Daily bump.
[official-gcc.git] / gcc / rtlanal.c
blob321363f9746014c175506a8ed5cf1ae5b710f38d
1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "predict.h"
29 #include "df.h"
30 #include "memmodel.h"
31 #include "tm_p.h"
32 #include "insn-config.h"
33 #include "regs.h"
34 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
35 #include "recog.h"
36 #include "addresses.h"
37 #include "rtl-iter.h"
39 /* Forward declarations */
40 static void set_of_1 (rtx, const_rtx, void *);
41 static bool covers_regno_p (const_rtx, unsigned int);
42 static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
43 static int computed_jump_p_1 (const_rtx);
44 static void parms_set (rtx, const_rtx, void *);
46 static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, machine_mode,
47 const_rtx, machine_mode,
48 unsigned HOST_WIDE_INT);
49 static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, machine_mode,
50 const_rtx, machine_mode,
51 unsigned HOST_WIDE_INT);
52 static unsigned int cached_num_sign_bit_copies (const_rtx, machine_mode, const_rtx,
53 machine_mode,
54 unsigned int);
55 static unsigned int num_sign_bit_copies1 (const_rtx, machine_mode, const_rtx,
56 machine_mode, unsigned int);
58 rtx_subrtx_bound_info rtx_all_subrtx_bounds[NUM_RTX_CODE];
59 rtx_subrtx_bound_info rtx_nonconst_subrtx_bounds[NUM_RTX_CODE];
61 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
62 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
63 SIGN_EXTEND then while narrowing we also have to enforce the
64 representation and sign-extend the value to mode DESTINATION_REP.
66 If the value is already sign-extended to DESTINATION_REP mode we
67 can just switch to DESTINATION mode on it. For each pair of
68 integral modes SOURCE and DESTINATION, when truncating from SOURCE
69 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
70 contains the number of high-order bits in SOURCE that have to be
71 copies of the sign-bit so that we can do this mode-switch to
72 DESTINATION. */
74 static unsigned int
75 num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
77 /* Store X into index I of ARRAY. ARRAY is known to have at least I
78 elements. Return the new base of ARRAY. */
80 template <typename T>
81 typename T::value_type *
82 generic_subrtx_iterator <T>::add_single_to_queue (array_type &array,
83 value_type *base,
84 size_t i, value_type x)
86 if (base == array.stack)
88 if (i < LOCAL_ELEMS)
90 base[i] = x;
91 return base;
93 gcc_checking_assert (i == LOCAL_ELEMS);
94 /* A previous iteration might also have moved from the stack to the
95 heap, in which case the heap array will already be big enough. */
96 if (vec_safe_length (array.heap) <= i)
97 vec_safe_grow (array.heap, i + 1);
98 base = array.heap->address ();
99 memcpy (base, array.stack, sizeof (array.stack));
100 base[LOCAL_ELEMS] = x;
101 return base;
103 unsigned int length = array.heap->length ();
104 if (length > i)
106 gcc_checking_assert (base == array.heap->address ());
107 base[i] = x;
108 return base;
110 else
112 gcc_checking_assert (i == length);
113 vec_safe_push (array.heap, x);
114 return array.heap->address ();
118 /* Add the subrtxes of X to worklist ARRAY, starting at END. Return the
119 number of elements added to the worklist. */
121 template <typename T>
122 size_t
123 generic_subrtx_iterator <T>::add_subrtxes_to_queue (array_type &array,
124 value_type *base,
125 size_t end, rtx_type x)
127 enum rtx_code code = GET_CODE (x);
128 const char *format = GET_RTX_FORMAT (code);
129 size_t orig_end = end;
130 if (__builtin_expect (INSN_P (x), false))
132 /* Put the pattern at the top of the queue, since that's what
133 we're likely to want most. It also allows for the SEQUENCE
134 code below. */
135 for (int i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; --i)
136 if (format[i] == 'e')
138 value_type subx = T::get_value (x->u.fld[i].rt_rtx);
139 if (__builtin_expect (end < LOCAL_ELEMS, true))
140 base[end++] = subx;
141 else
142 base = add_single_to_queue (array, base, end++, subx);
145 else
146 for (int i = 0; format[i]; ++i)
147 if (format[i] == 'e')
149 value_type subx = T::get_value (x->u.fld[i].rt_rtx);
150 if (__builtin_expect (end < LOCAL_ELEMS, true))
151 base[end++] = subx;
152 else
153 base = add_single_to_queue (array, base, end++, subx);
155 else if (format[i] == 'E')
157 unsigned int length = GET_NUM_ELEM (x->u.fld[i].rt_rtvec);
158 rtx *vec = x->u.fld[i].rt_rtvec->elem;
159 if (__builtin_expect (end + length <= LOCAL_ELEMS, true))
160 for (unsigned int j = 0; j < length; j++)
161 base[end++] = T::get_value (vec[j]);
162 else
163 for (unsigned int j = 0; j < length; j++)
164 base = add_single_to_queue (array, base, end++,
165 T::get_value (vec[j]));
166 if (code == SEQUENCE && end == length)
167 /* If the subrtxes of the sequence fill the entire array then
168 we know that no other parts of a containing insn are queued.
169 The caller is therefore iterating over the sequence as a
170 PATTERN (...), so we also want the patterns of the
171 subinstructions. */
172 for (unsigned int j = 0; j < length; j++)
174 typename T::rtx_type x = T::get_rtx (base[j]);
175 if (INSN_P (x))
176 base[j] = T::get_value (PATTERN (x));
179 return end - orig_end;
182 template <typename T>
183 void
184 generic_subrtx_iterator <T>::free_array (array_type &array)
186 vec_free (array.heap);
189 template <typename T>
190 const size_t generic_subrtx_iterator <T>::LOCAL_ELEMS;
192 template class generic_subrtx_iterator <const_rtx_accessor>;
193 template class generic_subrtx_iterator <rtx_var_accessor>;
194 template class generic_subrtx_iterator <rtx_ptr_accessor>;
196 /* Return 1 if the value of X is unstable
197 (would be different at a different point in the program).
198 The frame pointer, arg pointer, etc. are considered stable
199 (within one function) and so is anything marked `unchanging'. */
202 rtx_unstable_p (const_rtx x)
204 const RTX_CODE code = GET_CODE (x);
205 int i;
206 const char *fmt;
208 switch (code)
210 case MEM:
211 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
213 case CONST:
214 CASE_CONST_ANY:
215 case SYMBOL_REF:
216 case LABEL_REF:
217 return 0;
219 case REG:
220 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
221 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
222 /* The arg pointer varies if it is not a fixed register. */
223 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
224 return 0;
225 /* ??? When call-clobbered, the value is stable modulo the restore
226 that must happen after a call. This currently screws up local-alloc
227 into believing that the restore is not needed. */
228 if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED && x == pic_offset_table_rtx)
229 return 0;
230 return 1;
232 case ASM_OPERANDS:
233 if (MEM_VOLATILE_P (x))
234 return 1;
236 /* Fall through. */
238 default:
239 break;
242 fmt = GET_RTX_FORMAT (code);
243 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
244 if (fmt[i] == 'e')
246 if (rtx_unstable_p (XEXP (x, i)))
247 return 1;
249 else if (fmt[i] == 'E')
251 int j;
252 for (j = 0; j < XVECLEN (x, i); j++)
253 if (rtx_unstable_p (XVECEXP (x, i, j)))
254 return 1;
257 return 0;
260 /* Return 1 if X has a value that can vary even between two
261 executions of the program. 0 means X can be compared reliably
262 against certain constants or near-constants.
263 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
264 zero, we are slightly more conservative.
265 The frame pointer and the arg pointer are considered constant. */
267 bool
268 rtx_varies_p (const_rtx x, bool for_alias)
270 RTX_CODE code;
271 int i;
272 const char *fmt;
274 if (!x)
275 return 0;
277 code = GET_CODE (x);
278 switch (code)
280 case MEM:
281 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
283 case CONST:
284 CASE_CONST_ANY:
285 case SYMBOL_REF:
286 case LABEL_REF:
287 return 0;
289 case REG:
290 /* Note that we have to test for the actual rtx used for the frame
291 and arg pointers and not just the register number in case we have
292 eliminated the frame and/or arg pointer and are using it
293 for pseudos. */
294 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
295 /* The arg pointer varies if it is not a fixed register. */
296 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
297 return 0;
298 if (x == pic_offset_table_rtx
299 /* ??? When call-clobbered, the value is stable modulo the restore
300 that must happen after a call. This currently screws up
301 local-alloc into believing that the restore is not needed, so we
302 must return 0 only if we are called from alias analysis. */
303 && (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED || for_alias))
304 return 0;
305 return 1;
307 case LO_SUM:
308 /* The operand 0 of a LO_SUM is considered constant
309 (in fact it is related specifically to operand 1)
310 during alias analysis. */
311 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
312 || rtx_varies_p (XEXP (x, 1), for_alias);
314 case ASM_OPERANDS:
315 if (MEM_VOLATILE_P (x))
316 return 1;
318 /* Fall through. */
320 default:
321 break;
324 fmt = GET_RTX_FORMAT (code);
325 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
326 if (fmt[i] == 'e')
328 if (rtx_varies_p (XEXP (x, i), for_alias))
329 return 1;
331 else if (fmt[i] == 'E')
333 int j;
334 for (j = 0; j < XVECLEN (x, i); j++)
335 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
336 return 1;
339 return 0;
342 /* Compute an approximation for the offset between the register
343 FROM and TO for the current function, as it was at the start
344 of the routine. */
346 static HOST_WIDE_INT
347 get_initial_register_offset (int from, int to)
349 static const struct elim_table_t
351 const int from;
352 const int to;
353 } table[] = ELIMINABLE_REGS;
354 HOST_WIDE_INT offset1, offset2;
355 unsigned int i, j;
357 if (to == from)
358 return 0;
360 /* It is not safe to call INITIAL_ELIMINATION_OFFSET
361 before the reload pass. We need to give at least
362 an estimation for the resulting frame size. */
363 if (! reload_completed)
365 offset1 = crtl->outgoing_args_size + get_frame_size ();
366 #if !STACK_GROWS_DOWNWARD
367 offset1 = - offset1;
368 #endif
369 if (to == STACK_POINTER_REGNUM)
370 return offset1;
371 else if (from == STACK_POINTER_REGNUM)
372 return - offset1;
373 else
374 return 0;
377 for (i = 0; i < ARRAY_SIZE (table); i++)
378 if (table[i].from == from)
380 if (table[i].to == to)
382 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
383 offset1);
384 return offset1;
386 for (j = 0; j < ARRAY_SIZE (table); j++)
388 if (table[j].to == to
389 && table[j].from == table[i].to)
391 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
392 offset1);
393 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
394 offset2);
395 return offset1 + offset2;
397 if (table[j].from == to
398 && table[j].to == table[i].to)
400 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
401 offset1);
402 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
403 offset2);
404 return offset1 - offset2;
408 else if (table[i].to == from)
410 if (table[i].from == to)
412 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
413 offset1);
414 return - offset1;
416 for (j = 0; j < ARRAY_SIZE (table); j++)
418 if (table[j].to == to
419 && table[j].from == table[i].from)
421 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
422 offset1);
423 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
424 offset2);
425 return - offset1 + offset2;
427 if (table[j].from == to
428 && table[j].to == table[i].from)
430 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
431 offset1);
432 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
433 offset2);
434 return - offset1 - offset2;
439 /* If the requested register combination was not found,
440 try a different more simple combination. */
441 if (from == ARG_POINTER_REGNUM)
442 return get_initial_register_offset (HARD_FRAME_POINTER_REGNUM, to);
443 else if (to == ARG_POINTER_REGNUM)
444 return get_initial_register_offset (from, HARD_FRAME_POINTER_REGNUM);
445 else if (from == HARD_FRAME_POINTER_REGNUM)
446 return get_initial_register_offset (FRAME_POINTER_REGNUM, to);
447 else if (to == HARD_FRAME_POINTER_REGNUM)
448 return get_initial_register_offset (from, FRAME_POINTER_REGNUM);
449 else
450 return 0;
453 /* Return nonzero if the use of X+OFFSET as an address in a MEM with SIZE
454 bytes can cause a trap. MODE is the mode of the MEM (not that of X) and
455 UNALIGNED_MEMS controls whether nonzero is returned for unaligned memory
456 references on strict alignment machines. */
458 static int
459 rtx_addr_can_trap_p_1 (const_rtx x, HOST_WIDE_INT offset, HOST_WIDE_INT size,
460 machine_mode mode, bool unaligned_mems)
462 enum rtx_code code = GET_CODE (x);
464 /* The offset must be a multiple of the mode size if we are considering
465 unaligned memory references on strict alignment machines. */
466 if (STRICT_ALIGNMENT && unaligned_mems && GET_MODE_SIZE (mode) != 0)
468 HOST_WIDE_INT actual_offset = offset;
470 #ifdef SPARC_STACK_BOUNDARY_HACK
471 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
472 the real alignment of %sp. However, when it does this, the
473 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
474 if (SPARC_STACK_BOUNDARY_HACK
475 && (x == stack_pointer_rtx || x == hard_frame_pointer_rtx))
476 actual_offset -= STACK_POINTER_OFFSET;
477 #endif
479 if (actual_offset % GET_MODE_SIZE (mode) != 0)
480 return 1;
483 switch (code)
485 case SYMBOL_REF:
486 if (SYMBOL_REF_WEAK (x))
487 return 1;
488 if (!CONSTANT_POOL_ADDRESS_P (x))
490 tree decl;
491 HOST_WIDE_INT decl_size;
493 if (offset < 0)
494 return 1;
495 if (size == 0)
496 size = GET_MODE_SIZE (mode);
497 if (size == 0)
498 return offset != 0;
500 /* If the size of the access or of the symbol is unknown,
501 assume the worst. */
502 decl = SYMBOL_REF_DECL (x);
504 /* Else check that the access is in bounds. TODO: restructure
505 expr_size/tree_expr_size/int_expr_size and just use the latter. */
506 if (!decl)
507 decl_size = -1;
508 else if (DECL_P (decl) && DECL_SIZE_UNIT (decl))
509 decl_size = (tree_fits_shwi_p (DECL_SIZE_UNIT (decl))
510 ? tree_to_shwi (DECL_SIZE_UNIT (decl))
511 : -1);
512 else if (TREE_CODE (decl) == STRING_CST)
513 decl_size = TREE_STRING_LENGTH (decl);
514 else if (TYPE_SIZE_UNIT (TREE_TYPE (decl)))
515 decl_size = int_size_in_bytes (TREE_TYPE (decl));
516 else
517 decl_size = -1;
519 return (decl_size <= 0 ? offset != 0 : offset + size > decl_size);
522 return 0;
524 case LABEL_REF:
525 return 0;
527 case REG:
528 /* Stack references are assumed not to trap, but we need to deal with
529 nonsensical offsets. */
530 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
531 || x == stack_pointer_rtx
532 /* The arg pointer varies if it is not a fixed register. */
533 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
535 #ifdef RED_ZONE_SIZE
536 HOST_WIDE_INT red_zone_size = RED_ZONE_SIZE;
537 #else
538 HOST_WIDE_INT red_zone_size = 0;
539 #endif
540 HOST_WIDE_INT stack_boundary = PREFERRED_STACK_BOUNDARY
541 / BITS_PER_UNIT;
542 HOST_WIDE_INT low_bound, high_bound;
544 if (size == 0)
545 size = GET_MODE_SIZE (mode);
546 if (size == 0)
547 return 1;
549 if (x == frame_pointer_rtx)
551 if (FRAME_GROWS_DOWNWARD)
553 high_bound = STARTING_FRAME_OFFSET;
554 low_bound = high_bound - get_frame_size ();
556 else
558 low_bound = STARTING_FRAME_OFFSET;
559 high_bound = low_bound + get_frame_size ();
562 else if (x == hard_frame_pointer_rtx)
564 HOST_WIDE_INT sp_offset
565 = get_initial_register_offset (STACK_POINTER_REGNUM,
566 HARD_FRAME_POINTER_REGNUM);
567 HOST_WIDE_INT ap_offset
568 = get_initial_register_offset (ARG_POINTER_REGNUM,
569 HARD_FRAME_POINTER_REGNUM);
571 #if STACK_GROWS_DOWNWARD
572 low_bound = sp_offset - red_zone_size - stack_boundary;
573 high_bound = ap_offset
574 + FIRST_PARM_OFFSET (current_function_decl)
575 #if !ARGS_GROW_DOWNWARD
576 + crtl->args.size
577 #endif
578 + stack_boundary;
579 #else
580 high_bound = sp_offset + red_zone_size + stack_boundary;
581 low_bound = ap_offset
582 + FIRST_PARM_OFFSET (current_function_decl)
583 #if ARGS_GROW_DOWNWARD
584 - crtl->args.size
585 #endif
586 - stack_boundary;
587 #endif
589 else if (x == stack_pointer_rtx)
591 HOST_WIDE_INT ap_offset
592 = get_initial_register_offset (ARG_POINTER_REGNUM,
593 STACK_POINTER_REGNUM);
595 #if STACK_GROWS_DOWNWARD
596 low_bound = - red_zone_size - stack_boundary;
597 high_bound = ap_offset
598 + FIRST_PARM_OFFSET (current_function_decl)
599 #if !ARGS_GROW_DOWNWARD
600 + crtl->args.size
601 #endif
602 + stack_boundary;
603 #else
604 high_bound = red_zone_size + stack_boundary;
605 low_bound = ap_offset
606 + FIRST_PARM_OFFSET (current_function_decl)
607 #if ARGS_GROW_DOWNWARD
608 - crtl->args.size
609 #endif
610 - stack_boundary;
611 #endif
613 else
615 /* We assume that accesses are safe to at least the
616 next stack boundary.
617 Examples are varargs and __builtin_return_address. */
618 #if ARGS_GROW_DOWNWARD
619 high_bound = FIRST_PARM_OFFSET (current_function_decl)
620 + stack_boundary;
621 low_bound = FIRST_PARM_OFFSET (current_function_decl)
622 - crtl->args.size - stack_boundary;
623 #else
624 low_bound = FIRST_PARM_OFFSET (current_function_decl)
625 - stack_boundary;
626 high_bound = FIRST_PARM_OFFSET (current_function_decl)
627 + crtl->args.size + stack_boundary;
628 #endif
631 if (offset >= low_bound && offset <= high_bound - size)
632 return 0;
633 return 1;
635 /* All of the virtual frame registers are stack references. */
636 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
637 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
638 return 0;
639 return 1;
641 case CONST:
642 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
643 mode, unaligned_mems);
645 case PLUS:
646 /* An address is assumed not to trap if:
647 - it is the pic register plus a constant. */
648 if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1)))
649 return 0;
651 /* - or it is an address that can't trap plus a constant integer. */
652 if (CONST_INT_P (XEXP (x, 1))
653 && !rtx_addr_can_trap_p_1 (XEXP (x, 0), offset + INTVAL (XEXP (x, 1)),
654 size, mode, unaligned_mems))
655 return 0;
657 return 1;
659 case LO_SUM:
660 case PRE_MODIFY:
661 return rtx_addr_can_trap_p_1 (XEXP (x, 1), offset, size,
662 mode, unaligned_mems);
664 case PRE_DEC:
665 case PRE_INC:
666 case POST_DEC:
667 case POST_INC:
668 case POST_MODIFY:
669 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
670 mode, unaligned_mems);
672 default:
673 break;
676 /* If it isn't one of the case above, it can cause a trap. */
677 return 1;
680 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
683 rtx_addr_can_trap_p (const_rtx x)
685 return rtx_addr_can_trap_p_1 (x, 0, 0, VOIDmode, false);
688 /* Return true if X contains a MEM subrtx. */
690 bool
691 contains_mem_rtx_p (rtx x)
693 subrtx_iterator::array_type array;
694 FOR_EACH_SUBRTX (iter, array, x, ALL)
695 if (MEM_P (*iter))
696 return true;
698 return false;
701 /* Return true if X is an address that is known to not be zero. */
703 bool
704 nonzero_address_p (const_rtx x)
706 const enum rtx_code code = GET_CODE (x);
708 switch (code)
710 case SYMBOL_REF:
711 return flag_delete_null_pointer_checks && !SYMBOL_REF_WEAK (x);
713 case LABEL_REF:
714 return true;
716 case REG:
717 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
718 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
719 || x == stack_pointer_rtx
720 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
721 return true;
722 /* All of the virtual frame registers are stack references. */
723 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
724 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
725 return true;
726 return false;
728 case CONST:
729 return nonzero_address_p (XEXP (x, 0));
731 case PLUS:
732 /* Handle PIC references. */
733 if (XEXP (x, 0) == pic_offset_table_rtx
734 && CONSTANT_P (XEXP (x, 1)))
735 return true;
736 return false;
738 case PRE_MODIFY:
739 /* Similar to the above; allow positive offsets. Further, since
740 auto-inc is only allowed in memories, the register must be a
741 pointer. */
742 if (CONST_INT_P (XEXP (x, 1))
743 && INTVAL (XEXP (x, 1)) > 0)
744 return true;
745 return nonzero_address_p (XEXP (x, 0));
747 case PRE_INC:
748 /* Similarly. Further, the offset is always positive. */
749 return true;
751 case PRE_DEC:
752 case POST_DEC:
753 case POST_INC:
754 case POST_MODIFY:
755 return nonzero_address_p (XEXP (x, 0));
757 case LO_SUM:
758 return nonzero_address_p (XEXP (x, 1));
760 default:
761 break;
764 /* If it isn't one of the case above, might be zero. */
765 return false;
768 /* Return 1 if X refers to a memory location whose address
769 cannot be compared reliably with constant addresses,
770 or if X refers to a BLKmode memory object.
771 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
772 zero, we are slightly more conservative. */
774 bool
775 rtx_addr_varies_p (const_rtx x, bool for_alias)
777 enum rtx_code code;
778 int i;
779 const char *fmt;
781 if (x == 0)
782 return 0;
784 code = GET_CODE (x);
785 if (code == MEM)
786 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
788 fmt = GET_RTX_FORMAT (code);
789 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
790 if (fmt[i] == 'e')
792 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
793 return 1;
795 else if (fmt[i] == 'E')
797 int j;
798 for (j = 0; j < XVECLEN (x, i); j++)
799 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
800 return 1;
802 return 0;
805 /* Return the CALL in X if there is one. */
808 get_call_rtx_from (rtx x)
810 if (INSN_P (x))
811 x = PATTERN (x);
812 if (GET_CODE (x) == PARALLEL)
813 x = XVECEXP (x, 0, 0);
814 if (GET_CODE (x) == SET)
815 x = SET_SRC (x);
816 if (GET_CODE (x) == CALL && MEM_P (XEXP (x, 0)))
817 return x;
818 return NULL_RTX;
821 /* Return the value of the integer term in X, if one is apparent;
822 otherwise return 0.
