Add support for generating unique sections for unitialised data.
[official-gcc.git] / gcc / expr.c
blob54a90972cc429c67bd3c4064abb77b24098e76a6
1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988, 92-98, 1999, 2000 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "machmode.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "obstack.h"
28 #include "flags.h"
29 #include "regs.h"
30 #include "hard-reg-set.h"
31 #include "except.h"
32 #include "function.h"
33 #include "insn-flags.h"
34 #include "insn-codes.h"
35 #include "insn-config.h"
36 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
37 #include "expr.h"
38 #include "recog.h"
39 #include "output.h"
40 #include "typeclass.h"
41 #include "defaults.h"
42 #include "toplev.h"
43 #include "ggc.h"
44 #include "tm_p.h"
46 /* Decide whether a function's arguments should be processed
47 from first to last or from last to first.
49 They should if the stack and args grow in opposite directions, but
50 only if we have push insns. */
52 #ifdef PUSH_ROUNDING
54 #if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
55 #define PUSH_ARGS_REVERSED /* If it's last to first */
56 #endif
58 #endif
60 #ifndef STACK_PUSH_CODE
61 #ifdef STACK_GROWS_DOWNWARD
62 #define STACK_PUSH_CODE PRE_DEC
63 #else
64 #define STACK_PUSH_CODE PRE_INC
65 #endif
66 #endif
68 /* Assume that case vectors are not pc-relative. */
69 #ifndef CASE_VECTOR_PC_RELATIVE
70 #define CASE_VECTOR_PC_RELATIVE 0
71 #endif
73 /* If this is nonzero, we do not bother generating VOLATILE
74 around volatile memory references, and we are willing to
75 output indirect addresses. If cse is to follow, we reject
76 indirect addresses so a useful potential cse is generated;
77 if it is used only once, instruction combination will produce
78 the same indirect address eventually. */
79 int cse_not_expected;
81 /* Nonzero to generate code for all the subroutines within an
82 expression before generating the upper levels of the expression.
83 Nowadays this is never zero. */
84 int do_preexpand_calls = 1;
86 /* Don't check memory usage, since code is being emitted to check a memory
87 usage. Used when current_function_check_memory_usage is true, to avoid
88 infinite recursion. */
89 static int in_check_memory_usage;
91 /* Chain of pending expressions for PLACEHOLDER_EXPR to replace. */
92 static tree placeholder_list = 0;
94 /* This structure is used by move_by_pieces to describe the move to
95 be performed. */
96 struct move_by_pieces
98 rtx to;
99 rtx to_addr;
100 int autinc_to;
101 int explicit_inc_to;
102 int to_struct;
103 int to_readonly;
104 rtx from;
105 rtx from_addr;
106 int autinc_from;
107 int explicit_inc_from;
108 int from_struct;
109 int from_readonly;
110 int len;
111 int offset;
112 int reverse;
115 /* This structure is used by clear_by_pieces to describe the clear to
116 be performed. */
118 struct clear_by_pieces
120 rtx to;
121 rtx to_addr;
122 int autinc_to;
123 int explicit_inc_to;
124 int to_struct;
125 int len;
126 int offset;
127 int reverse;
130 extern struct obstack permanent_obstack;
132 static rtx get_push_address PROTO ((int));
134 static rtx enqueue_insn PROTO((rtx, rtx));
135 static int move_by_pieces_ninsns PROTO((unsigned int, int));
136 static void move_by_pieces_1 PROTO((rtx (*) (rtx, ...), enum machine_mode,
137 struct move_by_pieces *));
138 static void clear_by_pieces PROTO((rtx, int, int));
139 static void clear_by_pieces_1 PROTO((rtx (*) (rtx, ...),
140 enum machine_mode,
141 struct clear_by_pieces *));
142 static int is_zeros_p PROTO((tree));
143 static int mostly_zeros_p PROTO((tree));
144 static void store_constructor_field PROTO((rtx, int, int, enum machine_mode,
145 tree, tree, int, int));
146 static void store_constructor PROTO((tree, rtx, int, int, int));
147 static rtx store_field PROTO((rtx, int, int, enum machine_mode, tree,
148 enum machine_mode, int, int,
149 int, int));
150 static enum memory_use_mode
151 get_memory_usage_from_modifier PROTO((enum expand_modifier));
152 static tree save_noncopied_parts PROTO((tree, tree));
153 static tree init_noncopied_parts PROTO((tree, tree));
154 static int safe_from_p PROTO((rtx, tree, int));
155 static int fixed_type_p PROTO((tree));
156 static rtx var_rtx PROTO((tree));
157 static int readonly_fields_p PROTO((tree));
158 static rtx expand_expr_unaligned PROTO((tree, int *));
159 static rtx expand_increment PROTO((tree, int, int));
160 static void preexpand_calls PROTO((tree));
161 static void do_jump_by_parts_greater PROTO((tree, int, rtx, rtx));
162 static void do_jump_by_parts_equality PROTO((tree, rtx, rtx));
163 static void do_compare_and_jump PROTO((tree, enum rtx_code, enum rtx_code, rtx, rtx));
164 static rtx do_store_flag PROTO((tree, rtx, enum machine_mode, int));
166 /* Record for each mode whether we can move a register directly to or
167 from an object of that mode in memory. If we can't, we won't try
168 to use that mode directly when accessing a field of that mode. */
170 static char direct_load[NUM_MACHINE_MODES];
171 static char direct_store[NUM_MACHINE_MODES];
173 /* If a memory-to-memory move would take MOVE_RATIO or more simple
174 move-instruction sequences, we will do a movstr or libcall instead. */
176 #ifndef MOVE_RATIO
177 #if defined (HAVE_movstrqi) || defined (HAVE_movstrhi) || defined (HAVE_movstrsi) || defined (HAVE_movstrdi) || defined (HAVE_movstrti)
178 #define MOVE_RATIO 2
179 #else
180 /* If we are optimizing for space (-Os), cut down the default move ratio */
181 #define MOVE_RATIO (optimize_size ? 3 : 15)
182 #endif
183 #endif
185 /* This macro is used to determine whether move_by_pieces should be called
186 to perform a structure copy. */
187 #ifndef MOVE_BY_PIECES_P
188 #define MOVE_BY_PIECES_P(SIZE, ALIGN) (move_by_pieces_ninsns \
189 (SIZE, ALIGN) < MOVE_RATIO)
190 #endif
192 /* This array records the insn_code of insns to perform block moves. */
193 enum insn_code movstr_optab[NUM_MACHINE_MODES];
195 /* This array records the insn_code of insns to perform block clears. */
196 enum insn_code clrstr_optab[NUM_MACHINE_MODES];
198 /* SLOW_UNALIGNED_ACCESS is non-zero if unaligned accesses are very slow. */
200 #ifndef SLOW_UNALIGNED_ACCESS
201 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
202 #endif
204 /* This is run once per compilation to set up which modes can be used
205 directly in memory and to initialize the block move optab. */
207 void
208 init_expr_once ()
210 rtx insn, pat;
211 enum machine_mode mode;
212 int num_clobbers;
213 rtx mem, mem1;
214 char *free_point;
216 start_sequence ();
218 /* Since we are on the permanent obstack, we must be sure we save this
219 spot AFTER we call start_sequence, since it will reuse the rtl it
220 makes. */
221 free_point = (char *) oballoc (0);
223 /* Try indexing by frame ptr and try by stack ptr.
224 It is known that on the Convex the stack ptr isn't a valid index.
225 With luck, one or the other is valid on any machine. */
226 mem = gen_rtx_MEM (VOIDmode, stack_pointer_rtx);
227 mem1 = gen_rtx_MEM (VOIDmode, frame_pointer_rtx);
229 insn = emit_insn (gen_rtx_SET (0, NULL_RTX, NULL_RTX));
230 pat = PATTERN (insn);
232 for (mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
233 mode = (enum machine_mode) ((int) mode + 1))
235 int regno;
236 rtx reg;
238 direct_load[(int) mode] = direct_store[(int) mode] = 0;
239 PUT_MODE (mem, mode);
240 PUT_MODE (mem1, mode);
242 /* See if there is some register that can be used in this mode and
243 directly loaded or stored from memory. */
245 if (mode != VOIDmode && mode != BLKmode)
246 for (regno = 0; regno < FIRST_PSEUDO_REGISTER
247 && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
248 regno++)
250 if (! HARD_REGNO_MODE_OK (regno, mode))
251 continue;
253 reg = gen_rtx_REG (mode, regno);
255 SET_SRC (pat) = mem;
256 SET_DEST (pat) = reg;
257 if (recog (pat, insn, &num_clobbers) >= 0)
258 direct_load[(int) mode] = 1;
260 SET_SRC (pat) = mem1;
261 SET_DEST (pat) = reg;
262 if (recog (pat, insn, &num_clobbers) >= 0)
263 direct_load[(int) mode] = 1;
265 SET_SRC (pat) = reg;
266 SET_DEST (pat) = mem;
267 if (recog (pat, insn, &num_clobbers) >= 0)
268 direct_store[(int) mode] = 1;
270 SET_SRC (pat) = reg;
271 SET_DEST (pat) = mem1;
272 if (recog (pat, insn, &num_clobbers) >= 0)
273 direct_store[(int) mode] = 1;
277 end_sequence ();
278 obfree (free_point);
281 /* This is run at the start of compiling a function. */
283 void
284 init_expr ()
286 cfun->expr = (struct expr_status *) xmalloc (sizeof (struct expr_status));
288 pending_chain = 0;
289 pending_stack_adjust = 0;
290 inhibit_defer_pop = 0;
291 saveregs_value = 0;
292 apply_args_value = 0;
293 forced_labels = 0;
296 void
297 mark_expr_status (p)
298 struct expr_status *p;
300 if (p == NULL)
301 return;
303 ggc_mark_rtx (p->x_saveregs_value);
304 ggc_mark_rtx (p->x_apply_args_value);
305 ggc_mark_rtx (p->x_forced_labels);
308 void
309 free_expr_status (f)
310 struct function *f;
312 free (f->expr);
313 f->expr = NULL;
316 /* Small sanity check that the queue is empty at the end of a function. */
317 void
318 finish_expr_for_function ()
320 if (pending_chain)
321 abort ();
324 /* Manage the queue of increment instructions to be output
325 for POSTINCREMENT_EXPR expressions, etc. */
327 /* Queue up to increment (or change) VAR later. BODY says how:
328 BODY should be the same thing you would pass to emit_insn
329 to increment right away. It will go to emit_insn later on.
331 The value is a QUEUED expression to be used in place of VAR
332 where you want to guarantee the pre-incrementation value of VAR. */
334 static rtx
335 enqueue_insn (var, body)
336 rtx var, body;
338 pending_chain = gen_rtx_QUEUED (GET_MODE (var), var, NULL_RTX, NULL_RTX,
339 body, pending_chain);
340 return pending_chain;
343 /* Use protect_from_queue to convert a QUEUED expression
344 into something that you can put immediately into an instruction.
345 If the queued incrementation has not happened yet,
346 protect_from_queue returns the variable itself.
347 If the incrementation has happened, protect_from_queue returns a temp
348 that contains a copy of the old value of the variable.
350 Any time an rtx which might possibly be a QUEUED is to be put
351 into an instruction, it must be passed through protect_from_queue first.
352 QUEUED expressions are not meaningful in instructions.
354 Do not pass a value through protect_from_queue and then hold
355 on to it for a while before putting it in an instruction!
356 If the queue is flushed in between, incorrect code will result. */
359 protect_from_queue (x, modify)
360 register rtx x;
361 int modify;
363 register RTX_CODE code = GET_CODE (x);
365 #if 0 /* A QUEUED can hang around after the queue is forced out. */
366 /* Shortcut for most common case. */
367 if (pending_chain == 0)
368 return x;
369 #endif
371 if (code != QUEUED)
373 /* A special hack for read access to (MEM (QUEUED ...)) to facilitate
374 use of autoincrement. Make a copy of the contents of the memory
375 location rather than a copy of the address, but not if the value is
376 of mode BLKmode. Don't modify X in place since it might be
377 shared. */
378 if (code == MEM && GET_MODE (x) != BLKmode
379 && GET_CODE (XEXP (x, 0)) == QUEUED && !modify)
381 register rtx y = XEXP (x, 0);
382 register rtx new = gen_rtx_MEM (GET_MODE (x), QUEUED_VAR (y));
384 RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (x);
385 MEM_COPY_ATTRIBUTES (new, x);
386 MEM_ALIAS_SET (new) = MEM_ALIAS_SET (x);
388 if (QUEUED_INSN (y))
390 register rtx temp = gen_reg_rtx (GET_MODE (new));
391 emit_insn_before (gen_move_insn (temp, new),
392 QUEUED_INSN (y));
393 return temp;
395 return new;
397 /* Otherwise, recursively protect the subexpressions of all
398 the kinds of rtx's that can contain a QUEUED. */
399 if (code == MEM)
401 rtx tem = protect_from_queue (XEXP (x, 0), 0);
402 if (tem != XEXP (x, 0))
404 x = copy_rtx (x);
405 XEXP (x, 0) = tem;
408 else if (code == PLUS || code == MULT)
410 rtx new0 = protect_from_queue (XEXP (x, 0), 0);
411 rtx new1 = protect_from_queue (XEXP (x, 1), 0);
412 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
414 x = copy_rtx (x);
415 XEXP (x, 0) = new0;
416 XEXP (x, 1) = new1;
419 return x;
421 /* If the increment has not happened, use the variable itself. */
422 if (QUEUED_INSN (x) == 0)
423 return QUEUED_VAR (x);
424 /* If the increment has happened and a pre-increment copy exists,
425 use that copy. */
426 if (QUEUED_COPY (x) != 0)
427 return QUEUED_COPY (x);
428 /* The increment has happened but we haven't set up a pre-increment copy.
429 Set one up now, and use it. */
430 QUEUED_COPY (x) = gen_reg_rtx (GET_MODE (QUEUED_VAR (x)));
431 emit_insn_before (gen_move_insn (QUEUED_COPY (x), QUEUED_VAR (x)),
432 QUEUED_INSN (x));
433 return QUEUED_COPY (x);
436 /* Return nonzero if X contains a QUEUED expression:
437 if it contains anything that will be altered by a queued increment.
438 We handle only combinations of MEM, PLUS, MINUS and MULT operators
439 since memory addresses generally contain only those. */
442 queued_subexp_p (x)
443 rtx x;
445 register enum rtx_code code = GET_CODE (x);
446 switch (code)
448 case QUEUED:
449 return 1;
450 case MEM:
451 return queued_subexp_p (XEXP (x, 0));
452 case MULT:
453 case PLUS:
454 case MINUS:
455 return (queued_subexp_p (XEXP (x, 0))
456 || queued_subexp_p (XEXP (x, 1)));
457 default:
458 return 0;
462 /* Perform all the pending incrementations. */
464 void
465 emit_queue ()
467 register rtx p;
468 while ((p = pending_chain))
470 rtx body = QUEUED_BODY (p);
472 if (GET_CODE (body) == SEQUENCE)
474 QUEUED_INSN (p) = XVECEXP (QUEUED_BODY (p), 0, 0);
475 emit_insn (QUEUED_BODY (p));
477 else
478 QUEUED_INSN (p) = emit_insn (QUEUED_BODY (p));
479 pending_chain = QUEUED_NEXT (p);
483 /* Copy data from FROM to TO, where the machine modes are not the same.
484 Both modes may be integer, or both may be floating.
485 UNSIGNEDP should be nonzero if FROM is an unsigned type.
486 This causes zero-extension instead of sign-extension. */
488 void
489 convert_move (to, from, unsignedp)
490 register rtx to, from;
491 int unsignedp;
493 enum machine_mode to_mode = GET_MODE (to);
494 enum machine_mode from_mode = GET_MODE (from);
495 int to_real = GET_MODE_CLASS (to_mode) == MODE_FLOAT;
496 int from_real = GET_MODE_CLASS (from_mode) == MODE_FLOAT;
497 enum insn_code code;
498 rtx libcall;
500 /* rtx code for making an equivalent value. */
501 enum rtx_code equiv_code = (unsignedp ? ZERO_EXTEND : SIGN_EXTEND);
503 to = protect_from_queue (to, 1);
504 from = protect_from_queue (from, 0);
506 if (to_real != from_real)
507 abort ();
509 /* If FROM is a SUBREG that indicates that we have already done at least
510 the required extension, strip it. We don't handle such SUBREGs as
511 TO here. */
513 if (GET_CODE (from) == SUBREG && SUBREG_PROMOTED_VAR_P (from)
514 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (from)))
515 >= GET_MODE_SIZE (to_mode))
516 && SUBREG_PROMOTED_UNSIGNED_P (from) == unsignedp)
517 from = gen_lowpart (to_mode, from), from_mode = to_mode;
519 if (GET_CODE (to) == SUBREG && SUBREG_PROMOTED_VAR_P (to))
520 abort ();
522 if (to_mode == from_mode
523 || (from_mode == VOIDmode && CONSTANT_P (from)))
525 emit_move_insn (to, from);
526 return;
529 if (to_real)
531 rtx value;
533 if (GET_MODE_BITSIZE (from_mode) < GET_MODE_BITSIZE (to_mode))
535 /* Try converting directly if the insn is supported. */
536 if ((code = can_extend_p (to_mode, from_mode, 0))
537 != CODE_FOR_nothing)
539 emit_unop_insn (code, to, from, UNKNOWN);
540 return;
544 #ifdef HAVE_trunchfqf2
545 if (HAVE_trunchfqf2 && from_mode == HFmode && to_mode == QFmode)
547 emit_unop_insn (CODE_FOR_trunchfqf2, to, from, UNKNOWN);
548 return;
550 #endif
551 #ifdef HAVE_trunctqfqf2
552 if (HAVE_trunctqfqf2 && from_mode == TQFmode && to_mode == QFmode)
554 emit_unop_insn (CODE_FOR_trunctqfqf2, to, from, UNKNOWN);
555 return;
557 #endif
558 #ifdef HAVE_truncsfqf2
559 if (HAVE_truncsfqf2 && from_mode == SFmode && to_mode == QFmode)
561 emit_unop_insn (CODE_FOR_truncsfqf2, to, from, UNKNOWN);
562 return;
564 #endif
565 #ifdef HAVE_truncdfqf2
566 if (HAVE_truncdfqf2 && from_mode == DFmode && to_mode == QFmode)
568 emit_unop_insn (CODE_FOR_truncdfqf2, to, from, UNKNOWN);
569 return;
571 #endif
572 #ifdef HAVE_truncxfqf2
573 if (HAVE_truncxfqf2 && from_mode == XFmode && to_mode == QFmode)
575 emit_unop_insn (CODE_FOR_truncxfqf2, to, from, UNKNOWN);
576 return;
578 #endif
579 #ifdef HAVE_trunctfqf2
580 if (HAVE_trunctfqf2 && from_mode == TFmode && to_mode == QFmode)
582 emit_unop_insn (CODE_FOR_trunctfqf2, to, from, UNKNOWN);
583 return;
585 #endif
587 #ifdef HAVE_trunctqfhf2
588 if (HAVE_trunctqfhf2 && from_mode == TQFmode && to_mode == HFmode)
590 emit_unop_insn (CODE_FOR_trunctqfhf2, to, from, UNKNOWN);
591 return;
593 #endif
594 #ifdef HAVE_truncsfhf2
595 if (HAVE_truncsfhf2 && from_mode == SFmode && to_mode == HFmode)
597 emit_unop_insn (CODE_FOR_truncsfhf2, to, from, UNKNOWN);
598 return;
600 #endif
601 #ifdef HAVE_truncdfhf2
602 if (HAVE_truncdfhf2 && from_mode == DFmode && to_mode == HFmode)
604 emit_unop_insn (CODE_FOR_truncdfhf2, to, from, UNKNOWN);
605 return;
607 #endif
608 #ifdef HAVE_truncxfhf2
609 if (HAVE_truncxfhf2 && from_mode == XFmode && to_mode == HFmode)
611 emit_unop_insn (CODE_FOR_truncxfhf2, to, from, UNKNOWN);
612 return;
614 #endif
615 #ifdef HAVE_trunctfhf2
616 if (HAVE_trunctfhf2 && from_mode == TFmode && to_mode == HFmode)
618 emit_unop_insn (CODE_FOR_trunctfhf2, to, from, UNKNOWN);
619 return;
621 #endif
623 #ifdef HAVE_truncsftqf2
624 if (HAVE_truncsftqf2 && from_mode == SFmode && to_mode == TQFmode)
626 emit_unop_insn (CODE_FOR_truncsftqf2, to, from, UNKNOWN);
627 return;
629 #endif
630 #ifdef HAVE_truncdftqf2
631 if (HAVE_truncdftqf2 && from_mode == DFmode && to_mode == TQFmode)
633 emit_unop_insn (CODE_FOR_truncdftqf2, to, from, UNKNOWN);
634 return;
636 #endif
637 #ifdef HAVE_truncxftqf2
638 if (HAVE_truncxftqf2 && from_mode == XFmode && to_mode == TQFmode)
640 emit_unop_insn (CODE_FOR_truncxftqf2, to, from, UNKNOWN);
641 return;
643 #endif
644 #ifdef HAVE_trunctftqf2
645 if (HAVE_trunctftqf2 && from_mode == TFmode && to_mode == TQFmode)
647 emit_unop_insn (CODE_FOR_trunctftqf2, to, from, UNKNOWN);
648 return;
650 #endif
652 #ifdef HAVE_truncdfsf2
653 if (HAVE_truncdfsf2 && from_mode == DFmode && to_mode == SFmode)
655 emit_unop_insn (CODE_FOR_truncdfsf2, to, from, UNKNOWN);
656 return;
658 #endif
659 #ifdef HAVE_truncxfsf2
660 if (HAVE_truncxfsf2 && from_mode == XFmode && to_mode == SFmode)
662 emit_unop_insn (CODE_FOR_truncxfsf2, to, from, UNKNOWN);
663 return;
665 #endif
666 #ifdef HAVE_trunctfsf2
667 if (HAVE_trunctfsf2 && from_mode == TFmode && to_mode == SFmode)
669 emit_unop_insn (CODE_FOR_trunctfsf2, to, from, UNKNOWN);
670 return;
672 #endif
673 #ifdef HAVE_truncxfdf2
674 if (HAVE_truncxfdf2 && from_mode == XFmode && to_mode == DFmode)
676 emit_unop_insn (CODE_FOR_truncxfdf2, to, from, UNKNOWN);
677 return;
679 #endif
680 #ifdef HAVE_trunctfdf2
681 if (HAVE_trunctfdf2 && from_mode == TFmode && to_mode == DFmode)
683 emit_unop_insn (CODE_FOR_trunctfdf2, to, from, UNKNOWN);
684 return;
686 #endif
688 libcall = (rtx) 0;
689 switch (from_mode)
691 case SFmode:
692 switch (to_mode)
694 case DFmode:
695 libcall = extendsfdf2_libfunc;
696 break;
698 case XFmode:
699 libcall = extendsfxf2_libfunc;
700 break;
702 case TFmode:
703 libcall = extendsftf2_libfunc;
704 break;
706 default:
707 break;
709 break;
711 case DFmode:
712 switch (to_mode)
714 case SFmode:
715 libcall = truncdfsf2_libfunc;
716 break;
718 case XFmode:
719 libcall = extenddfxf2_libfunc;
720 break;
722 case TFmode:
723 libcall = extenddftf2_libfunc;
724 break;
726 default:
727 break;
729 break;
731 case XFmode:
732 switch (to_mode)
734 case SFmode:
735 libcall = truncxfsf2_libfunc;
736 break;
738 case DFmode:
739 libcall = truncxfdf2_libfunc;
740 break;
742 default:
743 break;
745 break;
747 case TFmode:
748 switch (to_mode)
750 case SFmode:
751 libcall = trunctfsf2_libfunc;
752 break;
754 case DFmode:
755 libcall = trunctfdf2_libfunc;
756 break;
758 default:
759 break;
761 break;
763 default:
764 break;
767 if (libcall == (rtx) 0)
768 /* This conversion is not implemented yet. */
769 abort ();
771 value = emit_library_call_value (libcall, NULL_RTX, 1, to_mode,
772 1, from, from_mode);
773 emit_move_insn (to, value);
774 return;
777 /* Now both modes are integers. */
779 /* Handle expanding beyond a word. */
780 if (GET_MODE_BITSIZE (from_mode) < GET_MODE_BITSIZE (to_mode)
781 && GET_MODE_BITSIZE (to_mode) > BITS_PER_WORD)
783 rtx insns;
784 rtx lowpart;
785 rtx fill_value;
786 rtx lowfrom;
787 int i;
788 enum machine_mode lowpart_mode;
789 int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
791 /* Try converting directly if the insn is supported. */
792 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
793 != CODE_FOR_nothing)
795 /* If FROM is a SUBREG, put it into a register. Do this
796 so that we always generate the same set of insns for
797 better cse'ing; if an intermediate assignment occurred,
798 we won't be doing the operation directly on the SUBREG. */
799 if (optimize > 0 && GET_CODE (from) == SUBREG)
800 from = force_reg (from_mode, from);
801 emit_unop_insn (code, to, from, equiv_code);
802 return;
804 /* Next, try converting via full word. */
805 else if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD
806 && ((code = can_extend_p (to_mode, word_mode, unsignedp))
807 != CODE_FOR_nothing))
809 if (GET_CODE (to) == REG)
810 emit_insn (gen_rtx_CLOBBER (VOIDmode, to));
811 convert_move (gen_lowpart (word_mode, to), from, unsignedp);
812 emit_unop_insn (code, to,
813 gen_lowpart (word_mode, to), equiv_code);
814 return;
817 /* No special multiword conversion insn; do it by hand. */
818 start_sequence ();
820 /* Since we will turn this into a no conflict block, we must ensure
821 that the source does not overlap the target. */
823 if (reg_overlap_mentioned_p (to, from))
824 from = force_reg (from_mode, from);
826 /* Get a copy of FROM widened to a word, if necessary. */
827 if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD)
828 lowpart_mode = word_mode;
829 else
830 lowpart_mode = from_mode;
832 lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
834 lowpart = gen_lowpart (lowpart_mode, to);
835 emit_move_insn (lowpart, lowfrom);
837 /* Compute the value to put in each remaining word. */
838 if (unsignedp)
839 fill_value = const0_rtx;
840 else
842 #ifdef HAVE_slt
843 if (HAVE_slt
844 && insn_data[(int) CODE_FOR_slt].operand[0].mode == word_mode
845 && STORE_FLAG_VALUE == -1)
847 emit_cmp_insn (lowfrom, const0_rtx, NE, NULL_RTX,
848 lowpart_mode, 0, 0);
849 fill_value = gen_reg_rtx (word_mode);
850 emit_insn (gen_slt (fill_value));
852 else
853 #endif
855 fill_value
856 = expand_shift (RSHIFT_EXPR, lowpart_mode, lowfrom,
857 size_int (GET_MODE_BITSIZE (lowpart_mode) - 1),
858 NULL_RTX, 0);
859 fill_value = convert_to_mode (word_mode, fill_value, 1);
863 /* Fill the remaining words. */
864 for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
866 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
867 rtx subword = operand_subword (to, index, 1, to_mode);
869 if (subword == 0)
870 abort ();
872 if (fill_value != subword)
873 emit_move_insn (subword, fill_value);
876 insns = get_insns ();
877 end_sequence ();
879 emit_no_conflict_block (insns, to, from, NULL_RTX,
880 gen_rtx_fmt_e (equiv_code, to_mode, copy_rtx (from)));
881 return;
884 /* Truncating multi-word to a word or less. */
885 if (GET_MODE_BITSIZE (from_mode) > BITS_PER_WORD
886 && GET_MODE_BITSIZE (to_mode) <= BITS_PER_WORD)
888 if (!((GET_CODE (from) == MEM
889 && ! MEM_VOLATILE_P (from)
890 && direct_load[(int) to_mode]
891 && ! mode_dependent_address_p (XEXP (from, 0)))
892 || GET_CODE (from) == REG
893 || GET_CODE (from) == SUBREG))
894 from = force_reg (from_mode, from);
895 convert_move (to, gen_lowpart (word_mode, from), 0);
896 return;
899 /* Handle pointer conversion */ /* SPEE 900220 */
900 if (to_mode == PQImode)
902 if (from_mode != QImode)
903 from = convert_to_mode (QImode, from, unsignedp);
905 #ifdef HAVE_truncqipqi2
906 if (HAVE_truncqipqi2)
908 emit_unop_insn (CODE_FOR_truncqipqi2, to, from, UNKNOWN);
909 return;
911 #endif /* HAVE_truncqipqi2 */
912 abort ();
915 if (from_mode == PQImode)
917 if (to_mode != QImode)
919 from = convert_to_mode (QImode, from, unsignedp);
920 from_mode = QImode;
922 else
924 #ifdef HAVE_extendpqiqi2
925 if (HAVE_extendpqiqi2)
927 emit_unop_insn (CODE_FOR_extendpqiqi2, to, from, UNKNOWN);
928 return;
930 #endif /* HAVE_extendpqiqi2 */
931 abort ();
935 if (to_mode == PSImode)
937 if (from_mode != SImode)
938 from = convert_to_mode (SImode, from, unsignedp);
940 #ifdef HAVE_truncsipsi2
941 if (HAVE_truncsipsi2)
943 emit_unop_insn (CODE_FOR_truncsipsi2, to, from, UNKNOWN);
944 return;
946 #endif /* HAVE_truncsipsi2 */
947 abort ();
950 if (from_mode == PSImode)
952 if (to_mode != SImode)
954 from = convert_to_mode (SImode, from, unsignedp);
955 from_mode = SImode;
957 else
959 #ifdef HAVE_extendpsisi2
960 if (HAVE_extendpsisi2)
962 emit_unop_insn (CODE_FOR_extendpsisi2, to, from, UNKNOWN);
963 return;
965 #endif /* HAVE_extendpsisi2 */
966 abort ();
970 if (to_mode == PDImode)
972 if (from_mode != DImode)
973 from = convert_to_mode (DImode, from, unsignedp);
975 #ifdef HAVE_truncdipdi2
976 if (HAVE_truncdipdi2)
978 emit_unop_insn (CODE_FOR_truncdipdi2, to, from, UNKNOWN);
979 return;
981 #endif /* HAVE_truncdipdi2 */
982 abort ();
985 if (from_mode == PDImode)
987 if (to_mode != DImode)
989 from = convert_to_mode (DImode, from, unsignedp);
990 from_mode = DImode;
992 else
994 #ifdef HAVE_extendpdidi2
995 if (HAVE_extendpdidi2)
997 emit_unop_insn (CODE_FOR_extendpdidi2, to, from, UNKNOWN);
998 return;
1000 #endif /* HAVE_extendpdidi2 */
1001 abort ();
1005 /* Now follow all the conversions between integers
1006 no more than a word long. */
1008 /* For truncation, usually we can just refer to FROM in a narrower mode. */
1009 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
1010 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
1011 GET_MODE_BITSIZE (from_mode)))
1013 if (!((GET_CODE (from) == MEM
1014 && ! MEM_VOLATILE_P (from)
1015 && direct_load[(int) to_mode]
1016 && ! mode_dependent_address_p (XEXP (from, 0)))
1017 || GET_CODE (from) == REG
1018 || GET_CODE (from) == SUBREG))
1019 from = force_reg (from_mode, from);
1020 if (GET_CODE (from) == REG && REGNO (from) < FIRST_PSEUDO_REGISTER
1021 && ! HARD_REGNO_MODE_OK (REGNO (from), to_mode))
1022 from = copy_to_reg (from);
1023 emit_move_insn (to, gen_lowpart (to_mode, from));
1024 return;
1027 /* Handle extension. */
1028 if (GET_MODE_BITSIZE (to_mode) > GET_MODE_BITSIZE (from_mode))
1030 /* Convert directly if that works. */
1031 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
1032 != CODE_FOR_nothing)
1034 emit_unop_insn (code, to, from, equiv_code);
1035 return;
1037 else
1039 enum machine_mode intermediate;
1040 rtx tmp;
1041 tree shift_amount;
1043 /* Search for a mode to convert via. */
1044 for (intermediate = from_mode; intermediate != VOIDmode;
1045 intermediate = GET_MODE_WIDER_MODE (intermediate))
1046 if (((can_extend_p (to_mode, intermediate, unsignedp)
1047 != CODE_FOR_nothing)
1048 || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
1049 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
1050 GET_MODE_BITSIZE (intermediate))))
1051 && (can_extend_p (intermediate, from_mode, unsignedp)
1052 != CODE_FOR_nothing))
1054 convert_move (to, convert_to_mode (intermediate, from,
1055 unsignedp), unsignedp);
1056 return;
1059 /* No suitable intermediate mode.
1060 Generate what we need with shifts. */
1061 shift_amount = build_int_2 (GET_MODE_BITSIZE (to_mode)
1062 - GET_MODE_BITSIZE (from_mode), 0);
1063 from = gen_lowpart (to_mode, force_reg (from_mode, from));
1064 tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
1065 to, unsignedp);
1066 tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
1067 to, unsignedp);
1068 if (tmp != to)
1069 emit_move_insn (to, tmp);
1070 return;
1074 /* Support special truncate insns for certain modes. */
1076 if (from_mode == DImode && to_mode == SImode)
1078 #ifdef HAVE_truncdisi2
1079 if (HAVE_truncdisi2)
1081 emit_unop_insn (CODE_FOR_truncdisi2, to, from, UNKNOWN);
1082 return;
1084 #endif
1085 convert_move (to, force_reg (from_mode, from), unsignedp);
1086 return;
1089 if (from_mode == DImode && to_mode == HImode)
1091 #ifdef HAVE_truncdihi2
1092 if (HAVE_truncdihi2)
1094 emit_unop_insn (CODE_FOR_truncdihi2, to, from, UNKNOWN);
1095 return;
1097 #endif
1098 convert_move (to, force_reg (from_mode, from), unsignedp);
1099 return;
1102 if (from_mode == DImode && to_mode == QImode)
1104 #ifdef HAVE_truncdiqi2
1105 if (HAVE_truncdiqi2)
1107 emit_unop_insn (CODE_FOR_truncdiqi2, to, from, UNKNOWN);
1108 return;
1110 #endif
1111 convert_move (to, force_reg (from_mode, from), unsignedp);
1112 return;
1115 if (from_mode == SImode && to_mode == HImode)
1117 #ifdef HAVE_truncsihi2
1118 if (HAVE_truncsihi2)
1120 emit_unop_insn (CODE_FOR_truncsihi2, to, from, UNKNOWN);
1121 return;
1123 #endif
1124 convert_move (to, force_reg (from_mode, from), unsignedp);
1125 return;
1128 if (from_mode == SImode && to_mode == QImode)
1130 #ifdef HAVE_truncsiqi2
1131 if (HAVE_truncsiqi2)
1133 emit_unop_insn (CODE_FOR_truncsiqi2, to, from, UNKNOWN);
1134 return;
1136 #endif
1137 convert_move (to, force_reg (from_mode, from), unsignedp);
1138 return;
1141 if (from_mode == HImode && to_mode == QImode)
1143 #ifdef HAVE_trunchiqi2
1144 if (HAVE_trunchiqi2)
1146 emit_unop_insn (CODE_FOR_trunchiqi2, to, from, UNKNOWN);
1147 return;
1149 #endif
1150 convert_move (to, force_reg (from_mode, from), unsignedp);
1151 return;
1154 if (from_mode == TImode && to_mode == DImode)
1156 #ifdef HAVE_trunctidi2
1157 if (HAVE_trunctidi2)
1159 emit_unop_insn (CODE_FOR_trunctidi2, to, from, UNKNOWN);
1160 return;
1162 #endif
1163 convert_move (to, force_reg (from_mode, from), unsignedp);
1164 return;
1167 if (from_mode == TImode && to_mode == SImode)
1169 #ifdef HAVE_trunctisi2
1170 if (HAVE_trunctisi2)
1172 emit_unop_insn (CODE_FOR_trunctisi2, to, from, UNKNOWN);
1173 return;
1175 #endif
1176 convert_move (to, force_reg (from_mode, from), unsignedp);
1177 return;
1180 if (from_mode == TImode && to_mode == HImode)
1182 #ifdef HAVE_trunctihi2
1183 if (HAVE_trunctihi2)
1185 emit_unop_insn (CODE_FOR_trunctihi2, to, from, UNKNOWN);
1186 return;
1188 #endif
1189 convert_move (to, force_reg (from_mode, from), unsignedp);
1190 return;
1193 if (from_mode == TImode && to_mode == QImode)
1195 #ifdef HAVE_trunctiqi2
1196 if (HAVE_trunctiqi2)
1198 emit_unop_insn (CODE_FOR_trunctiqi2, to, from, UNKNOWN);
1199 return;
1201 #endif
1202 convert_move (to, force_reg (from_mode, from), unsignedp);
1203 return;
1206 /* Handle truncation of volatile memrefs, and so on;
1207 the things that couldn't be truncated directly,
1208 and for which there was no special instruction. */
1209 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode))
1211 rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
1212 emit_move_insn (to, temp);
1213 return;
1216 /* Mode combination is not recognized. */
1217 abort ();
1220 /* Return an rtx for a value that would result
1221 from converting X to mode MODE.
1222 Both X and MODE may be floating, or both integer.
1223 UNSIGNEDP is nonzero if X is an unsigned value.
1224 This can be done by referring to a part of X in place
1225 or by copying to a new temporary with conversion.
1227 This function *must not* call protect_from_queue
1228 except when putting X into an insn (in which case convert_move does it). */
1231 convert_to_mode (mode, x, unsignedp)
1232 enum machine_mode mode;
1233 rtx x;
1234 int unsignedp;
1236 return convert_modes (mode, VOIDmode, x, unsignedp);
1239 /* Return an rtx for a value that would result
1240 from converting X from mode OLDMODE to mode MODE.
1241 Both modes may be floating, or both integer.
1242 UNSIGNEDP is nonzero if X is an unsigned value.
1244 This can be done by referring to a part of X in place
1245 or by copying to a new temporary with conversion.
1247 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode.
1249 This function *must not* call protect_from_queue
1250 except when putting X into an insn (in which case convert_move does it). */
1253 convert_modes (mode, oldmode, x, unsignedp)
1254 enum machine_mode mode, oldmode;
1255 rtx x;
1256 int unsignedp;
1258 register rtx temp;
1260 /* If FROM is a SUBREG that indicates that we have already done at least
1261 the required extension, strip it. */
1263 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
1264 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) >= GET_MODE_SIZE (mode)
1265 && SUBREG_PROMOTED_UNSIGNED_P (x) == unsignedp)
1266 x = gen_lowpart (mode, x);
1268 if (GET_MODE (x) != VOIDmode)
1269 oldmode = GET_MODE (x);
1271 if (mode == oldmode)
1272 return x;
1274 /* There is one case that we must handle specially: If we are converting
1275 a CONST_INT into a mode whose size is twice HOST_BITS_PER_WIDE_INT and
1276 we are to interpret the constant as unsigned, gen_lowpart will do
1277 the wrong if the constant appears negative. What we want to do is
1278 make the high-order word of the constant zero, not all ones. */
1280 if (unsignedp && GET_MODE_CLASS (mode) == MODE_INT
1281 && GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT
1282 && GET_CODE (x) == CONST_INT && INTVAL (x) < 0)
1284 HOST_WIDE_INT val = INTVAL (x);
1286 if (oldmode != VOIDmode
1287 && HOST_BITS_PER_WIDE_INT > GET_MODE_BITSIZE (oldmode))
1289 int width = GET_MODE_BITSIZE (oldmode);
1291 /* We need to zero extend VAL. */
1292 val &= ((HOST_WIDE_INT) 1 << width) - 1;
1295 return immed_double_const (val, (HOST_WIDE_INT) 0, mode);
1298 /* We can do this with a gen_lowpart if both desired and current modes
1299 are integer, and this is either a constant integer, a register, or a
1300 non-volatile MEM. Except for the constant case where MODE is no
1301 wider than HOST_BITS_PER_WIDE_INT, we must be narrowing the operand. */
1303 if ((GET_CODE (x) == CONST_INT
1304 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
1305 || (GET_MODE_CLASS (mode) == MODE_INT
1306 && GET_MODE_CLASS (oldmode) == MODE_INT
1307 && (GET_CODE (x) == CONST_DOUBLE
1308 || (GET_MODE_SIZE (mode) <= GET_MODE_SIZE (oldmode)
1309 && ((GET_CODE (x) == MEM && ! MEM_VOLATILE_P (x)
1310 && direct_load[(int) mode])
1311 || (GET_CODE (x) == REG
1312 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
1313 GET_MODE_BITSIZE (GET_MODE (x)))))))))
1315 /* ?? If we don't know OLDMODE, we have to assume here that
1316 X does not need sign- or zero-extension. This may not be
1317 the case, but it's the best we can do. */
1318 if (GET_CODE (x) == CONST_INT && oldmode != VOIDmode
1319 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (oldmode))
1321 HOST_WIDE_INT val = INTVAL (x);
1322 int width = GET_MODE_BITSIZE (oldmode);
1324 /* We must sign or zero-extend in this case. Start by
1325 zero-extending, then sign extend if we need to. */
1326 val &= ((HOST_WIDE_INT) 1 << width) - 1;
1327 if (! unsignedp
1328 && (val & ((HOST_WIDE_INT) 1 << (width - 1))))
1329 val |= (HOST_WIDE_INT) (-1) << width;
1331 return GEN_INT (val);
1334 return gen_lowpart (mode, x);
1337 temp = gen_reg_rtx (mode);
1338 convert_move (temp, x, unsignedp);
1339 return temp;
1343 /* This macro is used to determine what the largest unit size that
1344 move_by_pieces can use is. */
1346 /* MOVE_MAX_PIECES is the number of bytes at a time which we can
1347 move efficiently, as opposed to MOVE_MAX which is the maximum
1348 number of bhytes we can move with a single instruction. */
1350 #ifndef MOVE_MAX_PIECES
1351 #define MOVE_MAX_PIECES MOVE_MAX
1352 #endif
1354 /* Generate several move instructions to copy LEN bytes
1355 from block FROM to block TO. (These are MEM rtx's with BLKmode).
1356 The caller must pass FROM and TO
1357 through protect_from_queue before calling.
1358 ALIGN (in bytes) is maximum alignment we can assume. */
1360 void
1361 move_by_pieces (to, from, len, align)
1362 rtx to, from;
1363 int len, align;
1365 struct move_by_pieces data;
1366 rtx to_addr = XEXP (to, 0), from_addr = XEXP (from, 0);
1367 int max_size = MOVE_MAX_PIECES + 1;
1368 enum machine_mode mode = VOIDmode, tmode;
1369 enum insn_code icode;
1371 data.offset = 0;
1372 data.to_addr = to_addr;
1373 data.from_addr = from_addr;
1374 data.to = to;
1375 data.from = from;
1376 data.autinc_to
1377 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
1378 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
1379 data.autinc_from
1380 = (GET_CODE (from_addr) == PRE_INC || GET_CODE (from_addr) == PRE_DEC
1381 || GET_CODE (from_addr) == POST_INC
1382 || GET_CODE (from_addr) == POST_DEC);
1384 data.explicit_inc_from = 0;
1385 data.explicit_inc_to = 0;
1386 data.reverse
1387 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
1388 if (data.reverse) data.offset = len;
1389 data.len = len;
1391 data.to_struct = MEM_IN_STRUCT_P (to);
1392 data.from_struct = MEM_IN_STRUCT_P (from);
1393 data.to_readonly = RTX_UNCHANGING_P (to);
1394 data.from_readonly = RTX_UNCHANGING_P (from);
1396 /* If copying requires more than two move insns,
1397 copy addresses to registers (to make displacements shorter)
1398 and use post-increment if available. */
1399 if (!(data.autinc_from && data.autinc_to)
1400 && move_by_pieces_ninsns (len, align) > 2)
1402 /* Find the mode of the largest move... */
1403 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1404 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
1405 if (GET_MODE_SIZE (tmode) < max_size)
1406 mode = tmode;
1408 if (USE_LOAD_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_from)
1410 data.from_addr = copy_addr_to_reg (plus_constant (from_addr, len));
1411 data.autinc_from = 1;
1412 data.explicit_inc_from = -1;
1414 if (USE_LOAD_POST_INCREMENT (mode) && ! data.autinc_from)
1416 data.from_addr = copy_addr_to_reg (from_addr);
1417 data.autinc_from = 1;
1418 data.explicit_inc_from = 1;
1420 if (!data.autinc_from && CONSTANT_P (from_addr))
1421 data.from_addr = copy_addr_to_reg (from_addr);
1422 if (USE_STORE_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_to)
1424 data.to_addr = copy_addr_to_reg (plus_constant (to_addr, len));
1425 data.autinc_to = 1;
1426 data.explicit_inc_to = -1;
1428 if (USE_STORE_POST_INCREMENT (mode) && ! data.reverse && ! data.autinc_to)
1430 data.to_addr = copy_addr_to_reg (to_addr);
1431 data.autinc_to = 1;
1432 data.explicit_inc_to = 1;
1434 if (!data.autinc_to && CONSTANT_P (to_addr))
1435 data.to_addr = copy_addr_to_reg (to_addr);
1438 if (! SLOW_UNALIGNED_ACCESS (word_mode, align)
1439 || align > MOVE_MAX || align >= BIGGEST_ALIGNMENT / BITS_PER_UNIT)
1440 align = MOVE_MAX;
1442 /* First move what we can in the largest integer mode, then go to
1443 successively smaller modes. */
1445 while (max_size > 1)
1447 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1448 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
1449 if (GET_MODE_SIZE (tmode) < max_size)
1450 mode = tmode;
1452 if (mode == VOIDmode)
1453 break;
1455 icode = mov_optab->handlers[(int) mode].insn_code;
1456 if (icode != CODE_FOR_nothing
1457 && align >= MIN (BIGGEST_ALIGNMENT / BITS_PER_UNIT,
1458 GET_MODE_SIZE (mode)))
1459 move_by_pieces_1 (GEN_FCN (icode), mode, &data);
1461 max_size = GET_MODE_SIZE (mode);
1464 /* The code above should have handled everything. */
1465 if (data.len > 0)
1466 abort ();
1469 /* Return number of insns required to move L bytes by pieces.
