 old_inhibit_defer_pop + 1, call_fusage, no_queue);
2496 pop_temp_slots ();
2498 /* Now restore inhibit_defer_pop to its actual original value. */
2499 OK_DEFER_POP;
2502 /* Like emit_library_call except that an extra argument, VALUE,
2503 comes second and says where to store the result.
2504 (If VALUE is zero, this function chooses a convenient way
2505 to return the value.
2507 This function returns an rtx for where the value is to be found.
2508 If VALUE is nonzero, VALUE is returned. */
2511 emit_library_call_value VPROTO((rtx orgfun, rtx value, int no_queue,
2512 enum machine_mode outmode, int nargs, ...))
2514 #ifndef __STDC__
2515 rtx orgfun;
2516 rtx value;
2517 int no_queue;
2518 enum machine_mode outmode;
2519 int nargs;
2520 #endif
2521 va_list p;
2522 /* Total size in bytes of all the stack-parms scanned so far. */
2523 struct args_size args_size;
2524 /* Size of arguments before any adjustments (such as rounding). */
2525 struct args_size original_args_size;
2526 register int argnum;
2527 rtx fun;
2528 int inc;
2529 int count;
2530 rtx argblock = 0;
2531 CUMULATIVE_ARGS args_so_far;
2532 struct arg { rtx value; enum machine_mode mode; rtx reg; int partial;
2533 struct args_size offset; struct args_size size; };
2534 struct arg *argvec;
2535 int old_inhibit_defer_pop = inhibit_defer_pop;
2536 rtx call_fusage = 0;
2537 rtx mem_value = 0;
2538 int pcc_struct_value = 0;
2539 int struct_value_size = 0;
2540 /* library calls are never indirect calls. */
2541 int current_call_is_indirect = 0;
2542 int is_const;
2544 VA_START (p, nargs);
2546 #ifndef __STDC__
2547 orgfun = va_arg (p, rtx);
2548 value = va_arg (p, rtx);
2549 no_queue = va_arg (p, int);
2550 outmode = va_arg (p, enum machine_mode);
2551 nargs = va_arg (p, int);
2552 #endif
2554 is_const = no_queue;
2555 fun = orgfun;
2557 /* If this kind of value comes back in memory,
2558 decide where in memory it should come back. */
2559 if (aggregate_value_p (type_for_mode (outmode, 0)))
2561 #ifdef PCC_STATIC_STRUCT_RETURN
2562 rtx pointer_reg
2563 = hard_function_value (build_pointer_type (type_for_mode (outmode, 0)),
2565 mem_value = gen_rtx (MEM, outmode, pointer_reg);
2566 pcc_struct_value = 1;
2567 if (value == 0)
2568 value = gen_reg_rtx (outmode);
2569 #else /* not PCC_STATIC_STRUCT_RETURN */
2570 struct_value_size = GET_MODE_SIZE (outmode);
2571 if (value != 0 && GET_CODE (value) == MEM)
2572 mem_value = value;
2573 else
2574 mem_value = assign_stack_temp (outmode, GET_MODE_SIZE (outmode), 0);
2575 #endif
2577 /* This call returns a big structure. */
2578 is_const = 0;
2581 /* ??? Unfinished: must pass the memory address as an argument. */
2583 /* Copy all the libcall-arguments out of the varargs data
2584 and into a vector ARGVEC.