823 Only obvious integer terms are detected.
824 This is used in cse.c with the `related_value' field. */
826 HOST_WIDE_INT
827 get_integer_term (const_rtx x)
829 if (GET_CODE (x) == CONST)
830 x = XEXP (x, 0);
832 if (GET_CODE (x) == MINUS
833 && CONST_INT_P (XEXP (x, 1)))
834 return - INTVAL (XEXP (x, 1));
835 if (GET_CODE (x) == PLUS
836 && CONST_INT_P (XEXP (x, 1)))
837 return INTVAL (XEXP (x, 1));
838 return 0;
841 /* If X is a constant, return the value sans apparent integer term;
842 otherwise return 0.
843 Only obvious integer terms are detected. */
846 get_related_value (const_rtx x)
848 if (GET_CODE (x) != CONST)
849 return 0;
850 x = XEXP (x, 0);
851 if (GET_CODE (x) == PLUS
852 && CONST_INT_P (XEXP (x, 1)))
853 return XEXP (x, 0);
854 else if (GET_CODE (x) == MINUS
855 && CONST_INT_P (XEXP (x, 1)))
856 return XEXP (x, 0);
857 return 0;
860 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
861 to somewhere in the same object or object_block as SYMBOL. */
863 bool
864 offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
866 tree decl;
868 if (GET_CODE (symbol) != SYMBOL_REF)
869 return false;
871 if (offset == 0)
872 return true;
874 if (offset > 0)
876 if (CONSTANT_POOL_ADDRESS_P (symbol)
877 && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
878 return true;
880 decl = SYMBOL_REF_DECL (symbol);
881 if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
882 return true;
885 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
886 && SYMBOL_REF_BLOCK (symbol)
887 && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
888 && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
889 < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
890 return true;
892 return false;
895 /* Split X into a base and a constant offset, storing them in *BASE_OUT
896 and *OFFSET_OUT respectively. */
898 void
899 split_const (rtx x, rtx *base_out, rtx *offset_out)
901 if (GET_CODE (x) == CONST)
903 x = XEXP (x, 0);
904 if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
906 *base_out = XEXP (x, 0);
907 *offset_out = XEXP (x, 1);
908 return;
911 *base_out = x;
912 *offset_out = const0_rtx;
915 /* Return the number of places FIND appears within X. If COUNT_DEST is
916 zero, we do not count occurrences inside the destination of a SET. */
919 count_occurrences (const_rtx x, const_rtx find, int count_dest)
921 int i, j;
922 enum rtx_code code;
923 const char *format_ptr;
924 int count;
926 if (x == find)
927 return 1;
929 code = GET_CODE (x);
931 switch (code)
933 case REG:
934 CASE_CONST_ANY:
935 case SYMBOL_REF:
936 case CODE_LABEL:
937 case PC:
938 case CC0:
939 return 0;
941 case EXPR_LIST:
942 count = count_occurrences (XEXP (x, 0), find, count_dest);
943 if (XEXP (x, 1))
944 count += count_occurrences (XEXP (x, 1), find, count_dest);
945 return count;
947 case MEM:
948 if (MEM_P (find) && rtx_equal_p (x, find))
949 return 1;
950 break;
952 case SET:
953 if (SET_DEST (x) == find && ! count_dest)
954 return count_occurrences (SET_SRC (x), find, count_dest);
955 break;
957 default:
958 break;
961 format_ptr = GET_RTX_FORMAT (code);
962 count = 0;
964 for (i = 0; i < GET_RTX_LENGTH (code); i++)
966 switch (*format_ptr++)
968 case 'e':
969 count += count_occurrences (XEXP (x, i), find, count_dest);
970 break;
972 case 'E':
973 for (j = 0; j < XVECLEN (x, i); j++)
974 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
975 break;
978 return count;
982 /* Return TRUE if OP is a register or subreg of a register that
983 holds an unsigned quantity. Otherwise, return FALSE. */
985 bool
986 unsigned_reg_p (rtx op)
988 if (REG_P (op)
989 && REG_EXPR (op)
990 && TYPE_UNSIGNED (TREE_TYPE (REG_EXPR (op))))
991 return true;
993 if (GET_CODE (op) == SUBREG
994 && SUBREG_PROMOTED_SIGN (op))
995 return true;
997 return false;
1001 /* Nonzero if register REG appears somewhere within IN.
1002 Also works if REG is not a register; in this case it checks
1003 for a subexpression of IN that is Lisp "equal" to REG. */
1006 reg_mentioned_p (const_rtx reg, const_rtx in)
1008 const char *fmt;
1009 int i;
1010 enum rtx_code code;
1012 if (in == 0)
1013 return 0;
1015 if (reg == in)
1016 return 1;
1018 if (GET_CODE (in) == LABEL_REF)
1019 return reg == label_ref_label (in);
1021 code = GET_CODE (in);
1023 switch (code)
1025 /* Compare registers by number. */
1026 case REG:
1027 return REG_P (reg) && REGNO (in) == REGNO (reg);
1029 /* These codes have no constituent expressions
1030 and are unique. */
1031 case SCRATCH:
1032 case CC0:
1033 case PC:
1034 return 0;
1036 CASE_CONST_ANY:
1037 /* These are kept unique for a given value. */
1038 return 0;
1040 default:
1041 break;
1044 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
1045 return 1;
1047 fmt = GET_RTX_FORMAT (code);
1049 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1051 if (fmt[i] == 'E')
1053 int j;
1054 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
1055 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
1056 return 1;
1058 else if (fmt[i] == 'e'
1059 && reg_mentioned_p (reg, XEXP (in, i)))
1060 return 1;
1062 return 0;
1065 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
1066 no CODE_LABEL insn. */
1069 no_labels_between_p (const rtx_insn *beg, const rtx_insn *end)
1071 rtx_insn *p;
1072 if (beg == end)
1073 return 0;
1074 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
1075 if (LABEL_P (p))
1076 return 0;
1077 return 1;
1080 /* Nonzero if register REG is used in an insn between
1081 FROM_INSN and TO_INSN (exclusive of those two). */
1084 reg_used_between_p (const_rtx reg, const rtx_insn *from_insn,
1085 const rtx_insn *to_insn)
1087 rtx_insn *insn;
1089 if (from_insn == to_insn)
1090 return 0;
1092 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
1093 if (NONDEBUG_INSN_P (insn)
1094 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
1095 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
1096 return 1;
1097 return 0;
1100 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
1101 is entirely replaced by a new value and the only use is as a SET_DEST,
1102 we do not consider it a reference. */
1105 reg_referenced_p (const_rtx x, const_rtx body)
1107 int i;
1109 switch (GET_CODE (body))
1111 case SET:
1112 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
1113 return 1;
1115 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
1116 of a REG that occupies all of the REG, the insn references X if
1117 it is mentioned in the destination. */
1118 if (GET_CODE (SET_DEST (body)) != CC0
1119 && GET_CODE (SET_DEST (body)) != PC
1120 && !REG_P (SET_DEST (body))
1121 && ! (GET_CODE (SET_DEST (body)) == SUBREG
1122 && REG_P (SUBREG_REG (SET_DEST (body)))
1123 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
1124 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
1125 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
1126 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
1127 && reg_overlap_mentioned_p (x, SET_DEST (body)))
1128 return 1;
1129 return 0;
1131 case ASM_OPERANDS:
1132 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1133 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
1134 return 1;
1135 return 0;
1137 case CALL:
1138 case USE:
1139 case IF_THEN_ELSE:
1140 return reg_overlap_mentioned_p (x, body);
1142 case TRAP_IF:
1143 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
1145 case PREFETCH:
1146 return reg_overlap_mentioned_p (x, XEXP (body, 0));
1148 case UNSPEC:
1149 case UNSPEC_VOLATILE:
1150 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1151 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
1152 return 1;
1153 return 0;
1155 case PARALLEL:
1156 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1157 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
1158 return 1;
1159 return 0;
1161 case CLOBBER:
1162 if (MEM_P (XEXP (body, 0)))
1163 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
1164 return 1;
1165 return 0;
1167 case COND_EXEC:
1168 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
1169 return 1;
1170 return reg_referenced_p (x, COND_EXEC_CODE (body));
1172 default:
1173 return 0;
1177 /* Nonzero if register REG is set or clobbered in an insn between
1178 FROM_INSN and TO_INSN (exclusive of those two). */
1181 reg_set_between_p (const_rtx reg, const rtx_insn *from_insn,
1182 const rtx_insn *to_insn)
1184 const rtx_insn *insn;
1186 if (from_insn == to_insn)
1187 return 0;
1189 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
1190 if (INSN_P (insn) && reg_set_p (reg, insn))
1191 return 1;
1192 return 0;
1195 /* Return true if REG is set or clobbered inside INSN. */
1198 reg_set_p (const_rtx reg, const_rtx insn)
1200 /* After delay slot handling, call and branch insns might be in a
1201 sequence. Check all the elements there. */
1202 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1204 for (int i = 0; i < XVECLEN (PATTERN (insn), 0); ++i)
1205 if (reg_set_p (reg, XVECEXP (PATTERN (insn), 0, i)))
1206 return true;
1208 return false;
1211 /* We can be passed an insn or part of one. If we are passed an insn,
1212 check if a side-effect of the insn clobbers REG. */
1213 if (INSN_P (insn)
1214 && (FIND_REG_INC_NOTE (insn, reg)
1215 || (CALL_P (insn)
1216 && ((REG_P (reg)
1217 && REGNO (reg) < FIRST_PSEUDO_REGISTER
1218 && overlaps_hard_reg_set_p (regs_invalidated_by_call,
1219 GET_MODE (reg), REGNO (reg)))
1220 || MEM_P (reg)
1221 || find_reg_fusage (insn, CLOBBER, reg)))))
1222 return true;
1224 /* There are no REG_INC notes for SP autoinc. */
1225 if (reg == stack_pointer_rtx && INSN_P (insn))
1227 subrtx_var_iterator::array_type array;
1228 FOR_EACH_SUBRTX_VAR (iter, array, PATTERN (insn), NONCONST)
1230 rtx mem = *iter;
1231 if (mem
1232 && MEM_P (mem)
1233 && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC)
1235 if (XEXP (XEXP (mem, 0), 0) == stack_pointer_rtx)
1236 return true;
1237 iter.skip_subrtxes ();
1242 return set_of (reg, insn) != NULL_RTX;
1245 /* Similar to reg_set_between_p, but check all registers in X. Return 0
1246 only if none of them are modified between START and END. Return 1 if
1247 X contains a MEM; this routine does use memory aliasing. */
1250 modified_between_p (const_rtx x, const rtx_insn *start, const rtx_insn *end)
1252 const enum rtx_code code = GET_CODE (x);
1253 const char *fmt;
1254 int i, j;
1255 rtx_insn *insn;
1257 if (start == end)
1258 return 0;
1260 switch (code)
1262 CASE_CONST_ANY:
1263 case CONST:
1264 case SYMBOL_REF:
1265 case LABEL_REF:
1266 return 0;
1268 case PC:
1269 case CC0:
1270 return 1;
1272 case MEM:
1273 if (modified_between_p (XEXP (x, 0), start, end))
1274 return 1;
1275 if (MEM_READONLY_P (x))
1276 return 0;
1277 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
1278 if (memory_modified_in_insn_p (x, insn))
1279 return 1;
1280 return 0;
1282 case REG:
1283 return reg_set_between_p (x, start, end);
1285 default:
1286 break;
1289 fmt = GET_RTX_FORMAT (code);
1290 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1292 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
1293 return 1;
1295 else if (fmt[i] == 'E')
1296 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1297 if (modified_between_p (XVECEXP (x, i, j), start, end))
1298 return 1;
1301 return 0;
1304 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
1305 of them are modified in INSN. Return 1 if X contains a MEM; this routine
1306 does use memory aliasing. */
1309 modified_in_p (const_rtx x, const_rtx insn)
1311 const enum rtx_code code = GET_CODE (x);
1312 const char *fmt;
1313 int i, j;
1315 switch (code)
1317 CASE_CONST_ANY:
1318 case CONST:
1319 case SYMBOL_REF:
1320 case LABEL_REF:
1321 return 0;
1323 case PC:
1324 case CC0:
1325 return 1;
1327 case MEM:
1328 if (modified_in_p (XEXP (x, 0), insn))
1329 return 1;
1330 if (MEM_READONLY_P (x))
1331 return 0;
1332 if (memory_modified_in_insn_p (x, insn))
1333 return 1;
1334 return 0;
1336 case REG:
1337 return reg_set_p (x, insn);
1339 default:
1340 break;
1343 fmt = GET_RTX_FORMAT (code);
1344 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1346 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
1347 return 1;
1349 else if (fmt[i] == 'E')
1350 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1351 if (modified_in_p (XVECEXP (x, i, j), insn))
1352 return 1;
1355 return 0;
1358 /* Helper function for set_of. */
1359 struct set_of_data
1361 const_rtx found;
1362 const_rtx pat;
1365 static void
1366 set_of_1 (rtx x, const_rtx pat, void *data1)
1368 struct set_of_data *const data = (struct set_of_data *) (data1);
1369 if (rtx_equal_p (x, data->pat)
1370 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
1371 data->found = pat;
1374 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
1375 (either directly or via STRICT_LOW_PART and similar modifiers). */
1376 const_rtx
1377 set_of (const_rtx pat, const_rtx insn)
1379 struct set_of_data data;
1380 data.found = NULL_RTX;
1381 data.pat = pat;
1382 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
1383 return data.found;
1386 /* Add all hard register in X to *PSET. */
1387 void
1388 find_all_hard_regs (const_rtx x, HARD_REG_SET *pset)
1390 subrtx_iterator::array_type array;
1391 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
1393 const_rtx x = *iter;
1394 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1395 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1399 /* This function, called through note_stores, collects sets and
1400 clobbers of hard registers in a HARD_REG_SET, which is pointed to
1401 by DATA. */
1402 void
1403 record_hard_reg_sets (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1405 HARD_REG_SET *pset = (HARD_REG_SET *)data;
1406 if (REG_P (x) && HARD_REGISTER_P (x))
1407 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1410 /* Examine INSN, and compute the set of hard registers written by it.
1411 Store it in *PSET. Should only be called after reload. */
1412 void
1413 find_all_hard_reg_sets (const rtx_insn *insn, HARD_REG_SET *pset, bool implicit)
1415 rtx link;
1417 CLEAR_HARD_REG_SET (*pset);
1418 note_stores (PATTERN (insn), record_hard_reg_sets, pset);
1419 if (CALL_P (insn))
1421 if (implicit)
1422 IOR_HARD_REG_SET (*pset, call_used_reg_set);
1424 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1425 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1427 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1428 if (REG_NOTE_KIND (link) == REG_INC)
1429 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1432 /* Like record_hard_reg_sets, but called through note_uses. */
1433 void
1434 record_hard_reg_uses (rtx *px, void *data)
1436 find_all_hard_regs (*px, (HARD_REG_SET *) data);
1439 /* Given an INSN, return a SET expression if this insn has only a single SET.
1440 It may also have CLOBBERs, USEs, or SET whose output
1441 will not be used, which we ignore. */
1444 single_set_2 (const rtx_insn *insn, const_rtx pat)
1446 rtx set = NULL;
1447 int set_verified = 1;
1448 int i;
1450 if (GET_CODE (pat) == PARALLEL)
1452 for (i = 0; i < XVECLEN (pat, 0); i++)
1454 rtx sub = XVECEXP (pat, 0, i);
1455 switch (GET_CODE (sub))
1457 case USE:
1458 case CLOBBER:
1459 break;
1461 case SET:
1462 /* We can consider insns having multiple sets, where all
1463 but one are dead as single set insns. In common case
1464 only single set is present in the pattern so we want
1465 to avoid checking for REG_UNUSED notes unless necessary.
1467 When we reach set first time, we just expect this is
1468 the single set we are looking for and only when more
1469 sets are found in the insn, we check them. */
1470 if (!set_verified)
1472 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1473 && !side_effects_p (set))
1474 set = NULL;
1475 else
1476 set_verified = 1;
1478 if (!set)
1479 set = sub, set_verified = 0;
1480 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1481 || side_effects_p (sub))
1482 return NULL_RTX;
1483 break;
1485 default:
1486 return NULL_RTX;
1490 return set;
1493 /* Given an INSN, return nonzero if it has more than one SET, else return
1494 zero. */
1497 multiple_sets (const_rtx insn)
1499 int found;
1500 int i;
1502 /* INSN must be an insn. */
1503 if (! INSN_P (insn))
1504 return 0;
1506 /* Only a PARALLEL can have multiple SETs. */
1507 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1509 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1510 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1512 /* If we have already found a SET, then return now. */
1513 if (found)
1514 return 1;
1515 else
1516 found = 1;
1520 /* Either zero or one SET. */
1521 return 0;
1524 /* Return nonzero if the destination of SET equals the source
1525 and there are no side effects. */
1528 set_noop_p (const_rtx set)
1530 rtx src = SET_SRC (set);
1531 rtx dst = SET_DEST (set);
1533 if (dst == pc_rtx && src == pc_rtx)
1534 return 1;
1536 if (MEM_P (dst) && MEM_P (src))
1537 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1539 if (GET_CODE (dst) == ZERO_EXTRACT)
1540 return rtx_equal_p (XEXP (dst, 0), src)
1541 && !BITS_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1542 && !side_effects_p (src);
1544 if (GET_CODE (dst) == STRICT_LOW_PART)
1545 dst = XEXP (dst, 0);
1547 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1549 if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1550 return 0;
1551 src = SUBREG_REG (src);
1552 dst = SUBREG_REG (dst);
1555 /* It is a NOOP if destination overlaps with selected src vector
1556 elements. */
1557 if (GET_CODE (src) == VEC_SELECT
1558 && REG_P (XEXP (src, 0)) && REG_P (dst)
1559 && HARD_REGISTER_P (XEXP (src, 0))
1560 && HARD_REGISTER_P (dst))
1562 int i;
1563 rtx par = XEXP (src, 1);
1564 rtx src0 = XEXP (src, 0);
1565 int c0 = INTVAL (XVECEXP (par, 0, 0));
1566 HOST_WIDE_INT offset = GET_MODE_UNIT_SIZE (GET_MODE (src0)) * c0;
1568 for (i = 1; i < XVECLEN (par, 0); i++)
1569 if (INTVAL (XVECEXP (par, 0, i)) != c0 + i)
1570 return 0;
1571 return
1572 simplify_subreg_regno (REGNO (src0), GET_MODE (src0),
1573 offset, GET_MODE (dst)) == (int) REGNO (dst);
1576 return (REG_P (src) && REG_P (dst)
1577 && REGNO (src) == REGNO (dst));
1580 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1581 value to itself. */
1584 noop_move_p (const rtx_insn *insn)
1586 rtx pat = PATTERN (insn);
1588 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1589 return 1;
1591 /* Insns carrying these notes are useful later on. */
1592 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1593 return 0;
1595 /* Check the code to be executed for COND_EXEC. */
1596 if (GET_CODE (pat) == COND_EXEC)
1597 pat = COND_EXEC_CODE (pat);
1599 if (GET_CODE (pat) == SET && set_noop_p (pat))
1600 return 1;
1602 if (GET_CODE (pat) == PARALLEL)
1604 int i;
1605 /* If nothing but SETs of registers to themselves,
1606 this insn can also be deleted. */
1607 for (i = 0; i < XVECLEN (pat, 0); i++)
1609 rtx tem = XVECEXP (pat, 0, i);
1611 if (GET_CODE (tem) == USE
1612 || GET_CODE (tem) == CLOBBER)
1613 continue;
1615 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1616 return 0;
1619 return 1;
1621 return 0;
1625 /* Return nonzero if register in range [REGNO, ENDREGNO)
1626 appears either explicitly or implicitly in X
1627 other than being stored into.
1629 References contained within the substructure at LOC do not count.
1630 LOC may be zero, meaning don't ignore anything. */
1632 bool
1633 refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
1634 rtx *loc)
1636 int i;
1637 unsigned int x_regno;
1638 RTX_CODE code;
1639 const char *fmt;
1641 repeat:
1642 /* The contents of a REG_NONNEG note is always zero, so we must come here
1643 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1644 if (x == 0)
1645 return false;
1647 code = GET_CODE (x);
1649 switch (code)
1651 case REG:
1652 x_regno = REGNO (x);
1654 /* If we modifying the stack, frame, or argument pointer, it will
1655 clobber a virtual register. In fact, we could be more precise,
1656 but it isn't worth it. */
1657 if ((x_regno == STACK_POINTER_REGNUM
1658 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1659 && x_regno == ARG_POINTER_REGNUM)
1660 || x_regno == FRAME_POINTER_REGNUM)
1661 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1662 return true;
1664 return endregno > x_regno && regno < END_REGNO (x);
1666 case SUBREG:
1667 /* If this is a SUBREG of a hard reg, we can see exactly which
1668 registers are being modified. Otherwise, handle normally. */
1669 if (REG_P (SUBREG_REG (x))
1670 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1672 unsigned int inner_regno = subreg_regno (x);
1673 unsigned int inner_endregno
1674 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1675 ? subreg_nregs (x) : 1);
1677 return endregno > inner_regno && regno < inner_endregno;
1679 break;
1681 case CLOBBER:
1682 case SET:
1683 if (&SET_DEST (x) != loc
1684 /* Note setting a SUBREG counts as referring to the REG it is in for
1685 a pseudo but not for hard registers since we can
1686 treat each word individually. */
1687 && ((GET_CODE (SET_DEST (x)) == SUBREG
1688 && loc != &SUBREG_REG (SET_DEST (x))
1689 && REG_P (SUBREG_REG (SET_DEST (x)))
1690 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1691 && refers_to_regno_p (regno, endregno,
1692 SUBREG_REG (SET_DEST (x)), loc))
1693 || (!REG_P (SET_DEST (x))
1694 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1695 return true;
1697 if (code == CLOBBER || loc == &SET_SRC (x))
1698 return false;
1699 x = SET_SRC (x);
1700 goto repeat;
1702 default:
1703 break;
1706 /* X does not match, so try its subexpressions. */
1708 fmt = GET_RTX_FORMAT (code);
1709 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1711 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1713 if (i == 0)
1715 x = XEXP (x, 0);
1716 goto repeat;
1718 else
1719 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1720 return true;
1722 else if (fmt[i] == 'E')
1724 int j;
1725 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1726 if (loc != &XVECEXP (x, i, j)
1727 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1728 return true;
1731 return false;
1734 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1735 we check if any register number in X conflicts with the relevant register
1736 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1737 contains a MEM (we don't bother checking for memory addresses that can't
1738 conflict because we expect this to be a rare case. */
1741 reg_overlap_mentioned_p (const_rtx x, const_rtx in)
1743 unsigned int regno, endregno;
1745 /* If either argument is a constant, then modifying X can not
1746 affect IN. Here we look at IN, we can profitably combine
1747 CONSTANT_P (x) with the switch statement below. */
1748 if (CONSTANT_P (in))
1749 return 0;
1751 recurse:
1752 switch (GET_CODE (x))
1754 case STRICT_LOW_PART:
1755 case ZERO_EXTRACT:
1756 case SIGN_EXTRACT:
1757 /* Overly conservative. */
1758 x = XEXP (x, 0);
1759 goto recurse;
1761 case SUBREG:
1762 regno = REGNO (SUBREG_REG (x));
1763 if (regno < FIRST_PSEUDO_REGISTER)
1764 regno = subreg_regno (x);
1765 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1766 ? subreg_nregs (x) : 1);
1767 goto do_reg;
1769 case REG:
1770 regno = REGNO (x);
1771 endregno = END_REGNO (x);
1772 do_reg:
1773 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1775 case MEM:
1777 const char *fmt;
1778 int i;
1780 if (MEM_P (in))
1781 return 1;
1783 fmt = GET_RTX_FORMAT (GET_CODE (in));
1784 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1785 if (fmt[i] == 'e')
1787 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1788 return 1;
1790 else if (fmt[i] == 'E')
1792 int j;
1793 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1794 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1795 return 1;
1798 return 0;
1801 case SCRATCH:
1802 case PC:
1803 case CC0:
1804 return reg_mentioned_p (x, in);
1806 case PARALLEL:
1808 int i;
1810 /* If any register in here refers to it we return true. */
1811 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1812 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1813 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1814 return 1;
1815 return 0;
1818 default:
1819 gcc_assert (CONSTANT_P (x));
1820 return 0;
1824 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1825 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1826 ignored by note_stores, but passed to FUN.