1470 ALIGN (in bytes) is maximum alignment we can assume. */
1472 static int
1473 move_by_pieces_ninsns (l, align)
1474 unsigned int l;
1475 int align;
1477 register int n_insns = 0;
1478 int max_size = MOVE_MAX + 1;
1480 if (! SLOW_UNALIGNED_ACCESS (word_mode, align)
1481 || align > MOVE_MAX || align >= BIGGEST_ALIGNMENT / BITS_PER_UNIT)
1482 align = MOVE_MAX;
1484 while (max_size > 1)
1486 enum machine_mode mode = VOIDmode, tmode;
1487 enum insn_code icode;
1489 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1490 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
1491 if (GET_MODE_SIZE (tmode) < max_size)
1492 mode = tmode;
1494 if (mode == VOIDmode)
1495 break;
1497 icode = mov_optab->handlers[(int) mode].insn_code;
1498 if (icode != CODE_FOR_nothing
1499 && align >= MIN (BIGGEST_ALIGNMENT / BITS_PER_UNIT,
1500 GET_MODE_SIZE (mode)))
1501 n_insns += l / GET_MODE_SIZE (mode), l %= GET_MODE_SIZE (mode);
1503 max_size = GET_MODE_SIZE (mode);
1506 return n_insns;
1509 /* Subroutine of move_by_pieces. Move as many bytes as appropriate
1510 with move instructions for mode MODE. GENFUN is the gen_... function
1511 to make a move insn for that mode. DATA has all the other info. */
1513 static void
1514 move_by_pieces_1 (genfun, mode, data)
1515 rtx (*genfun) PROTO ((rtx, ...));
1516 enum machine_mode mode;
1517 struct move_by_pieces *data;
1519 register int size = GET_MODE_SIZE (mode);
1520 register rtx to1, from1;
1522 while (data->len >= size)
1524 if (data->reverse) data->offset -= size;
1526 to1 = (data->autinc_to
1527 ? gen_rtx_MEM (mode, data->to_addr)
1528 : copy_rtx (change_address (data->to, mode,
1529 plus_constant (data->to_addr,
1530 data->offset))));
1531 MEM_IN_STRUCT_P (to1) = data->to_struct;
1532 RTX_UNCHANGING_P (to1) = data->to_readonly;
1534 from1
1535 = (data->autinc_from
1536 ? gen_rtx_MEM (mode, data->from_addr)
1537 : copy_rtx (change_address (data->from, mode,
1538 plus_constant (data->from_addr,
1539 data->offset))));
1540 MEM_IN_STRUCT_P (from1) = data->from_struct;
1541 RTX_UNCHANGING_P (from1) = data->from_readonly;
1543 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
1544 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (-size)));
1545 if (HAVE_PRE_DECREMENT && data->explicit_inc_from < 0)
1546 emit_insn (gen_add2_insn (data->from_addr, GEN_INT (-size)));
1548 emit_insn ((*genfun) (to1, from1));
1549 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
1550 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
1551 if (HAVE_POST_INCREMENT && data->explicit_inc_from > 0)
1552 emit_insn (gen_add2_insn (data->from_addr, GEN_INT (size)));
1554 if (! data->reverse) data->offset += size;
1556 data->len -= size;
1560 /* Emit code to move a block Y to a block X.
1561 This may be done with string-move instructions,
1562 with multiple scalar move instructions, or with a library call.
1564 Both X and Y must be MEM rtx's (perhaps inside VOLATILE)
1565 with mode BLKmode.
1566 SIZE is an rtx that says how long they are.
1567 ALIGN is the maximum alignment we can assume they have,
1568 measured in bytes.
1570 Return the address of the new block, if memcpy is called and returns it,
1571 0 otherwise. */
1574 emit_block_move (x, y, size, align)
1575 rtx x, y;
1576 rtx size;
1577 int align;
1579 rtx retval = 0;
1580 #ifdef TARGET_MEM_FUNCTIONS
1581 static tree fn;
1582 tree call_expr, arg_list;
1583 #endif
1585 if (GET_MODE (x) != BLKmode)
1586 abort ();
1588 if (GET_MODE (y) != BLKmode)
1589 abort ();
1591 x = protect_from_queue (x, 1);
1592 y = protect_from_queue (y, 0);
1593 size = protect_from_queue (size, 0);
1595 if (GET_CODE (x) != MEM)
1596 abort ();
1597 if (GET_CODE (y) != MEM)
1598 abort ();
1599 if (size == 0)
1600 abort ();
1602 if (GET_CODE (size) == CONST_INT && MOVE_BY_PIECES_P (INTVAL (size), align))
1603 move_by_pieces (x, y, INTVAL (size), align);
1604 else
1606 /* Try the most limited insn first, because there's no point
1607 including more than one in the machine description unless
1608 the more limited one has some advantage. */
1610 rtx opalign = GEN_INT (align);
1611 enum machine_mode mode;
1613 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1614 mode = GET_MODE_WIDER_MODE (mode))
1616 enum insn_code code = movstr_optab[(int) mode];
1617 insn_operand_predicate_fn pred;
1619 if (code != CODE_FOR_nothing
1620 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1621 here because if SIZE is less than the mode mask, as it is
1622 returned by the macro, it will definitely be less than the
1623 actual mode mask. */
1624 && ((GET_CODE (size) == CONST_INT
1625 && ((unsigned HOST_WIDE_INT) INTVAL (size)
1626 <= (GET_MODE_MASK (mode) >> 1)))
1627 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
1628 && ((pred = insn_data[(int) code].operand[0].predicate) == 0
1629 || (*pred) (x, BLKmode))
1630 && ((pred = insn_data[(int) code].operand[1].predicate) == 0
1631 || (*pred) (y, BLKmode))
1632 && ((pred = insn_data[(int) code].operand[3].predicate) == 0
1633 || (*pred) (opalign, VOIDmode)))
1635 rtx op2;
1636 rtx last = get_last_insn ();
1637 rtx pat;
1639 op2 = convert_to_mode (mode, size, 1);
1640 pred = insn_data[(int) code].operand[2].predicate;
1641 if (pred != 0 && ! (*pred) (op2, mode))
1642 op2 = copy_to_mode_reg (mode, op2);
1644 pat = GEN_FCN ((int) code) (x, y, op2, opalign);
1645 if (pat)
1647 emit_insn (pat);
1648 return 0;
1650 else
1651 delete_insns_since (last);
1655 /* X, Y, or SIZE may have been passed through protect_from_queue.
1657 It is unsafe to save the value generated by protect_from_queue
1658 and reuse it later. Consider what happens if emit_queue is
1659 called before the return value from protect_from_queue is used.
1661 Expansion of the CALL_EXPR below will call emit_queue before
1662 we are finished emitting RTL for argument setup. So if we are
1663 not careful we could get the wrong value for an argument.
1665 To avoid this problem we go ahead and emit code to copy X, Y &
1666 SIZE into new pseudos. We can then place those new pseudos
1667 into an RTL_EXPR and use them later, even after a call to
1668 emit_queue.
1670 Note this is not strictly needed for library calls since they
1671 do not call emit_queue before loading their arguments. However,
1672 we may need to have library calls call emit_queue in the future
1673 since failing to do so could cause problems for targets which
1674 define SMALL_REGISTER_CLASSES and pass arguments in registers. */
1675 x = copy_to_mode_reg (Pmode, XEXP (x, 0));
1676 y = copy_to_mode_reg (Pmode, XEXP (y, 0));
1678 #ifdef TARGET_MEM_FUNCTIONS
1679 size = copy_to_mode_reg (TYPE_MODE (sizetype), size);
1680 #else
1681 size = convert_to_mode (TYPE_MODE (integer_type_node), size,
1682 TREE_UNSIGNED (integer_type_node));
1683 size = copy_to_mode_reg (TYPE_MODE (integer_type_node), size);
1684 #endif
1686 #ifdef TARGET_MEM_FUNCTIONS
1687 /* It is incorrect to use the libcall calling conventions to call
1688 memcpy in this context.
1690 This could be a user call to memcpy and the user may wish to
1691 examine the return value from memcpy.
1693 For targets where libcalls and normal calls have different conventions
1694 for returning pointers, we could end up generating incorrect code.
1696 So instead of using a libcall sequence we build up a suitable
1697 CALL_EXPR and expand the call in the normal fashion. */
1698 if (fn == NULL_TREE)
1700 tree fntype;
1702 /* This was copied from except.c, I don't know if all this is
1703 necessary in this context or not. */
1704 fn = get_identifier ("memcpy");
1705 push_obstacks_nochange ();
1706 end_temporary_allocation ();
1707 fntype = build_pointer_type (void_type_node);
1708 fntype = build_function_type (fntype, NULL_TREE);
1709 fn = build_decl (FUNCTION_DECL, fn, fntype);
1710 ggc_add_tree_root (&fn, 1);
1711 DECL_EXTERNAL (fn) = 1;
1712 TREE_PUBLIC (fn) = 1;
1713 DECL_ARTIFICIAL (fn) = 1;
1714 make_decl_rtl (fn, NULL_PTR, 1);
1715 assemble_external (fn);
1716 pop_obstacks ();
1719 /* We need to make an argument list for the function call.
1721 memcpy has three arguments, the first two are void * addresses and
1722 the last is a size_t byte count for the copy. */
1723 arg_list
1724 = build_tree_list (NULL_TREE,
1725 make_tree (build_pointer_type (void_type_node), x));
1726 TREE_CHAIN (arg_list)
1727 = build_tree_list (NULL_TREE,
1728 make_tree (build_pointer_type (void_type_node), y));
1729 TREE_CHAIN (TREE_CHAIN (arg_list))
1730 = build_tree_list (NULL_TREE, make_tree (sizetype, size));
1731 TREE_CHAIN (TREE_CHAIN (TREE_CHAIN (arg_list))) = NULL_TREE;
1733 /* Now we have to build up the CALL_EXPR itself. */
1734 call_expr = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (fn)), fn);
1735 call_expr = build (CALL_EXPR, TREE_TYPE (TREE_TYPE (fn)),
1736 call_expr, arg_list, NULL_TREE);
1737 TREE_SIDE_EFFECTS (call_expr) = 1;
1739 retval = expand_expr (call_expr, NULL_RTX, VOIDmode, 0);
1740 #else
1741 emit_library_call (bcopy_libfunc, 0,
1742 VOIDmode, 3, y, Pmode, x, Pmode,
1743 convert_to_mode (TYPE_MODE (integer_type_node), size,
1744 TREE_UNSIGNED (integer_type_node)),
1745 TYPE_MODE (integer_type_node));
1746 #endif
1749 return retval;
1752 /* Copy all or part of a value X into registers starting at REGNO.
1753 The number of registers to be filled is NREGS. */
1755 void
1756 move_block_to_reg (regno, x, nregs, mode)
1757 int regno;
1758 rtx x;
1759 int nregs;
1760 enum machine_mode mode;
1762 int i;
1763 #ifdef HAVE_load_multiple
1764 rtx pat;
1765 rtx last;
1766 #endif
1768 if (nregs == 0)
1769 return;
1771 if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
1772 x = validize_mem (force_const_mem (mode, x));
1774 /* See if the machine can do this with a load multiple insn. */
1775 #ifdef HAVE_load_multiple
1776 if (HAVE_load_multiple)
1778 last = get_last_insn ();
1779 pat = gen_load_multiple (gen_rtx_REG (word_mode, regno), x,
1780 GEN_INT (nregs));
1781 if (pat)
1783 emit_insn (pat);
1784 return;
1786 else
1787 delete_insns_since (last);
1789 #endif
1791 for (i = 0; i < nregs; i++)
1792 emit_move_insn (gen_rtx_REG (word_mode, regno + i),
1793 operand_subword_force (x, i, mode));
1796 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
1797 The number of registers to be filled is NREGS. SIZE indicates the number
1798 of bytes in the object X. */
1801 void
1802 move_block_from_reg (regno, x, nregs, size)
1803 int regno;
1804 rtx x;
1805 int nregs;
1806 int size;
1808 int i;
1809 #ifdef HAVE_store_multiple
1810 rtx pat;
1811 rtx last;
1812 #endif
1813 enum machine_mode mode;
1815 /* If SIZE is that of a mode no bigger than a word, just use that
1816 mode's store operation. */
1817 if (size <= UNITS_PER_WORD
1818 && (mode = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0)) != BLKmode)
1820 emit_move_insn (change_address (x, mode, NULL),
1821 gen_rtx_REG (mode, regno));
1822 return;
1825 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN machine must be aligned
1826 to the left before storing to memory. Note that the previous test
1827 doesn't handle all cases (e.g. SIZE == 3). */
1828 if (size < UNITS_PER_WORD && BYTES_BIG_ENDIAN)
1830 rtx tem = operand_subword (x, 0, 1, BLKmode);
1831 rtx shift;
1833 if (tem == 0)
1834 abort ();
1836 shift = expand_shift (LSHIFT_EXPR, word_mode,
1837 gen_rtx_REG (word_mode, regno),
1838 build_int_2 ((UNITS_PER_WORD - size)
1839 * BITS_PER_UNIT, 0), NULL_RTX, 0);
1840 emit_move_insn (tem, shift);
1841 return;
1844 /* See if the machine can do this with a store multiple insn. */
1845 #ifdef HAVE_store_multiple
1846 if (HAVE_store_multiple)
1848 last = get_last_insn ();
1849 pat = gen_store_multiple (x, gen_rtx_REG (word_mode, regno),
1850 GEN_INT (nregs));
1851 if (pat)
1853 emit_insn (pat);
1854 return;
1856 else
1857 delete_insns_since (last);
1859 #endif
1861 for (i = 0; i < nregs; i++)
1863 rtx tem = operand_subword (x, i, 1, BLKmode);
1865 if (tem == 0)
1866 abort ();
1868 emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
1872 /* Emit code to move a block SRC to a block DST, where DST is non-consecutive
1873 registers represented by a PARALLEL. SSIZE represents the total size of
1874 block SRC in bytes, or -1 if not known. ALIGN is the known alignment of
1875 SRC in bits. */
1876 /* ??? If SSIZE % UNITS_PER_WORD != 0, we make the blatent assumption that
1877 the balance will be in what would be the low-order memory addresses, i.e.
1878 left justified for big endian, right justified for little endian. This
1879 happens to be true for the targets currently using this support. If this
1880 ever changes, a new target macro along the lines of FUNCTION_ARG_PADDING
1881 would be needed. */
1883 void
1884 emit_group_load (dst, orig_src, ssize, align)
1885 rtx dst, orig_src;
1886 int align, ssize;
1888 rtx *tmps, src;
1889 int start, i;
1891 if (GET_CODE (dst) != PARALLEL)
1892 abort ();
1894 /* Check for a NULL entry, used to indicate that the parameter goes
1895 both on the stack and in registers. */
1896 if (XEXP (XVECEXP (dst, 0, 0), 0))
1897 start = 0;
1898 else
1899 start = 1;
1901 tmps = (rtx *) alloca (sizeof(rtx) * XVECLEN (dst, 0));
1903 /* If we won't be loading directly from memory, protect the real source
1904 from strange tricks we might play. */
1905 src = orig_src;
1906 if (GET_CODE (src) != MEM)
1908 if (GET_CODE (src) == VOIDmode)
1909 src = gen_reg_rtx (GET_MODE (dst));
1910 else
1911 src = gen_reg_rtx (GET_MODE (orig_src));
1912 emit_move_insn (src, orig_src);
1915 /* Process the pieces. */
1916 for (i = start; i < XVECLEN (dst, 0); i++)
1918 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
1919 int bytepos = INTVAL (XEXP (XVECEXP (dst, 0, i), 1));
1920 int bytelen = GET_MODE_SIZE (mode);
1921 int shift = 0;
1923 /* Handle trailing fragments that run over the size of the struct. */
1924 if (ssize >= 0 && bytepos + bytelen > ssize)
1926 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
1927 bytelen = ssize - bytepos;
1928 if (bytelen <= 0)
1929 abort();
1932 /* Optimize the access just a bit. */
1933 if (GET_CODE (src) == MEM
1934 && align*BITS_PER_UNIT >= GET_MODE_ALIGNMENT (mode)
1935 && bytepos*BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
1936 && bytelen == GET_MODE_SIZE (mode))
1938 tmps[i] = gen_reg_rtx (mode);
1939 emit_move_insn (tmps[i],
1940 change_address (src, mode,
1941 plus_constant (XEXP (src, 0),
1942 bytepos)));
1944 else if (GET_CODE (src) == CONCAT)
1946 if (bytepos == 0
1947 && bytelen == GET_MODE_SIZE (GET_MODE (XEXP (src, 0))))
1948 tmps[i] = XEXP (src, 0);
1949 else if (bytepos == GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
1950 && bytelen == GET_MODE_SIZE (GET_MODE (XEXP (src, 1))))
1951 tmps[i] = XEXP (src, 1);
1952 else
1953 abort ();
1955 else
1957 tmps[i] = extract_bit_field (src, bytelen*BITS_PER_UNIT,
1958 bytepos*BITS_PER_UNIT, 1, NULL_RTX,
1959 mode, mode, align, ssize);
1962 if (BYTES_BIG_ENDIAN && shift)
1964 expand_binop (mode, ashl_optab, tmps[i], GEN_INT (shift),
1965 tmps[i], 0, OPTAB_WIDEN);
1968 emit_queue();
1970 /* Copy the extracted pieces into the proper (probable) hard regs. */
1971 for (i = start; i < XVECLEN (dst, 0); i++)
1972 emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0), tmps[i]);
1975 /* Emit code to move a block SRC to a block DST, where SRC is non-consecutive
1976 registers represented by a PARALLEL. SSIZE represents the total size of
1977 block DST, or -1 if not known. ALIGN is the known alignment of DST. */
1979 void
1980 emit_group_store (orig_dst, src, ssize, align)
1981 rtx orig_dst, src;
1982 int ssize, align;
1984 rtx *tmps, dst;
1985 int start, i;
1987 if (GET_CODE (src) != PARALLEL)
1988 abort ();
1990 /* Check for a NULL entry, used to indicate that the parameter goes
1991 both on the stack and in registers. */
1992 if (XEXP (XVECEXP (src, 0, 0), 0))
1993 start = 0;
1994 else
1995 start = 1;
1997 tmps = (rtx *) alloca (sizeof(rtx) * XVECLEN (src, 0));
1999 /* Copy the (probable) hard regs into pseudos. */
2000 for (i = start; i < XVECLEN (src, 0); i++)
2002 rtx reg = XEXP (XVECEXP (src, 0, i), 0);
2003 tmps[i] = gen_reg_rtx (GET_MODE (reg));
2004 emit_move_insn (tmps[i], reg);
2006 emit_queue();
2008 /* If we won't be storing directly into memory, protect the real destination
2009 from strange tricks we might play. */
2010 dst = orig_dst;
2011 if (GET_CODE (dst) == PARALLEL)
2013 rtx temp;
2015 /* We can get a PARALLEL dst if there is a conditional expression in
2016 a return statement. In that case, the dst and src are the same,
2017 so no action is necessary. */
2018 if (rtx_equal_p (dst, src))
2019 return;
2021 /* It is unclear if we can ever reach here, but we may as well handle
2022 it. Allocate a temporary, and split this into a store/load to/from
2023 the temporary. */
2025 temp = assign_stack_temp (GET_MODE (dst), ssize, 0);
2026 emit_group_store (temp, src, ssize, align);
2027 emit_group_load (dst, temp, ssize, align);
2028 return;
2030 else if (GET_CODE (dst) != MEM)
2032 dst = gen_reg_rtx (GET_MODE (orig_dst));
2033 /* Make life a bit easier for combine. */
2034 emit_move_insn (dst, const0_rtx);
2036 else if (! MEM_IN_STRUCT_P (dst))
2038 /* store_bit_field requires that memory operations have
2039 mem_in_struct_p set; we might not. */
2041 dst = copy_rtx (orig_dst);
2042 MEM_SET_IN_STRUCT_P (dst, 1);
2045 /* Process the pieces. */
2046 for (i = start; i < XVECLEN (src, 0); i++)
2048 int bytepos = INTVAL (XEXP (XVECEXP (src, 0, i), 1));
2049 enum machine_mode mode = GET_MODE (tmps[i]);
2050 int bytelen = GET_MODE_SIZE (mode);
2052 /* Handle trailing fragments that run over the size of the struct. */
2053 if (ssize >= 0 && bytepos + bytelen > ssize)
2055 if (BYTES_BIG_ENDIAN)
2057 int shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
2058 expand_binop (mode, ashr_optab, tmps[i], GEN_INT (shift),
2059 tmps[i], 0, OPTAB_WIDEN);
2061 bytelen = ssize - bytepos;
2064 /* Optimize the access just a bit. */
2065 if (GET_CODE (dst) == MEM
2066 && align*BITS_PER_UNIT >= GET_MODE_ALIGNMENT (mode)
2067 && bytepos*BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
2068 && bytelen == GET_MODE_SIZE (mode))
2070 emit_move_insn (change_address (dst, mode,
2071 plus_constant (XEXP (dst, 0),
2072 bytepos)),
2073 tmps[i]);
2075 else
2077 store_bit_field (dst, bytelen*BITS_PER_UNIT, bytepos*BITS_PER_UNIT,
2078 mode, tmps[i], align, ssize);
2081 emit_queue();
2083 /* Copy from the pseudo into the (probable) hard reg. */
2084 if (GET_CODE (dst) == REG)
2085 emit_move_insn (orig_dst, dst);
2088 /* Generate code to copy a BLKmode object of TYPE out of a
2089 set of registers starting with SRCREG into TGTBLK. If TGTBLK
2090 is null, a stack temporary is created. TGTBLK is returned.
2092 The primary purpose of this routine is to handle functions
2093 that return BLKmode structures in registers. Some machines
2094 (the PA for example) want to return all small structures
2095 in registers regardless of the structure's alignment.
2099 copy_blkmode_from_reg(tgtblk,srcreg,type)
2100 rtx tgtblk;
2101 rtx srcreg;
2102 tree type;
2104 int bytes = int_size_in_bytes (type);
2105 rtx src = NULL, dst = NULL;
2106 int bitsize = MIN (TYPE_ALIGN (type), (unsigned int) BITS_PER_WORD);
2107 int bitpos, xbitpos, big_endian_correction = 0;
2109 if (tgtblk == 0)
2111 tgtblk = assign_stack_temp (BLKmode, bytes, 0);
2112 MEM_SET_IN_STRUCT_P (tgtblk, AGGREGATE_TYPE_P (type));
2113 preserve_temp_slots (tgtblk);
2116 /* This code assumes srcreg is at least a full word. If it isn't,
2117 copy it into a new pseudo which is a full word. */
2118 if (GET_MODE (srcreg) != BLKmode
2119 && GET_MODE_SIZE (GET_MODE (srcreg)) < UNITS_PER_WORD)
2120 srcreg = convert_to_mode (word_mode, srcreg,
2121 TREE_UNSIGNED (type));
2123 /* Structures whose size is not a multiple of a word are aligned
2124 to the least significant byte (to the right). On a BYTES_BIG_ENDIAN
2125 machine, this means we must skip the empty high order bytes when
2126 calculating the bit offset. */
2127 if (BYTES_BIG_ENDIAN && bytes % UNITS_PER_WORD)
2128 big_endian_correction = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD)
2129 * BITS_PER_UNIT));
2131 /* Copy the structure BITSIZE bites at a time.
2133 We could probably emit more efficient code for machines
2134 which do not use strict alignment, but it doesn't seem
2135 worth the effort at the current time. */
2136 for (bitpos = 0, xbitpos = big_endian_correction;
2137 bitpos < bytes * BITS_PER_UNIT;
2138 bitpos += bitsize, xbitpos += bitsize)
2141 /* We need a new source operand each time xbitpos is on a
2142 word boundary and when xbitpos == big_endian_correction
2143 (the first time through). */
2144 if (xbitpos % BITS_PER_WORD == 0
2145 || xbitpos == big_endian_correction)
2146 src = operand_subword_force (srcreg,
2147 xbitpos / BITS_PER_WORD,
2148 BLKmode);
2150 /* We need a new destination operand each time bitpos is on
2151 a word boundary. */
2152 if (bitpos % BITS_PER_WORD == 0)
2153 dst = operand_subword (tgtblk, bitpos / BITS_PER_WORD, 1, BLKmode);
2155 /* Use xbitpos for the source extraction (right justified) and
2156 xbitpos for the destination store (left justified). */
2157 store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, word_mode,
2158 extract_bit_field (src, bitsize,
2159 xbitpos % BITS_PER_WORD, 1,
2160 NULL_RTX, word_mode,
2161 word_mode,
2162 bitsize / BITS_PER_UNIT,
2163 BITS_PER_WORD),
2164 bitsize / BITS_PER_UNIT, BITS_PER_WORD);
2166 return tgtblk;
2170 /* Add a USE expression for REG to the (possibly empty) list pointed
2171 to by CALL_FUSAGE. REG must denote a hard register. */
2173 void
2174 use_reg (call_fusage, reg)
2175 rtx *call_fusage, reg;
2177 if (GET_CODE (reg) != REG
2178 || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
2179 abort();
2181 *call_fusage
2182 = gen_rtx_EXPR_LIST (VOIDmode,
2183 gen_rtx_USE (VOIDmode, reg), *call_fusage);
2186 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2187 starting at REGNO. All of these registers must be hard registers. */
2189 void
2190 use_regs (call_fusage, regno, nregs)
2191 rtx *call_fusage;
2192 int regno;
2193 int nregs;
2195 int i;
2197 if (regno + nregs > FIRST_PSEUDO_REGISTER)
2198 abort ();
2200 for (i = 0; i < nregs; i++)
2201 use_reg (call_fusage, gen_rtx_REG (reg_raw_mode[regno + i], regno + i));
2204 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2205 PARALLEL REGS. This is for calls that pass values in multiple
2206 non-contiguous locations. The Irix 6 ABI has examples of this. */
2208 void
2209 use_group_regs (call_fusage, regs)
2210 rtx *call_fusage;
2211 rtx regs;
2213 int i;
2215 for (i = 0; i < XVECLEN (regs, 0); i++)
2217 rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
2219 /* A NULL entry means the parameter goes both on the stack and in
2220 registers. This can also be a MEM for targets that pass values
2221 partially on the stack and partially in registers. */
2222 if (reg != 0 && GET_CODE (reg) == REG)
2223 use_reg (call_fusage, reg);
2227 /* Generate several move instructions to clear LEN bytes of block TO.
2228 (A MEM rtx with BLKmode). The caller must pass TO through
2229 protect_from_queue before calling. ALIGN (in bytes) is maximum alignment
2230 we can assume. */
2232 static void
2233 clear_by_pieces (to, len, align)
2234 rtx to;
2235 int len, align;
2237 struct clear_by_pieces data;
2238 rtx to_addr = XEXP (to, 0);
2239 int max_size = MOVE_MAX_PIECES + 1;
2240 enum machine_mode mode = VOIDmode, tmode;
2241 enum insn_code icode;
2243 data.offset = 0;
2244 data.to_addr = to_addr;
2245 data.to = to;
2246 data.autinc_to
2247 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
2248 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
2250 data.explicit_inc_to = 0;
2251 data.reverse
2252 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
2253 if (data.reverse) data.offset = len;
2254 data.len = len;
2256 data.to_struct = MEM_IN_STRUCT_P (to);
2258 /* If copying requires more than two move insns,
2259 copy addresses to registers (to make displacements shorter)
2260 and use post-increment if available. */
2261 if (!data.autinc_to
2262 && move_by_pieces_ninsns (len, align) > 2)
2264 /* Determine the main mode we'll be using */
2265 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2266 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2267 if (GET_MODE_SIZE (tmode) < max_size)
2268 mode = tmode;
2270 if (USE_STORE_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_to)
2272 data.to_addr = copy_addr_to_reg (plus_constant (to_addr, len));
2273 data.autinc_to = 1;
2274 data.explicit_inc_to = -1;
2276 if (USE_STORE_POST_INCREMENT (mode) && ! data.reverse && ! data.autinc_to)
2278 data.to_addr = copy_addr_to_reg (to_addr);
2279 data.autinc_to = 1;
2280 data.explicit_inc_to = 1;
2282 if (!data.autinc_to && CONSTANT_P (to_addr))
2283 data.to_addr = copy_addr_to_reg (to_addr);
2286 if (! SLOW_UNALIGNED_ACCESS (word_mode, align)
2287 || align > MOVE_MAX || align >= BIGGEST_ALIGNMENT / BITS_PER_UNIT)
2288 align = MOVE_MAX;
2290 /* First move what we can in the largest integer mode, then go to
2291 successively smaller modes. */
2293 while (max_size > 1)
2295 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2296 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2297 if (GET_MODE_SIZE (tmode) < max_size)
2298 mode = tmode;
2300 if (mode == VOIDmode)
2301 break;
2303 icode = mov_optab->handlers[(int) mode].insn_code;
2304 if (icode != CODE_FOR_nothing
2305 && align >= MIN (BIGGEST_ALIGNMENT / BITS_PER_UNIT,
2306 GET_MODE_SIZE (mode)))
2307 clear_by_pieces_1 (GEN_FCN (icode), mode, &data);
2309 max_size = GET_MODE_SIZE (mode);
2312 /* The code above should have handled everything. */
2313 if (data.len != 0)
2314 abort ();
2317 /* Subroutine of clear_by_pieces. Clear as many bytes as appropriate
2318 with move instructions for mode MODE. GENFUN is the gen_... function
2319 to make a move insn for that mode. DATA has all the other info. */
2321 static void
2322 clear_by_pieces_1 (genfun, mode, data)
2323 rtx (*genfun) PROTO ((rtx, ...));
2324 enum machine_mode mode;
2325 struct clear_by_pieces *data;
2327 register int size = GET_MODE_SIZE (mode);
2328 register rtx to1;
2330 while (data->len >= size)
2332 if (data->reverse) data->offset -= size;
2334 to1 = (data->autinc_to
2335 ? gen_rtx_MEM (mode, data->to_addr)
2336 : copy_rtx (change_address (data->to, mode,
2337 plus_constant (data->to_addr,
2338 data->offset))));
2339 MEM_IN_STRUCT_P (to1) = data->to_struct;
2341 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
2342 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (-size)));
2344 emit_insn ((*genfun) (to1, const0_rtx));
2345 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
2346 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
2348 if (! data->reverse) data->offset += size;
2350 data->len -= size;
2354 /* Write zeros through the storage of OBJECT.
2355 If OBJECT has BLKmode, SIZE is its length in bytes and ALIGN is
2356 the maximum alignment we can is has, measured in bytes.
2358 If we call a function that returns the length of the block, return it. */
2361 clear_storage (object, size, align)
2362 rtx object;
2363 rtx size;
2364 int align;
2366 #ifdef TARGET_MEM_FUNCTIONS
2367 static tree fn;
2368 tree call_expr, arg_list;
2369 #endif
2370 rtx retval = 0;
2372 if (GET_MODE (object) == BLKmode)
2374 object = protect_from_queue (object, 1);
2375 size = protect_from_queue (size, 0);
2377 if (GET_CODE (size) == CONST_INT
2378 && MOVE_BY_PIECES_P (INTVAL (size), align))
2379 clear_by_pieces (object, INTVAL (size), align);
2381 else
2383 /* Try the most limited insn first, because there's no point
2384 including more than one in the machine description unless
2385 the more limited one has some advantage. */
2387 rtx opalign = GEN_INT (align);
2388 enum machine_mode mode;
2390 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
2391 mode = GET_MODE_WIDER_MODE (mode))
2393 enum insn_code code = clrstr_optab[(int) mode];
2394 insn_operand_predicate_fn pred;
2396 if (code != CODE_FOR_nothing
2397 /* We don't need MODE to be narrower than
2398 BITS_PER_HOST_WIDE_INT here because if SIZE is less than
2399 the mode mask, as it is returned by the macro, it will
2400 definitely be less than the actual mode mask. */
2401 && ((GET_CODE (size) == CONST_INT
2402 && ((unsigned HOST_WIDE_INT) INTVAL (size)
2403 <= (GET_MODE_MASK (mode) >> 1)))
2404 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
2405 && ((pred = insn_data[(int) code].operand[0].predicate) == 0
2406 || (*pred) (object, BLKmode))
2407 && ((pred = insn_data[(int) code].operand[2].predicate) == 0
2408 || (*pred) (opalign, VOIDmode)))
2410 rtx op1;
2411 rtx last = get_last_insn ();
2412 rtx pat;
2414 op1 = convert_to_mode (mode, size, 1);
2415 pred = insn_data[(int) code].operand[1].predicate;
2416 if (pred != 0 && ! (*pred) (op1, mode))
2417 op1 = copy_to_mode_reg (mode, op1);
2419 pat = GEN_FCN ((int) code) (object, op1, opalign);
2420 if (pat)
2422 emit_insn (pat);
2423 return 0;
2425 else
2426 delete_insns_since (last);
2430 /* OBJECT or SIZE may have been passed through protect_from_queue.
2432 It is unsafe to save the value generated by protect_from_queue
2433 and reuse it later. Consider what happens if emit_queue is
2434 called before the return value from protect_from_queue is used.
2436 Expansion of the CALL_EXPR below will call emit_queue before
2437 we are finished emitting RTL for argument setup. So if we are
2438 not careful we could get the wrong value for an argument.
2440 To avoid this problem we go ahead and emit code to copy OBJECT
2441 and SIZE into new pseudos. We can then place those new pseudos
2442 into an RTL_EXPR and use them later, even after a call to
2443 emit_queue.
2445 Note this is not strictly needed for library calls since they
2446 do not call emit_queue before loading their arguments. However,
2447 we may need to have library calls call emit_queue in the future
2448 since failing to do so could cause problems for targets which
2449 define SMALL_REGISTER_CLASSES and pass arguments in registers. */
2450 object = copy_to_mode_reg (Pmode, XEXP (object, 0));
2452 #ifdef TARGET_MEM_FUNCTIONS
2453 size = copy_to_mode_reg (TYPE_MODE (sizetype), size);
2454 #else
2455 size = convert_to_mode (TYPE_MODE (integer_type_node), size,
2456 TREE_UNSIGNED (integer_type_node));
2457 size = copy_to_mode_reg (TYPE_MODE (integer_type_node), size);
2458 #endif
2461 #ifdef TARGET_MEM_FUNCTIONS
2462 /* It is incorrect to use the libcall calling conventions to call
2463 memset in this context.
2465 This could be a user call to memset and the user may wish to
2466 examine the return value from memset.
2468 For targets where libcalls and normal calls have different
2469 conventions for returning pointers, we could end up generating
2470 incorrect code.
2472 So instead of using a libcall sequence we build up a suitable
2473 CALL_EXPR and expand the call in the normal fashion. */
2474 if (fn == NULL_TREE)
2476 tree fntype;
2478 /* This was copied from except.c, I don't know if all this is
2479 necessary in this context or not. */
2480 fn = get_identifier ("memset");
2481 push_obstacks_nochange ();
2482 end_temporary_allocation ();
2483 fntype = build_pointer_type (void_type_node);
2484 fntype = build_function_type (fntype, NULL_TREE);
2485 fn = build_decl (FUNCTION_DECL, fn, fntype);
2486 ggc_add_tree_root (&fn, 1);
2487 DECL_EXTERNAL (fn) = 1;
2488 TREE_PUBLIC (fn) = 1;
2489 DECL_ARTIFICIAL (fn) = 1;
2490 make_decl_rtl (fn, NULL_PTR, 1);
2491 assemble_external (fn);
2492 pop_obstacks ();
2495 /* We need to make an argument list for the function call.
2497 memset has three arguments, the first is a void * addresses, the
2498 second a integer with the initialization value, the last is a
2499 size_t byte count for the copy. */
2500 arg_list
2501 = build_tree_list (NULL_TREE,
2502 make_tree (build_pointer_type (void_type_node),
2503 object));
2504 TREE_CHAIN (arg_list)
2505 = build_tree_list (NULL_TREE,
2506 make_tree (integer_type_node, const0_rtx));
2507 TREE_CHAIN (TREE_CHAIN (arg_list))
2508 = build_tree_list (NULL_TREE, make_tree (sizetype, size));
2509 TREE_CHAIN (TREE_CHAIN (TREE_CHAIN (arg_list))) = NULL_TREE;
2511 /* Now we have to build up the CALL_EXPR itself. */
2512 call_expr = build1 (ADDR_EXPR,
2513 build_pointer_type (TREE_TYPE (fn)), fn);
2514 call_expr = build (CALL_EXPR, TREE_TYPE (TREE_TYPE (fn)),
2515 call_expr, arg_list, NULL_TREE);
2516 TREE_SIDE_EFFECTS (call_expr) = 1;
2518 retval = expand_expr (call_expr, NULL_RTX, VOIDmode, 0);
2519 #else
2520 emit_library_call (bzero_libfunc, 0,
2521 VOIDmode, 2, object, Pmode, size,
2522 TYPE_MODE (integer_type_node));
2523 #endif
2526 else
2527 emit_move_insn (object, CONST0_RTX (GET_MODE (object)));
2529 return retval;
2532 /* Generate code to copy Y into X.
2533 Both Y and X must have the same mode, except that
2534 Y can be a constant with VOIDmode.
2535 This mode cannot be BLKmode; use emit_block_move for that.
2537 Return the last instruction emitted. */
2540 emit_move_insn (x, y)
2541 rtx x, y;
2543 enum machine_mode mode = GET_MODE (x);
2545 x = protect_from_queue (x, 1);
2546 y = protect_from_queue (y, 0);
2548 if (mode == BLKmode || (GET_MODE (y) != mode && GET_MODE (y) != VOIDmode))
2549 abort ();
2551 /* Never force constant_p_rtx to memory. */
2552 if (GET_CODE (y) == CONSTANT_P_RTX)
2554 else if (CONSTANT_P (y) && ! LEGITIMATE_CONSTANT_P (y))
2555 y = force_const_mem (mode, y);
2557 /* If X or Y are memory references, verify that their addresses are valid
2558 for the machine. */
2559 if (GET_CODE (x) == MEM
2560 && ((! memory_address_p (GET_MODE (x), XEXP (x, 0))
2561 && ! push_operand (x, GET_MODE (x)))
2562 || (flag_force_addr
2563 && CONSTANT_ADDRESS_P (XEXP (x, 0)))))
2564 x = change_address (x, VOIDmode, XEXP (x, 0));
2566 if (GET_CODE (y) == MEM
2567 && (! memory_address_p (GET_MODE (y), XEXP (y, 0))
2568 || (flag_force_addr
2569 && CONSTANT_ADDRESS_P (XEXP (y, 0)))))
2570 y = change_address (y, VOIDmode, XEXP (y, 0));
2572 if (mode == BLKmode)
2573 abort ();
2575 return emit_move_insn_1 (x, y);
2578 /* Low level part of emit_move_insn.
2579 Called just like emit_move_insn, but assumes X and Y
2580 are basically valid. */
2583 emit_move_insn_1 (x, y)
2584 rtx x, y;
2586 enum machine_mode mode = GET_MODE (x);
2587 enum machine_mode submode;
2588 enum mode_class class = GET_MODE_CLASS (mode);
2589 int i;
2591 if (mode >= MAX_MACHINE_MODE)
2592 abort ();
2594 if (mov_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
2595 return
2596 emit_insn (GEN_FCN (mov_optab->handlers[(int) mode].insn_code) (x, y));
2598 /* Expand complex moves by moving real part and imag part, if possible. */
2599 else if ((class == MODE_COMPLEX_FLOAT || class == MODE_COMPLEX_INT)
2600 && BLKmode != (submode = mode_for_size ((GET_MODE_UNIT_SIZE (mode)
2601 * BITS_PER_UNIT),
2602 (class == MODE_COMPLEX_INT
2603 ? MODE_INT : MODE_FLOAT),
2605 && (mov_optab->handlers[(int) submode].insn_code
2606 != CODE_FOR_nothing))
2608 /* Don't split destination if it is a stack push. */
2609 int stack = push_operand (x, GET_MODE (x));
2611 /* If this is a stack, push the highpart first, so it
2612 will be in the argument order.
2614 In that case, change_address is used only to convert
2615 the mode, not to change the address. */
2616 if (stack)
2618 /* Note that the real part always precedes the imag part in memory
2619 regardless of machine's endianness. */
2620 #ifdef STACK_GROWS_DOWNWARD
2621 emit_insn (GEN_FCN (mov_optab->handlers[(int) submode].insn_code)
2622 (gen_rtx_MEM (submode, (XEXP (x, 0))),
2623 gen_imagpart (submode, y)));
2624 emit_insn (GEN_FCN (mov_optab->handlers[(int) submode].insn_code)
2625 (gen_rtx_MEM (submode, (XEXP (x, 0))),
2626 gen_realpart (submode, y)));
2627 #else
2628 emit_insn (GEN_FCN (mov_optab->handlers[(int) submode].insn_code)
2629 (gen_rtx_MEM (submode, (XEXP (x, 0))),
2630 gen_realpart (submode, y)));
2631 emit_insn (GEN_FCN (mov_optab->handlers[(int) submode].insn_code)
2632 (gen_rtx_MEM (submode, (XEXP (x, 0))),
2633 gen_imagpart (submode, y)));
2634 #endif
2636 else
2638 rtx realpart_x, realpart_y;
2639 rtx imagpart_x, imagpart_y;
2641 /* If this is a complex value with each part being smaller than a
2642 word, the usual calling sequence will likely pack the pieces into
2643 a single register. Unfortunately, SUBREG of hard registers only
2644 deals in terms of words, so we have a problem converting input
2645 arguments to the CONCAT of two registers that is used elsewhere
2646 for complex values. If this is before reload, we can copy it into
2647 memory and reload. FIXME, we should see about using extract and
2648 insert on integer registers, but complex short and complex char
2649 variables should be rarely used. */
2650 if (GET_MODE_BITSIZE (mode) < 2*BITS_PER_WORD
2651 && (reload_in_progress | reload_completed) == 0)
2653 int packed_dest_p = (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER);
2654 int packed_src_p = (REG_P (y) && REGNO (y) < FIRST_PSEUDO_REGISTER);
2656 if (packed_dest_p || packed_src_p)
2658 enum mode_class reg_class = ((class == MODE_COMPLEX_FLOAT)
2659 ? MODE_FLOAT : MODE_INT);
2661 enum machine_mode reg_mode =
2662 mode_for_size (GET_MODE_BITSIZE (mode), reg_class, 1);
2664 if (reg_mode != BLKmode)
2666 rtx mem = assign_stack_temp (reg_mode,
2667 GET_MODE_SIZE (mode), 0);
2669 rtx cmem = change_address (mem, mode, NULL_RTX);
2671 cfun->cannot_inline = "function uses short complex types";
2673 if (packed_dest_p)
2675 rtx sreg = gen_rtx_SUBREG (reg_mode, x, 0);
2676 emit_move_insn_1 (cmem, y);
2677 return emit_move_insn_1 (sreg, mem);
2679 else
2681 rtx sreg = gen_rtx_SUBREG (reg_mode, y, 0);
2682 emit_move_insn_1 (mem, sreg);
2683 return emit_move_insn_1 (x, cmem);
2689 realpart_x = gen_realpart (submode, x);
2690 realpart_y = gen_realpart (submode, y);
2691 imagpart_x = gen_imagpart (submode, x);
2692 imagpart_y = gen_imagpart (submode, y);
2694 /* Show the output dies here. This is necessary for SUBREGs
2695 of pseudos since we cannot track their lifetimes correctly;
2696 hard regs shouldn't appear here except as return values.
2697 We never want to emit such a clobber after reload. */
2698 if (x != y
2699 && ! (reload_in_progress || reload_completed)
2700 && (GET_CODE (realpart_x) == SUBREG
2701 || GET_CODE (imagpart_x) == SUBREG))
2703 emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
2706 emit_insn (GEN_FCN (mov_optab->handlers[(int) submode].insn_code)
2707 (realpart_x, realpart_y));
2708 emit_insn (GEN_FCN (mov_optab->handlers[(int) submode].insn_code)
2709 (imagpart_x, imagpart_y));
2712 return get_last_insn ();
2715 /* This will handle any multi-word mode that lacks a move_insn pattern.
2716 However, you will get better code if you define such patterns,
2717 even if they must turn into multiple assembler instructions. */
2718 else if (GET_MODE_SIZE (mode) > UNITS_PER_WORD)
2720 rtx last_insn = 0;
2721 rtx seq;
2722 int need_clobber;
2724 #ifdef PUSH_ROUNDING
2726 /* If X is a push on the stack, do the push now and replace
2727 X with a reference to the stack pointer. */
2728 if (push_operand (x, GET_MODE (x)))
2730 anti_adjust_stack (GEN_INT (GET_MODE_SIZE (GET_MODE (x))));
2731 x = change_address (x, VOIDmode, stack_pointer_rtx);
2733 #endif
2735 start_sequence ();
2737 need_clobber = 0;
2738 for (i = 0;
2739 i < (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
2740 i++)
2742 rtx xpart = operand_subword (x, i, 1, mode);
2743 rtx ypart = operand_subword (y, i, 1, mode);
2745 /* If we can't get a part of Y, put Y into memory if it is a
2746 constant. Otherwise, force it into a register. If we still
2747 can't get a part of Y, abort. */
2748 if (ypart == 0 && CONSTANT_P (y))
2750 y = force_const_mem (mode, y);
2751 ypart = operand_subword (y, i, 1, mode);
2753 else if (ypart == 0)
2754 ypart = operand_subword_force (y, i, mode);
2756 if (xpart == 0 || ypart == 0)
2757 abort ();
2759 need_clobber |= (GET_CODE (xpart) == SUBREG);
2761 last_insn = emit_move_insn (xpart, ypart);
2764 seq = gen_sequence ();
2765 end_sequence ();
2767 /* Show the output dies here. This is necessary for SUBREGs
2768 of pseudos since we cannot track their lifetimes correctly;
2769 hard regs shouldn't appear here except as return values.
2770 We never want to emit such a clobber after reload. */
2771 if (x != y
2772 && ! (reload_in_progress || reload_completed)
2773 && need_clobber != 0)
2775 emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
2778 emit_insn (seq);
2780 return last_insn;
2782 else
2783 abort ();
2786 /* Pushing data onto the stack. */
2788 /* Push a block of length SIZE (perhaps variable)
2789 and return an rtx to address the beginning of the block.
2790 Note that it is not possible for the value returned to be a QUEUED.
2791 The value may be virtual_outgoing_args_rtx.
2793 EXTRA is the number of bytes of padding to push in addition to SIZE.
2794 BELOW nonzero means this padding comes at low addresses;
2795 otherwise, the padding comes at high addresses. */
2798 push_block (size, extra, below)
2799 rtx size;
2800 int extra, below;
2802 register rtx temp;
2804 size = convert_modes (Pmode, ptr_mode, size, 1);
2805 if (CONSTANT_P (size))
2806 anti_adjust_stack (plus_constant (size, extra));
2807 else if (GET_CODE (size) == REG && extra == 0)
2808 anti_adjust_stack (size);
2809 else
2811 rtx temp = copy_to_mode_reg (Pmode, size);
2812 if (extra != 0)
2813 temp = expand_binop (Pmode, add_optab, temp, GEN_INT (extra),
2814 temp, 0, OPTAB_LIB_WIDEN);
2815 anti_adjust_stack (temp);
2818 #if defined (STACK_GROWS_DOWNWARD) \
2819 || (defined (ARGS_GROW_DOWNWARD) \
2820 && !defined (ACCUMULATE_OUTGOING_ARGS))
2822 /* Return the lowest stack address when STACK or ARGS grow downward and
2823 we are not aaccumulating outgoing arguments (the c4x port uses such
2824 conventions). */
2825 temp = virtual_outgoing_args_rtx;
2826 if (extra != 0 && below)
2827 temp = plus_constant (temp, extra);
2828 #else
2829 if (GET_CODE (size) == CONST_INT)
2830 temp = plus_constant (virtual_outgoing_args_rtx,
2831 - INTVAL (size) - (below ? 0 : extra));
2832 else if (extra != 0 && !below)
2833 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
2834 negate_rtx (Pmode, plus_constant (size, extra)));
2835 else
2836 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
2837 negate_rtx (Pmode, size));
2838 #endif
2840 return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT), temp);
2844 gen_push_operand ()
2846 return gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
2849 /* Return an rtx for the address of the beginning of a as-if-it-was-pushed
2850 block of SIZE bytes. */
2852 static rtx
2853 get_push_address (size)
2854 int size;
2856 register rtx temp;
2858 if (STACK_PUSH_CODE == POST_DEC)
2859 temp = gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (size));
2860 else if (STACK_PUSH_CODE == POST_INC)
2861 temp = gen_rtx_MINUS (Pmode, stack_pointer_rtx, GEN_INT (size));
2862 else
2863 temp = stack_pointer_rtx;
2865 return copy_to_reg (temp);
2868 /* Generate code to push X onto the stack, assuming it has mode MODE and
2869 type TYPE.
2870 MODE is redundant except when X is a CONST_INT (since they don't
2871 carry mode info).
2872 SIZE is an rtx for the size of data to be copied (in bytes),
2873 needed only if X is BLKmode.