2586 Compute how to pass each argument. We only support a very small subset
2587 of the full argument passing conventions to limit complexity here since
2588 library functions shouldn't have many args. */
2590 argvec = (struct arg *) alloca ((nargs + 1) * sizeof (struct arg));
2592 INIT_CUMULATIVE_ARGS (args_so_far, NULL_TREE, fun);
2594 args_size.constant = 0;
2595 args_size.var = 0;
2597 count = 0;
2599 push_temp_slots ();
2601 /* If there's a structure value address to be passed,
2602 either pass it in the special place, or pass it as an extra argument. */
2603 if (mem_value && struct_value_rtx == 0 && ! pcc_struct_value)
2605 rtx addr = XEXP (mem_value, 0);
2606 nargs++;
2608 /* Make sure it is a reasonable operand for a move or push insn. */
2609 if (GET_CODE (addr) != REG && GET_CODE (addr) != MEM
2610 && ! (CONSTANT_P (addr) && LEGITIMATE_CONSTANT_P (addr)))
2611 addr = force_operand (addr, NULL_RTX);
2613 argvec[count].value = addr;
2614 argvec[count].mode = Pmode;
2615 argvec[count].partial = 0;
2617 argvec[count].reg = FUNCTION_ARG (args_so_far, Pmode, NULL_TREE, 1);
2618 #ifdef FUNCTION_ARG_PARTIAL_NREGS
2619 if (FUNCTION_ARG_PARTIAL_NREGS (args_so_far, Pmode, NULL_TREE, 1))
2620 abort ();
2621 #endif
2623 locate_and_pad_parm (Pmode, NULL_TREE,
2624 argvec[count].reg && argvec[count].partial == 0,
2625 NULL_TREE, &args_size, &argvec[count].offset,
2626 &argvec[count].size);
2629 if (argvec[count].reg == 0 || argvec[count].partial != 0
2630 #ifdef REG_PARM_STACK_SPACE
2631 || 1
2632 #endif
2634 args_size.constant += argvec[count].size.constant;
2636 FUNCTION_ARG_ADVANCE (args_so_far, Pmode, (tree)0, 1);
2638 count++;
2641 for (; count < nargs; count++)
2643 rtx val = va_arg (p, rtx);
2644 enum machine_mode mode = va_arg (p, enum machine_mode);
2646 /* We cannot convert the arg value to the mode the library wants here;
2647 must do it earlier where we know the signedness of the arg. */
2648 if (mode == BLKmode
2649 || (GET_MODE (val) != mode && GET_MODE (val) != VOIDmode))
2650 abort ();
2652 /* On some machines, there's no way to pass a float to a library fcn.
2653 Pass it as a double instead. */
2654 #ifdef LIBGCC_NEEDS_DOUBLE
2655 if (LIBGCC_NEEDS_DOUBLE && mode == SFmode)
2656 val = convert_modes (DFmode, SFmode, val, 0), mode = DFmode;
2657 #endif
2659 /* There's no need to call protect_from_queue, because
2660 either emit_move_insn or emit_push_insn will do that. */
2662 /* Make sure it is a reasonable operand for a move or push insn. */
2663 if (GET_CODE (val) != REG && GET_CODE (val) != MEM
2664 && ! (CONSTANT_P (val) && LEGITIMATE_CONSTANT_P (val)))
2665 val = force_operand (val, NULL_RTX);
2667 #ifdef FUNCTION_ARG_PASS_BY_REFERENCE
2668 if (FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far, mode, NULL_TREE, 1))
2670 /* We do not support FUNCTION_ARG_CALLEE_COPIES here since it can
2671 be viewed as just an efficiency improvement. */
2672 rtx slot = assign_stack_temp (mode, GET_MODE_SIZE (mode), 0);
2673 emit_move_insn (slot, val);
2674 val = XEXP (slot, 0);
2675 mode = Pmode;
2677 #endif
2679 argvec[count].value = val;
2680 argvec[count].mode = mode;
2682 argvec[count].reg = FUNCTION_ARG (args_so_far, mode, NULL_TREE, 1);
2683 if (argvec[count].reg && GET_CODE (argvec[count].reg) == EXPR_LIST)
2684 abort ();
2685 #ifdef FUNCTION_ARG_PARTIAL_NREGS
2686 argvec[count].partial
2687 = FUNCTION_ARG_PARTIAL_NREGS (args_so_far, mode, NULL_TREE, 1);
2688 #else
2689 argvec[count].partial = 0;
2690 #endif
2692 locate_and_pad_parm (mode, NULL_TREE,
2693 argvec[count].reg && argvec[count].partial == 0,
2694 NULL_TREE, &args_size, &argvec[count].offset,
2695 &argvec[count].size);