1828 FUN receives three arguments:
1829 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1830 2. the SET or CLOBBER rtx that does the store,
1831 3. the pointer DATA provided to note_stores.
1833 If the item being stored in or clobbered is a SUBREG of a hard register,
1834 the SUBREG will be passed. */
1836 void
1837 note_stores (const_rtx x, void (*fun) (rtx, const_rtx, void *), void *data)
1839 int i;
1841 if (GET_CODE (x) == COND_EXEC)
1842 x = COND_EXEC_CODE (x);
1844 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1846 rtx dest = SET_DEST (x);
1848 while ((GET_CODE (dest) == SUBREG
1849 && (!REG_P (SUBREG_REG (dest))
1850 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1851 || GET_CODE (dest) == ZERO_EXTRACT
1852 || GET_CODE (dest) == STRICT_LOW_PART)
1853 dest = XEXP (dest, 0);
1855 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1856 each of whose first operand is a register. */
1857 if (GET_CODE (dest) == PARALLEL)
1859 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1860 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1861 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1863 else
1864 (*fun) (dest, x, data);
1867 else if (GET_CODE (x) == PARALLEL)
1868 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1869 note_stores (XVECEXP (x, 0, i), fun, data);
1872 /* Like notes_stores, but call FUN for each expression that is being
1873 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1874 FUN for each expression, not any interior subexpressions. FUN receives a
1875 pointer to the expression and the DATA passed to this function.
1877 Note that this is not quite the same test as that done in reg_referenced_p
1878 since that considers something as being referenced if it is being
1879 partially set, while we do not. */
1881 void
1882 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1884 rtx body = *pbody;
1885 int i;
1887 switch (GET_CODE (body))
1889 case COND_EXEC:
1890 (*fun) (&COND_EXEC_TEST (body), data);
1891 note_uses (&COND_EXEC_CODE (body), fun, data);
1892 return;
1894 case PARALLEL:
1895 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1896 note_uses (&XVECEXP (body, 0, i), fun, data);
1897 return;
1899 case SEQUENCE:
1900 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1901 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1902 return;
1904 case USE:
1905 (*fun) (&XEXP (body, 0), data);
1906 return;
1908 case ASM_OPERANDS:
1909 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1910 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1911 return;
1913 case TRAP_IF:
1914 (*fun) (&TRAP_CONDITION (body), data);
1915 return;
1917 case PREFETCH:
1918 (*fun) (&XEXP (body, 0), data);
1919 return;
1921 case UNSPEC:
1922 case UNSPEC_VOLATILE:
1923 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1924 (*fun) (&XVECEXP (body, 0, i), data);
1925 return;
1927 case CLOBBER:
1928 if (MEM_P (XEXP (body, 0)))
1929 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1930 return;
1932 case SET:
1934 rtx dest = SET_DEST (body);
1936 /* For sets we replace everything in source plus registers in memory
1937 expression in store and operands of a ZERO_EXTRACT. */
1938 (*fun) (&SET_SRC (body), data);
1940 if (GET_CODE (dest) == ZERO_EXTRACT)
1942 (*fun) (&XEXP (dest, 1), data);
1943 (*fun) (&XEXP (dest, 2), data);
1946 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1947 dest = XEXP (dest, 0);
1949 if (MEM_P (dest))
1950 (*fun) (&XEXP (dest, 0), data);
1952 return;
1954 default:
1955 /* All the other possibilities never store. */
1956 (*fun) (pbody, data);
1957 return;
1961 /* Return nonzero if X's old contents don't survive after INSN.
1962 This will be true if X is (cc0) or if X is a register and
1963 X dies in INSN or because INSN entirely sets X.
1965 "Entirely set" means set directly and not through a SUBREG, or
1966 ZERO_EXTRACT, so no trace of the old contents remains.
1967 Likewise, REG_INC does not count.
1969 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1970 but for this use that makes no difference, since regs don't overlap
1971 during their lifetimes. Therefore, this function may be used
1972 at any time after deaths have been computed.
1974 If REG is a hard reg that occupies multiple machine registers, this
1975 function will only return 1 if each of those registers will be replaced
1976 by INSN. */
1979 dead_or_set_p (const rtx_insn *insn, const_rtx x)
1981 unsigned int regno, end_regno;
1982 unsigned int i;
1984 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1985 if (GET_CODE (x) == CC0)
1986 return 1;
1988 gcc_assert (REG_P (x));
1990 regno = REGNO (x);
1991 end_regno = END_REGNO (x);
1992 for (i = regno; i < end_regno; i++)
1993 if (! dead_or_set_regno_p (insn, i))
1994 return 0;
1996 return 1;
1999 /* Return TRUE iff DEST is a register or subreg of a register and
2000 doesn't change the number of words of the inner register, and any
2001 part of the register is TEST_REGNO. */
2003 static bool
2004 covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
2006 unsigned int regno, endregno;
2008 if (GET_CODE (dest) == SUBREG
2009 && (((GET_MODE_SIZE (GET_MODE (dest))
2010 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
2011 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
2012 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
2013 dest = SUBREG_REG (dest);
2015 if (!REG_P (dest))
2016 return false;
2018 regno = REGNO (dest);
2019 endregno = END_REGNO (dest);
2020 return (test_regno >= regno && test_regno < endregno);
2023 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
2024 any member matches the covers_regno_no_parallel_p criteria. */
2026 static bool
2027 covers_regno_p (const_rtx dest, unsigned int test_regno)
2029 if (GET_CODE (dest) == PARALLEL)
2031 /* Some targets place small structures in registers for return
2032 values of functions, and those registers are wrapped in
2033 PARALLELs that we may see as the destination of a SET. */
2034 int i;
2036 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
2038 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
2039 if (inner != NULL_RTX
2040 && covers_regno_no_parallel_p (inner, test_regno))
2041 return true;
2044 return false;
2046 else
2047 return covers_regno_no_parallel_p (dest, test_regno);
2050 /* Utility function for dead_or_set_p to check an individual register. */
2053 dead_or_set_regno_p (const rtx_insn *insn, unsigned int test_regno)
2055 const_rtx pattern;
2057 /* See if there is a death note for something that includes TEST_REGNO. */
2058 if (find_regno_note (insn, REG_DEAD, test_regno))
2059 return 1;
2061 if (CALL_P (insn)
2062 && find_regno_fusage (insn, CLOBBER, test_regno))
2063 return 1;
2065 pattern = PATTERN (insn);
2067 /* If a COND_EXEC is not executed, the value survives. */
2068 if (GET_CODE (pattern) == COND_EXEC)
2069 return 0;
2071 if (GET_CODE (pattern) == SET)
2072 return covers_regno_p (SET_DEST (pattern), test_regno);
2073 else if (GET_CODE (pattern) == PARALLEL)
2075 int i;
2077 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
2079 rtx body = XVECEXP (pattern, 0, i);
2081 if (GET_CODE (body) == COND_EXEC)
2082 body = COND_EXEC_CODE (body);
2084 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
2085 && covers_regno_p (SET_DEST (body), test_regno))
2086 return 1;
2090 return 0;
2093 /* Return the reg-note of kind KIND in insn INSN, if there is one.
2094 If DATUM is nonzero, look for one whose datum is DATUM. */
2097 find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
2099 rtx link;
2101 gcc_checking_assert (insn);
2103 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
2104 if (! INSN_P (insn))
2105 return 0;
2106 if (datum == 0)
2108 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2109 if (REG_NOTE_KIND (link) == kind)
2110 return link;
2111 return 0;
2114 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2115 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
2116 return link;
2117 return 0;
2120 /* Return the reg-note of kind KIND in insn INSN which applies to register
2121 number REGNO, if any. Return 0 if there is no such reg-note. Note that
2122 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
2123 it might be the case that the note overlaps REGNO. */
2126 find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
2128 rtx link;
2130 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
2131 if (! INSN_P (insn))
2132 return 0;
2134 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2135 if (REG_NOTE_KIND (link) == kind
2136 /* Verify that it is a register, so that scratch and MEM won't cause a
2137 problem here. */
2138 && REG_P (XEXP (link, 0))
2139 && REGNO (XEXP (link, 0)) <= regno
2140 && END_REGNO (XEXP (link, 0)) > regno)
2141 return link;
2142 return 0;
2145 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
2146 has such a note. */
2149 find_reg_equal_equiv_note (const_rtx insn)
2151 rtx link;
2153 if (!INSN_P (insn))
2154 return 0;
2156 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2157 if (REG_NOTE_KIND (link) == REG_EQUAL
2158 || REG_NOTE_KIND (link) == REG_EQUIV)
2160 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
2161 insns that have multiple sets. Checking single_set to
2162 make sure of this is not the proper check, as explained
2163 in the comment in set_unique_reg_note.
2165 This should be changed into an assert. */
2166 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
2167 return 0;
2168 return link;
2170 return NULL;
2173 /* Check whether INSN is a single_set whose source is known to be
2174 equivalent to a constant. Return that constant if so, otherwise
2175 return null. */
2178 find_constant_src (const rtx_insn *insn)
2180 rtx note, set, x;
2182 set = single_set (insn);
2183 if (set)
2185 x = avoid_constant_pool_reference (SET_SRC (set));
2186 if (CONSTANT_P (x))
2187 return x;
2190 note = find_reg_equal_equiv_note (insn);
2191 if (note && CONSTANT_P (XEXP (note, 0)))
2192 return XEXP (note, 0);
2194 return NULL_RTX;
2197 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
2198 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
2201 find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
2203 /* If it's not a CALL_INSN, it can't possibly have a
2204 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
2205 if (!CALL_P (insn))
2206 return 0;
2208 gcc_assert (datum);
2210 if (!REG_P (datum))
2212 rtx link;
2214 for (link = CALL_INSN_FUNCTION_USAGE (insn);
2215 link;
2216 link = XEXP (link, 1))
2217 if (GET_CODE (XEXP (link, 0)) == code
2218 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
2219 return 1;
2221 else
2223 unsigned int regno = REGNO (datum);
2225 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2226 to pseudo registers, so don't bother checking. */
2228 if (regno < FIRST_PSEUDO_REGISTER)
2230 unsigned int end_regno = END_REGNO (datum);
2231 unsigned int i;
2233 for (i = regno; i < end_regno; i++)
2234 if (find_regno_fusage (insn, code, i))
2235 return 1;
2239 return 0;
2242 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
2243 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
2246 find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
2248 rtx link;
2250 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2251 to pseudo registers, so don't bother checking. */
2253 if (regno >= FIRST_PSEUDO_REGISTER
2254 || !CALL_P (insn) )
2255 return 0;
2257 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
2259 rtx op, reg;
2261 if (GET_CODE (op = XEXP (link, 0)) == code
2262 && REG_P (reg = XEXP (op, 0))
2263 && REGNO (reg) <= regno
2264 && END_REGNO (reg) > regno)
2265 return 1;
2268 return 0;
2272 /* Return true if KIND is an integer REG_NOTE. */
2274 static bool
2275 int_reg_note_p (enum reg_note kind)
2277 return kind == REG_BR_PROB;
2280 /* Allocate a register note with kind KIND and datum DATUM. LIST is
2281 stored as the pointer to the next register note. */
2284 alloc_reg_note (enum reg_note kind, rtx datum, rtx list)
2286 rtx note;
2288 gcc_checking_assert (!int_reg_note_p (kind));
2289 switch (kind)
2291 case REG_CC_SETTER:
2292 case REG_CC_USER:
2293 case REG_LABEL_TARGET:
2294 case REG_LABEL_OPERAND:
2295 case REG_TM:
2296 /* These types of register notes use an INSN_LIST rather than an
2297 EXPR_LIST, so that copying is done right and dumps look
2298 better. */
2299 note = alloc_INSN_LIST (datum, list);
2300 PUT_REG_NOTE_KIND (note, kind);
2301 break;
2303 default:
2304 note = alloc_EXPR_LIST (kind, datum, list);
2305 break;
2308 return note;
2311 /* Add register note with kind KIND and datum DATUM to INSN. */
2313 void
2314 add_reg_note (rtx insn, enum reg_note kind, rtx datum)
2316 REG_NOTES (insn) = alloc_reg_note (kind, datum, REG_NOTES (insn));
2319 /* Add an integer register note with kind KIND and datum DATUM to INSN. */
2321 void
2322 add_int_reg_note (rtx_insn *insn, enum reg_note kind, int datum)
2324 gcc_checking_assert (int_reg_note_p (kind));
2325 REG_NOTES (insn) = gen_rtx_INT_LIST ((machine_mode) kind,
2326 datum, REG_NOTES (insn));
2329 /* Add a register note like NOTE to INSN. */
2331 void
2332 add_shallow_copy_of_reg_note (rtx_insn *insn, rtx note)
2334 if (GET_CODE (note) == INT_LIST)
2335 add_int_reg_note (insn, REG_NOTE_KIND (note), XINT (note, 0));
2336 else
2337 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
2340 /* Duplicate NOTE and return the copy. */
2342 duplicate_reg_note (rtx note)
2344 reg_note kind = REG_NOTE_KIND (note);
2346 if (GET_CODE (note) == INT_LIST)
2347 return gen_rtx_INT_LIST ((machine_mode) kind, XINT (note, 0), NULL_RTX);
2348 else if (GET_CODE (note) == EXPR_LIST)
2349 return alloc_reg_note (kind, copy_insn_1 (XEXP (note, 0)), NULL_RTX);
2350 else
2351 return alloc_reg_note (kind, XEXP (note, 0), NULL_RTX);
2354 /* Remove register note NOTE from the REG_NOTES of INSN. */
2356 void
2357 remove_note (rtx_insn *insn, const_rtx note)
2359 rtx link;
2361 if (note == NULL_RTX)
2362 return;
2364 if (REG_NOTES (insn) == note)
2365 REG_NOTES (insn) = XEXP (note, 1);
2366 else
2367 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2368 if (XEXP (link, 1) == note)
2370 XEXP (link, 1) = XEXP (note, 1);
2371 break;
2374 switch (REG_NOTE_KIND (note))
2376 case REG_EQUAL:
2377 case REG_EQUIV:
2378 df_notes_rescan (insn);
2379 break;
2380 default:
2381 break;
2385 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes.
2386 Return true if any note has been removed. */
2388 bool
2389 remove_reg_equal_equiv_notes (rtx_insn *insn)
2391 rtx *loc;
2392 bool ret = false;
2394 loc = &REG_NOTES (insn);
2395 while (*loc)
2397 enum reg_note kind = REG_NOTE_KIND (*loc);
2398 if (kind == REG_EQUAL || kind == REG_EQUIV)
2400 *loc = XEXP (*loc, 1);
2401 ret = true;
2403 else
2404 loc = &XEXP (*loc, 1);
2406 return ret;
2409 /* Remove all REG_EQUAL and REG_EQUIV notes referring to REGNO. */
2411 void
2412 remove_reg_equal_equiv_notes_for_regno (unsigned int regno)
2414 df_ref eq_use;
2416 if (!df)
2417 return;
2419 /* This loop is a little tricky. We cannot just go down the chain because
2420 it is being modified by some actions in the loop. So we just iterate
2421 over the head. We plan to drain the list anyway. */
2422 while ((eq_use = DF_REG_EQ_USE_CHAIN (regno)) != NULL)
2424 rtx_insn *insn = DF_REF_INSN (eq_use);
2425 rtx note = find_reg_equal_equiv_note (insn);
2427 /* This assert is generally triggered when someone deletes a REG_EQUAL
2428 or REG_EQUIV note by hacking the list manually rather than calling
2429 remove_note. */
2430 gcc_assert (note);
2432 remove_note (insn, note);
2436 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2437 return 1 if it is found. A simple equality test is used to determine if
2438 NODE matches. */
2440 bool
2441 in_insn_list_p (const rtx_insn_list *listp, const rtx_insn *node)
2443 const_rtx x;
2445 for (x = listp; x; x = XEXP (x, 1))
2446 if (node == XEXP (x, 0))
2447 return true;
2449 return false;
2452 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2453 remove that entry from the list if it is found.
2455 A simple equality test is used to determine if NODE matches. */
2457 void
2458 remove_node_from_expr_list (const_rtx node, rtx_expr_list **listp)
2460 rtx_expr_list *temp = *listp;
2461 rtx_expr_list *prev = NULL;
2463 while (temp)
2465 if (node == temp->element ())
2467 /* Splice the node out of the list. */
2468 if (prev)
2469 XEXP (prev, 1) = temp->next ();
2470 else
2471 *listp = temp->next ();
2473 return;
2476 prev = temp;
2477 temp = temp->next ();
2481 /* Search LISTP (an INSN_LIST) for an entry whose first operand is NODE and
2482 remove that entry from the list if it is found.
2484 A simple equality test is used to determine if NODE matches. */
2486 void
2487 remove_node_from_insn_list (const rtx_insn *node, rtx_insn_list **listp)
2489 rtx_insn_list *temp = *listp;
2490 rtx_insn_list *prev = NULL;
2492 while (temp)
2494 if (node == temp->insn ())
2496 /* Splice the node out of the list. */
2497 if (prev)
2498 XEXP (prev, 1) = temp->next ();
2499 else
2500 *listp = temp->next ();
2502 return;
2505 prev = temp;
2506 temp = temp->next ();
2510 /* Nonzero if X contains any volatile instructions. These are instructions
2511 which may cause unpredictable machine state instructions, and thus no
2512 instructions or register uses should be moved or combined across them.
2513 This includes only volatile asms and UNSPEC_VOLATILE instructions. */
2516 volatile_insn_p (const_rtx x)
2518 const RTX_CODE code = GET_CODE (x);
2519 switch (code)
2521 case LABEL_REF:
2522 case SYMBOL_REF:
2523 case CONST:
2524 CASE_CONST_ANY:
2525 case CC0:
2526 case PC:
2527 case REG:
2528 case SCRATCH:
2529 case CLOBBER:
2530 case ADDR_VEC:
2531 case ADDR_DIFF_VEC:
2532 case CALL:
2533 case MEM:
2534 return 0;
2536 case UNSPEC_VOLATILE:
2537 return 1;
2539 case ASM_INPUT:
2540 case ASM_OPERANDS:
2541 if (MEM_VOLATILE_P (x))
2542 return 1;
2544 default:
2545 break;
2548 /* Recursively scan the operands of this expression. */
2551 const char *const fmt = GET_RTX_FORMAT (code);
2552 int i;
2554 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2556 if (fmt[i] == 'e')
2558 if (volatile_insn_p (XEXP (x, i)))
2559 return 1;
2561 else if (fmt[i] == 'E')
2563 int j;
2564 for (j = 0; j < XVECLEN (x, i); j++)
2565 if (volatile_insn_p (XVECEXP (x, i, j)))
2566 return 1;
2570 return 0;
2573 /* Nonzero if X contains any volatile memory references
2574 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2577 volatile_refs_p (const_rtx x)
2579 const RTX_CODE code = GET_CODE (x);
2580 switch (code)
2582 case LABEL_REF:
2583 case SYMBOL_REF:
2584 case CONST:
2585 CASE_CONST_ANY:
2586 case CC0:
2587 case PC:
2588 case REG:
2589 case SCRATCH:
2590 case CLOBBER:
2591 case ADDR_VEC:
2592 case ADDR_DIFF_VEC:
2593 return 0;
2595 case UNSPEC_VOLATILE:
2596 return 1;
2598 case MEM:
2599 case ASM_INPUT:
2600 case ASM_OPERANDS:
2601 if (MEM_VOLATILE_P (x))
2602 return 1;
2604 default:
2605 break;
2608 /* Recursively scan the operands of this expression. */
2611 const char *const fmt = GET_RTX_FORMAT (code);
2612 int i;
2614 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2616 if (fmt[i] == 'e')
2618 if (volatile_refs_p (XEXP (x, i)))
2619 return 1;
2621 else if (fmt[i] == 'E')
2623 int j;
2624 for (j = 0; j < XVECLEN (x, i); j++)
2625 if (volatile_refs_p (XVECEXP (x, i, j)))
2626 return 1;
2630 return 0;
2633 /* Similar to above, except that it also rejects register pre- and post-
2634 incrementing. */
2637 side_effects_p (const_rtx x)
2639 const RTX_CODE code = GET_CODE (x);
2640 switch (code)
2642 case LABEL_REF:
2643 case SYMBOL_REF:
2644 case CONST:
2645 CASE_CONST_ANY:
2646 case CC0:
2647 case PC:
2648 case REG:
2649 case SCRATCH:
2650 case ADDR_VEC:
2651 case ADDR_DIFF_VEC:
2652 case VAR_LOCATION:
2653 return 0;
2655 case CLOBBER:
2656 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2657 when some combination can't be done. If we see one, don't think
2658 that we can simplify the expression. */
2659 return (GET_MODE (x) != VOIDmode);
2661 case PRE_INC:
2662 case PRE_DEC:
2663 case POST_INC:
2664 case POST_DEC:
2665 case PRE_MODIFY:
2666 case POST_MODIFY:
2667 case CALL:
2668 case UNSPEC_VOLATILE:
2669 return 1;
2671 case MEM:
2672 case ASM_INPUT:
2673 case ASM_OPERANDS:
2674 if (MEM_VOLATILE_P (x))
2675 return 1;
2677 default:
2678 break;
2681 /* Recursively scan the operands of this expression. */
2684 const char *fmt = GET_RTX_FORMAT (code);
2685 int i;
2687 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2689 if (fmt[i] == 'e')
2691 if (side_effects_p (XEXP (x, i)))
2692 return 1;
2694 else if (fmt[i] == 'E')
2696 int j;
2697 for (j = 0; j < XVECLEN (x, i); j++)
2698 if (side_effects_p (XVECEXP (x, i, j)))
2699 return 1;
2703 return 0;
2706 /* Return nonzero if evaluating rtx X might cause a trap.