2875 ALIGN (in bytes) is maximum alignment we can assume.
2877 If PARTIAL and REG are both nonzero, then copy that many of the first
2878 words of X into registers starting with REG, and push the rest of X.
2879 The amount of space pushed is decreased by PARTIAL words,
2880 rounded *down* to a multiple of PARM_BOUNDARY.
2881 REG must be a hard register in this case.
2882 If REG is zero but PARTIAL is not, take any all others actions for an
2883 argument partially in registers, but do not actually load any
2884 registers.
2886 EXTRA is the amount in bytes of extra space to leave next to this arg.
2887 This is ignored if an argument block has already been allocated.
2889 On a machine that lacks real push insns, ARGS_ADDR is the address of
2890 the bottom of the argument block for this call. We use indexing off there
2891 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
2892 argument block has not been preallocated.
2894 ARGS_SO_FAR is the size of args previously pushed for this call.
2896 REG_PARM_STACK_SPACE is nonzero if functions require stack space
2897 for arguments passed in registers. If nonzero, it will be the number
2898 of bytes required. */
2900 void
2901 emit_push_insn (x, mode, type, size, align, partial, reg, extra,
2902 args_addr, args_so_far, reg_parm_stack_space,
2903 alignment_pad)
2904 register rtx x;
2905 enum machine_mode mode;
2906 tree type;
2907 rtx size;
2908 int align;
2909 int partial;
2910 rtx reg;
2911 int extra;
2912 rtx args_addr;
2913 rtx args_so_far;
2914 int reg_parm_stack_space;
2915 rtx alignment_pad;
2917 rtx xinner;
2918 enum direction stack_direction
2919 #ifdef STACK_GROWS_DOWNWARD
2920 = downward;
2921 #else
2922 = upward;
2923 #endif
2925 /* Decide where to pad the argument: `downward' for below,
2926 `upward' for above, or `none' for don't pad it.
2927 Default is below for small data on big-endian machines; else above. */
2928 enum direction where_pad = FUNCTION_ARG_PADDING (mode, type);
2930 /* Invert direction if stack is post-update. */
2931 if (STACK_PUSH_CODE == POST_INC || STACK_PUSH_CODE == POST_DEC)
2932 if (where_pad != none)
2933 where_pad = (where_pad == downward ? upward : downward);
2935 xinner = x = protect_from_queue (x, 0);
2937 if (mode == BLKmode)
2939 /* Copy a block into the stack, entirely or partially. */
2941 register rtx temp;
2942 int used = partial * UNITS_PER_WORD;
2943 int offset = used % (PARM_BOUNDARY / BITS_PER_UNIT);
2944 int skip;
2946 if (size == 0)
2947 abort ();
2949 used -= offset;
2951 /* USED is now the # of bytes we need not copy to the stack
2952 because registers will take care of them. */
2954 if (partial != 0)
2955 xinner = change_address (xinner, BLKmode,
2956 plus_constant (XEXP (xinner, 0), used));
2958 /* If the partial register-part of the arg counts in its stack size,
2959 skip the part of stack space corresponding to the registers.
2960 Otherwise, start copying to the beginning of the stack space,
2961 by setting SKIP to 0. */
2962 skip = (reg_parm_stack_space == 0) ? 0 : used;
2964 #ifdef PUSH_ROUNDING
2965 /* Do it with several push insns if that doesn't take lots of insns
2966 and if there is no difficulty with push insns that skip bytes
2967 on the stack for alignment purposes. */
2968 if (args_addr == 0
2969 && GET_CODE (size) == CONST_INT
2970 && skip == 0
2971 && (MOVE_BY_PIECES_P ((unsigned) INTVAL (size) - used, align))
2972 /* Here we avoid the case of a structure whose weak alignment
2973 forces many pushes of a small amount of data,
2974 and such small pushes do rounding that causes trouble. */
2975 && ((! SLOW_UNALIGNED_ACCESS (word_mode, align))
2976 || align >= BIGGEST_ALIGNMENT / BITS_PER_UNIT
2977 || PUSH_ROUNDING (align) == align)
2978 && PUSH_ROUNDING (INTVAL (size)) == INTVAL (size))
2980 /* Push padding now if padding above and stack grows down,
2981 or if padding below and stack grows up.
2982 But if space already allocated, this has already been done. */
2983 if (extra && args_addr == 0
2984 && where_pad != none && where_pad != stack_direction)
2985 anti_adjust_stack (GEN_INT (extra));
2987 move_by_pieces (gen_rtx_MEM (BLKmode, gen_push_operand ()), xinner,
2988 INTVAL (size) - used, align);
2990 if (current_function_check_memory_usage && ! in_check_memory_usage)
2992 rtx temp;
2994 in_check_memory_usage = 1;
2995 temp = get_push_address (INTVAL(size) - used);
2996 if (GET_CODE (x) == MEM && type && AGGREGATE_TYPE_P (type))
2997 emit_library_call (chkr_copy_bitmap_libfunc, 1, VOIDmode, 3,
2998 temp, Pmode,
2999 XEXP (xinner, 0), Pmode,
3000 GEN_INT (INTVAL(size) - used),
3001 TYPE_MODE (sizetype));
3002 else
3003 emit_library_call (chkr_set_right_libfunc, 1, VOIDmode, 3,
3004 temp, Pmode,
3005 GEN_INT (INTVAL(size) - used),
3006 TYPE_MODE (sizetype),
3007 GEN_INT (MEMORY_USE_RW),
3008 TYPE_MODE (integer_type_node));
3009 in_check_memory_usage = 0;
3012 else
3013 #endif /* PUSH_ROUNDING */
3015 /* Otherwise make space on the stack and copy the data
3016 to the address of that space. */
3018 /* Deduct words put into registers from the size we must copy. */
3019 if (partial != 0)
3021 if (GET_CODE (size) == CONST_INT)
3022 size = GEN_INT (INTVAL (size) - used);
3023 else
3024 size = expand_binop (GET_MODE (size), sub_optab, size,
3025 GEN_INT (used), NULL_RTX, 0,
3026 OPTAB_LIB_WIDEN);
3029 /* Get the address of the stack space.
3030 In this case, we do not deal with EXTRA separately.
3031 A single stack adjust will do. */
3032 if (! args_addr)
3034 temp = push_block (size, extra, where_pad == downward);
3035 extra = 0;
3037 else if (GET_CODE (args_so_far) == CONST_INT)
3038 temp = memory_address (BLKmode,
3039 plus_constant (args_addr,
3040 skip + INTVAL (args_so_far)));
3041 else
3042 temp = memory_address (BLKmode,
3043 plus_constant (gen_rtx_PLUS (Pmode,
3044 args_addr,
3045 args_so_far),
3046 skip));
3047 if (current_function_check_memory_usage && ! in_check_memory_usage)
3049 rtx target;
3051 in_check_memory_usage = 1;
3052 target = copy_to_reg (temp);
3053 if (GET_CODE (x) == MEM && type && AGGREGATE_TYPE_P (type))
3054 emit_library_call (chkr_copy_bitmap_libfunc, 1, VOIDmode, 3,
3055 target, Pmode,
3056 XEXP (xinner, 0), Pmode,
3057 size, TYPE_MODE (sizetype));
3058 else
3059 emit_library_call (chkr_set_right_libfunc, 1, VOIDmode, 3,
3060 target, Pmode,
3061 size, TYPE_MODE (sizetype),
3062 GEN_INT (MEMORY_USE_RW),
3063 TYPE_MODE (integer_type_node));
3064 in_check_memory_usage = 0;
3067 /* TEMP is the address of the block. Copy the data there. */
3068 if (GET_CODE (size) == CONST_INT
3069 && (MOVE_BY_PIECES_P ((unsigned) INTVAL (size), align)))
3071 move_by_pieces (gen_rtx_MEM (BLKmode, temp), xinner,
3072 INTVAL (size), align);
3073 goto ret;
3075 else
3077 rtx opalign = GEN_INT (align);
3078 enum machine_mode mode;
3079 rtx target = gen_rtx_MEM (BLKmode, temp);
3081 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
3082 mode != VOIDmode;
3083 mode = GET_MODE_WIDER_MODE (mode))
3085 enum insn_code code = movstr_optab[(int) mode];
3086 insn_operand_predicate_fn pred;
3088 if (code != CODE_FOR_nothing
3089 && ((GET_CODE (size) == CONST_INT
3090 && ((unsigned HOST_WIDE_INT) INTVAL (size)
3091 <= (GET_MODE_MASK (mode) >> 1)))
3092 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
3093 && (!(pred = insn_data[(int) code].operand[0].predicate)
3094 || ((*pred) (target, BLKmode)))
3095 && (!(pred = insn_data[(int) code].operand[1].predicate)
3096 || ((*pred) (xinner, BLKmode)))
3097 && (!(pred = insn_data[(int) code].operand[3].predicate)
3098 || ((*pred) (opalign, VOIDmode))))
3100 rtx op2 = convert_to_mode (mode, size, 1);
3101 rtx last = get_last_insn ();
3102 rtx pat;
3104 pred = insn_data[(int) code].operand[2].predicate;
3105 if (pred != 0 && ! (*pred) (op2, mode))
3106 op2 = copy_to_mode_reg (mode, op2);
3108 pat = GEN_FCN ((int) code) (target, xinner,
3109 op2, opalign);
3110 if (pat)
3112 emit_insn (pat);
3113 goto ret;
3115 else
3116 delete_insns_since (last);
3121 #ifndef ACCUMULATE_OUTGOING_ARGS
3122 /* If the source is referenced relative to the stack pointer,
3123 copy it to another register to stabilize it. We do not need
3124 to do this if we know that we won't be changing sp. */
3126 if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
3127 || reg_mentioned_p (virtual_outgoing_args_rtx, temp))
3128 temp = copy_to_reg (temp);
3129 #endif
3131 /* Make inhibit_defer_pop nonzero around the library call
3132 to force it to pop the bcopy-arguments right away. */
3133 NO_DEFER_POP;
3134 #ifdef TARGET_MEM_FUNCTIONS
3135 emit_library_call (memcpy_libfunc, 0,
3136 VOIDmode, 3, temp, Pmode, XEXP (xinner, 0), Pmode,
3137 convert_to_mode (TYPE_MODE (sizetype),
3138 size, TREE_UNSIGNED (sizetype)),
3139 TYPE_MODE (sizetype));
3140 #else
3141 emit_library_call (bcopy_libfunc, 0,
3142 VOIDmode, 3, XEXP (xinner, 0), Pmode, temp, Pmode,
3143 convert_to_mode (TYPE_MODE (integer_type_node),
3144 size,
3145 TREE_UNSIGNED (integer_type_node)),
3146 TYPE_MODE (integer_type_node));
3147 #endif
3148 OK_DEFER_POP;
3151 else if (partial > 0)
3153 /* Scalar partly in registers. */
3155 int size = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
3156 int i;
3157 int not_stack;
3158 /* # words of start of argument
3159 that we must make space for but need not store. */
3160 int offset = partial % (PARM_BOUNDARY / BITS_PER_WORD);
3161 int args_offset = INTVAL (args_so_far);
3162 int skip;
3164 /* Push padding now if padding above and stack grows down,
3165 or if padding below and stack grows up.
3166 But if space already allocated, this has already been done. */
3167 if (extra && args_addr == 0
3168 && where_pad != none && where_pad != stack_direction)
3169 anti_adjust_stack (GEN_INT (extra));
3171 /* If we make space by pushing it, we might as well push
3172 the real data. Otherwise, we can leave OFFSET nonzero
3173 and leave the space uninitialized. */
3174 if (args_addr == 0)
3175 offset = 0;
3177 /* Now NOT_STACK gets the number of words that we don't need to
3178 allocate on the stack. */
3179 not_stack = partial - offset;
3181 /* If the partial register-part of the arg counts in its stack size,
3182 skip the part of stack space corresponding to the registers.
3183 Otherwise, start copying to the beginning of the stack space,
3184 by setting SKIP to 0. */
3185 skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
3187 if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
3188 x = validize_mem (force_const_mem (mode, x));
3190 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
3191 SUBREGs of such registers are not allowed. */
3192 if ((GET_CODE (x) == REG && REGNO (x) < FIRST_PSEUDO_REGISTER
3193 && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
3194 x = copy_to_reg (x);
3196 /* Loop over all the words allocated on the stack for this arg. */
3197 /* We can do it by words, because any scalar bigger than a word
3198 has a size a multiple of a word. */
3199 #ifndef PUSH_ARGS_REVERSED
3200 for (i = not_stack; i < size; i++)
3201 #else
3202 for (i = size - 1; i >= not_stack; i--)
3203 #endif
3204 if (i >= not_stack + offset)
3205 emit_push_insn (operand_subword_force (x, i, mode),
3206 word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
3207 0, args_addr,
3208 GEN_INT (args_offset + ((i - not_stack + skip)
3209 * UNITS_PER_WORD)),
3210 reg_parm_stack_space, alignment_pad);
3212 else
3214 rtx addr;
3215 rtx target = NULL_RTX;
3217 /* Push padding now if padding above and stack grows down,
3218 or if padding below and stack grows up.
3219 But if space already allocated, this has already been done. */
3220 if (extra && args_addr == 0
3221 && where_pad != none && where_pad != stack_direction)
3222 anti_adjust_stack (GEN_INT (extra));
3224 #ifdef PUSH_ROUNDING
3225 if (args_addr == 0)
3226 addr = gen_push_operand ();
3227 else
3228 #endif
3230 if (GET_CODE (args_so_far) == CONST_INT)
3231 addr
3232 = memory_address (mode,
3233 plus_constant (args_addr,
3234 INTVAL (args_so_far)));
3235 else
3236 addr = memory_address (mode, gen_rtx_PLUS (Pmode, args_addr,
3237 args_so_far));
3238 target = addr;
3241 emit_move_insn (gen_rtx_MEM (mode, addr), x);
3243 if (current_function_check_memory_usage && ! in_check_memory_usage)
3245 in_check_memory_usage = 1;
3246 if (target == 0)
3247 target = get_push_address (GET_MODE_SIZE (mode));
3249 if (GET_CODE (x) == MEM && type && AGGREGATE_TYPE_P (type))
3250 emit_library_call (chkr_copy_bitmap_libfunc, 1, VOIDmode, 3,
3251 target, Pmode,
3252 XEXP (x, 0), Pmode,
3253 GEN_INT (GET_MODE_SIZE (mode)),
3254 TYPE_MODE (sizetype));
3255 else
3256 emit_library_call (chkr_set_right_libfunc, 1, VOIDmode, 3,
3257 target, Pmode,
3258 GEN_INT (GET_MODE_SIZE (mode)),
3259 TYPE_MODE (sizetype),
3260 GEN_INT (MEMORY_USE_RW),
3261 TYPE_MODE (integer_type_node));
3262 in_check_memory_usage = 0;
3266 ret:
3267 /* If part should go in registers, copy that part
3268 into the appropriate registers. Do this now, at the end,
3269 since mem-to-mem copies above may do function calls. */
3270 if (partial > 0 && reg != 0)
3272 /* Handle calls that pass values in multiple non-contiguous locations.
3273 The Irix 6 ABI has examples of this. */
3274 if (GET_CODE (reg) == PARALLEL)
3275 emit_group_load (reg, x, -1, align); /* ??? size? */
3276 else
3277 move_block_to_reg (REGNO (reg), x, partial, mode);
3280 if (extra && args_addr == 0 && where_pad == stack_direction)
3281 anti_adjust_stack (GEN_INT (extra));
3283 if (alignment_pad)
3284 anti_adjust_stack (alignment_pad);
3287 /* Expand an assignment that stores the value of FROM into TO.
3288 If WANT_VALUE is nonzero, return an rtx for the value of TO.
3289 (This may contain a QUEUED rtx;
3290 if the value is constant, this rtx is a constant.)
3291 Otherwise, the returned value is NULL_RTX.
3293 SUGGEST_REG is no longer actually used.
3294 It used to mean, copy the value through a register
3295 and return that register, if that is possible.
3296 We now use WANT_VALUE to decide whether to do this. */
3299 expand_assignment (to, from, want_value, suggest_reg)
3300 tree to, from;
3301 int want_value;
3302 int suggest_reg ATTRIBUTE_UNUSED;
3304 register rtx to_rtx = 0;
3305 rtx result;
3307 /* Don't crash if the lhs of the assignment was erroneous. */
3309 if (TREE_CODE (to) == ERROR_MARK)
3311 result = expand_expr (from, NULL_RTX, VOIDmode, 0);
3312 return want_value ? result : NULL_RTX;
3315 /* Assignment of a structure component needs special treatment
3316 if the structure component's rtx is not simply a MEM.
3317 Assignment of an array element at a constant index, and assignment of
3318 an array element in an unaligned packed structure field, has the same
3319 problem. */
3321 if (TREE_CODE (to) == COMPONENT_REF || TREE_CODE (to) == BIT_FIELD_REF
3322 || TREE_CODE (to) == ARRAY_REF)
3324 enum machine_mode mode1;
3325 int bitsize;
3326 int bitpos;
3327 tree offset;
3328 int unsignedp;
3329 int volatilep = 0;
3330 tree tem;
3331 int alignment;
3333 push_temp_slots ();
3334 tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
3335 &unsignedp, &volatilep, &alignment);
3337 /* If we are going to use store_bit_field and extract_bit_field,
3338 make sure to_rtx will be safe for multiple use. */
3340 if (mode1 == VOIDmode && want_value)
3341 tem = stabilize_reference (tem);
3343 to_rtx = expand_expr (tem, NULL_RTX, VOIDmode, EXPAND_MEMORY_USE_DONT);
3344 if (offset != 0)
3346 rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, 0);
3348 if (GET_CODE (to_rtx) != MEM)
3349 abort ();
3351 if (GET_MODE (offset_rtx) != ptr_mode)
3353 #ifdef POINTERS_EXTEND_UNSIGNED
3354 offset_rtx = convert_memory_address (ptr_mode, offset_rtx);
3355 #else
3356 offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
3357 #endif
3360 /* A constant address in TO_RTX can have VOIDmode, we must not try
3361 to call force_reg for that case. Avoid that case. */
3362 if (GET_CODE (to_rtx) == MEM
3363 && GET_MODE (to_rtx) == BLKmode
3364 && GET_MODE (XEXP (to_rtx, 0)) != VOIDmode
3365 && bitsize
3366 && (bitpos % bitsize) == 0
3367 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
3368 && (alignment * BITS_PER_UNIT) == GET_MODE_ALIGNMENT (mode1))
3370 rtx temp = change_address (to_rtx, mode1,
3371 plus_constant (XEXP (to_rtx, 0),
3372 (bitpos /
3373 BITS_PER_UNIT)));
3374 if (GET_CODE (XEXP (temp, 0)) == REG)
3375 to_rtx = temp;
3376 else
3377 to_rtx = change_address (to_rtx, mode1,
3378 force_reg (GET_MODE (XEXP (temp, 0)),
3379 XEXP (temp, 0)));
3380 bitpos = 0;
3383 to_rtx = change_address (to_rtx, VOIDmode,
3384 gen_rtx_PLUS (ptr_mode, XEXP (to_rtx, 0),
3385 force_reg (ptr_mode,
3386 offset_rtx)));
3389 if (volatilep)
3391 if (GET_CODE (to_rtx) == MEM)
3393 /* When the offset is zero, to_rtx is the address of the
3394 structure we are storing into, and hence may be shared.
3395 We must make a new MEM before setting the volatile bit. */
3396 if (offset == 0)
3397 to_rtx = copy_rtx (to_rtx);
3399 MEM_VOLATILE_P (to_rtx) = 1;
3401 #if 0 /* This was turned off because, when a field is volatile
3402 in an object which is not volatile, the object may be in a register,
3403 and then we would abort over here. */
3404 else
3405 abort ();
3406 #endif
3409 if (TREE_CODE (to) == COMPONENT_REF
3410 && TREE_READONLY (TREE_OPERAND (to, 1)))
3412 if (offset == 0)
3413 to_rtx = copy_rtx (to_rtx);
3415 RTX_UNCHANGING_P (to_rtx) = 1;
3418 /* Check the access. */
3419 if (current_function_check_memory_usage && GET_CODE (to_rtx) == MEM)
3421 rtx to_addr;
3422 int size;
3423 int best_mode_size;
3424 enum machine_mode best_mode;
3426 best_mode = get_best_mode (bitsize, bitpos,
3427 TYPE_ALIGN (TREE_TYPE (tem)),
3428 mode1, volatilep);
3429 if (best_mode == VOIDmode)
3430 best_mode = QImode;
3432 best_mode_size = GET_MODE_BITSIZE (best_mode);
3433 to_addr = plus_constant (XEXP (to_rtx, 0), (bitpos / BITS_PER_UNIT));
3434 size = CEIL ((bitpos % best_mode_size) + bitsize, best_mode_size);
3435 size *= GET_MODE_SIZE (best_mode);
3437 /* Check the access right of the pointer. */
3438 if (size)
3439 emit_library_call (chkr_check_addr_libfunc, 1, VOIDmode, 3,
3440 to_addr, Pmode,
3441 GEN_INT (size), TYPE_MODE (sizetype),
3442 GEN_INT (MEMORY_USE_WO),
3443 TYPE_MODE (integer_type_node));
3446 result = store_field (to_rtx, bitsize, bitpos, mode1, from,
3447 (want_value
3448 /* Spurious cast makes HPUX compiler happy. */
3449 ? (enum machine_mode) TYPE_MODE (TREE_TYPE (to))
3450 : VOIDmode),
3451 unsignedp,
3452 /* Required alignment of containing datum. */
3453 alignment,
3454 int_size_in_bytes (TREE_TYPE (tem)),
3455 get_alias_set (to));
3456 preserve_temp_slots (result);
3457 free_temp_slots ();
3458 pop_temp_slots ();
3460 /* If the value is meaningful, convert RESULT to the proper mode.
3461 Otherwise, return nothing. */
3462 return (want_value ? convert_modes (TYPE_MODE (TREE_TYPE (to)),
3463 TYPE_MODE (TREE_TYPE (from)),
3464 result,
3465 TREE_UNSIGNED (TREE_TYPE (to)))
3466 : NULL_RTX);
3469 /* If the rhs is a function call and its value is not an aggregate,
3470 call the function before we start to compute the lhs.
3471 This is needed for correct code for cases such as
3472 val = setjmp (buf) on machines where reference to val
3473 requires loading up part of an address in a separate insn.
3475 Don't do this if TO is a VAR_DECL whose DECL_RTL is REG since it might be
3476 a promoted variable where the zero- or sign- extension needs to be done.
3477 Handling this in the normal way is safe because no computation is done
3478 before the call. */
3479 if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from)
3480 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
3481 && ! (TREE_CODE (to) == VAR_DECL && GET_CODE (DECL_RTL (to)) == REG))
3483 rtx value;
3485 push_temp_slots ();
3486 value = expand_expr (from, NULL_RTX, VOIDmode, 0);
3487 if (to_rtx == 0)
3488 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_MEMORY_USE_WO);
3490 /* Handle calls that return values in multiple non-contiguous locations.
3491 The Irix 6 ABI has examples of this. */
3492 if (GET_CODE (to_rtx) == PARALLEL)
3493 emit_group_load (to_rtx, value, int_size_in_bytes (TREE_TYPE (from)),
3494 TYPE_ALIGN (TREE_TYPE (from)) / BITS_PER_UNIT);
3495 else if (GET_MODE (to_rtx) == BLKmode)
3496 emit_block_move (to_rtx, value, expr_size (from),
3497 TYPE_ALIGN (TREE_TYPE (from)) / BITS_PER_UNIT);
3498 else
3500 #ifdef POINTERS_EXTEND_UNSIGNED
3501 if (TREE_CODE (TREE_TYPE (to)) == REFERENCE_TYPE
3502 || TREE_CODE (TREE_TYPE (to)) == POINTER_TYPE)
3503 value = convert_memory_address (GET_MODE (to_rtx), value);
3504 #endif
3505 emit_move_insn (to_rtx, value);
3507 preserve_temp_slots (to_rtx);
3508 free_temp_slots ();
3509 pop_temp_slots ();
3510 return want_value ? to_rtx : NULL_RTX;
3513 /* Ordinary treatment. Expand TO to get a REG or MEM rtx.
3514 Don't re-expand if it was expanded already (in COMPONENT_REF case). */
3516 if (to_rtx == 0)
3518 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_MEMORY_USE_WO);
3519 if (GET_CODE (to_rtx) == MEM)
3520 MEM_ALIAS_SET (to_rtx) = get_alias_set (to);
3523 /* Don't move directly into a return register. */
3524 if (TREE_CODE (to) == RESULT_DECL
3525 && (GET_CODE (to_rtx) == REG || GET_CODE (to_rtx) == PARALLEL))
3527 rtx temp;
3529 push_temp_slots ();
3530 temp = expand_expr (from, 0, GET_MODE (to_rtx), 0);
3532 if (GET_CODE (to_rtx) == PARALLEL)
3533 emit_group_load (to_rtx, temp, int_size_in_bytes (TREE_TYPE (from)),
3534 TYPE_ALIGN (TREE_TYPE (from)) / BITS_PER_UNIT);
3535 else
3536 emit_move_insn (to_rtx, temp);
3538 preserve_temp_slots (to_rtx);
3539 free_temp_slots ();
3540 pop_temp_slots ();
3541 return want_value ? to_rtx : NULL_RTX;
3544 /* In case we are returning the contents of an object which overlaps
3545 the place the value is being stored, use a safe function when copying
3546 a value through a pointer into a structure value return block. */
3547 if (TREE_CODE (to) == RESULT_DECL && TREE_CODE (from) == INDIRECT_REF
3548 && current_function_returns_struct
3549 && !current_function_returns_pcc_struct)
3551 rtx from_rtx, size;
3553 push_temp_slots ();
3554 size = expr_size (from);
3555 from_rtx = expand_expr (from, NULL_RTX, VOIDmode,
3556 EXPAND_MEMORY_USE_DONT);
3558 /* Copy the rights of the bitmap. */
3559 if (current_function_check_memory_usage)
3560 emit_library_call (chkr_copy_bitmap_libfunc, 1, VOIDmode, 3,
3561 XEXP (to_rtx, 0), Pmode,
3562 XEXP (from_rtx, 0), Pmode,
3563 convert_to_mode (TYPE_MODE (sizetype),
3564 size, TREE_UNSIGNED (sizetype)),
3565 TYPE_MODE (sizetype));
3567 #ifdef TARGET_MEM_FUNCTIONS
3568 emit_library_call (memcpy_libfunc, 0,
3569 VOIDmode, 3, XEXP (to_rtx, 0), Pmode,
3570 XEXP (from_rtx, 0), Pmode,
3571 convert_to_mode (TYPE_MODE (sizetype),
3572 size, TREE_UNSIGNED (sizetype)),
3573 TYPE_MODE (sizetype));
3574 #else
3575 emit_library_call (bcopy_libfunc, 0,
3576 VOIDmode, 3, XEXP (from_rtx, 0), Pmode,
3577 XEXP (to_rtx, 0), Pmode,
3578 convert_to_mode (TYPE_MODE (integer_type_node),
3579 size, TREE_UNSIGNED (integer_type_node)),
3580 TYPE_MODE (integer_type_node));
3581 #endif
3583 preserve_temp_slots (to_rtx);
3584 free_temp_slots ();
3585 pop_temp_slots ();
3586 return want_value ? to_rtx : NULL_RTX;
3589 /* Compute FROM and store the value in the rtx we got. */
3591 push_temp_slots ();
3592 result = store_expr (from, to_rtx, want_value);
3593 preserve_temp_slots (result);
3594 free_temp_slots ();
3595 pop_temp_slots ();
3596 return want_value ? result : NULL_RTX;
3599 /* Generate code for computing expression EXP,
3600 and storing the value into TARGET.
3601 TARGET may contain a QUEUED rtx.
3603 If WANT_VALUE is nonzero, return a copy of the value
3604 not in TARGET, so that we can be sure to use the proper
3605 value in a containing expression even if TARGET has something
3606 else stored in it. If possible, we copy the value through a pseudo
3607 and return that pseudo. Or, if the value is constant, we try to
3608 return the constant. In some cases, we return a pseudo
3609 copied *from* TARGET.
3611 If the mode is BLKmode then we may return TARGET itself.
3612 It turns out that in BLKmode it doesn't cause a problem.
3613 because C has no operators that could combine two different
3614 assignments into the same BLKmode object with different values
3615 with no sequence point. Will other languages need this to
3616 be more thorough?
3618 If WANT_VALUE is 0, we return NULL, to make sure
3619 to catch quickly any cases where the caller uses the value
3620 and fails to set WANT_VALUE. */
3623 store_expr (exp, target, want_value)
3624 register tree exp;
3625 register rtx target;
3626 int want_value;
3628 register rtx temp;
3629 int dont_return_target = 0;
3631 if (TREE_CODE (exp) == COMPOUND_EXPR)
3633 /* Perform first part of compound expression, then assign from second
3634 part. */
3635 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, 0);
3636 emit_queue ();
3637 return store_expr (TREE_OPERAND (exp, 1), target, want_value);
3639 else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
3641 /* For conditional expression, get safe form of the target. Then
3642 test the condition, doing the appropriate assignment on either
3643 side. This avoids the creation of unnecessary temporaries.
3644 For non-BLKmode, it is more efficient not to do this. */
3646 rtx lab1 = gen_label_rtx (), lab2 = gen_label_rtx ();
3648 emit_queue ();
3649 target = protect_from_queue (target, 1);
3651 do_pending_stack_adjust ();
3652 NO_DEFER_POP;
3653 jumpifnot (TREE_OPERAND (exp, 0), lab1);
3654 start_cleanup_deferral ();
3655 store_expr (TREE_OPERAND (exp, 1), target, 0);
3656 end_cleanup_deferral ();
3657 emit_queue ();
3658 emit_jump_insn (gen_jump (lab2));
3659 emit_barrier ();
3660 emit_label (lab1);
3661 start_cleanup_deferral ();
3662 store_expr (TREE_OPERAND (exp, 2), target, 0);
3663 end_cleanup_deferral ();
3664 emit_queue ();
3665 emit_label (lab2);
3666 OK_DEFER_POP;
3668 return want_value ? target : NULL_RTX;
3670 else if (queued_subexp_p (target))
3671 /* If target contains a postincrement, let's not risk
3672 using it as the place to generate the rhs. */
3674 if (GET_MODE (target) != BLKmode && GET_MODE (target) != VOIDmode)
3676 /* Expand EXP into a new pseudo. */
3677 temp = gen_reg_rtx (GET_MODE (target));
3678 temp = expand_expr (exp, temp, GET_MODE (target), 0);
3680 else
3681 temp = expand_expr (exp, NULL_RTX, GET_MODE (target), 0);
3683 /* If target is volatile, ANSI requires accessing the value
3684 *from* the target, if it is accessed. So make that happen.
3685 In no case return the target itself. */
3686 if (! MEM_VOLATILE_P (target) && want_value)
3687 dont_return_target = 1;
3689 else if (want_value && GET_CODE (target) == MEM && ! MEM_VOLATILE_P (target)
3690 && GET_MODE (target) != BLKmode)
3691 /* If target is in memory and caller wants value in a register instead,
3692 arrange that. Pass TARGET as target for expand_expr so that,
3693 if EXP is another assignment, WANT_VALUE will be nonzero for it.
3694 We know expand_expr will not use the target in that case.
3695 Don't do this if TARGET is volatile because we are supposed
3696 to write it and then read it. */
3698 temp = expand_expr (exp, target, GET_MODE (target), 0);
3699 if (GET_MODE (temp) != BLKmode && GET_MODE (temp) != VOIDmode)
3700 temp = copy_to_reg (temp);
3701 dont_return_target = 1;
3703 else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
3704 /* If this is an scalar in a register that is stored in a wider mode
3705 than the declared mode, compute the result into its declared mode
3706 and then convert to the wider mode. Our value is the computed
3707 expression. */
3709 /* If we don't want a value, we can do the conversion inside EXP,
3710 which will often result in some optimizations. Do the conversion
3711 in two steps: first change the signedness, if needed, then
3712 the extend. But don't do this if the type of EXP is a subtype
3713 of something else since then the conversion might involve
3714 more than just converting modes. */
3715 if (! want_value && INTEGRAL_TYPE_P (TREE_TYPE (exp))
3716 && TREE_TYPE (TREE_TYPE (exp)) == 0)
3718 if (TREE_UNSIGNED (TREE_TYPE (exp))
3719 != SUBREG_PROMOTED_UNSIGNED_P (target))
3721 = convert
3722 (signed_or_unsigned_type (SUBREG_PROMOTED_UNSIGNED_P (target),
3723 TREE_TYPE (exp)),
3724 exp);
3726 exp = convert (type_for_mode (GET_MODE (SUBREG_REG (target)),
3727 SUBREG_PROMOTED_UNSIGNED_P (target)),
3728 exp);
3731 temp = expand_expr (exp, NULL_RTX, VOIDmode, 0);
3733 /* If TEMP is a volatile MEM and we want a result value, make
3734 the access now so it gets done only once. Likewise if
3735 it contains TARGET. */
3736 if (GET_CODE (temp) == MEM && want_value
3737 && (MEM_VOLATILE_P (temp)
3738 || reg_mentioned_p (SUBREG_REG (target), XEXP (temp, 0))))
3739 temp = copy_to_reg (temp);
3741 /* If TEMP is a VOIDmode constant, use convert_modes to make
3742 sure that we properly convert it. */
3743 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
3744 temp = convert_modes (GET_MODE (SUBREG_REG (target)),
3745 TYPE_MODE (TREE_TYPE (exp)), temp,
3746 SUBREG_PROMOTED_UNSIGNED_P (target));
3748 convert_move (SUBREG_REG (target), temp,
3749 SUBREG_PROMOTED_UNSIGNED_P (target));
3751 /* If we promoted a constant, change the mode back down to match
3752 target. Otherwise, the caller might get confused by a result whose
3753 mode is larger than expected. */
3755 if (want_value && GET_MODE (temp) != GET_MODE (target)
3756 && GET_MODE (temp) != VOIDmode)
3758 temp = gen_rtx_SUBREG (GET_MODE (target), temp, 0);
3759 SUBREG_PROMOTED_VAR_P (temp) = 1;
3760 SUBREG_PROMOTED_UNSIGNED_P (temp)
3761 = SUBREG_PROMOTED_UNSIGNED_P (target);
3764 return want_value ? temp : NULL_RTX;
3766 else
3768 temp = expand_expr (exp, target, GET_MODE (target), 0);
3769 /* Return TARGET if it's a specified hardware register.
3770 If TARGET is a volatile mem ref, either return TARGET
3771 or return a reg copied *from* TARGET; ANSI requires this.
3773 Otherwise, if TEMP is not TARGET, return TEMP
3774 if it is constant (for efficiency),
3775 or if we really want the correct value. */
3776 if (!(target && GET_CODE (target) == REG
3777 && REGNO (target) < FIRST_PSEUDO_REGISTER)
3778 && !(GET_CODE (target) == MEM && MEM_VOLATILE_P (target))
3779 && ! rtx_equal_p (temp, target)
3780 && (CONSTANT_P (temp) || want_value))
3781 dont_return_target = 1;
3784 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
3785 the same as that of TARGET, adjust the constant. This is needed, for
3786 example, in case it is a CONST_DOUBLE and we want only a word-sized
3787 value. */
3788 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
3789 && TREE_CODE (exp) != ERROR_MARK
3790 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
3791 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
3792 temp, TREE_UNSIGNED (TREE_TYPE (exp)));
3794 if (current_function_check_memory_usage
3795 && GET_CODE (target) == MEM
3796 && AGGREGATE_TYPE_P (TREE_TYPE (exp)))
3798 if (GET_CODE (temp) == MEM)
3799 emit_library_call (chkr_copy_bitmap_libfunc, 1, VOIDmode, 3,
3800 XEXP (target, 0), Pmode,
3801 XEXP (temp, 0), Pmode,
3802 expr_size (exp), TYPE_MODE (sizetype));
3803 else
3804 emit_library_call (chkr_check_addr_libfunc, 1, VOIDmode, 3,
3805 XEXP (target, 0), Pmode,
3806 expr_size (exp), TYPE_MODE (sizetype),
3807 GEN_INT (MEMORY_USE_WO),
3808 TYPE_MODE (integer_type_node));
3811 /* If value was not generated in the target, store it there.
3812 Convert the value to TARGET's type first if nec. */
3813 /* If TEMP and TARGET compare equal according to rtx_equal_p, but
3814 one or both of them are volatile memory refs, we have to distinguish
3815 two cases:
3816 - expand_expr has used TARGET. In this case, we must not generate
3817 another copy. This can be detected by TARGET being equal according
3818 to == .
3819 - expand_expr has not used TARGET - that means that the source just
3820 happens to have the same RTX form. Since temp will have been created
3821 by expand_expr, it will compare unequal according to == .
3822 We must generate a copy in this case, to reach the correct number
3823 of volatile memory references. */
3825 if ((! rtx_equal_p (temp, target)
3826 || (temp != target && (side_effects_p (temp)
3827 || side_effects_p (target))))
3828 && TREE_CODE (exp) != ERROR_MARK)
3830 target = protect_from_queue (target, 1);
3831 if (GET_MODE (temp) != GET_MODE (target)
3832 && GET_MODE (temp) != VOIDmode)
3834 int unsignedp = TREE_UNSIGNED (TREE_TYPE (exp));
3835 if (dont_return_target)
3837 /* In this case, we will return TEMP,
3838 so make sure it has the proper mode.
3839 But don't forget to store the value into TARGET. */
3840 temp = convert_to_mode (GET_MODE (target), temp, unsignedp);
3841 emit_move_insn (target, temp);
3843 else
3844 convert_move (target, temp, unsignedp);
3847 else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
3849 /* Handle copying a string constant into an array.
3850 The string constant may be shorter than the array.
3851 So copy just the string's actual length, and clear the rest. */
3852 rtx size;
3853 rtx addr;
3855 /* Get the size of the data type of the string,
3856 which is actually the size of the target. */
3857 size = expr_size (exp);
3858 if (GET_CODE (size) == CONST_INT
3859 && INTVAL (size) < TREE_STRING_LENGTH (exp))
3860 emit_block_move (target, temp, size,
3861 TYPE_ALIGN (TREE_TYPE (exp)) / BITS_PER_UNIT);
3862 else
3864 /* Compute the size of the data to copy from the string. */
3865 tree copy_size
3866 = size_binop (MIN_EXPR,
3867 make_tree (sizetype, size),
3868 convert (sizetype,
3869 build_int_2 (TREE_STRING_LENGTH (exp), 0)));
3870 rtx copy_size_rtx = expand_expr (copy_size, NULL_RTX,
3871 VOIDmode, 0);
3872 rtx label = 0;
3874 /* Copy that much. */
3875 emit_block_move (target, temp, copy_size_rtx,
3876 TYPE_ALIGN (TREE_TYPE (exp)) / BITS_PER_UNIT);
3878 /* Figure out how much is left in TARGET that we have to clear.
3879 Do all calculations in ptr_mode. */
3881 addr = XEXP (target, 0);
3882 addr = convert_modes (ptr_mode, Pmode, addr, 1);
3884 if (GET_CODE (copy_size_rtx) == CONST_INT)
3886 addr = plus_constant (addr, TREE_STRING_LENGTH (exp));
3887 size = plus_constant (size, - TREE_STRING_LENGTH (exp));
3889 else
3891 addr = force_reg (ptr_mode, addr);
3892 addr = expand_binop (ptr_mode, add_optab, addr,
3893 copy_size_rtx, NULL_RTX, 0,
3894 OPTAB_LIB_WIDEN);
3896 size = expand_binop (ptr_mode, sub_optab, size,
3897 copy_size_rtx, NULL_RTX, 0,
3898 OPTAB_LIB_WIDEN);
3900 label = gen_label_rtx ();
3901 emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
3902 GET_MODE (size), 0, 0, label);
3905 if (size != const0_rtx)
3907 /* Be sure we can write on ADDR. */
3908 if (current_function_check_memory_usage)
3909 emit_library_call (chkr_check_addr_libfunc, 1, VOIDmode, 3,
3910 addr, Pmode,
3911 size, TYPE_MODE (sizetype),
3912 GEN_INT (MEMORY_USE_WO),
3913 TYPE_MODE (integer_type_node));
3914 #ifdef TARGET_MEM_FUNCTIONS
3915 emit_library_call (memset_libfunc, 0, VOIDmode, 3,
3916 addr, ptr_mode,
3917 const0_rtx, TYPE_MODE (integer_type_node),
3918 convert_to_mode (TYPE_MODE (sizetype),
3919 size,
3920 TREE_UNSIGNED (sizetype)),
3921 TYPE_MODE (sizetype));
3922 #else
3923 emit_library_call (bzero_libfunc, 0, VOIDmode, 2,
3924 addr, ptr_mode,
3925 convert_to_mode (TYPE_MODE (integer_type_node),
3926 size,
3927 TREE_UNSIGNED (integer_type_node)),
3928 TYPE_MODE (integer_type_node));
3929 #endif
3932 if (label)
3933 emit_label (label);
3936 /* Handle calls that return values in multiple non-contiguous locations.
3937 The Irix 6 ABI has examples of this. */
3938 else if (GET_CODE (target) == PARALLEL)
3939 emit_group_load (target, temp, int_size_in_bytes (TREE_TYPE (exp)),
3940 TYPE_ALIGN (TREE_TYPE (exp)) / BITS_PER_UNIT);
3941 else if (GET_MODE (temp) == BLKmode)
3942 emit_block_move (target, temp, expr_size (exp),
3943 TYPE_ALIGN (TREE_TYPE (exp)) / BITS_PER_UNIT);
3944 else
3945 emit_move_insn (target, temp);
3948 /* If we don't want a value, return NULL_RTX. */
3949 if (! want_value)
3950 return NULL_RTX;
3952 /* If we are supposed to return TEMP, do so as long as it isn't a MEM.
3953 ??? The latter test doesn't seem to make sense. */
3954 else if (dont_return_target && GET_CODE (temp) != MEM)
3955 return temp;
3957 /* Return TARGET itself if it is a hard register. */
3958 else if (want_value && GET_MODE (target) != BLKmode
3959 && ! (GET_CODE (target) == REG
3960 && REGNO (target) < FIRST_PSEUDO_REGISTER))
3961 return copy_to_reg (target);
3963 else
3964 return target;
3967 /* Return 1 if EXP just contains zeros. */
3969 static int
3970 is_zeros_p (exp)
3971 tree exp;
3973 tree elt;
3975 switch (TREE_CODE (exp))
3977 case CONVERT_EXPR:
3978 case NOP_EXPR:
3979 case NON_LVALUE_EXPR:
3980 return is_zeros_p (TREE_OPERAND (exp, 0));
3982 case INTEGER_CST:
3983 return TREE_INT_CST_LOW (exp) == 0 && TREE_INT_CST_HIGH (exp) == 0;
3985 case COMPLEX_CST:
3986 return
3987 is_zeros_p (TREE_REALPART (exp)) && is_zeros_p (TREE_IMAGPART (exp));
3989 case REAL_CST:
3990 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (exp), dconst0);
3992 case CONSTRUCTOR:
3993 if (TREE_TYPE (exp) && TREE_CODE (TREE_TYPE (exp)) == SET_TYPE)
3994 return CONSTRUCTOR_ELTS (exp) == NULL_TREE;
3995 for (elt = CONSTRUCTOR_ELTS (exp); elt; elt = TREE_CHAIN (elt))
3996 if (! is_zeros_p (TREE_VALUE (elt)))
3997 return 0;
3999 return 1;
4001 default:
4002 return 0;
4006 /* Return 1 if EXP contains mostly (3/4) zeros. */
4008 static int
4009 mostly_zeros_p (exp)
4010 tree exp;
4012 if (TREE_CODE (exp) == CONSTRUCTOR)
4014 int elts = 0, zeros = 0;
4015 tree elt = CONSTRUCTOR_ELTS (exp);
4016 if (TREE_TYPE (exp) && TREE_CODE (TREE_TYPE (exp)) == SET_TYPE)
4018 /* If there are no ranges of true bits, it is all zero. */
4019 return elt == NULL_TREE;
4021 for (; elt; elt = TREE_CHAIN (elt))
4023 /* We do not handle the case where the index is a RANGE_EXPR,
4024 so the statistic will be somewhat inaccurate.
4025 We do make a more accurate count in store_constructor itself,
4026 so since this function is only used for nested array elements,
4027 this should be close enough. */
4028 if (mostly_zeros_p (TREE_VALUE (elt)))
4029 zeros++;
4030 elts++;
4033 return 4 * zeros >= 3 * elts;
4036 return is_zeros_p (exp);
4039 /* Helper function for store_constructor.
4040 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
4041 TYPE is the type of the CONSTRUCTOR, not the element type.
4042 ALIGN and CLEARED are as for store_constructor.
4044 This provides a recursive shortcut back to store_constructor when it isn't
4045 necessary to go through store_field. This is so that we can pass through
4046 the cleared field to let store_constructor know that we may not have to
4047 clear a substructure if the outer structure has already been cleared. */
4049 static void
4050 store_constructor_field (target, bitsize, bitpos,
4051 mode, exp, type, align, cleared)
4052 rtx target;
4053 int bitsize, bitpos;
4054 enum machine_mode mode;
4055 tree exp, type;
4056 int align;
4057 int cleared;
4059 if (TREE_CODE (exp) == CONSTRUCTOR
4060 && bitpos % BITS_PER_UNIT == 0
4061 /* If we have a non-zero bitpos for a register target, then we just
4062 let store_field do the bitfield handling. This is unlikely to
4063 generate unnecessary clear instructions anyways. */
4064 && (bitpos == 0 || GET_CODE (target) == MEM))
4066 if (bitpos != 0)
4067 target
4068 = change_address (target,
4069 GET_MODE (target) == BLKmode
4070 || 0 != (bitpos
4071 % GET_MODE_ALIGNMENT (GET_MODE (target)))
4072 ? BLKmode : VOIDmode,
4073 plus_constant (XEXP (target, 0),
4074 bitpos / BITS_PER_UNIT));
4075 store_constructor (exp, target, align, cleared, bitsize / BITS_PER_UNIT);
4077 else
4078 store_field (target, bitsize, bitpos, mode, exp, VOIDmode, 0,
4079 (align + BITS_PER_UNIT - 1) / BITS_PER_UNIT,
4080 int_size_in_bytes (type), 0);
4083 /* Store the value of constructor EXP into the rtx TARGET.
4084 TARGET is either a REG or a MEM.
4085 ALIGN is the maximum known alignment for TARGET, in bits.
4086 CLEARED is true if TARGET is known to have been zero'd.
4087 SIZE is the number of bytes of TARGET we are allowed to modify: this
4088 may not be the same as the size of EXP if we are assigning to a field
4089 which has been packed to exclude padding bits. */
4091 static void
4092 store_constructor (exp, target, align, cleared, size)
4093 tree exp;
4094 rtx target;
4095 int align;
4096 int cleared;
4097 int size;
4099 tree type = TREE_TYPE (exp);
4100 #ifdef WORD_REGISTER_OPERATIONS
4101 rtx exp_size = expr_size (exp);
4102 #endif
4104 /* We know our target cannot conflict, since safe_from_p has been called. */
4105 #if 0
4106 /* Don't try copying piece by piece into a hard register
4107 since that is vulnerable to being clobbered by EXP.
