gcc/
[official-gcc.git] / gcc / gcse.c
blob2d456b516199338b15f1db51bd694168b87cf7b7
1 /* Partial redundancy elimination / Hoisting for RTL.
2 Copyright (C) 1997-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* TODO
21 - reordering of memory allocation and freeing to be more space efficient
22 - calc rough register pressure information and use the info to drive all
23 kinds of code motion (including code hoisting) in a unified way.
26 /* References searched while implementing this.
28 Compilers Principles, Techniques and Tools
29 Aho, Sethi, Ullman
30 Addison-Wesley, 1988
32 Global Optimization by Suppression of Partial Redundancies
33 E. Morel, C. Renvoise
34 communications of the acm, Vol. 22, Num. 2, Feb. 1979
36 A Portable Machine-Independent Global Optimizer - Design and Measurements
37 Frederick Chow
38 Stanford Ph.D. thesis, Dec. 1983
40 A Fast Algorithm for Code Movement Optimization
41 D.M. Dhamdhere
42 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
44 A Solution to a Problem with Morel and Renvoise's
45 Global Optimization by Suppression of Partial Redundancies
46 K-H Drechsler, M.P. Stadel
47 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
49 Practical Adaptation of the Global Optimization
50 Algorithm of Morel and Renvoise
51 D.M. Dhamdhere
52 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
54 Efficiently Computing Static Single Assignment Form and the Control
55 Dependence Graph
56 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
57 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
59 Lazy Code Motion
60 J. Knoop, O. Ruthing, B. Steffen
61 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
63 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
64 Time for Reducible Flow Control
65 Thomas Ball
66 ACM Letters on Programming Languages and Systems,
67 Vol. 2, Num. 1-4, Mar-Dec 1993
69 An Efficient Representation for Sparse Sets
70 Preston Briggs, Linda Torczon
71 ACM Letters on Programming Languages and Systems,
72 Vol. 2, Num. 1-4, Mar-Dec 1993
74 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
75 K-H Drechsler, M.P. Stadel
76 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
78 Partial Dead Code Elimination
79 J. Knoop, O. Ruthing, B. Steffen
80 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
82 Effective Partial Redundancy Elimination
83 P. Briggs, K.D. Cooper
84 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
86 The Program Structure Tree: Computing Control Regions in Linear Time
87 R. Johnson, D. Pearson, K. Pingali
88 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
90 Optimal Code Motion: Theory and Practice
91 J. Knoop, O. Ruthing, B. Steffen
92 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
94 The power of assignment motion
95 J. Knoop, O. Ruthing, B. Steffen
96 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
98 Global code motion / global value numbering
99 C. Click
100 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
102 Value Driven Redundancy Elimination
103 L.T. Simpson
104 Rice University Ph.D. thesis, Apr. 1996
106 Value Numbering
107 L.T. Simpson
108 Massively Scalar Compiler Project, Rice University, Sep. 1996
110 High Performance Compilers for Parallel Computing
111 Michael Wolfe
112 Addison-Wesley, 1996
114 Advanced Compiler Design and Implementation
115 Steven Muchnick
116 Morgan Kaufmann, 1997
118 Building an Optimizing Compiler
119 Robert Morgan
120 Digital Press, 1998
122 People wishing to speed up the code here should read:
123 Elimination Algorithms for Data Flow Analysis
124 B.G. Ryder, M.C. Paull
125 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
127 How to Analyze Large Programs Efficiently and Informatively
128 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
129 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
131 People wishing to do something different can find various possibilities
132 in the above papers and elsewhere.
135 #include "config.h"
136 #include "system.h"
137 #include "coretypes.h"
138 #include "tm.h"
139 #include "diagnostic-core.h"
140 #include "toplev.h"
141 #include "hard-reg-set.h"
142 #include "rtl.h"
143 #include "hash-set.h"
144 #include "vec.h"
145 #include "input.h"
146 #include "alias.h"
147 #include "symtab.h"
148 #include "inchash.h"
149 #include "tree.h"
150 #include "tm_p.h"
151 #include "regs.h"
152 #include "ira.h"
153 #include "flags.h"
154 #include "insn-config.h"
155 #include "recog.h"
156 #include "predict.h"
157 #include "function.h"
158 #include "dominance.h"
159 #include "cfg.h"
160 #include "cfgrtl.h"
161 #include "cfganal.h"
162 #include "lcm.h"
163 #include "cfgcleanup.h"
164 #include "basic-block.h"
165 #include "hashtab.h"
166 #include "statistics.h"
167 #include "expmed.h"
168 #include "dojump.h"
169 #include "explow.h"
170 #include "calls.h"
171 #include "emit-rtl.h"
172 #include "varasm.h"
173 #include "stmt.h"
174 #include "expr.h"
175 #include "except.h"
176 #include "ggc.h"
177 #include "params.h"
178 #include "alloc-pool.h"
179 #include "cselib.h"
180 #include "intl.h"
181 #include "obstack.h"
182 #include "tree-pass.h"
183 #include "hash-table.h"
184 #include "df.h"
185 #include "dbgcnt.h"
186 #include "target.h"
187 #include "gcse.h"
188 #include "gcse-common.h"
190 /* We support GCSE via Partial Redundancy Elimination. PRE optimizations
191 are a superset of those done by classic GCSE.
193 Two passes of copy/constant propagation are done around PRE or hoisting
194 because the first one enables more GCSE and the second one helps to clean
195 up the copies that PRE and HOIST create. This is needed more for PRE than
196 for HOIST because code hoisting will try to use an existing register
197 containing the common subexpression rather than create a new one. This is
198 harder to do for PRE because of the code motion (which HOIST doesn't do).
200 Expressions we are interested in GCSE-ing are of the form
201 (set (pseudo-reg) (expression)).
202 Function want_to_gcse_p says what these are.
204 In addition, expressions in REG_EQUAL notes are candidates for GCSE-ing.
205 This allows PRE to hoist expressions that are expressed in multiple insns,
206 such as complex address calculations (e.g. for PIC code, or loads with a
207 high part and a low part).
209 PRE handles moving invariant expressions out of loops (by treating them as
210 partially redundant).
212 **********************
214 We used to support multiple passes but there are diminishing returns in
215 doing so. The first pass usually makes 90% of the changes that are doable.
216 A second pass can make a few more changes made possible by the first pass.
217 Experiments show any further passes don't make enough changes to justify
218 the expense.
220 A study of spec92 using an unlimited number of passes:
221 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
222 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
223 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
225 It was found doing copy propagation between each pass enables further
226 substitutions.
228 This study was done before expressions in REG_EQUAL notes were added as
229 candidate expressions for optimization, and before the GIMPLE optimizers
230 were added. Probably, multiple passes is even less efficient now than
231 at the time when the study was conducted.
233 PRE is quite expensive in complicated functions because the DFA can take
234 a while to converge. Hence we only perform one pass.
236 **********************
238 The steps for PRE are:
240 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
242 2) Perform the data flow analysis for PRE.
244 3) Delete the redundant instructions
246 4) Insert the required copies [if any] that make the partially
247 redundant instructions fully redundant.
249 5) For other reaching expressions, insert an instruction to copy the value
250 to a newly created pseudo that will reach the redundant instruction.
252 The deletion is done first so that when we do insertions we
253 know which pseudo reg to use.
255 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
256 argue it is not. The number of iterations for the algorithm to converge
257 is typically 2-4 so I don't view it as that expensive (relatively speaking).
259 PRE GCSE depends heavily on the second CPROP pass to clean up the copies
260 we create. To make an expression reach the place where it's redundant,
261 the result of the expression is copied to a new register, and the redundant
262 expression is deleted by replacing it with this new register. Classic GCSE
263 doesn't have this problem as much as it computes the reaching defs of
264 each register in each block and thus can try to use an existing
265 register. */
267 /* GCSE global vars. */
269 struct target_gcse default_target_gcse;
270 #if SWITCHABLE_TARGET
271 struct target_gcse *this_target_gcse = &default_target_gcse;
272 #endif
274 /* Set to non-zero if CSE should run after all GCSE optimizations are done. */
275 int flag_rerun_cse_after_global_opts;
277 /* An obstack for our working variables. */
278 static struct obstack gcse_obstack;
280 /* Hash table of expressions. */
282 struct gcse_expr
284 /* The expression. */
285 rtx expr;
286 /* Index in the available expression bitmaps. */
287 int bitmap_index;
288 /* Next entry with the same hash. */
289 struct gcse_expr *next_same_hash;
290 /* List of anticipatable occurrences in basic blocks in the function.
291 An "anticipatable occurrence" is one that is the first occurrence in the
292 basic block, the operands are not modified in the basic block prior
293 to the occurrence and the output is not used between the start of
294 the block and the occurrence. */
295 struct gcse_occr *antic_occr;
296 /* List of available occurrence in basic blocks in the function.
297 An "available occurrence" is one that is the last occurrence in the
298 basic block and the operands are not modified by following statements in
299 the basic block [including this insn]. */
300 struct gcse_occr *avail_occr;
301 /* Non-null if the computation is PRE redundant.
302 The value is the newly created pseudo-reg to record a copy of the
303 expression in all the places that reach the redundant copy. */
304 rtx reaching_reg;
305 /* Maximum distance in instructions this expression can travel.
306 We avoid moving simple expressions for more than a few instructions
307 to keep register pressure under control.
308 A value of "0" removes restrictions on how far the expression can
309 travel. */
310 int max_distance;
313 /* Occurrence of an expression.
314 There is one per basic block. If a pattern appears more than once the
315 last appearance is used [or first for anticipatable expressions]. */
317 struct gcse_occr
319 /* Next occurrence of this expression. */
320 struct gcse_occr *next;
321 /* The insn that computes the expression. */
322 rtx_insn *insn;
323 /* Nonzero if this [anticipatable] occurrence has been deleted. */
324 char deleted_p;
325 /* Nonzero if this [available] occurrence has been copied to
326 reaching_reg. */
327 /* ??? This is mutually exclusive with deleted_p, so they could share
328 the same byte. */
329 char copied_p;
332 typedef struct gcse_occr *occr_t;
334 /* Expression hash tables.
335 Each hash table is an array of buckets.
336 ??? It is known that if it were an array of entries, structure elements
337 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
338 not clear whether in the final analysis a sufficient amount of memory would
339 be saved as the size of the available expression bitmaps would be larger
340 [one could build a mapping table without holes afterwards though].
341 Someday I'll perform the computation and figure it out. */
343 struct gcse_hash_table_d
345 /* The table itself.
346 This is an array of `expr_hash_table_size' elements. */
347 struct gcse_expr **table;
349 /* Size of the hash table, in elements. */
350 unsigned int size;
352 /* Number of hash table elements. */
353 unsigned int n_elems;
356 /* Expression hash table. */
357 static struct gcse_hash_table_d expr_hash_table;
359 /* This is a list of expressions which are MEMs and will be used by load
360 or store motion.
361 Load motion tracks MEMs which aren't killed by anything except itself,
362 i.e. loads and stores to a single location.
363 We can then allow movement of these MEM refs with a little special
364 allowance. (all stores copy the same value to the reaching reg used
365 for the loads). This means all values used to store into memory must have
366 no side effects so we can re-issue the setter value. */
368 struct ls_expr
370 struct gcse_expr * expr; /* Gcse expression reference for LM. */
371 rtx pattern; /* Pattern of this mem. */
372 rtx pattern_regs; /* List of registers mentioned by the mem. */
373 rtx_insn_list *loads; /* INSN list of loads seen. */
374 rtx_insn_list *stores; /* INSN list of stores seen. */
375 struct ls_expr * next; /* Next in the list. */
376 int invalid; /* Invalid for some reason. */
377 int index; /* If it maps to a bitmap index. */
378 unsigned int hash_index; /* Index when in a hash table. */
379 rtx reaching_reg; /* Register to use when re-writing. */
382 /* Head of the list of load/store memory refs. */
383 static struct ls_expr * pre_ldst_mems = NULL;
385 struct pre_ldst_expr_hasher : typed_noop_remove <ls_expr>
387 typedef ls_expr *value_type;
388 typedef value_type compare_type;
389 static inline hashval_t hash (const ls_expr *);
390 static inline bool equal (const ls_expr *, const ls_expr *);
393 /* Hashtable helpers. */
394 inline hashval_t
395 pre_ldst_expr_hasher::hash (const ls_expr *x)
397 int do_not_record_p = 0;
398 return
399 hash_rtx (x->pattern, GET_MODE (x->pattern), &do_not_record_p, NULL, false);
402 static int expr_equiv_p (const_rtx, const_rtx);
404 inline bool
405 pre_ldst_expr_hasher::equal (const ls_expr *ptr1,
406 const ls_expr *ptr2)
408 return expr_equiv_p (ptr1->pattern, ptr2->pattern);
411 /* Hashtable for the load/store memory refs. */
412 static hash_table<pre_ldst_expr_hasher> *pre_ldst_table;
414 /* Bitmap containing one bit for each register in the program.
415 Used when performing GCSE to track which registers have been set since
416 the start of the basic block. */
417 static regset reg_set_bitmap;
419 /* Array, indexed by basic block number for a list of insns which modify
420 memory within that block. */
421 static vec<rtx_insn *> *modify_mem_list;
422 static bitmap modify_mem_list_set;
424 /* This array parallels modify_mem_list, except that it stores MEMs
425 being set and their canonicalized memory addresses. */
426 static vec<modify_pair> *canon_modify_mem_list;
428 /* Bitmap indexed by block numbers to record which blocks contain
429 function calls. */
430 static bitmap blocks_with_calls;
432 /* Various variables for statistics gathering. */
434 /* Memory used in a pass.