2707 FLAGS controls how to consider MEMs. A nonzero means the context
2708 of the access may have changed from the original, such that the
2709 address may have become invalid. */
2712 may_trap_p_1 (const_rtx x, unsigned flags)
2714 int i;
2715 enum rtx_code code;
2716 const char *fmt;
2718 /* We make no distinction currently, but this function is part of
2719 the internal target-hooks ABI so we keep the parameter as
2720 "unsigned flags". */
2721 bool code_changed = flags != 0;
2723 if (x == 0)
2724 return 0;
2725 code = GET_CODE (x);
2726 switch (code)
2728 /* Handle these cases quickly. */
2729 CASE_CONST_ANY:
2730 case SYMBOL_REF:
2731 case LABEL_REF:
2732 case CONST:
2733 case PC:
2734 case CC0:
2735 case REG:
2736 case SCRATCH:
2737 return 0;
2739 case UNSPEC:
2740 return targetm.unspec_may_trap_p (x, flags);
2742 case UNSPEC_VOLATILE:
2743 case ASM_INPUT:
2744 case TRAP_IF:
2745 return 1;
2747 case ASM_OPERANDS:
2748 return MEM_VOLATILE_P (x);
2750 /* Memory ref can trap unless it's a static var or a stack slot. */
2751 case MEM:
2752 /* Recognize specific pattern of stack checking probes. */
2753 if (flag_stack_check
2754 && MEM_VOLATILE_P (x)
2755 && XEXP (x, 0) == stack_pointer_rtx)
2756 return 1;
2757 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2758 reference; moving it out of context such as when moving code
2759 when optimizing, might cause its address to become invalid. */
2760 code_changed
2761 || !MEM_NOTRAP_P (x))
2763 HOST_WIDE_INT size = MEM_SIZE_KNOWN_P (x) ? MEM_SIZE (x) : 0;
2764 return rtx_addr_can_trap_p_1 (XEXP (x, 0), 0, size,
2765 GET_MODE (x), code_changed);
2768 return 0;
2770 /* Division by a non-constant might trap. */
2771 case DIV:
2772 case MOD:
2773 case UDIV:
2774 case UMOD:
2775 if (HONOR_SNANS (x))
2776 return 1;
2777 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
2778 return flag_trapping_math;
2779 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2780 return 1;
2781 break;
2783 case EXPR_LIST:
2784 /* An EXPR_LIST is used to represent a function call. This
2785 certainly may trap. */
2786 return 1;
2788 case GE:
2789 case GT:
2790 case LE:
2791 case LT:
2792 case LTGT:
2793 case COMPARE:
2794 /* Some floating point comparisons may trap. */
2795 if (!flag_trapping_math)
2796 break;
2797 /* ??? There is no machine independent way to check for tests that trap
2798 when COMPARE is used, though many targets do make this distinction.
2799 For instance, sparc uses CCFPE for compares which generate exceptions
2800 and CCFP for compares which do not generate exceptions. */
2801 if (HONOR_NANS (x))
2802 return 1;
2803 /* But often the compare has some CC mode, so check operand
2804 modes as well. */
2805 if (HONOR_NANS (XEXP (x, 0))
2806 || HONOR_NANS (XEXP (x, 1)))
2807 return 1;
2808 break;
2810 case EQ:
2811 case NE:
2812 if (HONOR_SNANS (x))
2813 return 1;
2814 /* Often comparison is CC mode, so check operand modes. */
2815 if (HONOR_SNANS (XEXP (x, 0))
2816 || HONOR_SNANS (XEXP (x, 1)))
2817 return 1;
2818 break;
2820 case FIX:
2821 /* Conversion of floating point might trap. */
2822 if (flag_trapping_math && HONOR_NANS (XEXP (x, 0)))
2823 return 1;
2824 break;
2826 case NEG:
2827 case ABS:
2828 case SUBREG:
2829 /* These operations don't trap even with floating point. */
2830 break;
2832 default:
2833 /* Any floating arithmetic may trap. */
2834 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)) && flag_trapping_math)
2835 return 1;
2838 fmt = GET_RTX_FORMAT (code);
2839 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2841 if (fmt[i] == 'e')
2843 if (may_trap_p_1 (XEXP (x, i), flags))
2844 return 1;
2846 else if (fmt[i] == 'E')
2848 int j;
2849 for (j = 0; j < XVECLEN (x, i); j++)
2850 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2851 return 1;
2854 return 0;
2857 /* Return nonzero if evaluating rtx X might cause a trap. */
2860 may_trap_p (const_rtx x)
2862 return may_trap_p_1 (x, 0);
2865 /* Same as above, but additionally return nonzero if evaluating rtx X might
2866 cause a fault. We define a fault for the purpose of this function as a
2867 erroneous execution condition that cannot be encountered during the normal
2868 execution of a valid program; the typical example is an unaligned memory
2869 access on a strict alignment machine. The compiler guarantees that it
2870 doesn't generate code that will fault from a valid program, but this
2871 guarantee doesn't mean anything for individual instructions. Consider
2872 the following example:
2874 struct S { int d; union { char *cp; int *ip; }; };
2876 int foo(struct S *s)
2878 if (s->d == 1)
2879 return *s->ip;
2880 else
2881 return *s->cp;
2884 on a strict alignment machine. In a valid program, foo will never be
2885 invoked on a structure for which d is equal to 1 and the underlying
2886 unique field of the union not aligned on a 4-byte boundary, but the
2887 expression *s->ip might cause a fault if considered individually.
2889 At the RTL level, potentially problematic expressions will almost always
2890 verify may_trap_p; for example, the above dereference can be emitted as
2891 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2892 However, suppose that foo is inlined in a caller that causes s->cp to
2893 point to a local character variable and guarantees that s->d is not set
2894 to 1; foo may have been effectively translated into pseudo-RTL as:
2896 if ((reg:SI) == 1)
2897 (set (reg:SI) (mem:SI (%fp - 7)))
2898 else
2899 (set (reg:QI) (mem:QI (%fp - 7)))
2901 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2902 memory reference to a stack slot, but it will certainly cause a fault
2903 on a strict alignment machine. */
2906 may_trap_or_fault_p (const_rtx x)
2908 return may_trap_p_1 (x, 1);
2911 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2912 i.e., an inequality. */
2915 inequality_comparisons_p (const_rtx x)
2917 const char *fmt;
2918 int len, i;
2919 const enum rtx_code code = GET_CODE (x);
2921 switch (code)
2923 case REG:
2924 case SCRATCH:
2925 case PC:
2926 case CC0:
2927 CASE_CONST_ANY:
2928 case CONST:
2929 case LABEL_REF:
2930 case SYMBOL_REF:
2931 return 0;
2933 case LT:
2934 case LTU:
2935 case GT:
2936 case GTU:
2937 case LE:
2938 case LEU:
2939 case GE:
2940 case GEU:
2941 return 1;
2943 default:
2944 break;
2947 len = GET_RTX_LENGTH (code);
2948 fmt = GET_RTX_FORMAT (code);
2950 for (i = 0; i < len; i++)
2952 if (fmt[i] == 'e')
2954 if (inequality_comparisons_p (XEXP (x, i)))
2955 return 1;
2957 else if (fmt[i] == 'E')
2959 int j;
2960 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2961 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2962 return 1;
2966 return 0;
2969 /* Replace any occurrence of FROM in X with TO. The function does
2970 not enter into CONST_DOUBLE for the replace.
2972 Note that copying is not done so X must not be shared unless all copies
2973 are to be modified.
2975 ALL_REGS is true if we want to replace all REGs equal to FROM, not just
2976 those pointer-equal ones. */
2979 replace_rtx (rtx x, rtx from, rtx to, bool all_regs)
2981 int i, j;
2982 const char *fmt;
2984 if (x == from)
2985 return to;
2987 /* Allow this function to make replacements in EXPR_LISTs. */
2988 if (x == 0)
2989 return 0;
2991 if (all_regs
2992 && REG_P (x)
2993 && REG_P (from)
2994 && REGNO (x) == REGNO (from))
2996 gcc_assert (GET_MODE (x) == GET_MODE (from));
2997 return to;
2999 else if (GET_CODE (x) == SUBREG)
3001 rtx new_rtx = replace_rtx (SUBREG_REG (x), from, to, all_regs);
3003 if (CONST_INT_P (new_rtx))
3005 x = simplify_subreg (GET_MODE (x), new_rtx,
3006 GET_MODE (SUBREG_REG (x)),
3007 SUBREG_BYTE (x));
3008 gcc_assert (x);
3010 else
3011 SUBREG_REG (x) = new_rtx;
3013 return x;
3015 else if (GET_CODE (x) == ZERO_EXTEND)
3017 rtx new_rtx = replace_rtx (XEXP (x, 0), from, to, all_regs);
3019 if (CONST_INT_P (new_rtx))
3021 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
3022 new_rtx, GET_MODE (XEXP (x, 0)));
3023 gcc_assert (x);
3025 else
3026 XEXP (x, 0) = new_rtx;
3028 return x;
3031 fmt = GET_RTX_FORMAT (GET_CODE (x));
3032 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3034 if (fmt[i] == 'e')
3035 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to, all_regs);
3036 else if (fmt[i] == 'E')
3037 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3038 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j),
3039 from, to, all_regs);
3042 return x;
3045 /* Replace occurrences of the OLD_LABEL in *LOC with NEW_LABEL. Also track
3046 the change in LABEL_NUSES if UPDATE_LABEL_NUSES. */
3048 void
3049 replace_label (rtx *loc, rtx old_label, rtx new_label, bool update_label_nuses)
3051 /* Handle jump tables specially, since ADDR_{DIFF_,}VECs can be long. */
3052 rtx x = *loc;
3053 if (JUMP_TABLE_DATA_P (x))
3055 x = PATTERN (x);
3056 rtvec vec = XVEC (x, GET_CODE (x) == ADDR_DIFF_VEC);
3057 int len = GET_NUM_ELEM (vec);
3058 for (int i = 0; i < len; ++i)
3060 rtx ref = RTVEC_ELT (vec, i);
3061 if (XEXP (ref, 0) == old_label)
3063 XEXP (ref, 0) = new_label;
3064 if (update_label_nuses)
3066 ++LABEL_NUSES (new_label);
3067 --LABEL_NUSES (old_label);
3071 return;
3074 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
3075 field. This is not handled by the iterator because it doesn't
3076 handle unprinted ('0') fields. */
3077 if (JUMP_P (x) && JUMP_LABEL (x) == old_label)
3078 JUMP_LABEL (x) = new_label;
3080 subrtx_ptr_iterator::array_type array;
3081 FOR_EACH_SUBRTX_PTR (iter, array, loc, ALL)
3083 rtx *loc = *iter;
3084 if (rtx x = *loc)
3086 if (GET_CODE (x) == SYMBOL_REF
3087 && CONSTANT_POOL_ADDRESS_P (x))
3089 rtx c = get_pool_constant (x);
3090 if (rtx_referenced_p (old_label, c))
3092 /* Create a copy of constant C; replace the label inside
3093 but do not update LABEL_NUSES because uses in constant pool
3094 are not counted. */
3095 rtx new_c = copy_rtx (c);
3096 replace_label (&new_c, old_label, new_label, false);
3098 /* Add the new constant NEW_C to constant pool and replace
3099 the old reference to constant by new reference. */
3100 rtx new_mem = force_const_mem (get_pool_mode (x), new_c);
3101 *loc = replace_rtx (x, x, XEXP (new_mem, 0));
3105 if ((GET_CODE (x) == LABEL_REF
3106 || GET_CODE (x) == INSN_LIST)
3107 && XEXP (x, 0) == old_label)
3109 XEXP (x, 0) = new_label;
3110 if (update_label_nuses)
3112 ++LABEL_NUSES (new_label);
3113 --LABEL_NUSES (old_label);
3120 void
3121 replace_label_in_insn (rtx_insn *insn, rtx_insn *old_label,
3122 rtx_insn *new_label, bool update_label_nuses)
3124 rtx insn_as_rtx = insn;
3125 replace_label (&insn_as_rtx, old_label, new_label, update_label_nuses);
3126 gcc_checking_assert (insn_as_rtx == insn);
3129 /* Return true if X is referenced in BODY. */
3131 bool
3132 rtx_referenced_p (const_rtx x, const_rtx body)
3134 subrtx_iterator::array_type array;
3135 FOR_EACH_SUBRTX (iter, array, body, ALL)
3136 if (const_rtx y = *iter)
3138 /* Check if a label_ref Y refers to label X. */
3139 if (GET_CODE (y) == LABEL_REF
3140 && LABEL_P (x)
3141 && label_ref_label (y) == x)
3142 return true;
3144 if (rtx_equal_p (x, y))
3145 return true;
3147 /* If Y is a reference to pool constant traverse the constant. */
3148 if (GET_CODE (y) == SYMBOL_REF
3149 && CONSTANT_POOL_ADDRESS_P (y))
3150 iter.substitute (get_pool_constant (y));
3152 return false;
3155 /* If INSN is a tablejump return true and store the label (before jump table) to
3156 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
3158 bool
3159 tablejump_p (const rtx_insn *insn, rtx_insn **labelp,
3160 rtx_jump_table_data **tablep)
3162 if (!JUMP_P (insn))
3163 return false;
3165 rtx target = JUMP_LABEL (insn);
3166 if (target == NULL_RTX || ANY_RETURN_P (target))
3167 return false;
3169 rtx_insn *label = as_a<rtx_insn *> (target);
3170 rtx_insn *table = next_insn (label);
3171 if (table == NULL_RTX || !JUMP_TABLE_DATA_P (table))
3172 return false;
3174 if (labelp)
3175 *labelp = label;
3176 if (tablep)
3177 *tablep = as_a <rtx_jump_table_data *> (table);
3178 return true;
3181 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
3182 constant that is not in the constant pool and not in the condition
3183 of an IF_THEN_ELSE. */
3185 static int
3186 computed_jump_p_1 (const_rtx x)
3188 const enum rtx_code code = GET_CODE (x);
3189 int i, j;
3190 const char *fmt;
3192 switch (code)
3194 case LABEL_REF:
3195 case PC:
3196 return 0;
3198 case CONST:
3199 CASE_CONST_ANY:
3200 case SYMBOL_REF:
3201 case REG:
3202 return 1;
3204 case MEM:
3205 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
3206 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
3208 case IF_THEN_ELSE:
3209 return (computed_jump_p_1 (XEXP (x, 1))
3210 || computed_jump_p_1 (XEXP (x, 2)));
3212 default:
3213 break;
3216 fmt = GET_RTX_FORMAT (code);
3217 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3219 if (fmt[i] == 'e'
3220 && computed_jump_p_1 (XEXP (x, i)))
3221 return 1;
3223 else if (fmt[i] == 'E')
3224 for (j = 0; j < XVECLEN (x, i); j++)
3225 if (computed_jump_p_1 (XVECEXP (x, i, j)))
3226 return 1;
3229 return 0;
3232 /* Return nonzero if INSN is an indirect jump (aka computed jump).
3234 Tablejumps and casesi insns are not considered indirect jumps;
3235 we can recognize them by a (use (label_ref)). */
3238 computed_jump_p (const rtx_insn *insn)
3240 int i;
3241 if (JUMP_P (insn))
3243 rtx pat = PATTERN (insn);
3245 /* If we have a JUMP_LABEL set, we're not a computed jump. */
3246 if (JUMP_LABEL (insn) != NULL)
3247 return 0;
3249 if (GET_CODE (pat) == PARALLEL)
3251 int len = XVECLEN (pat, 0);
3252 int has_use_labelref = 0;
3254 for (i = len - 1; i >= 0; i--)
3255 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
3256 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
3257 == LABEL_REF))
3259 has_use_labelref = 1;
3260 break;
3263 if (! has_use_labelref)
3264 for (i = len - 1; i >= 0; i--)
3265 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
3266 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
3267 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
3268 return 1;
3270 else if (GET_CODE (pat) == SET
3271 && SET_DEST (pat) == pc_rtx
3272 && computed_jump_p_1 (SET_SRC (pat)))
3273 return 1;
3275 return 0;
3280 /* MEM has a PRE/POST-INC/DEC/MODIFY address X. Extract the operands of
3281 the equivalent add insn and pass the result to FN, using DATA as the
3282 final argument. */
3284 static int
3285 for_each_inc_dec_find_inc_dec (rtx mem, for_each_inc_dec_fn fn, void *data)
3287 rtx x = XEXP (mem, 0);
3288 switch (GET_CODE (x))
3290 case PRE_INC:
3291 case POST_INC:
3293 int size = GET_MODE_SIZE (GET_MODE (mem));
3294 rtx r1 = XEXP (x, 0);
3295 rtx c = gen_int_mode (size, GET_MODE (r1));
3296 return fn (mem, x, r1, r1, c, data);
3299 case PRE_DEC:
3300 case POST_DEC:
3302 int size = GET_MODE_SIZE (GET_MODE (mem));
3303 rtx r1 = XEXP (x, 0);
3304 rtx c = gen_int_mode (-size, GET_MODE (r1));
3305 return fn (mem, x, r1, r1, c, data);
3308 case PRE_MODIFY:
3309 case POST_MODIFY:
3311 rtx r1 = XEXP (x, 0);
3312 rtx add = XEXP (x, 1);
3313 return fn (mem, x, r1, add, NULL, data);
3316 default:
3317 gcc_unreachable ();
3321 /* Traverse *LOC looking for MEMs that have autoinc addresses.
3322 For each such autoinc operation found, call FN, passing it
3323 the innermost enclosing MEM, the operation itself, the RTX modified
3324 by the operation, two RTXs (the second may be NULL) that, once
3325 added, represent the value to be held by the modified RTX
3326 afterwards, and DATA. FN is to return 0 to continue the
3327 traversal or any other value to have it returned to the caller of
3328 for_each_inc_dec. */
3331 for_each_inc_dec (rtx x,
3332 for_each_inc_dec_fn fn,
3333 void *data)
3335 subrtx_var_iterator::array_type array;
3336 FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
3338 rtx mem = *iter;
3339 if (mem
3340 && MEM_P (mem)
3341 && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC)
3343 int res = for_each_inc_dec_find_inc_dec (mem, fn, data);
3344 if (res != 0)
3345 return res;
3346 iter.skip_subrtxes ();
3349 return 0;
3353 /* Searches X for any reference to REGNO, returning the rtx of the
3354 reference found if any. Otherwise, returns NULL_RTX. */
3357 regno_use_in (unsigned int regno, rtx x)
3359 const char *fmt;
3360 int i, j;
3361 rtx tem;
3363 if (REG_P (x) && REGNO (x) == regno)
3364 return x;
3366 fmt = GET_RTX_FORMAT (GET_CODE (x));
3367 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3369 if (fmt[i] == 'e')
3371 if ((tem = regno_use_in (regno, XEXP (x, i))))
3372 return tem;
3374 else if (fmt[i] == 'E')
3375 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3376 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
3377 return tem;
3380 return NULL_RTX;
3383 /* Return a value indicating whether OP, an operand of a commutative
3384 operation, is preferred as the first or second operand. The more
3385 positive the value, the stronger the preference for being the first
3386 operand. */
3389 commutative_operand_precedence (rtx op)
3391 enum rtx_code code = GET_CODE (op);
3393 /* Constants always become the second operand. Prefer "nice" constants. */
3394 if (code == CONST_INT)
3395 return -8;
3396 if (code == CONST_WIDE_INT)
3397 return -7;
3398 if (code == CONST_DOUBLE)
3399 return -7;
3400 if (code == CONST_FIXED)
3401 return -7;
3402 op = avoid_constant_pool_reference (op);
3403 code = GET_CODE (op);
3405 switch (GET_RTX_CLASS (code))
3407 case RTX_CONST_OBJ:
3408 if (code == CONST_INT)
3409 return -6;
3410 if (code == CONST_WIDE_INT)
3411 return -6;
3412 if (code == CONST_DOUBLE)
3413 return -5;
3414 if (code == CONST_FIXED)
3415 return -5;
3416 return -4;
3418 case RTX_EXTRA:
3419 /* SUBREGs of objects should come second. */
3420 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
3421 return -3;
3422 return 0;
3424 case RTX_OBJ:
3425 /* Complex expressions should be the first, so decrease priority
3426 of objects. Prefer pointer objects over non pointer objects. */
3427 if ((REG_P (op) && REG_POINTER (op))
3428 || (MEM_P (op) && MEM_POINTER (op)))
3429 return -1;
3430 return -2;
3432 case RTX_COMM_ARITH:
3433 /* Prefer operands that are themselves commutative to be first.
3434 This helps to make things linear. In particular,
3435 (and (and (reg) (reg)) (not (reg))) is canonical. */
3436 return 4;
3438 case RTX_BIN_ARITH:
3439 /* If only one operand is a binary expression, it will be the first
3440 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
3441 is canonical, although it will usually be further simplified. */
3442 return 2;
3444 case RTX_UNARY:
3445 /* Then prefer NEG and NOT. */
3446 if (code == NEG || code == NOT)
3447 return 1;
3448 /* FALLTHRU */
3450 default:
3451 return 0;
3455 /* Return 1 iff it is necessary to swap operands of commutative operation
3456 in order to canonicalize expression. */
3458 bool
3459 swap_commutative_operands_p (rtx x, rtx y)
3461 return (commutative_operand_precedence (x)
3462 < commutative_operand_precedence (y));
3465 /* Return 1 if X is an autoincrement side effect and the register is
3466 not the stack pointer. */
3468 auto_inc_p (const_rtx x)
3470 switch (GET_CODE (x))
3472 case PRE_INC:
3473 case POST_INC:
3474 case PRE_DEC:
3475 case POST_DEC:
3476 case PRE_MODIFY:
3477 case POST_MODIFY:
3478 /* There are no REG_INC notes for SP. */
3479 if (XEXP (x, 0) != stack_pointer_rtx)
3480 return 1;
3481 default:
3482 break;
3484 return 0;
3487 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
3489 loc_mentioned_in_p (rtx *loc, const_rtx in)
3491 enum rtx_code code;
3492 const char *fmt;
3493 int i, j;
3495 if (!in)
3496 return 0;
3498 code = GET_CODE (in);
3499 fmt = GET_RTX_FORMAT (code);
3500 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3502 if (fmt[i] == 'e')
3504 if (loc == &XEXP (in, i) || loc_mentioned_in_p (loc, XEXP (in, i)))
3505 return 1;
3507 else if (fmt[i] == 'E')
3508 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
3509 if (loc == &XVECEXP (in, i, j)
3510 || loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
3511 return 1;
3513 return 0;
3516 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3517 and SUBREG_BYTE, return the bit offset where the subreg begins
3518 (counting from the least significant bit of the operand). */
3520 unsigned int
3521 subreg_lsb_1 (machine_mode outer_mode,
3522 machine_mode inner_mode,
3523 unsigned int subreg_byte)
3525 unsigned int bitpos;
3526 unsigned int byte;
3527 unsigned int word;
3529 /* A paradoxical subreg begins at bit position 0. */
3530 if (GET_MODE_PRECISION (outer_mode) > GET_MODE_PRECISION (inner_mode))
3531 return 0;
3533 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
3534 /* If the subreg crosses a word boundary ensure that
3535 it also begins and ends on a word boundary. */
3536 gcc_assert (!((subreg_byte % UNITS_PER_WORD
3537 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
3538 && (subreg_byte % UNITS_PER_WORD
3539 || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
3541 if (WORDS_BIG_ENDIAN)
3542 word = (GET_MODE_SIZE (inner_mode)
3543 - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
3544 else
3545 word = subreg_byte / UNITS_PER_WORD;
3546 bitpos = word * BITS_PER_WORD;
3548 if (BYTES_BIG_ENDIAN)
3549 byte = (GET_MODE_SIZE (inner_mode)
3550 - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
3551 else
3552 byte = subreg_byte % UNITS_PER_WORD;
3553 bitpos += byte * BITS_PER_UNIT;
3555 return bitpos;
3558 /* Given a subreg X, return the bit offset where the subreg begins
3559 (counting from the least significant bit of the reg). */
3561 unsigned int
3562 subreg_lsb (const_rtx x)
3564 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3565 SUBREG_BYTE (x));
3568 /* Return the subreg byte offset for a subreg whose outer value has
3569 OUTER_BYTES bytes, whose inner value has INNER_BYTES bytes, and where
3570 there are LSB_SHIFT *bits* between the lsb of the outer value and the
3571 lsb of the inner value. This is the inverse of the calculation
3572 performed by subreg_lsb_1 (which converts byte offsets to bit shifts). */
3574 unsigned int
3575 subreg_size_offset_from_lsb (unsigned int outer_bytes,
3576 unsigned int inner_bytes,
3577 unsigned int lsb_shift)
3579 /* A paradoxical subreg begins at bit position 0. */
3580 if (outer_bytes > inner_bytes)
3582 gcc_checking_assert (lsb_shift == 0);
3583 return 0;
3586 gcc_assert (lsb_shift % BITS_PER_UNIT == 0);
3587 unsigned int lower_bytes = lsb_shift / BITS_PER_UNIT;
3588 unsigned int upper_bytes = inner_bytes - (lower_bytes + outer_bytes);
3589 if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
3590 return upper_bytes;
3591 else if (!WORDS_BIG_ENDIAN && !BYTES_BIG_ENDIAN)
3592 return lower_bytes;
3593 else
3595 unsigned int lower_word_part = lower_bytes & -UNITS_PER_WORD;
3596 unsigned int upper_word_part = upper_bytes & -UNITS_PER_WORD;
3597 if (WORDS_BIG_ENDIAN)
3598 return upper_word_part + (lower_bytes - lower_word_part);
3599 else
3600 return lower_word_part + (upper_bytes - upper_word_part);
3604 /* Fill in information about a subreg of a hard register.