4108 Instead, construct in a pseudo register and then copy it all. */
4109 if (GET_CODE (target) == REG && REGNO (target) < FIRST_PSEUDO_REGISTER)
4111 rtx temp = gen_reg_rtx (GET_MODE (target));
4112 store_constructor (exp, temp, align, cleared, size);
4113 emit_move_insn (target, temp);
4114 return;
4116 #endif
4118 if (TREE_CODE (type) == RECORD_TYPE || TREE_CODE (type) == UNION_TYPE
4119 || TREE_CODE (type) == QUAL_UNION_TYPE)
4121 register tree elt;
4123 /* Inform later passes that the whole union value is dead. */
4124 if ((TREE_CODE (type) == UNION_TYPE
4125 || TREE_CODE (type) == QUAL_UNION_TYPE)
4126 && ! cleared)
4128 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
4130 /* If the constructor is empty, clear the union. */
4131 if (! CONSTRUCTOR_ELTS (exp) && ! cleared)
4132 clear_storage (target, expr_size (exp),
4133 TYPE_ALIGN (type) / BITS_PER_UNIT);
4136 /* If we are building a static constructor into a register,
4137 set the initial value as zero so we can fold the value into
4138 a constant. But if more than one register is involved,
4139 this probably loses. */
4140 else if (GET_CODE (target) == REG && TREE_STATIC (exp)
4141 && GET_MODE_SIZE (GET_MODE (target)) <= UNITS_PER_WORD)
4143 if (! cleared)
4144 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
4146 cleared = 1;
4149 /* If the constructor has fewer fields than the structure
4150 or if we are initializing the structure to mostly zeros,
4151 clear the whole structure first. */
4152 else if (size > 0
4153 && ((list_length (CONSTRUCTOR_ELTS (exp))
4154 != list_length (TYPE_FIELDS (type)))
4155 || mostly_zeros_p (exp)))
4157 if (! cleared)
4158 clear_storage (target, GEN_INT (size),
4159 (align + BITS_PER_UNIT - 1) / BITS_PER_UNIT);
4161 cleared = 1;
4163 else if (! cleared)
4164 /* Inform later passes that the old value is dead. */
4165 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
4167 /* Store each element of the constructor into
4168 the corresponding field of TARGET. */
4170 for (elt = CONSTRUCTOR_ELTS (exp); elt; elt = TREE_CHAIN (elt))
4172 register tree field = TREE_PURPOSE (elt);
4173 #ifdef WORD_REGISTER_OPERATIONS
4174 tree value = TREE_VALUE (elt);
4175 #endif
4176 register enum machine_mode mode;
4177 int bitsize;
4178 int bitpos = 0;
4179 int unsignedp;
4180 tree pos, constant = 0, offset = 0;
4181 rtx to_rtx = target;
4183 /* Just ignore missing fields.
4184 We cleared the whole structure, above,
4185 if any fields are missing. */
4186 if (field == 0)
4187 continue;
4189 if (cleared && is_zeros_p (TREE_VALUE (elt)))
4190 continue;
4192 if (TREE_CODE (DECL_SIZE (field)) == INTEGER_CST)
4193 bitsize = TREE_INT_CST_LOW (DECL_SIZE (field));
4194 else
4195 bitsize = -1;
4197 unsignedp = TREE_UNSIGNED (field);
4198 mode = DECL_MODE (field);
4199 if (DECL_BIT_FIELD (field))
4200 mode = VOIDmode;
4202 pos = DECL_FIELD_BITPOS (field);
4203 if (TREE_CODE (pos) == INTEGER_CST)
4204 constant = pos;
4205 else if (TREE_CODE (pos) == PLUS_EXPR
4206 && TREE_CODE (TREE_OPERAND (pos, 1)) == INTEGER_CST)
4207 constant = TREE_OPERAND (pos, 1), offset = TREE_OPERAND (pos, 0);
4208 else
4209 offset = pos;
4211 if (constant)
4212 bitpos = TREE_INT_CST_LOW (constant);
4214 if (offset)
4216 rtx offset_rtx;
4218 if (contains_placeholder_p (offset))
4219 offset = build (WITH_RECORD_EXPR, sizetype,
4220 offset, make_tree (TREE_TYPE (exp), target));
4222 offset = size_binop (EXACT_DIV_EXPR, offset,
4223 size_int (BITS_PER_UNIT));
4225 offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, 0);
4226 if (GET_CODE (to_rtx) != MEM)
4227 abort ();
4229 if (GET_MODE (offset_rtx) != ptr_mode)
4231 #ifdef POINTERS_EXTEND_UNSIGNED
4232 offset_rtx = convert_memory_address (ptr_mode, offset_rtx);
4233 #else
4234 offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
4235 #endif
4238 to_rtx
4239 = change_address (to_rtx, VOIDmode,
4240 gen_rtx_PLUS (ptr_mode, XEXP (to_rtx, 0),
4241 force_reg (ptr_mode,
4242 offset_rtx)));
4245 if (TREE_READONLY (field))
4247 if (GET_CODE (to_rtx) == MEM)
4248 to_rtx = copy_rtx (to_rtx);
4250 RTX_UNCHANGING_P (to_rtx) = 1;
4253 #ifdef WORD_REGISTER_OPERATIONS
4254 /* If this initializes a field that is smaller than a word, at the
4255 start of a word, try to widen it to a full word.
4256 This special case allows us to output C++ member function
4257 initializations in a form that the optimizers can understand. */
4258 if (constant
4259 && GET_CODE (target) == REG
4260 && bitsize < BITS_PER_WORD
4261 && bitpos % BITS_PER_WORD == 0
4262 && GET_MODE_CLASS (mode) == MODE_INT
4263 && TREE_CODE (value) == INTEGER_CST
4264 && GET_CODE (exp_size) == CONST_INT
4265 && bitpos + BITS_PER_WORD <= INTVAL (exp_size) * BITS_PER_UNIT)
4267 tree type = TREE_TYPE (value);
4268 if (TYPE_PRECISION (type) < BITS_PER_WORD)
4270 type = type_for_size (BITS_PER_WORD, TREE_UNSIGNED (type));
4271 value = convert (type, value);
4273 if (BYTES_BIG_ENDIAN)
4274 value
4275 = fold (build (LSHIFT_EXPR, type, value,
4276 build_int_2 (BITS_PER_WORD - bitsize, 0)));
4277 bitsize = BITS_PER_WORD;
4278 mode = word_mode;
4280 #endif
4281 store_constructor_field (to_rtx, bitsize, bitpos, mode,
4282 TREE_VALUE (elt), type,
4283 MIN (align,
4284 DECL_ALIGN (TREE_PURPOSE (elt))),
4285 cleared);
4288 else if (TREE_CODE (type) == ARRAY_TYPE)
4290 register tree elt;
4291 register int i;
4292 int need_to_clear;
4293 tree domain = TYPE_DOMAIN (type);
4294 HOST_WIDE_INT minelt = TREE_INT_CST_LOW (TYPE_MIN_VALUE (domain));
4295 HOST_WIDE_INT maxelt = TREE_INT_CST_LOW (TYPE_MAX_VALUE (domain));
4296 tree elttype = TREE_TYPE (type);
4298 /* If the constructor has fewer elements than the array,
4299 clear the whole array first. Similarly if this is
4300 static constructor of a non-BLKmode object. */
4301 if (cleared || (GET_CODE (target) == REG && TREE_STATIC (exp)))
4302 need_to_clear = 1;
4303 else
4305 HOST_WIDE_INT count = 0, zero_count = 0;
4306 need_to_clear = 0;
4307 /* This loop is a more accurate version of the loop in
4308 mostly_zeros_p (it handles RANGE_EXPR in an index).
4309 It is also needed to check for missing elements. */
4310 for (elt = CONSTRUCTOR_ELTS (exp);
4311 elt != NULL_TREE;
4312 elt = TREE_CHAIN (elt))
4314 tree index = TREE_PURPOSE (elt);
4315 HOST_WIDE_INT this_node_count;
4316 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
4318 tree lo_index = TREE_OPERAND (index, 0);
4319 tree hi_index = TREE_OPERAND (index, 1);
4320 if (TREE_CODE (lo_index) != INTEGER_CST
4321 || TREE_CODE (hi_index) != INTEGER_CST)
4323 need_to_clear = 1;
4324 break;
4326 this_node_count = TREE_INT_CST_LOW (hi_index)
4327 - TREE_INT_CST_LOW (lo_index) + 1;
4329 else
4330 this_node_count = 1;
4331 count += this_node_count;
4332 if (mostly_zeros_p (TREE_VALUE (elt)))
4333 zero_count += this_node_count;
4335 /* Clear the entire array first if there are any missing elements,
4336 or if the incidence of zero elements is >= 75%. */
4337 if (count < maxelt - minelt + 1
4338 || 4 * zero_count >= 3 * count)
4339 need_to_clear = 1;
4341 if (need_to_clear && size > 0)
4343 if (! cleared)
4344 clear_storage (target, GEN_INT (size),
4345 (align + BITS_PER_UNIT - 1) / BITS_PER_UNIT);
4346 cleared = 1;
4348 else
4349 /* Inform later passes that the old value is dead. */
4350 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
4352 /* Store each element of the constructor into
4353 the corresponding element of TARGET, determined
4354 by counting the elements. */
4355 for (elt = CONSTRUCTOR_ELTS (exp), i = 0;
4356 elt;
4357 elt = TREE_CHAIN (elt), i++)
4359 register enum machine_mode mode;
4360 int bitsize;
4361 int bitpos;
4362 int unsignedp;
4363 tree value = TREE_VALUE (elt);
4364 int align = TYPE_ALIGN (TREE_TYPE (value));
4365 tree index = TREE_PURPOSE (elt);
4366 rtx xtarget = target;
4368 if (cleared && is_zeros_p (value))
4369 continue;
4371 unsignedp = TREE_UNSIGNED (elttype);
4372 mode = TYPE_MODE (elttype);
4373 if (mode == BLKmode)
4375 if (TREE_CODE (TYPE_SIZE (elttype)) == INTEGER_CST
4376 && TREE_INT_CST_HIGH (TYPE_SIZE (elttype)) == 0)
4377 bitsize = TREE_INT_CST_LOW (TYPE_SIZE (elttype));
4378 else
4379 bitsize = -1;
4381 else
4382 bitsize = GET_MODE_BITSIZE (mode);
4384 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
4386 tree lo_index = TREE_OPERAND (index, 0);
4387 tree hi_index = TREE_OPERAND (index, 1);
4388 rtx index_r, pos_rtx, addr, hi_r, loop_top, loop_end;
4389 struct nesting *loop;
4390 HOST_WIDE_INT lo, hi, count;
4391 tree position;
4393 /* If the range is constant and "small", unroll the loop. */
4394 if (TREE_CODE (lo_index) == INTEGER_CST
4395 && TREE_CODE (hi_index) == INTEGER_CST
4396 && (lo = TREE_INT_CST_LOW (lo_index),
4397 hi = TREE_INT_CST_LOW (hi_index),
4398 count = hi - lo + 1,
4399 (GET_CODE (target) != MEM
4400 || count <= 2
4401 || (TREE_CODE (TYPE_SIZE (elttype)) == INTEGER_CST
4402 && TREE_INT_CST_LOW (TYPE_SIZE (elttype)) * count
4403 <= 40 * 8))))
4405 lo -= minelt; hi -= minelt;
4406 for (; lo <= hi; lo++)
4408 bitpos = lo * TREE_INT_CST_LOW (TYPE_SIZE (elttype));
4409 store_constructor_field (target, bitsize, bitpos, mode,
4410 value, type, align, cleared);
4413 else
4415 hi_r = expand_expr (hi_index, NULL_RTX, VOIDmode, 0);
4416 loop_top = gen_label_rtx ();
4417 loop_end = gen_label_rtx ();
4419 unsignedp = TREE_UNSIGNED (domain);
4421 index = build_decl (VAR_DECL, NULL_TREE, domain);
4423 DECL_RTL (index) = index_r
4424 = gen_reg_rtx (promote_mode (domain, DECL_MODE (index),
4425 &unsignedp, 0));
4427 if (TREE_CODE (value) == SAVE_EXPR
4428 && SAVE_EXPR_RTL (value) == 0)
4430 /* Make sure value gets expanded once before the
4431 loop. */
4432 expand_expr (value, const0_rtx, VOIDmode, 0);
4433 emit_queue ();
4435 store_expr (lo_index, index_r, 0);
4436 loop = expand_start_loop (0);
4438 /* Assign value to element index. */
4439 position = size_binop (EXACT_DIV_EXPR, TYPE_SIZE (elttype),
4440 size_int (BITS_PER_UNIT));
4441 position = size_binop (MULT_EXPR,
4442 size_binop (MINUS_EXPR, index,
4443 TYPE_MIN_VALUE (domain)),
4444 position);
4445 pos_rtx = expand_expr (position, 0, VOIDmode, 0);
4446 addr = gen_rtx_PLUS (Pmode, XEXP (target, 0), pos_rtx);
4447 xtarget = change_address (target, mode, addr);
4448 if (TREE_CODE (value) == CONSTRUCTOR)
4449 store_constructor (value, xtarget, align, cleared,
4450 bitsize / BITS_PER_UNIT);
4451 else
4452 store_expr (value, xtarget, 0);
4454 expand_exit_loop_if_false (loop,
4455 build (LT_EXPR, integer_type_node,
4456 index, hi_index));
4458 expand_increment (build (PREINCREMENT_EXPR,
4459 TREE_TYPE (index),
4460 index, integer_one_node), 0, 0);
4461 expand_end_loop ();
4462 emit_label (loop_end);
4464 /* Needed by stupid register allocation. to extend the
4465 lifetime of pseudo-regs used by target past the end
4466 of the loop. */
4467 emit_insn (gen_rtx_USE (GET_MODE (target), target));
4470 else if ((index != 0 && TREE_CODE (index) != INTEGER_CST)
4471 || TREE_CODE (TYPE_SIZE (elttype)) != INTEGER_CST)
4473 rtx pos_rtx, addr;
4474 tree position;
4476 if (index == 0)
4477 index = size_int (i);
4479 if (minelt)
4480 index = size_binop (MINUS_EXPR, index,
4481 TYPE_MIN_VALUE (domain));
4482 position = size_binop (EXACT_DIV_EXPR, TYPE_SIZE (elttype),
4483 size_int (BITS_PER_UNIT));
4484 position = size_binop (MULT_EXPR, index, position);
4485 pos_rtx = expand_expr (position, 0, VOIDmode, 0);
4486 addr = gen_rtx_PLUS (Pmode, XEXP (target, 0), pos_rtx);
4487 xtarget = change_address (target, mode, addr);
4488 store_expr (value, xtarget, 0);
4490 else
4492 if (index != 0)
4493 bitpos = ((TREE_INT_CST_LOW (index) - minelt)
4494 * TREE_INT_CST_LOW (TYPE_SIZE (elttype)));
4495 else
4496 bitpos = (i * TREE_INT_CST_LOW (TYPE_SIZE (elttype)));
4497 store_constructor_field (target, bitsize, bitpos, mode, value,
4498 type, align, cleared);
4502 /* set constructor assignments */
4503 else if (TREE_CODE (type) == SET_TYPE)
4505 tree elt = CONSTRUCTOR_ELTS (exp);
4506 int nbytes = int_size_in_bytes (type), nbits;
4507 tree domain = TYPE_DOMAIN (type);
4508 tree domain_min, domain_max, bitlength;
4510 /* The default implementation strategy is to extract the constant
4511 parts of the constructor, use that to initialize the target,
4512 and then "or" in whatever non-constant ranges we need in addition.
4514 If a large set is all zero or all ones, it is
4515 probably better to set it using memset (if available) or bzero.
4516 Also, if a large set has just a single range, it may also be
4517 better to first clear all the first clear the set (using
4518 bzero/memset), and set the bits we want. */
4520 /* Check for all zeros. */
4521 if (elt == NULL_TREE && size > 0)
4523 if (!cleared)
4524 clear_storage (target, GEN_INT (size),
4525 TYPE_ALIGN (type) / BITS_PER_UNIT);
4526 return;
4529 domain_min = convert (sizetype, TYPE_MIN_VALUE (domain));
4530 domain_max = convert (sizetype, TYPE_MAX_VALUE (domain));
4531 bitlength = size_binop (PLUS_EXPR,
4532 size_binop (MINUS_EXPR, domain_max, domain_min),
4533 size_one_node);
4535 if (nbytes < 0 || TREE_CODE (bitlength) != INTEGER_CST)
4536 abort ();
4537 nbits = TREE_INT_CST_LOW (bitlength);
4539 /* For "small" sets, or "medium-sized" (up to 32 bytes) sets that
4540 are "complicated" (more than one range), initialize (the
4541 constant parts) by copying from a constant. */
4542 if (GET_MODE (target) != BLKmode || nbits <= 2 * BITS_PER_WORD
4543 || (nbytes <= 32 && TREE_CHAIN (elt) != NULL_TREE))
4545 int set_word_size = TYPE_ALIGN (TREE_TYPE (exp));
4546 enum machine_mode mode = mode_for_size (set_word_size, MODE_INT, 1);
4547 char *bit_buffer = (char *) alloca (nbits);
4548 HOST_WIDE_INT word = 0;
4549 int bit_pos = 0;
4550 int ibit = 0;
4551 int offset = 0; /* In bytes from beginning of set. */
4552 elt = get_set_constructor_bits (exp, bit_buffer, nbits);
4553 for (;;)
4555 if (bit_buffer[ibit])
4557 if (BYTES_BIG_ENDIAN)
4558 word |= (1 << (set_word_size - 1 - bit_pos));
4559 else
4560 word |= 1 << bit_pos;
4562 bit_pos++; ibit++;
4563 if (bit_pos >= set_word_size || ibit == nbits)
4565 if (word != 0 || ! cleared)
4567 rtx datum = GEN_INT (word);
4568 rtx to_rtx;
4569 /* The assumption here is that it is safe to use
4570 XEXP if the set is multi-word, but not if
4571 it's single-word. */
4572 if (GET_CODE (target) == MEM)
4574 to_rtx = plus_constant (XEXP (target, 0), offset);
4575 to_rtx = change_address (target, mode, to_rtx);
4577 else if (offset == 0)
4578 to_rtx = target;
4579 else
4580 abort ();
4581 emit_move_insn (to_rtx, datum);
4583 if (ibit == nbits)
4584 break;
4585 word = 0;
4586 bit_pos = 0;
4587 offset += set_word_size / BITS_PER_UNIT;
4591 else if (!cleared)
4593 /* Don't bother clearing storage if the set is all ones. */
4594 if (TREE_CHAIN (elt) != NULL_TREE
4595 || (TREE_PURPOSE (elt) == NULL_TREE
4596 ? nbits != 1
4597 : (TREE_CODE (TREE_VALUE (elt)) != INTEGER_CST
4598 || TREE_CODE (TREE_PURPOSE (elt)) != INTEGER_CST
4599 || (TREE_INT_CST_LOW (TREE_VALUE (elt))
4600 - TREE_INT_CST_LOW (TREE_PURPOSE (elt)) + 1
4601 != nbits))))
4602 clear_storage (target, expr_size (exp),
4603 TYPE_ALIGN (type) / BITS_PER_UNIT);
4606 for (; elt != NULL_TREE; elt = TREE_CHAIN (elt))
4608 /* start of range of element or NULL */
4609 tree startbit = TREE_PURPOSE (elt);
4610 /* end of range of element, or element value */
4611 tree endbit = TREE_VALUE (elt);
4612 #ifdef TARGET_MEM_FUNCTIONS
4613 HOST_WIDE_INT startb, endb;
4614 #endif
4615 rtx bitlength_rtx, startbit_rtx, endbit_rtx, targetx;
4617 bitlength_rtx = expand_expr (bitlength,
4618 NULL_RTX, MEM, EXPAND_CONST_ADDRESS);
4620 /* handle non-range tuple element like [ expr ] */
4621 if (startbit == NULL_TREE)
4623 startbit = save_expr (endbit);
4624 endbit = startbit;
4626 startbit = convert (sizetype, startbit);
4627 endbit = convert (sizetype, endbit);
4628 if (! integer_zerop (domain_min))
4630 startbit = size_binop (MINUS_EXPR, startbit, domain_min);
4631 endbit = size_binop (MINUS_EXPR, endbit, domain_min);
4633 startbit_rtx = expand_expr (startbit, NULL_RTX, MEM,
4634 EXPAND_CONST_ADDRESS);
4635 endbit_rtx = expand_expr (endbit, NULL_RTX, MEM,
4636 EXPAND_CONST_ADDRESS);
4638 if (REG_P (target))
4640 targetx = assign_stack_temp (GET_MODE (target),
4641 GET_MODE_SIZE (GET_MODE (target)),
4643 emit_move_insn (targetx, target);
4645 else if (GET_CODE (target) == MEM)
4646 targetx = target;
4647 else
4648 abort ();
4650 #ifdef TARGET_MEM_FUNCTIONS
4651 /* Optimization: If startbit and endbit are
4652 constants divisible by BITS_PER_UNIT,
4653 call memset instead. */
4654 if (TREE_CODE (startbit) == INTEGER_CST
4655 && TREE_CODE (endbit) == INTEGER_CST
4656 && (startb = TREE_INT_CST_LOW (startbit)) % BITS_PER_UNIT == 0
4657 && (endb = TREE_INT_CST_LOW (endbit) + 1) % BITS_PER_UNIT == 0)
4659 emit_library_call (memset_libfunc, 0,
4660 VOIDmode, 3,
4661 plus_constant (XEXP (targetx, 0),
4662 startb / BITS_PER_UNIT),
4663 Pmode,
4664 constm1_rtx, TYPE_MODE (integer_type_node),
4665 GEN_INT ((endb - startb) / BITS_PER_UNIT),
4666 TYPE_MODE (sizetype));
4668 else
4669 #endif
4671 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__setbits"),
4672 0, VOIDmode, 4, XEXP (targetx, 0), Pmode,
4673 bitlength_rtx, TYPE_MODE (sizetype),
4674 startbit_rtx, TYPE_MODE (sizetype),
4675 endbit_rtx, TYPE_MODE (sizetype));
4677 if (REG_P (target))
4678 emit_move_insn (target, targetx);
4682 else
4683 abort ();
4686 /* Store the value of EXP (an expression tree)
4687 into a subfield of TARGET which has mode MODE and occupies
4688 BITSIZE bits, starting BITPOS bits from the start of TARGET.
4689 If MODE is VOIDmode, it means that we are storing into a bit-field.
4691 If VALUE_MODE is VOIDmode, return nothing in particular.
4692 UNSIGNEDP is not used in this case.
4694 Otherwise, return an rtx for the value stored. This rtx
4695 has mode VALUE_MODE if that is convenient to do.
4696 In this case, UNSIGNEDP must be nonzero if the value is an unsigned type.
4698 ALIGN is the alignment that TARGET is known to have, measured in bytes.
4699 TOTAL_SIZE is the size in bytes of the structure, or -1 if varying.
4701 ALIAS_SET is the alias set for the destination. This value will
4702 (in general) be different from that for TARGET, since TARGET is a
4703 reference to the containing structure. */
4705 static rtx
4706 store_field (target, bitsize, bitpos, mode, exp, value_mode,
4707 unsignedp, align, total_size, alias_set)
4708 rtx target;
4709 int bitsize, bitpos;
4710 enum machine_mode mode;
4711 tree exp;
4712 enum machine_mode value_mode;
4713 int unsignedp;
4714 int align;
4715 int total_size;
4716 int alias_set;
4718 HOST_WIDE_INT width_mask = 0;
4720 if (TREE_CODE (exp) == ERROR_MARK)
4721 return const0_rtx;
4723 if (bitsize < HOST_BITS_PER_WIDE_INT)
4724 width_mask = ((HOST_WIDE_INT) 1 << bitsize) - 1;
4726 /* If we are storing into an unaligned field of an aligned union that is
4727 in a register, we may have the mode of TARGET being an integer mode but
4728 MODE == BLKmode. In that case, get an aligned object whose size and
4729 alignment are the same as TARGET and store TARGET into it (we can avoid
4730 the store if the field being stored is the entire width of TARGET). Then
4731 call ourselves recursively to store the field into a BLKmode version of
4732 that object. Finally, load from the object into TARGET. This is not
4733 very efficient in general, but should only be slightly more expensive
4734 than the otherwise-required unaligned accesses. Perhaps this can be
4735 cleaned up later. */
4737 if (mode == BLKmode
4738 && (GET_CODE (target) == REG || GET_CODE (target) == SUBREG))
4740 rtx object = assign_stack_temp (GET_MODE (target),
4741 GET_MODE_SIZE (GET_MODE (target)), 0);
4742 rtx blk_object = copy_rtx (object);
4744 MEM_SET_IN_STRUCT_P (object, 1);
4745 MEM_SET_IN_STRUCT_P (blk_object, 1);
4746 PUT_MODE (blk_object, BLKmode);
4748 if (bitsize != GET_MODE_BITSIZE (GET_MODE (target)))
4749 emit_move_insn (object, target);
4751 store_field (blk_object, bitsize, bitpos, mode, exp, VOIDmode, 0,
4752 align, total_size, alias_set);
4754 /* Even though we aren't returning target, we need to
4755 give it the updated value. */
4756 emit_move_insn (target, object);
4758 return blk_object;
4761 /* If the structure is in a register or if the component
4762 is a bit field, we cannot use addressing to access it.
4763 Use bit-field techniques or SUBREG to store in it. */
4765 if (mode == VOIDmode
4766 || (mode != BLKmode && ! direct_store[(int) mode]
4767 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
4768 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
4769 || GET_CODE (target) == REG
4770 || GET_CODE (target) == SUBREG
4771 /* If the field isn't aligned enough to store as an ordinary memref,
4772 store it as a bit field. */
4773 || (mode != BLKmode && SLOW_UNALIGNED_ACCESS (mode, align)
4774 && (align * BITS_PER_UNIT < GET_MODE_ALIGNMENT (mode)
4775 || bitpos % GET_MODE_ALIGNMENT (mode)))
4776 || (mode == BLKmode && SLOW_UNALIGNED_ACCESS (mode, align)
4777 && (TYPE_ALIGN (TREE_TYPE (exp)) > align * BITS_PER_UNIT
4778 || bitpos % TYPE_ALIGN (TREE_TYPE (exp)) != 0))
4779 /* If the RHS and field are a constant size and the size of the
4780 RHS isn't the same size as the bitfield, we must use bitfield
4781 operations. */
4782 || ((bitsize >= 0
4783 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST)
4784 && (TREE_INT_CST_HIGH (TYPE_SIZE (TREE_TYPE (exp))) != 0
4785 || TREE_INT_CST_LOW (TYPE_SIZE (TREE_TYPE (exp))) != bitsize)))
4787 rtx temp = expand_expr (exp, NULL_RTX, VOIDmode, 0);
4789 /* If BITSIZE is narrower than the size of the type of EXP
4790 we will be narrowing TEMP. Normally, what's wanted are the
4791 low-order bits. However, if EXP's type is a record and this is
4792 big-endian machine, we want the upper BITSIZE bits. */
4793 if (BYTES_BIG_ENDIAN && GET_MODE_CLASS (GET_MODE (temp)) == MODE_INT
4794 && bitsize < GET_MODE_BITSIZE (GET_MODE (temp))
4795 && TREE_CODE (TREE_TYPE (exp)) == RECORD_TYPE)
4796 temp = expand_shift (RSHIFT_EXPR, GET_MODE (temp), temp,
4797 size_int (GET_MODE_BITSIZE (GET_MODE (temp))
4798 - bitsize),
4799 temp, 1);
4801 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to
4802 MODE. */
4803 if (mode != VOIDmode && mode != BLKmode
4804 && mode != TYPE_MODE (TREE_TYPE (exp)))
4805 temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
4807 /* If the modes of TARGET and TEMP are both BLKmode, both
4808 must be in memory and BITPOS must be aligned on a byte
4809 boundary. If so, we simply do a block copy. */
4810 if (GET_MODE (target) == BLKmode && GET_MODE (temp) == BLKmode)
4812 if (GET_CODE (target) != MEM || GET_CODE (temp) != MEM
4813 || bitpos % BITS_PER_UNIT != 0)
4814 abort ();
4816 target = change_address (target, VOIDmode,
4817 plus_constant (XEXP (target, 0),
4818 bitpos / BITS_PER_UNIT));
4820 /* Find an alignment that is consistent with the bit position. */
4821 while ((bitpos % (align * BITS_PER_UNIT)) != 0)
4822 align >>= 1;
4824 emit_block_move (target, temp,
4825 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
4826 / BITS_PER_UNIT),
4827 align);
4829 return value_mode == VOIDmode ? const0_rtx : target;
4832 /* Store the value in the bitfield. */
4833 store_bit_field (target, bitsize, bitpos, mode, temp, align, total_size);
4834 if (value_mode != VOIDmode)
4836 /* The caller wants an rtx for the value. */
4837 /* If possible, avoid refetching from the bitfield itself. */
4838 if (width_mask != 0
4839 && ! (GET_CODE (target) == MEM && MEM_VOLATILE_P (target)))
4841 tree count;
4842 enum machine_mode tmode;
4844 if (unsignedp)
4845 return expand_and (temp, GEN_INT (width_mask), NULL_RTX);
4846 tmode = GET_MODE (temp);
4847 if (tmode == VOIDmode)
4848 tmode = value_mode;
4849 count = build_int_2 (GET_MODE_BITSIZE (tmode) - bitsize, 0);
4850 temp = expand_shift (LSHIFT_EXPR, tmode, temp, count, 0, 0);
4851 return expand_shift (RSHIFT_EXPR, tmode, temp, count, 0, 0);
4853 return extract_bit_field (target, bitsize, bitpos, unsignedp,
4854 NULL_RTX, value_mode, 0, align,
4855 total_size);
4857 return const0_rtx;
4859 else
4861 rtx addr = XEXP (target, 0);
4862 rtx to_rtx;
4864 /* If a value is wanted, it must be the lhs;
4865 so make the address stable for multiple use. */
4867 if (value_mode != VOIDmode && GET_CODE (addr) != REG
4868 && ! CONSTANT_ADDRESS_P (addr)
4869 /* A frame-pointer reference is already stable. */
4870 && ! (GET_CODE (addr) == PLUS
4871 && GET_CODE (XEXP (addr, 1)) == CONST_INT
4872 && (XEXP (addr, 0) == virtual_incoming_args_rtx
4873 || XEXP (addr, 0) == virtual_stack_vars_rtx)))
4874 addr = copy_to_reg (addr);
4876 /* Now build a reference to just the desired component. */
4878 to_rtx = copy_rtx (change_address (target, mode,
4879 plus_constant (addr,
4880 (bitpos
4881 / BITS_PER_UNIT))));
4882 MEM_SET_IN_STRUCT_P (to_rtx, 1);
4883 MEM_ALIAS_SET (to_rtx) = alias_set;
4885 return store_expr (exp, to_rtx, value_mode != VOIDmode);
4889 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
4890 or an ARRAY_REF, look for nested COMPONENT_REFs, BIT_FIELD_REFs, or
4891 ARRAY_REFs and find the ultimate containing object, which we return.
4893 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
4894 bit position, and *PUNSIGNEDP to the signedness of the field.
4895 If the position of the field is variable, we store a tree
4896 giving the variable offset (in units) in *POFFSET.
4897 This offset is in addition to the bit position.
4898 If the position is not variable, we store 0 in *POFFSET.
4899 We set *PALIGNMENT to the alignment in bytes of the address that will be
4900 computed. This is the alignment of the thing we return if *POFFSET
4901 is zero, but can be more less strictly aligned if *POFFSET is nonzero.
4903 If any of the extraction expressions is volatile,
4904 we store 1 in *PVOLATILEP. Otherwise we don't change that.
4906 If the field is a bit-field, *PMODE is set to VOIDmode. Otherwise, it
4907 is a mode that can be used to access the field. In that case, *PBITSIZE
4908 is redundant.
4910 If the field describes a variable-sized object, *PMODE is set to
4911 VOIDmode and *PBITSIZE is set to -1. An access cannot be made in
4912 this case, but the address of the object can be found. */
4914 tree
4915 get_inner_reference (exp, pbitsize, pbitpos, poffset, pmode,
4916 punsignedp, pvolatilep, palignment)
4917 tree exp;
4918 int *pbitsize;
4919 int *pbitpos;
4920 tree *poffset;
4921 enum machine_mode *pmode;
4922 int *punsignedp;
4923 int *pvolatilep;
4924 int *palignment;
4926 tree orig_exp = exp;
4927 tree size_tree = 0;
4928 enum machine_mode mode = VOIDmode;
4929 tree offset = integer_zero_node;
4930 unsigned int alignment = BIGGEST_ALIGNMENT;
4932 if (TREE_CODE (exp) == COMPONENT_REF)
4934 size_tree = DECL_SIZE (TREE_OPERAND (exp, 1));
4935 if (! DECL_BIT_FIELD (TREE_OPERAND (exp, 1)))
4936 mode = DECL_MODE (TREE_OPERAND (exp, 1));
4937 *punsignedp = TREE_UNSIGNED (TREE_OPERAND (exp, 1));
4939 else if (TREE_CODE (exp) == BIT_FIELD_REF)
4941 size_tree = TREE_OPERAND (exp, 1);
4942 *punsignedp = TREE_UNSIGNED (exp);
4944 else
4946 mode = TYPE_MODE (TREE_TYPE (exp));
4947 if (mode == BLKmode)
4948 size_tree = TYPE_SIZE (TREE_TYPE (exp));
4950 *pbitsize = GET_MODE_BITSIZE (mode);
4951 *punsignedp = TREE_UNSIGNED (TREE_TYPE (exp));
4954 if (size_tree)
4956 if (TREE_CODE (size_tree) != INTEGER_CST)
4957 mode = BLKmode, *pbitsize = -1;
4958 else
4959 *pbitsize = TREE_INT_CST_LOW (size_tree);
4962 /* Compute cumulative bit-offset for nested component-refs and array-refs,
4963 and find the ultimate containing object. */
4965 *pbitpos = 0;
4967 while (1)
4969 if (TREE_CODE (exp) == COMPONENT_REF || TREE_CODE (exp) == BIT_FIELD_REF)
4971 tree pos = (TREE_CODE (exp) == COMPONENT_REF
4972 ? DECL_FIELD_BITPOS (TREE_OPERAND (exp, 1))
4973 : TREE_OPERAND (exp, 2));
4974 tree constant = integer_zero_node, var = pos;
4976 /* If this field hasn't been filled in yet, don't go
4977 past it. This should only happen when folding expressions
4978 made during type construction. */
4979 if (pos == 0)
4980 break;
4982 /* Assume here that the offset is a multiple of a unit.
4983 If not, there should be an explicitly added constant. */
4984 if (TREE_CODE (pos) == PLUS_EXPR
4985 && TREE_CODE (TREE_OPERAND (pos, 1)) == INTEGER_CST)
4986 constant = TREE_OPERAND (pos, 1), var = TREE_OPERAND (pos, 0);
4987 else if (TREE_CODE (pos) == INTEGER_CST)
4988 constant = pos, var = integer_zero_node;
4990 *pbitpos += TREE_INT_CST_LOW (constant);
4991 offset = size_binop (PLUS_EXPR, offset,
4992 size_binop (EXACT_DIV_EXPR, var,
4993 size_int (BITS_PER_UNIT)));
4996 else if (TREE_CODE (exp) == ARRAY_REF)
4998 /* This code is based on the code in case ARRAY_REF in expand_expr
4999 below. We assume here that the size of an array element is
5000 always an integral multiple of BITS_PER_UNIT. */
5002 tree index = TREE_OPERAND (exp, 1);
5003 tree domain = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
5004 tree low_bound
5005 = domain ? TYPE_MIN_VALUE (domain) : integer_zero_node;
5006 tree index_type = TREE_TYPE (index);
5007 tree xindex;
5009 if (TYPE_PRECISION (index_type) != TYPE_PRECISION (sizetype))
5011 index = convert (type_for_size (TYPE_PRECISION (sizetype), 0),
5012 index);
5013 index_type = TREE_TYPE (index);
5016 /* Optimize the special-case of a zero lower bound.
5018 We convert the low_bound to sizetype to avoid some problems
5019 with constant folding. (E.g. suppose the lower bound is 1,
5020 and its mode is QI. Without the conversion, (ARRAY
5021 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
5022 +INDEX), which becomes (ARRAY+255+INDEX). Oops!)
5024 But sizetype isn't quite right either (especially if
5025 the lowbound is negative). FIXME */
5027 if (! integer_zerop (low_bound))
5028 index = fold (build (MINUS_EXPR, index_type, index,
5029 convert (sizetype, low_bound)));
5031 if (TREE_CODE (index) == INTEGER_CST)
5033 index = convert (sbitsizetype, index);
5034 index_type = TREE_TYPE (index);
5037 xindex = fold (build (MULT_EXPR, sbitsizetype, index,
5038 convert (sbitsizetype,
5039 TYPE_SIZE (TREE_TYPE (exp)))));
5041 if (TREE_CODE (xindex) == INTEGER_CST
5042 && TREE_INT_CST_HIGH (xindex) == 0)
5043 *pbitpos += TREE_INT_CST_LOW (xindex);
5044 else
5046 /* Either the bit offset calculated above is not constant, or
5047 it overflowed. In either case, redo the multiplication
5048 against the size in units. This is especially important
5049 in the non-constant case to avoid a division at runtime. */
5050 xindex = fold (build (MULT_EXPR, ssizetype, index,
5051 convert (ssizetype,
5052 TYPE_SIZE_UNIT (TREE_TYPE (exp)))));
5054 if (contains_placeholder_p (xindex))
5055 xindex = build (WITH_RECORD_EXPR, sizetype, xindex, exp);
5057 offset = size_binop (PLUS_EXPR, offset, xindex);
5060 else if (TREE_CODE (exp) != NON_LVALUE_EXPR
5061 && ! ((TREE_CODE (exp) == NOP_EXPR
5062 || TREE_CODE (exp) == CONVERT_EXPR)
5063 && (TYPE_MODE (TREE_TYPE (exp))
5064 == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))))))
5065 break;
5067 /* If any reference in the chain is volatile, the effect is volatile. */
5068 if (TREE_THIS_VOLATILE (exp))
5069 *pvolatilep = 1;
5071 /* If the offset is non-constant already, then we can't assume any
5072 alignment more than the alignment here. */
5073 if (! integer_zerop (offset))
5074 alignment = MIN (alignment, TYPE_ALIGN (TREE_TYPE (exp)));
5076 exp = TREE_OPERAND (exp, 0);
5079 if (TREE_CODE_CLASS (TREE_CODE (exp)) == 'd')
5080 alignment = MIN (alignment, DECL_ALIGN (exp));
5081 else if (TREE_TYPE (exp) != 0)
5082 alignment = MIN (alignment, TYPE_ALIGN (TREE_TYPE (exp)));
5084 if (integer_zerop (offset))
5085 offset = 0;
5087 if (offset != 0 && contains_placeholder_p (offset))
5088 offset = build (WITH_RECORD_EXPR, sizetype, offset, orig_exp);
5090 *pmode = mode;
5091 *poffset = offset;
5092 *palignment = alignment / BITS_PER_UNIT;
5093 return exp;
5096 /* Subroutine of expand_exp: compute memory_usage from modifier. */
5097 static enum memory_use_mode
5098 get_memory_usage_from_modifier (modifier)
5099 enum expand_modifier modifier;
5101 switch (modifier)
5103 case EXPAND_NORMAL:
5104 case EXPAND_SUM:
5105 return MEMORY_USE_RO;
5106 break;
5107 case EXPAND_MEMORY_USE_WO:
5108 return MEMORY_USE_WO;
5109 break;
5110 case EXPAND_MEMORY_USE_RW:
5111 return MEMORY_USE_RW;
5112 break;
5113 case EXPAND_MEMORY_USE_DONT:
5114 /* EXPAND_CONST_ADDRESS and EXPAND_INITIALIZER are converted into
5115 MEMORY_USE_DONT, because they are modifiers to a call of
5116 expand_expr in the ADDR_EXPR case of expand_expr. */
5117 case EXPAND_CONST_ADDRESS:
5118 case EXPAND_INITIALIZER:
5119 return MEMORY_USE_DONT;
5120 case EXPAND_MEMORY_USE_BAD:
5121 default:
5122 abort ();
5126 /* Given an rtx VALUE that may contain additions and multiplications,
5127 return an equivalent value that just refers to a register or memory.
5128 This is done by generating instructions to perform the arithmetic
5129 and returning a pseudo-register containing the value.
5131 The returned value may be a REG, SUBREG, MEM or constant. */
5134 force_operand (value, target)
5135 rtx value, target;
5137 register optab binoptab = 0;
5138 /* Use a temporary to force order of execution of calls to
5139 `force_operand'. */
5140 rtx tmp;
5141 register rtx op2;
5142 /* Use subtarget as the target for operand 0 of a binary operation. */
5143 register rtx subtarget = (target != 0 && GET_CODE (target) == REG ? target : 0);
5145 /* Check for a PIC address load. */
5146 if (flag_pic
5147 && (GET_CODE (value) == PLUS || GET_CODE (value) == MINUS)
5148 && XEXP (value, 0) == pic_offset_table_rtx
5149 && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
5150 || GET_CODE (XEXP (value, 1)) == LABEL_REF
5151 || GET_CODE (XEXP (value, 1)) == CONST))
5153 if (!subtarget)
5154 subtarget = gen_reg_rtx (GET_MODE (value));
5155 emit_move_insn (subtarget, value);
5156 return subtarget;
5159 if (GET_CODE (value) == PLUS)
5160 binoptab = add_optab;
5161 else if (GET_CODE (value) == MINUS)
5162 binoptab = sub_optab;
5163 else if (GET_CODE (value) == MULT)
5165 op2 = XEXP (value, 1);
5166 if (!CONSTANT_P (op2)
5167 && !(GET_CODE (op2) == REG && op2 != subtarget))
5168 subtarget = 0;
5169 tmp = force_operand (XEXP (value, 0), subtarget);
5170 return expand_mult (GET_MODE (value), tmp,
5171 force_operand (op2, NULL_RTX),
5172 target, 0);
5175 if (binoptab)
5177 op2 = XEXP (value, 1);
5178 if (!CONSTANT_P (op2)
5179 && !(GET_CODE (op2) == REG && op2 != subtarget))
5180 subtarget = 0;
5181 if (binoptab == sub_optab && GET_CODE (op2) == CONST_INT)
5183 binoptab = add_optab;
5184 op2 = negate_rtx (GET_MODE (value), op2);
5187 /* Check for an addition with OP2 a constant integer and our first
5188 operand a PLUS of a virtual register and something else. In that
5189 case, we want to emit the sum of the virtual register and the
5190 constant first and then add the other value. This allows virtual
5191 register instantiation to simply modify the constant rather than
5192 creating another one around this addition. */
5193 if (binoptab == add_optab && GET_CODE (op2) == CONST_INT
5194 && GET_CODE (XEXP (value, 0)) == PLUS
5195 && GET_CODE (XEXP (XEXP (value, 0), 0)) == REG
5196 && REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
5197 && REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
5199 rtx temp = expand_binop (GET_MODE (value), binoptab,
5200 XEXP (XEXP (value, 0), 0), op2,
5201 subtarget, 0, OPTAB_LIB_WIDEN);
5202 return expand_binop (GET_MODE (value), binoptab, temp,
5203 force_operand (XEXP (XEXP (value, 0), 1), 0),
5204 target, 0, OPTAB_LIB_WIDEN);
5207 tmp = force_operand (XEXP (value, 0), subtarget);
5208 return expand_binop (GET_MODE (value), binoptab, tmp,
5209 force_operand (op2, NULL_RTX),
5210 target, 0, OPTAB_LIB_WIDEN);
5211 /* We give UNSIGNEDP = 0 to expand_binop
5212 because the only operations we are expanding here are signed ones. */
5214 return value;
5217 /* Subroutine of expand_expr:
5218 save the non-copied parts (LIST) of an expr (LHS), and return a list
5219 which can restore these values to their previous values,
5220 should something modify their storage. */
5222 static tree
5223 save_noncopied_parts (lhs, list)
5224 tree lhs;
5225 tree list;
5227 tree tail;
5228 tree parts = 0;
5230 for (tail = list; tail; tail = TREE_CHAIN (tail))
5231 if (TREE_CODE (TREE_VALUE (tail)) == TREE_LIST)
5232 parts = chainon (parts, save_noncopied_parts (lhs, TREE_VALUE (tail)));
5233 else
5235 tree part = TREE_VALUE (tail);
5236 tree part_type = TREE_TYPE (part);
5237 tree to_be_saved = build (COMPONENT_REF, part_type, lhs, part);
5238 rtx target = assign_temp (part_type, 0, 1, 1);
5239 if (! memory_address_p (TYPE_MODE (part_type), XEXP (target, 0)))
5240 target = change_address (target, TYPE_MODE (part_type), NULL_RTX);
5241 parts = tree_cons (to_be_saved,
5242 build (RTL_EXPR, part_type, NULL_TREE,
5243 (tree) target),
5244 parts);
5245 store_expr (TREE_PURPOSE (parts), RTL_EXPR_RTL (TREE_VALUE (parts)), 0);
5247 return parts;
5250 /* Subroutine of expand_expr:
5251 record the non-copied parts (LIST) of an expr (LHS), and return a list
5252 which specifies the initial values of these parts. */
5254 static tree
5255 init_noncopied_parts (lhs, list)
5256 tree lhs;
5257 tree list;
5259 tree tail;
5260 tree parts = 0;
5262 for (tail = list; tail; tail = TREE_CHAIN (tail))
5263 if (TREE_CODE (TREE_VALUE (tail)) == TREE_LIST)
5264 parts = chainon (parts, init_noncopied_parts (lhs, TREE_VALUE (tail)));
5265 else if (TREE_PURPOSE (tail))
5267 tree part = TREE_VALUE (tail);
5268 tree part_type = TREE_TYPE (part);
5269 tree to_be_initialized = build (COMPONENT_REF, part_type, lhs, part);
5270 parts = tree_cons (TREE_PURPOSE (tail), to_be_initialized, parts);
5272 return parts;
5275 /* Subroutine of expand_expr: return nonzero iff there is no way that
5276 EXP can reference X, which is being modified. TOP_P is nonzero if this
5277 call is going to be used to determine whether we need a temporary
5278 for EXP, as opposed to a recursive call to this function.