435 This isn't intended to be absolutely precise. Its intent is only
436 to keep an eye on memory usage. */
437 static int bytes_used;
439 /* GCSE substitutions made. */
440 static int gcse_subst_count;
441 /* Number of copy instructions created. */
442 static int gcse_create_count;
444 /* Doing code hoisting. */
445 static bool doing_code_hoisting_p = false;
447 /* For available exprs */
448 static sbitmap *ae_kill;
450 /* Data stored for each basic block. */
451 struct bb_data
453 /* Maximal register pressure inside basic block for given register class
454 (defined only for the pressure classes). */
455 int max_reg_pressure[N_REG_CLASSES];
456 /* Recorded register pressure of basic block before trying to hoist
457 an expression. Will be used to restore the register pressure
458 if the expression should not be hoisted. */
459 int old_pressure;
460 /* Recorded register live_in info of basic block during code hoisting
461 process. BACKUP is used to record live_in info before trying to
462 hoist an expression, and will be used to restore LIVE_IN if the
463 expression should not be hoisted. */
464 bitmap live_in, backup;
467 #define BB_DATA(bb) ((struct bb_data *) (bb)->aux)
469 static basic_block curr_bb;
471 /* Current register pressure for each pressure class. */
472 static int curr_reg_pressure[N_REG_CLASSES];
475 static void compute_can_copy (void);
476 static void *gmalloc (size_t) ATTRIBUTE_MALLOC;
477 static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC;
478 static void *gcse_alloc (unsigned long);
479 static void alloc_gcse_mem (void);
480 static void free_gcse_mem (void);
481 static void hash_scan_insn (rtx_insn *, struct gcse_hash_table_d *);
482 static void hash_scan_set (rtx, rtx_insn *, struct gcse_hash_table_d *);
483 static void hash_scan_clobber (rtx, rtx_insn *, struct gcse_hash_table_d *);
484 static void hash_scan_call (rtx, rtx_insn *, struct gcse_hash_table_d *);
485 static int want_to_gcse_p (rtx, int *);
486 static int oprs_unchanged_p (const_rtx, const rtx_insn *, int);
487 static int oprs_anticipatable_p (const_rtx, const rtx_insn *);
488 static int oprs_available_p (const_rtx, const rtx_insn *);
489 static void insert_expr_in_table (rtx, machine_mode, rtx_insn *, int, int,
490 int, struct gcse_hash_table_d *);
491 static unsigned int hash_expr (const_rtx, machine_mode, int *, int);
492 static void record_last_reg_set_info (rtx_insn *, int);
493 static void record_last_mem_set_info (rtx_insn *);
494 static void record_last_set_info (rtx, const_rtx, void *);
495 static void compute_hash_table (struct gcse_hash_table_d *);
496 static void alloc_hash_table (struct gcse_hash_table_d *);
497 static void free_hash_table (struct gcse_hash_table_d *);
498 static void compute_hash_table_work (struct gcse_hash_table_d *);
499 static void dump_hash_table (FILE *, const char *, struct gcse_hash_table_d *);
500 static void compute_local_properties (sbitmap *, sbitmap *, sbitmap *,
501 struct gcse_hash_table_d *);
502 static void mems_conflict_for_gcse_p (rtx, const_rtx, void *);
503 static int load_killed_in_block_p (const_basic_block, int, const_rtx, int);
504 static void alloc_pre_mem (int, int);
505 static void free_pre_mem (void);
506 static struct edge_list *compute_pre_data (void);
507 static int pre_expr_reaches_here_p (basic_block, struct gcse_expr *,
508 basic_block);
509 static void insert_insn_end_basic_block (struct gcse_expr *, basic_block);
510 static void pre_insert_copy_insn (struct gcse_expr *, rtx_insn *);
511 static void pre_insert_copies (void);
512 static int pre_delete (void);
513 static int pre_gcse (struct edge_list *);
514 static int one_pre_gcse_pass (void);
515 static void add_label_notes (rtx, rtx_insn *);
516 static void alloc_code_hoist_mem (int, int);
517 static void free_code_hoist_mem (void);
518 static void compute_code_hoist_vbeinout (void);
519 static void compute_code_hoist_data (void);
520 static int should_hoist_expr_to_dom (basic_block, struct gcse_expr *, basic_block,
521 sbitmap, int, int *, enum reg_class,
522 int *, bitmap, rtx_insn *);
523 static int hoist_code (void);
524 static enum reg_class get_regno_pressure_class (int regno, int *nregs);
525 static enum reg_class get_pressure_class_and_nregs (rtx_insn *insn, int *nregs);
526 static int one_code_hoisting_pass (void);
527 static rtx_insn *process_insert_insn (struct gcse_expr *);
528 static int pre_edge_insert (struct edge_list *, struct gcse_expr **);
529 static int pre_expr_reaches_here_p_work (basic_block, struct gcse_expr *,
530 basic_block, char *);
531 static struct ls_expr * ldst_entry (rtx);
532 static void free_ldst_entry (struct ls_expr *);
533 static void free_ld_motion_mems (void);
534 static void print_ldst_list (FILE *);
535 static struct ls_expr * find_rtx_in_ldst (rtx);
536 static int simple_mem (const_rtx);
537 static void invalidate_any_buried_refs (rtx);
538 static void compute_ld_motion_mems (void);
539 static void trim_ld_motion_mems (void);
540 static void update_ld_motion_stores (struct gcse_expr *);
541 static void clear_modify_mem_tables (void);
542 static void free_modify_mem_tables (void);
543 static bool is_too_expensive (const char *);
545 #define GNEW(T) ((T *) gmalloc (sizeof (T)))
546 #define GCNEW(T) ((T *) gcalloc (1, sizeof (T)))
548 #define GNEWVEC(T, N) ((T *) gmalloc (sizeof (T) * (N)))
549 #define GCNEWVEC(T, N) ((T *) gcalloc ((N), sizeof (T)))
551 #define GNEWVAR(T, S) ((T *) gmalloc ((S)))
552 #define GCNEWVAR(T, S) ((T *) gcalloc (1, (S)))
554 #define GOBNEW(T) ((T *) gcse_alloc (sizeof (T)))
555 #define GOBNEWVAR(T, S) ((T *) gcse_alloc ((S)))
557 /* Misc. utilities. */
559 #define can_copy \
560 (this_target_gcse->x_can_copy)
561 #define can_copy_init_p \
562 (this_target_gcse->x_can_copy_init_p)
564 /* Compute which modes support reg/reg copy operations. */
566 static void
567 compute_can_copy (void)
569 int i;
570 #ifndef AVOID_CCMODE_COPIES
571 rtx reg;
572 rtx_insn *insn;
573 #endif
574 memset (can_copy, 0, NUM_MACHINE_MODES);
576 start_sequence ();
577 for (i = 0; i < NUM_MACHINE_MODES; i++)
578 if (GET_MODE_CLASS (i) == MODE_CC)
580 #ifdef AVOID_CCMODE_COPIES
581 can_copy[i] = 0;
582 #else
583 reg = gen_rtx_REG ((machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
584 insn = emit_insn (gen_rtx_SET (reg, reg));
585 if (recog (PATTERN (insn), insn, NULL) >= 0)
586 can_copy[i] = 1;
587 #endif
589 else
590 can_copy[i] = 1;
592 end_sequence ();
595 /* Returns whether the mode supports reg/reg copy operations. */
597 bool
598 can_copy_p (machine_mode mode)
600 if (! can_copy_init_p)
602 compute_can_copy ();
603 can_copy_init_p = true;
606 return can_copy[mode] != 0;
609 /* Cover function to xmalloc to record bytes allocated. */
611 static void *
612 gmalloc (size_t size)
614 bytes_used += size;
615 return xmalloc (size);
618 /* Cover function to xcalloc to record bytes allocated. */
620 static void *
621 gcalloc (size_t nelem, size_t elsize)
623 bytes_used += nelem * elsize;
624 return xcalloc (nelem, elsize);
627 /* Cover function to obstack_alloc. */
629 static void *
630 gcse_alloc (unsigned long size)
632 bytes_used += size;
633 return obstack_alloc (&gcse_obstack, size);
636 /* Allocate memory for the reg/memory set tracking tables.
637 This is called at the start of each pass. */
639 static void
640 alloc_gcse_mem (void)
642 /* Allocate vars to track sets of regs. */
643 reg_set_bitmap = ALLOC_REG_SET (NULL);
645 /* Allocate array to keep a list of insns which modify memory in each
646 basic block. The two typedefs are needed to work around the
647 pre-processor limitation with template types in macro arguments. */
648 typedef vec<rtx_insn *> vec_rtx_heap;
649 typedef vec<modify_pair> vec_modify_pair_heap;
650 modify_mem_list = GCNEWVEC (vec_rtx_heap, last_basic_block_for_fn (cfun));
651 canon_modify_mem_list = GCNEWVEC (vec_modify_pair_heap,
652 last_basic_block_for_fn (cfun));
653 modify_mem_list_set = BITMAP_ALLOC (NULL);
654 blocks_with_calls = BITMAP_ALLOC (NULL);
657 /* Free memory allocated by alloc_gcse_mem. */
659 static void
660 free_gcse_mem (void)
662 FREE_REG_SET (reg_set_bitmap);
664 free_modify_mem_tables ();
665 BITMAP_FREE (modify_mem_list_set);
666 BITMAP_FREE (blocks_with_calls);
669 /* Compute the local properties of each recorded expression.
671 Local properties are those that are defined by the block, irrespective of
672 other blocks.
674 An expression is transparent in a block if its operands are not modified
675 in the block.
677 An expression is computed (locally available) in a block if it is computed
678 at least once and expression would contain the same value if the
679 computation was moved to the end of the block.
681 An expression is locally anticipatable in a block if it is computed at
682 least once and expression would contain the same value if the computation
683 was moved to the beginning of the block.
685 We call this routine for pre and code hoisting. They all compute
686 basically the same information and thus can easily share this code.
688 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
689 properties. If NULL, then it is not necessary to compute or record that
690 particular property.
692 TABLE controls which hash table to look at. */
694 static void
695 compute_local_properties (sbitmap *transp, sbitmap *comp, sbitmap *antloc,
696 struct gcse_hash_table_d *table)
698 unsigned int i;
700 /* Initialize any bitmaps that were passed in. */
701 if (transp)
703 bitmap_vector_ones (transp, last_basic_block_for_fn (cfun));
706 if (comp)
707 bitmap_vector_clear (comp, last_basic_block_for_fn (cfun));
708 if (antloc)
709 bitmap_vector_clear (antloc, last_basic_block_for_fn (cfun));
711 for (i = 0; i < table->size; i++)
713 struct gcse_expr *expr;
715 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
717 int indx = expr->bitmap_index;
718 struct gcse_occr *occr;
720 /* The expression is transparent in this block if it is not killed.
721 We start by assuming all are transparent [none are killed], and
722 then reset the bits for those that are. */
723 if (transp)
724 compute_transp (expr->expr, indx, transp,
725 blocks_with_calls,
726 modify_mem_list_set,
727 canon_modify_mem_list);
729 /* The occurrences recorded in antic_occr are exactly those that
730 we want to set to nonzero in ANTLOC. */
731 if (antloc)
732 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
734 bitmap_set_bit (antloc[BLOCK_FOR_INSN (occr->insn)->index], indx);
736 /* While we're scanning the table, this is a good place to
737 initialize this. */
738 occr->deleted_p = 0;
741 /* The occurrences recorded in avail_occr are exactly those that
742 we want to set to nonzero in COMP. */
743 if (comp)
744 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
746 bitmap_set_bit (comp[BLOCK_FOR_INSN (occr->insn)->index], indx);
748 /* While we're scanning the table, this is a good place to
749 initialize this. */
750 occr->copied_p = 0;
753 /* While we're scanning the table, this is a good place to
754 initialize this. */
755 expr->reaching_reg = 0;
760 /* Hash table support. */
762 struct reg_avail_info
764 basic_block last_bb;
765 int first_set;
766 int last_set;
769 static struct reg_avail_info *reg_avail_info;
770 static basic_block current_bb;
772 /* See whether X, the source of a set, is something we want to consider for
773 GCSE. */
775 static int
776 want_to_gcse_p (rtx x, int *max_distance_ptr)
778 #ifdef STACK_REGS
779 /* On register stack architectures, don't GCSE constants from the
780 constant pool, as the benefits are often swamped by the overhead
781 of shuffling the register stack between basic blocks. */
782 if (IS_STACK_MODE (GET_MODE (x)))
783 x = avoid_constant_pool_reference (x);
784 #endif
786 /* GCSE'ing constants:
788 We do not specifically distinguish between constant and non-constant
789 expressions in PRE and Hoist. We use set_src_cost below to limit
790 the maximum distance simple expressions can travel.
792 Nevertheless, constants are much easier to GCSE, and, hence,
793 it is easy to overdo the optimizations. Usually, excessive PRE and
794 Hoisting of constant leads to increased register pressure.
796 RA can deal with this by rematerialing some of the constants.
797 Therefore, it is important that the back-end generates sets of constants
798 in a way that allows reload rematerialize them under high register
799 pressure, i.e., a pseudo register with REG_EQUAL to constant
800 is set only once. Failing to do so will result in IRA/reload
801 spilling such constants under high register pressure instead of
802 rematerializing them. */
804 switch (GET_CODE (x))
806 case REG:
807 case SUBREG:
808 case CALL:
809 return 0;
811 CASE_CONST_ANY:
812 if (!doing_code_hoisting_p)
813 /* Do not PRE constants. */
814 return 0;
816 /* FALLTHRU */
818 default:
819 if (doing_code_hoisting_p)
820 /* PRE doesn't implement max_distance restriction. */
822 int cost;
823 int max_distance;
825 gcc_assert (!optimize_function_for_speed_p (cfun)
826 && optimize_function_for_size_p (cfun));
827 cost = set_src_cost (x, 0);
829 if (cost < COSTS_N_INSNS (GCSE_UNRESTRICTED_COST))
831 max_distance = (GCSE_COST_DISTANCE_RATIO * cost) / 10;
832 if (max_distance == 0)
833 return 0;
835 gcc_assert (max_distance > 0);
837 else
838 max_distance = 0;
840 if (max_distance_ptr)
841 *max_distance_ptr = max_distance;
844 return can_assign_to_reg_without_clobbers_p (x);
848 /* Used internally by can_assign_to_reg_without_clobbers_p. */
850 static GTY(()) rtx_insn *test_insn;
852 /* Return true if we can assign X to a pseudo register such that the
853 resulting insn does not result in clobbering a hard register as a
854 side-effect.
856 Additionally, if the target requires it, check that the resulting insn
857 can be copied. If it cannot, this means that X is special and probably
858 has hidden side-effects we don't want to mess with.
860 This function is typically used by code motion passes, to verify
861 that it is safe to insert an insn without worrying about clobbering
862 maybe live hard regs. */
864 bool
865 can_assign_to_reg_without_clobbers_p (rtx x)
867 int num_clobbers = 0;
868 int icode;
869 bool can_assign = false;
871 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
872 if (general_operand (x, GET_MODE (x)))
873 return 1;
874 else if (GET_MODE (x) == VOIDmode)
875 return 0;
877 /* Otherwise, check if we can make a valid insn from it. First initialize
878 our test insn if we haven't already. */
879 if (test_insn == 0)
881 test_insn
882 = make_insn_raw (gen_rtx_SET (gen_rtx_REG (word_mode,
883 FIRST_PSEUDO_REGISTER * 2),
884 const0_rtx));
885 SET_NEXT_INSN (test_insn) = SET_PREV_INSN (test_insn) = 0;
886 INSN_LOCATION (test_insn) = UNKNOWN_LOCATION;
889 /* Now make an insn like the one we would make when GCSE'ing and see if
890 valid. */
891 PUT_MODE (SET_DEST (PATTERN (test_insn)), GET_MODE (x));
892 SET_SRC (PATTERN (test_insn)) = x;
894 icode = recog (PATTERN (test_insn), test_insn, &num_clobbers);
896 /* If the test insn is valid and doesn't need clobbers, and the target also
897 has no objections, we're good. */
898 if (icode >= 0
899 && (num_clobbers == 0 || !added_clobbers_hard_reg_p (icode))
900 && ! (targetm.cannot_copy_insn_p
901 && targetm.cannot_copy_insn_p (test_insn)))
902 can_assign = true;
904 /* Make sure test_insn doesn't have any pointers into GC space. */
905 SET_SRC (PATTERN (test_insn)) = NULL_RTX;
907 return can_assign;
910 /* Return nonzero if the operands of expression X are unchanged from the
911 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
912 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
914 static int
915 oprs_unchanged_p (const_rtx x, const rtx_insn *insn, int avail_p)
917 int i, j;
918 enum rtx_code code;
919 const char *fmt;
921 if (x == 0)
922 return 1;
924 code = GET_CODE (x);
925 switch (code)
927 case REG:
929 struct reg_avail_info *info = &reg_avail_info[REGNO (x)];
931 if (info->last_bb != current_bb)
932 return 1;
933 if (avail_p)
934 return info->last_set < DF_INSN_LUID (insn);
935 else
936 return info->first_set >= DF_INSN_LUID (insn);
939 case MEM:
940 if (! flag_gcse_lm
941 || load_killed_in_block_p (current_bb, DF_INSN_LUID (insn),
942 x, avail_p))
943 return 0;
944 else
945 return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
947 case PRE_DEC:
948 case PRE_INC:
949 case POST_DEC:
950 case POST_INC:
951 case PRE_MODIFY:
952 case POST_MODIFY:
953 return 0;
955 case PC:
956 case CC0: /*FIXME*/
957 case CONST:
958 CASE_CONST_ANY:
959 case SYMBOL_REF:
960 case LABEL_REF:
961 case ADDR_VEC:
962 case ADDR_DIFF_VEC:
963 return 1;
965 default:
966 break;
969 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
971 if (fmt[i] == 'e')
973 /* If we are about to do the last recursive call needed at this
974 level, change it into iteration. This function is called enough
975 to be worth it. */
976 if (i == 0)
977 return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
979 else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
980 return 0;
982 else if (fmt[i] == 'E')
983 for (j = 0; j < XVECLEN (x, i); j++)
984 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
985 return 0;
988 return 1;
991 /* Info passed from load_killed_in_block_p to mems_conflict_for_gcse_p. */
993 struct mem_conflict_info
995 /* A memory reference for a load instruction, mems_conflict_for_gcse_p will
996 see if a memory store conflicts with this memory load. */
997 const_rtx mem;
999 /* True if mems_conflict_for_gcse_p finds a conflict between two memory
1000 references. */
1001 bool conflict;
1004 /* DEST is the output of an instruction. If it is a memory reference and
1005 possibly conflicts with the load found in DATA, then communicate this
1006 information back through DATA. */
1008 static void
1009 mems_conflict_for_gcse_p (rtx dest, const_rtx setter ATTRIBUTE_UNUSED,
1010 void *data)
1012 struct mem_conflict_info *mci = (struct mem_conflict_info *) data;
1014 while (GET_CODE (dest) == SUBREG
1015 || GET_CODE (dest) == ZERO_EXTRACT
1016 || GET_CODE (dest) == STRICT_LOW_PART)
1017 dest = XEXP (dest, 0);
1019 /* If DEST is not a MEM, then it will not conflict with the load. Note
1020 that function calls are assumed to clobber memory, but are handled
1021 elsewhere. */
1022 if (! MEM_P (dest))
1023 return;
1025 /* If we are setting a MEM in our list of specially recognized MEMs,
1026 don't mark as killed this time. */
1027 if (pre_ldst_mems != NULL && expr_equiv_p (dest, mci->mem))
1029 if (!find_rtx_in_ldst (dest))
1030 mci->conflict = true;
1031 return;
1034 if (true_dependence (dest, GET_MODE (dest), mci->mem))
1035 mci->conflict = true;
1038 /* Return nonzero if the expression in X (a memory reference) is killed
1039 in block BB before or after the insn with the LUID in UID_LIMIT.