3605 xregno - A regno of an inner hard subreg_reg (or what will become one).
3606 xmode - The mode of xregno.
3607 offset - The byte offset.
3608 ymode - The mode of a top level SUBREG (or what may become one).
3609 info - Pointer to structure to fill in.
3611 Rather than considering one particular inner register (and thus one
3612 particular "outer" register) in isolation, this function really uses
3613 XREGNO as a model for a sequence of isomorphic hard registers. Thus the
3614 function does not check whether adding INFO->offset to XREGNO gives
3615 a valid hard register; even if INFO->offset + XREGNO is out of range,
3616 there might be another register of the same type that is in range.
3617 Likewise it doesn't check whether HARD_REGNO_MODE_OK accepts the new
3618 register, since that can depend on things like whether the final
3619 register number is even or odd. Callers that want to check whether
3620 this particular subreg can be replaced by a simple (reg ...) should
3621 use simplify_subreg_regno. */
3623 void
3624 subreg_get_info (unsigned int xregno, machine_mode xmode,
3625 unsigned int offset, machine_mode ymode,
3626 struct subreg_info *info)
3628 unsigned int nregs_xmode, nregs_ymode;
3630 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3632 unsigned int xsize = GET_MODE_SIZE (xmode);
3633 unsigned int ysize = GET_MODE_SIZE (ymode);
3634 bool rknown = false;
3636 /* If the register representation of a non-scalar mode has holes in it,
3637 we expect the scalar units to be concatenated together, with the holes
3638 distributed evenly among the scalar units. Each scalar unit must occupy
3639 at least one register. */
3640 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
3642 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
3643 unsigned int nunits = GET_MODE_NUNITS (xmode);
3644 machine_mode xmode_unit = GET_MODE_INNER (xmode);
3645 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3646 gcc_assert (nregs_xmode
3647 == (nunits
3648 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3649 gcc_assert (hard_regno_nregs[xregno][xmode]
3650 == hard_regno_nregs[xregno][xmode_unit] * nunits);
3652 /* You can only ask for a SUBREG of a value with holes in the middle
3653 if you don't cross the holes. (Such a SUBREG should be done by
3654 picking a different register class, or doing it in memory if
3655 necessary.) An example of a value with holes is XCmode on 32-bit
3656 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3657 3 for each part, but in memory it's two 128-bit parts.
3658 Padding is assumed to be at the end (not necessarily the 'high part')
3659 of each unit. */
3660 if ((offset / GET_MODE_SIZE (xmode_unit) + 1 < nunits)
3661 && (offset / GET_MODE_SIZE (xmode_unit)
3662 != ((offset + ysize - 1) / GET_MODE_SIZE (xmode_unit))))
3664 info->representable_p = false;
3665 rknown = true;
3668 else
3669 nregs_xmode = hard_regno_nregs[xregno][xmode];
3671 nregs_ymode = hard_regno_nregs[xregno][ymode];
3673 /* Paradoxical subregs are otherwise valid. */
3674 if (!rknown && offset == 0 && ysize > xsize)
3676 info->representable_p = true;
3677 /* If this is a big endian paradoxical subreg, which uses more
3678 actual hard registers than the original register, we must
3679 return a negative offset so that we find the proper highpart
3680 of the register.
3682 We assume that the ordering of registers within a multi-register
3683 value has a consistent endianness: if bytes and register words
3684 have different endianness, the hard registers that make up a
3685 multi-register value must be at least word-sized. */
3686 if (REG_WORDS_BIG_ENDIAN)
3687 info->offset = (int) nregs_xmode - (int) nregs_ymode;
3688 else
3689 info->offset = 0;
3690 info->nregs = nregs_ymode;
3691 return;
3694 /* If registers store different numbers of bits in the different
3695 modes, we cannot generally form this subreg. */
3696 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
3697 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3698 && (xsize % nregs_xmode) == 0
3699 && (ysize % nregs_ymode) == 0)
3701 int regsize_xmode = xsize / nregs_xmode;
3702 int regsize_ymode = ysize / nregs_ymode;
3703 if (!rknown
3704 && ((nregs_ymode > 1 && regsize_xmode > regsize_ymode)
3705 || (nregs_xmode > 1 && regsize_ymode > regsize_xmode)))
3707 info->representable_p = false;
3708 info->nregs = CEIL (ysize, regsize_xmode);
3709 info->offset = offset / regsize_xmode;
3710 return;
3712 /* It's not valid to extract a subreg of mode YMODE at OFFSET that
3713 would go outside of XMODE. */
3714 if (!rknown && ysize + offset > xsize)
3716 info->representable_p = false;
3717 info->nregs = nregs_ymode;
3718 info->offset = offset / regsize_xmode;
3719 return;
3721 /* Quick exit for the simple and common case of extracting whole
3722 subregisters from a multiregister value. */
3723 /* ??? It would be better to integrate this into the code below,
3724 if we can generalize the concept enough and figure out how
3725 odd-sized modes can coexist with the other weird cases we support. */
3726 if (!rknown
3727 && WORDS_BIG_ENDIAN == REG_WORDS_BIG_ENDIAN
3728 && regsize_xmode == regsize_ymode
3729 && (offset % regsize_ymode) == 0)
3731 info->representable_p = true;
3732 info->nregs = nregs_ymode;
3733 info->offset = offset / regsize_ymode;
3734 gcc_assert (info->offset + info->nregs <= (int) nregs_xmode);
3735 return;
3739 /* Lowpart subregs are otherwise valid. */
3740 if (!rknown && offset == subreg_lowpart_offset (ymode, xmode))
3742 info->representable_p = true;
3743 rknown = true;
3745 if (offset == 0 || nregs_xmode == nregs_ymode)
3747 info->offset = 0;
3748 info->nregs = nregs_ymode;
3749 return;
3753 /* Set NUM_BLOCKS to the number of independently-representable YMODE
3754 values there are in (reg:XMODE XREGNO). We can view the register
3755 as consisting of this number of independent "blocks", where each
3756 block occupies NREGS_YMODE registers and contains exactly one
3757 representable YMODE value. */
3758 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3759 unsigned int num_blocks = nregs_xmode / nregs_ymode;
3761 /* Calculate the number of bytes in each block. This must always
3762 be exact, otherwise we don't know how to verify the constraint.
3763 These conditions may be relaxed but subreg_regno_offset would
3764 need to be redesigned. */
3765 gcc_assert ((xsize % num_blocks) == 0);
3766 unsigned int bytes_per_block = xsize / num_blocks;
3768 /* Get the number of the first block that contains the subreg and the byte
3769 offset of the subreg from the start of that block. */
3770 unsigned int block_number = offset / bytes_per_block;
3771 unsigned int subblock_offset = offset % bytes_per_block;
3773 if (!rknown)
3775 /* Only the lowpart of each block is representable. */
3776 info->representable_p
3777 = (subblock_offset
3778 == subreg_size_lowpart_offset (ysize, bytes_per_block));
3779 rknown = true;
3782 /* We assume that the ordering of registers within a multi-register
3783 value has a consistent endianness: if bytes and register words
3784 have different endianness, the hard registers that make up a
3785 multi-register value must be at least word-sized. */
3786 if (WORDS_BIG_ENDIAN != REG_WORDS_BIG_ENDIAN)
3787 /* The block number we calculated above followed memory endianness.
3788 Convert it to register endianness by counting back from the end.
3789 (Note that, because of the assumption above, each block must be
3790 at least word-sized.) */
3791 info->offset = (num_blocks - block_number - 1) * nregs_ymode;
3792 else
3793 info->offset = block_number * nregs_ymode;
3794 info->nregs = nregs_ymode;
3797 /* This function returns the regno offset of a subreg expression.
3798 xregno - A regno of an inner hard subreg_reg (or what will become one).
3799 xmode - The mode of xregno.
3800 offset - The byte offset.
3801 ymode - The mode of a top level SUBREG (or what may become one).
3802 RETURN - The regno offset which would be used. */
3803 unsigned int
3804 subreg_regno_offset (unsigned int xregno, machine_mode xmode,
3805 unsigned int offset, machine_mode ymode)
3807 struct subreg_info info;
3808 subreg_get_info (xregno, xmode, offset, ymode, &info);
3809 return info.offset;
3812 /* This function returns true when the offset is representable via
3813 subreg_offset in the given regno.
3814 xregno - A regno of an inner hard subreg_reg (or what will become one).
3815 xmode - The mode of xregno.
3816 offset - The byte offset.
3817 ymode - The mode of a top level SUBREG (or what may become one).
3818 RETURN - Whether the offset is representable. */
3819 bool
3820 subreg_offset_representable_p (unsigned int xregno, machine_mode xmode,
3821 unsigned int offset, machine_mode ymode)
3823 struct subreg_info info;
3824 subreg_get_info (xregno, xmode, offset, ymode, &info);
3825 return info.representable_p;
3828 /* Return the number of a YMODE register to which
3830 (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
3832 can be simplified. Return -1 if the subreg can't be simplified.
3834 XREGNO is a hard register number. */
3837 simplify_subreg_regno (unsigned int xregno, machine_mode xmode,
3838 unsigned int offset, machine_mode ymode)
3840 struct subreg_info info;
3841 unsigned int yregno;
3843 #ifdef CANNOT_CHANGE_MODE_CLASS
3844 /* Give the backend a chance to disallow the mode change. */
3845 if (GET_MODE_CLASS (xmode) != MODE_COMPLEX_INT
3846 && GET_MODE_CLASS (xmode) != MODE_COMPLEX_FLOAT
3847 && REG_CANNOT_CHANGE_MODE_P (xregno, xmode, ymode)
3848 /* We can use mode change in LRA for some transformations. */
3849 && ! lra_in_progress)
3850 return -1;
3851 #endif
3853 /* We shouldn't simplify stack-related registers. */
3854 if ((!reload_completed || frame_pointer_needed)
3855 && xregno == FRAME_POINTER_REGNUM)
3856 return -1;
3858 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3859 && xregno == ARG_POINTER_REGNUM)
3860 return -1;
3862 if (xregno == STACK_POINTER_REGNUM
3863 /* We should convert hard stack register in LRA if it is
3864 possible. */
3865 && ! lra_in_progress)
3866 return -1;
3868 /* Try to get the register offset. */
3869 subreg_get_info (xregno, xmode, offset, ymode, &info);
3870 if (!info.representable_p)
3871 return -1;
3873 /* Make sure that the offsetted register value is in range. */
3874 yregno = xregno + info.offset;
3875 if (!HARD_REGISTER_NUM_P (yregno))
3876 return -1;
3878 /* See whether (reg:YMODE YREGNO) is valid.
3880 ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
3881 This is a kludge to work around how complex FP arguments are passed
3882 on IA-64 and should be fixed. See PR target/49226. */
3883 if (!HARD_REGNO_MODE_OK (yregno, ymode)
3884 && HARD_REGNO_MODE_OK (xregno, xmode))
3885 return -1;
3887 return (int) yregno;
3890 /* Return the final regno that a subreg expression refers to. */
3891 unsigned int
3892 subreg_regno (const_rtx x)
3894 unsigned int ret;
3895 rtx subreg = SUBREG_REG (x);
3896 int regno = REGNO (subreg);
3898 ret = regno + subreg_regno_offset (regno,
3899 GET_MODE (subreg),
3900 SUBREG_BYTE (x),
3901 GET_MODE (x));
3902 return ret;
3906 /* Return the number of registers that a subreg expression refers
3907 to. */
3908 unsigned int
3909 subreg_nregs (const_rtx x)
3911 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x);
3914 /* Return the number of registers that a subreg REG with REGNO
3915 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
3916 changed so that the regno can be passed in. */
3918 unsigned int
3919 subreg_nregs_with_regno (unsigned int regno, const_rtx x)
3921 struct subreg_info info;
3922 rtx subreg = SUBREG_REG (x);
3924 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
3925 &info);
3926 return info.nregs;
3929 struct parms_set_data
3931 int nregs;
3932 HARD_REG_SET regs;
3935 /* Helper function for noticing stores to parameter registers. */
3936 static void
3937 parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3939 struct parms_set_data *const d = (struct parms_set_data *) data;
3940 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3941 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3943 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3944 d->nregs--;
3948 /* Look backward for first parameter to be loaded.
3949 Note that loads of all parameters will not necessarily be
3950 found if CSE has eliminated some of them (e.g., an argument
3951 to the outer function is passed down as a parameter).
3952 Do not skip BOUNDARY. */
3953 rtx_insn *
3954 find_first_parameter_load (rtx_insn *call_insn, rtx_insn *boundary)
3956 struct parms_set_data parm;
3957 rtx p;
3958 rtx_insn *before, *first_set;
3960 /* Since different machines initialize their parameter registers
3961 in different orders, assume nothing. Collect the set of all
3962 parameter registers. */
3963 CLEAR_HARD_REG_SET (parm.regs);
3964 parm.nregs = 0;
3965 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3966 if (GET_CODE (XEXP (p, 0)) == USE
3967 && REG_P (XEXP (XEXP (p, 0), 0))
3968 && !STATIC_CHAIN_REG_P (XEXP (XEXP (p, 0), 0)))
3970 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
3972 /* We only care about registers which can hold function
3973 arguments. */
3974 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3975 continue;
3977 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3978 parm.nregs++;
3980 before = call_insn;
3981 first_set = call_insn;
3983 /* Search backward for the first set of a register in this set. */
3984 while (parm.nregs && before != boundary)
3986 before = PREV_INSN (before);
3988 /* It is possible that some loads got CSEed from one call to
3989 another. Stop in that case. */
3990 if (CALL_P (before))
3991 break;
3993 /* Our caller needs either ensure that we will find all sets
3994 (in case code has not been optimized yet), or take care
3995 for possible labels in a way by setting boundary to preceding
3996 CODE_LABEL. */
3997 if (LABEL_P (before))
3999 gcc_assert (before == boundary);
4000 break;
4003 if (INSN_P (before))
4005 int nregs_old = parm.nregs;
4006 note_stores (PATTERN (before), parms_set, &parm);
4007 /* If we found something that did not set a parameter reg,
4008 we're done. Do not keep going, as that might result
4009 in hoisting an insn before the setting of a pseudo
4010 that is used by the hoisted insn. */
4011 if (nregs_old != parm.nregs)
4012 first_set = before;
4013 else
4014 break;
4017 return first_set;
4020 /* Return true if we should avoid inserting code between INSN and preceding
4021 call instruction. */
4023 bool
4024 keep_with_call_p (const rtx_insn *insn)
4026 rtx set;
4028 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
4030 if (REG_P (SET_DEST (set))
4031 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
4032 && fixed_regs[REGNO (SET_DEST (set))]
4033 && general_operand (SET_SRC (set), VOIDmode))
4034 return true;
4035 if (REG_P (SET_SRC (set))
4036 && targetm.calls.function_value_regno_p (REGNO (SET_SRC (set)))
4037 && REG_P (SET_DEST (set))
4038 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
4039 return true;
4040 /* There may be a stack pop just after the call and before the store
4041 of the return register. Search for the actual store when deciding
4042 if we can break or not. */
4043 if (SET_DEST (set) == stack_pointer_rtx)
4045 /* This CONST_CAST is okay because next_nonnote_insn just
4046 returns its argument and we assign it to a const_rtx
4047 variable. */
4048 const rtx_insn *i2
4049 = next_nonnote_insn (const_cast<rtx_insn *> (insn));
4050 if (i2 && keep_with_call_p (i2))
4051 return true;
4054 return false;
4057 /* Return true if LABEL is a target of JUMP_INSN. This applies only
4058 to non-complex jumps. That is, direct unconditional, conditional,
4059 and tablejumps, but not computed jumps or returns. It also does
4060 not apply to the fallthru case of a conditional jump. */
4062 bool
4063 label_is_jump_target_p (const_rtx label, const rtx_insn *jump_insn)
4065 rtx tmp = JUMP_LABEL (jump_insn);
4066 rtx_jump_table_data *table;
4068 if (label == tmp)
4069 return true;
4071 if (tablejump_p (jump_insn, NULL, &table))
4073 rtvec vec = table->get_labels ();
4074 int i, veclen = GET_NUM_ELEM (vec);
4076 for (i = 0; i < veclen; ++i)
4077 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
4078 return true;
4081 if (find_reg_note (jump_insn, REG_LABEL_TARGET, label))
4082 return true;
4084 return false;
4088 /* Return an estimate of the cost of computing rtx X.
4089 One use is in cse, to decide which expression to keep in the hash table.
4090 Another is in rtl generation, to pick the cheapest way to multiply.
4091 Other uses like the latter are expected in the future.
4093 X appears as operand OPNO in an expression with code OUTER_CODE.
4094 SPEED specifies whether costs optimized for speed or size should
4095 be returned. */
4098 rtx_cost (rtx x, machine_mode mode, enum rtx_code outer_code,
4099 int opno, bool speed)
4101 int i, j;
4102 enum rtx_code code;
4103 const char *fmt;
4104 int total;
4105 int factor;
4107 if (x == 0)
4108 return 0;
4110 if (GET_MODE (x) != VOIDmode)
4111 mode = GET_MODE (x);
4113 /* A size N times larger than UNITS_PER_WORD likely needs N times as
4114 many insns, taking N times as long. */
4115 factor = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
4116 if (factor == 0)
4117 factor = 1;
4119 /* Compute the default costs of certain things.
4120 Note that targetm.rtx_costs can override the defaults. */
4122 code = GET_CODE (x);
4123 switch (code)
4125 case MULT:
4126 /* Multiplication has time-complexity O(N*N), where N is the
4127 number of units (translated from digits) when using
4128 schoolbook long multiplication. */
4129 total = factor * factor * COSTS_N_INSNS (5);
4130 break;
4131 case DIV:
4132 case UDIV:
4133 case MOD:
4134 case UMOD:
4135 /* Similarly, complexity for schoolbook long division. */
4136 total = factor * factor * COSTS_N_INSNS (7);
4137 break;
4138 case USE:
4139 /* Used in combine.c as a marker. */
4140 total = 0;
4141 break;
4142 case SET:
4143 /* A SET doesn't have a mode, so let's look at the SET_DEST to get
4144 the mode for the factor. */
4145 mode = GET_MODE (SET_DEST (x));
4146 factor = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
4147 if (factor == 0)
4148 factor = 1;
4149 /* FALLTHRU */
4150 default:
4151 total = factor * COSTS_N_INSNS (1);
4154 switch (code)
4156 case REG:
4157 return 0;
4159 case SUBREG:
4160 total = 0;
4161 /* If we can't tie these modes, make this expensive. The larger
4162 the mode, the more expensive it is. */
4163 if (! MODES_TIEABLE_P (mode, GET_MODE (SUBREG_REG (x))))
4164 return COSTS_N_INSNS (2 + factor);
4165 break;
4167 default:
4168 if (targetm.rtx_costs (x, mode, outer_code, opno, &total, speed))
4169 return total;
4170 break;
4173 /* Sum the costs of the sub-rtx's, plus cost of this operation,
4174 which is already in total. */
4176 fmt = GET_RTX_FORMAT (code);
4177 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4178 if (fmt[i] == 'e')
4179 total += rtx_cost (XEXP (x, i), mode, code, i, speed);
4180 else if (fmt[i] == 'E')
4181 for (j = 0; j < XVECLEN (x, i); j++)
4182 total += rtx_cost (XVECEXP (x, i, j), mode, code, i, speed);
4184 return total;
4187 /* Fill in the structure C with information about both speed and size rtx
4188 costs for X, which is operand OPNO in an expression with code OUTER. */
4190 void
4191 get_full_rtx_cost (rtx x, machine_mode mode, enum rtx_code outer, int opno,
4192 struct full_rtx_costs *c)
4194 c->speed = rtx_cost (x, mode, outer, opno, true);
4195 c->size = rtx_cost (x, mode, outer, opno, false);
4199 /* Return cost of address expression X.