5280 It is always safe for this routine to return zero since it merely
5281 searches for optimization opportunities. */
5283 static int
5284 safe_from_p (x, exp, top_p)
5285 rtx x;
5286 tree exp;
5287 int top_p;
5289 rtx exp_rtl = 0;
5290 int i, nops;
5291 static int save_expr_count;
5292 static int save_expr_size = 0;
5293 static tree *save_expr_rewritten;
5294 static tree save_expr_trees[256];
5296 if (x == 0
5297 /* If EXP has varying size, we MUST use a target since we currently
5298 have no way of allocating temporaries of variable size
5299 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
5300 So we assume here that something at a higher level has prevented a
5301 clash. This is somewhat bogus, but the best we can do. Only
5302 do this when X is BLKmode and when we are at the top level. */
5303 || (top_p && TREE_TYPE (exp) != 0 && TYPE_SIZE (TREE_TYPE (exp)) != 0
5304 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
5305 && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
5306 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
5307 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
5308 != INTEGER_CST)
5309 && GET_MODE (x) == BLKmode))
5310 return 1;
5312 if (top_p && save_expr_size == 0)
5314 int rtn;
5316 save_expr_count = 0;
5317 save_expr_size = sizeof (save_expr_trees) / sizeof (save_expr_trees[0]);
5318 save_expr_rewritten = &save_expr_trees[0];
5320 rtn = safe_from_p (x, exp, 1);
5322 for (i = 0; i < save_expr_count; ++i)
5324 if (TREE_CODE (save_expr_trees[i]) != ERROR_MARK)
5325 abort ();
5326 TREE_SET_CODE (save_expr_trees[i], SAVE_EXPR);
5329 save_expr_size = 0;
5331 return rtn;
5334 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
5335 find the underlying pseudo. */
5336 if (GET_CODE (x) == SUBREG)
5338 x = SUBREG_REG (x);
5339 if (GET_CODE (x) == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
5340 return 0;
5343 /* If X is a location in the outgoing argument area, it is always safe. */
5344 if (GET_CODE (x) == MEM
5345 && (XEXP (x, 0) == virtual_outgoing_args_rtx
5346 || (GET_CODE (XEXP (x, 0)) == PLUS
5347 && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx)))
5348 return 1;
5350 switch (TREE_CODE_CLASS (TREE_CODE (exp)))
5352 case 'd':
5353 exp_rtl = DECL_RTL (exp);
5354 break;
5356 case 'c':
5357 return 1;
5359 case 'x':
5360 if (TREE_CODE (exp) == TREE_LIST)
5361 return ((TREE_VALUE (exp) == 0
5362 || safe_from_p (x, TREE_VALUE (exp), 0))
5363 && (TREE_CHAIN (exp) == 0
5364 || safe_from_p (x, TREE_CHAIN (exp), 0)));
5365 else if (TREE_CODE (exp) == ERROR_MARK)
5366 return 1; /* An already-visited SAVE_EXPR? */
5367 else
5368 return 0;
5370 case '1':
5371 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
5373 case '2':
5374 case '<':
5375 return (safe_from_p (x, TREE_OPERAND (exp, 0), 0)
5376 && safe_from_p (x, TREE_OPERAND (exp, 1), 0));
5378 case 'e':
5379 case 'r':
5380 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
5381 the expression. If it is set, we conflict iff we are that rtx or
5382 both are in memory. Otherwise, we check all operands of the
5383 expression recursively. */
5385 switch (TREE_CODE (exp))
5387 case ADDR_EXPR:
5388 return (staticp (TREE_OPERAND (exp, 0))
5389 || safe_from_p (x, TREE_OPERAND (exp, 0), 0)
5390 || TREE_STATIC (exp));
5392 case INDIRECT_REF:
5393 if (GET_CODE (x) == MEM)
5394 return 0;
5395 break;
5397 case CALL_EXPR:
5398 exp_rtl = CALL_EXPR_RTL (exp);
5399 if (exp_rtl == 0)
5401 /* Assume that the call will clobber all hard registers and
5402 all of memory. */
5403 if ((GET_CODE (x) == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
5404 || GET_CODE (x) == MEM)
5405 return 0;
5408 break;
5410 case RTL_EXPR:
5411 /* If a sequence exists, we would have to scan every instruction
5412 in the sequence to see if it was safe. This is probably not
5413 worthwhile. */
5414 if (RTL_EXPR_SEQUENCE (exp))
5415 return 0;
5417 exp_rtl = RTL_EXPR_RTL (exp);
5418 break;
5420 case WITH_CLEANUP_EXPR:
5421 exp_rtl = RTL_EXPR_RTL (exp);
5422 break;
5424 case CLEANUP_POINT_EXPR:
5425 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
5427 case SAVE_EXPR:
5428 exp_rtl = SAVE_EXPR_RTL (exp);
5429 if (exp_rtl)
5430 break;
5432 /* This SAVE_EXPR might appear many times in the top-level
5433 safe_from_p() expression, and if it has a complex
5434 subexpression, examining it multiple times could result
5435 in a combinatorial explosion. E.g. on an Alpha
5436 running at least 200MHz, a Fortran test case compiled with
5437 optimization took about 28 minutes to compile -- even though
5438 it was only a few lines long, and the complicated line causing
5439 so much time to be spent in the earlier version of safe_from_p()
5440 had only 293 or so unique nodes.
5442 So, turn this SAVE_EXPR into an ERROR_MARK for now, but remember
5443 where it is so we can turn it back in the top-level safe_from_p()
5444 when we're done. */
5446 /* For now, don't bother re-sizing the array. */
5447 if (save_expr_count >= save_expr_size)
5448 return 0;
5449 save_expr_rewritten[save_expr_count++] = exp;
5451 nops = tree_code_length[(int) SAVE_EXPR];
5452 for (i = 0; i < nops; i++)
5454 tree operand = TREE_OPERAND (exp, i);
5455 if (operand == NULL_TREE)
5456 continue;
5457 TREE_SET_CODE (exp, ERROR_MARK);
5458 if (!safe_from_p (x, operand, 0))
5459 return 0;
5460 TREE_SET_CODE (exp, SAVE_EXPR);
5462 TREE_SET_CODE (exp, ERROR_MARK);
5463 return 1;
5465 case BIND_EXPR:
5466 /* The only operand we look at is operand 1. The rest aren't
5467 part of the expression. */
5468 return safe_from_p (x, TREE_OPERAND (exp, 1), 0);
5470 case METHOD_CALL_EXPR:
5471 /* This takes a rtx argument, but shouldn't appear here. */
5472 abort ();
5474 default:
5475 break;
5478 /* If we have an rtx, we do not need to scan our operands. */
5479 if (exp_rtl)
5480 break;
5482 nops = tree_code_length[(int) TREE_CODE (exp)];
5483 for (i = 0; i < nops; i++)
5484 if (TREE_OPERAND (exp, i) != 0
5485 && ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
5486 return 0;
5489 /* If we have an rtl, find any enclosed object. Then see if we conflict
5490 with it. */
5491 if (exp_rtl)
5493 if (GET_CODE (exp_rtl) == SUBREG)
5495 exp_rtl = SUBREG_REG (exp_rtl);
5496 if (GET_CODE (exp_rtl) == REG
5497 && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
5498 return 0;
5501 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
5502 are memory and EXP is not readonly. */
5503 return ! (rtx_equal_p (x, exp_rtl)
5504 || (GET_CODE (x) == MEM && GET_CODE (exp_rtl) == MEM
5505 && ! TREE_READONLY (exp)));
5508 /* If we reach here, it is safe. */
5509 return 1;
5512 /* Subroutine of expand_expr: return nonzero iff EXP is an
5513 expression whose type is statically determinable. */
5515 static int
5516 fixed_type_p (exp)
5517 tree exp;
5519 if (TREE_CODE (exp) == PARM_DECL
5520 || TREE_CODE (exp) == VAR_DECL
5521 || TREE_CODE (exp) == CALL_EXPR || TREE_CODE (exp) == TARGET_EXPR
5522 || TREE_CODE (exp) == COMPONENT_REF
5523 || TREE_CODE (exp) == ARRAY_REF)
5524 return 1;
5525 return 0;
5528 /* Subroutine of expand_expr: return rtx if EXP is a
5529 variable or parameter; else return 0. */
5531 static rtx
5532 var_rtx (exp)
5533 tree exp;
5535 STRIP_NOPS (exp);
5536 switch (TREE_CODE (exp))
5538 case PARM_DECL:
5539 case VAR_DECL:
5540 return DECL_RTL (exp);
5541 default:
5542 return 0;
5546 #ifdef MAX_INTEGER_COMPUTATION_MODE
5547 void
5548 check_max_integer_computation_mode (exp)
5549 tree exp;
5551 enum tree_code code;
5552 enum machine_mode mode;
5554 /* Strip any NOPs that don't change the mode. */
5555 STRIP_NOPS (exp);
5556 code = TREE_CODE (exp);
5558 /* We must allow conversions of constants to MAX_INTEGER_COMPUTATION_MODE. */
5559 if (code == NOP_EXPR
5560 && TREE_CODE (TREE_OPERAND (exp, 0)) == INTEGER_CST)
5561 return;
5563 /* First check the type of the overall operation. We need only look at
5564 unary, binary and relational operations. */
5565 if (TREE_CODE_CLASS (code) == '1'
5566 || TREE_CODE_CLASS (code) == '2'
5567 || TREE_CODE_CLASS (code) == '<')
5569 mode = TYPE_MODE (TREE_TYPE (exp));
5570 if (GET_MODE_CLASS (mode) == MODE_INT
5571 && mode > MAX_INTEGER_COMPUTATION_MODE)
5572 fatal ("unsupported wide integer operation");
5575 /* Check operand of a unary op. */
5576 if (TREE_CODE_CLASS (code) == '1')
5578 mode = TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)));
5579 if (GET_MODE_CLASS (mode) == MODE_INT
5580 && mode > MAX_INTEGER_COMPUTATION_MODE)
5581 fatal ("unsupported wide integer operation");
5584 /* Check operands of a binary/comparison op. */
5585 if (TREE_CODE_CLASS (code) == '2' || TREE_CODE_CLASS (code) == '<')
5587 mode = TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)));
5588 if (GET_MODE_CLASS (mode) == MODE_INT
5589 && mode > MAX_INTEGER_COMPUTATION_MODE)
5590 fatal ("unsupported wide integer operation");
5592 mode = TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 1)));
5593 if (GET_MODE_CLASS (mode) == MODE_INT
5594 && mode > MAX_INTEGER_COMPUTATION_MODE)
5595 fatal ("unsupported wide integer operation");
5598 #endif
5601 /* Utility function used by expand_expr to see if TYPE, a RECORD_TYPE,
5602 has any readonly fields. If any of the fields have types that
5603 contain readonly fields, return true as well. */
5605 static int
5606 readonly_fields_p (type)
5607 tree type;
5609 tree field;
5611 for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field))
5612 if (TREE_CODE (field) == FIELD_DECL
5613 && (TREE_READONLY (field)
5614 || (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
5615 && readonly_fields_p (TREE_TYPE (field)))))
5616 return 1;
5618 return 0;
5621 /* expand_expr: generate code for computing expression EXP.
5622 An rtx for the computed value is returned. The value is never null.
5623 In the case of a void EXP, const0_rtx is returned.
5625 The value may be stored in TARGET if TARGET is nonzero.
5626 TARGET is just a suggestion; callers must assume that
5627 the rtx returned may not be the same as TARGET.
5629 If TARGET is CONST0_RTX, it means that the value will be ignored.
5631 If TMODE is not VOIDmode, it suggests generating the
5632 result in mode TMODE. But this is done only when convenient.
5633 Otherwise, TMODE is ignored and the value generated in its natural mode.
5634 TMODE is just a suggestion; callers must assume that
5635 the rtx returned may not have mode TMODE.
5637 Note that TARGET may have neither TMODE nor MODE. In that case, it
5638 probably will not be used.
5640 If MODIFIER is EXPAND_SUM then when EXP is an addition
5641 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
5642 or a nest of (PLUS ...) and (MINUS ...) where the terms are
5643 products as above, or REG or MEM, or constant.
5644 Ordinarily in such cases we would output mul or add instructions
5645 and then return a pseudo reg containing the sum.
5647 EXPAND_INITIALIZER is much like EXPAND_SUM except that
5648 it also marks a label as absolutely required (it can't be dead).
5649 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
5650 This is used for outputting expressions used in initializers.
5652 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
5653 with a constant address even if that address is not normally legitimate.
5654 EXPAND_INITIALIZER and EXPAND_SUM also have this effect. */
5657 expand_expr (exp, target, tmode, modifier)
5658 register tree exp;
5659 rtx target;
5660 enum machine_mode tmode;
5661 enum expand_modifier modifier;
5663 register rtx op0, op1, temp;
5664 tree type = TREE_TYPE (exp);
5665 int unsignedp = TREE_UNSIGNED (type);
5666 register enum machine_mode mode;
5667 register enum tree_code code = TREE_CODE (exp);
5668 optab this_optab;
5669 rtx subtarget, original_target;
5670 int ignore;
5671 tree context;
5672 /* Used by check-memory-usage to make modifier read only. */
5673 enum expand_modifier ro_modifier;
5675 /* Handle ERROR_MARK before anybody tries to access its type. */
5676 if (TREE_CODE (exp) == ERROR_MARK)
5678 op0 = CONST0_RTX (tmode);
5679 if (op0 != 0)
5680 return op0;
5681 return const0_rtx;
5684 mode = TYPE_MODE (type);
5685 /* Use subtarget as the target for operand 0 of a binary operation. */
5686 subtarget = (target != 0 && GET_CODE (target) == REG ? target : 0);
5687 original_target = target;
5688 ignore = (target == const0_rtx
5689 || ((code == NON_LVALUE_EXPR || code == NOP_EXPR
5690 || code == CONVERT_EXPR || code == REFERENCE_EXPR
5691 || code == COND_EXPR)
5692 && TREE_CODE (type) == VOID_TYPE));
5694 /* Make a read-only version of the modifier. */
5695 if (modifier == EXPAND_NORMAL || modifier == EXPAND_SUM
5696 || modifier == EXPAND_CONST_ADDRESS || modifier == EXPAND_INITIALIZER)
5697 ro_modifier = modifier;
5698 else
5699 ro_modifier = EXPAND_NORMAL;
5701 /* Don't use hard regs as subtargets, because the combiner
5702 can only handle pseudo regs. */
5703 if (subtarget && REGNO (subtarget) < FIRST_PSEUDO_REGISTER)
5704 subtarget = 0;
5705 /* Avoid subtargets inside loops,
5706 since they hide some invariant expressions. */
5707 if (preserve_subexpressions_p ())
5708 subtarget = 0;
5710 /* If we are going to ignore this result, we need only do something
5711 if there is a side-effect somewhere in the expression. If there
5712 is, short-circuit the most common cases here. Note that we must
5713 not call expand_expr with anything but const0_rtx in case this
5714 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
5716 if (ignore)
5718 if (! TREE_SIDE_EFFECTS (exp))
5719 return const0_rtx;
5721 /* Ensure we reference a volatile object even if value is ignored, but
5722 don't do this if all we are doing is taking its address. */
5723 if (TREE_THIS_VOLATILE (exp)
5724 && TREE_CODE (exp) != FUNCTION_DECL
5725 && mode != VOIDmode && mode != BLKmode
5726 && modifier != EXPAND_CONST_ADDRESS)
5728 temp = expand_expr (exp, NULL_RTX, VOIDmode, ro_modifier);
5729 if (GET_CODE (temp) == MEM)
5730 temp = copy_to_reg (temp);
5731 return const0_rtx;
5734 if (TREE_CODE_CLASS (code) == '1' || code == COMPONENT_REF
5735 || code == INDIRECT_REF || code == BUFFER_REF)
5736 return expand_expr (TREE_OPERAND (exp, 0), const0_rtx,
5737 VOIDmode, ro_modifier);
5738 else if (TREE_CODE_CLASS (code) == '2' || TREE_CODE_CLASS (code) == '<'
5739 || code == ARRAY_REF)
5741 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, ro_modifier);
5742 expand_expr (TREE_OPERAND (exp, 1), const0_rtx, VOIDmode, ro_modifier);
5743 return const0_rtx;
5745 else if ((code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR)
5746 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (exp, 1)))
5747 /* If the second operand has no side effects, just evaluate
5748 the first. */
5749 return expand_expr (TREE_OPERAND (exp, 0), const0_rtx,
5750 VOIDmode, ro_modifier);
5751 else if (code == BIT_FIELD_REF)
5753 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, ro_modifier);
5754 expand_expr (TREE_OPERAND (exp, 1), const0_rtx, VOIDmode, ro_modifier);
5755 expand_expr (TREE_OPERAND (exp, 2), const0_rtx, VOIDmode, ro_modifier);
5756 return const0_rtx;
5759 target = 0;
5762 #ifdef MAX_INTEGER_COMPUTATION_MODE
5763 /* Only check stuff here if the mode we want is different from the mode
5764 of the expression; if it's the same, check_max_integer_computiation_mode
5765 will handle it. Do we really need to check this stuff at all? */
5767 if (target
5768 && GET_MODE (target) != mode
5769 && TREE_CODE (exp) != INTEGER_CST
5770 && TREE_CODE (exp) != PARM_DECL
5771 && TREE_CODE (exp) != ARRAY_REF
5772 && TREE_CODE (exp) != COMPONENT_REF
5773 && TREE_CODE (exp) != BIT_FIELD_REF
5774 && TREE_CODE (exp) != INDIRECT_REF
5775 && TREE_CODE (exp) != CALL_EXPR
5776 && TREE_CODE (exp) != VAR_DECL
5777 && TREE_CODE (exp) != RTL_EXPR)
5779 enum machine_mode mode = GET_MODE (target);
5781 if (GET_MODE_CLASS (mode) == MODE_INT
5782 && mode > MAX_INTEGER_COMPUTATION_MODE)
5783 fatal ("unsupported wide integer operation");
5786 if (tmode != mode
5787 && TREE_CODE (exp) != INTEGER_CST
5788 && TREE_CODE (exp) != PARM_DECL
5789 && TREE_CODE (exp) != ARRAY_REF
5790 && TREE_CODE (exp) != COMPONENT_REF
5791 && TREE_CODE (exp) != BIT_FIELD_REF
5792 && TREE_CODE (exp) != INDIRECT_REF
5793 && TREE_CODE (exp) != VAR_DECL
5794 && TREE_CODE (exp) != CALL_EXPR
5795 && TREE_CODE (exp) != RTL_EXPR
5796 && GET_MODE_CLASS (tmode) == MODE_INT
5797 && tmode > MAX_INTEGER_COMPUTATION_MODE)
5798 fatal ("unsupported wide integer operation");
5800 check_max_integer_computation_mode (exp);
5801 #endif
5803 /* If will do cse, generate all results into pseudo registers
5804 since 1) that allows cse to find more things
5805 and 2) otherwise cse could produce an insn the machine
5806 cannot support. */
5808 if (! cse_not_expected && mode != BLKmode && target
5809 && (GET_CODE (target) != REG || REGNO (target) < FIRST_PSEUDO_REGISTER))
5810 target = subtarget;
5812 switch (code)
5814 case LABEL_DECL:
5816 tree function = decl_function_context (exp);
5817 /* Handle using a label in a containing function. */
5818 if (function != current_function_decl
5819 && function != inline_function_decl && function != 0)
5821 struct function *p = find_function_data (function);
5822 /* Allocate in the memory associated with the function
5823 that the label is in. */
5824 push_obstacks (p->function_obstack,
5825 p->function_maybepermanent_obstack);
5827 p->expr->x_forced_labels
5828 = gen_rtx_EXPR_LIST (VOIDmode, label_rtx (exp),
5829 p->expr->x_forced_labels);
5830 pop_obstacks ();
5832 else
5834 if (modifier == EXPAND_INITIALIZER)
5835 forced_labels = gen_rtx_EXPR_LIST (VOIDmode,
5836 label_rtx (exp),
5837 forced_labels);
5840 temp = gen_rtx_MEM (FUNCTION_MODE,
5841 gen_rtx_LABEL_REF (Pmode, label_rtx (exp)));
5842 if (function != current_function_decl
5843 && function != inline_function_decl && function != 0)
5844 LABEL_REF_NONLOCAL_P (XEXP (temp, 0)) = 1;
5845 return temp;
5848 case PARM_DECL:
5849 if (DECL_RTL (exp) == 0)
5851 error_with_decl (exp, "prior parameter's size depends on `%s'");
5852 return CONST0_RTX (mode);
5855 /* ... fall through ... */
5857 case VAR_DECL:
5858 /* If a static var's type was incomplete when the decl was written,
5859 but the type is complete now, lay out the decl now. */
5860 if (DECL_SIZE (exp) == 0 && TYPE_SIZE (TREE_TYPE (exp)) != 0
5861 && (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
5863 push_obstacks_nochange ();
5864 end_temporary_allocation ();
5865 layout_decl (exp, 0);
5866 PUT_MODE (DECL_RTL (exp), DECL_MODE (exp));
5867 pop_obstacks ();
5870 /* Although static-storage variables start off initialized, according to
5871 ANSI C, a memcpy could overwrite them with uninitialized values. So
5872 we check them too. This also lets us check for read-only variables
5873 accessed via a non-const declaration, in case it won't be detected
5874 any other way (e.g., in an embedded system or OS kernel without
5875 memory protection).
5877 Aggregates are not checked here; they're handled elsewhere. */
5878 if (cfun && current_function_check_memory_usage
5879 && code == VAR_DECL
5880 && GET_CODE (DECL_RTL (exp)) == MEM
5881 && ! AGGREGATE_TYPE_P (TREE_TYPE (exp)))
5883 enum memory_use_mode memory_usage;
5884 memory_usage = get_memory_usage_from_modifier (modifier);
5886 if (memory_usage != MEMORY_USE_DONT)
5887 emit_library_call (chkr_check_addr_libfunc, 1, VOIDmode, 3,
5888 XEXP (DECL_RTL (exp), 0), Pmode,
5889 GEN_INT (int_size_in_bytes (type)),
5890 TYPE_MODE (sizetype),
5891 GEN_INT (memory_usage),
5892 TYPE_MODE (integer_type_node));
5895 /* ... fall through ... */
5897 case FUNCTION_DECL:
5898 case RESULT_DECL:
5899 if (DECL_RTL (exp) == 0)
5900 abort ();
5902 /* Ensure variable marked as used even if it doesn't go through
5903 a parser. If it hasn't be used yet, write out an external
5904 definition. */
5905 if (! TREE_USED (exp))
5907 assemble_external (exp);
5908 TREE_USED (exp) = 1;
5911 /* Show we haven't gotten RTL for this yet. */
5912 temp = 0;
5914 /* Handle variables inherited from containing functions. */
5915 context = decl_function_context (exp);
5917 /* We treat inline_function_decl as an alias for the current function
5918 because that is the inline function whose vars, types, etc.
5919 are being merged into the current function.
5920 See expand_inline_function. */
5922 if (context != 0 && context != current_function_decl
5923 && context != inline_function_decl
5924 /* If var is static, we don't need a static chain to access it. */
5925 && ! (GET_CODE (DECL_RTL (exp)) == MEM
5926 && CONSTANT_P (XEXP (DECL_RTL (exp), 0))))
5928 rtx addr;
5930 /* Mark as non-local and addressable. */
5931 DECL_NONLOCAL (exp) = 1;
5932 if (DECL_NO_STATIC_CHAIN (current_function_decl))
5933 abort ();
5934 mark_addressable (exp);
5935 if (GET_CODE (DECL_RTL (exp)) != MEM)
5936 abort ();
5937 addr = XEXP (DECL_RTL (exp), 0);
5938 if (GET_CODE (addr) == MEM)
5939 addr = gen_rtx_MEM (Pmode,
5940 fix_lexical_addr (XEXP (addr, 0), exp));
5941 else
5942 addr = fix_lexical_addr (addr, exp);
5943 temp = change_address (DECL_RTL (exp), mode, addr);
5946 /* This is the case of an array whose size is to be determined
5947 from its initializer, while the initializer is still being parsed.
5948 See expand_decl. */
5950 else if (GET_CODE (DECL_RTL (exp)) == MEM
5951 && GET_CODE (XEXP (DECL_RTL (exp), 0)) == REG)
5952 temp = change_address (DECL_RTL (exp), GET_MODE (DECL_RTL (exp)),
5953 XEXP (DECL_RTL (exp), 0));
5955 /* If DECL_RTL is memory, we are in the normal case and either
5956 the address is not valid or it is not a register and -fforce-addr
5957 is specified, get the address into a register. */
5959 else if (GET_CODE (DECL_RTL (exp)) == MEM
5960 && modifier != EXPAND_CONST_ADDRESS
5961 && modifier != EXPAND_SUM
5962 && modifier != EXPAND_INITIALIZER
5963 && (! memory_address_p (DECL_MODE (exp),
5964 XEXP (DECL_RTL (exp), 0))
5965 || (flag_force_addr
5966 && GET_CODE (XEXP (DECL_RTL (exp), 0)) != REG)))
5967 temp = change_address (DECL_RTL (exp), VOIDmode,
5968 copy_rtx (XEXP (DECL_RTL (exp), 0)));
5970 /* If we got something, return it. But first, set the alignment
5971 the address is a register. */
5972 if (temp != 0)
5974 if (GET_CODE (temp) == MEM && GET_CODE (XEXP (temp, 0)) == REG)
5975 mark_reg_pointer (XEXP (temp, 0),
5976 DECL_ALIGN (exp) / BITS_PER_UNIT);
5978 return temp;
5981 /* If the mode of DECL_RTL does not match that of the decl, it
5982 must be a promoted value. We return a SUBREG of the wanted mode,
5983 but mark it so that we know that it was already extended. */
5985 if (GET_CODE (DECL_RTL (exp)) == REG
5986 && GET_MODE (DECL_RTL (exp)) != mode)
5988 /* Get the signedness used for this variable. Ensure we get the
5989 same mode we got when the variable was declared. */
5990 if (GET_MODE (DECL_RTL (exp))
5991 != promote_mode (type, DECL_MODE (exp), &unsignedp, 0))
5992 abort ();
5994 temp = gen_rtx_SUBREG (mode, DECL_RTL (exp), 0);
5995 SUBREG_PROMOTED_VAR_P (temp) = 1;
5996 SUBREG_PROMOTED_UNSIGNED_P (temp) = unsignedp;
5997 return temp;
6000 return DECL_RTL (exp);
6002 case INTEGER_CST:
6003 return immed_double_const (TREE_INT_CST_LOW (exp),
6004 TREE_INT_CST_HIGH (exp),
6005 mode);
6007 case CONST_DECL:
6008 return expand_expr (DECL_INITIAL (exp), target, VOIDmode,
6009 EXPAND_MEMORY_USE_BAD);
6011 case REAL_CST:
6012 /* If optimized, generate immediate CONST_DOUBLE
6013 which will be turned into memory by reload if necessary.
6015 We used to force a register so that loop.c could see it. But
6016 this does not allow gen_* patterns to perform optimizations with
6017 the constants. It also produces two insns in cases like "x = 1.0;".
6018 On most machines, floating-point constants are not permitted in
6019 many insns, so we'd end up copying it to a register in any case.
6021 Now, we do the copying in expand_binop, if appropriate. */
6022 return immed_real_const (exp);
6024 case COMPLEX_CST:
6025 case STRING_CST:
6026 if (! TREE_CST_RTL (exp))
6027 output_constant_def (exp);
6029 /* TREE_CST_RTL probably contains a constant address.
6030 On RISC machines where a constant address isn't valid,
6031 make some insns to get that address into a register. */
6032 if (GET_CODE (TREE_CST_RTL (exp)) == MEM
6033 && modifier != EXPAND_CONST_ADDRESS
6034 && modifier != EXPAND_INITIALIZER
6035 && modifier != EXPAND_SUM
6036 && (! memory_address_p (mode, XEXP (TREE_CST_RTL (exp), 0))
6037 || (flag_force_addr
6038 && GET_CODE (XEXP (TREE_CST_RTL (exp), 0)) != REG)))
6039 return change_address (TREE_CST_RTL (exp), VOIDmode,
6040 copy_rtx (XEXP (TREE_CST_RTL (exp), 0)));
6041 return TREE_CST_RTL (exp);
6043 case EXPR_WITH_FILE_LOCATION:
6045 rtx to_return;
6046 char *saved_input_filename = input_filename;
6047 int saved_lineno = lineno;
6048 input_filename = EXPR_WFL_FILENAME (exp);
6049 lineno = EXPR_WFL_LINENO (exp);
6050 if (EXPR_WFL_EMIT_LINE_NOTE (exp))
6051 emit_line_note (input_filename, lineno);
6052 /* Possibly avoid switching back and force here */
6053 to_return = expand_expr (EXPR_WFL_NODE (exp), target, tmode, modifier);
6054 input_filename = saved_input_filename;
6055 lineno = saved_lineno;
6056 return to_return;
6059 case SAVE_EXPR:
6060 context = decl_function_context (exp);
6062 /* If this SAVE_EXPR was at global context, assume we are an
6063 initialization function and move it into our context. */
6064 if (context == 0)
6065 SAVE_EXPR_CONTEXT (exp) = current_function_decl;
6067 /* We treat inline_function_decl as an alias for the current function
6068 because that is the inline function whose vars, types, etc.
6069 are being merged into the current function.
6070 See expand_inline_function. */
6071 if (context == current_function_decl || context == inline_function_decl)
6072 context = 0;
6074 /* If this is non-local, handle it. */
6075 if (context)
6077 /* The following call just exists to abort if the context is
6078 not of a containing function. */
6079 find_function_data (context);
6081 temp = SAVE_EXPR_RTL (exp);
6082 if (temp && GET_CODE (temp) == REG)
6084 put_var_into_stack (exp);
6085 temp = SAVE_EXPR_RTL (exp);
6087 if (temp == 0 || GET_CODE (temp) != MEM)
6088 abort ();
6089 return change_address (temp, mode,
6090 fix_lexical_addr (XEXP (temp, 0), exp));
6092 if (SAVE_EXPR_RTL (exp) == 0)
6094 if (mode == VOIDmode)
6095 temp = const0_rtx;
6096 else
6097 temp = assign_temp (type, 3, 0, 0);
6099 SAVE_EXPR_RTL (exp) = temp;
6100 if (!optimize && GET_CODE (temp) == REG)
6101 save_expr_regs = gen_rtx_EXPR_LIST (VOIDmode, temp,
6102 save_expr_regs);
6104 /* If the mode of TEMP does not match that of the expression, it
6105 must be a promoted value. We pass store_expr a SUBREG of the
6106 wanted mode but mark it so that we know that it was already
6107 extended. Note that `unsignedp' was modified above in
6108 this case. */
6110 if (GET_CODE (temp) == REG && GET_MODE (temp) != mode)
6112 temp = gen_rtx_SUBREG (mode, SAVE_EXPR_RTL (exp), 0);
6113 SUBREG_PROMOTED_VAR_P (temp) = 1;
6114 SUBREG_PROMOTED_UNSIGNED_P (temp) = unsignedp;
6117 if (temp == const0_rtx)
6118 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
6119 EXPAND_MEMORY_USE_BAD);
6120 else
6121 store_expr (TREE_OPERAND (exp, 0), temp, 0);
6123 TREE_USED (exp) = 1;
6126 /* If the mode of SAVE_EXPR_RTL does not match that of the expression, it
6127 must be a promoted value. We return a SUBREG of the wanted mode,
6128 but mark it so that we know that it was already extended. */
6130 if (GET_CODE (SAVE_EXPR_RTL (exp)) == REG
6131 && GET_MODE (SAVE_EXPR_RTL (exp)) != mode)
6133 /* Compute the signedness and make the proper SUBREG. */
6134 promote_mode (type, mode, &unsignedp, 0);
6135 temp = gen_rtx_SUBREG (mode, SAVE_EXPR_RTL (exp), 0);
6136 SUBREG_PROMOTED_VAR_P (temp) = 1;
6137 SUBREG_PROMOTED_UNSIGNED_P (temp) = unsignedp;
6138 return temp;
6141 return SAVE_EXPR_RTL (exp);
6143 case UNSAVE_EXPR:
6145 rtx temp;
6146 temp = expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
6147 TREE_OPERAND (exp, 0) = unsave_expr_now (TREE_OPERAND (exp, 0));
6148 return temp;
6151 case PLACEHOLDER_EXPR:
6153 tree placeholder_expr;
6155 /* If there is an object on the head of the placeholder list,
6156 see if some object in it of type TYPE or a pointer to it. For
6157 further information, see tree.def. */
6158 for (placeholder_expr = placeholder_list;
6159 placeholder_expr != 0;
6160 placeholder_expr = TREE_CHAIN (placeholder_expr))
6162 tree need_type = TYPE_MAIN_VARIANT (type);
6163 tree object = 0;
6164 tree old_list = placeholder_list;
6165 tree elt;
6167 /* Find the outermost reference that is of the type we want.
6168 If none, see if any object has a type that is a pointer to
6169 the type we want. */
6170 for (elt = TREE_PURPOSE (placeholder_expr);
6171 elt != 0 && object == 0;
6173 = ((TREE_CODE (elt) == COMPOUND_EXPR
6174 || TREE_CODE (elt) == COND_EXPR)
6175 ? TREE_OPERAND (elt, 1)
6176 : (TREE_CODE_CLASS (TREE_CODE (elt)) == 'r'
6177 || TREE_CODE_CLASS (TREE_CODE (elt)) == '1'
6178 || TREE_CODE_CLASS (TREE_CODE (elt)) == '2'
6179 || TREE_CODE_CLASS (TREE_CODE (elt)) == 'e')
6180 ? TREE_OPERAND (elt, 0) : 0))
6181 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
6182 object = elt;
6184 for (elt = TREE_PURPOSE (placeholder_expr);
6185 elt != 0 && object == 0;
6187 = ((TREE_CODE (elt) == COMPOUND_EXPR
6188 || TREE_CODE (elt) == COND_EXPR)
6189 ? TREE_OPERAND (elt, 1)
6190 : (TREE_CODE_CLASS (TREE_CODE (elt)) == 'r'
6191 || TREE_CODE_CLASS (TREE_CODE (elt)) == '1'
6192 || TREE_CODE_CLASS (TREE_CODE (elt)) == '2'
6193 || TREE_CODE_CLASS (TREE_CODE (elt)) == 'e')
6194 ? TREE_OPERAND (elt, 0) : 0))
6195 if (POINTER_TYPE_P (TREE_TYPE (elt))
6196 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
6197 == need_type))
6198 object = build1 (INDIRECT_REF, need_type, elt);
6200 if (object != 0)
6202 /* Expand this object skipping the list entries before
6203 it was found in case it is also a PLACEHOLDER_EXPR.
6204 In that case, we want to translate it using subsequent
6205 entries. */
6206 placeholder_list = TREE_CHAIN (placeholder_expr);
6207 temp = expand_expr (object, original_target, tmode,
6208 ro_modifier);
6209 placeholder_list = old_list;
6210 return temp;
6215 /* We can't find the object or there was a missing WITH_RECORD_EXPR. */
6216 abort ();
6218 case WITH_RECORD_EXPR:
6219 /* Put the object on the placeholder list, expand our first operand,
6220 and pop the list. */
6221 placeholder_list = tree_cons (TREE_OPERAND (exp, 1), NULL_TREE,
6222 placeholder_list);
6223 target = expand_expr (TREE_OPERAND (exp, 0), original_target,
6224 tmode, ro_modifier);
6225 placeholder_list = TREE_CHAIN (placeholder_list);
6226 return target;
6228 case GOTO_EXPR:
6229 if (TREE_CODE (TREE_OPERAND (exp, 0)) == LABEL_DECL)
6230 expand_goto (TREE_OPERAND (exp, 0));
6231 else
6232 expand_computed_goto (TREE_OPERAND (exp, 0));
6233 return const0_rtx;
6235 case EXIT_EXPR:
6236 expand_exit_loop_if_false (NULL_PTR,
6237 invert_truthvalue (TREE_OPERAND (exp, 0)));
6238 return const0_rtx;
6240 case LABELED_BLOCK_EXPR:
6241 if (LABELED_BLOCK_BODY (exp))
6242 expand_expr_stmt (LABELED_BLOCK_BODY (exp));
6243 emit_label (label_rtx (LABELED_BLOCK_LABEL (exp)));
6244 return const0_rtx;
6246 case EXIT_BLOCK_EXPR:
6247 if (EXIT_BLOCK_RETURN (exp))
6248 sorry ("returned value in block_exit_expr");
6249 expand_goto (LABELED_BLOCK_LABEL (EXIT_BLOCK_LABELED_BLOCK (exp)));
6250 return const0_rtx;
6252 case LOOP_EXPR:
6253 push_temp_slots ();
6254 expand_start_loop (1);
6255 expand_expr_stmt (TREE_OPERAND (exp, 0));
6256 expand_end_loop ();
6257 pop_temp_slots ();
6259 return const0_rtx;
6261 case BIND_EXPR:
6263 tree vars = TREE_OPERAND (exp, 0);
6264 int vars_need_expansion = 0;
6266 /* Need to open a binding contour here because
6267 if there are any cleanups they must be contained here. */
6268 expand_start_bindings (2);
6270 /* Mark the corresponding BLOCK for output in its proper place. */
6271 if (TREE_OPERAND (exp, 2) != 0
6272 && ! TREE_USED (TREE_OPERAND (exp, 2)))
6273 insert_block (TREE_OPERAND (exp, 2));
6275 /* If VARS have not yet been expanded, expand them now. */
6276 while (vars)
6278 if (DECL_RTL (vars) == 0)
6280 vars_need_expansion = 1;
6281 expand_decl (vars);
6283 expand_decl_init (vars);
6284 vars = TREE_CHAIN (vars);
6287 temp = expand_expr (TREE_OPERAND (exp, 1), target, tmode, ro_modifier);
6289 expand_end_bindings (TREE_OPERAND (exp, 0), 0, 0);
6291 return temp;
6294 case RTL_EXPR:
6295 if (RTL_EXPR_SEQUENCE (exp))
6297 if (RTL_EXPR_SEQUENCE (exp) == const0_rtx)
6298 abort ();
6299 emit_insns (RTL_EXPR_SEQUENCE (exp));
6300 RTL_EXPR_SEQUENCE (exp) = const0_rtx;
6302 preserve_rtl_expr_result (RTL_EXPR_RTL (exp));
6303 free_temps_for_rtl_expr (exp);
6304 return RTL_EXPR_RTL (exp);
6306 case CONSTRUCTOR:
6307 /* If we don't need the result, just ensure we evaluate any
6308 subexpressions. */
6309 if (ignore)
6311 tree elt;
6312 for (elt = CONSTRUCTOR_ELTS (exp); elt; elt = TREE_CHAIN (elt))
6313 expand_expr (TREE_VALUE (elt), const0_rtx, VOIDmode,
6314 EXPAND_MEMORY_USE_BAD);
6315 return const0_rtx;
6318 /* All elts simple constants => refer to a constant in memory. But
6319 if this is a non-BLKmode mode, let it store a field at a time
6320 since that should make a CONST_INT or CONST_DOUBLE when we
6321 fold. Likewise, if we have a target we can use, it is best to
6322 store directly into the target unless the type is large enough
6323 that memcpy will be used. If we are making an initializer and
6324 all operands are constant, put it in memory as well. */
6325 else if ((TREE_STATIC (exp)
6326 && ((mode == BLKmode
6327 && ! (target != 0 && safe_from_p (target, exp, 1)))
6328 || TREE_ADDRESSABLE (exp)
6329 || (TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
6330 && (!MOVE_BY_PIECES_P
6331 (TREE_INT_CST_LOW (TYPE_SIZE (type))/BITS_PER_UNIT,
6332 TYPE_ALIGN (type) / BITS_PER_UNIT))
6333 && ! mostly_zeros_p (exp))))
6334 || (modifier == EXPAND_INITIALIZER && TREE_CONSTANT (exp)))
6336 rtx constructor = output_constant_def (exp);
6337 if (modifier != EXPAND_CONST_ADDRESS
6338 && modifier != EXPAND_INITIALIZER
6339 && modifier != EXPAND_SUM
6340 && (! memory_address_p (GET_MODE (constructor),
6341 XEXP (constructor, 0))
6342 || (flag_force_addr
6343 && GET_CODE (XEXP (constructor, 0)) != REG)))
6344 constructor = change_address (constructor, VOIDmode,
6345 XEXP (constructor, 0));
6346 return constructor;
6349 else
6351 /* Handle calls that pass values in multiple non-contiguous
6352 locations. The Irix 6 ABI has examples of this. */
6353 if (target == 0 || ! safe_from_p (target, exp, 1)
6354 || GET_CODE (target) == PARALLEL)
6356 if (mode != BLKmode && ! TREE_ADDRESSABLE (exp))
6357 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
6358 else
6359 target = assign_temp (type, 0, 1, 1);
6362 if (TREE_READONLY (exp))
6364 if (GET_CODE (target) == MEM)
6365 target = copy_rtx (target);
6367 RTX_UNCHANGING_P (target) = 1;
6370 store_constructor (exp, target, TYPE_ALIGN (TREE_TYPE (exp)), 0,
6371 int_size_in_bytes (TREE_TYPE (exp)));
6372 return target;
6375 case INDIRECT_REF:
6377 tree exp1 = TREE_OPERAND (exp, 0);
6378 tree exp2;
6379 tree index;
6380 tree string = string_constant (exp1, &index);
6381 int i;
6383 /* Try to optimize reads from const strings. */
6384 if (string
6385 && TREE_CODE (string) == STRING_CST
6386 && TREE_CODE (index) == INTEGER_CST
6387 && !TREE_INT_CST_HIGH (index)
6388 && (i = TREE_INT_CST_LOW (index)) < TREE_STRING_LENGTH (string)
6389 && GET_MODE_CLASS (mode) == MODE_INT
6390 && GET_MODE_SIZE (mode) == 1
6391 && modifier != EXPAND_MEMORY_USE_WO)
6392 return GEN_INT (TREE_STRING_POINTER (string)[i]);
6394 op0 = expand_expr (exp1, NULL_RTX, VOIDmode, EXPAND_SUM);
6395 op0 = memory_address (mode, op0);
6397 if (cfun && current_function_check_memory_usage
6398 && ! AGGREGATE_TYPE_P (TREE_TYPE (exp)))
6400 enum memory_use_mode memory_usage;
6401 memory_usage = get_memory_usage_from_modifier (modifier);
6403 if (memory_usage != MEMORY_USE_DONT)
6405 in_check_memory_usage = 1;
6406 emit_library_call (chkr_check_addr_libfunc, 1, VOIDmode, 3,
6407 op0, Pmode,
6408 GEN_INT (int_size_in_bytes (type)),
6409 TYPE_MODE (sizetype),
6410 GEN_INT (memory_usage),
6411 TYPE_MODE (integer_type_node));
6412 in_check_memory_usage = 0;
6416 temp = gen_rtx_MEM (mode, op0);
6417 /* If address was computed by addition,
6418 mark this as an element of an aggregate. */
6419 if (TREE_CODE (exp1) == PLUS_EXPR
6420 || (TREE_CODE (exp1) == SAVE_EXPR
6421 && TREE_CODE (TREE_OPERAND (exp1, 0)) == PLUS_EXPR)
6422 || AGGREGATE_TYPE_P (TREE_TYPE (exp))
6423 || (TREE_CODE (exp1) == ADDR_EXPR
6424 && (exp2 = TREE_OPERAND (exp1, 0))
6425 && AGGREGATE_TYPE_P (TREE_TYPE (exp2))))
6426 MEM_SET_IN_STRUCT_P (temp, 1);
6428 MEM_VOLATILE_P (temp) = TREE_THIS_VOLATILE (exp) | flag_volatile;
6429 MEM_ALIAS_SET (temp) = get_alias_set (exp);
6431 /* It is incorrect to set RTX_UNCHANGING_P from TREE_READONLY
6432 here, because, in C and C++, the fact that a location is accessed
6433 through a pointer to const does not mean that the value there can
6434 never change. Languages where it can never change should
6435 also set TREE_STATIC. */
6436 RTX_UNCHANGING_P (temp) = TREE_READONLY (exp) & TREE_STATIC (exp);
6438 /* If we are writing to this object and its type is a record with
6439 readonly fields, we must mark it as readonly so it will
6440 conflict with readonly references to those fields. */
6441 if (modifier == EXPAND_MEMORY_USE_WO
6442 && TREE_CODE (type) == RECORD_TYPE && readonly_fields_p (type))
6443 RTX_UNCHANGING_P (temp) = 1;
6445 return temp;
6448 case ARRAY_REF:
6449 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) != ARRAY_TYPE)
6450 abort ();
6453 tree array = TREE_OPERAND (exp, 0);
6454 tree domain = TYPE_DOMAIN (TREE_TYPE (array));
6455 tree low_bound = domain ? TYPE_MIN_VALUE (domain) : integer_zero_node;
6456 tree index = TREE_OPERAND (exp, 1);
6457 tree index_type = TREE_TYPE (index);
6458 HOST_WIDE_INT i;
6460 /* Optimize the special-case of a zero lower bound.
6462 We convert the low_bound to sizetype to avoid some problems
6463 with constant folding. (E.g. suppose the lower bound is 1,
6464 and its mode is QI. Without the conversion, (ARRAY
6465 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
6466 +INDEX), which becomes (ARRAY+255+INDEX). Oops!)
6468 But sizetype isn't quite right either (especially if
6469 the lowbound is negative). FIXME */
6471 if (! integer_zerop (low_bound))
6472 index = fold (build (MINUS_EXPR, index_type, index,
6473 convert (sizetype, low_bound)));
6475 /* Fold an expression like: "foo"[2].
6476 This is not done in fold so it won't happen inside &.
6477 Don't fold if this is for wide characters since it's too
6478 difficult to do correctly and this is a very rare case. */
6480 if (TREE_CODE (array) == STRING_CST
6481 && TREE_CODE (index) == INTEGER_CST
6482 && !TREE_INT_CST_HIGH (index)
6483 && (i = TREE_INT_CST_LOW (index)) < TREE_STRING_LENGTH (array)
6484 && GET_MODE_CLASS (mode) == MODE_INT
6485 && GET_MODE_SIZE (mode) == 1)
6486 return GEN_INT (TREE_STRING_POINTER (array)[i]);
6488 /* If this is a constant index into a constant array,
6489 just get the value from the array. Handle both the cases when
6490 we have an explicit constructor and when our operand is a variable
6491 that was declared const. */
6493 if (TREE_CODE (array) == CONSTRUCTOR && ! TREE_SIDE_EFFECTS (array))
6495 if (TREE_CODE (index) == INTEGER_CST
6496 && TREE_INT_CST_HIGH (index) == 0)
6498 tree elem = CONSTRUCTOR_ELTS (TREE_OPERAND (exp, 0));
6500 i = TREE_INT_CST_LOW (index);
6501 while (elem && i--)
6502 elem = TREE_CHAIN (elem);
6503 if (elem)
6504 return expand_expr (fold (TREE_VALUE (elem)), target,
6505 tmode, ro_modifier);
6509 else if (optimize >= 1
6510 && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
6511 && TREE_CODE (array) == VAR_DECL && DECL_INITIAL (array)
6512 && TREE_CODE (DECL_INITIAL (array)) != ERROR_MARK)
6514 if (TREE_CODE (index) == INTEGER_CST)
6516 tree init = DECL_INITIAL (array);
6518 i = TREE_INT_CST_LOW (index);
6519 if (TREE_CODE (init) == CONSTRUCTOR)
6521 tree elem = CONSTRUCTOR_ELTS (init);
6523 while (elem
6524 && !tree_int_cst_equal (TREE_PURPOSE (elem), index))
6525 elem = TREE_CHAIN (elem);
6526 if (elem)
6527 return expand_expr (fold (TREE_VALUE (elem)), target,
6528 tmode, ro_modifier);
6530 else if (TREE_CODE (init) == STRING_CST
6531 && TREE_INT_CST_HIGH (index) == 0
6532 && (TREE_INT_CST_LOW (index)
6533 < TREE_STRING_LENGTH (init)))
6534 return (GEN_INT
6535 (TREE_STRING_POINTER
6536 (init)[TREE_INT_CST_LOW (index)]));
6541 /* ... fall through ... */
6543 case COMPONENT_REF:
6544 case BIT_FIELD_REF:
6545 /* If the operand is a CONSTRUCTOR, we can just extract the
6546 appropriate field if it is present. Don't do this if we have
6547 already written the data since we want to refer to that copy
6548 and varasm.c assumes that's what we'll do. */
6549 if (code != ARRAY_REF
6550 && TREE_CODE (TREE_OPERAND (exp, 0)) == CONSTRUCTOR
6551 && TREE_CST_RTL (TREE_OPERAND (exp, 0)) == 0)
6553 tree elt;
6555 for (elt = CONSTRUCTOR_ELTS (TREE_OPERAND (exp, 0)); elt;
6556 elt = TREE_CHAIN (elt))
6557 if (TREE_PURPOSE (elt) == TREE_OPERAND (exp, 1)
6558 /* We can normally use the value of the field in the
6559 CONSTRUCTOR. However, if this is a bitfield in
6560 an integral mode that we can fit in a HOST_WIDE_INT,
6561 we must mask only the number of bits in the bitfield,
6562 since this is done implicitly by the constructor. If
6563 the bitfield does not meet either of those conditions,
6564 we can't do this optimization. */
6565 && (! DECL_BIT_FIELD (TREE_PURPOSE (elt))
6566 || ((GET_MODE_CLASS (DECL_MODE (TREE_PURPOSE (elt)))
6567 == MODE_INT)
6568 && (GET_MODE_BITSIZE (DECL_MODE (TREE_PURPOSE (elt)))
6569 <= HOST_BITS_PER_WIDE_INT))))
6571 op0 = expand_expr (TREE_VALUE (elt), target, tmode, modifier);
6572 if (DECL_BIT_FIELD (TREE_PURPOSE (elt)))
6574 int bitsize = DECL_FIELD_SIZE (TREE_PURPOSE (elt));
6576 if (TREE_UNSIGNED (TREE_TYPE (TREE_PURPOSE (elt))))
6578 op1 = GEN_INT (((HOST_WIDE_INT) 1 << bitsize) - 1);
6579 op0 = expand_and (op0, op1, target);
6581 else
6583 enum machine_mode imode
6584 = TYPE_MODE (TREE_TYPE (TREE_PURPOSE (elt)));
6585 tree count
6586 = build_int_2 (GET_MODE_BITSIZE (imode) - bitsize,
6589 op0 = expand_shift (LSHIFT_EXPR, imode, op0, count,
6590 target, 0);
6591 op0 = expand_shift (RSHIFT_EXPR, imode, op0, count,
6592 target, 0);
6596 return op0;
6601 enum machine_mode mode1;
6602 int bitsize;
6603 int bitpos;
6604 tree offset;
6605 int volatilep = 0;
6606 int alignment;
6607 tree tem = get_inner_reference (exp, &bitsize, &bitpos, &offset,
6608 &mode1, &unsignedp, &volatilep,
6609 &alignment);
6611 /* If we got back the original object, something is wrong. Perhaps
6612 we are evaluating an expression too early. In any event, don't
6613 infinitely recurse. */
6614 if (tem == exp)
6615 abort ();
6617 /* If TEM's type is a union of variable size, pass TARGET to the inner
6618 computation, since it will need a temporary and TARGET is known
6619 to have to do. This occurs in unchecked conversion in Ada. */
6621 op0 = expand_expr (tem,
6622 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
6623 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
6624 != INTEGER_CST)
6625 ? target : NULL_RTX),
6626 VOIDmode,
6627 (modifier == EXPAND_INITIALIZER
6628 || modifier == EXPAND_CONST_ADDRESS)
6629 ? modifier : EXPAND_NORMAL);
6631 /* If this is a constant, put it into a register if it is a
6632 legitimate constant and OFFSET is 0 and memory if it isn't. */
6633 if (CONSTANT_P (op0))
6635 enum machine_mode mode = TYPE_MODE (TREE_TYPE (tem));
6636 if (mode != BLKmode && LEGITIMATE_CONSTANT_P (op0)
6637 && offset == 0)
6638 op0 = force_reg (mode, op0);
6639 else
6640 op0 = validize_mem (force_const_mem (mode, op0));
6643 if (offset != 0)
6645 rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, 0);
6647 /* If this object is in memory, put it into a register.