2697 if (argvec[count].size.var)
2698 abort ();
2700 #ifndef REG_PARM_STACK_SPACE
2701 if (argvec[count].partial)
2702 argvec[count].size.constant -= argvec[count].partial * UNITS_PER_WORD;
2703 #endif
2705 if (argvec[count].reg == 0 || argvec[count].partial != 0
2706 #ifdef REG_PARM_STACK_SPACE
2707 || 1
2708 #endif
2710 args_size.constant += argvec[count].size.constant;
2712 #ifdef ACCUMULATE_OUTGOING_ARGS
2713 /* If this arg is actually passed on the stack, it might be
2714 clobbering something we already put there (this library call might
2715 be inside the evaluation of an argument to a function whose call
2716 requires the stack). This will only occur when the library call
2717 has sufficient args to run out of argument registers. Abort in
2718 this case; if this ever occurs, code must be added to save and
2719 restore the arg slot. */
2721 if (argvec[count].reg == 0 || argvec[count].partial != 0)
2722 abort ();
2723 #endif
2725 FUNCTION_ARG_ADVANCE (args_so_far, mode, (tree)0, 1);
2727 va_end (p);
2729 /* If this machine requires an external definition for library
2730 functions, write one out. */
2731 assemble_external_libcall (fun);
2733 original_args_size = args_size;
2734 #ifdef STACK_BOUNDARY
2735 args_size.constant = (((args_size.constant + (STACK_BYTES - 1))
2736 / STACK_BYTES) * STACK_BYTES);
2737 #endif
2739 #ifdef REG_PARM_STACK_SPACE
2740 args_size.constant = MAX (args_size.constant,
2741 REG_PARM_STACK_SPACE (NULL_TREE));
2742 #ifndef OUTGOING_REG_PARM_STACK_SPACE
2743 args_size.constant -= REG_PARM_STACK_SPACE (NULL_TREE);
2744 #endif
2745 #endif
2747 if (args_size.constant > current_function_outgoing_args_size)
2748 current_function_outgoing_args_size = args_size.constant;
2750 #ifdef ACCUMULATE_OUTGOING_ARGS
2751 args_size.constant = 0;
2752 #endif
2754 #ifndef PUSH_ROUNDING
2755 argblock = push_block (GEN_INT (args_size.constant), 0, 0);
2756 #endif
2758 #ifdef PUSH_ARGS_REVERSED
2759 #ifdef STACK_BOUNDARY
2760 /* If we push args individually in reverse order, perform stack alignment
2761 before the first push (the last arg). */
2762 if (argblock == 0)
2763 anti_adjust_stack (GEN_INT (args_size.constant
2764 - original_args_size.constant));
2765 #endif
2766 #endif
2768 #ifdef PUSH_ARGS_REVERSED
2769 inc = -1;
2770 argnum = nargs - 1;
2771 #else
2772 inc = 1;
2773 argnum = 0;
2774 #endif
2776 /* Push the args that need to be pushed. */
2778 for (count = 0; count < nargs; count++, argnum += inc)
2780 register enum machine_mode mode = argvec[argnum].mode;
2781 register rtx val = argvec[argnum].value;
2782 rtx reg = argvec[argnum].reg;
2783 int partial = argvec[argnum].partial;
2785 if (! (reg != 0 && partial == 0))
2786 emit_push_insn (val, mode, NULL_TREE, NULL_RTX, 0, partial, reg, 0,
2787 argblock, GEN_INT (argvec[count].offset.constant));
2788 NO_DEFER_POP;
2791 #ifndef PUSH_ARGS_REVERSED
2792 #ifdef STACK_BOUNDARY
2793 /* If we pushed args in forward order, perform stack alignment
2794 after pushing the last arg. */
2795 if (argblock == 0)
2796 anti_adjust_stack (GEN_INT (args_size.constant
2797 - original_args_size.constant));
2798 #endif
2799 #endif
2801 #ifdef PUSH_ARGS_REVERSED
2802 argnum = nargs - 1;
2803 #else
2804 argnum = 0;
2805 #endif
2807 fun = prepare_call_address (fun, NULL_TREE, &call_fusage, 0);
2809 /* Now load any reg parms into their regs. */
2811 for (count = 0; count < nargs; count++, argnum += inc)
2813 register enum machine_mode mode = argvec[argnum].mode;
2814 register rtx val = argvec[argnum].value;
2815 rtx reg = argvec[argnum].reg;
2816 int partial = argvec[argnum].partial;
2818 if (reg != 0 && partial == 0)
2819 emit_move_insn (reg, val);
2820 NO_DEFER_POP;
2823 #if 0