4200 Expect that X is properly formed address reference.
4202 SPEED parameter specify whether costs optimized for speed or size should
4203 be returned. */
4206 address_cost (rtx x, machine_mode mode, addr_space_t as, bool speed)
4208 /* We may be asked for cost of various unusual addresses, such as operands
4209 of push instruction. It is not worthwhile to complicate writing
4210 of the target hook by such cases. */
4212 if (!memory_address_addr_space_p (mode, x, as))
4213 return 1000;
4215 return targetm.address_cost (x, mode, as, speed);
4218 /* If the target doesn't override, compute the cost as with arithmetic. */
4221 default_address_cost (rtx x, machine_mode, addr_space_t, bool speed)
4223 return rtx_cost (x, Pmode, MEM, 0, speed);
4227 unsigned HOST_WIDE_INT
4228 nonzero_bits (const_rtx x, machine_mode mode)
4230 return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
4233 unsigned int
4234 num_sign_bit_copies (const_rtx x, machine_mode mode)
4236 return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
4239 /* Return true if nonzero_bits1 might recurse into both operands
4240 of X. */
4242 static inline bool
4243 nonzero_bits_binary_arith_p (const_rtx x)
4245 if (!ARITHMETIC_P (x))
4246 return false;
4247 switch (GET_CODE (x))
4249 case AND:
4250 case XOR:
4251 case IOR:
4252 case UMIN:
4253 case UMAX:
4254 case SMIN:
4255 case SMAX:
4256 case PLUS:
4257 case MINUS:
4258 case MULT:
4259 case DIV:
4260 case UDIV:
4261 case MOD:
4262 case UMOD:
4263 return true;
4264 default:
4265 return false;
4269 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
4270 It avoids exponential behavior in nonzero_bits1 when X has
4271 identical subexpressions on the first or the second level. */
4273 static unsigned HOST_WIDE_INT
4274 cached_nonzero_bits (const_rtx x, machine_mode mode, const_rtx known_x,
4275 machine_mode known_mode,
4276 unsigned HOST_WIDE_INT known_ret)
4278 if (x == known_x && mode == known_mode)
4279 return known_ret;
4281 /* Try to find identical subexpressions. If found call
4282 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
4283 precomputed value for the subexpression as KNOWN_RET. */
4285 if (nonzero_bits_binary_arith_p (x))
4287 rtx x0 = XEXP (x, 0);
4288 rtx x1 = XEXP (x, 1);
4290 /* Check the first level. */
4291 if (x0 == x1)
4292 return nonzero_bits1 (x, mode, x0, mode,
4293 cached_nonzero_bits (x0, mode, known_x,
4294 known_mode, known_ret));
4296 /* Check the second level. */
4297 if (nonzero_bits_binary_arith_p (x0)
4298 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4299 return nonzero_bits1 (x, mode, x1, mode,
4300 cached_nonzero_bits (x1, mode, known_x,
4301 known_mode, known_ret));
4303 if (nonzero_bits_binary_arith_p (x1)
4304 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4305 return nonzero_bits1 (x, mode, x0, mode,
4306 cached_nonzero_bits (x0, mode, known_x,
4307 known_mode, known_ret));
4310 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
4313 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
4314 We don't let nonzero_bits recur into num_sign_bit_copies, because that
4315 is less useful. We can't allow both, because that results in exponential
4316 run time recursion. There is a nullstone testcase that triggered
4317 this. This macro avoids accidental uses of num_sign_bit_copies. */
4318 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
4320 /* Given an expression, X, compute which bits in X can be nonzero.
4321 We don't care about bits outside of those defined in MODE.
4323 For most X this is simply GET_MODE_MASK (GET_MODE (X)), but if X is
4324 an arithmetic operation, we can do better. */
4326 static unsigned HOST_WIDE_INT
4327 nonzero_bits1 (const_rtx x, machine_mode mode, const_rtx known_x,
4328 machine_mode known_mode,
4329 unsigned HOST_WIDE_INT known_ret)
4331 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
4332 unsigned HOST_WIDE_INT inner_nz;
4333 enum rtx_code code;
4334 machine_mode inner_mode;
4335 unsigned int mode_width = GET_MODE_PRECISION (mode);
4337 /* For floating-point and vector values, assume all bits are needed. */
4338 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode)
4339 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
4340 return nonzero;
4342 /* If X is wider than MODE, use its mode instead. */
4343 if (GET_MODE_PRECISION (GET_MODE (x)) > mode_width)
4345 mode = GET_MODE (x);
4346 nonzero = GET_MODE_MASK (mode);
4347 mode_width = GET_MODE_PRECISION (mode);
4350 if (mode_width > HOST_BITS_PER_WIDE_INT)
4351 /* Our only callers in this case look for single bit values. So
4352 just return the mode mask. Those tests will then be false. */
4353 return nonzero;
4355 /* If MODE is wider than X, but both are a single word for both the host
4356 and target machines, we can compute this from which bits of the
4357 object might be nonzero in its own mode, taking into account the fact
4358 that on many CISC machines, accessing an object in a wider mode
4359 causes the high-order bits to become undefined. So they are
4360 not known to be zero. */
4362 if (!WORD_REGISTER_OPERATIONS
4363 && GET_MODE (x) != VOIDmode
4364 && GET_MODE (x) != mode
4365 && GET_MODE_PRECISION (GET_MODE (x)) <= BITS_PER_WORD
4366 && GET_MODE_PRECISION (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
4367 && GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (GET_MODE (x)))
4369 nonzero &= cached_nonzero_bits (x, GET_MODE (x),
4370 known_x, known_mode, known_ret);
4371 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
4372 return nonzero;
4375 /* Please keep nonzero_bits_binary_arith_p above in sync with
4376 the code in the switch below. */
4377 code = GET_CODE (x);
4378 switch (code)
4380 case REG:
4381 #if defined(POINTERS_EXTEND_UNSIGNED)
4382 /* If pointers extend unsigned and this is a pointer in Pmode, say that
4383 all the bits above ptr_mode are known to be zero. */
4384 /* As we do not know which address space the pointer is referring to,
4385 we can do this only if the target does not support different pointer
4386 or address modes depending on the address space. */
4387 if (target_default_pointer_address_modes_p ()
4388 && POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4389 && REG_POINTER (x)
4390 && !targetm.have_ptr_extend ())
4391 nonzero &= GET_MODE_MASK (ptr_mode);
4392 #endif
4394 /* Include declared information about alignment of pointers. */
4395 /* ??? We don't properly preserve REG_POINTER changes across
4396 pointer-to-integer casts, so we can't trust it except for
4397 things that we know must be pointers. See execute/960116-1.c. */
4398 if ((x == stack_pointer_rtx
4399 || x == frame_pointer_rtx
4400 || x == arg_pointer_rtx)
4401 && REGNO_POINTER_ALIGN (REGNO (x)))
4403 unsigned HOST_WIDE_INT alignment
4404 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
4406 #ifdef PUSH_ROUNDING
4407 /* If PUSH_ROUNDING is defined, it is possible for the
4408 stack to be momentarily aligned only to that amount,
4409 so we pick the least alignment. */
4410 if (x == stack_pointer_rtx && PUSH_ARGS)
4411 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
4412 alignment);
4413 #endif
4415 nonzero &= ~(alignment - 1);
4419 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
4420 rtx new_rtx = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
4421 known_mode, known_ret,
4422 &nonzero_for_hook);
4424 if (new_rtx)
4425 nonzero_for_hook &= cached_nonzero_bits (new_rtx, mode, known_x,
4426 known_mode, known_ret);
4428 return nonzero_for_hook;
4431 case CONST_INT:
4432 /* If X is negative in MODE, sign-extend the value. */
4433 if (SHORT_IMMEDIATES_SIGN_EXTEND && INTVAL (x) > 0
4434 && mode_width < BITS_PER_WORD
4435 && (UINTVAL (x) & (HOST_WIDE_INT_1U << (mode_width - 1)))
4436 != 0)
4437 return UINTVAL (x) | (HOST_WIDE_INT_M1U << mode_width);
4439 return UINTVAL (x);
4441 case MEM:
4442 /* In many, if not most, RISC machines, reading a byte from memory
4443 zeros the rest of the register. Noticing that fact saves a lot
4444 of extra zero-extends. */
4445 if (load_extend_op (GET_MODE (x)) == ZERO_EXTEND)
4446 nonzero &= GET_MODE_MASK (GET_MODE (x));
4447 break;
4449 case EQ: case NE:
4450 case UNEQ: case LTGT:
4451 case GT: case GTU: case UNGT:
4452 case LT: case LTU: case UNLT:
4453 case GE: case GEU: case UNGE:
4454 case LE: case LEU: case UNLE:
4455 case UNORDERED: case ORDERED:
4456 /* If this produces an integer result, we know which bits are set.
4457 Code here used to clear bits outside the mode of X, but that is
4458 now done above. */
4459 /* Mind that MODE is the mode the caller wants to look at this
4460 operation in, and not the actual operation mode. We can wind
4461 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
4462 that describes the results of a vector compare. */
4463 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
4464 && mode_width <= HOST_BITS_PER_WIDE_INT)
4465 nonzero = STORE_FLAG_VALUE;
4466 break;
4468 case NEG:
4469 #if 0
4470 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4471 and num_sign_bit_copies. */
4472 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
4473 == GET_MODE_PRECISION (GET_MODE (x)))
4474 nonzero = 1;
4475 #endif
4477 if (GET_MODE_PRECISION (GET_MODE (x)) < mode_width)
4478 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
4479 break;
4481 case ABS:
4482 #if 0
4483 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4484 and num_sign_bit_copies. */
4485 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
4486 == GET_MODE_PRECISION (GET_MODE (x)))
4487 nonzero = 1;
4488 #endif
4489 break;
4491 case TRUNCATE:
4492 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
4493 known_x, known_mode, known_ret)
4494 & GET_MODE_MASK (mode));
4495 break;
4497 case ZERO_EXTEND:
4498 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4499 known_x, known_mode, known_ret);
4500 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4501 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4502 break;
4504 case SIGN_EXTEND:
4505 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
4506 Otherwise, show all the bits in the outer mode but not the inner
4507 may be nonzero. */
4508 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
4509 known_x, known_mode, known_ret);
4510 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4512 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4513 if (val_signbit_known_set_p (GET_MODE (XEXP (x, 0)), inner_nz))
4514 inner_nz |= (GET_MODE_MASK (mode)
4515 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
4518 nonzero &= inner_nz;
4519 break;
4521 case AND:
4522 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4523 known_x, known_mode, known_ret)
4524 & cached_nonzero_bits (XEXP (x, 1), mode,
4525 known_x, known_mode, known_ret);
4526 break;
4528 case XOR: case IOR:
4529 case UMIN: case UMAX: case SMIN: case SMAX:
4531 unsigned HOST_WIDE_INT nonzero0
4532 = cached_nonzero_bits (XEXP (x, 0), mode,
4533 known_x, known_mode, known_ret);
4535 /* Don't call nonzero_bits for the second time if it cannot change
4536 anything. */
4537 if ((nonzero & nonzero0) != nonzero)
4538 nonzero &= nonzero0
4539 | cached_nonzero_bits (XEXP (x, 1), mode,
4540 known_x, known_mode, known_ret);
4542 break;
4544 case PLUS: case MINUS:
4545 case MULT:
4546 case DIV: case UDIV:
4547 case MOD: case UMOD:
4548 /* We can apply the rules of arithmetic to compute the number of
4549 high- and low-order zero bits of these operations. We start by
4550 computing the width (position of the highest-order nonzero bit)
4551 and the number of low-order zero bits for each value. */
4553 unsigned HOST_WIDE_INT nz0
4554 = cached_nonzero_bits (XEXP (x, 0), mode,
4555 known_x, known_mode, known_ret);
4556 unsigned HOST_WIDE_INT nz1
4557 = cached_nonzero_bits (XEXP (x, 1), mode,
4558 known_x, known_mode, known_ret);
4559 int sign_index = GET_MODE_PRECISION (GET_MODE (x)) - 1;
4560 int width0 = floor_log2 (nz0) + 1;
4561 int width1 = floor_log2 (nz1) + 1;
4562 int low0 = ctz_or_zero (nz0);
4563 int low1 = ctz_or_zero (nz1);
4564 unsigned HOST_WIDE_INT op0_maybe_minusp
4565 = nz0 & (HOST_WIDE_INT_1U << sign_index);
4566 unsigned HOST_WIDE_INT op1_maybe_minusp
4567 = nz1 & (HOST_WIDE_INT_1U << sign_index);
4568 unsigned int result_width = mode_width;
4569 int result_low = 0;
4571 switch (code)
4573 case PLUS:
4574 result_width = MAX (width0, width1) + 1;
4575 result_low = MIN (low0, low1);
4576 break;
4577 case MINUS:
4578 result_low = MIN (low0, low1);
4579 break;
4580 case MULT:
4581 result_width = width0 + width1;
4582 result_low = low0 + low1;
4583 break;
4584 case DIV:
4585 if (width1 == 0)
4586 break;
4587 if (!op0_maybe_minusp && !op1_maybe_minusp)
4588 result_width = width0;
4589 break;
4590 case UDIV:
4591 if (width1 == 0)
4592 break;
4593 result_width = width0;
4594 break;
4595 case MOD:
4596 if (width1 == 0)
4597 break;
4598 if (!op0_maybe_minusp && !op1_maybe_minusp)
4599 result_width = MIN (width0, width1);
4600 result_low = MIN (low0, low1);
4601 break;
4602 case UMOD:
4603 if (width1 == 0)
4604 break;
4605 result_width = MIN (width0, width1);
4606 result_low = MIN (low0, low1);
4607 break;
4608 default:
4609 gcc_unreachable ();
4612 if (result_width < mode_width)
4613 nonzero &= (HOST_WIDE_INT_1U << result_width) - 1;
4615 if (result_low > 0)
4616 nonzero &= ~((HOST_WIDE_INT_1U << result_low) - 1);
4618 break;
4620 case ZERO_EXTRACT:
4621 if (CONST_INT_P (XEXP (x, 1))
4622 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
4623 nonzero &= (HOST_WIDE_INT_1U << INTVAL (XEXP (x, 1))) - 1;
4624 break;
4626 case SUBREG:
4627 /* If this is a SUBREG formed for a promoted variable that has
4628 been zero-extended, we know that at least the high-order bits
4629 are zero, though others might be too. */
4630 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x))
4631 nonzero = GET_MODE_MASK (GET_MODE (x))
4632 & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
4633 known_x, known_mode, known_ret);
4635 /* If the inner mode is a single word for both the host and target
4636 machines, we can compute this from which bits of the inner
4637 object might be nonzero. */
4638 inner_mode = GET_MODE (SUBREG_REG (x));
4639 if (GET_MODE_PRECISION (inner_mode) <= BITS_PER_WORD
4640 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT)
4642 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
4643 known_x, known_mode, known_ret);
4645 /* On many CISC machines, accessing an object in a wider mode
4646 causes the high-order bits to become undefined. So they are
4647 not known to be zero. */
4648 rtx_code extend_op;
4649 if ((!WORD_REGISTER_OPERATIONS
4650 /* If this is a typical RISC machine, we only have to worry
4651 about the way loads are extended. */
4652 || ((extend_op = load_extend_op (inner_mode)) == SIGN_EXTEND
4653 ? val_signbit_known_set_p (inner_mode, nonzero)
4654 : extend_op != ZERO_EXTEND)
4655 || (!MEM_P (SUBREG_REG (x)) && !REG_P (SUBREG_REG (x))))
4656 && GET_MODE_PRECISION (GET_MODE (x))
4657 > GET_MODE_PRECISION (inner_mode))
4658 nonzero
4659 |= (GET_MODE_MASK (GET_MODE (x)) & ~GET_MODE_MASK (inner_mode));
4661 break;
4663 case ASHIFTRT:
4664 case LSHIFTRT:
4665 case ASHIFT:
4666 case ROTATE:
4667 /* The nonzero bits are in two classes: any bits within MODE
4668 that aren't in GET_MODE (x) are always significant. The rest of the
4669 nonzero bits are those that are significant in the operand of
4670 the shift when shifted the appropriate number of bits. This
4671 shows that high-order bits are cleared by the right shift and
4672 low-order bits by left shifts. */
4673 if (CONST_INT_P (XEXP (x, 1))
4674 && INTVAL (XEXP (x, 1)) >= 0
4675 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
4676 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
4678 machine_mode inner_mode = GET_MODE (x);
4679 unsigned int width = GET_MODE_PRECISION (inner_mode);
4680 int count = INTVAL (XEXP (x, 1));
4681 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
4682 unsigned HOST_WIDE_INT op_nonzero
4683 = cached_nonzero_bits (XEXP (x, 0), mode,
4684 known_x, known_mode, known_ret);
4685 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
4686 unsigned HOST_WIDE_INT outer = 0;
4688 if (mode_width > width)
4689 outer = (op_nonzero & nonzero & ~mode_mask);
4691 if (code == LSHIFTRT)
4692 inner >>= count;
4693 else if (code == ASHIFTRT)
4695 inner >>= count;
4697 /* If the sign bit may have been nonzero before the shift, we
4698 need to mark all the places it could have been copied to
4699 by the shift as possibly nonzero. */
4700 if (inner & (HOST_WIDE_INT_1U << (width - 1 - count)))
4701 inner |= ((HOST_WIDE_INT_1U << count) - 1)
4702 << (width - count);
4704 else if (code == ASHIFT)
4705 inner <<= count;
4706 else
4707 inner = ((inner << (count % width)
4708 | (inner >> (width - (count % width)))) & mode_mask);
4710 nonzero &= (outer | inner);
4712 break;
4714 case FFS:
4715 case POPCOUNT:
4716 /* This is at most the number of bits in the mode. */
4717 nonzero = ((unsigned HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
4718 break;
4720 case CLZ:
4721 /* If CLZ has a known value at zero, then the nonzero bits are
4722 that value, plus the number of bits in the mode minus one. */
4723 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4724 nonzero
4725 |= (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
4726 else
4727 nonzero = -1;
4728 break;
4730 case CTZ:
4731 /* If CTZ has a known value at zero, then the nonzero bits are
4732 that value, plus the number of bits in the mode minus one. */
4733 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4734 nonzero
4735 |= (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
4736 else
4737 nonzero = -1;
4738 break;
4740 case CLRSB:
4741 /* This is at most the number of bits in the mode minus 1. */
4742 nonzero = (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
4743 break;
4745 case PARITY:
4746 nonzero = 1;
4747 break;
4749 case IF_THEN_ELSE:
4751 unsigned HOST_WIDE_INT nonzero_true
4752 = cached_nonzero_bits (XEXP (x, 1), mode,
4753 known_x, known_mode, known_ret);
4755 /* Don't call nonzero_bits for the second time if it cannot change
4756 anything. */
4757 if ((nonzero & nonzero_true) != nonzero)
4758 nonzero &= nonzero_true
4759 | cached_nonzero_bits (XEXP (x, 2), mode,
4760 known_x, known_mode, known_ret);
4762 break;
4764 default:
4765 break;
4768 return nonzero;
4771 /* See the macro definition above. */
4772 #undef cached_num_sign_bit_copies
4775 /* Return true if num_sign_bit_copies1 might recurse into both operands
4776 of X. */
4778 static inline bool
4779 num_sign_bit_copies_binary_arith_p (const_rtx x)
4781 if (!ARITHMETIC_P (x))
4782 return false;
4783 switch (GET_CODE (x))
4785 case IOR:
4786 case AND:
4787 case XOR:
4788 case SMIN:
4789 case SMAX:
4790 case UMIN:
4791 case UMAX:
4792 case PLUS:
4793 case MINUS:
4794 case MULT:
4795 return true;
4796 default:
4797 return false;
4801 /* The function cached_num_sign_bit_copies is a wrapper around
4802 num_sign_bit_copies1. It avoids exponential behavior in
4803 num_sign_bit_copies1 when X has identical subexpressions on the
4804 first or the second level. */
4806 static unsigned int
4807 cached_num_sign_bit_copies (const_rtx x, machine_mode mode, const_rtx known_x,
4808 machine_mode known_mode,
4809 unsigned int known_ret)
4811 if (x == known_x && mode == known_mode)
4812 return known_ret;
4814 /* Try to find identical subexpressions. If found call
4815 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4816 the precomputed value for the subexpression as KNOWN_RET. */
4818 if (num_sign_bit_copies_binary_arith_p (x))
4820 rtx x0 = XEXP (x, 0);
4821 rtx x1 = XEXP (x, 1);
4823 /* Check the first level. */
4824 if (x0 == x1)
4825 return
4826 num_sign_bit_copies1 (x, mode, x0, mode,
4827 cached_num_sign_bit_copies (x0, mode, known_x,
4828 known_mode,
4829 known_ret));
4831 /* Check the second level. */
4832 if (num_sign_bit_copies_binary_arith_p (x0)
4833 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4834 return
4835 num_sign_bit_copies1 (x, mode, x1, mode,
4836 cached_num_sign_bit_copies (x1, mode, known_x,
4837 known_mode,
4838 known_ret));
4840 if (num_sign_bit_copies_binary_arith_p (x1)
4841 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4842 return
4843 num_sign_bit_copies1 (x, mode, x0, mode,
4844 cached_num_sign_bit_copies (x0, mode, known_x,
4845 known_mode,
4846 known_ret));
4849 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4852 /* Return the number of bits at the high-order end of X that are known to
4853 be equal to the sign bit. X will be used in mode MODE; if MODE is
4854 VOIDmode, X will be used in its own mode. The returned value will always
4855 be between 1 and the number of bits in MODE. */
4857 static unsigned int
4858 num_sign_bit_copies1 (const_rtx x, machine_mode mode, const_rtx known_x,
4859 machine_mode known_mode,
4860 unsigned int known_ret)
4862 enum rtx_code code = GET_CODE (x);
4863 machine_mode inner_mode;
4864 int num0, num1, result;
4865 unsigned HOST_WIDE_INT nonzero;
4867 /* If we weren't given a mode, use the mode of X. If the mode is still
4868 VOIDmode, we don't know anything. Likewise if one of the modes is
4869 floating-point. */
4871 if (mode == VOIDmode)
4872 mode = GET_MODE (x);
4874 gcc_checking_assert (mode != BLKmode);
4876 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x))
4877 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
4878 return 1;
4880 /* For a smaller mode, just ignore the high bits. */
4881 unsigned int bitwidth = GET_MODE_PRECISION (mode);
4882 if (bitwidth < GET_MODE_PRECISION (GET_MODE (x)))
4884 num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
4885 known_x, known_mode, known_ret);
4886 return MAX (1,
4887 num0 - (int) (GET_MODE_PRECISION (GET_MODE (x)) - bitwidth));
4890 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_PRECISION (GET_MODE (x)))
4892 /* If this machine does not do all register operations on the entire
4893 register and MODE is wider than the mode of X, we can say nothing
4894 at all about the high-order bits. */
4895 if (!WORD_REGISTER_OPERATIONS)
4896 return 1;
4898 /* Likewise on machines that do, if the mode of the object is smaller
4899 than a word and loads of that size don't sign extend, we can say
4900 nothing about the high order bits. */
4901 if (GET_MODE_PRECISION (GET_MODE (x)) < BITS_PER_WORD
4902 && load_extend_op (GET_MODE (x)) != SIGN_EXTEND)
4903 return 1;
4906 /* Please keep num_sign_bit_copies_binary_arith_p above in sync with
4907 the code in the switch below. */
4908 switch (code)
4910 case REG:
4912 #if defined(POINTERS_EXTEND_UNSIGNED)
4913 /* If pointers extend signed and this is a pointer in Pmode, say that
4914 all the bits above ptr_mode are known to be sign bit copies. */
4915 /* As we do not know which address space the pointer is referring to,
4916 we can do this only if the target does not support different pointer
4917 or address modes depending on the address space. */
4918 if (target_default_pointer_address_modes_p ()
4919 && ! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4920 && mode == Pmode && REG_POINTER (x)
4921 && !targetm.have_ptr_extend ())
4922 return GET_MODE_PRECISION (Pmode) - GET_MODE_PRECISION (ptr_mode) + 1;
4923 #endif
4926 unsigned int copies_for_hook = 1, copies = 1;
4927 rtx new_rtx = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
4928 known_mode, known_ret,
4929 &copies_for_hook);
4931 if (new_rtx)
4932 copies = cached_num_sign_bit_copies (new_rtx, mode, known_x,
4933 known_mode, known_ret);
4935 if (copies > 1 || copies_for_hook > 1)
4936 return MAX (copies, copies_for_hook);
4938 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4940 break;
4942 case MEM:
4943 /* Some RISC machines sign-extend all loads of smaller than a word. */
4944 if (load_extend_op (GET_MODE (x)) == SIGN_EXTEND)
4945 return MAX (1, ((int) bitwidth
4946 - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1));
4947 break;
4949 case CONST_INT:
4950 /* If the constant is negative, take its 1's complement and remask.