6648 This case can't occur in C, but can in Ada if we have
6649 unchecked conversion of an expression from a scalar type to
6650 an array or record type. */
6651 if (GET_CODE (op0) == REG || GET_CODE (op0) == SUBREG
6652 || GET_CODE (op0) == CONCAT || GET_CODE (op0) == ADDRESSOF)
6654 rtx memloc = assign_temp (TREE_TYPE (tem), 1, 1, 1);
6656 mark_temp_addr_taken (memloc);
6657 emit_move_insn (memloc, op0);
6658 op0 = memloc;
6661 if (GET_CODE (op0) != MEM)
6662 abort ();
6664 if (GET_MODE (offset_rtx) != ptr_mode)
6666 #ifdef POINTERS_EXTEND_UNSIGNED
6667 offset_rtx = convert_memory_address (ptr_mode, offset_rtx);
6668 #else
6669 offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
6670 #endif
6673 /* A constant address in OP0 can have VOIDmode, we must not try
6674 to call force_reg for that case. Avoid that case. */
6675 if (GET_CODE (op0) == MEM
6676 && GET_MODE (op0) == BLKmode
6677 && GET_MODE (XEXP (op0, 0)) != VOIDmode
6678 && bitsize != 0
6679 && (bitpos % bitsize) == 0
6680 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
6681 && (alignment * BITS_PER_UNIT) == GET_MODE_ALIGNMENT (mode1))
6683 rtx temp = change_address (op0, mode1,
6684 plus_constant (XEXP (op0, 0),
6685 (bitpos /
6686 BITS_PER_UNIT)));
6687 if (GET_CODE (XEXP (temp, 0)) == REG)
6688 op0 = temp;
6689 else
6690 op0 = change_address (op0, mode1,
6691 force_reg (GET_MODE (XEXP (temp, 0)),
6692 XEXP (temp, 0)));
6693 bitpos = 0;
6697 op0 = change_address (op0, VOIDmode,
6698 gen_rtx_PLUS (ptr_mode, XEXP (op0, 0),
6699 force_reg (ptr_mode,
6700 offset_rtx)));
6703 /* Don't forget about volatility even if this is a bitfield. */
6704 if (GET_CODE (op0) == MEM && volatilep && ! MEM_VOLATILE_P (op0))
6706 op0 = copy_rtx (op0);
6707 MEM_VOLATILE_P (op0) = 1;
6710 /* Check the access. */
6711 if (current_function_check_memory_usage && GET_CODE (op0) == MEM)
6713 enum memory_use_mode memory_usage;
6714 memory_usage = get_memory_usage_from_modifier (modifier);
6716 if (memory_usage != MEMORY_USE_DONT)
6718 rtx to;
6719 int size;
6721 to = plus_constant (XEXP (op0, 0), (bitpos / BITS_PER_UNIT));
6722 size = (bitpos % BITS_PER_UNIT) + bitsize + BITS_PER_UNIT - 1;
6724 /* Check the access right of the pointer. */
6725 if (size > BITS_PER_UNIT)
6726 emit_library_call (chkr_check_addr_libfunc, 1, VOIDmode, 3,
6727 to, Pmode,
6728 GEN_INT (size / BITS_PER_UNIT),
6729 TYPE_MODE (sizetype),
6730 GEN_INT (memory_usage),
6731 TYPE_MODE (integer_type_node));
6735 /* In cases where an aligned union has an unaligned object
6736 as a field, we might be extracting a BLKmode value from
6737 an integer-mode (e.g., SImode) object. Handle this case
6738 by doing the extract into an object as wide as the field
6739 (which we know to be the width of a basic mode), then
6740 storing into memory, and changing the mode to BLKmode.
6741 If we ultimately want the address (EXPAND_CONST_ADDRESS or
6742 EXPAND_INITIALIZER), then we must not copy to a temporary. */
6743 if (mode1 == VOIDmode
6744 || GET_CODE (op0) == REG || GET_CODE (op0) == SUBREG
6745 || (modifier != EXPAND_CONST_ADDRESS
6746 && modifier != EXPAND_INITIALIZER
6747 && ((mode1 != BLKmode && ! direct_load[(int) mode1]
6748 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
6749 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
6750 /* If the field isn't aligned enough to fetch as a memref,
6751 fetch it as a bit field. */
6752 || (mode1 != BLKmode
6753 && SLOW_UNALIGNED_ACCESS (mode1, alignment)
6754 && ((TYPE_ALIGN (TREE_TYPE (tem))
6755 < (unsigned int) GET_MODE_ALIGNMENT (mode))
6756 || (bitpos % GET_MODE_ALIGNMENT (mode) != 0)))))
6757 || (modifier != EXPAND_CONST_ADDRESS
6758 && modifier != EXPAND_INITIALIZER
6759 && mode == BLKmode
6760 && SLOW_UNALIGNED_ACCESS (mode, alignment)
6761 && (TYPE_ALIGN (type) > alignment * BITS_PER_UNIT
6762 || bitpos % TYPE_ALIGN (type) != 0)))
6764 enum machine_mode ext_mode = mode;
6766 if (ext_mode == BLKmode
6767 && ! (target != 0 && GET_CODE (op0) == MEM
6768 && GET_CODE (target) == MEM
6769 && bitpos % BITS_PER_UNIT == 0))
6770 ext_mode = mode_for_size (bitsize, MODE_INT, 1);
6772 if (ext_mode == BLKmode)
6774 /* In this case, BITPOS must start at a byte boundary and
6775 TARGET, if specified, must be a MEM. */
6776 if (GET_CODE (op0) != MEM
6777 || (target != 0 && GET_CODE (target) != MEM)
6778 || bitpos % BITS_PER_UNIT != 0)
6779 abort ();
6781 op0 = change_address (op0, VOIDmode,
6782 plus_constant (XEXP (op0, 0),
6783 bitpos / BITS_PER_UNIT));
6784 if (target == 0)
6785 target = assign_temp (type, 0, 1, 1);
6787 emit_block_move (target, op0,
6788 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
6789 / BITS_PER_UNIT),
6792 return target;
6795 op0 = validize_mem (op0);
6797 if (GET_CODE (op0) == MEM && GET_CODE (XEXP (op0, 0)) == REG)
6798 mark_reg_pointer (XEXP (op0, 0), alignment);
6800 op0 = extract_bit_field (op0, bitsize, bitpos,
6801 unsignedp, target, ext_mode, ext_mode,
6802 alignment,
6803 int_size_in_bytes (TREE_TYPE (tem)));
6805 /* If the result is a record type and BITSIZE is narrower than
6806 the mode of OP0, an integral mode, and this is a big endian
6807 machine, we must put the field into the high-order bits. */
6808 if (TREE_CODE (type) == RECORD_TYPE && BYTES_BIG_ENDIAN
6809 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
6810 && bitsize < GET_MODE_BITSIZE (GET_MODE (op0)))
6811 op0 = expand_shift (LSHIFT_EXPR, GET_MODE (op0), op0,
6812 size_int (GET_MODE_BITSIZE (GET_MODE (op0))
6813 - bitsize),
6814 op0, 1);
6816 if (mode == BLKmode)
6818 rtx new = assign_stack_temp (ext_mode,
6819 bitsize / BITS_PER_UNIT, 0);
6821 emit_move_insn (new, op0);
6822 op0 = copy_rtx (new);
6823 PUT_MODE (op0, BLKmode);
6824 MEM_SET_IN_STRUCT_P (op0, 1);
6827 return op0;
6830 /* If the result is BLKmode, use that to access the object
6831 now as well. */
6832 if (mode == BLKmode)
6833 mode1 = BLKmode;
6835 /* Get a reference to just this component. */
6836 if (modifier == EXPAND_CONST_ADDRESS
6837 || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
6838 op0 = gen_rtx_MEM (mode1, plus_constant (XEXP (op0, 0),
6839 (bitpos / BITS_PER_UNIT)));
6840 else
6841 op0 = change_address (op0, mode1,
6842 plus_constant (XEXP (op0, 0),
6843 (bitpos / BITS_PER_UNIT)));
6845 if (GET_CODE (op0) == MEM)
6846 MEM_ALIAS_SET (op0) = get_alias_set (exp);
6848 if (GET_CODE (XEXP (op0, 0)) == REG)
6849 mark_reg_pointer (XEXP (op0, 0), alignment);
6851 MEM_SET_IN_STRUCT_P (op0, 1);
6852 MEM_VOLATILE_P (op0) |= volatilep;
6853 if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
6854 || modifier == EXPAND_CONST_ADDRESS
6855 || modifier == EXPAND_INITIALIZER)
6856 return op0;
6857 else if (target == 0)
6858 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
6860 convert_move (target, op0, unsignedp);
6861 return target;
6864 /* Intended for a reference to a buffer of a file-object in Pascal.
6865 But it's not certain that a special tree code will really be
6866 necessary for these. INDIRECT_REF might work for them. */
6867 case BUFFER_REF:
6868 abort ();
6870 case IN_EXPR:
6872 /* Pascal set IN expression.
6874 Algorithm:
6875 rlo = set_low - (set_low%bits_per_word);
6876 the_word = set [ (index - rlo)/bits_per_word ];
6877 bit_index = index % bits_per_word;
6878 bitmask = 1 << bit_index;
6879 return !!(the_word & bitmask); */
6881 tree set = TREE_OPERAND (exp, 0);
6882 tree index = TREE_OPERAND (exp, 1);
6883 int iunsignedp = TREE_UNSIGNED (TREE_TYPE (index));
6884 tree set_type = TREE_TYPE (set);
6885 tree set_low_bound = TYPE_MIN_VALUE (TYPE_DOMAIN (set_type));
6886 tree set_high_bound = TYPE_MAX_VALUE (TYPE_DOMAIN (set_type));
6887 rtx index_val = expand_expr (index, 0, VOIDmode, 0);
6888 rtx lo_r = expand_expr (set_low_bound, 0, VOIDmode, 0);
6889 rtx hi_r = expand_expr (set_high_bound, 0, VOIDmode, 0);
6890 rtx setval = expand_expr (set, 0, VOIDmode, 0);
6891 rtx setaddr = XEXP (setval, 0);
6892 enum machine_mode index_mode = TYPE_MODE (TREE_TYPE (index));
6893 rtx rlow;
6894 rtx diff, quo, rem, addr, bit, result;
6896 preexpand_calls (exp);
6898 /* If domain is empty, answer is no. Likewise if index is constant
6899 and out of bounds. */
6900 if (((TREE_CODE (set_high_bound) == INTEGER_CST
6901 && TREE_CODE (set_low_bound) == INTEGER_CST
6902 && tree_int_cst_lt (set_high_bound, set_low_bound))
6903 || (TREE_CODE (index) == INTEGER_CST
6904 && TREE_CODE (set_low_bound) == INTEGER_CST
6905 && tree_int_cst_lt (index, set_low_bound))
6906 || (TREE_CODE (set_high_bound) == INTEGER_CST
6907 && TREE_CODE (index) == INTEGER_CST
6908 && tree_int_cst_lt (set_high_bound, index))))
6909 return const0_rtx;
6911 if (target == 0)
6912 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
6914 /* If we get here, we have to generate the code for both cases
6915 (in range and out of range). */
6917 op0 = gen_label_rtx ();
6918 op1 = gen_label_rtx ();
6920 if (! (GET_CODE (index_val) == CONST_INT
6921 && GET_CODE (lo_r) == CONST_INT))
6923 emit_cmp_and_jump_insns (index_val, lo_r, LT, NULL_RTX,
6924 GET_MODE (index_val), iunsignedp, 0, op1);
6927 if (! (GET_CODE (index_val) == CONST_INT
6928 && GET_CODE (hi_r) == CONST_INT))
6930 emit_cmp_and_jump_insns (index_val, hi_r, GT, NULL_RTX,
6931 GET_MODE (index_val), iunsignedp, 0, op1);
6934 /* Calculate the element number of bit zero in the first word
6935 of the set. */
6936 if (GET_CODE (lo_r) == CONST_INT)
6937 rlow = GEN_INT (INTVAL (lo_r)
6938 & ~ ((HOST_WIDE_INT) 1 << BITS_PER_UNIT));
6939 else
6940 rlow = expand_binop (index_mode, and_optab, lo_r,
6941 GEN_INT (~((HOST_WIDE_INT) 1 << BITS_PER_UNIT)),
6942 NULL_RTX, iunsignedp, OPTAB_LIB_WIDEN);
6944 diff = expand_binop (index_mode, sub_optab, index_val, rlow,
6945 NULL_RTX, iunsignedp, OPTAB_LIB_WIDEN);
6947 quo = expand_divmod (0, TRUNC_DIV_EXPR, index_mode, diff,
6948 GEN_INT (BITS_PER_UNIT), NULL_RTX, iunsignedp);
6949 rem = expand_divmod (1, TRUNC_MOD_EXPR, index_mode, index_val,
6950 GEN_INT (BITS_PER_UNIT), NULL_RTX, iunsignedp);
6952 addr = memory_address (byte_mode,
6953 expand_binop (index_mode, add_optab, diff,
6954 setaddr, NULL_RTX, iunsignedp,
6955 OPTAB_LIB_WIDEN));
6957 /* Extract the bit we want to examine */
6958 bit = expand_shift (RSHIFT_EXPR, byte_mode,
6959 gen_rtx_MEM (byte_mode, addr),
6960 make_tree (TREE_TYPE (index), rem),
6961 NULL_RTX, 1);
6962 result = expand_binop (byte_mode, and_optab, bit, const1_rtx,
6963 GET_MODE (target) == byte_mode ? target : 0,
6964 1, OPTAB_LIB_WIDEN);
6966 if (result != target)
6967 convert_move (target, result, 1);
6969 /* Output the code to handle the out-of-range case. */
6970 emit_jump (op0);
6971 emit_label (op1);
6972 emit_move_insn (target, const0_rtx);
6973 emit_label (op0);
6974 return target;
6977 case WITH_CLEANUP_EXPR:
6978 if (RTL_EXPR_RTL (exp) == 0)
6980 RTL_EXPR_RTL (exp)
6981 = expand_expr (TREE_OPERAND (exp, 0), target, tmode, ro_modifier);
6982 expand_decl_cleanup (NULL_TREE, TREE_OPERAND (exp, 2));
6984 /* That's it for this cleanup. */
6985 TREE_OPERAND (exp, 2) = 0;
6987 return RTL_EXPR_RTL (exp);
6989 case CLEANUP_POINT_EXPR:
6991 /* Start a new binding layer that will keep track of all cleanup
6992 actions to be performed. */
6993 expand_start_bindings (2);
6995 target_temp_slot_level = temp_slot_level;
6997 op0 = expand_expr (TREE_OPERAND (exp, 0), target, tmode, ro_modifier);
6998 /* If we're going to use this value, load it up now. */
6999 if (! ignore)
7000 op0 = force_not_mem (op0);
7001 preserve_temp_slots (op0);
7002 expand_end_bindings (NULL_TREE, 0, 0);
7004 return op0;
7006 case CALL_EXPR:
7007 /* Check for a built-in function. */
7008 if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
7009 && (TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
7010 == FUNCTION_DECL)
7011 && DECL_BUILT_IN (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
7012 return expand_builtin (exp, target, subtarget, tmode, ignore);
7014 /* If this call was expanded already by preexpand_calls,
7015 just return the result we got. */
7016 if (CALL_EXPR_RTL (exp) != 0)
7017 return CALL_EXPR_RTL (exp);
7019 return expand_call (exp, target, ignore);
7021 case NON_LVALUE_EXPR:
7022 case NOP_EXPR:
7023 case CONVERT_EXPR:
7024 case REFERENCE_EXPR:
7025 if (TREE_CODE (type) == UNION_TYPE)
7027 tree valtype = TREE_TYPE (TREE_OPERAND (exp, 0));
7029 /* If both input and output are BLKmode, this conversion
7030 isn't actually doing anything unless we need to make the
7031 alignment stricter. */
7032 if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode
7033 && (TYPE_ALIGN (type) <= TYPE_ALIGN (valtype)
7034 || TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT))
7035 return expand_expr (TREE_OPERAND (exp, 0), target, tmode,
7036 modifier);
7038 if (target == 0)
7040 if (mode != BLKmode)
7041 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
7042 else
7043 target = assign_temp (type, 0, 1, 1);
7046 if (GET_CODE (target) == MEM)
7047 /* Store data into beginning of memory target. */
7048 store_expr (TREE_OPERAND (exp, 0),
7049 change_address (target, TYPE_MODE (valtype), 0), 0);
7051 else if (GET_CODE (target) == REG)
7052 /* Store this field into a union of the proper type. */
7053 store_field (target,
7054 MIN ((int_size_in_bytes (TREE_TYPE
7055 (TREE_OPERAND (exp, 0)))
7056 * BITS_PER_UNIT),
7057 GET_MODE_BITSIZE (mode)),
7058 0, TYPE_MODE (valtype), TREE_OPERAND (exp, 0),
7059 VOIDmode, 0, 1, int_size_in_bytes (type), 0);
7060 else
7061 abort ();
7063 /* Return the entire union. */
7064 return target;
7067 if (mode == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))))
7069 op0 = expand_expr (TREE_OPERAND (exp, 0), target, VOIDmode,
7070 ro_modifier);
7072 /* If the signedness of the conversion differs and OP0 is
7073 a promoted SUBREG, clear that indication since we now
7074 have to do the proper extension. */
7075 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))) != unsignedp
7076 && GET_CODE (op0) == SUBREG)
7077 SUBREG_PROMOTED_VAR_P (op0) = 0;
7079 return op0;
7082 op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, mode, 0);
7083 if (GET_MODE (op0) == mode)
7084 return op0;
7086 /* If OP0 is a constant, just convert it into the proper mode. */
7087 if (CONSTANT_P (op0))
7088 return
7089 convert_modes (mode, TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))),
7090 op0, TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
7092 if (modifier == EXPAND_INITIALIZER)
7093 return gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
7095 if (target == 0)
7096 return
7097 convert_to_mode (mode, op0,
7098 TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
7099 else
7100 convert_move (target, op0,
7101 TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
7102 return target;
7104 case PLUS_EXPR:
7105 /* We come here from MINUS_EXPR when the second operand is a
7106 constant. */
7107 plus_expr:
7108 this_optab = add_optab;
7110 /* If we are adding a constant, an RTL_EXPR that is sp, fp, or ap, and
7111 something else, make sure we add the register to the constant and
7112 then to the other thing. This case can occur during strength
7113 reduction and doing it this way will produce better code if the
7114 frame pointer or argument pointer is eliminated.
7116 fold-const.c will ensure that the constant is always in the inner
7117 PLUS_EXPR, so the only case we need to do anything about is if
7118 sp, ap, or fp is our second argument, in which case we must swap
7119 the innermost first argument and our second argument. */
7121 if (TREE_CODE (TREE_OPERAND (exp, 0)) == PLUS_EXPR
7122 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 1)) == INTEGER_CST
7123 && TREE_CODE (TREE_OPERAND (exp, 1)) == RTL_EXPR
7124 && (RTL_EXPR_RTL (TREE_OPERAND (exp, 1)) == frame_pointer_rtx
7125 || RTL_EXPR_RTL (TREE_OPERAND (exp, 1)) == stack_pointer_rtx
7126 || RTL_EXPR_RTL (TREE_OPERAND (exp, 1)) == arg_pointer_rtx))
7128 tree t = TREE_OPERAND (exp, 1);
7130 TREE_OPERAND (exp, 1) = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
7131 TREE_OPERAND (TREE_OPERAND (exp, 0), 0) = t;
7134 /* If the result is to be ptr_mode and we are adding an integer to
7135 something, we might be forming a constant. So try to use
7136 plus_constant. If it produces a sum and we can't accept it,
7137 use force_operand. This allows P = &ARR[const] to generate
7138 efficient code on machines where a SYMBOL_REF is not a valid
7139 address.
7141 If this is an EXPAND_SUM call, always return the sum. */
7142 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
7143 || mode == ptr_mode)
7145 if (TREE_CODE (TREE_OPERAND (exp, 0)) == INTEGER_CST
7146 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7147 && TREE_CONSTANT (TREE_OPERAND (exp, 1)))
7149 rtx constant_part;
7151 op1 = expand_expr (TREE_OPERAND (exp, 1), subtarget, VOIDmode,
7152 EXPAND_SUM);
7153 /* Use immed_double_const to ensure that the constant is
7154 truncated according to the mode of OP1, then sign extended
7155 to a HOST_WIDE_INT. Using the constant directly can result
7156 in non-canonical RTL in a 64x32 cross compile. */
7157 constant_part
7158 = immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp, 0)),
7159 (HOST_WIDE_INT) 0,
7160 TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 1))));
7161 op1 = plus_constant (op1, INTVAL (constant_part));
7162 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7163 op1 = force_operand (op1, target);
7164 return op1;
7167 else if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST
7168 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_INT
7169 && TREE_CONSTANT (TREE_OPERAND (exp, 0)))
7171 rtx constant_part;
7173 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode,
7174 EXPAND_SUM);
7175 if (! CONSTANT_P (op0))
7177 op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX,
7178 VOIDmode, modifier);
7179 /* Don't go to both_summands if modifier
7180 says it's not right to return a PLUS. */
7181 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7182 goto binop2;
7183 goto both_summands;
7185 /* Use immed_double_const to ensure that the constant is
7186 truncated according to the mode of OP1, then sign extended
7187 to a HOST_WIDE_INT. Using the constant directly can result
7188 in non-canonical RTL in a 64x32 cross compile. */
7189 constant_part
7190 = immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp, 1)),
7191 (HOST_WIDE_INT) 0,
7192 TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))));
7193 op0 = plus_constant (op0, INTVAL (constant_part));
7194 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7195 op0 = force_operand (op0, target);
7196 return op0;
7200 /* No sense saving up arithmetic to be done
7201 if it's all in the wrong mode to form part of an address.
7202 And force_operand won't know whether to sign-extend or
7203 zero-extend. */
7204 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7205 || mode != ptr_mode)
7206 goto binop;
7208 preexpand_calls (exp);
7209 if (! safe_from_p (subtarget, TREE_OPERAND (exp, 1), 1))
7210 subtarget = 0;
7212 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, ro_modifier);
7213 op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX, VOIDmode, ro_modifier);
7215 both_summands:
7216 /* Make sure any term that's a sum with a constant comes last. */
7217 if (GET_CODE (op0) == PLUS
7218 && CONSTANT_P (XEXP (op0, 1)))
7220 temp = op0;
7221 op0 = op1;
7222 op1 = temp;
7224 /* If adding to a sum including a constant,
7225 associate it to put the constant outside. */
7226 if (GET_CODE (op1) == PLUS
7227 && CONSTANT_P (XEXP (op1, 1)))
7229 rtx constant_term = const0_rtx;
7231 temp = simplify_binary_operation (PLUS, mode, XEXP (op1, 0), op0);
7232 if (temp != 0)
7233 op0 = temp;
7234 /* Ensure that MULT comes first if there is one. */
7235 else if (GET_CODE (op0) == MULT)
7236 op0 = gen_rtx_PLUS (mode, op0, XEXP (op1, 0));
7237 else
7238 op0 = gen_rtx_PLUS (mode, XEXP (op1, 0), op0);
7240 /* Let's also eliminate constants from op0 if possible. */
7241 op0 = eliminate_constant_term (op0, &constant_term);
7243 /* CONSTANT_TERM and XEXP (op1, 1) are known to be constant, so
7244 their sum should be a constant. Form it into OP1, since the
7245 result we want will then be OP0 + OP1. */
7247 temp = simplify_binary_operation (PLUS, mode, constant_term,
7248 XEXP (op1, 1));
7249 if (temp != 0)
7250 op1 = temp;
7251 else
7252 op1 = gen_rtx_PLUS (mode, constant_term, XEXP (op1, 1));
7255 /* Put a constant term last and put a multiplication first. */
7256 if (CONSTANT_P (op0) || GET_CODE (op1) == MULT)
7257 temp = op1, op1 = op0, op0 = temp;
7259 temp = simplify_binary_operation (PLUS, mode, op0, op1);
7260 return temp ? temp : gen_rtx_PLUS (mode, op0, op1);
7262 case MINUS_EXPR:
7263 /* For initializers, we are allowed to return a MINUS of two
7264 symbolic constants. Here we handle all cases when both operands
7265 are constant. */
7266 /* Handle difference of two symbolic constants,
7267 for the sake of an initializer. */
7268 if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
7269 && really_constant_p (TREE_OPERAND (exp, 0))
7270 && really_constant_p (TREE_OPERAND (exp, 1)))
7272 rtx op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX,
7273 VOIDmode, ro_modifier);
7274 rtx op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX,
7275 VOIDmode, ro_modifier);
7277 /* If the last operand is a CONST_INT, use plus_constant of
7278 the negated constant. Else make the MINUS. */
7279 if (GET_CODE (op1) == CONST_INT)
7280 return plus_constant (op0, - INTVAL (op1));
7281 else
7282 return gen_rtx_MINUS (mode, op0, op1);
7284 /* Convert A - const to A + (-const). */
7285 if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST)
7287 tree negated = fold (build1 (NEGATE_EXPR, type,
7288 TREE_OPERAND (exp, 1)));
7290 if (TREE_UNSIGNED (type) || TREE_OVERFLOW (negated))
7291 /* If we can't negate the constant in TYPE, leave it alone and
7292 expand_binop will negate it for us. We used to try to do it
7293 here in the signed version of TYPE, but that doesn't work
7294 on POINTER_TYPEs. */;
7295 else
7297 exp = build (PLUS_EXPR, type, TREE_OPERAND (exp, 0), negated);
7298 goto plus_expr;
7301 this_optab = sub_optab;
7302 goto binop;
7304 case MULT_EXPR:
7305 preexpand_calls (exp);
7306 /* If first operand is constant, swap them.
7307 Thus the following special case checks need only
7308 check the second operand. */
7309 if (TREE_CODE (TREE_OPERAND (exp, 0)) == INTEGER_CST)
7311 register tree t1 = TREE_OPERAND (exp, 0);
7312 TREE_OPERAND (exp, 0) = TREE_OPERAND (exp, 1);
7313 TREE_OPERAND (exp, 1) = t1;
7316 /* Attempt to return something suitable for generating an
7317 indexed address, for machines that support that. */
7319 if (modifier == EXPAND_SUM && mode == ptr_mode
7320 && TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST
7321 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
7323 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode,
7324 EXPAND_SUM);
7326 /* Apply distributive law if OP0 is x+c. */
7327 if (GET_CODE (op0) == PLUS
7328 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
7329 return
7330 gen_rtx_PLUS
7331 (mode,
7332 gen_rtx_MULT
7333 (mode, XEXP (op0, 0),
7334 GEN_INT (TREE_INT_CST_LOW (TREE_OPERAND (exp, 1)))),
7335 GEN_INT (TREE_INT_CST_LOW (TREE_OPERAND (exp, 1))
7336 * INTVAL (XEXP (op0, 1))));
7338 if (GET_CODE (op0) != REG)
7339 op0 = force_operand (op0, NULL_RTX);
7340 if (GET_CODE (op0) != REG)
7341 op0 = copy_to_mode_reg (mode, op0);
7343 return
7344 gen_rtx_MULT (mode, op0,
7345 GEN_INT (TREE_INT_CST_LOW (TREE_OPERAND (exp, 1))));
7348 if (! safe_from_p (subtarget, TREE_OPERAND (exp, 1), 1))
7349 subtarget = 0;
7351 /* Check for multiplying things that have been extended
7352 from a narrower type. If this machine supports multiplying
7353 in that narrower type with a result in the desired type,
7354 do it that way, and avoid the explicit type-conversion. */
7355 if (TREE_CODE (TREE_OPERAND (exp, 0)) == NOP_EXPR
7356 && TREE_CODE (type) == INTEGER_TYPE
7357 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
7358 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))))
7359 && ((TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST
7360 && int_fits_type_p (TREE_OPERAND (exp, 1),
7361 TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
7362 /* Don't use a widening multiply if a shift will do. */
7363 && ((GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 1))))
7364 > HOST_BITS_PER_WIDE_INT)
7365 || exact_log2 (TREE_INT_CST_LOW (TREE_OPERAND (exp, 1))) < 0))
7367 (TREE_CODE (TREE_OPERAND (exp, 1)) == NOP_EXPR
7368 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 1), 0)))
7370 TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))))
7371 /* If both operands are extended, they must either both
7372 be zero-extended or both be sign-extended. */
7373 && (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 1), 0)))
7375 TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))))))
7377 enum machine_mode innermode
7378 = TYPE_MODE (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)));
7379 optab other_optab = (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
7380 ? smul_widen_optab : umul_widen_optab);
7381 this_optab = (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
7382 ? umul_widen_optab : smul_widen_optab);
7383 if (mode == GET_MODE_WIDER_MODE (innermode))
7385 if (this_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
7387 op0 = expand_expr (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
7388 NULL_RTX, VOIDmode, 0);
7389 if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST)
7390 op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX,
7391 VOIDmode, 0);
7392 else
7393 op1 = expand_expr (TREE_OPERAND (TREE_OPERAND (exp, 1), 0),
7394 NULL_RTX, VOIDmode, 0);
7395 goto binop2;
7397 else if (other_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing
7398 && innermode == word_mode)
7400 rtx htem;
7401 op0 = expand_expr (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
7402 NULL_RTX, VOIDmode, 0);
7403 if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST)
7404 op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX,
7405 VOIDmode, 0);
7406 else
7407 op1 = expand_expr (TREE_OPERAND (TREE_OPERAND (exp, 1), 0),
7408 NULL_RTX, VOIDmode, 0);
7409 temp = expand_binop (mode, other_optab, op0, op1, target,
7410 unsignedp, OPTAB_LIB_WIDEN);
7411 htem = expand_mult_highpart_adjust (innermode,
7412 gen_highpart (innermode, temp),
7413 op0, op1,
7414 gen_highpart (innermode, temp),
7415 unsignedp);
7416 emit_move_insn (gen_highpart (innermode, temp), htem);
7417 return temp;
7421 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
7422 op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX, VOIDmode, 0);
7423 return expand_mult (mode, op0, op1, target, unsignedp);
7425 case TRUNC_DIV_EXPR:
7426 case FLOOR_DIV_EXPR:
7427 case CEIL_DIV_EXPR:
7428 case ROUND_DIV_EXPR:
7429 case EXACT_DIV_EXPR:
7430 preexpand_calls (exp);
7431 if (! safe_from_p (subtarget, TREE_OPERAND (exp, 1), 1))
7432 subtarget = 0;
7433 /* Possible optimization: compute the dividend with EXPAND_SUM
7434 then if the divisor is constant can optimize the case
7435 where some terms of the dividend have coeffs divisible by it. */
7436 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
7437 op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX, VOIDmode, 0);
7438 return expand_divmod (0, code, mode, op0, op1, target, unsignedp);
7440 case RDIV_EXPR:
7441 this_optab = flodiv_optab;
7442 goto binop;
7444 case TRUNC_MOD_EXPR:
7445 case FLOOR_MOD_EXPR:
7446 case CEIL_MOD_EXPR:
7447 case ROUND_MOD_EXPR:
7448 preexpand_calls (exp);
7449 if (! safe_from_p (subtarget, TREE_OPERAND (exp, 1), 1))
7450 subtarget = 0;
7451 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
7452 op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX, VOIDmode, 0);
7453 return expand_divmod (1, code, mode, op0, op1, target, unsignedp);
7455 case FIX_ROUND_EXPR:
7456 case FIX_FLOOR_EXPR:
7457 case FIX_CEIL_EXPR:
7458 abort (); /* Not used for C. */
7460 case FIX_TRUNC_EXPR:
7461 op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, VOIDmode, 0);
7462 if (target == 0)
7463 target = gen_reg_rtx (mode);
7464 expand_fix (target, op0, unsignedp);
7465 return target;
7467 case FLOAT_EXPR:
7468 op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, VOIDmode, 0);
7469 if (target == 0)
7470 target = gen_reg_rtx (mode);
7471 /* expand_float can't figure out what to do if FROM has VOIDmode.
7472 So give it the correct mode. With -O, cse will optimize this. */
7473 if (GET_MODE (op0) == VOIDmode)
7474 op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))),
7475 op0);
7476 expand_float (target, op0,
7477 TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
7478 return target;
7480 case NEGATE_EXPR:
7481 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
7482 temp = expand_unop (mode, neg_optab, op0, target, 0);
7483 if (temp == 0)
7484 abort ();
7485 return temp;
7487 case ABS_EXPR:
7488 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
7490 /* Handle complex values specially. */
7491 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_INT
7492 || GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
7493 return expand_complex_abs (mode, op0, target, unsignedp);
7495 /* Unsigned abs is simply the operand. Testing here means we don't
7496 risk generating incorrect code below. */
7497 if (TREE_UNSIGNED (type))
7498 return op0;
7500 return expand_abs (mode, op0, target,
7501 safe_from_p (target, TREE_OPERAND (exp, 0), 1));
7503 case MAX_EXPR:
7504 case MIN_EXPR:
7505 target = original_target;
7506 if (target == 0 || ! safe_from_p (target, TREE_OPERAND (exp, 1), 1)
7507 || (GET_CODE (target) == MEM && MEM_VOLATILE_P (target))
7508 || GET_MODE (target) != mode
7509 || (GET_CODE (target) == REG
7510 && REGNO (target) < FIRST_PSEUDO_REGISTER))
7511 target = gen_reg_rtx (mode);
7512 op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX, VOIDmode, 0);
7513 op0 = expand_expr (TREE_OPERAND (exp, 0), target, VOIDmode, 0);
7515 /* First try to do it with a special MIN or MAX instruction.
7516 If that does not win, use a conditional jump to select the proper
7517 value. */
7518 this_optab = (TREE_UNSIGNED (type)
7519 ? (code == MIN_EXPR ? umin_optab : umax_optab)
7520 : (code == MIN_EXPR ? smin_optab : smax_optab));
7522 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
7523 OPTAB_WIDEN);
7524 if (temp != 0)
7525 return temp;
7527 /* At this point, a MEM target is no longer useful; we will get better
7528 code without it. */
7530 if (GET_CODE (target) == MEM)
7531 target = gen_reg_rtx (mode);
7533 if (target != op0)
7534 emit_move_insn (target, op0);
7536 op0 = gen_label_rtx ();
7538 /* If this mode is an integer too wide to compare properly,
7539 compare word by word. Rely on cse to optimize constant cases. */
7540 if (GET_MODE_CLASS (mode) == MODE_INT && ! can_compare_p (mode, ccp_jump))
7542 if (code == MAX_EXPR)
7543 do_jump_by_parts_greater_rtx (mode, TREE_UNSIGNED (type),
7544 target, op1, NULL_RTX, op0);
7545 else
7546 do_jump_by_parts_greater_rtx (mode, TREE_UNSIGNED (type),
7547 op1, target, NULL_RTX, op0);
7549 else
7551 int unsignedp = TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 1)));
7552 do_compare_rtx_and_jump (target, op1, code == MAX_EXPR ? GE : LE,
7553 unsignedp, mode, NULL_RTX, 0, NULL_RTX,
7554 op0);
7556 emit_move_insn (target, op1);
7557 emit_label (op0);
7558 return target;
7560 case BIT_NOT_EXPR:
7561 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
7562 temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
7563 if (temp == 0)
7564 abort ();
7565 return temp;
7567 case FFS_EXPR:
7568 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
7569 temp = expand_unop (mode, ffs_optab, op0, target, 1);
7570 if (temp == 0)
7571 abort ();
7572 return temp;
7574 /* ??? Can optimize bitwise operations with one arg constant.
7575 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
7576 and (a bitwise1 b) bitwise2 b (etc)
7577 but that is probably not worth while. */
7579 /* BIT_AND_EXPR is for bitwise anding. TRUTH_AND_EXPR is for anding two
7580 boolean values when we want in all cases to compute both of them. In
7581 general it is fastest to do TRUTH_AND_EXPR by computing both operands
7582 as actual zero-or-1 values and then bitwise anding. In cases where
7583 there cannot be any side effects, better code would be made by
7584 treating TRUTH_AND_EXPR like TRUTH_ANDIF_EXPR; but the question is
7585 how to recognize those cases. */
7587 case TRUTH_AND_EXPR:
7588 case BIT_AND_EXPR:
7589 this_optab = and_optab;
7590 goto binop;
7592 case TRUTH_OR_EXPR:
7593 case BIT_IOR_EXPR:
7594 this_optab = ior_optab;
7595 goto binop;
7597 case TRUTH_XOR_EXPR:
7598 case BIT_XOR_EXPR:
7599 this_optab = xor_optab;
7600 goto binop;
7602 case LSHIFT_EXPR:
7603 case RSHIFT_EXPR:
7604 case LROTATE_EXPR:
7605 case RROTATE_EXPR:
7606 preexpand_calls (exp);
7607 if (! safe_from_p (subtarget, TREE_OPERAND (exp, 1), 1))
7608 subtarget = 0;
7609 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
7610 return expand_shift (code, mode, op0, TREE_OPERAND (exp, 1), target,
7611 unsignedp);
7613 /* Could determine the answer when only additive constants differ. Also,
7614 the addition of one can be handled by changing the condition. */
7615 case LT_EXPR:
7616 case LE_EXPR:
7617 case GT_EXPR:
7618 case GE_EXPR:
7619 case EQ_EXPR:
7620 case NE_EXPR:
7621 preexpand_calls (exp);
7622 temp = do_store_flag (exp, target, tmode != VOIDmode ? tmode : mode, 0);
7623 if (temp != 0)
7624 return temp;
7626 /* For foo != 0, load foo, and if it is nonzero load 1 instead. */
7627 if (code == NE_EXPR && integer_zerop (TREE_OPERAND (exp, 1))
7628 && original_target
7629 && GET_CODE (original_target) == REG
7630 && (GET_MODE (original_target)
7631 == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)))))
7633 temp = expand_expr (TREE_OPERAND (exp, 0), original_target,
7634 VOIDmode, 0);
7636 if (temp != original_target)
7637 temp = copy_to_reg (temp);
7639 op1 = gen_label_rtx ();
7640 emit_cmp_and_jump_insns (temp, const0_rtx, EQ, NULL_RTX,
7641 GET_MODE (temp), unsignedp, 0, op1);
7642 emit_move_insn (temp, const1_rtx);
7643 emit_label (op1);
7644 return temp;
7647 /* If no set-flag instruction, must generate a conditional
7648 store into a temporary variable. Drop through
7649 and handle this like && and ||. */
7651 case TRUTH_ANDIF_EXPR:
7652 case TRUTH_ORIF_EXPR:
7653 if (! ignore
7654 && (target == 0 || ! safe_from_p (target, exp, 1)
7655 /* Make sure we don't have a hard reg (such as function's return
7656 value) live across basic blocks, if not optimizing. */
7657 || (!optimize && GET_CODE (target) == REG
7658 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
7659 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
7661 if (target)
7662 emit_clr_insn (target);
7664 op1 = gen_label_rtx ();
7665 jumpifnot (exp, op1);
7667 if (target)
7668 emit_0_to_1_insn (target);
7670 emit_label (op1);
7671 return ignore ? const0_rtx : target;
7673 case TRUTH_NOT_EXPR:
7674 op0 = expand_expr (TREE_OPERAND (exp, 0), target, VOIDmode, 0);
7675 /* The parser is careful to generate TRUTH_NOT_EXPR
7676 only with operands that are always zero or one. */
7677 temp = expand_binop (mode, xor_optab, op0, const1_rtx,
7678 target, 1, OPTAB_LIB_WIDEN);
7679 if (temp == 0)
7680 abort ();
7681 return temp;
7683 case COMPOUND_EXPR:
7684 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, 0);
7685 emit_queue ();
7686 return expand_expr (TREE_OPERAND (exp, 1),
7687 (ignore ? const0_rtx : target),
7688 VOIDmode, 0);
7690 case COND_EXPR:
7691 /* If we would have a "singleton" (see below) were it not for a
7692 conversion in each arm, bring that conversion back out. */
7693 if (TREE_CODE (TREE_OPERAND (exp, 1)) == NOP_EXPR
7694 && TREE_CODE (TREE_OPERAND (exp, 2)) == NOP_EXPR
7695 && (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 1), 0))
7696 == TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 2), 0))))
7698 tree true = TREE_OPERAND (TREE_OPERAND (exp, 1), 0);
7699 tree false = TREE_OPERAND (TREE_OPERAND (exp, 2), 0);
7701 if ((TREE_CODE_CLASS (TREE_CODE (true)) == '2'
7702 && operand_equal_p (false, TREE_OPERAND (true, 0), 0))
7703 || (TREE_CODE_CLASS (TREE_CODE (false)) == '2'
7704 && operand_equal_p (true, TREE_OPERAND (false, 0), 0))
7705 || (TREE_CODE_CLASS (TREE_CODE (true)) == '1'
7706 && operand_equal_p (false, TREE_OPERAND (true, 0), 0))
7707 || (TREE_CODE_CLASS (TREE_CODE (false)) == '1'
7708 && operand_equal_p (true, TREE_OPERAND (false, 0), 0)))
7709 return expand_expr (build1 (NOP_EXPR, type,
7710 build (COND_EXPR, TREE_TYPE (true),
7711 TREE_OPERAND (exp, 0),
7712 true, false)),
7713 target, tmode, modifier);
7717 /* Note that COND_EXPRs whose type is a structure or union
7718 are required to be constructed to contain assignments of
7719 a temporary variable, so that we can evaluate them here
7720 for side effect only. If type is void, we must do likewise. */
7722 /* If an arm of the branch requires a cleanup,
7723 only that cleanup is performed. */
7725 tree singleton = 0;
7726 tree binary_op = 0, unary_op = 0;
7728 /* If this is (A ? 1 : 0) and A is a condition, just evaluate it and
7729 convert it to our mode, if necessary. */
7730 if (integer_onep (TREE_OPERAND (exp, 1))
7731 && integer_zerop (TREE_OPERAND (exp, 2))
7732 && TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, 0))) == '<')
7734 if (ignore)
7736 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
7737 ro_modifier);
7738 return const0_rtx;
7741 op0 = expand_expr (TREE_OPERAND (exp, 0), target, mode, ro_modifier);
7742 if (GET_MODE (op0) == mode)
7743 return op0;
7745 if (target == 0)
7746 target = gen_reg_rtx (mode);
7747 convert_move (target, op0, unsignedp);
7748 return target;
7751 /* Check for X ? A + B : A. If we have this, we can copy A to the
7752 output and conditionally add B. Similarly for unary operations.
7753 Don't do this if X has side-effects because those side effects
7754 might affect A or B and the "?" operation is a sequence point in
7755 ANSI. (operand_equal_p tests for side effects.) */
7757 if (TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, 1))) == '2'
7758 && operand_equal_p (TREE_OPERAND (exp, 2),
7759 TREE_OPERAND (TREE_OPERAND (exp, 1), 0), 0))
7760 singleton = TREE_OPERAND (exp, 2), binary_op = TREE_OPERAND (exp, 1);
7761 else if (TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, 2))) == '2'
7762 && operand_equal_p (TREE_OPERAND (exp, 1),
7763 TREE_OPERAND (TREE_OPERAND (exp, 2), 0), 0))
7764 singleton = TREE_OPERAND (exp, 1), binary_op = TREE_OPERAND (exp, 2);
7765 else if (TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, 1))) == '1'
7766 && operand_equal_p (TREE_OPERAND (exp, 2),
7767 TREE_OPERAND (TREE_OPERAND (exp, 1), 0), 0))
7768 singleton = TREE_OPERAND (exp, 2), unary_op = TREE_OPERAND (exp, 1);
7769 else if (TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, 2))) == '1'
7770 && operand_equal_p (TREE_OPERAND (exp, 1),
7771 TREE_OPERAND (TREE_OPERAND (exp, 2), 0), 0))
7772 singleton = TREE_OPERAND (exp, 1), unary_op = TREE_OPERAND (exp, 2);
7774 /* If we are not to produce a result, we have no target. Otherwise,
7775 if a target was specified use it; it will not be used as an
7776 intermediate target unless it is safe. If no target, use a
7777 temporary. */
7779 if (ignore)
7780 temp = 0;
7781 else if (original_target
7782 && (safe_from_p (original_target, TREE_OPERAND (exp, 0), 1)
7783 || (singleton && GET_CODE (original_target) == REG
7784 && REGNO (original_target) >= FIRST_PSEUDO_REGISTER
7785 && original_target == var_rtx (singleton)))
7786 && GET_MODE (original_target) == mode
7787 #ifdef HAVE_conditional_move
7788 && (! can_conditionally_move_p (mode)
7789 || GET_CODE (original_target) == REG
7790 || TREE_ADDRESSABLE (type))
7791 #endif
7792 && ! (GET_CODE (original_target) == MEM
7793 && MEM_VOLATILE_P (original_target)))
7794 temp = original_target;
7795 else if (TREE_ADDRESSABLE (type))
7796 abort ();
7797 else
7798 temp = assign_temp (type, 0, 0, 1);
7800 /* If we had X ? A + C : A, with C a constant power of 2, and we can
7801 do the test of X as a store-flag operation, do this as
7802 A + ((X != 0) << log C). Similarly for other simple binary
7803 operators. Only do for C == 1 if BRANCH_COST is low. */
7804 if (temp && singleton && binary_op
7805 && (TREE_CODE (binary_op) == PLUS_EXPR
7806 || TREE_CODE (binary_op) == MINUS_EXPR
7807 || TREE_CODE (binary_op) == BIT_IOR_EXPR
7808 || TREE_CODE (binary_op) == BIT_XOR_EXPR)
7809 && (BRANCH_COST >= 3 ? integer_pow2p (TREE_OPERAND (binary_op, 1))
7810 : integer_onep (TREE_OPERAND (binary_op, 1)))
7811 && TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, 0))) == '<')
7813 rtx result;
7814 optab boptab = (TREE_CODE (binary_op) == PLUS_EXPR ? add_optab
7815 : TREE_CODE (binary_op) == MINUS_EXPR ? sub_optab
7816 : TREE_CODE (binary_op) == BIT_IOR_EXPR ? ior_optab
7817 : xor_optab);
7819 /* If we had X ? A : A + 1, do this as A + (X == 0).