2824 /* For version 1.37, try deleting this entirely. */
2825 if (! no_queue)
2826 emit_queue ();
2827 #endif
2829 /* Any regs containing parms remain in use through the call. */
2830 for (count = 0; count < nargs; count++)
2831 if (argvec[count].reg != 0)
2832 use_reg (&call_fusage, argvec[count].reg);
2834 /* Pass the function the address in which to return a structure value. */
2835 if (mem_value != 0 && struct_value_rtx != 0 && ! pcc_struct_value)
2837 emit_move_insn (struct_value_rtx,
2838 force_reg (Pmode,
2839 force_operand (XEXP (mem_value, 0),
2840 NULL_RTX)));
2841 if (GET_CODE (struct_value_rtx) == REG)
2842 use_reg (&call_fusage, struct_value_rtx);
2845 /* Don't allow popping to be deferred, since then
2846 cse'ing of library calls could delete a call and leave the pop. */
2847 NO_DEFER_POP;
2849 /* We pass the old value of inhibit_defer_pop + 1 to emit_call_1, which
2850 will set inhibit_defer_pop to that value. */
2852 emit_call_1 (fun,
2853 get_identifier (XSTR (orgfun, 0)),
2854 get_identifier (XSTR (orgfun, 0)), args_size.constant,
2855 struct_value_size,
2856 FUNCTION_ARG (args_so_far, VOIDmode, void_type_node, 1),
2857 (outmode != VOIDmode && mem_value == 0
2858 ? hard_libcall_value (outmode) : NULL_RTX),
2859 old_inhibit_defer_pop + 1, call_fusage, is_const);
2861 /* Now restore inhibit_defer_pop to its actual original value. */
2862 OK_DEFER_POP;
2864 pop_temp_slots ();
2866 /* Copy the value to the right place. */
2867 if (outmode != VOIDmode)
2869 if (mem_value)
2871 if (value == 0)
2872 value = mem_value;
2873 if (value != mem_value)
2874 emit_move_insn (value, mem_value);
2876 else if (value != 0)
2877 emit_move_insn (value, hard_libcall_value (outmode));
2878 else
2879 value = hard_libcall_value (outmode);
2882 return value;
2885 #if 0
2886 /* Return an rtx which represents a suitable home on the stack
2887 given TYPE, the type of the argument looking for a home.
2888 This is called only for BLKmode arguments.
2890 SIZE is the size needed for this target.
2891 ARGS_ADDR is the address of the bottom of the argument block for this call.
2892 OFFSET describes this parameter's offset into ARGS_ADDR. It is meaningless
2893 if this machine uses push insns. */
2895 static rtx
2896 target_for_arg (type, size, args_addr, offset)
2897 tree type;
2898 rtx size;
2899 rtx args_addr;
2900 struct args_size offset;
2902 rtx target;
2903 rtx offset_rtx = ARGS_SIZE_RTX (offset);
2905 /* We do not call memory_address if possible,
2906 because we want to address as close to the stack
2907 as possible. For non-variable sized arguments,
2908 this will be stack-pointer relative addressing. */
2909 if (GET_CODE (offset_rtx) == CONST_INT)
2910 target = plus_constant (args_addr, INTVAL (offset_rtx));
2911 else
2913 /* I have no idea how to guarantee that this
2914 will work in the presence of register parameters. */
2915 target = gen_rtx (PLUS, Pmode, args_addr, offset_rtx);
2916 target = memory_address (QImode, target);
2919 return gen_rtx (MEM, BLKmode, target);
2921 #endif
2923 /* Store a single argument for a function call
2924 into the register or memory area where it must be passed.
2925 *ARG describes the argument value and where to pass it.
2927 ARGBLOCK is the address of the stack-block for all the arguments,
2928 or 0 on a machine where arguments are pushed individually.
2930 MAY_BE_ALLOCA nonzero says this could be a call to `alloca'
2931 so must be careful about how the stack is used.
2933 VARIABLE_SIZE nonzero says that this was a variable-sized outgoing
2934 argument stack. This is used if ACCUMULATE_OUTGOING_ARGS to indicate
2935 that we need not worry about saving and restoring the stack.