1040 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1041 before UID_LIMIT.
1043 To check the entire block, set UID_LIMIT to max_uid + 1 and
1044 AVAIL_P to 0. */
1046 static int
1047 load_killed_in_block_p (const_basic_block bb, int uid_limit, const_rtx x,
1048 int avail_p)
1050 vec<rtx_insn *> list = modify_mem_list[bb->index];
1051 rtx_insn *setter;
1052 unsigned ix;
1054 /* If this is a readonly then we aren't going to be changing it. */
1055 if (MEM_READONLY_P (x))
1056 return 0;
1058 FOR_EACH_VEC_ELT_REVERSE (list, ix, setter)
1060 struct mem_conflict_info mci;
1062 /* Ignore entries in the list that do not apply. */
1063 if ((avail_p
1064 && DF_INSN_LUID (setter) < uid_limit)
1065 || (! avail_p
1066 && DF_INSN_LUID (setter) > uid_limit))
1067 continue;
1069 /* If SETTER is a call everything is clobbered. Note that calls
1070 to pure functions are never put on the list, so we need not
1071 worry about them. */
1072 if (CALL_P (setter))
1073 return 1;
1075 /* SETTER must be an INSN of some kind that sets memory. Call
1076 note_stores to examine each hunk of memory that is modified. */
1077 mci.mem = x;
1078 mci.conflict = false;
1079 note_stores (PATTERN (setter), mems_conflict_for_gcse_p, &mci);
1080 if (mci.conflict)
1081 return 1;
1083 return 0;
1086 /* Return nonzero if the operands of expression X are unchanged from
1087 the start of INSN's basic block up to but not including INSN. */
1089 static int
1090 oprs_anticipatable_p (const_rtx x, const rtx_insn *insn)
1092 return oprs_unchanged_p (x, insn, 0);
1095 /* Return nonzero if the operands of expression X are unchanged from
1096 INSN to the end of INSN's basic block. */
1098 static int
1099 oprs_available_p (const_rtx x, const rtx_insn *insn)
1101 return oprs_unchanged_p (x, insn, 1);
1104 /* Hash expression X.
1106 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1107 indicating if a volatile operand is found or if the expression contains
1108 something we don't want to insert in the table. HASH_TABLE_SIZE is
1109 the current size of the hash table to be probed. */
1111 static unsigned int
1112 hash_expr (const_rtx x, machine_mode mode, int *do_not_record_p,
1113 int hash_table_size)
1115 unsigned int hash;
1117 *do_not_record_p = 0;
1119 hash = hash_rtx (x, mode, do_not_record_p, NULL, /*have_reg_qty=*/false);
1120 return hash % hash_table_size;
1123 /* Return nonzero if exp1 is equivalent to exp2. */
1125 static int
1126 expr_equiv_p (const_rtx x, const_rtx y)
1128 return exp_equiv_p (x, y, 0, true);
1131 /* Insert expression X in INSN in the hash TABLE.
1132 If it is already present, record it as the last occurrence in INSN's
1133 basic block.
1135 MODE is the mode of the value X is being stored into.
1136 It is only used if X is a CONST_INT.
1138 ANTIC_P is nonzero if X is an anticipatable expression.
1139 AVAIL_P is nonzero if X is an available expression.
1141 MAX_DISTANCE is the maximum distance in instructions this expression can
1142 be moved. */
1144 static void
1145 insert_expr_in_table (rtx x, machine_mode mode, rtx_insn *insn,
1146 int antic_p,
1147 int avail_p, int max_distance, struct gcse_hash_table_d *table)
1149 int found, do_not_record_p;
1150 unsigned int hash;
1151 struct gcse_expr *cur_expr, *last_expr = NULL;
1152 struct gcse_occr *antic_occr, *avail_occr;
1154 hash = hash_expr (x, mode, &do_not_record_p, table->size);
1156 /* Do not insert expression in table if it contains volatile operands,
1157 or if hash_expr determines the expression is something we don't want
1158 to or can't handle. */
1159 if (do_not_record_p)
1160 return;
1162 cur_expr = table->table[hash];
1163 found = 0;
1165 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1167 /* If the expression isn't found, save a pointer to the end of
1168 the list. */
1169 last_expr = cur_expr;
1170 cur_expr = cur_expr->next_same_hash;
1173 if (! found)
1175 cur_expr = GOBNEW (struct gcse_expr);
1176 bytes_used += sizeof (struct gcse_expr);
1177 if (table->table[hash] == NULL)
1178 /* This is the first pattern that hashed to this index. */
1179 table->table[hash] = cur_expr;
1180 else
1181 /* Add EXPR to end of this hash chain. */
1182 last_expr->next_same_hash = cur_expr;
1184 /* Set the fields of the expr element. */
1185 cur_expr->expr = x;
1186 cur_expr->bitmap_index = table->n_elems++;
1187 cur_expr->next_same_hash = NULL;
1188 cur_expr->antic_occr = NULL;
1189 cur_expr->avail_occr = NULL;
1190 gcc_assert (max_distance >= 0);
1191 cur_expr->max_distance = max_distance;
1193 else
1194 gcc_assert (cur_expr->max_distance == max_distance);
1196 /* Now record the occurrence(s). */
1197 if (antic_p)
1199 antic_occr = cur_expr->antic_occr;
1201 if (antic_occr
1202 && BLOCK_FOR_INSN (antic_occr->insn) != BLOCK_FOR_INSN (insn))
1203 antic_occr = NULL;
1205 if (antic_occr)
1206 /* Found another instance of the expression in the same basic block.
1207 Prefer the currently recorded one. We want the first one in the
1208 block and the block is scanned from start to end. */
1209 ; /* nothing to do */
1210 else
1212 /* First occurrence of this expression in this basic block. */
1213 antic_occr = GOBNEW (struct gcse_occr);
1214 bytes_used += sizeof (struct gcse_occr);
1215 antic_occr->insn = insn;
1216 antic_occr->next = cur_expr->antic_occr;
1217 antic_occr->deleted_p = 0;
1218 cur_expr->antic_occr = antic_occr;
1222 if (avail_p)
1224 avail_occr = cur_expr->avail_occr;
1226 if (avail_occr
1227 && BLOCK_FOR_INSN (avail_occr->insn) == BLOCK_FOR_INSN (insn))
1229 /* Found another instance of the expression in the same basic block.
1230 Prefer this occurrence to the currently recorded one. We want
1231 the last one in the block and the block is scanned from start
1232 to end. */
1233 avail_occr->insn = insn;
1235 else
1237 /* First occurrence of this expression in this basic block. */
1238 avail_occr = GOBNEW (struct gcse_occr);
1239 bytes_used += sizeof (struct gcse_occr);
1240 avail_occr->insn = insn;
1241 avail_occr->next = cur_expr->avail_occr;
1242 avail_occr->deleted_p = 0;
1243 cur_expr->avail_occr = avail_occr;
1248 /* Scan SET present in INSN and add an entry to the hash TABLE. */
1250 static void
1251 hash_scan_set (rtx set, rtx_insn *insn, struct gcse_hash_table_d *table)
1253 rtx src = SET_SRC (set);
1254 rtx dest = SET_DEST (set);
1255 rtx note;
1257 if (GET_CODE (src) == CALL)
1258 hash_scan_call (src, insn, table);
1260 else if (REG_P (dest))
1262 unsigned int regno = REGNO (dest);
1263 int max_distance = 0;
1265 /* See if a REG_EQUAL note shows this equivalent to a simpler expression.
1267 This allows us to do a single GCSE pass and still eliminate
1268 redundant constants, addresses or other expressions that are
1269 constructed with multiple instructions.
1271 However, keep the original SRC if INSN is a simple reg-reg move.
1272 In this case, there will almost always be a REG_EQUAL note on the
1273 insn that sets SRC. By recording the REG_EQUAL value here as SRC
1274 for INSN, we miss copy propagation opportunities and we perform the
1275 same PRE GCSE operation repeatedly on the same REG_EQUAL value if we
1276 do more than one PRE GCSE pass.
1278 Note that this does not impede profitable constant propagations. We
1279 "look through" reg-reg sets in lookup_avail_set. */
1280 note = find_reg_equal_equiv_note (insn);
1281 if (note != 0
1282 && REG_NOTE_KIND (note) == REG_EQUAL
1283 && !REG_P (src)
1284 && want_to_gcse_p (XEXP (note, 0), NULL))
1285 src = XEXP (note, 0), set = gen_rtx_SET (dest, src);
1287 /* Only record sets of pseudo-regs in the hash table. */
1288 if (regno >= FIRST_PSEUDO_REGISTER
1289 /* Don't GCSE something if we can't do a reg/reg copy. */
1290 && can_copy_p (GET_MODE (dest))
1291 /* GCSE commonly inserts instruction after the insn. We can't
1292 do that easily for EH edges so disable GCSE on these for now. */
1293 /* ??? We can now easily create new EH landing pads at the
1294 gimple level, for splitting edges; there's no reason we
1295 can't do the same thing at the rtl level. */
1296 && !can_throw_internal (insn)
1297 /* Is SET_SRC something we want to gcse? */
1298 && want_to_gcse_p (src, &max_distance)
1299 /* Don't CSE a nop. */
1300 && ! set_noop_p (set)
1301 /* Don't GCSE if it has attached REG_EQUIV note.
1302 At this point this only function parameters should have
1303 REG_EQUIV notes and if the argument slot is used somewhere
1304 explicitly, it means address of parameter has been taken,
1305 so we should not extend the lifetime of the pseudo. */
1306 && (note == NULL_RTX || ! MEM_P (XEXP (note, 0))))
1308 /* An expression is not anticipatable if its operands are
1309 modified before this insn or if this is not the only SET in
1310 this insn. The latter condition does not have to mean that
1311 SRC itself is not anticipatable, but we just will not be
1312 able to handle code motion of insns with multiple sets. */
1313 int antic_p = oprs_anticipatable_p (src, insn)
1314 && !multiple_sets (insn);
1315 /* An expression is not available if its operands are
1316 subsequently modified, including this insn. It's also not
1317 available if this is a branch, because we can't insert
1318 a set after the branch. */
1319 int avail_p = (oprs_available_p (src, insn)
1320 && ! JUMP_P (insn));
1322 insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p,
1323 max_distance, table);
1326 /* In case of store we want to consider the memory value as available in
1327 the REG stored in that memory. This makes it possible to remove
1328 redundant loads from due to stores to the same location. */
1329 else if (flag_gcse_las && REG_P (src) && MEM_P (dest))
1331 unsigned int regno = REGNO (src);
1332 int max_distance = 0;
1334 /* Only record sets of pseudo-regs in the hash table. */
1335 if (regno >= FIRST_PSEUDO_REGISTER
1336 /* Don't GCSE something if we can't do a reg/reg copy. */
1337 && can_copy_p (GET_MODE (src))
1338 /* GCSE commonly inserts instruction after the insn. We can't
1339 do that easily for EH edges so disable GCSE on these for now. */
1340 && !can_throw_internal (insn)
1341 /* Is SET_DEST something we want to gcse? */
1342 && want_to_gcse_p (dest, &max_distance)
1343 /* Don't CSE a nop. */
1344 && ! set_noop_p (set)
1345 /* Don't GCSE if it has attached REG_EQUIV note.
1346 At this point this only function parameters should have
1347 REG_EQUIV notes and if the argument slot is used somewhere
1348 explicitly, it means address of parameter has been taken,
1349 so we should not extend the lifetime of the pseudo. */
1350 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
1351 || ! MEM_P (XEXP (note, 0))))
1353 /* Stores are never anticipatable. */
1354 int antic_p = 0;
1355 /* An expression is not available if its operands are
1356 subsequently modified, including this insn. It's also not
1357 available if this is a branch, because we can't insert
1358 a set after the branch. */
1359 int avail_p = oprs_available_p (dest, insn)
1360 && ! JUMP_P (insn);
1362 /* Record the memory expression (DEST) in the hash table. */
1363 insert_expr_in_table (dest, GET_MODE (dest), insn,
1364 antic_p, avail_p, max_distance, table);
1369 static void
1370 hash_scan_clobber (rtx x ATTRIBUTE_UNUSED, rtx_insn *insn ATTRIBUTE_UNUSED,
1371 struct gcse_hash_table_d *table ATTRIBUTE_UNUSED)
1373 /* Currently nothing to do. */
1376 static void
1377 hash_scan_call (rtx x ATTRIBUTE_UNUSED, rtx_insn *insn ATTRIBUTE_UNUSED,
1378 struct gcse_hash_table_d *table ATTRIBUTE_UNUSED)
1380 /* Currently nothing to do. */
1383 /* Process INSN and add hash table entries as appropriate. */
1385 static void
1386 hash_scan_insn (rtx_insn *insn, struct gcse_hash_table_d *table)
1388 rtx pat = PATTERN (insn);
1389 int i;
1391 /* Pick out the sets of INSN and for other forms of instructions record
1392 what's been modified. */
1394 if (GET_CODE (pat) == SET)
1395 hash_scan_set (pat, insn, table);
1397 else if (GET_CODE (pat) == CLOBBER)
1398 hash_scan_clobber (pat, insn, table);
1400 else if (GET_CODE (pat) == CALL)
1401 hash_scan_call (pat, insn, table);
1403 else if (GET_CODE (pat) == PARALLEL)
1404 for (i = 0; i < XVECLEN (pat, 0); i++)
1406 rtx x = XVECEXP (pat, 0, i);
1408 if (GET_CODE (x) == SET)
1409 hash_scan_set (x, insn, table);
1410 else if (GET_CODE (x) == CLOBBER)
1411 hash_scan_clobber (x, insn, table);
1412 else if (GET_CODE (x) == CALL)
1413 hash_scan_call (x, insn, table);
1417 /* Dump the hash table TABLE to file FILE under the name NAME. */
1419 static void
1420 dump_hash_table (FILE *file, const char *name, struct gcse_hash_table_d *table)
1422 int i;
1423 /* Flattened out table, so it's printed in proper order. */
1424 struct gcse_expr **flat_table;
1425 unsigned int *hash_val;
1426 struct gcse_expr *expr;
1428 flat_table = XCNEWVEC (struct gcse_expr *, table->n_elems);
1429 hash_val = XNEWVEC (unsigned int, table->n_elems);
1431 for (i = 0; i < (int) table->size; i++)
1432 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1434 flat_table[expr->bitmap_index] = expr;
1435 hash_val[expr->bitmap_index] = i;
1438 fprintf (file, "%s hash table (%d buckets, %d entries)\n",
1439 name, table->size, table->n_elems);
1441 for (i = 0; i < (int) table->n_elems; i++)
1442 if (flat_table[i] != 0)
1444 expr = flat_table[i];
1445 fprintf (file, "Index %d (hash value %d; max distance %d)\n ",
1446 expr->bitmap_index, hash_val[i], expr->max_distance);
1447 print_rtl (file, expr->expr);
1448 fprintf (file, "\n");
1451 fprintf (file, "\n");
1453 free (flat_table);
1454 free (hash_val);
1457 /* Record register first/last/block set information for REGNO in INSN.
1459 first_set records the first place in the block where the register
1460 is set and is used to compute "anticipatability".
1462 last_set records the last place in the block where the register
1463 is set and is used to compute "availability".
1465 last_bb records the block for which first_set and last_set are
1466 valid, as a quick test to invalidate them. */
1468 static void
1469 record_last_reg_set_info (rtx_insn *insn, int regno)
1471 struct reg_avail_info *info = &reg_avail_info[regno];
1472 int luid = DF_INSN_LUID (insn);
1474 info->last_set = luid;
1475 if (info->last_bb != current_bb)
1477 info->last_bb = current_bb;
1478 info->first_set = luid;
1482 /* Record memory modification information for INSN. We do not actually care
1483 about the memory location(s) that are set, or even how they are set (consider
1484 a CALL_INSN). We merely need to record which insns modify memory. */
1486 static void
1487 record_last_mem_set_info (rtx_insn *insn)
1489 if (! flag_gcse_lm)
1490 return;
1492 record_last_mem_set_info_common (insn, modify_mem_list,
1493 canon_modify_mem_list,
1494 modify_mem_list_set,
1495 blocks_with_calls);
1498 /* Called from compute_hash_table via note_stores to handle one
1499 SET or CLOBBER in an insn. DATA is really the instruction in which
1500 the SET is taking place. */
1502 static void
1503 record_last_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, void *data)
1505 rtx_insn *last_set_insn = (rtx_insn *) data;
1507 if (GET_CODE (dest) == SUBREG)
1508 dest = SUBREG_REG (dest);
1510 if (REG_P (dest))
1511 record_last_reg_set_info (last_set_insn, REGNO (dest));
1512 else if (MEM_P (dest)
1513 /* Ignore pushes, they clobber nothing. */
1514 && ! push_operand (dest, GET_MODE (dest)))
1515 record_last_mem_set_info (last_set_insn);
1518 /* Top level function to create an expression hash table.