7821 We have to invert the truth value here and then put it
7822 back later if do_store_flag fails. We cannot simply copy
7823 TREE_OPERAND (exp, 0) to another variable and modify that
7824 because invert_truthvalue can modify the tree pointed to
7825 by its argument. */
7826 if (singleton == TREE_OPERAND (exp, 1))
7827 TREE_OPERAND (exp, 0)
7828 = invert_truthvalue (TREE_OPERAND (exp, 0));
7830 result = do_store_flag (TREE_OPERAND (exp, 0),
7831 (safe_from_p (temp, singleton, 1)
7832 ? temp : NULL_RTX),
7833 mode, BRANCH_COST <= 1);
7835 if (result != 0 && ! integer_onep (TREE_OPERAND (binary_op, 1)))
7836 result = expand_shift (LSHIFT_EXPR, mode, result,
7837 build_int_2 (tree_log2
7838 (TREE_OPERAND
7839 (binary_op, 1)),
7841 (safe_from_p (temp, singleton, 1)
7842 ? temp : NULL_RTX), 0);
7844 if (result)
7846 op1 = expand_expr (singleton, NULL_RTX, VOIDmode, 0);
7847 return expand_binop (mode, boptab, op1, result, temp,
7848 unsignedp, OPTAB_LIB_WIDEN);
7850 else if (singleton == TREE_OPERAND (exp, 1))
7851 TREE_OPERAND (exp, 0)
7852 = invert_truthvalue (TREE_OPERAND (exp, 0));
7855 do_pending_stack_adjust ();
7856 NO_DEFER_POP;
7857 op0 = gen_label_rtx ();
7859 if (singleton && ! TREE_SIDE_EFFECTS (TREE_OPERAND (exp, 0)))
7861 if (temp != 0)
7863 /* If the target conflicts with the other operand of the
7864 binary op, we can't use it. Also, we can't use the target
7865 if it is a hard register, because evaluating the condition
7866 might clobber it. */
7867 if ((binary_op
7868 && ! safe_from_p (temp, TREE_OPERAND (binary_op, 1), 1))
7869 || (GET_CODE (temp) == REG
7870 && REGNO (temp) < FIRST_PSEUDO_REGISTER))
7871 temp = gen_reg_rtx (mode);
7872 store_expr (singleton, temp, 0);
7874 else
7875 expand_expr (singleton,
7876 ignore ? const0_rtx : NULL_RTX, VOIDmode, 0);
7877 if (singleton == TREE_OPERAND (exp, 1))
7878 jumpif (TREE_OPERAND (exp, 0), op0);
7879 else
7880 jumpifnot (TREE_OPERAND (exp, 0), op0);
7882 start_cleanup_deferral ();
7883 if (binary_op && temp == 0)
7884 /* Just touch the other operand. */
7885 expand_expr (TREE_OPERAND (binary_op, 1),
7886 ignore ? const0_rtx : NULL_RTX, VOIDmode, 0);
7887 else if (binary_op)
7888 store_expr (build (TREE_CODE (binary_op), type,
7889 make_tree (type, temp),
7890 TREE_OPERAND (binary_op, 1)),
7891 temp, 0);
7892 else
7893 store_expr (build1 (TREE_CODE (unary_op), type,
7894 make_tree (type, temp)),
7895 temp, 0);
7896 op1 = op0;
7898 /* Check for A op 0 ? A : FOO and A op 0 ? FOO : A where OP is any
7899 comparison operator. If we have one of these cases, set the
7900 output to A, branch on A (cse will merge these two references),
7901 then set the output to FOO. */
7902 else if (temp
7903 && TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, 0))) == '<'
7904 && integer_zerop (TREE_OPERAND (TREE_OPERAND (exp, 0), 1))
7905 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
7906 TREE_OPERAND (exp, 1), 0)
7907 && (! TREE_SIDE_EFFECTS (TREE_OPERAND (exp, 0))
7908 || TREE_CODE (TREE_OPERAND (exp, 1)) == SAVE_EXPR)
7909 && safe_from_p (temp, TREE_OPERAND (exp, 2), 1))
7911 if (GET_CODE (temp) == REG && REGNO (temp) < FIRST_PSEUDO_REGISTER)
7912 temp = gen_reg_rtx (mode);
7913 store_expr (TREE_OPERAND (exp, 1), temp, 0);
7914 jumpif (TREE_OPERAND (exp, 0), op0);
7916 start_cleanup_deferral ();
7917 store_expr (TREE_OPERAND (exp, 2), temp, 0);
7918 op1 = op0;
7920 else if (temp
7921 && TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, 0))) == '<'
7922 && integer_zerop (TREE_OPERAND (TREE_OPERAND (exp, 0), 1))
7923 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
7924 TREE_OPERAND (exp, 2), 0)
7925 && (! TREE_SIDE_EFFECTS (TREE_OPERAND (exp, 0))
7926 || TREE_CODE (TREE_OPERAND (exp, 2)) == SAVE_EXPR)
7927 && safe_from_p (temp, TREE_OPERAND (exp, 1), 1))
7929 if (GET_CODE (temp) == REG && REGNO (temp) < FIRST_PSEUDO_REGISTER)
7930 temp = gen_reg_rtx (mode);
7931 store_expr (TREE_OPERAND (exp, 2), temp, 0);
7932 jumpifnot (TREE_OPERAND (exp, 0), op0);
7934 start_cleanup_deferral ();
7935 store_expr (TREE_OPERAND (exp, 1), temp, 0);
7936 op1 = op0;
7938 else
7940 op1 = gen_label_rtx ();
7941 jumpifnot (TREE_OPERAND (exp, 0), op0);
7943 start_cleanup_deferral ();
7945 /* One branch of the cond can be void, if it never returns. For
7946 example A ? throw : E */
7947 if (temp != 0
7948 && TREE_TYPE (TREE_OPERAND (exp, 1)) != void_type_node)
7949 store_expr (TREE_OPERAND (exp, 1), temp, 0);
7950 else
7951 expand_expr (TREE_OPERAND (exp, 1),
7952 ignore ? const0_rtx : NULL_RTX, VOIDmode, 0);
7953 end_cleanup_deferral ();
7954 emit_queue ();
7955 emit_jump_insn (gen_jump (op1));
7956 emit_barrier ();
7957 emit_label (op0);
7958 start_cleanup_deferral ();
7959 if (temp != 0
7960 && TREE_TYPE (TREE_OPERAND (exp, 2)) != void_type_node)
7961 store_expr (TREE_OPERAND (exp, 2), temp, 0);
7962 else
7963 expand_expr (TREE_OPERAND (exp, 2),
7964 ignore ? const0_rtx : NULL_RTX, VOIDmode, 0);
7967 end_cleanup_deferral ();
7969 emit_queue ();
7970 emit_label (op1);
7971 OK_DEFER_POP;
7973 return temp;
7976 case TARGET_EXPR:
7978 /* Something needs to be initialized, but we didn't know
7979 where that thing was when building the tree. For example,
7980 it could be the return value of a function, or a parameter
7981 to a function which lays down in the stack, or a temporary
7982 variable which must be passed by reference.
7984 We guarantee that the expression will either be constructed
7985 or copied into our original target. */
7987 tree slot = TREE_OPERAND (exp, 0);
7988 tree cleanups = NULL_TREE;
7989 tree exp1;
7991 if (TREE_CODE (slot) != VAR_DECL)
7992 abort ();
7994 if (! ignore)
7995 target = original_target;
7997 /* Set this here so that if we get a target that refers to a
7998 register variable that's already been used, put_reg_into_stack
7999 knows that it should fix up those uses. */
8000 TREE_USED (slot) = 1;
8002 if (target == 0)
8004 if (DECL_RTL (slot) != 0)
8006 target = DECL_RTL (slot);
8007 /* If we have already expanded the slot, so don't do
8008 it again. (mrs) */
8009 if (TREE_OPERAND (exp, 1) == NULL_TREE)
8010 return target;
8012 else
8014 target = assign_temp (type, 2, 0, 1);
8015 /* All temp slots at this level must not conflict. */
8016 preserve_temp_slots (target);
8017 DECL_RTL (slot) = target;
8018 if (TREE_ADDRESSABLE (slot))
8020 TREE_ADDRESSABLE (slot) = 0;
8021 mark_addressable (slot);
8024 /* Since SLOT is not known to the called function
8025 to belong to its stack frame, we must build an explicit
8026 cleanup. This case occurs when we must build up a reference
8027 to pass the reference as an argument. In this case,
8028 it is very likely that such a reference need not be
8029 built here. */
8031 if (TREE_OPERAND (exp, 2) == 0)
8032 TREE_OPERAND (exp, 2) = maybe_build_cleanup (slot);
8033 cleanups = TREE_OPERAND (exp, 2);
8036 else
8038 /* This case does occur, when expanding a parameter which
8039 needs to be constructed on the stack. The target
8040 is the actual stack address that we want to initialize.
8041 The function we call will perform the cleanup in this case. */
8043 /* If we have already assigned it space, use that space,
8044 not target that we were passed in, as our target
8045 parameter is only a hint. */
8046 if (DECL_RTL (slot) != 0)
8048 target = DECL_RTL (slot);
8049 /* If we have already expanded the slot, so don't do
8050 it again. (mrs) */
8051 if (TREE_OPERAND (exp, 1) == NULL_TREE)
8052 return target;
8054 else
8056 DECL_RTL (slot) = target;
8057 /* If we must have an addressable slot, then make sure that
8058 the RTL that we just stored in slot is OK. */
8059 if (TREE_ADDRESSABLE (slot))
8061 TREE_ADDRESSABLE (slot) = 0;
8062 mark_addressable (slot);
8067 exp1 = TREE_OPERAND (exp, 3) = TREE_OPERAND (exp, 1);
8068 /* Mark it as expanded. */
8069 TREE_OPERAND (exp, 1) = NULL_TREE;
8071 store_expr (exp1, target, 0);
8073 expand_decl_cleanup (NULL_TREE, cleanups);
8075 return target;
8078 case INIT_EXPR:
8080 tree lhs = TREE_OPERAND (exp, 0);
8081 tree rhs = TREE_OPERAND (exp, 1);
8082 tree noncopied_parts = 0;
8083 tree lhs_type = TREE_TYPE (lhs);
8085 temp = expand_assignment (lhs, rhs, ! ignore, original_target != 0);
8086 if (TYPE_NONCOPIED_PARTS (lhs_type) != 0 && !fixed_type_p (rhs))
8087 noncopied_parts = init_noncopied_parts (stabilize_reference (lhs),
8088 TYPE_NONCOPIED_PARTS (lhs_type));
8089 while (noncopied_parts != 0)
8091 expand_assignment (TREE_VALUE (noncopied_parts),
8092 TREE_PURPOSE (noncopied_parts), 0, 0);
8093 noncopied_parts = TREE_CHAIN (noncopied_parts);
8095 return temp;
8098 case MODIFY_EXPR:
8100 /* If lhs is complex, expand calls in rhs before computing it.
8101 That's so we don't compute a pointer and save it over a call.
8102 If lhs is simple, compute it first so we can give it as a
8103 target if the rhs is just a call. This avoids an extra temp and copy
8104 and that prevents a partial-subsumption which makes bad code.
8105 Actually we could treat component_ref's of vars like vars. */
8107 tree lhs = TREE_OPERAND (exp, 0);
8108 tree rhs = TREE_OPERAND (exp, 1);
8109 tree noncopied_parts = 0;
8110 tree lhs_type = TREE_TYPE (lhs);
8112 temp = 0;
8114 if (TREE_CODE (lhs) != VAR_DECL
8115 && TREE_CODE (lhs) != RESULT_DECL
8116 && TREE_CODE (lhs) != PARM_DECL
8117 && ! (TREE_CODE (lhs) == INDIRECT_REF
8118 && TYPE_READONLY (TREE_TYPE (TREE_OPERAND (lhs, 0)))))
8119 preexpand_calls (exp);
8121 /* Check for |= or &= of a bitfield of size one into another bitfield
8122 of size 1. In this case, (unless we need the result of the
8123 assignment) we can do this more efficiently with a
8124 test followed by an assignment, if necessary.
8126 ??? At this point, we can't get a BIT_FIELD_REF here. But if
8127 things change so we do, this code should be enhanced to
8128 support it. */
8129 if (ignore
8130 && TREE_CODE (lhs) == COMPONENT_REF
8131 && (TREE_CODE (rhs) == BIT_IOR_EXPR
8132 || TREE_CODE (rhs) == BIT_AND_EXPR)
8133 && TREE_OPERAND (rhs, 0) == lhs
8134 && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
8135 && TREE_INT_CST_LOW (DECL_SIZE (TREE_OPERAND (lhs, 1))) == 1
8136 && TREE_INT_CST_LOW (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))) == 1)
8138 rtx label = gen_label_rtx ();
8140 do_jump (TREE_OPERAND (rhs, 1),
8141 TREE_CODE (rhs) == BIT_IOR_EXPR ? label : 0,
8142 TREE_CODE (rhs) == BIT_AND_EXPR ? label : 0);
8143 expand_assignment (lhs, convert (TREE_TYPE (rhs),
8144 (TREE_CODE (rhs) == BIT_IOR_EXPR
8145 ? integer_one_node
8146 : integer_zero_node)),
8147 0, 0);
8148 do_pending_stack_adjust ();
8149 emit_label (label);
8150 return const0_rtx;
8153 if (TYPE_NONCOPIED_PARTS (lhs_type) != 0
8154 && ! (fixed_type_p (lhs) && fixed_type_p (rhs)))
8155 noncopied_parts = save_noncopied_parts (stabilize_reference (lhs),
8156 TYPE_NONCOPIED_PARTS (lhs_type));
8158 temp = expand_assignment (lhs, rhs, ! ignore, original_target != 0);
8159 while (noncopied_parts != 0)
8161 expand_assignment (TREE_PURPOSE (noncopied_parts),
8162 TREE_VALUE (noncopied_parts), 0, 0);
8163 noncopied_parts = TREE_CHAIN (noncopied_parts);
8165 return temp;
8168 case RETURN_EXPR:
8169 if (!TREE_OPERAND (exp, 0))
8170 expand_null_return ();
8171 else
8172 expand_return (TREE_OPERAND (exp, 0));
8173 return const0_rtx;
8175 case PREINCREMENT_EXPR:
8176 case PREDECREMENT_EXPR:
8177 return expand_increment (exp, 0, ignore);
8179 case POSTINCREMENT_EXPR:
8180 case POSTDECREMENT_EXPR:
8181 /* Faster to treat as pre-increment if result is not used. */
8182 return expand_increment (exp, ! ignore, ignore);
8184 case ADDR_EXPR:
8185 /* If nonzero, TEMP will be set to the address of something that might
8186 be a MEM corresponding to a stack slot. */
8187 temp = 0;
8189 /* Are we taking the address of a nested function? */
8190 if (TREE_CODE (TREE_OPERAND (exp, 0)) == FUNCTION_DECL
8191 && decl_function_context (TREE_OPERAND (exp, 0)) != 0
8192 && ! DECL_NO_STATIC_CHAIN (TREE_OPERAND (exp, 0))
8193 && ! TREE_STATIC (exp))
8195 op0 = trampoline_address (TREE_OPERAND (exp, 0));
8196 op0 = force_operand (op0, target);
8198 /* If we are taking the address of something erroneous, just
8199 return a zero. */
8200 else if (TREE_CODE (TREE_OPERAND (exp, 0)) == ERROR_MARK)
8201 return const0_rtx;
8202 else
8204 /* We make sure to pass const0_rtx down if we came in with
8205 ignore set, to avoid doing the cleanups twice for something. */
8206 op0 = expand_expr (TREE_OPERAND (exp, 0),
8207 ignore ? const0_rtx : NULL_RTX, VOIDmode,
8208 (modifier == EXPAND_INITIALIZER
8209 ? modifier : EXPAND_CONST_ADDRESS));
8211 /* If we are going to ignore the result, OP0 will have been set
8212 to const0_rtx, so just return it. Don't get confused and
8213 think we are taking the address of the constant. */
8214 if (ignore)
8215 return op0;
8217 op0 = protect_from_queue (op0, 0);
8219 /* We would like the object in memory. If it is a constant, we can
8220 have it be statically allocated into memory. For a non-constant,
8221 we need to allocate some memory and store the value into it. */
8223 if (CONSTANT_P (op0))
8224 op0 = force_const_mem (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))),
8225 op0);
8226 else if (GET_CODE (op0) == MEM)
8228 mark_temp_addr_taken (op0);
8229 temp = XEXP (op0, 0);
8232 else if (GET_CODE (op0) == REG || GET_CODE (op0) == SUBREG
8233 || GET_CODE (op0) == CONCAT || GET_CODE (op0) == ADDRESSOF)
8235 /* If this object is in a register, it must be not
8236 be BLKmode. */
8237 tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
8238 rtx memloc = assign_temp (inner_type, 1, 1, 1);
8240 mark_temp_addr_taken (memloc);
8241 emit_move_insn (memloc, op0);
8242 op0 = memloc;
8245 if (GET_CODE (op0) != MEM)
8246 abort ();
8248 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
8250 temp = XEXP (op0, 0);
8251 #ifdef POINTERS_EXTEND_UNSIGNED
8252 if (GET_MODE (temp) == Pmode && GET_MODE (temp) != mode
8253 && mode == ptr_mode)
8254 temp = convert_memory_address (ptr_mode, temp);
8255 #endif
8256 return temp;
8259 op0 = force_operand (XEXP (op0, 0), target);
8262 if (flag_force_addr && GET_CODE (op0) != REG)
8263 op0 = force_reg (Pmode, op0);
8265 if (GET_CODE (op0) == REG
8266 && ! REG_USERVAR_P (op0))
8267 mark_reg_pointer (op0, TYPE_ALIGN (TREE_TYPE (type)) / BITS_PER_UNIT);
8269 /* If we might have had a temp slot, add an equivalent address
8270 for it. */
8271 if (temp != 0)
8272 update_temp_slot_address (temp, op0);
8274 #ifdef POINTERS_EXTEND_UNSIGNED
8275 if (GET_MODE (op0) == Pmode && GET_MODE (op0) != mode
8276 && mode == ptr_mode)
8277 op0 = convert_memory_address (ptr_mode, op0);
8278 #endif
8280 return op0;
8282 case ENTRY_VALUE_EXPR:
8283 abort ();
8285 /* COMPLEX type for Extended Pascal & Fortran */
8286 case COMPLEX_EXPR:
8288 enum machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
8289 rtx insns;
8291 /* Get the rtx code of the operands. */
8292 op0 = expand_expr (TREE_OPERAND (exp, 0), 0, VOIDmode, 0);
8293 op1 = expand_expr (TREE_OPERAND (exp, 1), 0, VOIDmode, 0);
8295 if (! target)
8296 target = gen_reg_rtx (TYPE_MODE (TREE_TYPE (exp)));
8298 start_sequence ();
8300 /* Move the real (op0) and imaginary (op1) parts to their location. */
8301 emit_move_insn (gen_realpart (mode, target), op0);
8302 emit_move_insn (gen_imagpart (mode, target), op1);
8304 insns = get_insns ();
8305 end_sequence ();
8307 /* Complex construction should appear as a single unit. */
8308 /* If TARGET is a CONCAT, we got insns like RD = RS, ID = IS,
8309 each with a separate pseudo as destination.
8310 It's not correct for flow to treat them as a unit. */
8311 if (GET_CODE (target) != CONCAT)
8312 emit_no_conflict_block (insns, target, op0, op1, NULL_RTX);
8313 else
8314 emit_insns (insns);
8316 return target;
8319 case REALPART_EXPR:
8320 op0 = expand_expr (TREE_OPERAND (exp, 0), 0, VOIDmode, 0);
8321 return gen_realpart (mode, op0);
8323 case IMAGPART_EXPR:
8324 op0 = expand_expr (TREE_OPERAND (exp, 0), 0, VOIDmode, 0);
8325 return gen_imagpart (mode, op0);
8327 case CONJ_EXPR:
8329 enum machine_mode partmode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
8330 rtx imag_t;
8331 rtx insns;
8333 op0 = expand_expr (TREE_OPERAND (exp, 0), 0, VOIDmode, 0);
8335 if (! target)
8336 target = gen_reg_rtx (mode);
8338 start_sequence ();
8340 /* Store the realpart and the negated imagpart to target. */
8341 emit_move_insn (gen_realpart (partmode, target),
8342 gen_realpart (partmode, op0));
8344 imag_t = gen_imagpart (partmode, target);
8345 temp = expand_unop (partmode, neg_optab,
8346 gen_imagpart (partmode, op0), imag_t, 0);
8347 if (temp != imag_t)
8348 emit_move_insn (imag_t, temp);
8350 insns = get_insns ();
8351 end_sequence ();
8353 /* Conjugate should appear as a single unit
8354 If TARGET is a CONCAT, we got insns like RD = RS, ID = - IS,
8355 each with a separate pseudo as destination.
8356 It's not correct for flow to treat them as a unit. */
8357 if (GET_CODE (target) != CONCAT)
8358 emit_no_conflict_block (insns, target, op0, NULL_RTX, NULL_RTX);
8359 else
8360 emit_insns (insns);
8362 return target;
8365 case TRY_CATCH_EXPR:
8367 tree handler = TREE_OPERAND (exp, 1);
8369 expand_eh_region_start ();
8371 op0 = expand_expr (TREE_OPERAND (exp, 0), 0, VOIDmode, 0);
8373 expand_eh_region_end (handler);
8375 return op0;
8378 case TRY_FINALLY_EXPR:
8380 tree try_block = TREE_OPERAND (exp, 0);
8381 tree finally_block = TREE_OPERAND (exp, 1);
8382 rtx finally_label = gen_label_rtx ();
8383 rtx done_label = gen_label_rtx ();
8384 rtx return_link = gen_reg_rtx (Pmode);
8385 tree cleanup = build (GOTO_SUBROUTINE_EXPR, void_type_node,
8386 (tree) finally_label, (tree) return_link);
8387 TREE_SIDE_EFFECTS (cleanup) = 1;
8389 /* Start a new binding layer that will keep track of all cleanup
8390 actions to be performed. */
8391 expand_start_bindings (2);
8393 target_temp_slot_level = temp_slot_level;
8395 expand_decl_cleanup (NULL_TREE, cleanup);
8396 op0 = expand_expr (try_block, target, tmode, modifier);
8398 preserve_temp_slots (op0);
8399 expand_end_bindings (NULL_TREE, 0, 0);
8400 emit_jump (done_label);
8401 emit_label (finally_label);
8402 expand_expr (finally_block, const0_rtx, VOIDmode, 0);
8403 emit_indirect_jump (return_link);
8404 emit_label (done_label);
8405 return op0;
8408 case GOTO_SUBROUTINE_EXPR:
8410 rtx subr = (rtx) TREE_OPERAND (exp, 0);
8411 rtx return_link = *(rtx *) &TREE_OPERAND (exp, 1);
8412 rtx return_address = gen_label_rtx ();
8413 emit_move_insn (return_link, gen_rtx_LABEL_REF (Pmode, return_address));
8414 emit_jump (subr);
8415 emit_label (return_address);
8416 return const0_rtx;
8419 case POPDCC_EXPR:
8421 rtx dcc = get_dynamic_cleanup_chain ();
8422 emit_move_insn (dcc, validize_mem (gen_rtx_MEM (Pmode, dcc)));
8423 return const0_rtx;
8426 case POPDHC_EXPR:
8428 rtx dhc = get_dynamic_handler_chain ();
8429 emit_move_insn (dhc, validize_mem (gen_rtx_MEM (Pmode, dhc)));
8430 return const0_rtx;
8433 case VA_ARG_EXPR:
8434 return expand_builtin_va_arg (TREE_OPERAND (exp, 0), type);
8436 default:
8437 return (*lang_expand_expr) (exp, original_target, tmode, modifier);
8440 /* Here to do an ordinary binary operator, generating an instruction
8441 from the optab already placed in `this_optab'. */
8442 binop:
8443 preexpand_calls (exp);
8444 if (! safe_from_p (subtarget, TREE_OPERAND (exp, 1), 1))
8445 subtarget = 0;
8446 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
8447 op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX, VOIDmode, 0);
8448 binop2:
8449 temp = expand_binop (mode, this_optab, op0, op1, target,
8450 unsignedp, OPTAB_LIB_WIDEN);
8451 if (temp == 0)
8452 abort ();
8453 return temp;
8456 /* Similar to expand_expr, except that we don't specify a target, target
8457 mode, or modifier and we return the alignment of the inner type. This is
8458 used in cases where it is not necessary to align the result to the
8459 alignment of its type as long as we know the alignment of the result, for
8460 example for comparisons of BLKmode values. */
8462 static rtx
8463 expand_expr_unaligned (exp, palign)
8464 register tree exp;
8465 int *palign;
8467 register rtx op0;
8468 tree type = TREE_TYPE (exp);
8469 register enum machine_mode mode = TYPE_MODE (type);
8471 /* Default the alignment we return to that of the type. */
8472 *palign = TYPE_ALIGN (type);
8474 /* The only cases in which we do anything special is if the resulting mode
8475 is BLKmode. */
8476 if (mode != BLKmode)
8477 return expand_expr (exp, NULL_RTX, VOIDmode, EXPAND_NORMAL);
8479 switch (TREE_CODE (exp))
8481 case CONVERT_EXPR:
8482 case NOP_EXPR:
8483 case NON_LVALUE_EXPR:
8484 /* Conversions between BLKmode values don't change the underlying
8485 alignment or value. */
8486 if (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == BLKmode)
8487 return expand_expr_unaligned (TREE_OPERAND (exp, 0), palign);
8488 break;
8490 case ARRAY_REF:
8491 /* Much of the code for this case is copied directly from expand_expr.
8492 We need to duplicate it here because we will do something different
8493 in the fall-through case, so we need to handle the same exceptions
8494 it does. */
8496 tree array = TREE_OPERAND (exp, 0);
8497 tree domain = TYPE_DOMAIN (TREE_TYPE (array));
8498 tree low_bound = domain ? TYPE_MIN_VALUE (domain) : integer_zero_node;
8499 tree index = TREE_OPERAND (exp, 1);
8500 tree index_type = TREE_TYPE (index);
8501 HOST_WIDE_INT i;
8503 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) != ARRAY_TYPE)
8504 abort ();
8506 /* Optimize the special-case of a zero lower bound.
8508 We convert the low_bound to sizetype to avoid some problems
8509 with constant folding. (E.g. suppose the lower bound is 1,
8510 and its mode is QI. Without the conversion, (ARRAY
8511 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
8512 +INDEX), which becomes (ARRAY+255+INDEX). Oops!)
8514 But sizetype isn't quite right either (especially if
8515 the lowbound is negative). FIXME */
8517 if (! integer_zerop (low_bound))
8518 index = fold (build (MINUS_EXPR, index_type, index,
8519 convert (sizetype, low_bound)));
8521 /* If this is a constant index into a constant array,
8522 just get the value from the array. Handle both the cases when
8523 we have an explicit constructor and when our operand is a variable
8524 that was declared const. */
8526 if (TREE_CODE (array) == CONSTRUCTOR && ! TREE_SIDE_EFFECTS (array))
8528 if (TREE_CODE (index) == INTEGER_CST
8529 && TREE_INT_CST_HIGH (index) == 0)
8531 tree elem = CONSTRUCTOR_ELTS (TREE_OPERAND (exp, 0));
8533 i = TREE_INT_CST_LOW (index);
8534 while (elem && i--)
8535 elem = TREE_CHAIN (elem);
8536 if (elem)
8537 return expand_expr_unaligned (fold (TREE_VALUE (elem)),
8538 palign);
8542 else if (optimize >= 1
8543 && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
8544 && TREE_CODE (array) == VAR_DECL && DECL_INITIAL (array)
8545 && TREE_CODE (DECL_INITIAL (array)) != ERROR_MARK)
8547 if (TREE_CODE (index) == INTEGER_CST)
8549 tree init = DECL_INITIAL (array);
8551 i = TREE_INT_CST_LOW (index);
8552 if (TREE_CODE (init) == CONSTRUCTOR)
8554 tree elem = CONSTRUCTOR_ELTS (init);
8556 while (elem
8557 && !tree_int_cst_equal (TREE_PURPOSE (elem), index))
8558 elem = TREE_CHAIN (elem);
8559 if (elem)
8560 return expand_expr_unaligned (fold (TREE_VALUE (elem)),
8561 palign);
8567 /* ... fall through ... */
8569 case COMPONENT_REF:
8570 case BIT_FIELD_REF:
8571 /* If the operand is a CONSTRUCTOR, we can just extract the
8572 appropriate field if it is present. Don't do this if we have
8573 already written the data since we want to refer to that copy
8574 and varasm.c assumes that's what we'll do. */
8575 if (TREE_CODE (exp) != ARRAY_REF
8576 && TREE_CODE (TREE_OPERAND (exp, 0)) == CONSTRUCTOR
8577 && TREE_CST_RTL (TREE_OPERAND (exp, 0)) == 0)
8579 tree elt;
8581 for (elt = CONSTRUCTOR_ELTS (TREE_OPERAND (exp, 0)); elt;
8582 elt = TREE_CHAIN (elt))
8583 if (TREE_PURPOSE (elt) == TREE_OPERAND (exp, 1))
8584 /* Note that unlike the case in expand_expr, we know this is
8585 BLKmode and hence not an integer. */
8586 return expand_expr_unaligned (TREE_VALUE (elt), palign);
8590 enum machine_mode mode1;
8591 int bitsize;
8592 int bitpos;
8593 tree offset;
8594 int volatilep = 0;
8595 int alignment;
8596 int unsignedp;
8597 tree tem = get_inner_reference (exp, &bitsize, &bitpos, &offset,
8598 &mode1, &unsignedp, &volatilep,
8599 &alignment);
8601 /* If we got back the original object, something is wrong. Perhaps
8602 we are evaluating an expression too early. In any event, don't
8603 infinitely recurse. */
8604 if (tem == exp)
8605 abort ();
8607 op0 = expand_expr (tem, NULL_RTX, VOIDmode, EXPAND_NORMAL);
8609 /* If this is a constant, put it into a register if it is a
8610 legitimate constant and OFFSET is 0 and memory if it isn't. */
8611 if (CONSTANT_P (op0))
8613 enum machine_mode inner_mode = TYPE_MODE (TREE_TYPE (tem));
8615 if (inner_mode != BLKmode && LEGITIMATE_CONSTANT_P (op0)
8616 && offset == 0)
8617 op0 = force_reg (inner_mode, op0);
8618 else
8619 op0 = validize_mem (force_const_mem (inner_mode, op0));
8622 if (offset != 0)
8624 rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, 0);
8626 /* If this object is in a register, put it into memory.
8627 This case can't occur in C, but can in Ada if we have
8628 unchecked conversion of an expression from a scalar type to
8629 an array or record type. */
8630 if (GET_CODE (op0) == REG || GET_CODE (op0) == SUBREG
8631 || GET_CODE (op0) == CONCAT || GET_CODE (op0) == ADDRESSOF)
8633 rtx memloc = assign_temp (TREE_TYPE (tem), 1, 1, 1);
8635 mark_temp_addr_taken (memloc);
8636 emit_move_insn (memloc, op0);
8637 op0 = memloc;
8640 if (GET_CODE (op0) != MEM)
8641 abort ();
8643 if (GET_MODE (offset_rtx) != ptr_mode)
8645 #ifdef POINTERS_EXTEND_UNSIGNED
8646 offset_rtx = convert_memory_address (ptr_mode, offset_rtx);
8647 #else
8648 offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
8649 #endif
8652 op0 = change_address (op0, VOIDmode,
8653 gen_rtx_PLUS (ptr_mode, XEXP (op0, 0),
8654 force_reg (ptr_mode,
8655 offset_rtx)));
8658 /* Don't forget about volatility even if this is a bitfield. */
8659 if (GET_CODE (op0) == MEM && volatilep && ! MEM_VOLATILE_P (op0))
8661 op0 = copy_rtx (op0);
8662 MEM_VOLATILE_P (op0) = 1;
8665 /* Check the access. */
8666 if (current_function_check_memory_usage && GET_CODE (op0) == MEM)
8668 rtx to;
8669 int size;
8671 to = plus_constant (XEXP (op0, 0), (bitpos / BITS_PER_UNIT));
8672 size = (bitpos % BITS_PER_UNIT) + bitsize + BITS_PER_UNIT - 1;
8674 /* Check the access right of the pointer. */
8675 if (size > BITS_PER_UNIT)
8676 emit_library_call (chkr_check_addr_libfunc, 1, VOIDmode, 3,
8677 to, ptr_mode, GEN_INT (size / BITS_PER_UNIT),
8678 TYPE_MODE (sizetype),
8679 GEN_INT (MEMORY_USE_RO),
8680 TYPE_MODE (integer_type_node));
8683 /* In cases where an aligned union has an unaligned object
8684 as a field, we might be extracting a BLKmode value from
8685 an integer-mode (e.g., SImode) object. Handle this case
8686 by doing the extract into an object as wide as the field
8687 (which we know to be the width of a basic mode), then
8688 storing into memory, and changing the mode to BLKmode.
8689 If we ultimately want the address (EXPAND_CONST_ADDRESS or
8690 EXPAND_INITIALIZER), then we must not copy to a temporary. */
8691 if (mode1 == VOIDmode
8692 || GET_CODE (op0) == REG || GET_CODE (op0) == SUBREG
8693 || (SLOW_UNALIGNED_ACCESS (mode1, alignment)
8694 && (TYPE_ALIGN (type) > alignment * BITS_PER_UNIT
8695 || bitpos % TYPE_ALIGN (type) != 0)))
8697 enum machine_mode ext_mode = mode_for_size (bitsize, MODE_INT, 1);
8699 if (ext_mode == BLKmode)
8701 /* In this case, BITPOS must start at a byte boundary. */
8702 if (GET_CODE (op0) != MEM
8703 || bitpos % BITS_PER_UNIT != 0)
8704 abort ();
8706 op0 = change_address (op0, VOIDmode,
8707 plus_constant (XEXP (op0, 0),
8708 bitpos / BITS_PER_UNIT));
8710 else
8712 rtx new = assign_stack_temp (ext_mode,
8713 bitsize / BITS_PER_UNIT, 0);
8715 op0 = extract_bit_field (validize_mem (op0), bitsize, bitpos,
8716 unsignedp, NULL_RTX, ext_mode,
8717 ext_mode, alignment,
8718 int_size_in_bytes (TREE_TYPE (tem)));
8720 /* If the result is a record type and BITSIZE is narrower than
8721 the mode of OP0, an integral mode, and this is a big endian
8722 machine, we must put the field into the high-order bits. */
8723 if (TREE_CODE (type) == RECORD_TYPE && BYTES_BIG_ENDIAN
8724 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
8725 && bitsize < GET_MODE_BITSIZE (GET_MODE (op0)))
8726 op0 = expand_shift (LSHIFT_EXPR, GET_MODE (op0), op0,
8727 size_int (GET_MODE_BITSIZE
8728 (GET_MODE (op0))
8729 - bitsize),
8730 op0, 1);
8733 emit_move_insn (new, op0);
8734 op0 = copy_rtx (new);
8735 PUT_MODE (op0, BLKmode);
8738 else
8739 /* Get a reference to just this component. */
8740 op0 = change_address (op0, mode1,
8741 plus_constant (XEXP (op0, 0),
8742 (bitpos / BITS_PER_UNIT)));
8744 MEM_ALIAS_SET (op0) = get_alias_set (exp);
8746 /* Adjust the alignment in case the bit position is not
8747 a multiple of the alignment of the inner object. */
8748 while (bitpos % alignment != 0)
8749 alignment >>= 1;
8751 if (GET_CODE (XEXP (op0, 0)) == REG)
8752 mark_reg_pointer (XEXP (op0, 0), alignment);
8754 MEM_IN_STRUCT_P (op0) = 1;
8755 MEM_VOLATILE_P (op0) |= volatilep;
8757 *palign = alignment;
8758 return op0;
8761 default:
8762 break;
8766 return expand_expr (exp, NULL_RTX, VOIDmode, EXPAND_NORMAL);
8769 /* Return the tree node and offset if a given argument corresponds to
8770 a string constant. */
8772 tree
8773 string_constant (arg, ptr_offset)
8774 tree arg;
8775 tree *ptr_offset;
8777 STRIP_NOPS (arg);
8779 if (TREE_CODE (arg) == ADDR_EXPR
8780 && TREE_CODE (TREE_OPERAND (arg, 0)) == STRING_CST)
8782 *ptr_offset = integer_zero_node;
8783 return TREE_OPERAND (arg, 0);
8785 else if (TREE_CODE (arg) == PLUS_EXPR)
8787 tree arg0 = TREE_OPERAND (arg, 0);
8788 tree arg1 = TREE_OPERAND (arg, 1);
8790 STRIP_NOPS (arg0);
8791 STRIP_NOPS (arg1);
8793 if (TREE_CODE (arg0) == ADDR_EXPR
8794 && TREE_CODE (TREE_OPERAND (arg0, 0)) == STRING_CST)
8796 *ptr_offset = arg1;
8797 return TREE_OPERAND (arg0, 0);
8799 else if (TREE_CODE (arg1) == ADDR_EXPR
8800 && TREE_CODE (TREE_OPERAND (arg1, 0)) == STRING_CST)
8802 *ptr_offset = arg0;
8803 return TREE_OPERAND (arg1, 0);
8807 return 0;
8810 /* Expand code for a post- or pre- increment or decrement
8811 and return the RTX for the result.
8812 POST is 1 for postinc/decrements and 0 for preinc/decrements. */
8814 static rtx
8815 expand_increment (exp, post, ignore)
8816 register tree exp;
8817 int post, ignore;
8819 register rtx op0, op1;
8820 register rtx temp, value;
8821 register tree incremented = TREE_OPERAND (exp, 0);
8822 optab this_optab = add_optab;
8823 int icode;
8824 enum machine_mode mode = TYPE_MODE (TREE_TYPE (exp));
8825 int op0_is_copy = 0;
8826 int single_insn = 0;
8827 /* 1 means we can't store into OP0 directly,
8828 because it is a subreg narrower than a word,
8829 and we don't dare clobber the rest of the word. */
8830 int bad_subreg = 0;
8832 /* Stabilize any component ref that might need to be
8833 evaluated more than once below. */
8834 if (!post
8835 || TREE_CODE (incremented) == BIT_FIELD_REF
8836 || (TREE_CODE (incremented) == COMPONENT_REF
8837 && (TREE_CODE (TREE_OPERAND (incremented, 0)) != INDIRECT_REF
8838 || DECL_BIT_FIELD (TREE_OPERAND (incremented, 1)))))
8839 incremented = stabilize_reference (incremented);
8840 /* Nested *INCREMENT_EXPRs can happen in C++. We must force innermost
8841 ones into save exprs so that they don't accidentally get evaluated
8842 more than once by the code below. */
8843 if (TREE_CODE (incremented) == PREINCREMENT_EXPR
8844 || TREE_CODE (incremented) == PREDECREMENT_EXPR)
8845 incremented = save_expr (incremented);
8847 /* Compute the operands as RTX.
8848 Note whether OP0 is the actual lvalue or a copy of it:
8849 I believe it is a copy iff it is a register or subreg
8850 and insns were generated in computing it. */
8852 temp = get_last_insn ();
8853 op0 = expand_expr (incremented, NULL_RTX, VOIDmode, EXPAND_MEMORY_USE_RW);
8855 /* If OP0 is a SUBREG made for a promoted variable, we cannot increment
8856 in place but instead must do sign- or zero-extension during assignment,
8857 so we copy it into a new register and let the code below use it as
8858 a copy.
8860 Note that we can safely modify this SUBREG since it is know not to be
8861 shared (it was made by the expand_expr call above). */
8863 if (GET_CODE (op0) == SUBREG && SUBREG_PROMOTED_VAR_P (op0))
8865 if (post)
8866 SUBREG_REG (op0) = copy_to_reg (SUBREG_REG (op0));
8867 else
8868 bad_subreg = 1;
8870 else if (GET_CODE (op0) == SUBREG
8871 && GET_MODE_BITSIZE (GET_MODE (op0)) < BITS_PER_WORD)
8873 /* We cannot increment this SUBREG in place. If we are
8874 post-incrementing, get a copy of the old value. Otherwise,
8875 just mark that we cannot increment in place. */
8876 if (post)
8877 op0 = copy_to_reg (op0);
8878 else
8879 bad_subreg = 1;
8882 op0_is_copy = ((GET_CODE (op0) == SUBREG || GET_CODE (op0) == REG)
8883 && temp != get_last_insn ());
8884 op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX, VOIDmode,
8885 EXPAND_MEMORY_USE_BAD);
8887 /* Decide whether incrementing or decrementing. */
8888 if (TREE_CODE (exp) == POSTDECREMENT_EXPR
8889 || TREE_CODE (exp) == PREDECREMENT_EXPR)
8890 this_optab = sub_optab;
8892 /* Convert decrement by a constant into a negative increment. */
8893 if (this_optab == sub_optab
8894 && GET_CODE (op1) == CONST_INT)
8896 op1 = GEN_INT (- INTVAL (op1));
8897 this_optab = add_optab;
8900 /* For a preincrement, see if we can do this with a single instruction. */
8901 if (!post)
8903 icode = (int) this_optab->handlers[(int) mode].insn_code;
8904 if (icode != (int) CODE_FOR_nothing
8905 /* Make sure that OP0 is valid for operands 0 and 1
8906 of the insn we want to queue. */
8907 && (*insn_data[icode].operand[0].predicate) (op0, mode)
8908 && (*insn_data[icode].operand[1].predicate) (op0, mode)
8909 && (*insn_data[icode].operand[2].predicate) (op1, mode))
8910 single_insn = 1;
8913 /* If OP0 is not the actual lvalue, but rather a copy in a register,
8914 then we cannot just increment OP0. We must therefore contrive to
8915 increment the original value. Then, for postincrement, we can return
8916 OP0 since it is a copy of the old value. For preincrement, expand here
8917 unless we can do it with a single insn.
8919 Likewise if storing directly into OP0 would clobber high bits
8920 we need to preserve (bad_subreg). */
8921 if (op0_is_copy || (!post && !single_insn) || bad_subreg)
8923 /* This is the easiest way to increment the value wherever it is.
8924 Problems with multiple evaluation of INCREMENTED are prevented
8925 because either (1) it is a component_ref or preincrement,
8926 in which case it was stabilized above, or (2) it is an array_ref
8927 with constant index in an array in a register, which is
8928 safe to reevaluate. */
8929 tree newexp = build (((TREE_CODE (exp) == POSTDECREMENT_EXPR
8930 || TREE_CODE (exp) == PREDECREMENT_EXPR)
8931 ? MINUS_EXPR : PLUS_EXPR),
8932 TREE_TYPE (exp),
8933 incremented,
8934 TREE_OPERAND (exp, 1));
8936 while (TREE_CODE (incremented) == NOP_EXPR
8937 || TREE_CODE (incremented) == CONVERT_EXPR)
8939 newexp = convert (TREE_TYPE (incremented), newexp);
8940 incremented = TREE_OPERAND (incremented, 0);
8943 temp = expand_assignment (incremented, newexp, ! post && ! ignore , 0);
8944 return post ? op0 : temp;
8947 if (post)
8949 /* We have a true reference to the value in OP0.
8950 If there is an insn to add or subtract in this mode, queue it.
8951 Queueing the increment insn avoids the register shuffling
8952 that often results if we must increment now and first save
8953 the old value for subsequent use. */
8955 #if 0 /* Turned off to avoid making extra insn for indexed memref. */
8956 op0 = stabilize (op0);
8957 #endif
8959 icode = (int) this_optab->handlers[(int) mode].insn_code;
8960 if (icode != (int) CODE_FOR_nothing
8961 /* Make sure that OP0 is valid for operands 0 and 1
8962 of the insn we want to queue. */
8963 && (*insn_data[icode].operand[0].predicate) (op0, mode)
8964 && (*insn_data[icode].operand[1].predicate) (op0, mode))
8966 if (! (*insn_data[icode].operand[2].predicate) (op1, mode))
8967 op1 = force_reg (mode, op1);
8969 return enqueue_insn (op0, GEN_FCN (icode) (op0, op0, op1));
8971 if (icode != (int) CODE_FOR_nothing && GET_CODE (op0) == MEM)
8973 rtx addr = (general_operand (XEXP (op0, 0), mode)
8974 ? force_reg (Pmode, XEXP (op0, 0))
8975 : copy_to_reg (XEXP (op0, 0)));
8976 rtx temp, result;
8978 op0 = change_address (op0, VOIDmode, addr);
8979 temp = force_reg (GET_MODE (op0), op0);
8980 if (! (*insn_data[icode].operand[2].predicate) (op1, mode))
8981 op1 = force_reg (mode, op1);
8983 /* The increment queue is LIFO, thus we have to `queue'
8984 the instructions in reverse order. */
8985 enqueue_insn (op0, gen_move_insn (op0, temp));
8986 result = enqueue_insn (temp, GEN_FCN (icode) (temp, temp, op1));
8987 return result;
8991 /* Preincrement, or we can't increment with one simple insn. */
8992 if (post)
8993 /* Save a copy of the value before inc or dec, to return it later. */
8994 temp = value = copy_to_reg (op0);
8995 else
8996 /* Arrange to return the incremented value. */
8997 /* Copy the rtx because expand_binop will protect from the queue,
8998 and the results of that would be invalid for us to return
8999 if our caller does emit_queue before using our result. */
9000 temp = copy_rtx (value = op0);
9002 /* Increment however we can. */
9003 op1 = expand_binop (mode, this_optab, value, op1,
9004 current_function_check_memory_usage ? NULL_RTX : op0,
9005 TREE_UNSIGNED (TREE_TYPE (exp)), OPTAB_LIB_WIDEN);
9006 /* Make sure the value is stored into OP0. */
9007 if (op1 != op0)
9008 emit_move_insn (op0, op1);
9010 return temp;
9013 /* Expand all function calls contained within EXP, innermost ones first.