2937 FNDECL is the declaration of the function we are calling. */
2939 static void
2940 store_one_arg (arg, argblock, may_be_alloca, variable_size, fndecl,
2941 reg_parm_stack_space)
2942 struct arg_data *arg;
2943 rtx argblock;
2944 int may_be_alloca;
2945 int variable_size;
2946 tree fndecl;
2947 int reg_parm_stack_space;
2949 register tree pval = arg->tree_value;
2950 rtx reg = 0;
2951 int partial = 0;
2952 int used = 0;
2953 int i, lower_bound, upper_bound;
2955 if (TREE_CODE (pval) == ERROR_MARK)
2956 return;
2958 /* Push a new temporary level for any temporaries we make for
2959 this argument. */
2960 push_temp_slots ();
2962 #ifdef ACCUMULATE_OUTGOING_ARGS
2963 /* If this is being stored into a pre-allocated, fixed-size, stack area,
2964 save any previous data at that location. */
2965 if (argblock && ! variable_size && arg->stack)
2967 #ifdef ARGS_GROW_DOWNWARD
2968 /* stack_slot is negative, but we want to index stack_usage_map */
2969 /* with positive values. */
2970 if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
2971 upper_bound = -INTVAL (XEXP (XEXP (arg->stack_slot, 0), 1)) + 1;
2972 else
2973 abort ();
2975 lower_bound = upper_bound - arg->size.constant;
2976 #else
2977 if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
2978 lower_bound = INTVAL (XEXP (XEXP (arg->stack_slot, 0), 1));
2979 else
2980 lower_bound = 0;
2982 upper_bound = lower_bound + arg->size.constant;
2983 #endif
2985 for (i = lower_bound; i < upper_bound; i++)
2986 if (stack_usage_map[i]
2987 #ifdef REG_PARM_STACK_SPACE
2988 /* Don't store things in the fixed argument area at this point;
2989 it has already been saved. */
2990 && i > reg_parm_stack_space
2991 #endif
2993 break;
2995 if (i != upper_bound)
2997 /* We need to make a save area. See what mode we can make it. */
2998 enum machine_mode save_mode
2999 = mode_for_size (arg->size.constant * BITS_PER_UNIT, MODE_INT, 1);
3000 rtx stack_area
3001 = gen_rtx (MEM, save_mode,
3002 memory_address (save_mode, XEXP (arg->stack_slot, 0)));
3004 if (save_mode == BLKmode)
3006 arg->save_area = assign_stack_temp (BLKmode,
3007 arg->size.constant, 0);
3008 MEM_IN_STRUCT_P (arg->save_area)
3009 = AGGREGATE_TYPE_P (TREE_TYPE (arg->tree_value));
3010 preserve_temp_slots (arg->save_area);
3011 emit_block_move (validize_mem (arg->save_area), stack_area,
3012 GEN_INT (arg->size.constant),
3013 PARM_BOUNDARY / BITS_PER_UNIT);
3015 else
3017 arg->save_area = gen_reg_rtx (save_mode);
3018 emit_move_insn (arg->save_area, stack_area);
3022 #endif
3024 /* If this isn't going to be placed on both the stack and in registers,
3025 set up the register and number of words. */
3026 if (! arg->pass_on_stack)
3027 reg = arg->reg, partial = arg->partial;
3029 if (reg != 0 && partial == 0)
3030 /* Being passed entirely in a register. We shouldn't be called in
3031 this case. */
3032 abort ();
3034 /* If this arg needs special alignment, don't load the registers
3035 here. */
3036 if (arg->n_aligned_regs != 0)
3037 reg = 0;
3039 /* If this is being partially passed in a register, but multiple locations
3040 are specified, we assume that the one partially used is the one that is
3041 listed first. */
3042 if (reg && GET_CODE (reg) == EXPR_LIST)
3043 reg = XEXP (reg, 0);
3045 /* If this is being passed partially in a register, we can't evaluate
3046 it directly into its stack slot. Otherwise, we can. */
3047 if (arg->value == 0)
3049 #ifdef ACCUMULATE_OUTGOING_ARGS
3050 /* stack_arg_under_construction is nonzero if a function argument is
3051 being evaluated directly into the outgoing argument list and
3052 expand_call must take special action to preserve the argument list
3053 if it is called recursively.
3055 For scalar function arguments stack_usage_map is sufficient to
3056 determine which stack slots must be saved and restored. Scalar
3057 arguments in general have pass_on_stack == 0.
3059 If this argument is initialized by a function which takes the
3060 address of the argument (a C++ constructor or a C function
3061 returning a BLKmode structure), then stack_usage_map is
3062 insufficient and expand_call must push the stack around the
3063 function call. Such arguments have pass_on_stack == 1.