1520 Expression entries are placed in the hash table if
1521 - they are of the form (set (pseudo-reg) src),
1522 - src is something we want to perform GCSE on,
1523 - none of the operands are subsequently modified in the block
1525 Currently src must be a pseudo-reg or a const_int.
1527 TABLE is the table computed. */
1529 static void
1530 compute_hash_table_work (struct gcse_hash_table_d *table)
1532 int i;
1534 /* re-Cache any INSN_LIST nodes we have allocated. */
1535 clear_modify_mem_tables ();
1536 /* Some working arrays used to track first and last set in each block. */
1537 reg_avail_info = GNEWVEC (struct reg_avail_info, max_reg_num ());
1539 for (i = 0; i < max_reg_num (); ++i)
1540 reg_avail_info[i].last_bb = NULL;
1542 FOR_EACH_BB_FN (current_bb, cfun)
1544 rtx_insn *insn;
1545 unsigned int regno;
1547 /* First pass over the instructions records information used to
1548 determine when registers and memory are first and last set. */
1549 FOR_BB_INSNS (current_bb, insn)
1551 if (!NONDEBUG_INSN_P (insn))
1552 continue;
1554 if (CALL_P (insn))
1556 hard_reg_set_iterator hrsi;
1557 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call,
1558 0, regno, hrsi)
1559 record_last_reg_set_info (insn, regno);
1561 if (! RTL_CONST_OR_PURE_CALL_P (insn))
1562 record_last_mem_set_info (insn);
1565 note_stores (PATTERN (insn), record_last_set_info, insn);
1568 /* The next pass builds the hash table. */
1569 FOR_BB_INSNS (current_bb, insn)
1570 if (NONDEBUG_INSN_P (insn))
1571 hash_scan_insn (insn, table);
1574 free (reg_avail_info);
1575 reg_avail_info = NULL;
1578 /* Allocate space for the set/expr hash TABLE.
1579 It is used to determine the number of buckets to use. */
1581 static void
1582 alloc_hash_table (struct gcse_hash_table_d *table)
1584 int n;
1586 n = get_max_insn_count ();
1588 table->size = n / 4;
1589 if (table->size < 11)
1590 table->size = 11;
1592 /* Attempt to maintain efficient use of hash table.
1593 Making it an odd number is simplest for now.
1594 ??? Later take some measurements. */
1595 table->size |= 1;
1596 n = table->size * sizeof (struct gcse_expr *);
1597 table->table = GNEWVAR (struct gcse_expr *, n);
1600 /* Free things allocated by alloc_hash_table. */
1602 static void
1603 free_hash_table (struct gcse_hash_table_d *table)
1605 free (table->table);
1608 /* Compute the expression hash table TABLE. */
1610 static void
1611 compute_hash_table (struct gcse_hash_table_d *table)
1613 /* Initialize count of number of entries in hash table. */
1614 table->n_elems = 0;
1615 memset (table->table, 0, table->size * sizeof (struct gcse_expr *));
1617 compute_hash_table_work (table);
1620 /* Expression tracking support. */
1622 /* Clear canon_modify_mem_list and modify_mem_list tables. */
1623 static void
1624 clear_modify_mem_tables (void)
1626 unsigned i;
1627 bitmap_iterator bi;
1629 EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set, 0, i, bi)
1631 modify_mem_list[i].release ();
1632 canon_modify_mem_list[i].release ();
1634 bitmap_clear (modify_mem_list_set);
1635 bitmap_clear (blocks_with_calls);
1638 /* Release memory used by modify_mem_list_set. */
1640 static void
1641 free_modify_mem_tables (void)
1643 clear_modify_mem_tables ();
1644 free (modify_mem_list);
1645 free (canon_modify_mem_list);
1646 modify_mem_list = 0;
1647 canon_modify_mem_list = 0;
1650 /* Compute PRE+LCM working variables. */
1652 /* Local properties of expressions. */
1654 /* Nonzero for expressions that are transparent in the block. */
1655 static sbitmap *transp;
1657 /* Nonzero for expressions that are computed (available) in the block. */
1658 static sbitmap *comp;
1660 /* Nonzero for expressions that are locally anticipatable in the block. */
1661 static sbitmap *antloc;
1663 /* Nonzero for expressions where this block is an optimal computation
1664 point. */
1665 static sbitmap *pre_optimal;
1667 /* Nonzero for expressions which are redundant in a particular block. */
1668 static sbitmap *pre_redundant;
1670 /* Nonzero for expressions which should be inserted on a specific edge. */
1671 static sbitmap *pre_insert_map;
1673 /* Nonzero for expressions which should be deleted in a specific block. */
1674 static sbitmap *pre_delete_map;
1676 /* Allocate vars used for PRE analysis. */
1678 static void
1679 alloc_pre_mem (int n_blocks, int n_exprs)
1681 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
1682 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
1683 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
1685 pre_optimal = NULL;
1686 pre_redundant = NULL;
1687 pre_insert_map = NULL;
1688 pre_delete_map = NULL;
1689 ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
1691 /* pre_insert and pre_delete are allocated later. */
1694 /* Free vars used for PRE analysis. */
1696 static void
1697 free_pre_mem (void)
1699 sbitmap_vector_free (transp);
1700 sbitmap_vector_free (comp);
1702 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
1704 if (pre_optimal)
1705 sbitmap_vector_free (pre_optimal);
1706 if (pre_redundant)
1707 sbitmap_vector_free (pre_redundant);
1708 if (pre_insert_map)
1709 sbitmap_vector_free (pre_insert_map);
1710 if (pre_delete_map)
1711 sbitmap_vector_free (pre_delete_map);
1713 transp = comp = NULL;
1714 pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
1717 /* Remove certain expressions from anticipatable and transparent
1718 sets of basic blocks that have incoming abnormal edge.
1719 For PRE remove potentially trapping expressions to avoid placing
1720 them on abnormal edges. For hoisting remove memory references that
1721 can be clobbered by calls. */
1723 static void
1724 prune_expressions (bool pre_p)
1726 sbitmap prune_exprs;
1727 struct gcse_expr *expr;
1728 unsigned int ui;
1729 basic_block bb;
1731 prune_exprs = sbitmap_alloc (expr_hash_table.n_elems);
1732 bitmap_clear (prune_exprs);
1733 for (ui = 0; ui < expr_hash_table.size; ui++)
1735 for (expr = expr_hash_table.table[ui]; expr; expr = expr->next_same_hash)
1737 /* Note potentially trapping expressions. */
1738 if (may_trap_p (expr->expr))
1740 bitmap_set_bit (prune_exprs, expr->bitmap_index);
1741 continue;
1744 if (!pre_p && MEM_P (expr->expr))
1745 /* Note memory references that can be clobbered by a call.
1746 We do not split abnormal edges in hoisting, so would
1747 a memory reference get hoisted along an abnormal edge,
1748 it would be placed /before/ the call. Therefore, only
1749 constant memory references can be hoisted along abnormal
1750 edges. */
1752 if (GET_CODE (XEXP (expr->expr, 0)) == SYMBOL_REF
1753 && CONSTANT_POOL_ADDRESS_P (XEXP (expr->expr, 0)))
1754 continue;
1756 if (MEM_READONLY_P (expr->expr)
1757 && !MEM_VOLATILE_P (expr->expr)
1758 && MEM_NOTRAP_P (expr->expr))
1759 /* Constant memory reference, e.g., a PIC address. */
1760 continue;
1762 /* ??? Optimally, we would use interprocedural alias
1763 analysis to determine if this mem is actually killed
1764 by this call. */
1766 bitmap_set_bit (prune_exprs, expr->bitmap_index);
1771 FOR_EACH_BB_FN (bb, cfun)
1773 edge e;
1774 edge_iterator ei;
1776 /* If the current block is the destination of an abnormal edge, we
1777 kill all trapping (for PRE) and memory (for hoist) expressions
1778 because we won't be able to properly place the instruction on
1779 the edge. So make them neither anticipatable nor transparent.
1780 This is fairly conservative.
1782 ??? For hoisting it may be necessary to check for set-and-jump
1783 instructions here, not just for abnormal edges. The general problem
1784 is that when an expression cannot not be placed right at the end of
1785 a basic block we should account for any side-effects of a subsequent
1786 jump instructions that could clobber the expression. It would
1787 be best to implement this check along the lines of
1788 should_hoist_expr_to_dom where the target block is already known
1789 and, hence, there's no need to conservatively prune expressions on
1790 "intermediate" set-and-jump instructions. */
1791 FOR_EACH_EDGE (e, ei, bb->preds)
1792 if ((e->flags & EDGE_ABNORMAL)
1793 && (pre_p || CALL_P (BB_END (e->src))))
1795 bitmap_and_compl (antloc[bb->index],
1796 antloc[bb->index], prune_exprs);
1797 bitmap_and_compl (transp[bb->index],
1798 transp[bb->index], prune_exprs);
1799 break;
1803 sbitmap_free (prune_exprs);
1806 /* It may be necessary to insert a large number of insns on edges to
1807 make the existing occurrences of expressions fully redundant. This
1808 routine examines the set of insertions and deletions and if the ratio
1809 of insertions to deletions is too high for a particular expression, then
1810 the expression is removed from the insertion/deletion sets.
1812 N_ELEMS is the number of elements in the hash table. */
1814 static void
1815 prune_insertions_deletions (int n_elems)
1817 sbitmap_iterator sbi;
1818 sbitmap prune_exprs;
1820 /* We always use I to iterate over blocks/edges and J to iterate over
1821 expressions. */
1822 unsigned int i, j;
1824 /* Counts for the number of times an expression needs to be inserted and
1825 number of times an expression can be removed as a result. */
1826 int *insertions = GCNEWVEC (int, n_elems);
1827 int *deletions = GCNEWVEC (int, n_elems);
1829 /* Set of expressions which require too many insertions relative to
1830 the number of deletions achieved. We will prune these out of the
1831 insertion/deletion sets. */
1832 prune_exprs = sbitmap_alloc (n_elems);
1833 bitmap_clear (prune_exprs);
1835 /* Iterate over the edges counting the number of times each expression
1836 needs to be inserted. */
1837 for (i = 0; i < (unsigned) n_edges_for_fn (cfun); i++)
1839 EXECUTE_IF_SET_IN_BITMAP (pre_insert_map[i], 0, j, sbi)
1840 insertions[j]++;
1843 /* Similarly for deletions, but those occur in blocks rather than on
1844 edges. */
1845 for (i = 0; i < (unsigned) last_basic_block_for_fn (cfun); i++)
1847 EXECUTE_IF_SET_IN_BITMAP (pre_delete_map[i], 0, j, sbi)
1848 deletions[j]++;
1851 /* Now that we have accurate counts, iterate over the elements in the
1852 hash table and see if any need too many insertions relative to the
1853 number of evaluations that can be removed. If so, mark them in
1854 PRUNE_EXPRS. */
1855 for (j = 0; j < (unsigned) n_elems; j++)
1856 if (deletions[j]
1857 && ((unsigned) insertions[j] / deletions[j]) > MAX_GCSE_INSERTION_RATIO)
1858 bitmap_set_bit (prune_exprs, j);
1860 /* Now prune PRE_INSERT_MAP and PRE_DELETE_MAP based on PRUNE_EXPRS. */
1861 EXECUTE_IF_SET_IN_BITMAP (prune_exprs, 0, j, sbi)
1863 for (i = 0; i < (unsigned) n_edges_for_fn (cfun); i++)
1864 bitmap_clear_bit (pre_insert_map[i], j);
1866 for (i = 0; i < (unsigned) last_basic_block_for_fn (cfun); i++)
1867 bitmap_clear_bit (pre_delete_map[i], j);
1870 sbitmap_free (prune_exprs);
1871 free (insertions);
1872 free (deletions);
1875 /* Top level routine to do the dataflow analysis needed by PRE. */
1877 static struct edge_list *
1878 compute_pre_data (void)
1880 struct edge_list *edge_list;
1881 basic_block bb;
1883 compute_local_properties (transp, comp, antloc, &expr_hash_table);
1884 prune_expressions (true);
1885 bitmap_vector_clear (ae_kill, last_basic_block_for_fn (cfun));
1887 /* Compute ae_kill for each basic block using:
1889 ~(TRANSP | COMP)
1892 FOR_EACH_BB_FN (bb, cfun)
1894 bitmap_ior (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
1895 bitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
1898 edge_list = pre_edge_lcm (expr_hash_table.n_elems, transp, comp, antloc,
1899 ae_kill, &pre_insert_map, &pre_delete_map);
1900 sbitmap_vector_free (antloc);
1901 antloc = NULL;
1902 sbitmap_vector_free (ae_kill);
1903 ae_kill = NULL;
1905 prune_insertions_deletions (expr_hash_table.n_elems);
1907 return edge_list;
1910 /* PRE utilities */
1912 /* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
1913 block BB.
1915 VISITED is a pointer to a working buffer for tracking which BB's have
1916 been visited. It is NULL for the top-level call.
1918 We treat reaching expressions that go through blocks containing the same
1919 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
1920 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
1921 2 as not reaching. The intent is to improve the probability of finding
1922 only one reaching expression and to reduce register lifetimes by picking
1923 the closest such expression. */
1925 static int
1926 pre_expr_reaches_here_p_work (basic_block occr_bb, struct gcse_expr *expr,
1927 basic_block bb, char *visited)
1929 edge pred;
1930 edge_iterator ei;
1932 FOR_EACH_EDGE (pred, ei, bb->preds)
1934 basic_block pred_bb = pred->src;
1936 if (pred->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)
1937 /* Has predecessor has already been visited? */
1938 || visited[pred_bb->index])
1939 ;/* Nothing to do. */
1941 /* Does this predecessor generate this expression? */
1942 else if (bitmap_bit_p (comp[pred_bb->index], expr->bitmap_index))
1944 /* Is this the occurrence we're looking for?
1945 Note that there's only one generating occurrence per block
1946 so we just need to check the block number. */
1947 if (occr_bb == pred_bb)
1948 return 1;
1950 visited[pred_bb->index] = 1;
1952 /* Ignore this predecessor if it kills the expression. */
1953 else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
1954 visited[pred_bb->index] = 1;
1956 /* Neither gen nor kill. */
1957 else
1959 visited[pred_bb->index] = 1;
1960 if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
1961 return 1;
1965 /* All paths have been checked. */
1966 return 0;
1969 /* The wrapper for pre_expr_reaches_here_work that ensures that any
1970 memory allocated for that function is returned. */
1972 static int
1973 pre_expr_reaches_here_p (basic_block occr_bb, struct gcse_expr *expr, basic_block bb)
1975 int rval;
1976 char *visited = XCNEWVEC (char, last_basic_block_for_fn (cfun));
1978 rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
1980 free (visited);
1981 return rval;
1984 /* Generate RTL to copy an EXPR to its `reaching_reg' and return it. */
1986 static rtx_insn *
1987 process_insert_insn (struct gcse_expr *expr)
1989 rtx reg = expr->reaching_reg;
1990 /* Copy the expression to make sure we don't have any sharing issues. */
1991 rtx exp = copy_rtx (expr->expr);
1992 rtx_insn *pat;
1994 start_sequence ();
1996 /* If the expression is something that's an operand, like a constant,
1997 just copy it to a register. */
1998 if (general_operand (exp, GET_MODE (reg)))
1999 emit_move_insn (reg, exp);
2001 /* Otherwise, make a new insn to compute this expression and make sure the
2002 insn will be recognized (this also adds any needed CLOBBERs). */
2003 else
2005 rtx_insn *insn = emit_insn (gen_rtx_SET (reg, exp));
2007 if (insn_invalid_p (insn, false))
2008 gcc_unreachable ();
2011 pat = get_insns ();
2012 end_sequence ();
2014 return pat;
2017 /* Add EXPR to the end of basic block BB.