4951 Then see how many zero bits we have. */
4952 nonzero = UINTVAL (x) & GET_MODE_MASK (mode);
4953 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4954 && (nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
4955 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4957 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4959 case SUBREG:
4960 /* If this is a SUBREG for a promoted object that is sign-extended
4961 and we are looking at it in a wider mode, we know that at least the
4962 high-order bits are known to be sign bit copies. */
4964 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_SIGNED_P (x))
4966 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4967 known_x, known_mode, known_ret);
4968 return MAX ((int) bitwidth
4969 - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1,
4970 num0);
4973 /* For a smaller object, just ignore the high bits. */
4974 inner_mode = GET_MODE (SUBREG_REG (x));
4975 if (bitwidth <= GET_MODE_PRECISION (inner_mode))
4977 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4978 known_x, known_mode, known_ret);
4979 return
4980 MAX (1, num0 - (int) (GET_MODE_PRECISION (inner_mode) - bitwidth));
4983 /* For paradoxical SUBREGs on machines where all register operations
4984 affect the entire register, just look inside. Note that we are
4985 passing MODE to the recursive call, so the number of sign bit copies
4986 will remain relative to that mode, not the inner mode. */
4988 /* This works only if loads sign extend. Otherwise, if we get a
4989 reload for the inner part, it may be loaded from the stack, and
4990 then we lose all sign bit copies that existed before the store
4991 to the stack. */
4993 if (WORD_REGISTER_OPERATIONS
4994 && load_extend_op (inner_mode) == SIGN_EXTEND
4995 && paradoxical_subreg_p (x)
4996 && (MEM_P (SUBREG_REG (x)) || REG_P (SUBREG_REG (x))))
4997 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4998 known_x, known_mode, known_ret);
4999 break;
5001 case SIGN_EXTRACT:
5002 if (CONST_INT_P (XEXP (x, 1)))
5003 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
5004 break;
5006 case SIGN_EXTEND:
5007 return (bitwidth - GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
5008 + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
5009 known_x, known_mode, known_ret));
5011 case TRUNCATE:
5012 /* For a smaller object, just ignore the high bits. */
5013 num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
5014 known_x, known_mode, known_ret);
5015 return MAX (1, (num0 - (int) (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
5016 - bitwidth)));
5018 case NOT:
5019 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
5020 known_x, known_mode, known_ret);
5022 case ROTATE: case ROTATERT:
5023 /* If we are rotating left by a number of bits less than the number
5024 of sign bit copies, we can just subtract that amount from the
5025 number. */
5026 if (CONST_INT_P (XEXP (x, 1))
5027 && INTVAL (XEXP (x, 1)) >= 0
5028 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
5030 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5031 known_x, known_mode, known_ret);
5032 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
5033 : (int) bitwidth - INTVAL (XEXP (x, 1))));
5035 break;
5037 case NEG:
5038 /* In general, this subtracts one sign bit copy. But if the value
5039 is known to be positive, the number of sign bit copies is the
5040 same as that of the input. Finally, if the input has just one bit
5041 that might be nonzero, all the bits are copies of the sign bit. */
5042 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5043 known_x, known_mode, known_ret);
5044 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5045 return num0 > 1 ? num0 - 1 : 1;
5047 nonzero = nonzero_bits (XEXP (x, 0), mode);
5048 if (nonzero == 1)
5049 return bitwidth;
5051 if (num0 > 1
5052 && ((HOST_WIDE_INT_1U << (bitwidth - 1)) & nonzero))
5053 num0--;
5055 return num0;
5057 case IOR: case AND: case XOR:
5058 case SMIN: case SMAX: case UMIN: case UMAX:
5059 /* Logical operations will preserve the number of sign-bit copies.
5060 MIN and MAX operations always return one of the operands. */
5061 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5062 known_x, known_mode, known_ret);
5063 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5064 known_x, known_mode, known_ret);
5066 /* If num1 is clearing some of the top bits then regardless of
5067 the other term, we are guaranteed to have at least that many
5068 high-order zero bits. */
5069 if (code == AND
5070 && num1 > 1
5071 && bitwidth <= HOST_BITS_PER_WIDE_INT
5072 && CONST_INT_P (XEXP (x, 1))
5073 && (UINTVAL (XEXP (x, 1))
5074 & (HOST_WIDE_INT_1U << (bitwidth - 1))) == 0)
5075 return num1;
5077 /* Similarly for IOR when setting high-order bits. */
5078 if (code == IOR
5079 && num1 > 1
5080 && bitwidth <= HOST_BITS_PER_WIDE_INT
5081 && CONST_INT_P (XEXP (x, 1))
5082 && (UINTVAL (XEXP (x, 1))
5083 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5084 return num1;
5086 return MIN (num0, num1);
5088 case PLUS: case MINUS:
5089 /* For addition and subtraction, we can have a 1-bit carry. However,
5090 if we are subtracting 1 from a positive number, there will not
5091 be such a carry. Furthermore, if the positive number is known to
5092 be 0 or 1, we know the result is either -1 or 0. */
5094 if (code == PLUS && XEXP (x, 1) == constm1_rtx
5095 && bitwidth <= HOST_BITS_PER_WIDE_INT)
5097 nonzero = nonzero_bits (XEXP (x, 0), mode);
5098 if (((HOST_WIDE_INT_1U << (bitwidth - 1)) & nonzero) == 0)
5099 return (nonzero == 1 || nonzero == 0 ? bitwidth
5100 : bitwidth - floor_log2 (nonzero) - 1);
5103 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5104 known_x, known_mode, known_ret);
5105 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5106 known_x, known_mode, known_ret);
5107 result = MAX (1, MIN (num0, num1) - 1);
5109 return result;
5111 case MULT:
5112 /* The number of bits of the product is the sum of the number of
5113 bits of both terms. However, unless one of the terms if known
5114 to be positive, we must allow for an additional bit since negating
5115 a negative number can remove one sign bit copy. */
5117 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5118 known_x, known_mode, known_ret);
5119 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5120 known_x, known_mode, known_ret);
5122 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
5123 if (result > 0
5124 && (bitwidth > HOST_BITS_PER_WIDE_INT
5125 || (((nonzero_bits (XEXP (x, 0), mode)
5126 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5127 && ((nonzero_bits (XEXP (x, 1), mode)
5128 & (HOST_WIDE_INT_1U << (bitwidth - 1)))
5129 != 0))))
5130 result--;
5132 return MAX (1, result);
5134 case UDIV:
5135 /* The result must be <= the first operand. If the first operand
5136 has the high bit set, we know nothing about the number of sign
5137 bit copies. */
5138 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5139 return 1;
5140 else if ((nonzero_bits (XEXP (x, 0), mode)
5141 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5142 return 1;
5143 else
5144 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
5145 known_x, known_mode, known_ret);
5147 case UMOD:
5148 /* The result must be <= the second operand. If the second operand
5149 has (or just might have) the high bit set, we know nothing about
5150 the number of sign bit copies. */
5151 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5152 return 1;
5153 else if ((nonzero_bits (XEXP (x, 1), mode)
5154 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5155 return 1;
5156 else
5157 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
5158 known_x, known_mode, known_ret);
5160 case DIV:
5161 /* Similar to unsigned division, except that we have to worry about
5162 the case where the divisor is negative, in which case we have
5163 to add 1. */
5164 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5165 known_x, known_mode, known_ret);
5166 if (result > 1
5167 && (bitwidth > HOST_BITS_PER_WIDE_INT
5168 || (nonzero_bits (XEXP (x, 1), mode)
5169 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0))
5170 result--;
5172 return result;
5174 case MOD:
5175 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5176 known_x, known_mode, known_ret);
5177 if (result > 1
5178 && (bitwidth > HOST_BITS_PER_WIDE_INT
5179 || (nonzero_bits (XEXP (x, 1), mode)
5180 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0))
5181 result--;
5183 return result;
5185 case ASHIFTRT:
5186 /* Shifts by a constant add to the number of bits equal to the
5187 sign bit. */
5188 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5189 known_x, known_mode, known_ret);
5190 if (CONST_INT_P (XEXP (x, 1))
5191 && INTVAL (XEXP (x, 1)) > 0
5192 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
5193 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
5195 return num0;
5197 case ASHIFT:
5198 /* Left shifts destroy copies. */
5199 if (!CONST_INT_P (XEXP (x, 1))
5200 || INTVAL (XEXP (x, 1)) < 0
5201 || INTVAL (XEXP (x, 1)) >= (int) bitwidth
5202 || INTVAL (XEXP (x, 1)) >= GET_MODE_PRECISION (GET_MODE (x)))
5203 return 1;
5205 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5206 known_x, known_mode, known_ret);
5207 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
5209 case IF_THEN_ELSE:
5210 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5211 known_x, known_mode, known_ret);
5212 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
5213 known_x, known_mode, known_ret);
5214 return MIN (num0, num1);
5216 case EQ: case NE: case GE: case GT: case LE: case LT:
5217 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
5218 case GEU: case GTU: case LEU: case LTU:
5219 case UNORDERED: case ORDERED:
5220 /* If the constant is negative, take its 1's complement and remask.
5221 Then see how many zero bits we have. */
5222 nonzero = STORE_FLAG_VALUE;
5223 if (bitwidth <= HOST_BITS_PER_WIDE_INT
5224 && (nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5225 nonzero = (~nonzero) & GET_MODE_MASK (mode);
5227 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
5229 default:
5230 break;
5233 /* If we haven't been able to figure it out by one of the above rules,
5234 see if some of the high-order bits are known to be zero. If so,
5235 count those bits and return one less than that amount. If we can't
5236 safely compute the mask for this mode, always return BITWIDTH. */
5238 bitwidth = GET_MODE_PRECISION (mode);
5239 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5240 return 1;
5242 nonzero = nonzero_bits (x, mode);
5243 return nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))
5244 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
5247 /* Calculate the rtx_cost of a single instruction. A return value of
5248 zero indicates an instruction pattern without a known cost. */
5251 insn_rtx_cost (rtx pat, bool speed)
5253 int i, cost;
5254 rtx set;
5256 /* Extract the single set rtx from the instruction pattern.
5257 We can't use single_set since we only have the pattern. */
5258 if (GET_CODE (pat) == SET)
5259 set = pat;
5260 else if (GET_CODE (pat) == PARALLEL)
5262 set = NULL_RTX;
5263 for (i = 0; i < XVECLEN (pat, 0); i++)
5265 rtx x = XVECEXP (pat, 0, i);
5266 if (GET_CODE (x) == SET)
5268 if (set)
5269 return 0;
5270 set = x;
5273 if (!set)
5274 return 0;
5276 else
5277 return 0;
5279 cost = set_src_cost (SET_SRC (set), GET_MODE (SET_DEST (set)), speed);
5280 return cost > 0 ? cost : COSTS_N_INSNS (1);
5283 /* Returns estimate on cost of computing SEQ. */
5285 unsigned
5286 seq_cost (const rtx_insn *seq, bool speed)
5288 unsigned cost = 0;
5289 rtx set;
5291 for (; seq; seq = NEXT_INSN (seq))
5293 set = single_set (seq);
5294 if (set)
5295 cost += set_rtx_cost (set, speed);
5296 else
5297 cost++;
5300 return cost;
5303 /* Given an insn INSN and condition COND, return the condition in a
5304 canonical form to simplify testing by callers. Specifically:
5306 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
5307 (2) Both operands will be machine operands; (cc0) will have been replaced.
5308 (3) If an operand is a constant, it will be the second operand.
5309 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
5310 for GE, GEU, and LEU.
5312 If the condition cannot be understood, or is an inequality floating-point
5313 comparison which needs to be reversed, 0 will be returned.
5315 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
5317 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5318 insn used in locating the condition was found. If a replacement test
5319 of the condition is desired, it should be placed in front of that
5320 insn and we will be sure that the inputs are still valid.
5322 If WANT_REG is nonzero, we wish the condition to be relative to that
5323 register, if possible. Therefore, do not canonicalize the condition
5324 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
5325 to be a compare to a CC mode register.
5327 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
5328 and at INSN. */
5331 canonicalize_condition (rtx_insn *insn, rtx cond, int reverse,
5332 rtx_insn **earliest,
5333 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
5335 enum rtx_code code;
5336 rtx_insn *prev = insn;
5337 const_rtx set;
5338 rtx tem;
5339 rtx op0, op1;
5340 int reverse_code = 0;
5341 machine_mode mode;
5342 basic_block bb = BLOCK_FOR_INSN (insn);
5344 code = GET_CODE (cond);
5345 mode = GET_MODE (cond);
5346 op0 = XEXP (cond, 0);
5347 op1 = XEXP (cond, 1);
5349 if (reverse)
5350 code = reversed_comparison_code (cond, insn);
5351 if (code == UNKNOWN)
5352 return 0;
5354 if (earliest)
5355 *earliest = insn;
5357 /* If we are comparing a register with zero, see if the register is set
5358 in the previous insn to a COMPARE or a comparison operation. Perform
5359 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
5360 in cse.c */
5362 while ((GET_RTX_CLASS (code) == RTX_COMPARE
5363 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
5364 && op1 == CONST0_RTX (GET_MODE (op0))
5365 && op0 != want_reg)
5367 /* Set nonzero when we find something of interest. */
5368 rtx x = 0;
5370 /* If comparison with cc0, import actual comparison from compare
5371 insn. */
5372 if (op0 == cc0_rtx)
5374 if ((prev = prev_nonnote_insn (prev)) == 0
5375 || !NONJUMP_INSN_P (prev)
5376 || (set = single_set (prev)) == 0
5377 || SET_DEST (set) != cc0_rtx)
5378 return 0;
5380 op0 = SET_SRC (set);
5381 op1 = CONST0_RTX (GET_MODE (op0));
5382 if (earliest)
5383 *earliest = prev;
5386 /* If this is a COMPARE, pick up the two things being compared. */
5387 if (GET_CODE (op0) == COMPARE)
5389 op1 = XEXP (op0, 1);
5390 op0 = XEXP (op0, 0);
5391 continue;
5393 else if (!REG_P (op0))
5394 break;
5396 /* Go back to the previous insn. Stop if it is not an INSN. We also
5397 stop if it isn't a single set or if it has a REG_INC note because
5398 we don't want to bother dealing with it. */
5400 prev = prev_nonnote_nondebug_insn (prev);
5402 if (prev == 0
5403 || !NONJUMP_INSN_P (prev)
5404 || FIND_REG_INC_NOTE (prev, NULL_RTX)
5405 /* In cfglayout mode, there do not have to be labels at the
5406 beginning of a block, or jumps at the end, so the previous
5407 conditions would not stop us when we reach bb boundary. */
5408 || BLOCK_FOR_INSN (prev) != bb)
5409 break;
5411 set = set_of (op0, prev);
5413 if (set
5414 && (GET_CODE (set) != SET
5415 || !rtx_equal_p (SET_DEST (set), op0)))
5416 break;
5418 /* If this is setting OP0, get what it sets it to if it looks
5419 relevant. */
5420 if (set)
5422 machine_mode inner_mode = GET_MODE (SET_DEST (set));
5423 #ifdef FLOAT_STORE_FLAG_VALUE
5424 REAL_VALUE_TYPE fsfv;
5425 #endif
5427 /* ??? We may not combine comparisons done in a CCmode with
5428 comparisons not done in a CCmode. This is to aid targets
5429 like Alpha that have an IEEE compliant EQ instruction, and
5430 a non-IEEE compliant BEQ instruction. The use of CCmode is
5431 actually artificial, simply to prevent the combination, but
5432 should not affect other platforms.
5434 However, we must allow VOIDmode comparisons to match either
5435 CCmode or non-CCmode comparison, because some ports have
5436 modeless comparisons inside branch patterns.
5438 ??? This mode check should perhaps look more like the mode check
5439 in simplify_comparison in combine. */
5440 if (((GET_MODE_CLASS (mode) == MODE_CC)
5441 != (GET_MODE_CLASS (inner_mode) == MODE_CC))
5442 && mode != VOIDmode
5443 && inner_mode != VOIDmode)
5444 break;
5445 if (GET_CODE (SET_SRC (set)) == COMPARE
5446 || (((code == NE
5447 || (code == LT
5448 && val_signbit_known_set_p (inner_mode,
5449 STORE_FLAG_VALUE))
5450 #ifdef FLOAT_STORE_FLAG_VALUE
5451 || (code == LT
5452 && SCALAR_FLOAT_MODE_P (inner_mode)
5453 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5454 REAL_VALUE_NEGATIVE (fsfv)))
5455 #endif
5457 && COMPARISON_P (SET_SRC (set))))
5458 x = SET_SRC (set);
5459 else if (((code == EQ
5460 || (code == GE
5461 && val_signbit_known_set_p (inner_mode,
5462 STORE_FLAG_VALUE))
5463 #ifdef FLOAT_STORE_FLAG_VALUE
5464 || (code == GE
5465 && SCALAR_FLOAT_MODE_P (inner_mode)
5466 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5467 REAL_VALUE_NEGATIVE (fsfv)))
5468 #endif
5470 && COMPARISON_P (SET_SRC (set)))
5472 reverse_code = 1;
5473 x = SET_SRC (set);
5475 else if ((code == EQ || code == NE)
5476 && GET_CODE (SET_SRC (set)) == XOR)
5477 /* Handle sequences like:
5479 (set op0 (xor X Y))
5480 ...(eq|ne op0 (const_int 0))...
5482 in which case:
5484 (eq op0 (const_int 0)) reduces to (eq X Y)
5485 (ne op0 (const_int 0)) reduces to (ne X Y)
5487 This is the form used by MIPS16, for example. */
5488 x = SET_SRC (set);
5489 else
5490 break;
5493 else if (reg_set_p (op0, prev))
5494 /* If this sets OP0, but not directly, we have to give up. */
5495 break;
5497 if (x)
5499 /* If the caller is expecting the condition to be valid at INSN,
5500 make sure X doesn't change before INSN. */
5501 if (valid_at_insn_p)
5502 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
5503 break;
5504 if (COMPARISON_P (x))
5505 code = GET_CODE (x);
5506 if (reverse_code)
5508 code = reversed_comparison_code (x, prev);
5509 if (code == UNKNOWN)
5510 return 0;
5511 reverse_code = 0;
5514 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5515 if (earliest)
5516 *earliest = prev;
5520 /* If constant is first, put it last. */
5521 if (CONSTANT_P (op0))
5522 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
5524 /* If OP0 is the result of a comparison, we weren't able to find what
5525 was really being compared, so fail. */
5526 if (!allow_cc_mode
5527 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5528 return 0;
5530 /* Canonicalize any ordered comparison with integers involving equality
5531 if we can do computations in the relevant mode and we do not
5532 overflow. */
5534 if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
5535 && CONST_INT_P (op1)
5536 && GET_MODE (op0) != VOIDmode
5537 && GET_MODE_PRECISION (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
5539 HOST_WIDE_INT const_val = INTVAL (op1);
5540 unsigned HOST_WIDE_INT uconst_val = const_val;
5541 unsigned HOST_WIDE_INT max_val
5542 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
5544 switch (code)
5546 case LE:
5547 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
5548 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
5549 break;
5551 /* When cross-compiling, const_val might be sign-extended from
5552 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
5553 case GE:
5554 if ((const_val & max_val)
5555 != (HOST_WIDE_INT_1U
5556 << (GET_MODE_PRECISION (GET_MODE (op0)) - 1)))
5557 code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
5558 break;
5560 case LEU:
5561 if (uconst_val < max_val)
5562 code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
5563 break;
5565 case GEU:
5566 if (uconst_val != 0)
5567 code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
5568 break;
5570 default:
5571 break;
5575 /* Never return CC0; return zero instead. */
5576 if (CC0_P (op0))
5577 return 0;
5579 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
5582 /* Given a jump insn JUMP, return the condition that will cause it to branch
5583 to its JUMP_LABEL. If the condition cannot be understood, or is an
5584 inequality floating-point comparison which needs to be reversed, 0 will
5585 be returned.
5587 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5588 insn used in locating the condition was found. If a replacement test
5589 of the condition is desired, it should be placed in front of that
5590 insn and we will be sure that the inputs are still valid. If EARLIEST
5591 is null, the returned condition will be valid at INSN.
5593 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
5594 compare CC mode register.