3065 Note that it is always safe to set stack_arg_under_construction,
3066 but this generates suboptimal code if set when not needed. */
3068 if (arg->pass_on_stack)
3069 stack_arg_under_construction++;
3070 #endif
3071 arg->value = expand_expr (pval,
3072 (partial
3073 || TYPE_MODE (TREE_TYPE (pval)) != arg->mode)
3074 ? NULL_RTX : arg->stack,
3075 VOIDmode, 0);
3077 /* If we are promoting object (or for any other reason) the mode
3078 doesn't agree, convert the mode. */
3080 if (arg->mode != TYPE_MODE (TREE_TYPE (pval)))
3081 arg->value = convert_modes (arg->mode, TYPE_MODE (TREE_TYPE (pval)),
3082 arg->value, arg->unsignedp);
3084 #ifdef ACCUMULATE_OUTGOING_ARGS
3085 if (arg->pass_on_stack)
3086 stack_arg_under_construction--;
3087 #endif
3090 /* Don't allow anything left on stack from computation
3091 of argument to alloca. */
3092 if (may_be_alloca)
3093 do_pending_stack_adjust ();
3095 if (arg->value == arg->stack)
3096 /* If the value is already in the stack slot, we are done. */
3098 else if (arg->mode != BLKmode)
3100 register int size;
3102 /* Argument is a scalar, not entirely passed in registers.
3103 (If part is passed in registers, arg->partial says how much
3104 and emit_push_insn will take care of putting it there.)
3106 Push it, and if its size is less than the
3107 amount of space allocated to it,
3108 also bump stack pointer by the additional space.
3109 Note that in C the default argument promotions
3110 will prevent such mismatches. */
3112 size = GET_MODE_SIZE (arg->mode);
3113 /* Compute how much space the push instruction will push.
3114 On many machines, pushing a byte will advance the stack
3115 pointer by a halfword. */
3116 #ifdef PUSH_ROUNDING
3117 size = PUSH_ROUNDING (size);
3118 #endif
3119 used = size;
3121 /* Compute how much space the argument should get:
3122 round up to a multiple of the alignment for arguments. */
3123 if (none != FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval)))
3124 used = (((size + PARM_BOUNDARY / BITS_PER_UNIT - 1)
3125 / (PARM_BOUNDARY / BITS_PER_UNIT))
3126 * (PARM_BOUNDARY / BITS_PER_UNIT));
3128 /* This isn't already where we want it on the stack, so put it there.
3129 This can either be done with push or copy insns. */
3130 emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), NULL_RTX,
3131 0, partial, reg, used - size,
3132 argblock, ARGS_SIZE_RTX (arg->offset));
3134 else
3136 /* BLKmode, at least partly to be pushed. */
3138 register int excess;
3139 rtx size_rtx;
3141 /* Pushing a nonscalar.
3142 If part is passed in registers, PARTIAL says how much
3143 and emit_push_insn will take care of putting it there. */
3145 /* Round its size up to a multiple
3146 of the allocation unit for arguments. */
3148 if (arg->size.var != 0)
3150 excess = 0;
3151 size_rtx = ARGS_SIZE_RTX (arg->size);
3153 else
3155 /* PUSH_ROUNDING has no effect on us, because
3156 emit_push_insn for BLKmode is careful to avoid it. */
3157 excess = (arg->size.constant - int_size_in_bytes (TREE_TYPE (pval))
3158 + partial * UNITS_PER_WORD);
3159 size_rtx = expr_size (pval);
3162 emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), size_rtx,
3163 TYPE_ALIGN (TREE_TYPE (pval)) / BITS_PER_UNIT, partial,
3164 reg, excess, argblock, ARGS_SIZE_RTX (arg->offset));
3168 /* Unless this is a partially-in-register argument, the argument is now
3169 in the stack.
3171 ??? Note that this can change arg->value from arg->stack to
3172 arg->stack_slot and it matters when they are not the same.
3173 It isn't totally clear that this is correct in all cases. */
3174 if (partial == 0)
3175 arg->value = arg->stack_slot;
3177 /* Once we have pushed something, pops can't safely
3178 be deferred during the rest of the arguments. */
3179 NO_DEFER_POP;
3181 /* ANSI doesn't require a sequence point here,
3182 but PCC has one, so this will avoid some problems. */
3183 emit_queue ();
3185 /* Free any temporary slots made in processing this argument. Show
3186 that we might have taken the address of something and pushed that
3187 as an operand. */
3188 preserve_temp_slots (NULL_RTX);
3189 free_temp_slots ();
3190 pop_temp_slots ();
3192 #ifdef ACCUMULATE_OUTGOING_ARGS
3193 /* Now mark the segment we just used. */
3194 if (argblock && ! variable_size && arg->stack)
3195 for (i = lower_bound; i < upper_bound; i++)
3196 stack_usage_map[i] = 1;
3197 #endif