2019 This is used by both the PRE and code hoisting. */
2021 static void
2022 insert_insn_end_basic_block (struct gcse_expr *expr, basic_block bb)
2024 rtx_insn *insn = BB_END (bb);
2025 rtx_insn *new_insn;
2026 rtx reg = expr->reaching_reg;
2027 int regno = REGNO (reg);
2028 rtx_insn *pat, *pat_end;
2030 pat = process_insert_insn (expr);
2031 gcc_assert (pat && INSN_P (pat));
2033 pat_end = pat;
2034 while (NEXT_INSN (pat_end) != NULL_RTX)
2035 pat_end = NEXT_INSN (pat_end);
2037 /* If the last insn is a jump, insert EXPR in front [taking care to
2038 handle cc0, etc. properly]. Similarly we need to care trapping
2039 instructions in presence of non-call exceptions. */
2041 if (JUMP_P (insn)
2042 || (NONJUMP_INSN_P (insn)
2043 && (!single_succ_p (bb)
2044 || single_succ_edge (bb)->flags & EDGE_ABNORMAL)))
2046 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
2047 if cc0 isn't set. */
2048 if (HAVE_cc0)
2050 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2051 if (note)
2052 insn = safe_as_a <rtx_insn *> (XEXP (note, 0));
2053 else
2055 rtx_insn *maybe_cc0_setter = prev_nonnote_insn (insn);
2056 if (maybe_cc0_setter
2057 && INSN_P (maybe_cc0_setter)
2058 && sets_cc0_p (PATTERN (maybe_cc0_setter)))
2059 insn = maybe_cc0_setter;
2063 /* FIXME: What if something in cc0/jump uses value set in new insn? */
2064 new_insn = emit_insn_before_noloc (pat, insn, bb);
2067 /* Likewise if the last insn is a call, as will happen in the presence
2068 of exception handling. */
2069 else if (CALL_P (insn)
2070 && (!single_succ_p (bb)
2071 || single_succ_edge (bb)->flags & EDGE_ABNORMAL))
2073 /* Keeping in mind targets with small register classes and parameters
2074 in registers, we search backward and place the instructions before
2075 the first parameter is loaded. Do this for everyone for consistency
2076 and a presumption that we'll get better code elsewhere as well. */
2078 /* Since different machines initialize their parameter registers
2079 in different orders, assume nothing. Collect the set of all
2080 parameter registers. */
2081 insn = find_first_parameter_load (insn, BB_HEAD (bb));
2083 /* If we found all the parameter loads, then we want to insert
2084 before the first parameter load.
2086 If we did not find all the parameter loads, then we might have
2087 stopped on the head of the block, which could be a CODE_LABEL.
2088 If we inserted before the CODE_LABEL, then we would be putting
2089 the insn in the wrong basic block. In that case, put the insn
2090 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
2091 while (LABEL_P (insn)
2092 || NOTE_INSN_BASIC_BLOCK_P (insn))
2093 insn = NEXT_INSN (insn);
2095 new_insn = emit_insn_before_noloc (pat, insn, bb);
2097 else
2098 new_insn = emit_insn_after_noloc (pat, insn, bb);
2100 while (1)
2102 if (INSN_P (pat))
2103 add_label_notes (PATTERN (pat), new_insn);
2104 if (pat == pat_end)
2105 break;
2106 pat = NEXT_INSN (pat);
2109 gcse_create_count++;
2111 if (dump_file)
2113 fprintf (dump_file, "PRE/HOIST: end of bb %d, insn %d, ",
2114 bb->index, INSN_UID (new_insn));
2115 fprintf (dump_file, "copying expression %d to reg %d\n",
2116 expr->bitmap_index, regno);
2120 /* Insert partially redundant expressions on edges in the CFG to make
2121 the expressions fully redundant. */
2123 static int
2124 pre_edge_insert (struct edge_list *edge_list, struct gcse_expr **index_map)
2126 int e, i, j, num_edges, set_size, did_insert = 0;
2127 sbitmap *inserted;
2129 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
2130 if it reaches any of the deleted expressions. */
2132 set_size = pre_insert_map[0]->size;
2133 num_edges = NUM_EDGES (edge_list);
2134 inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems);
2135 bitmap_vector_clear (inserted, num_edges);
2137 for (e = 0; e < num_edges; e++)
2139 int indx;
2140 basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
2142 for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
2144 SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
2146 for (j = indx;
2147 insert && j < (int) expr_hash_table.n_elems;
2148 j++, insert >>= 1)
2149 if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
2151 struct gcse_expr *expr = index_map[j];
2152 struct gcse_occr *occr;
2154 /* Now look at each deleted occurrence of this expression. */
2155 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2157 if (! occr->deleted_p)
2158 continue;
2160 /* Insert this expression on this edge if it would
2161 reach the deleted occurrence in BB. */
2162 if (!bitmap_bit_p (inserted[e], j))
2164 rtx_insn *insn;
2165 edge eg = INDEX_EDGE (edge_list, e);
2167 /* We can't insert anything on an abnormal and
2168 critical edge, so we insert the insn at the end of
2169 the previous block. There are several alternatives
2170 detailed in Morgans book P277 (sec 10.5) for
2171 handling this situation. This one is easiest for
2172 now. */
2174 if (eg->flags & EDGE_ABNORMAL)
2175 insert_insn_end_basic_block (index_map[j], bb);
2176 else
2178 insn = process_insert_insn (index_map[j]);
2179 insert_insn_on_edge (insn, eg);
2182 if (dump_file)
2184 fprintf (dump_file, "PRE: edge (%d,%d), ",
2185 bb->index,
2186 INDEX_EDGE_SUCC_BB (edge_list, e)->index);
2187 fprintf (dump_file, "copy expression %d\n",
2188 expr->bitmap_index);
2191 update_ld_motion_stores (expr);
2192 bitmap_set_bit (inserted[e], j);
2193 did_insert = 1;
2194 gcse_create_count++;
2201 sbitmap_vector_free (inserted);
2202 return did_insert;
2205 /* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
2206 Given "old_reg <- expr" (INSN), instead of adding after it
2207 reaching_reg <- old_reg
2208 it's better to do the following:
2209 reaching_reg <- expr
2210 old_reg <- reaching_reg
2211 because this way copy propagation can discover additional PRE
2212 opportunities. But if this fails, we try the old way.
2213 When "expr" is a store, i.e.
2214 given "MEM <- old_reg", instead of adding after it
2215 reaching_reg <- old_reg
2216 it's better to add it before as follows:
2217 reaching_reg <- old_reg
2218 MEM <- reaching_reg. */
2220 static void
2221 pre_insert_copy_insn (struct gcse_expr *expr, rtx_insn *insn)
2223 rtx reg = expr->reaching_reg;
2224 int regno = REGNO (reg);
2225 int indx = expr->bitmap_index;
2226 rtx pat = PATTERN (insn);
2227 rtx set, first_set;
2228 rtx_insn *new_insn;
2229 rtx old_reg;
2230 int i;
2232 /* This block matches the logic in hash_scan_insn. */
2233 switch (GET_CODE (pat))
2235 case SET:
2236 set = pat;
2237 break;
2239 case PARALLEL:
2240 /* Search through the parallel looking for the set whose
2241 source was the expression that we're interested in. */
2242 first_set = NULL_RTX;
2243 set = NULL_RTX;
2244 for (i = 0; i < XVECLEN (pat, 0); i++)
2246 rtx x = XVECEXP (pat, 0, i);
2247 if (GET_CODE (x) == SET)
2249 /* If the source was a REG_EQUAL or REG_EQUIV note, we
2250 may not find an equivalent expression, but in this
2251 case the PARALLEL will have a single set. */
2252 if (first_set == NULL_RTX)
2253 first_set = x;
2254 if (expr_equiv_p (SET_SRC (x), expr->expr))
2256 set = x;
2257 break;
2262 gcc_assert (first_set);
2263 if (set == NULL_RTX)
2264 set = first_set;
2265 break;
2267 default:
2268 gcc_unreachable ();
2271 if (REG_P (SET_DEST (set)))
2273 old_reg = SET_DEST (set);
2274 /* Check if we can modify the set destination in the original insn. */
2275 if (validate_change (insn, &SET_DEST (set), reg, 0))
2277 new_insn = gen_move_insn (old_reg, reg);
2278 new_insn = emit_insn_after (new_insn, insn);
2280 else
2282 new_insn = gen_move_insn (reg, old_reg);
2283 new_insn = emit_insn_after (new_insn, insn);
2286 else /* This is possible only in case of a store to memory. */
2288 old_reg = SET_SRC (set);
2289 new_insn = gen_move_insn (reg, old_reg);
2291 /* Check if we can modify the set source in the original insn. */
2292 if (validate_change (insn, &SET_SRC (set), reg, 0))
2293 new_insn = emit_insn_before (new_insn, insn);
2294 else
2295 new_insn = emit_insn_after (new_insn, insn);
2298 gcse_create_count++;
2300 if (dump_file)
2301 fprintf (dump_file,
2302 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
2303 BLOCK_FOR_INSN (insn)->index, INSN_UID (new_insn), indx,
2304 INSN_UID (insn), regno);
2307 /* Copy available expressions that reach the redundant expression
2308 to `reaching_reg'. */
2310 static void
2311 pre_insert_copies (void)
2313 unsigned int i, added_copy;
2314 struct gcse_expr *expr;
2315 struct gcse_occr *occr;
2316 struct gcse_occr *avail;
2318 /* For each available expression in the table, copy the result to
2319 `reaching_reg' if the expression reaches a deleted one.
2321 ??? The current algorithm is rather brute force.
2322 Need to do some profiling. */
2324 for (i = 0; i < expr_hash_table.size; i++)
2325 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2327 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
2328 we don't want to insert a copy here because the expression may not
2329 really be redundant. So only insert an insn if the expression was
2330 deleted. This test also avoids further processing if the
2331 expression wasn't deleted anywhere. */
2332 if (expr->reaching_reg == NULL)
2333 continue;
2335 /* Set when we add a copy for that expression. */
2336 added_copy = 0;
2338 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2340 if (! occr->deleted_p)
2341 continue;
2343 for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
2345 rtx_insn *insn = avail->insn;
2347 /* No need to handle this one if handled already. */
2348 if (avail->copied_p)
2349 continue;
2351 /* Don't handle this one if it's a redundant one. */
2352 if (insn->deleted ())
2353 continue;
2355 /* Or if the expression doesn't reach the deleted one. */
2356 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
2357 expr,
2358 BLOCK_FOR_INSN (occr->insn)))
2359 continue;
2361 added_copy = 1;
2363 /* Copy the result of avail to reaching_reg. */
2364 pre_insert_copy_insn (expr, insn);
2365 avail->copied_p = 1;
2369 if (added_copy)
2370 update_ld_motion_stores (expr);
2374 struct set_data
2376 rtx_insn *insn;
2377 const_rtx set;
2378 int nsets;
2381 /* Increment number of sets and record set in DATA. */
2383 static void
2384 record_set_data (rtx dest, const_rtx set, void *data)
2386 struct set_data *s = (struct set_data *)data;
2388 if (GET_CODE (set) == SET)
2390 /* We allow insns having multiple sets, where all but one are
2391 dead as single set insns. In the common case only a single
2392 set is present, so we want to avoid checking for REG_UNUSED
2393 notes unless necessary. */
2394 if (s->nsets == 1
2395 && find_reg_note (s->insn, REG_UNUSED, SET_DEST (s->set))
2396 && !side_effects_p (s->set))
2397 s->nsets = 0;
2399 if (!s->nsets)
2401 /* Record this set. */
2402 s->nsets += 1;
2403 s->set = set;
2405 else if (!find_reg_note (s->insn, REG_UNUSED, dest)
2406 || side_effects_p (set))
2407 s->nsets += 1;
2411 static const_rtx
2412 single_set_gcse (rtx_insn *insn)
2414 struct set_data s;
2415 rtx pattern;
2417 gcc_assert (INSN_P (insn));
2419 /* Optimize common case. */
2420 pattern = PATTERN (insn);
2421 if (GET_CODE (pattern) == SET)
2422 return pattern;
2424 s.insn = insn;
2425 s.nsets = 0;
2426 note_stores (pattern, record_set_data, &s);
2428 /* Considered invariant insns have exactly one set. */
2429 gcc_assert (s.nsets == 1);
2430 return s.set;
2433 /* Emit move from SRC to DEST noting the equivalence with expression computed
2434 in INSN. */
2436 static rtx_insn *
2437 gcse_emit_move_after (rtx dest, rtx src, rtx_insn *insn)
2439 rtx_insn *new_rtx;
2440 const_rtx set = single_set_gcse (insn);
2441 rtx set2;
2442 rtx note;
2443 rtx eqv = NULL_RTX;
2445 /* This should never fail since we're creating a reg->reg copy
2446 we've verified to be valid. */
2448 new_rtx = emit_insn_after (gen_move_insn (dest, src), insn);
2450 /* Note the equivalence for local CSE pass. Take the note from the old
2451 set if there was one. Otherwise record the SET_SRC from the old set
2452 unless DEST is also an operand of the SET_SRC. */
2453 set2 = single_set (new_rtx);
2454 if (!set2 || !rtx_equal_p (SET_DEST (set2), dest))
2455 return new_rtx;
2456 if ((note = find_reg_equal_equiv_note (insn)))
2457 eqv = XEXP (note, 0);
2458 else if (! REG_P (dest)
2459 || ! reg_mentioned_p (dest, SET_SRC (set)))
2460 eqv = SET_SRC (set);
2462 if (eqv != NULL_RTX)
2463 set_unique_reg_note (new_rtx, REG_EQUAL, copy_insn_1 (eqv));
2465 return new_rtx;
2468 /* Delete redundant computations.
2469 Deletion is done by changing the insn to copy the `reaching_reg' of
2470 the expression into the result of the SET. It is left to later passes
2471 to propagate the copy or eliminate it.
2473 Return nonzero if a change is made. */
2475 static int
2476 pre_delete (void)
2478 unsigned int i;
2479 int changed;
2480 struct gcse_expr *expr;
2481 struct gcse_occr *occr;
2483 changed = 0;
2484 for (i = 0; i < expr_hash_table.size; i++)
2485 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2487 int indx = expr->bitmap_index;
2489 /* We only need to search antic_occr since we require ANTLOC != 0. */
2490 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2492 rtx_insn *insn = occr->insn;
2493 rtx set;
2494 basic_block bb = BLOCK_FOR_INSN (insn);
2496 /* We only delete insns that have a single_set. */
2497 if (bitmap_bit_p (pre_delete_map[bb->index], indx)
2498 && (set = single_set (insn)) != 0
2499 && dbg_cnt (pre_insn))
2501 /* Create a pseudo-reg to store the result of reaching
2502 expressions into. Get the mode for the new pseudo from
2503 the mode of the original destination pseudo. */
2504 if (expr->reaching_reg == NULL)
2505 expr->reaching_reg = gen_reg_rtx_and_attrs (SET_DEST (set));
2507 gcse_emit_move_after (SET_DEST (set), expr->reaching_reg, insn);
2508 delete_insn (insn);
2509 occr->deleted_p = 1;
2510 changed = 1;
2511 gcse_subst_count++;
2513 if (dump_file)
2515 fprintf (dump_file,
2516 "PRE: redundant insn %d (expression %d) in ",
2517 INSN_UID (insn), indx);
2518 fprintf (dump_file, "bb %d, reaching reg is %d\n",
2519 bb->index, REGNO (expr->reaching_reg));
2525 return changed;
2528 /* Perform GCSE optimizations using PRE.
2529 This is called by one_pre_gcse_pass after all the dataflow analysis
2530 has been done.
2532 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
2533 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
2534 Compiler Design and Implementation.
2536 ??? A new pseudo reg is created to hold the reaching expression. The nice
2537 thing about the classical approach is that it would try to use an existing
2538 reg. If the register can't be adequately optimized [i.e. we introduce
2539 reload problems], one could add a pass here to propagate the new register
2540 through the block.
2542 ??? We don't handle single sets in PARALLELs because we're [currently] not
2543 able to copy the rest of the parallel when we insert copies to create full
2544 redundancies from partial redundancies. However, there's no reason why we
2545 can't handle PARALLELs in the cases where there are no partial
2546 redundancies. */
2548 static int
2549 pre_gcse (struct edge_list *edge_list)
2551 unsigned int i;
2552 int did_insert, changed;
2553 struct gcse_expr **index_map;
2554 struct gcse_expr *expr;
2556 /* Compute a mapping from expression number (`bitmap_index') to
2557 hash table entry. */
2559 index_map = XCNEWVEC (struct gcse_expr *, expr_hash_table.n_elems);
2560 for (i = 0; i < expr_hash_table.size; i++)
2561 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2562 index_map[expr->bitmap_index] = expr;
2564 /* Delete the redundant insns first so that
2565 - we know what register to use for the new insns and for the other
2566 ones with reaching expressions
2567 - we know which insns are redundant when we go to create copies */
2569 changed = pre_delete ();
2570 did_insert = pre_edge_insert (edge_list, index_map);
2572 /* In other places with reaching expressions, copy the expression to the
2573 specially allocated pseudo-reg that reaches the redundant expr. */
2574 pre_insert_copies ();
2575 if (did_insert)
2577 commit_edge_insertions ();
2578 changed = 1;
2581 free (index_map);
2582 return changed;
2585 /* Top level routine to perform one PRE GCSE pass.