5596 VALID_AT_INSN_P is the same as for canonicalize_condition. */
5599 get_condition (rtx_insn *jump, rtx_insn **earliest, int allow_cc_mode,
5600 int valid_at_insn_p)
5602 rtx cond;
5603 int reverse;
5604 rtx set;
5606 /* If this is not a standard conditional jump, we can't parse it. */
5607 if (!JUMP_P (jump)
5608 || ! any_condjump_p (jump))
5609 return 0;
5610 set = pc_set (jump);
5612 cond = XEXP (SET_SRC (set), 0);
5614 /* If this branches to JUMP_LABEL when the condition is false, reverse
5615 the condition. */
5616 reverse
5617 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
5618 && label_ref_label (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (jump);
5620 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
5621 allow_cc_mode, valid_at_insn_p);
5624 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
5625 TARGET_MODE_REP_EXTENDED.
5627 Note that we assume that the property of
5628 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
5629 narrower than mode B. I.e., if A is a mode narrower than B then in
5630 order to be able to operate on it in mode B, mode A needs to
5631 satisfy the requirements set by the representation of mode B. */
5633 static void
5634 init_num_sign_bit_copies_in_rep (void)
5636 machine_mode mode, in_mode;
5638 for (in_mode = GET_CLASS_NARROWEST_MODE (MODE_INT); in_mode != VOIDmode;
5639 in_mode = GET_MODE_WIDER_MODE (mode))
5640 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != in_mode;
5641 mode = GET_MODE_WIDER_MODE (mode))
5643 machine_mode i;
5645 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
5646 extends to the next widest mode. */
5647 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
5648 || GET_MODE_WIDER_MODE (mode) == in_mode);
5650 /* We are in in_mode. Count how many bits outside of mode
5651 have to be copies of the sign-bit. */
5652 for (i = mode; i != in_mode; i = GET_MODE_WIDER_MODE (i))
5654 machine_mode wider = GET_MODE_WIDER_MODE (i);
5656 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
5657 /* We can only check sign-bit copies starting from the
5658 top-bit. In order to be able to check the bits we
5659 have already seen we pretend that subsequent bits
5660 have to be sign-bit copies too. */
5661 || num_sign_bit_copies_in_rep [in_mode][mode])
5662 num_sign_bit_copies_in_rep [in_mode][mode]
5663 += GET_MODE_PRECISION (wider) - GET_MODE_PRECISION (i);
5668 /* Suppose that truncation from the machine mode of X to MODE is not a
5669 no-op. See if there is anything special about X so that we can
5670 assume it already contains a truncated value of MODE. */
5672 bool
5673 truncated_to_mode (machine_mode mode, const_rtx x)
5675 /* This register has already been used in MODE without explicit
5676 truncation. */
5677 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
5678 return true;
5680 /* See if we already satisfy the requirements of MODE. If yes we
5681 can just switch to MODE. */
5682 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
5683 && (num_sign_bit_copies (x, GET_MODE (x))
5684 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
5685 return true;
5687 return false;
5690 /* Return true if RTX code CODE has a single sequence of zero or more
5691 "e" operands and no rtvec operands. Initialize its rtx_all_subrtx_bounds
5692 entry in that case. */
5694 static bool
5695 setup_reg_subrtx_bounds (unsigned int code)
5697 const char *format = GET_RTX_FORMAT ((enum rtx_code) code);
5698 unsigned int i = 0;
5699 for (; format[i] != 'e'; ++i)
5701 if (!format[i])
5702 /* No subrtxes. Leave start and count as 0. */
5703 return true;
5704 if (format[i] == 'E' || format[i] == 'V')
5705 return false;
5708 /* Record the sequence of 'e's. */
5709 rtx_all_subrtx_bounds[code].start = i;
5711 ++i;
5712 while (format[i] == 'e');
5713 rtx_all_subrtx_bounds[code].count = i - rtx_all_subrtx_bounds[code].start;
5714 /* rtl-iter.h relies on this. */
5715 gcc_checking_assert (rtx_all_subrtx_bounds[code].count <= 3);
5717 for (; format[i]; ++i)
5718 if (format[i] == 'E' || format[i] == 'V' || format[i] == 'e')
5719 return false;
5721 return true;
5724 /* Initialize rtx_all_subrtx_bounds. */
5725 void
5726 init_rtlanal (void)
5728 int i;
5729 for (i = 0; i < NUM_RTX_CODE; i++)
5731 if (!setup_reg_subrtx_bounds (i))
5732 rtx_all_subrtx_bounds[i].count = UCHAR_MAX;
5733 if (GET_RTX_CLASS (i) != RTX_CONST_OBJ)
5734 rtx_nonconst_subrtx_bounds[i] = rtx_all_subrtx_bounds[i];
5737 init_num_sign_bit_copies_in_rep ();
5740 /* Check whether this is a constant pool constant. */
5741 bool
5742 constant_pool_constant_p (rtx x)
5744 x = avoid_constant_pool_reference (x);
5745 return CONST_DOUBLE_P (x);
5748 /* If M is a bitmask that selects a field of low-order bits within an item but
5749 not the entire word, return the length of the field. Return -1 otherwise.
5750 M is used in machine mode MODE. */
5753 low_bitmask_len (machine_mode mode, unsigned HOST_WIDE_INT m)
5755 if (mode != VOIDmode)
5757 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
5758 return -1;
5759 m &= GET_MODE_MASK (mode);
5762 return exact_log2 (m + 1);
5765 /* Return the mode of MEM's address. */
5767 machine_mode
5768 get_address_mode (rtx mem)
5770 machine_mode mode;
5772 gcc_assert (MEM_P (mem));
5773 mode = GET_MODE (XEXP (mem, 0));
5774 if (mode != VOIDmode)
5775 return mode;
5776 return targetm.addr_space.address_mode (MEM_ADDR_SPACE (mem));
5779 /* Split up a CONST_DOUBLE or integer constant rtx
5780 into two rtx's for single words,
5781 storing in *FIRST the word that comes first in memory in the target
5782 and in *SECOND the other.
5784 TODO: This function needs to be rewritten to work on any size
5785 integer. */
5787 void
5788 split_double (rtx value, rtx *first, rtx *second)
5790 if (CONST_INT_P (value))
5792 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
5794 /* In this case the CONST_INT holds both target words.
5795 Extract the bits from it into two word-sized pieces.
5796 Sign extend each half to HOST_WIDE_INT. */
5797 unsigned HOST_WIDE_INT low, high;
5798 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
5799 unsigned bits_per_word = BITS_PER_WORD;
5801 /* Set sign_bit to the most significant bit of a word. */
5802 sign_bit = 1;
5803 sign_bit <<= bits_per_word - 1;
5805 /* Set mask so that all bits of the word are set. We could
5806 have used 1 << BITS_PER_WORD instead of basing the
5807 calculation on sign_bit. However, on machines where
5808 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
5809 compiler warning, even though the code would never be
5810 executed. */
5811 mask = sign_bit << 1;
5812 mask--;
5814 /* Set sign_extend as any remaining bits. */
5815 sign_extend = ~mask;
5817 /* Pick the lower word and sign-extend it. */
5818 low = INTVAL (value);
5819 low &= mask;
5820 if (low & sign_bit)
5821 low |= sign_extend;
5823 /* Pick the higher word, shifted to the least significant
5824 bits, and sign-extend it. */
5825 high = INTVAL (value);
5826 high >>= bits_per_word - 1;
5827 high >>= 1;
5828 high &= mask;
5829 if (high & sign_bit)
5830 high |= sign_extend;
5832 /* Store the words in the target machine order. */
5833 if (WORDS_BIG_ENDIAN)
5835 *first = GEN_INT (high);
5836 *second = GEN_INT (low);
5838 else
5840 *first = GEN_INT (low);
5841 *second = GEN_INT (high);
5844 else
5846 /* The rule for using CONST_INT for a wider mode
5847 is that we regard the value as signed.
5848 So sign-extend it. */
5849 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
5850 if (WORDS_BIG_ENDIAN)
5852 *first = high;
5853 *second = value;
5855 else
5857 *first = value;
5858 *second = high;
5862 else if (GET_CODE (value) == CONST_WIDE_INT)
5864 /* All of this is scary code and needs to be converted to
5865 properly work with any size integer. */
5866 gcc_assert (CONST_WIDE_INT_NUNITS (value) == 2);
5867 if (WORDS_BIG_ENDIAN)
5869 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
5870 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
5872 else
5874 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
5875 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
5878 else if (!CONST_DOUBLE_P (value))
5880 if (WORDS_BIG_ENDIAN)
5882 *first = const0_rtx;
5883 *second = value;
5885 else
5887 *first = value;
5888 *second = const0_rtx;
5891 else if (GET_MODE (value) == VOIDmode
5892 /* This is the old way we did CONST_DOUBLE integers. */
5893 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
5895 /* In an integer, the words are defined as most and least significant.
5896 So order them by the target's convention. */
5897 if (WORDS_BIG_ENDIAN)
5899 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
5900 *second = GEN_INT (CONST_DOUBLE_LOW (value));
5902 else
5904 *first = GEN_INT (CONST_DOUBLE_LOW (value));
5905 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
5908 else
5910 long l[2];
5912 /* Note, this converts the REAL_VALUE_TYPE to the target's
5913 format, splits up the floating point double and outputs
5914 exactly 32 bits of it into each of l[0] and l[1] --
5915 not necessarily BITS_PER_WORD bits. */
5916 REAL_VALUE_TO_TARGET_DOUBLE (*CONST_DOUBLE_REAL_VALUE (value), l);
5918 /* If 32 bits is an entire word for the target, but not for the host,
5919 then sign-extend on the host so that the number will look the same
5920 way on the host that it would on the target. See for instance
5921 simplify_unary_operation. The #if is needed to avoid compiler
5922 warnings. */
5924 #if HOST_BITS_PER_LONG > 32
5925 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
5927 if (l[0] & ((long) 1 << 31))
5928 l[0] |= ((unsigned long) (-1) << 32);
5929 if (l[1] & ((long) 1 << 31))
5930 l[1] |= ((unsigned long) (-1) << 32);
5932 #endif
5934 *first = GEN_INT (l[0]);
5935 *second = GEN_INT (l[1]);
5939 /* Return true if X is a sign_extract or zero_extract from the least
5940 significant bit. */
5942 static bool
5943 lsb_bitfield_op_p (rtx x)
5945 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_BITFIELD_OPS)
5947 machine_mode mode = GET_MODE (XEXP (x, 0));
5948 HOST_WIDE_INT len = INTVAL (XEXP (x, 1));
5949 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
5951 return (pos == (BITS_BIG_ENDIAN ? GET_MODE_PRECISION (mode) - len : 0));
5953 return false;
5956 /* Strip outer address "mutations" from LOC and return a pointer to the
5957 inner value. If OUTER_CODE is nonnull, store the code of the innermost
5958 stripped expression there.
5960 "Mutations" either convert between modes or apply some kind of
5961 extension, truncation or alignment. */
5963 rtx *
5964 strip_address_mutations (rtx *loc, enum rtx_code *outer_code)
5966 for (;;)
5968 enum rtx_code code = GET_CODE (*loc);
5969 if (GET_RTX_CLASS (code) == RTX_UNARY)
5970 /* Things like SIGN_EXTEND, ZERO_EXTEND and TRUNCATE can be
5971 used to convert between pointer sizes. */
5972 loc = &XEXP (*loc, 0);
5973 else if (lsb_bitfield_op_p (*loc))
5974 /* A [SIGN|ZERO]_EXTRACT from the least significant bit effectively
5975 acts as a combined truncation and extension. */
5976 loc = &XEXP (*loc, 0);
5977 else if (code == AND && CONST_INT_P (XEXP (*loc, 1)))
5978 /* (and ... (const_int -X)) is used to align to X bytes. */
5979 loc = &XEXP (*loc, 0);
5980 else if (code == SUBREG
5981 && !OBJECT_P (SUBREG_REG (*loc))
5982 && subreg_lowpart_p (*loc))
5983 /* (subreg (operator ...) ...) inside and is used for mode
5984 conversion too. */
5985 loc = &SUBREG_REG (*loc);
5986 else
5987 return loc;
5988 if (outer_code)
5989 *outer_code = code;
5993 /* Return true if CODE applies some kind of scale. The scaled value is
5994 is the first operand and the scale is the second. */
5996 static bool
5997 binary_scale_code_p (enum rtx_code code)
5999 return (code == MULT
6000 || code == ASHIFT
6001 /* Needed by ARM targets. */
6002 || code == ASHIFTRT
6003 || code == LSHIFTRT
6004 || code == ROTATE
6005 || code == ROTATERT);
6008 /* If *INNER can be interpreted as a base, return a pointer to the inner term
6009 (see address_info). Return null otherwise. */
6011 static rtx *
6012 get_base_term (rtx *inner)
6014 if (GET_CODE (*inner) == LO_SUM)
6015 inner = strip_address_mutations (&XEXP (*inner, 0));
6016 if (REG_P (*inner)
6017 || MEM_P (*inner)
6018 || GET_CODE (*inner) == SUBREG
6019 || GET_CODE (*inner) == SCRATCH)
6020 return inner;
6021 return 0;
6024 /* If *INNER can be interpreted as an index, return a pointer to the inner term
6025 (see address_info). Return null otherwise. */
6027 static rtx *
6028 get_index_term (rtx *inner)
6030 /* At present, only constant scales are allowed. */
6031 if (binary_scale_code_p (GET_CODE (*inner)) && CONSTANT_P (XEXP (*inner, 1)))
6032 inner = strip_address_mutations (&XEXP (*inner, 0));
6033 if (REG_P (*inner)
6034 || MEM_P (*inner)
6035 || GET_CODE (*inner) == SUBREG
6036 || GET_CODE (*inner) == SCRATCH)
6037 return inner;
6038 return 0;
6041 /* Set the segment part of address INFO to LOC, given that INNER is the
6042 unmutated value. */
6044 static void
6045 set_address_segment (struct address_info *info, rtx *loc, rtx *inner)
6047 gcc_assert (!info->segment);
6048 info->segment = loc;
6049 info->segment_term = inner;
6052 /* Set the base part of address INFO to LOC, given that INNER is the
6053 unmutated value. */
6055 static void
6056 set_address_base (struct address_info *info, rtx *loc, rtx *inner)
6058 gcc_assert (!info->base);
6059 info->base = loc;
6060 info->base_term = inner;
6063 /* Set the index part of address INFO to LOC, given that INNER is the
6064 unmutated value. */
6066 static void
6067 set_address_index (struct address_info *info, rtx *loc, rtx *inner)
6069 gcc_assert (!info->index);
6070 info->index = loc;
6071 info->index_term = inner;
6074 /* Set the displacement part of address INFO to LOC, given that INNER
6075 is the constant term. */
6077 static void
6078 set_address_disp (struct address_info *info, rtx *loc, rtx *inner)
6080 gcc_assert (!info->disp);
6081 info->disp = loc;
6082 info->disp_term = inner;
6085 /* INFO->INNER describes a {PRE,POST}_{INC,DEC} address. Set up the
6086 rest of INFO accordingly. */
6088 static void
6089 decompose_incdec_address (struct address_info *info)
6091 info->autoinc_p = true;
6093 rtx *base = &XEXP (*info->inner, 0);
6094 set_address_base (info, base, base);
6095 gcc_checking_assert (info->base == info->base_term);
6097 /* These addresses are only valid when the size of the addressed
6098 value is known. */
6099 gcc_checking_assert (info->mode != VOIDmode);
6102 /* INFO->INNER describes a {PRE,POST}_MODIFY address. Set up the rest
6103 of INFO accordingly. */
6105 static void
6106 decompose_automod_address (struct address_info *info)
6108 info->autoinc_p = true;
6110 rtx *base = &XEXP (*info->inner, 0);
6111 set_address_base (info, base, base);
6112 gcc_checking_assert (info->base == info->base_term);
6114 rtx plus = XEXP (*info->inner, 1);
6115 gcc_assert (GET_CODE (plus) == PLUS);
6117 info->base_term2 = &XEXP (plus, 0);
6118 gcc_checking_assert (rtx_equal_p (*info->base_term, *info->base_term2));
6120 rtx *step = &XEXP (plus, 1);
6121 rtx *inner_step = strip_address_mutations (step);
6122 if (CONSTANT_P (*inner_step))
6123 set_address_disp (info, step, inner_step);
6124 else
6125 set_address_index (info, step, inner_step);
6128 /* Treat *LOC as a tree of PLUS operands and store pointers to the summed
6129 values in [PTR, END). Return a pointer to the end of the used array. */
6131 static rtx **
6132 extract_plus_operands (rtx *loc, rtx **ptr, rtx **end)
6134 rtx x = *loc;
6135 if (GET_CODE (x) == PLUS)
6137 ptr = extract_plus_operands (&XEXP (x, 0), ptr, end);
6138 ptr = extract_plus_operands (&XEXP (x, 1), ptr, end);
6140 else
6142 gcc_assert (ptr != end);
6143 *ptr++ = loc;
6145 return ptr;
6148 /* Evaluate the likelihood of X being a base or index value, returning
6149 positive if it is likely to be a base, negative if it is likely to be
6150 an index, and 0 if we can't tell. Make the magnitude of the return
6151 value reflect the amount of confidence we have in the answer.
6153 MODE, AS, OUTER_CODE and INDEX_CODE are as for ok_for_base_p_1. */
6155 static int
6156 baseness (rtx x, machine_mode mode, addr_space_t as,
6157 enum rtx_code outer_code, enum rtx_code index_code)
6159 /* Believe *_POINTER unless the address shape requires otherwise. */
6160 if (REG_P (x) && REG_POINTER (x))
6161 return 2;
6162 if (MEM_P (x) && MEM_POINTER (x))
6163 return 2;
6165 if (REG_P (x) && HARD_REGISTER_P (x))
6167 /* X is a hard register. If it only fits one of the base
6168 or index classes, choose that interpretation. */
6169 int regno = REGNO (x);
6170 bool base_p = ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
6171 bool index_p = REGNO_OK_FOR_INDEX_P (regno);
6172 if (base_p != index_p)
6173 return base_p ? 1 : -1;
6175 return 0;
6178 /* INFO->INNER describes a normal, non-automodified address.
6179 Fill in the rest of INFO accordingly. */
6181 static void
6182 decompose_normal_address (struct address_info *info)
6184 /* Treat the address as the sum of up to four values. */
6185 rtx *ops[4];
6186 size_t n_ops = extract_plus_operands (info->inner, ops,
6187 ops + ARRAY_SIZE (ops)) - ops;
6189 /* If there is more than one component, any base component is in a PLUS. */
6190 if (n_ops > 1)
6191 info->base_outer_code = PLUS;
6193 /* Try to classify each sum operand now. Leave those that could be
6194 either a base or an index in OPS. */
6195 rtx *inner_ops[4];
6196 size_t out = 0;
6197 for (size_t in = 0; in < n_ops; ++in)
6199 rtx *loc = ops[in];
6200 rtx *inner = strip_address_mutations (loc);
6201 if (CONSTANT_P (*inner))
6202 set_address_disp (info, loc, inner);
6203 else if (GET_CODE (*inner) == UNSPEC)
6204 set_address_segment (info, loc, inner);
6205 else
6207 /* The only other possibilities are a base or an index. */
6208 rtx *base_term = get_base_term (inner);
6209 rtx *index_term = get_index_term (inner);
6210 gcc_assert (base_term || index_term);
6211 if (!base_term)
6212 set_address_index (info, loc, index_term);
6213 else if (!index_term)
6214 set_address_base (info, loc, base_term);
6215 else
6217 gcc_assert (base_term == index_term);
6218 ops[out] = loc;
6219 inner_ops[out] = base_term;
6220 ++out;
6225 /* Classify the remaining OPS members as bases and indexes. */
6226 if (out == 1)
6228 /* If we haven't seen a base or an index yet, assume that this is
6229 the base. If we were confident that another term was the base
6230 or index, treat the remaining operand as the other kind. */
6231 if (!info->base)
6232 set_address_base (info, ops[0], inner_ops[0]);
6233 else
6234 set_address_index (info, ops[0], inner_ops[0]);
6236 else if (out == 2)
6238 /* In the event of a tie, assume the base comes first. */
6239 if (baseness (*inner_ops[0], info->mode, info->as, PLUS,
6240 GET_CODE (*ops[1]))
6241 >= baseness (*inner_ops[1], info->mode, info->as, PLUS,
6242 GET_CODE (*ops[0])))
6244 set_address_base (info, ops[0], inner_ops[0]);
6245 set_address_index (info, ops[1], inner_ops[1]);
6247 else
6249 set_address_base (info, ops[1], inner_ops[1]);
6250 set_address_index (info, ops[0], inner_ops[0]);
6253 else
6254 gcc_assert (out == 0);
6257 /* Describe address *LOC in *INFO. MODE is the mode of the addressed value,
6258 or VOIDmode if not known. AS is the address space associated with LOC.
6259 OUTER_CODE is MEM if *LOC is a MEM address and ADDRESS otherwise. */
6261 void
6262 decompose_address (struct address_info *info, rtx *loc, machine_mode mode,
6263 addr_space_t as, enum rtx_code outer_code)
6265 memset (info, 0, sizeof (*info));
6266 info->mode = mode;
6267 info->as = as;
6268 info->addr_outer_code = outer_code;
6269 info->outer = loc;
6270 info->inner = strip_address_mutations (loc, &outer_code);
6271 info->base_outer_code = outer_code;
6272 switch (GET_CODE (*info->inner))
6274 case PRE_DEC:
6275 case PRE_INC:
6276 case POST_DEC:
6277 case POST_INC:
6278 decompose_incdec_address (info);
6279 break;
6281 case PRE_MODIFY:
6282 case POST_MODIFY:
6283 decompose_automod_address (info);
6284 break;
6286 default:
6287 decompose_normal_address (info);
6288 break;
6292 /* Describe address operand LOC in INFO. */
6294 void
6295 decompose_lea_address (struct address_info *info, rtx *loc)
6297 decompose_address (info, loc, VOIDmode, ADDR_SPACE_GENERIC, ADDRESS);
6300 /* Describe the address of MEM X in INFO. */
6302 void
6303 decompose_mem_address (struct address_info *info, rtx x)
6305 gcc_assert (MEM_P (x));
6306 decompose_address (info, &XEXP (x, 0), GET_MODE (x),
6307 MEM_ADDR_SPACE (x), MEM);
6310 /* Update INFO after a change to the address it describes. */
6312 void
6313 update_address (struct address_info *info)
6315 decompose_address (info, info->outer, info->mode, info->as,
6316 info->addr_outer_code);
6319 /* Return the scale applied to *INFO->INDEX_TERM, or 0 if the index is
6320 more complicated than that. */
6322 HOST_WIDE_INT
6323 get_index_scale (const struct address_info *info)
6325 rtx index = *info->index;
6326 if (GET_CODE (index) == MULT
6327 && CONST_INT_P (XEXP (index, 1))
6328 && info->index_term == &XEXP (index, 0))
6329 return INTVAL (XEXP (index, 1));
6331 if (GET_CODE (index) == ASHIFT
6332 && CONST_INT_P (XEXP (index, 1))
6333 && info->index_term == &XEXP (index, 0))
6334 return HOST_WIDE_INT_1 << INTVAL (XEXP (index, 1));
6336 if (info->index == info->index_term)
6337 return 1;
6339 return 0;
6342 /* Return the "index code" of INFO, in the form required by
6343 ok_for_base_p_1. */
6345 enum rtx_code
6346 get_index_code (const struct address_info *info)
6348 if (info->index)
6349 return GET_CODE (*info->index);
6351 if (info->disp)
6352 return GET_CODE (*info->disp);
6354 return SCRATCH;
6357 /* Return true if RTL X contains a SYMBOL_REF. */
6359 bool
6360 contains_symbol_ref_p (const_rtx x)
6362 subrtx_iterator::array_type array;
6363 FOR_EACH_SUBRTX (iter, array, x, ALL)
6364 if (SYMBOL_REF_P (*iter))
6365 return true;
6367 return false;
6370 /* Return true if RTL X contains a SYMBOL_REF or LABEL_REF. */
6372 bool
6373 contains_symbolic_reference_p (const_rtx x)
6375 subrtx_iterator::array_type array;
6376 FOR_EACH_SUBRTX (iter, array, x, ALL)
6377 if (SYMBOL_REF_P (*iter) || GET_CODE (*iter) == LABEL_REF)
6378 return true;
6380 return false;
6383 /* Return true if X contains a thread-local symbol. */
6385 bool
6386 tls_referenced_p (const_rtx x)
6388 if (!targetm.have_tls)
6389 return false;
6391 subrtx_iterator::array_type array;
6392 FOR_EACH_SUBRTX (iter, array, x, ALL)
6393 if (GET_CODE (*iter) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (*iter) != 0)
6394 return true;
6395 return false;