9014 But don't look within expressions that have sequence points.
9015 For each CALL_EXPR, record the rtx for its value
9016 in the CALL_EXPR_RTL field. */
9018 static void
9019 preexpand_calls (exp)
9020 tree exp;
9022 register int nops, i;
9023 int type = TREE_CODE_CLASS (TREE_CODE (exp));
9025 if (! do_preexpand_calls)
9026 return;
9028 /* Only expressions and references can contain calls. */
9030 if (type != 'e' && type != '<' && type != '1' && type != '2' && type != 'r')
9031 return;
9033 switch (TREE_CODE (exp))
9035 case CALL_EXPR:
9036 /* Do nothing if already expanded. */
9037 if (CALL_EXPR_RTL (exp) != 0
9038 /* Do nothing if the call returns a variable-sized object. */
9039 || TREE_CODE (TYPE_SIZE (TREE_TYPE(exp))) != INTEGER_CST
9040 /* Do nothing to built-in functions. */
9041 || (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
9042 && (TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
9043 == FUNCTION_DECL)
9044 && DECL_BUILT_IN (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))))
9045 return;
9047 CALL_EXPR_RTL (exp) = expand_call (exp, NULL_RTX, 0);
9048 return;
9050 case COMPOUND_EXPR:
9051 case COND_EXPR:
9052 case TRUTH_ANDIF_EXPR:
9053 case TRUTH_ORIF_EXPR:
9054 /* If we find one of these, then we can be sure
9055 the adjust will be done for it (since it makes jumps).
9056 Do it now, so that if this is inside an argument
9057 of a function, we don't get the stack adjustment
9058 after some other args have already been pushed. */
9059 do_pending_stack_adjust ();
9060 return;
9062 case BLOCK:
9063 case RTL_EXPR:
9064 case WITH_CLEANUP_EXPR:
9065 case CLEANUP_POINT_EXPR:
9066 case TRY_CATCH_EXPR:
9067 return;
9069 case SAVE_EXPR:
9070 if (SAVE_EXPR_RTL (exp) != 0)
9071 return;
9073 default:
9074 break;
9077 nops = tree_code_length[(int) TREE_CODE (exp)];
9078 for (i = 0; i < nops; i++)
9079 if (TREE_OPERAND (exp, i) != 0)
9081 if (TREE_CODE (exp) == TARGET_EXPR && i == 2)
9082 /* We don't need to preexpand the cleanup for a TARGET_EXPR.
9083 It doesn't happen before the call is made. */
9085 else
9087 type = TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, i)));
9088 if (type == 'e' || type == '<' || type == '1' || type == '2'
9089 || type == 'r')
9090 preexpand_calls (TREE_OPERAND (exp, i));
9095 /* At the start of a function, record that we have no previously-pushed
9096 arguments waiting to be popped. */
9098 void
9099 init_pending_stack_adjust ()
9101 pending_stack_adjust = 0;
9104 /* When exiting from function, if safe, clear out any pending stack adjust
9105 so the adjustment won't get done.
9107 Note, if the current function calls alloca, then it must have a
9108 frame pointer regardless of the value of flag_omit_frame_pointer. */
9110 void
9111 clear_pending_stack_adjust ()
9113 #ifdef EXIT_IGNORE_STACK
9114 if (optimize > 0
9115 && (! flag_omit_frame_pointer || current_function_calls_alloca)
9116 && EXIT_IGNORE_STACK
9117 && ! (DECL_INLINE (current_function_decl) && ! flag_no_inline)
9118 && ! flag_inline_functions)
9119 pending_stack_adjust = 0;
9120 #endif
9123 /* Pop any previously-pushed arguments that have not been popped yet. */
9125 void
9126 do_pending_stack_adjust ()
9128 if (inhibit_defer_pop == 0)
9130 if (pending_stack_adjust != 0)
9131 adjust_stack (GEN_INT (pending_stack_adjust));
9132 pending_stack_adjust = 0;
9136 /* Expand conditional expressions. */
9138 /* Generate code to evaluate EXP and jump to LABEL if the value is zero.
9139 LABEL is an rtx of code CODE_LABEL, in this function and all the
9140 functions here. */
9142 void
9143 jumpifnot (exp, label)
9144 tree exp;
9145 rtx label;
9147 do_jump (exp, label, NULL_RTX);
9150 /* Generate code to evaluate EXP and jump to LABEL if the value is nonzero. */
9152 void
9153 jumpif (exp, label)
9154 tree exp;
9155 rtx label;
9157 do_jump (exp, NULL_RTX, label);
9160 /* Generate code to evaluate EXP and jump to IF_FALSE_LABEL if
9161 the result is zero, or IF_TRUE_LABEL if the result is one.
9162 Either of IF_FALSE_LABEL and IF_TRUE_LABEL may be zero,
9163 meaning fall through in that case.
9165 do_jump always does any pending stack adjust except when it does not
9166 actually perform a jump. An example where there is no jump
9167 is when EXP is `(foo (), 0)' and IF_FALSE_LABEL is null.
9169 This function is responsible for optimizing cases such as
9170 &&, || and comparison operators in EXP. */
9172 void
9173 do_jump (exp, if_false_label, if_true_label)
9174 tree exp;
9175 rtx if_false_label, if_true_label;
9177 register enum tree_code code = TREE_CODE (exp);
9178 /* Some cases need to create a label to jump to
9179 in order to properly fall through.
9180 These cases set DROP_THROUGH_LABEL nonzero. */
9181 rtx drop_through_label = 0;
9182 rtx temp;
9183 int i;
9184 tree type;
9185 enum machine_mode mode;
9187 #ifdef MAX_INTEGER_COMPUTATION_MODE
9188 check_max_integer_computation_mode (exp);
9189 #endif
9191 emit_queue ();
9193 switch (code)
9195 case ERROR_MARK:
9196 break;
9198 case INTEGER_CST:
9199 temp = integer_zerop (exp) ? if_false_label : if_true_label;
9200 if (temp)
9201 emit_jump (temp);
9202 break;
9204 #if 0
9205 /* This is not true with #pragma weak */
9206 case ADDR_EXPR:
9207 /* The address of something can never be zero. */
9208 if (if_true_label)
9209 emit_jump (if_true_label);
9210 break;
9211 #endif
9213 case NOP_EXPR:
9214 if (TREE_CODE (TREE_OPERAND (exp, 0)) == COMPONENT_REF
9215 || TREE_CODE (TREE_OPERAND (exp, 0)) == BIT_FIELD_REF
9216 || TREE_CODE (TREE_OPERAND (exp, 0)) == ARRAY_REF)
9217 goto normal;
9218 case CONVERT_EXPR:
9219 /* If we are narrowing the operand, we have to do the compare in the
9220 narrower mode. */
9221 if ((TYPE_PRECISION (TREE_TYPE (exp))
9222 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0)))))
9223 goto normal;
9224 case NON_LVALUE_EXPR:
9225 case REFERENCE_EXPR:
9226 case ABS_EXPR:
9227 case NEGATE_EXPR:
9228 case LROTATE_EXPR:
9229 case RROTATE_EXPR:
9230 /* These cannot change zero->non-zero or vice versa. */
9231 do_jump (TREE_OPERAND (exp, 0), if_false_label, if_true_label);
9232 break;
9234 case WITH_RECORD_EXPR:
9235 /* Put the object on the placeholder list, recurse through our first
9236 operand, and pop the list. */
9237 placeholder_list = tree_cons (TREE_OPERAND (exp, 1), NULL_TREE,
9238 placeholder_list);
9239 do_jump (TREE_OPERAND (exp, 0), if_false_label, if_true_label);
9240 placeholder_list = TREE_CHAIN (placeholder_list);
9241 break;
9243 #if 0
9244 /* This is never less insns than evaluating the PLUS_EXPR followed by
9245 a test and can be longer if the test is eliminated. */
9246 case PLUS_EXPR:
9247 /* Reduce to minus. */
9248 exp = build (MINUS_EXPR, TREE_TYPE (exp),
9249 TREE_OPERAND (exp, 0),
9250 fold (build1 (NEGATE_EXPR, TREE_TYPE (TREE_OPERAND (exp, 1)),
9251 TREE_OPERAND (exp, 1))));
9252 /* Process as MINUS. */
9253 #endif
9255 case MINUS_EXPR:
9256 /* Non-zero iff operands of minus differ. */
9257 do_compare_and_jump (build (NE_EXPR, TREE_TYPE (exp),
9258 TREE_OPERAND (exp, 0),
9259 TREE_OPERAND (exp, 1)),
9260 NE, NE, if_false_label, if_true_label);
9261 break;
9263 case BIT_AND_EXPR:
9264 /* If we are AND'ing with a small constant, do this comparison in the
9265 smallest type that fits. If the machine doesn't have comparisons
9266 that small, it will be converted back to the wider comparison.
9267 This helps if we are testing the sign bit of a narrower object.
9268 combine can't do this for us because it can't know whether a
9269 ZERO_EXTRACT or a compare in a smaller mode exists, but we do. */
9271 if (! SLOW_BYTE_ACCESS
9272 && TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST
9273 && TYPE_PRECISION (TREE_TYPE (exp)) <= HOST_BITS_PER_WIDE_INT
9274 && (i = floor_log2 (TREE_INT_CST_LOW (TREE_OPERAND (exp, 1)))) >= 0
9275 && (mode = mode_for_size (i + 1, MODE_INT, 0)) != BLKmode
9276 && (type = type_for_mode (mode, 1)) != 0
9277 && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (exp))
9278 && (cmp_optab->handlers[(int) TYPE_MODE (type)].insn_code
9279 != CODE_FOR_nothing))
9281 do_jump (convert (type, exp), if_false_label, if_true_label);
9282 break;
9284 goto normal;
9286 case TRUTH_NOT_EXPR:
9287 do_jump (TREE_OPERAND (exp, 0), if_true_label, if_false_label);
9288 break;
9290 case TRUTH_ANDIF_EXPR:
9291 if (if_false_label == 0)
9292 if_false_label = drop_through_label = gen_label_rtx ();
9293 do_jump (TREE_OPERAND (exp, 0), if_false_label, NULL_RTX);
9294 start_cleanup_deferral ();
9295 do_jump (TREE_OPERAND (exp, 1), if_false_label, if_true_label);
9296 end_cleanup_deferral ();
9297 break;
9299 case TRUTH_ORIF_EXPR:
9300 if (if_true_label == 0)
9301 if_true_label = drop_through_label = gen_label_rtx ();
9302 do_jump (TREE_OPERAND (exp, 0), NULL_RTX, if_true_label);
9303 start_cleanup_deferral ();
9304 do_jump (TREE_OPERAND (exp, 1), if_false_label, if_true_label);
9305 end_cleanup_deferral ();
9306 break;
9308 case COMPOUND_EXPR:
9309 push_temp_slots ();
9310 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, 0);
9311 preserve_temp_slots (NULL_RTX);
9312 free_temp_slots ();
9313 pop_temp_slots ();
9314 emit_queue ();
9315 do_pending_stack_adjust ();
9316 do_jump (TREE_OPERAND (exp, 1), if_false_label, if_true_label);
9317 break;
9319 case COMPONENT_REF:
9320 case BIT_FIELD_REF:
9321 case ARRAY_REF:
9323 int bitsize, bitpos, unsignedp;
9324 enum machine_mode mode;
9325 tree type;
9326 tree offset;
9327 int volatilep = 0;
9328 int alignment;
9330 /* Get description of this reference. We don't actually care
9331 about the underlying object here. */
9332 get_inner_reference (exp, &bitsize, &bitpos, &offset,
9333 &mode, &unsignedp, &volatilep,
9334 &alignment);
9336 type = type_for_size (bitsize, unsignedp);
9337 if (! SLOW_BYTE_ACCESS
9338 && type != 0 && bitsize >= 0
9339 && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (exp))
9340 && (cmp_optab->handlers[(int) TYPE_MODE (type)].insn_code
9341 != CODE_FOR_nothing))
9343 do_jump (convert (type, exp), if_false_label, if_true_label);
9344 break;
9346 goto normal;
9349 case COND_EXPR:
9350 /* Do (a ? 1 : 0) and (a ? 0 : 1) as special cases. */
9351 if (integer_onep (TREE_OPERAND (exp, 1))
9352 && integer_zerop (TREE_OPERAND (exp, 2)))
9353 do_jump (TREE_OPERAND (exp, 0), if_false_label, if_true_label);
9355 else if (integer_zerop (TREE_OPERAND (exp, 1))
9356 && integer_onep (TREE_OPERAND (exp, 2)))
9357 do_jump (TREE_OPERAND (exp, 0), if_true_label, if_false_label);
9359 else
9361 register rtx label1 = gen_label_rtx ();
9362 drop_through_label = gen_label_rtx ();
9364 do_jump (TREE_OPERAND (exp, 0), label1, NULL_RTX);
9366 start_cleanup_deferral ();
9367 /* Now the THEN-expression. */
9368 do_jump (TREE_OPERAND (exp, 1),
9369 if_false_label ? if_false_label : drop_through_label,
9370 if_true_label ? if_true_label : drop_through_label);
9371 /* In case the do_jump just above never jumps. */
9372 do_pending_stack_adjust ();
9373 emit_label (label1);
9375 /* Now the ELSE-expression. */
9376 do_jump (TREE_OPERAND (exp, 2),
9377 if_false_label ? if_false_label : drop_through_label,
9378 if_true_label ? if_true_label : drop_through_label);
9379 end_cleanup_deferral ();
9381 break;
9383 case EQ_EXPR:
9385 tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
9387 if (GET_MODE_CLASS (TYPE_MODE (inner_type)) == MODE_COMPLEX_FLOAT
9388 || GET_MODE_CLASS (TYPE_MODE (inner_type)) == MODE_COMPLEX_INT)
9390 tree exp0 = save_expr (TREE_OPERAND (exp, 0));
9391 tree exp1 = save_expr (TREE_OPERAND (exp, 1));
9392 do_jump
9393 (fold
9394 (build (TRUTH_ANDIF_EXPR, TREE_TYPE (exp),
9395 fold (build (EQ_EXPR, TREE_TYPE (exp),
9396 fold (build1 (REALPART_EXPR,
9397 TREE_TYPE (inner_type),
9398 exp0)),
9399 fold (build1 (REALPART_EXPR,
9400 TREE_TYPE (inner_type),
9401 exp1)))),
9402 fold (build (EQ_EXPR, TREE_TYPE (exp),
9403 fold (build1 (IMAGPART_EXPR,
9404 TREE_TYPE (inner_type),
9405 exp0)),
9406 fold (build1 (IMAGPART_EXPR,
9407 TREE_TYPE (inner_type),
9408 exp1)))))),
9409 if_false_label, if_true_label);
9412 else if (integer_zerop (TREE_OPERAND (exp, 1)))
9413 do_jump (TREE_OPERAND (exp, 0), if_true_label, if_false_label);
9415 else if (GET_MODE_CLASS (TYPE_MODE (inner_type)) == MODE_INT
9416 && !can_compare_p (TYPE_MODE (inner_type), ccp_jump))
9417 do_jump_by_parts_equality (exp, if_false_label, if_true_label);
9418 else
9419 do_compare_and_jump (exp, EQ, EQ, if_false_label, if_true_label);
9420 break;
9423 case NE_EXPR:
9425 tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
9427 if (GET_MODE_CLASS (TYPE_MODE (inner_type)) == MODE_COMPLEX_FLOAT
9428 || GET_MODE_CLASS (TYPE_MODE (inner_type)) == MODE_COMPLEX_INT)
9430 tree exp0 = save_expr (TREE_OPERAND (exp, 0));
9431 tree exp1 = save_expr (TREE_OPERAND (exp, 1));
9432 do_jump
9433 (fold
9434 (build (TRUTH_ORIF_EXPR, TREE_TYPE (exp),
9435 fold (build (NE_EXPR, TREE_TYPE (exp),
9436 fold (build1 (REALPART_EXPR,
9437 TREE_TYPE (inner_type),
9438 exp0)),
9439 fold (build1 (REALPART_EXPR,
9440 TREE_TYPE (inner_type),
9441 exp1)))),
9442 fold (build (NE_EXPR, TREE_TYPE (exp),
9443 fold (build1 (IMAGPART_EXPR,
9444 TREE_TYPE (inner_type),
9445 exp0)),
9446 fold (build1 (IMAGPART_EXPR,
9447 TREE_TYPE (inner_type),
9448 exp1)))))),
9449 if_false_label, if_true_label);
9452 else if (integer_zerop (TREE_OPERAND (exp, 1)))
9453 do_jump (TREE_OPERAND (exp, 0), if_false_label, if_true_label);
9455 else if (GET_MODE_CLASS (TYPE_MODE (inner_type)) == MODE_INT
9456 && !can_compare_p (TYPE_MODE (inner_type), ccp_jump))
9457 do_jump_by_parts_equality (exp, if_true_label, if_false_label);
9458 else
9459 do_compare_and_jump (exp, NE, NE, if_false_label, if_true_label);
9460 break;
9463 case LT_EXPR:
9464 mode = TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)));
9465 if (GET_MODE_CLASS (mode) == MODE_INT
9466 && ! can_compare_p (mode, ccp_jump))
9467 do_jump_by_parts_greater (exp, 1, if_false_label, if_true_label);
9468 else
9469 do_compare_and_jump (exp, LT, LTU, if_false_label, if_true_label);
9470 break;
9472 case LE_EXPR:
9473 mode = TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)));
9474 if (GET_MODE_CLASS (mode) == MODE_INT
9475 && ! can_compare_p (mode, ccp_jump))
9476 do_jump_by_parts_greater (exp, 0, if_true_label, if_false_label);
9477 else
9478 do_compare_and_jump (exp, LE, LEU, if_false_label, if_true_label);
9479 break;
9481 case GT_EXPR:
9482 mode = TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)));
9483 if (GET_MODE_CLASS (mode) == MODE_INT
9484 && ! can_compare_p (mode, ccp_jump))
9485 do_jump_by_parts_greater (exp, 0, if_false_label, if_true_label);
9486 else
9487 do_compare_and_jump (exp, GT, GTU, if_false_label, if_true_label);
9488 break;
9490 case GE_EXPR:
9491 mode = TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)));
9492 if (GET_MODE_CLASS (mode) == MODE_INT
9493 && ! can_compare_p (mode, ccp_jump))
9494 do_jump_by_parts_greater (exp, 1, if_true_label, if_false_label);
9495 else
9496 do_compare_and_jump (exp, GE, GEU, if_false_label, if_true_label);
9497 break;
9499 default:
9500 normal:
9501 temp = expand_expr (exp, NULL_RTX, VOIDmode, 0);
9502 #if 0
9503 /* This is not needed any more and causes poor code since it causes
9504 comparisons and tests from non-SI objects to have different code
9505 sequences. */
9506 /* Copy to register to avoid generating bad insns by cse
9507 from (set (mem ...) (arithop)) (set (cc0) (mem ...)). */
9508 if (!cse_not_expected && GET_CODE (temp) == MEM)
9509 temp = copy_to_reg (temp);
9510 #endif
9511 do_pending_stack_adjust ();
9512 /* Do any postincrements in the expression that was tested. */
9513 emit_queue ();
9515 if (GET_CODE (temp) == CONST_INT || GET_CODE (temp) == LABEL_REF)
9517 rtx target = temp == const0_rtx ? if_false_label : if_true_label;
9518 if (target)
9519 emit_jump (target);
9521 else if (GET_MODE_CLASS (GET_MODE (temp)) == MODE_INT
9522 && ! can_compare_p (GET_MODE (temp), ccp_jump))
9523 /* Note swapping the labels gives us not-equal. */
9524 do_jump_by_parts_equality_rtx (temp, if_true_label, if_false_label);
9525 else if (GET_MODE (temp) != VOIDmode)
9526 do_compare_rtx_and_jump (temp, CONST0_RTX (GET_MODE (temp)),
9527 NE, TREE_UNSIGNED (TREE_TYPE (exp)),
9528 GET_MODE (temp), NULL_RTX, 0,
9529 if_false_label, if_true_label);
9530 else
9531 abort ();
9534 if (drop_through_label)
9536 /* If do_jump produces code that might be jumped around,
9537 do any stack adjusts from that code, before the place
9538 where control merges in. */
9539 do_pending_stack_adjust ();
9540 emit_label (drop_through_label);
9544 /* Given a comparison expression EXP for values too wide to be compared
9545 with one insn, test the comparison and jump to the appropriate label.
9546 The code of EXP is ignored; we always test GT if SWAP is 0,
9547 and LT if SWAP is 1. */
9549 static void
9550 do_jump_by_parts_greater (exp, swap, if_false_label, if_true_label)
9551 tree exp;
9552 int swap;
9553 rtx if_false_label, if_true_label;
9555 rtx op0 = expand_expr (TREE_OPERAND (exp, swap), NULL_RTX, VOIDmode, 0);
9556 rtx op1 = expand_expr (TREE_OPERAND (exp, !swap), NULL_RTX, VOIDmode, 0);
9557 enum machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)));
9558 int unsignedp = TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0)));
9560 do_jump_by_parts_greater_rtx (mode, unsignedp, op0, op1, if_false_label, if_true_label);
9563 /* Compare OP0 with OP1, word at a time, in mode MODE.
9564 UNSIGNEDP says to do unsigned comparison.
9565 Jump to IF_TRUE_LABEL if OP0 is greater, IF_FALSE_LABEL otherwise. */
9567 void
9568 do_jump_by_parts_greater_rtx (mode, unsignedp, op0, op1, if_false_label, if_true_label)
9569 enum machine_mode mode;
9570 int unsignedp;
9571 rtx op0, op1;
9572 rtx if_false_label, if_true_label;
9574 int nwords = (GET_MODE_SIZE (mode) / UNITS_PER_WORD);
9575 rtx drop_through_label = 0;
9576 int i;
9578 if (! if_true_label || ! if_false_label)
9579 drop_through_label = gen_label_rtx ();
9580 if (! if_true_label)
9581 if_true_label = drop_through_label;
9582 if (! if_false_label)
9583 if_false_label = drop_through_label;
9585 /* Compare a word at a time, high order first. */
9586 for (i = 0; i < nwords; i++)
9588 rtx op0_word, op1_word;
9590 if (WORDS_BIG_ENDIAN)
9592 op0_word = operand_subword_force (op0, i, mode);
9593 op1_word = operand_subword_force (op1, i, mode);
9595 else
9597 op0_word = operand_subword_force (op0, nwords - 1 - i, mode);
9598 op1_word = operand_subword_force (op1, nwords - 1 - i, mode);
9601 /* All but high-order word must be compared as unsigned. */
9602 do_compare_rtx_and_jump (op0_word, op1_word, GT,
9603 (unsignedp || i > 0), word_mode, NULL_RTX, 0,
9604 NULL_RTX, if_true_label);
9606 /* Consider lower words only if these are equal. */
9607 do_compare_rtx_and_jump (op0_word, op1_word, NE, unsignedp, word_mode,
9608 NULL_RTX, 0, NULL_RTX, if_false_label);
9611 if (if_false_label)
9612 emit_jump (if_false_label);
9613 if (drop_through_label)
9614 emit_label (drop_through_label);
9617 /* Given an EQ_EXPR expression EXP for values too wide to be compared
9618 with one insn, test the comparison and jump to the appropriate label. */
9620 static void
9621 do_jump_by_parts_equality (exp, if_false_label, if_true_label)
9622 tree exp;
9623 rtx if_false_label, if_true_label;
9625 rtx op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, VOIDmode, 0);
9626 rtx op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX, VOIDmode, 0);
9627 enum machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)));
9628 int nwords = (GET_MODE_SIZE (mode) / UNITS_PER_WORD);
9629 int i;
9630 rtx drop_through_label = 0;
9632 if (! if_false_label)
9633 drop_through_label = if_false_label = gen_label_rtx ();
9635 for (i = 0; i < nwords; i++)
9636 do_compare_rtx_and_jump (operand_subword_force (op0, i, mode),
9637 operand_subword_force (op1, i, mode),
9638 EQ, TREE_UNSIGNED (TREE_TYPE (exp)),
9639 word_mode, NULL_RTX, 0, if_false_label,
9640 NULL_RTX);
9642 if (if_true_label)
9643 emit_jump (if_true_label);
9644 if (drop_through_label)
9645 emit_label (drop_through_label);
9648 /* Jump according to whether OP0 is 0.
9649 We assume that OP0 has an integer mode that is too wide
9650 for the available compare insns. */
9652 void
9653 do_jump_by_parts_equality_rtx (op0, if_false_label, if_true_label)
9654 rtx op0;
9655 rtx if_false_label, if_true_label;
9657 int nwords = GET_MODE_SIZE (GET_MODE (op0)) / UNITS_PER_WORD;
9658 rtx part;
9659 int i;
9660 rtx drop_through_label = 0;
9662 /* The fastest way of doing this comparison on almost any machine is to
9663 "or" all the words and compare the result. If all have to be loaded
9664 from memory and this is a very wide item, it's possible this may
9665 be slower, but that's highly unlikely. */
9667 part = gen_reg_rtx (word_mode);
9668 emit_move_insn (part, operand_subword_force (op0, 0, GET_MODE (op0)));
9669 for (i = 1; i < nwords && part != 0; i++)
9670 part = expand_binop (word_mode, ior_optab, part,
9671 operand_subword_force (op0, i, GET_MODE (op0)),
9672 part, 1, OPTAB_WIDEN);
9674 if (part != 0)
9676 do_compare_rtx_and_jump (part, const0_rtx, EQ, 1, word_mode,
9677 NULL_RTX, 0, if_false_label, if_true_label);
9679 return;
9682 /* If we couldn't do the "or" simply, do this with a series of compares. */
9683 if (! if_false_label)
9684 drop_through_label = if_false_label = gen_label_rtx ();
9686 for (i = 0; i < nwords; i++)
9687 do_compare_rtx_and_jump (operand_subword_force (op0, i, GET_MODE (op0)),
9688 const0_rtx, EQ, 1, word_mode, NULL_RTX, 0,
9689 if_false_label, NULL_RTX);
9691 if (if_true_label)
9692 emit_jump (if_true_label);
9694 if (drop_through_label)
9695 emit_label (drop_through_label);
9698 /* Generate code for a comparison of OP0 and OP1 with rtx code CODE.
9699 (including code to compute the values to be compared)
9700 and set (CC0) according to the result.
9701 The decision as to signed or unsigned comparison must be made by the caller.
9703 We force a stack adjustment unless there are currently
9704 things pushed on the stack that aren't yet used.
9706 If MODE is BLKmode, SIZE is an RTX giving the size of the objects being
9707 compared.
9709 If ALIGN is non-zero, it is the alignment of this type; if zero, the
9710 size of MODE should be used. */
9713 compare_from_rtx (op0, op1, code, unsignedp, mode, size, align)
9714 register rtx op0, op1;
9715 enum rtx_code code;
9716 int unsignedp;
9717 enum machine_mode mode;
9718 rtx size;
9719 int align;
9721 rtx tem;
9723 /* If one operand is constant, make it the second one. Only do this
9724 if the other operand is not constant as well. */
9726 if ((CONSTANT_P (op0) && ! CONSTANT_P (op1))
9727 || (GET_CODE (op0) == CONST_INT && GET_CODE (op1) != CONST_INT))
9729 tem = op0;
9730 op0 = op1;
9731 op1 = tem;
9732 code = swap_condition (code);
9735 if (flag_force_mem)
9737 op0 = force_not_mem (op0);
9738 op1 = force_not_mem (op1);
9741 do_pending_stack_adjust ();
9743 if (GET_CODE (op0) == CONST_INT && GET_CODE (op1) == CONST_INT
9744 && (tem = simplify_relational_operation (code, mode, op0, op1)) != 0)
9745 return tem;
9747 #if 0
9748 /* There's no need to do this now that combine.c can eliminate lots of
9749 sign extensions. This can be less efficient in certain cases on other
9750 machines. */
9752 /* If this is a signed equality comparison, we can do it as an
9753 unsigned comparison since zero-extension is cheaper than sign
9754 extension and comparisons with zero are done as unsigned. This is
9755 the case even on machines that can do fast sign extension, since
9756 zero-extension is easier to combine with other operations than
9757 sign-extension is. If we are comparing against a constant, we must
9758 convert it to what it would look like unsigned. */
9759 if ((code == EQ || code == NE) && ! unsignedp
9760 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
9762 if (GET_CODE (op1) == CONST_INT
9763 && (INTVAL (op1) & GET_MODE_MASK (GET_MODE (op0))) != INTVAL (op1))
9764 op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (GET_MODE (op0)));
9765 unsignedp = 1;
9767 #endif
9769 emit_cmp_insn (op0, op1, code, size, mode, unsignedp, align);
9771 return gen_rtx_fmt_ee (code, VOIDmode, cc0_rtx, const0_rtx);
9774 /* Like do_compare_and_jump but expects the values to compare as two rtx's.
9775 The decision as to signed or unsigned comparison must be made by the caller.
9777 If MODE is BLKmode, SIZE is an RTX giving the size of the objects being
9778 compared.
9780 If ALIGN is non-zero, it is the alignment of this type; if zero, the
9781 size of MODE should be used. */
9783 void
9784 do_compare_rtx_and_jump (op0, op1, code, unsignedp, mode, size, align,
9785 if_false_label, if_true_label)
9786 register rtx op0, op1;
9787 enum rtx_code code;
9788 int unsignedp;
9789 enum machine_mode mode;
9790 rtx size;
9791 int align;
9792 rtx if_false_label, if_true_label;
9794 rtx tem;
9795 int dummy_true_label = 0;
9797 /* Reverse the comparison if that is safe and we want to jump if it is
9798 false. */
9799 if (! if_true_label && ! FLOAT_MODE_P (mode))
9801 if_true_label = if_false_label;
9802 if_false_label = 0;
9803 code = reverse_condition (code);
9806 /* If one operand is constant, make it the second one. Only do this
9807 if the other operand is not constant as well. */
9809 if ((CONSTANT_P (op0) && ! CONSTANT_P (op1))
9810 || (GET_CODE (op0) == CONST_INT && GET_CODE (op1) != CONST_INT))
9812 tem = op0;
9813 op0 = op1;
9814 op1 = tem;
9815 code = swap_condition (code);
9818 if (flag_force_mem)
9820 op0 = force_not_mem (op0);
9821 op1 = force_not_mem (op1);
9824 do_pending_stack_adjust ();
9826 if (GET_CODE (op0) == CONST_INT && GET_CODE (op1) == CONST_INT
9827 && (tem = simplify_relational_operation (code, mode, op0, op1)) != 0)
9829 if (tem == const_true_rtx)
9831 if (if_true_label)
9832 emit_jump (if_true_label);
9834 else
9836 if (if_false_label)
9837 emit_jump (if_false_label);
9839 return;
9842 #if 0
9843 /* There's no need to do this now that combine.c can eliminate lots of
9844 sign extensions. This can be less efficient in certain cases on other
9845 machines. */
9847 /* If this is a signed equality comparison, we can do it as an
9848 unsigned comparison since zero-extension is cheaper than sign
9849 extension and comparisons with zero are done as unsigned. This is
9850 the case even on machines that can do fast sign extension, since
9851 zero-extension is easier to combine with other operations than
9852 sign-extension is. If we are comparing against a constant, we must
9853 convert it to what it would look like unsigned. */
9854 if ((code == EQ || code == NE) && ! unsignedp
9855 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
9857 if (GET_CODE (op1) == CONST_INT
9858 && (INTVAL (op1) & GET_MODE_MASK (GET_MODE (op0))) != INTVAL (op1))
9859 op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (GET_MODE (op0)));
9860 unsignedp = 1;
9862 #endif
9864 if (! if_true_label)
9866 dummy_true_label = 1;
9867 if_true_label = gen_label_rtx ();
9870 emit_cmp_and_jump_insns (op0, op1, code, size, mode, unsignedp, align,
9871 if_true_label);
9873 if (if_false_label)
9874 emit_jump (if_false_label);
9875 if (dummy_true_label)
9876 emit_label (if_true_label);
9879 /* Generate code for a comparison expression EXP (including code to compute
9880 the values to be compared) and a conditional jump to IF_FALSE_LABEL and/or
9881 IF_TRUE_LABEL. One of the labels can be NULL_RTX, in which case the
9882 generated code will drop through.
9883 SIGNED_CODE should be the rtx operation for this comparison for
9884 signed data; UNSIGNED_CODE, likewise for use if data is unsigned.
9886 We force a stack adjustment unless there are currently
9887 things pushed on the stack that aren't yet used. */
9889 static void
9890 do_compare_and_jump (exp, signed_code, unsigned_code, if_false_label,
9891 if_true_label)
9892 register tree exp;
9893 enum rtx_code signed_code, unsigned_code;
9894 rtx if_false_label, if_true_label;
9896 int align0, align1;
9897 register rtx op0, op1;
9898 register tree type;
9899 register enum machine_mode mode;
9900 int unsignedp;
9901 enum rtx_code code;
9903 /* Don't crash if the comparison was erroneous. */
9904 op0 = expand_expr_unaligned (TREE_OPERAND (exp, 0), &align0);
9905 if (TREE_CODE (TREE_OPERAND (exp, 0)) == ERROR_MARK)
9906 return;
9908 op1 = expand_expr_unaligned (TREE_OPERAND (exp, 1), &align1);
9909 type = TREE_TYPE (TREE_OPERAND (exp, 0));
9910 mode = TYPE_MODE (type);
9911 unsignedp = TREE_UNSIGNED (type);
9912 code = unsignedp ? unsigned_code : signed_code;
9914 #ifdef HAVE_canonicalize_funcptr_for_compare
9915 /* If function pointers need to be "canonicalized" before they can
9916 be reliably compared, then canonicalize them. */
9917 if (HAVE_canonicalize_funcptr_for_compare
9918 && TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == POINTER_TYPE
9919 && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))))
9920 == FUNCTION_TYPE))
9922 rtx new_op0 = gen_reg_rtx (mode);
9924 emit_insn (gen_canonicalize_funcptr_for_compare (new_op0, op0));
9925 op0 = new_op0;
9928 if (HAVE_canonicalize_funcptr_for_compare
9929 && TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 1))) == POINTER_TYPE
9930 && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 1))))
9931 == FUNCTION_TYPE))
9933 rtx new_op1 = gen_reg_rtx (mode);
9935 emit_insn (gen_canonicalize_funcptr_for_compare (new_op1, op1));
9936 op1 = new_op1;
9938 #endif
9940 /* Do any postincrements in the expression that was tested. */
9941 emit_queue ();
9943 do_compare_rtx_and_jump (op0, op1, code, unsignedp, mode,
9944 ((mode == BLKmode)
9945 ? expr_size (TREE_OPERAND (exp, 0)) : NULL_RTX),
9946 MIN (align0, align1) / BITS_PER_UNIT,
9947 if_false_label, if_true_label);
9950 /* Generate code to calculate EXP using a store-flag instruction
9951 and return an rtx for the result. EXP is either a comparison
9952 or a TRUTH_NOT_EXPR whose operand is a comparison.
9954 If TARGET is nonzero, store the result there if convenient.
9956 If ONLY_CHEAP is non-zero, only do this if it is likely to be very
9957 cheap.
9959 Return zero if there is no suitable set-flag instruction
9960 available on this machine.
9962 Once expand_expr has been called on the arguments of the comparison,
9963 we are committed to doing the store flag, since it is not safe to
9964 re-evaluate the expression. We emit the store-flag insn by calling
9965 emit_store_flag, but only expand the arguments if we have a reason
9966 to believe that emit_store_flag will be successful. If we think that
9967 it will, but it isn't, we have to simulate the store-flag with a
9968 set/jump/set sequence. */
9970 static rtx
9971 do_store_flag (exp, target, mode, only_cheap)
9972 tree exp;
9973 rtx target;
9974 enum machine_mode mode;
9975 int only_cheap;
9977 enum rtx_code code;
9978 tree arg0, arg1, type;
9979 tree tem;
9980 enum machine_mode operand_mode;
9981 int invert = 0;
9982 int unsignedp;
9983 rtx op0, op1;
9984 enum insn_code icode;
9985 rtx subtarget = target;
9986 rtx result, label;
9988 /* If this is a TRUTH_NOT_EXPR, set a flag indicating we must invert the
9989 result at the end. We can't simply invert the test since it would
9990 have already been inverted if it were valid. This case occurs for
9991 some floating-point comparisons. */
9993 if (TREE_CODE (exp) == TRUTH_NOT_EXPR)
9994 invert = 1, exp = TREE_OPERAND (exp, 0);
9996 arg0 = TREE_OPERAND (exp, 0);
9997 arg1 = TREE_OPERAND (exp, 1);
9998 type = TREE_TYPE (arg0);
9999 operand_mode = TYPE_MODE (type);
10000 unsignedp = TREE_UNSIGNED (type);
10002 /* We won't bother with BLKmode store-flag operations because it would mean
10003 passing a lot of information to emit_store_flag. */
10004 if (operand_mode == BLKmode)
10005 return 0;
10007 /* We won't bother with store-flag operations involving function pointers
10008 when function pointers must be canonicalized before comparisons. */
10009 #ifdef HAVE_canonicalize_funcptr_for_compare
10010 if (HAVE_canonicalize_funcptr_for_compare
10011 && ((TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == POINTER_TYPE
10012 && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))))
10013 == FUNCTION_TYPE))
10014 || (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 1))) == POINTER_TYPE
10015 && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 1))))
10016 == FUNCTION_TYPE))))
10017 return 0;
10018 #endif
10020 STRIP_NOPS (arg0);
10021 STRIP_NOPS (arg1);
10023 /* Get the rtx comparison code to use. We know that EXP is a comparison
10024 operation of some type. Some comparisons against 1 and -1 can be
10025 converted to comparisons with zero. Do so here so that the tests
10026 below will be aware that we have a comparison with zero. These
10027 tests will not catch constants in the first operand, but constants
10028 are rarely passed as the first operand. */
10030 switch (TREE_CODE (exp))
10032 case EQ_EXPR:
10033 code = EQ;
10034 break;
10035 case NE_EXPR:
10036 code = NE;
10037 break;
10038 case LT_EXPR:
10039 if (integer_onep (arg1))
10040 arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
10041 else
10042 code = unsignedp ? LTU : LT;
10043 break;
10044 case LE_EXPR:
10045 if (! unsignedp && integer_all_onesp (arg1))
10046 arg1 = integer_zero_node, code = LT;
10047 else
10048 code = unsignedp ? LEU : LE;
10049 break;
10050 case GT_EXPR:
10051 if (! unsignedp && integer_all_onesp (arg1))
10052 arg1 = integer_zero_node, code = GE;
10053 else
10054 code = unsignedp ? GTU : GT;
10055 break;
10056 case GE_EXPR:
10057 if (integer_onep (arg1))
10058 arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
10059 else
10060 code = unsignedp ? GEU : GE;
10061 break;
10062 default:
10063 abort ();
10066 /* Put a constant second. */
10067 if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST)
10069 tem = arg0; arg0 = arg1; arg1 = tem;
10070 code = swap_condition (code);
10073 /* If this is an equality or inequality test of a single bit, we can
10074 do this by shifting the bit being tested to the low-order bit and
10075 masking the result with the constant 1. If the condition was EQ,
10076 we xor it with 1. This does not require an scc insn and is faster
10077 than an scc insn even if we have it. */
10079 if ((code == NE || code == EQ)
10080 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
10081 && integer_pow2p (TREE_OPERAND (arg0, 1)))
10083 tree inner = TREE_OPERAND (arg0, 0);
10084 int bitnum = tree_log2 (TREE_OPERAND (arg0, 1));
10085 int ops_unsignedp;
10087 /* If INNER is a right shift of a constant and it plus BITNUM does
10088 not overflow, adjust BITNUM and INNER. */
10090 if (TREE_CODE (inner) == RSHIFT_EXPR
10091 && TREE_CODE (TREE_OPERAND (inner, 1)) == INTEGER_CST
10092 && TREE_INT_CST_HIGH (TREE_OPERAND (inner, 1)) == 0
10093 && (bitnum + TREE_INT_CST_LOW (TREE_OPERAND (inner, 1))
10094 < TYPE_PRECISION (type)))
10096 bitnum += TREE_INT_CST_LOW (TREE_OPERAND (inner, 1));
10097 inner = TREE_OPERAND (inner, 0);
10100 /* If we are going to be able to omit the AND below, we must do our
10101 operations as unsigned. If we must use the AND, we have a choice.
10102 Normally unsigned is faster, but for some machines signed is. */
10103 ops_unsignedp = (bitnum == TYPE_PRECISION (type) - 1 ? 1
10104 #ifdef LOAD_EXTEND_OP
10105 : (LOAD_EXTEND_OP (operand_mode) == SIGN_EXTEND ? 0 : 1)
10106 #else
10108 #endif
10111 if (subtarget == 0 || GET_CODE (subtarget) != REG
10112 || GET_MODE (subtarget) != operand_mode
10113 || ! safe_from_p (subtarget, inner, 1))
10114 subtarget = 0;
10116 op0 = expand_expr (inner, subtarget, VOIDmode, 0);
10118 if (bitnum != 0)
10119 op0 = expand_shift (RSHIFT_EXPR, GET_MODE (op0), op0,
10120 size_int (bitnum), subtarget, ops_unsignedp);
10122 if (GET_MODE (op0) != mode)
10123 op0 = convert_to_mode (mode, op0, ops_unsignedp);
10125 if ((code == EQ && ! invert) || (code == NE && invert))
10126 op0 = expand_binop (mode, xor_optab, op0, const1_rtx, subtarget,
10127 ops_unsignedp, OPTAB_LIB_WIDEN);
10129 /* Put the AND last so it can combine with more things. */
10130 if (bitnum != TYPE_PRECISION (type) - 1)
10131 op0 = expand_and (op0, const1_rtx, subtarget);
10133 return op0;
10136 /* Now see if we are likely to be able to do this. Return if not. */
10137 if (! can_compare_p (operand_mode, ccp_store_flag))
10138 return 0;
10139 icode = setcc_gen_code[(int) code];
10140 if (icode == CODE_FOR_nothing
10141 || (only_cheap && insn_data[(int) icode].operand[0].mode != mode))
10143 /* We can only do this if it is one of the special cases that
10144 can be handled without an scc insn. */
10145 if ((code == LT && integer_zerop (arg1))
10146 || (! only_cheap && code == GE && integer_zerop (arg1)))
10148 else if (BRANCH_COST >= 0
10149 && ! only_cheap && (code == NE || code == EQ)
10150 && TREE_CODE (type) != REAL_TYPE
10151 && ((abs_optab->handlers[(int) operand_mode].insn_code
10152 != CODE_FOR_nothing)
10153 || (ffs_optab->handlers[(int) operand_mode].insn_code
10154 != CODE_FOR_nothing)))
10156 else
10157 return 0;
10160 preexpand_calls (exp);
10161 if (subtarget == 0 || GET_CODE (subtarget) != REG
10162 || GET_MODE (subtarget) != operand_mode
10163 || ! safe_from_p (subtarget, arg1, 1))
10164 subtarget = 0;
10166 op0 = expand_expr (arg0, subtarget, VOIDmode, 0);
10167 op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0);
10169 if (target == 0)
10170 target = gen_reg_rtx (mode);
10172 /* Pass copies of OP0 and OP1 in case they contain a QUEUED. This is safe
10173 because, if the emit_store_flag does anything it will succeed and
10174 OP0 and OP1 will not be used subsequently. */
10176 result = emit_store_flag (target, code,
10177 queued_subexp_p (op0) ? copy_rtx (op0) : op0,
10178 queued_subexp_p (op1) ? copy_rtx (op1) : op1,
10179 operand_mode, unsignedp, 1);
10181 if (result)
10183 if (invert)
10184 result = expand_binop (mode, xor_optab, result, const1_rtx,
10185 result, 0, OPTAB_LIB_WIDEN);
10186 return result;
10189 /* If this failed, we have to do this with set/compare/jump/set code. */
10190 if (GET_CODE (target) != REG
10191 || reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
10192 target = gen_reg_rtx (GET_MODE (target));
10194 emit_move_insn (target, invert ? const0_rtx : const1_rtx);
10195 result = compare_from_rtx (op0, op1, code, unsignedp,
10196 operand_mode, NULL_RTX, 0);
10197 if (GET_CODE (result) == CONST_INT)
10198 return (((result == const0_rtx && ! invert)
10199 || (result != const0_rtx && invert))
10200 ? const0_rtx : const1_rtx);
10202 label = gen_label_rtx ();
10203 if (bcc_gen_fctn[(int) code] == 0)
10204 abort ();
10206 emit_jump_insn ((*bcc_gen_fctn[(int) code]) (label));
10207 emit_move_insn (target, invert ? const1_rtx : const0_rtx);
10208 emit_label (label);
10210 return target;
10213 /* Generate a tablejump instruction (used for switch statements). */
10215 #ifdef HAVE_tablejump
10217 /* INDEX is the value being switched on, with the lowest value
10218 in the table already subtracted.
10219 MODE is its expected mode (needed if INDEX is constant).
10220 RANGE is the length of the jump table.
10221 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
10223 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
10224 index value is out of range. */
10226 void
10227 do_tablejump (index, mode, range, table_label, default_label)
10228 rtx index, range, table_label, default_label;
10229 enum machine_mode mode;
10231 register rtx temp, vector;
10233 /* Do an unsigned comparison (in the proper mode) between the index
10234 expression and the value which represents the length of the range.
10235 Since we just finished subtracting the lower bound of the range
10236 from the index expression, this comparison allows us to simultaneously
10237 check that the original index expression value is both greater than
10238 or equal to the minimum value of the range and less than or equal to
10239 the maximum value of the range. */
10241 emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
10242 0, default_label);
10244 /* If index is in range, it must fit in Pmode.
10245 Convert to Pmode so we can index with it. */
10246 if (mode != Pmode)
10247 index = convert_to_mode (Pmode, index, 1);
10249 /* Don't let a MEM slip thru, because then INDEX that comes
10250 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
10251 and break_out_memory_refs will go to work on it and mess it up. */
10252 #ifdef PIC_CASE_VECTOR_ADDRESS
10253 if (flag_pic && GET_CODE (index) != REG)
10254 index = copy_to_mode_reg (Pmode, index);
10255 #endif
10257 /* If flag_force_addr were to affect this address
10258 it could interfere with the tricky assumptions made
10259 about addresses that contain label-refs,
10260 which may be valid only very near the tablejump itself. */
10261 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
10262 GET_MODE_SIZE, because this indicates how large insns are. The other
10263 uses should all be Pmode, because they are addresses. This code
10264 could fail if addresses and insns are not the same size. */
10265 index = gen_rtx_PLUS (Pmode,
10266 gen_rtx_MULT (Pmode, index,
10267 GEN_INT (GET_MODE_SIZE (CASE_VECTOR_MODE))),
10268 gen_rtx_LABEL_REF (Pmode, table_label));
10269 #ifdef PIC_CASE_VECTOR_ADDRESS
10270 if (flag_pic)
10271 index = PIC_CASE_VECTOR_ADDRESS (index);
10272 else
10273 #endif
10274 index = memory_address_noforce (CASE_VECTOR_MODE, index);
10275 temp = gen_reg_rtx (CASE_VECTOR_MODE);
10276 vector = gen_rtx_MEM (CASE_VECTOR_MODE, index);
10277 RTX_UNCHANGING_P (vector) = 1;
10278 convert_move (temp, vector, 0);
10280 emit_jump_insn (gen_tablejump (temp, table_label));
10282 /* If we are generating PIC code or if the table is PC-relative, the
10283 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
10284 if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
10285 emit_barrier ();
10288 #endif /* HAVE_tablejump */