2587 Return nonzero if a change was made. */
2589 static int
2590 one_pre_gcse_pass (void)
2592 int changed = 0;
2594 gcse_subst_count = 0;
2595 gcse_create_count = 0;
2597 /* Return if there's nothing to do, or it is too expensive. */
2598 if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1
2599 || is_too_expensive (_("PRE disabled")))
2600 return 0;
2602 /* We need alias. */
2603 init_alias_analysis ();
2605 bytes_used = 0;
2606 gcc_obstack_init (&gcse_obstack);
2607 alloc_gcse_mem ();
2609 alloc_hash_table (&expr_hash_table);
2610 add_noreturn_fake_exit_edges ();
2611 if (flag_gcse_lm)
2612 compute_ld_motion_mems ();
2614 compute_hash_table (&expr_hash_table);
2615 if (flag_gcse_lm)
2616 trim_ld_motion_mems ();
2617 if (dump_file)
2618 dump_hash_table (dump_file, "Expression", &expr_hash_table);
2620 if (expr_hash_table.n_elems > 0)
2622 struct edge_list *edge_list;
2623 alloc_pre_mem (last_basic_block_for_fn (cfun), expr_hash_table.n_elems);
2624 edge_list = compute_pre_data ();
2625 changed |= pre_gcse (edge_list);
2626 free_edge_list (edge_list);
2627 free_pre_mem ();
2630 if (flag_gcse_lm)
2631 free_ld_motion_mems ();
2632 remove_fake_exit_edges ();
2633 free_hash_table (&expr_hash_table);
2635 free_gcse_mem ();
2636 obstack_free (&gcse_obstack, NULL);
2638 /* We are finished with alias. */
2639 end_alias_analysis ();
2641 if (dump_file)
2643 fprintf (dump_file, "PRE GCSE of %s, %d basic blocks, %d bytes needed, ",
2644 current_function_name (), n_basic_blocks_for_fn (cfun),
2645 bytes_used);
2646 fprintf (dump_file, "%d substs, %d insns created\n",
2647 gcse_subst_count, gcse_create_count);
2650 return changed;
2653 /* If X contains any LABEL_REF's, add REG_LABEL_OPERAND notes for them
2654 to INSN. If such notes are added to an insn which references a
2655 CODE_LABEL, the LABEL_NUSES count is incremented. We have to add
2656 that note, because the following loop optimization pass requires
2657 them. */
2659 /* ??? If there was a jump optimization pass after gcse and before loop,
2660 then we would not need to do this here, because jump would add the
2661 necessary REG_LABEL_OPERAND and REG_LABEL_TARGET notes. */
2663 static void
2664 add_label_notes (rtx x, rtx_insn *insn)
2666 enum rtx_code code = GET_CODE (x);
2667 int i, j;
2668 const char *fmt;
2670 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
2672 /* This code used to ignore labels that referred to dispatch tables to
2673 avoid flow generating (slightly) worse code.
2675 We no longer ignore such label references (see LABEL_REF handling in
2676 mark_jump_label for additional information). */
2678 /* There's no reason for current users to emit jump-insns with
2679 such a LABEL_REF, so we don't have to handle REG_LABEL_TARGET
2680 notes. */
2681 gcc_assert (!JUMP_P (insn));
2682 add_reg_note (insn, REG_LABEL_OPERAND, LABEL_REF_LABEL (x));
2684 if (LABEL_P (LABEL_REF_LABEL (x)))
2685 LABEL_NUSES (LABEL_REF_LABEL (x))++;
2687 return;
2690 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2692 if (fmt[i] == 'e')
2693 add_label_notes (XEXP (x, i), insn);
2694 else if (fmt[i] == 'E')
2695 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2696 add_label_notes (XVECEXP (x, i, j), insn);
2700 /* Code Hoisting variables and subroutines. */
2702 /* Very busy expressions. */
2703 static sbitmap *hoist_vbein;
2704 static sbitmap *hoist_vbeout;
2706 /* ??? We could compute post dominators and run this algorithm in
2707 reverse to perform tail merging, doing so would probably be
2708 more effective than the tail merging code in jump.c.
2710 It's unclear if tail merging could be run in parallel with
2711 code hoisting. It would be nice. */
2713 /* Allocate vars used for code hoisting analysis. */
2715 static void
2716 alloc_code_hoist_mem (int n_blocks, int n_exprs)
2718 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
2719 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
2720 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
2722 hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
2723 hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
2726 /* Free vars used for code hoisting analysis. */
2728 static void
2729 free_code_hoist_mem (void)
2731 sbitmap_vector_free (antloc);
2732 sbitmap_vector_free (transp);
2733 sbitmap_vector_free (comp);
2735 sbitmap_vector_free (hoist_vbein);
2736 sbitmap_vector_free (hoist_vbeout);
2738 free_dominance_info (CDI_DOMINATORS);
2741 /* Compute the very busy expressions at entry/exit from each block.
2743 An expression is very busy if all paths from a given point
2744 compute the expression. */
2746 static void
2747 compute_code_hoist_vbeinout (void)
2749 int changed, passes;
2750 basic_block bb;
2752 bitmap_vector_clear (hoist_vbeout, last_basic_block_for_fn (cfun));
2753 bitmap_vector_clear (hoist_vbein, last_basic_block_for_fn (cfun));
2755 passes = 0;
2756 changed = 1;
2758 while (changed)
2760 changed = 0;
2762 /* We scan the blocks in the reverse order to speed up
2763 the convergence. */
2764 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2766 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
2768 bitmap_intersection_of_succs (hoist_vbeout[bb->index],
2769 hoist_vbein, bb);
2771 /* Include expressions in VBEout that are calculated
2772 in BB and available at its end. */
2773 bitmap_ior (hoist_vbeout[bb->index],
2774 hoist_vbeout[bb->index], comp[bb->index]);
2777 changed |= bitmap_or_and (hoist_vbein[bb->index],
2778 antloc[bb->index],
2779 hoist_vbeout[bb->index],
2780 transp[bb->index]);
2783 passes++;
2786 if (dump_file)
2788 fprintf (dump_file, "hoisting vbeinout computation: %d passes\n", passes);
2790 FOR_EACH_BB_FN (bb, cfun)
2792 fprintf (dump_file, "vbein (%d): ", bb->index);
2793 dump_bitmap_file (dump_file, hoist_vbein[bb->index]);
2794 fprintf (dump_file, "vbeout(%d): ", bb->index);
2795 dump_bitmap_file (dump_file, hoist_vbeout[bb->index]);
2800 /* Top level routine to do the dataflow analysis needed by code hoisting. */
2802 static void
2803 compute_code_hoist_data (void)
2805 compute_local_properties (transp, comp, antloc, &expr_hash_table);
2806 prune_expressions (false);
2807 compute_code_hoist_vbeinout ();
2808 calculate_dominance_info (CDI_DOMINATORS);
2809 if (dump_file)
2810 fprintf (dump_file, "\n");
2813 /* Update register pressure for BB when hoisting an expression from
2814 instruction FROM, if live ranges of inputs are shrunk. Also
2815 maintain live_in information if live range of register referred
2816 in FROM is shrunk.
2818 Return 0 if register pressure doesn't change, otherwise return
2819 the number by which register pressure is decreased.
2821 NOTE: Register pressure won't be increased in this function. */
2823 static int
2824 update_bb_reg_pressure (basic_block bb, rtx_insn *from)
2826 rtx dreg;
2827 rtx_insn *insn;
2828 basic_block succ_bb;
2829 df_ref use, op_ref;
2830 edge succ;
2831 edge_iterator ei;
2832 int decreased_pressure = 0;
2833 int nregs;
2834 enum reg_class pressure_class;
2836 FOR_EACH_INSN_USE (use, from)
2838 dreg = DF_REF_REAL_REG (use);
2839 /* The live range of register is shrunk only if it isn't:
2840 1. referred on any path from the end of this block to EXIT, or
2841 2. referred by insns other than FROM in this block. */
2842 FOR_EACH_EDGE (succ, ei, bb->succs)
2844 succ_bb = succ->dest;
2845 if (succ_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
2846 continue;
2848 if (bitmap_bit_p (BB_DATA (succ_bb)->live_in, REGNO (dreg)))
2849 break;
2851 if (succ != NULL)
2852 continue;
2854 op_ref = DF_REG_USE_CHAIN (REGNO (dreg));
2855 for (; op_ref; op_ref = DF_REF_NEXT_REG (op_ref))
2857 if (!DF_REF_INSN_INFO (op_ref))
2858 continue;
2860 insn = DF_REF_INSN (op_ref);
2861 if (BLOCK_FOR_INSN (insn) == bb
2862 && NONDEBUG_INSN_P (insn) && insn != from)
2863 break;
2866 pressure_class = get_regno_pressure_class (REGNO (dreg), &nregs);
2867 /* Decrease register pressure and update live_in information for
2868 this block. */
2869 if (!op_ref && pressure_class != NO_REGS)
2871 decreased_pressure += nregs;
2872 BB_DATA (bb)->max_reg_pressure[pressure_class] -= nregs;
2873 bitmap_clear_bit (BB_DATA (bb)->live_in, REGNO (dreg));
2876 return decreased_pressure;
2879 /* Determine if the expression EXPR should be hoisted to EXPR_BB up in
2880 flow graph, if it can reach BB unimpared. Stop the search if the
2881 expression would need to be moved more than DISTANCE instructions.
2883 DISTANCE is the number of instructions through which EXPR can be
2884 hoisted up in flow graph.
2886 BB_SIZE points to an array which contains the number of instructions
2887 for each basic block.
2889 PRESSURE_CLASS and NREGS are register class and number of hard registers
2890 for storing EXPR.
2892 HOISTED_BBS points to a bitmap indicating basic blocks through which
2893 EXPR is hoisted.
2895 FROM is the instruction from which EXPR is hoisted.
2897 It's unclear exactly what Muchnick meant by "unimpared". It seems
2898 to me that the expression must either be computed or transparent in
2899 *every* block in the path(s) from EXPR_BB to BB. Any other definition
2900 would allow the expression to be hoisted out of loops, even if
2901 the expression wasn't a loop invariant.
2903 Contrast this to reachability for PRE where an expression is
2904 considered reachable if *any* path reaches instead of *all*
2905 paths. */
2907 static int
2908 should_hoist_expr_to_dom (basic_block expr_bb, struct gcse_expr *expr,
2909 basic_block bb, sbitmap visited, int distance,
2910 int *bb_size, enum reg_class pressure_class,
2911 int *nregs, bitmap hoisted_bbs, rtx_insn *from)
2913 unsigned int i;
2914 edge pred;
2915 edge_iterator ei;
2916 sbitmap_iterator sbi;
2917 int visited_allocated_locally = 0;
2918 int decreased_pressure = 0;
2920 if (flag_ira_hoist_pressure)
2922 /* Record old information of basic block BB when it is visited
2923 at the first time. */
2924 if (!bitmap_bit_p (hoisted_bbs, bb->index))
2926 struct bb_data *data = BB_DATA (bb);
2927 bitmap_copy (data->backup, data->live_in);
2928 data->old_pressure = data->max_reg_pressure[pressure_class];
2930 decreased_pressure = update_bb_reg_pressure (bb, from);
2932 /* Terminate the search if distance, for which EXPR is allowed to move,
2933 is exhausted. */
2934 if (distance > 0)
2936 if (flag_ira_hoist_pressure)
2938 /* Prefer to hoist EXPR if register pressure is decreased. */
2939 if (decreased_pressure > *nregs)
2940 distance += bb_size[bb->index];
2941 /* Let EXPR be hoisted through basic block at no cost if one
2942 of following conditions is satisfied:
2944 1. The basic block has low register pressure.
2945 2. Register pressure won't be increases after hoisting EXPR.
2947 Constant expressions is handled conservatively, because
2948 hoisting constant expression aggressively results in worse
2949 code. This decision is made by the observation of CSiBE
2950 on ARM target, while it has no obvious effect on other
2951 targets like x86, x86_64, mips and powerpc. */
2952 else if (CONST_INT_P (expr->expr)
2953 || (BB_DATA (bb)->max_reg_pressure[pressure_class]
2954 >= ira_class_hard_regs_num[pressure_class]
2955 && decreased_pressure < *nregs))
2956 distance -= bb_size[bb->index];
2958 else
2959 distance -= bb_size[bb->index];
2961 if (distance <= 0)
2962 return 0;
2964 else
2965 gcc_assert (distance == 0);
2967 if (visited == NULL)
2969 visited_allocated_locally = 1;
2970 visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
2971 bitmap_clear (visited);
2974 FOR_EACH_EDGE (pred, ei, bb->preds)
2976 basic_block pred_bb = pred->src;
2978 if (pred->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
2979 break;
2980 else if (pred_bb == expr_bb)
2981 continue;
2982 else if (bitmap_bit_p (visited, pred_bb->index))
2983 continue;
2984 else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
2985 break;
2986 /* Not killed. */
2987 else
2989 bitmap_set_bit (visited, pred_bb->index);
2990 if (! should_hoist_expr_to_dom (expr_bb, expr, pred_bb,
2991 visited, distance, bb_size,
2992 pressure_class, nregs,
2993 hoisted_bbs, from))
2994 break;
2997 if (visited_allocated_locally)
2999 /* If EXPR can be hoisted to expr_bb, record basic blocks through
3000 which EXPR is hoisted in hoisted_bbs. */
3001 if (flag_ira_hoist_pressure && !pred)
3003 /* Record the basic block from which EXPR is hoisted. */
3004 bitmap_set_bit (visited, bb->index);
3005 EXECUTE_IF_SET_IN_BITMAP (visited, 0, i, sbi)
3006 bitmap_set_bit (hoisted_bbs, i);
3008 sbitmap_free (visited);
3011 return (pred == NULL);
3014 /* Find occurrence in BB. */
3016 static struct gcse_occr *
3017 find_occr_in_bb (struct gcse_occr *occr, basic_block bb)
3019 /* Find the right occurrence of this expression. */
3020 while (occr && BLOCK_FOR_INSN (occr->insn) != bb)
3021 occr = occr->next;
3023 return occr;
3026 /* Actually perform code hoisting.
3028 The code hoisting pass can hoist multiple computations of the same
3029 expression along dominated path to a dominating basic block, like
3030 from b2/b3 to b1 as depicted below:
3032 b1 ------
3033 /\ |
3034 / \ |
3035 bx by distance
3036 / \ |
3037 / \ |
3038 b2 b3 ------
3040 Unfortunately code hoisting generally extends the live range of an
3041 output pseudo register, which increases register pressure and hurts
3042 register allocation. To address this issue, an attribute MAX_DISTANCE
3043 is computed and attached to each expression. The attribute is computed
3044 from rtx cost of the corresponding expression and it's used to control
3045 how long the expression can be hoisted up in flow graph. As the
3046 expression is hoisted up in flow graph, GCC decreases its DISTANCE
3047 and stops the hoist if DISTANCE reaches 0. Code hoisting can decrease
3048 register pressure if live ranges of inputs are shrunk.
3050 Option "-fira-hoist-pressure" implements register pressure directed
3051 hoist based on upper method. The rationale is:
3052 1. Calculate register pressure for each basic block by reusing IRA
3053 facility.
3054 2. When expression is hoisted through one basic block, GCC checks
3055 the change of live ranges for inputs/output. The basic block's
3056 register pressure will be increased because of extended live
3057 range of output. However, register pressure will be decreased
3058 if the live ranges of inputs are shrunk.
3059 3. After knowing how hoisting affects register pressure, GCC prefers
3060 to hoist the expression if it can decrease register pressure, by
3061 increasing DISTANCE of the corresponding expression.
3062 4. If hoisting the expression increases register pressure, GCC checks
3063 register pressure of the basic block and decrease DISTANCE only if
3064 the register pressure is high. In other words, expression will be
3065 hoisted through at no cost if the basic block has low register
3066 pressure.
3067 5. Update register pressure information for basic blocks through
3068 which expression is hoisted. */
3070 static int
3071 hoist_code (void)
3073 basic_block bb, dominated;
3074 vec<basic_block> dom_tree_walk;
3075 unsigned int dom_tree_walk_index;
3076 vec<basic_block> domby;
3077 unsigned int i, j, k;
3078 struct gcse_expr **index_map;
3079 struct gcse_expr *expr;
3080 int *to_bb_head;
3081 int *bb_size;
3082 int changed = 0;
3083 struct bb_data *data;
3084 /* Basic blocks that have occurrences reachable from BB. */
3085 bitmap from_bbs;
3086 /* Basic blocks through which expr is hoisted. */
3087 bitmap hoisted_bbs = NULL;
3088 bitmap_iterator bi;
3090 /* Compute a mapping from expression number (`bitmap_index') to
3091 hash table entry. */
3093 index_map = XCNEWVEC (struct gcse_expr *, expr_hash_table.n_elems);
3094 for (i = 0; i < expr_hash_table.size; i++)
3095 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
3096 index_map[expr->bitmap_index] = expr;
3098 /* Calculate sizes of basic blocks and note how far
3099 each instruction is from the start of its block. We then use this
3100 data to restrict distance an expression can travel. */
3102 to_bb_head = XCNEWVEC (int, get_max_uid ());
3103 bb_size = XCNEWVEC (int, last_basic_block_for_fn (cfun));
3105 FOR_EACH_BB_FN (bb, cfun)
3107 rtx_insn *insn;
3108 int to_head;
3110 to_head = 0;
3111 FOR_BB_INSNS (bb, insn)
3113 /* Don't count debug instructions to avoid them affecting
3114 decision choices. */
3115 if (NONDEBUG_INSN_P (insn))
3116 to_bb_head[INSN_UID (insn)] = to_head++;
3119 bb_size[bb->index] = to_head;
3122 gcc_assert (EDGE_COUNT (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs) == 1
3123 && (EDGE_SUCC (ENTRY_BLOCK_PTR_FOR_FN (cfun), 0)->dest
3124 == ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb));
3126 from_bbs = BITMAP_ALLOC (NULL);
3127 if (flag_ira_hoist_pressure)
3128 hoisted_bbs = BITMAP_ALLOC (NULL);
3130 dom_tree_walk = get_all_dominated_blocks (CDI_DOMINATORS,
3131 ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb);
3133 /* Walk over each basic block looking for potentially hoistable
3134 expressions, nothing gets hoisted from the entry block. */
3135 FOR_EACH_VEC_ELT (dom_tree_walk, dom_tree_walk_index, bb)
3137 domby = get_dominated_to_depth (CDI_DOMINATORS, bb, MAX_HOIST_DEPTH);
3139 if (domby.length () == 0)
3140 continue;
3142 /* Examine each expression that is very busy at the exit of this
3143 block. These are the potentially hoistable expressions. */
3144 for (i = 0; i < SBITMAP_SIZE (hoist_vbeout[bb->index]); i++)
3146 if (bitmap_bit_p (hoist_vbeout[bb->index], i))
3148 int nregs = 0;
3149 enum reg_class pressure_class = NO_REGS;
3150 /* Current expression. */
3151 struct gcse_expr *expr = index_map[i];
3152 /* Number of occurrences of EXPR that can be hoisted to BB. */
3153 int hoistable = 0;
3154 /* Occurrences reachable from BB. */
3155 vec<occr_t> occrs_to_hoist = vNULL;
3156 /* We want to insert the expression into BB only once, so
3157 note when we've inserted it. */
3158 int insn_inserted_p;
3159 occr_t occr;
3161 /* If an expression is computed in BB and is available at end of
3162 BB, hoist all occurrences dominated by BB to BB. */
3163 if (bitmap_bit_p (comp[bb->index], i))
3165 occr = find_occr_in_bb (expr->antic_occr, bb);
3167 if (occr)
3169 /* An occurrence might've been already deleted
3170 while processing a dominator of BB. */
3171 if (!occr->deleted_p)
3173 gcc_assert (NONDEBUG_INSN_P (occr->insn));
3174 hoistable++;
3177 else
3178 hoistable++;
3181 /* We've found a potentially hoistable expression, now
3182 we look at every block BB dominates to see if it
3183 computes the expression. */
3184 FOR_EACH_VEC_ELT (domby, j, dominated)
3186 int max_distance;
3188 /* Ignore self dominance. */
3189 if (bb == dominated)
3190 continue;
3191 /* We've found a dominated block, now see if it computes
3192 the busy expression and whether or not moving that
3193 expression to the "beginning" of that block is safe. */
3194 if (!bitmap_bit_p (antloc[dominated->index], i))
3195 continue;
3197 occr = find_occr_in_bb (expr->antic_occr, dominated);
3198 gcc_assert (occr);
3200 /* An occurrence might've been already deleted
3201 while processing a dominator of BB. */
3202 if (occr->deleted_p)
3203 continue;
3204 gcc_assert (NONDEBUG_INSN_P (occr->insn));
3206 max_distance = expr->max_distance;
3207 if (max_distance > 0)
3208 /* Adjust MAX_DISTANCE to account for the fact that
3209 OCCR won't have to travel all of DOMINATED, but
3210 only part of it. */
3211 max_distance += (bb_size[dominated->index]
3212 - to_bb_head[INSN_UID (occr->insn)]);
3214 pressure_class = get_pressure_class_and_nregs (occr->insn,
3215 &nregs);
3217 /* Note if the expression should be hoisted from the dominated
3218 block to BB if it can reach DOMINATED unimpared.
3220 Keep track of how many times this expression is hoistable
3221 from a dominated block into BB. */
3222 if (should_hoist_expr_to_dom (bb, expr, dominated, NULL,
3223 max_distance, bb_size,
3224 pressure_class, &nregs,
3225 hoisted_bbs, occr->insn))
3227 hoistable++;
3228 occrs_to_hoist.safe_push (occr);
3229 bitmap_set_bit (from_bbs, dominated->index);
3233 /* If we found more than one hoistable occurrence of this
3234 expression, then note it in the vector of expressions to
3235 hoist. It makes no sense to hoist things which are computed
3236 in only one BB, and doing so tends to pessimize register
3237 allocation. One could increase this value to try harder
3238 to avoid any possible code expansion due to register
3239 allocation issues; however experiments have shown that
3240 the vast majority of hoistable expressions are only movable
3241 from two successors, so raising this threshold is likely
3242 to nullify any benefit we get from code hoisting. */
3243 if (hoistable > 1 && dbg_cnt (hoist_insn))
3245 /* If (hoistable != vec::length), then there is
3246 an occurrence of EXPR in BB itself. Don't waste
3247 time looking for LCA in this case. */
3248 if ((unsigned) hoistable == occrs_to_hoist.length ())
3250 basic_block lca;
3252 lca = nearest_common_dominator_for_set (CDI_DOMINATORS,
3253 from_bbs);
3254 if (lca != bb)
3255 /* Punt, it's better to hoist these occurrences to
3256 LCA. */
3257 occrs_to_hoist.release ();
3260 else
3261 /* Punt, no point hoisting a single occurrence. */
3262 occrs_to_hoist.release ();
3264 if (flag_ira_hoist_pressure
3265 && !occrs_to_hoist.is_empty ())
3267 /* Increase register pressure of basic blocks to which
3268 expr is hoisted because of extended live range of
3269 output. */
3270 data = BB_DATA (bb);
3271 data->max_reg_pressure[pressure_class] += nregs;
3272 EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3274 data = BB_DATA (BASIC_BLOCK_FOR_FN (cfun, k));
3275 data->max_reg_pressure[pressure_class] += nregs;
3278 else if (flag_ira_hoist_pressure)
3280 /* Restore register pressure and live_in info for basic
3281 blocks recorded in hoisted_bbs when expr will not be
3282 hoisted. */
3283 EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3285 data = BB_DATA (BASIC_BLOCK_FOR_FN (cfun, k));
3286 bitmap_copy (data->live_in, data->backup);
3287 data->max_reg_pressure[pressure_class]
3288 = data->old_pressure;
3292 if (flag_ira_hoist_pressure)
3293 bitmap_clear (hoisted_bbs);
3295 insn_inserted_p = 0;
3297 /* Walk through occurrences of I'th expressions we want
3298 to hoist to BB and make the transformations. */
3299 FOR_EACH_VEC_ELT (occrs_to_hoist, j, occr)
3301 rtx_insn *insn;
3302 const_rtx set;
3304 gcc_assert (!occr->deleted_p);
3306 insn = occr->insn;
3307 set = single_set_gcse (insn);
3309 /* Create a pseudo-reg to store the result of reaching
3310 expressions into. Get the mode for the new pseudo
3311 from the mode of the original destination pseudo.
3313 It is important to use new pseudos whenever we
3314 emit a set. This will allow reload to use
3315 rematerialization for such registers. */
3316 if (!insn_inserted_p)
3317 expr->reaching_reg
3318 = gen_reg_rtx_and_attrs (SET_DEST (set));
3320 gcse_emit_move_after (SET_DEST (set), expr->reaching_reg,
3321 insn);
3322 delete_insn (insn);
3323 occr->deleted_p = 1;
3324 changed = 1;
3325 gcse_subst_count++;
3327 if (!insn_inserted_p)
3329 insert_insn_end_basic_block (expr, bb);
3330 insn_inserted_p = 1;
3334 occrs_to_hoist.release ();
3335 bitmap_clear (from_bbs);
3338 domby.release ();
3341 dom_tree_walk.release ();
3342 BITMAP_FREE (from_bbs);
3343 if (flag_ira_hoist_pressure)
3344 BITMAP_FREE (hoisted_bbs);
3346 free (bb_size);
3347 free (to_bb_head);
3348 free (index_map);
3350 return changed;
3353 /* Return pressure class and number of needed hard registers (through
3354 *NREGS) of register REGNO. */
3355 static enum reg_class
3356 get_regno_pressure_class (int regno, int *nregs)
3358 if (regno >= FIRST_PSEUDO_REGISTER)
3360 enum reg_class pressure_class;
3362 pressure_class = reg_allocno_class (regno);
3363 pressure_class = ira_pressure_class_translate[pressure_class];
3364 *nregs
3365 = ira_reg_class_max_nregs[pressure_class][PSEUDO_REGNO_MODE (regno)];
3366 return pressure_class;
3368 else if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno)
3369 && ! TEST_HARD_REG_BIT (eliminable_regset, regno))
3371 *nregs = 1;
3372 return ira_pressure_class_translate[REGNO_REG_CLASS (regno)];
3374 else
3376 *nregs = 0;
3377 return NO_REGS;
3381 /* Return pressure class and number of hard registers (through *NREGS)
3382 for destination of INSN. */
3383 static enum reg_class
3384 get_pressure_class_and_nregs (rtx_insn *insn, int *nregs)
3386 rtx reg;
3387 enum reg_class pressure_class;
3388 const_rtx set = single_set_gcse (insn);
3390 reg = SET_DEST (set);
3391 if (GET_CODE (reg) == SUBREG)
3392 reg = SUBREG_REG (reg);
3393 if (MEM_P (reg))
3395 *nregs = 0;
3396 pressure_class = NO_REGS;
3398 else
3400 gcc_assert (REG_P (reg));
3401 pressure_class = reg_allocno_class (REGNO (reg));
3402 pressure_class = ira_pressure_class_translate[pressure_class];
3403 *nregs
3404 = ira_reg_class_max_nregs[pressure_class][GET_MODE (SET_SRC (set))];
3406 return pressure_class;
3409 /* Increase (if INCR_P) or decrease current register pressure for
3410 register REGNO. */
3411 static void
3412 change_pressure (int regno, bool incr_p)
3414 int nregs;
3415 enum reg_class pressure_class;
3417 pressure_class = get_regno_pressure_class (regno, &nregs);
3418 if (! incr_p)
3419 curr_reg_pressure[pressure_class] -= nregs;
3420 else
3422 curr_reg_pressure[pressure_class] += nregs;
3423 if (BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3424 < curr_reg_pressure[pressure_class])
3425 BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3426 = curr_reg_pressure[pressure_class];
3430 /* Calculate register pressure for each basic block by walking insns
3431 from last to first. */
3432 static void
3433 calculate_bb_reg_pressure (void)
3435 int i;
3436 unsigned int j;
3437 rtx_insn *insn;
3438 basic_block bb;
3439 bitmap curr_regs_live;
3440 bitmap_iterator bi;
3443 ira_setup_eliminable_regset ();
3444 curr_regs_live = BITMAP_ALLOC (&reg_obstack);
3445 FOR_EACH_BB_FN (bb, cfun)
3447 curr_bb = bb;
3448 BB_DATA (bb)->live_in = BITMAP_ALLOC (NULL);
3449 BB_DATA (bb)->backup = BITMAP_ALLOC (NULL);
3450 bitmap_copy (BB_DATA (bb)->live_in, df_get_live_in (bb));
3451 bitmap_copy (curr_regs_live, df_get_live_out (bb));
3452 for (i = 0; i < ira_pressure_classes_num; i++)
3453 curr_reg_pressure[ira_pressure_classes[i]] = 0;
3454 EXECUTE_IF_SET_IN_BITMAP (curr_regs_live, 0, j, bi)
3455 change_pressure (j, true);
3457 FOR_BB_INSNS_REVERSE (bb, insn)
3459 rtx dreg;
3460 int regno;
3461 df_ref def, use;
3463 if (! NONDEBUG_INSN_P (insn))
3464 continue;
3466 FOR_EACH_INSN_DEF (def, insn)
3468 dreg = DF_REF_REAL_REG (def);
3469 gcc_assert (REG_P (dreg));
3470 regno = REGNO (dreg);
3471 if (!(DF_REF_FLAGS (def)
3472 & (DF_REF_PARTIAL | DF_REF_CONDITIONAL)))
3474 if (bitmap_clear_bit (curr_regs_live, regno))
3475 change_pressure (regno, false);
3479 FOR_EACH_INSN_USE (use, insn)
3481 dreg = DF_REF_REAL_REG (use);
3482 gcc_assert (REG_P (dreg));
3483 regno = REGNO (dreg);
3484 if (bitmap_set_bit (curr_regs_live, regno))
3485 change_pressure (regno, true);
3489 BITMAP_FREE (curr_regs_live);
3491 if (dump_file == NULL)
3492 return;
3494 fprintf (dump_file, "\nRegister Pressure: \n");
3495 FOR_EACH_BB_FN (bb, cfun)
3497 fprintf (dump_file, " Basic block %d: \n", bb->index);
3498 for (i = 0; (int) i < ira_pressure_classes_num; i++)
3500 enum reg_class pressure_class;
3502 pressure_class = ira_pressure_classes[i];
3503 if (BB_DATA (bb)->max_reg_pressure[pressure_class] == 0)
3504 continue;
3506 fprintf (dump_file, " %s=%d\n", reg_class_names[pressure_class],
3507 BB_DATA (bb)->max_reg_pressure[pressure_class]);
3510 fprintf (dump_file, "\n");
3513 /* Top level routine to perform one code hoisting (aka unification) pass
3515 Return nonzero if a change was made. */
3517 static int
3518 one_code_hoisting_pass (void)
3520 int changed = 0;
3522 gcse_subst_count = 0;
3523 gcse_create_count = 0;
3525 /* Return if there's nothing to do, or it is too expensive. */
3526 if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1
3527 || is_too_expensive (_("GCSE disabled")))
3528 return 0;
3530 doing_code_hoisting_p = true;
3532 /* Calculate register pressure for each basic block. */
3533 if (flag_ira_hoist_pressure)
3535 regstat_init_n_sets_and_refs ();
3536 ira_set_pseudo_classes (false, dump_file);
3537 alloc_aux_for_blocks (sizeof (struct bb_data));
3538 calculate_bb_reg_pressure ();
3539 regstat_free_n_sets_and_refs ();
3542 /* We need alias. */
3543 init_alias_analysis ();
3545 bytes_used = 0;
3546 gcc_obstack_init (&gcse_obstack);
3547 alloc_gcse_mem ();
3549 alloc_hash_table (&expr_hash_table);
3550 compute_hash_table (&expr_hash_table);
3551 if (dump_file)
3552 dump_hash_table (dump_file, "Code Hosting Expressions", &expr_hash_table);
3554 if (expr_hash_table.n_elems > 0)
3556 alloc_code_hoist_mem (last_basic_block_for_fn (cfun),
3557 expr_hash_table.n_elems);
3558 compute_code_hoist_data ();
3559 changed = hoist_code ();
3560 free_code_hoist_mem ();
3563 if (flag_ira_hoist_pressure)
3565 free_aux_for_blocks ();
3566 free_reg_info ();
3568 free_hash_table (&expr_hash_table);
3569 free_gcse_mem ();
3570 obstack_free (&gcse_obstack, NULL);
3572 /* We are finished with alias. */
3573 end_alias_analysis ();
3575 if (dump_file)
3577 fprintf (dump_file, "HOIST of %s, %d basic blocks, %d bytes needed, ",
3578 current_function_name (), n_basic_blocks_for_fn (cfun),
3579 bytes_used);
3580 fprintf (dump_file, "%d substs, %d insns created\n",
3581 gcse_subst_count, gcse_create_count);
3584 doing_code_hoisting_p = false;
3586 return changed;
3589 /* Here we provide the things required to do store motion towards the exit.
3590 In order for this to be effective, gcse also needed to be taught how to
3591 move a load when it is killed only by a store to itself.
3593 int i;
3594 float a[10];
3596 void foo(float scale)
3598 for (i=0; i<10; i++)
3599 a[i] *= scale;
3602 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
3603 the load out since its live around the loop, and stored at the bottom
3604 of the loop.
3606 The 'Load Motion' referred to and implemented in this file is
3607 an enhancement to gcse which when using edge based LCM, recognizes
3608 this situation and allows gcse to move the load out of the loop.
3610 Once gcse has hoisted the load, store motion can then push this
3611 load towards the exit, and we end up with no loads or stores of 'i'
3612 in the loop. */
3614 /* This will search the ldst list for a matching expression. If it
3615 doesn't find one, we create one and initialize it. */
3617 static struct ls_expr *
3618 ldst_entry (rtx x)
3620 int do_not_record_p = 0;
3621 struct ls_expr * ptr;
3622 unsigned int hash;
3623 ls_expr **slot;
3624 struct ls_expr e;
3626 hash = hash_rtx (x, GET_MODE (x), &do_not_record_p,
3627 NULL, /*have_reg_qty=*/false);
3629 e.pattern = x;
3630 slot = pre_ldst_table->find_slot_with_hash (&e, hash, INSERT);
3631 if (*slot)
3632 return *slot;
3634 ptr = XNEW (struct ls_expr);
3636 ptr->next = pre_ldst_mems;
3637 ptr->expr = NULL;
3638 ptr->pattern = x;
3639 ptr->pattern_regs = NULL_RTX;
3640 ptr->loads = NULL;
3641 ptr->stores = NULL;
3642 ptr->reaching_reg = NULL_RTX;
3643 ptr->invalid = 0;
3644 ptr->index = 0;
3645 ptr->hash_index = hash;
3646 pre_ldst_mems = ptr;
3647 *slot = ptr;
3649 return ptr;
3652 /* Free up an individual ldst entry. */
3654 static void
3655 free_ldst_entry (struct ls_expr * ptr)
3657 free_INSN_LIST_list (& ptr->loads);
3658 free_INSN_LIST_list (& ptr->stores);
3660 free (ptr);
3663 /* Free up all memory associated with the ldst list. */
3665 static void
3666 free_ld_motion_mems (void)
3668 delete pre_ldst_table;
3669 pre_ldst_table = NULL;
3671 while (pre_ldst_mems)
3673 struct ls_expr * tmp = pre_ldst_mems;
3675 pre_ldst_mems = pre_ldst_mems->next;
3677 free_ldst_entry (tmp);
3680 pre_ldst_mems = NULL;
3683 /* Dump debugging info about the ldst list. */
3685 static void
3686 print_ldst_list (FILE * file)
3688 struct ls_expr * ptr;
3690 fprintf (file, "LDST list: \n");
3692 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
3694 fprintf (file, " Pattern (%3d): ", ptr->index);
3696 print_rtl (file, ptr->pattern);
3698 fprintf (file, "\n Loads : ");
3700 if (ptr->loads)
3701 print_rtl (file, ptr->loads);
3702 else
3703 fprintf (file, "(nil)");
3705 fprintf (file, "\n Stores : ");
3707 if (ptr->stores)
3708 print_rtl (file, ptr->stores);
3709 else
3710 fprintf (file, "(nil)");
3712 fprintf (file, "\n\n");
3715 fprintf (file, "\n");
3718 /* Returns 1 if X is in the list of ldst only expressions. */
3720 static struct ls_expr *
3721 find_rtx_in_ldst (rtx x)
3723 struct ls_expr e;
3724 ls_expr **slot;
3725 if (!pre_ldst_table)
3726 return NULL;
3727 e.pattern = x;
3728 slot = pre_ldst_table->find_slot (&e, NO_INSERT);
3729 if (!slot || (*slot)->invalid)
3730 return NULL;
3731 return *slot;
3734 /* Load Motion for loads which only kill themselves. */
3736 /* Return true if x, a MEM, is a simple access with no side effects.
3737 These are the types of loads we consider for the ld_motion list,
3738 otherwise we let the usual aliasing take care of it. */
3740 static int
3741 simple_mem (const_rtx x)
3743 if (MEM_VOLATILE_P (x))
3744 return 0;
3746 if (GET_MODE (x) == BLKmode)
3747 return 0;
3749 /* If we are handling exceptions, we must be careful with memory references
3750 that may trap. If we are not, the behavior is undefined, so we may just
3751 continue. */
3752 if (cfun->can_throw_non_call_exceptions && may_trap_p (x))
3753 return 0;
3755 if (side_effects_p (x))
3756 return 0;
3758 /* Do not consider function arguments passed on stack. */
3759 if (reg_mentioned_p (stack_pointer_rtx, x))
3760 return 0;
3762 if (flag_float_store && FLOAT_MODE_P (GET_MODE (x)))
3763 return 0;
3765 return 1;
3768 /* Make sure there isn't a buried reference in this pattern anywhere.
3769 If there is, invalidate the entry for it since we're not capable
3770 of fixing it up just yet.. We have to be sure we know about ALL
3771 loads since the aliasing code will allow all entries in the
3772 ld_motion list to not-alias itself. If we miss a load, we will get
3773 the wrong value since gcse might common it and we won't know to
3774 fix it up. */
3776 static void
3777 invalidate_any_buried_refs (rtx x)
3779 const char * fmt;
3780 int i, j;
3781 struct ls_expr * ptr;
3783 /* Invalidate it in the list. */
3784 if (MEM_P (x) && simple_mem (x))
3786 ptr = ldst_entry (x);
3787 ptr->invalid = 1;
3790 /* Recursively process the insn. */
3791 fmt = GET_RTX_FORMAT (GET_CODE (x));
3793 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3795 if (fmt[i] == 'e')
3796 invalidate_any_buried_refs (XEXP (x, i));
3797 else if (fmt[i] == 'E')
3798 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3799 invalidate_any_buried_refs (XVECEXP (x, i, j));
3803 /* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
3804 being defined as MEM loads and stores to symbols, with no side effects
3805 and no registers in the expression. For a MEM destination, we also
3806 check that the insn is still valid if we replace the destination with a
3807 REG, as is done in update_ld_motion_stores. If there are any uses/defs
3808 which don't match this criteria, they are invalidated and trimmed out
3809 later. */
3811 static void
3812 compute_ld_motion_mems (void)
3814 struct ls_expr * ptr;
3815 basic_block bb;
3816 rtx_insn *insn;
3818 pre_ldst_mems = NULL;
3819 pre_ldst_table = new hash_table<pre_ldst_expr_hasher> (13);
3821 FOR_EACH_BB_FN (bb, cfun)
3823 FOR_BB_INSNS (bb, insn)
3825 if (NONDEBUG_INSN_P (insn))
3827 if (GET_CODE (PATTERN (insn)) == SET)
3829 rtx src = SET_SRC (PATTERN (insn));
3830 rtx dest = SET_DEST (PATTERN (insn));
3831 rtx note = find_reg_equal_equiv_note (insn);
3832 rtx src_eq;
3834 /* Check for a simple LOAD... */
3835 if (MEM_P (src) && simple_mem (src))
3837 ptr = ldst_entry (src);
3838 if (REG_P (dest))
3839 ptr->loads = alloc_INSN_LIST (insn, ptr->loads);
3840 else
3841 ptr->invalid = 1;
3843 else
3845 /* Make sure there isn't a buried load somewhere. */
3846 invalidate_any_buried_refs (src);
3849 if (note != 0 && REG_NOTE_KIND (note) == REG_EQUAL)
3850 src_eq = XEXP (note, 0);
3851 else
3852 src_eq = NULL_RTX;
3854 if (src_eq != NULL_RTX
3855 && !(MEM_P (src_eq) && simple_mem (src_eq)))
3856 invalidate_any_buried_refs (src_eq);
3858 /* Check for stores. Don't worry about aliased ones, they
3859 will block any movement we might do later. We only care
3860 about this exact pattern since those are the only
3861 circumstance that we will ignore the aliasing info. */
3862 if (MEM_P (dest) && simple_mem (dest))
3864 ptr = ldst_entry (dest);
3866 if (! MEM_P (src)
3867 && GET_CODE (src) != ASM_OPERANDS
3868 /* Check for REG manually since want_to_gcse_p
3869 returns 0 for all REGs. */
3870 && can_assign_to_reg_without_clobbers_p (src))
3871 ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
3872 else
3873 ptr->invalid = 1;
3876 else
3877 invalidate_any_buried_refs (PATTERN (insn));
3883 /* Remove any references that have been either invalidated or are not in the
3884 expression list for pre gcse. */
3886 static void
3887 trim_ld_motion_mems (void)
3889 struct ls_expr * * last = & pre_ldst_mems;
3890 struct ls_expr * ptr = pre_ldst_mems;
3892 while (ptr != NULL)
3894 struct gcse_expr * expr;
3896 /* Delete if entry has been made invalid. */
3897 if (! ptr->invalid)
3899 /* Delete if we cannot find this mem in the expression list. */
3900 unsigned int hash = ptr->hash_index % expr_hash_table.size;
3902 for (expr = expr_hash_table.table[hash];
3903 expr != NULL;
3904 expr = expr->next_same_hash)
3905 if (expr_equiv_p (expr->expr, ptr->pattern))
3906 break;
3908 else
3909 expr = (struct gcse_expr *) 0;
3911 if (expr)
3913 /* Set the expression field if we are keeping it. */
3914 ptr->expr = expr;
3915 last = & ptr->next;
3916 ptr = ptr->next;
3918 else
3920 *last = ptr->next;
3921 pre_ldst_table->remove_elt_with_hash (ptr, ptr->hash_index);
3922 free_ldst_entry (ptr);
3923 ptr = * last;
3927 /* Show the world what we've found. */
3928 if (dump_file && pre_ldst_mems != NULL)
3929 print_ldst_list (dump_file);
3932 /* This routine will take an expression which we are replacing with
3933 a reaching register, and update any stores that are needed if
3934 that expression is in the ld_motion list. Stores are updated by
3935 copying their SRC to the reaching register, and then storing
3936 the reaching register into the store location. These keeps the
3937 correct value in the reaching register for the loads. */
3939 static void
3940 update_ld_motion_stores (struct gcse_expr * expr)
3942 struct ls_expr * mem_ptr;
3944 if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
3946 /* We can try to find just the REACHED stores, but is shouldn't
3947 matter to set the reaching reg everywhere... some might be
3948 dead and should be eliminated later. */
3950 /* We replace (set mem expr) with (set reg expr) (set mem reg)
3951 where reg is the reaching reg used in the load. We checked in
3952 compute_ld_motion_mems that we can replace (set mem expr) with
3953 (set reg expr) in that insn. */
3954 rtx list = mem_ptr->stores;
3956 for ( ; list != NULL_RTX; list = XEXP (list, 1))
3958 rtx_insn *insn = as_a <rtx_insn *> (XEXP (list, 0));
3959 rtx pat = PATTERN (insn);
3960 rtx src = SET_SRC (pat);
3961 rtx reg = expr->reaching_reg;
3963 /* If we've already copied it, continue. */
3964 if (expr->reaching_reg == src)
3965 continue;
3967 if (dump_file)
3969 fprintf (dump_file, "PRE: store updated with reaching reg ");
3970 print_rtl (dump_file, reg);
3971 fprintf (dump_file, ":\n ");
3972 print_inline_rtx (dump_file, insn, 8);
3973 fprintf (dump_file, "\n");
3976 rtx_insn *copy = gen_move_insn (reg, copy_rtx (SET_SRC (pat)));
3977 emit_insn_before (copy, insn);
3978 SET_SRC (pat) = reg;
3979 df_insn_rescan (insn);
3981 /* un-recognize this pattern since it's probably different now. */
3982 INSN_CODE (insn) = -1;
3983 gcse_create_count++;
3988 /* Return true if the graph is too expensive to optimize. PASS is the
3989 optimization about to be performed. */
3991 static bool
3992 is_too_expensive (const char *pass)
3994 /* Trying to perform global optimizations on flow graphs which have
3995 a high connectivity will take a long time and is unlikely to be
3996 particularly useful.
3998 In normal circumstances a cfg should have about twice as many
3999 edges as blocks. But we do not want to punish small functions
4000 which have a couple switch statements. Rather than simply
4001 threshold the number of blocks, uses something with a more
4002 graceful degradation. */
4003 if (n_edges_for_fn (cfun) > 20000 + n_basic_blocks_for_fn (cfun) * 4)
4005 warning (OPT_Wdisabled_optimization,
4006 "%s: %d basic blocks and %d edges/basic block",
4007 pass, n_basic_blocks_for_fn (cfun),
4008 n_edges_for_fn (cfun) / n_basic_blocks_for_fn (cfun));
4010 return true;
4013 /* If allocating memory for the dataflow bitmaps would take up too much
4014 storage it's better just to disable the optimization. */
4015 if ((n_basic_blocks_for_fn (cfun)
4016 * SBITMAP_SET_SIZE (max_reg_num ())
4017 * sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY)
4019 warning (OPT_Wdisabled_optimization,
4020 "%s: %d basic blocks and %d registers",
4021 pass, n_basic_blocks_for_fn (cfun), max_reg_num ());
4023 return true;
4026 return false;
4029 static unsigned int
4030 execute_rtl_pre (void)
4032 int changed;
4033 delete_unreachable_blocks ();
4034 df_analyze ();
4035 changed = one_pre_gcse_pass ();
4036 flag_rerun_cse_after_global_opts |= changed;
4037 if (changed)
4038 cleanup_cfg (0);
4039 return 0;
4042 static unsigned int
4043 execute_rtl_hoist (void)
4045 int changed;
4046 delete_unreachable_blocks ();
4047 df_analyze ();
4048 changed = one_code_hoisting_pass ();
4049 flag_rerun_cse_after_global_opts |= changed;
4050 if (changed)
4051 cleanup_cfg (0);
4052 return 0;
4055 namespace {
4057 const pass_data pass_data_rtl_pre =
4059 RTL_PASS, /* type */
4060 "rtl pre", /* name */
4061 OPTGROUP_NONE, /* optinfo_flags */
4062 TV_PRE, /* tv_id */
4063 PROP_cfglayout, /* properties_required */
4064 0, /* properties_provided */
4065 0, /* properties_destroyed */
4066 0, /* todo_flags_start */
4067 TODO_df_finish, /* todo_flags_finish */
4070 class pass_rtl_pre : public rtl_opt_pass
4072 public:
4073 pass_rtl_pre (gcc::context *ctxt)
4074 : rtl_opt_pass (pass_data_rtl_pre, ctxt)
4077 /* opt_pass methods: */
4078 virtual bool gate (function *);
4079 virtual unsigned int execute (function *) { return execute_rtl_pre (); }
4081 }; // class pass_rtl_pre
4083 /* We do not construct an accurate cfg in functions which call
4084 setjmp, so none of these passes runs if the function calls
4085 setjmp.
4086 FIXME: Should just handle setjmp via REG_SETJMP notes. */
4088 bool
4089 pass_rtl_pre::gate (function *fun)
4091 return optimize > 0 && flag_gcse
4092 && !fun->calls_setjmp
4093 && optimize_function_for_speed_p (fun)
4094 && dbg_cnt (pre);
4097 } // anon namespace
4099 rtl_opt_pass *
4100 make_pass_rtl_pre (gcc::context *ctxt)
4102 return new pass_rtl_pre (ctxt);
4105 namespace {
4107 const pass_data pass_data_rtl_hoist =
4109 RTL_PASS, /* type */
4110 "hoist", /* name */
4111 OPTGROUP_NONE, /* optinfo_flags */
4112 TV_HOIST, /* tv_id */
4113 PROP_cfglayout, /* properties_required */
4114 0, /* properties_provided */
4115 0, /* properties_destroyed */
4116 0, /* todo_flags_start */
4117 TODO_df_finish, /* todo_flags_finish */
4120 class pass_rtl_hoist : public rtl_opt_pass
4122 public:
4123 pass_rtl_hoist (gcc::context *ctxt)
4124 : rtl_opt_pass (pass_data_rtl_hoist, ctxt)
4127 /* opt_pass methods: */
4128 virtual bool gate (function *);
4129 virtual unsigned int execute (function *) { return execute_rtl_hoist (); }
4131 }; // class pass_rtl_hoist
4133 bool
4134 pass_rtl_hoist::gate (function *)
4136 return optimize > 0 && flag_gcse
4137 && !cfun->calls_setjmp
4138 /* It does not make sense to run code hoisting unless we are optimizing
4139 for code size -- it rarely makes programs faster, and can make then
4140 bigger if we did PRE (when optimizing for space, we don't run PRE). */
4141 && optimize_function_for_size_p (cfun)
4142 && dbg_cnt (hoist);
4145 } // anon namespace
4147 rtl_opt_pass *
4148 make_pass_rtl_hoist (gcc::context *ctxt)
4150 return new pass_rtl_hoist (ctxt);
4153 /* Reset all state within gcse.c so that we can rerun the compiler
4154 within the same process. For use by toplev::finalize. */
4156 void
4157 gcse_c_finalize (void)
4159 test_insn = NULL;
4162 #include "gt-gcse.h"