2010-11-23 Tobias Burnus <burnus@net-b.de>
[official-gcc.git] / gcc / tree-ssa-ccp.c
blob6e19d13016999f2a2b430508128a8df6069484e2
1 /* Conditional constant propagation pass for the GNU compiler.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010 Free Software Foundation, Inc.
4 Adapted from original RTL SSA-CCP by Daniel Berlin <dberlin@dberlin.org>
5 Adapted to GIMPLE trees by Diego Novillo <dnovillo@redhat.com>
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it
10 under the terms of the GNU General Public License as published by the
11 Free Software Foundation; either version 3, or (at your option) any
12 later version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT
15 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 /* Conditional constant propagation (CCP) is based on the SSA
24 propagation engine (tree-ssa-propagate.c). Constant assignments of
25 the form VAR = CST are propagated from the assignments into uses of
26 VAR, which in turn may generate new constants. The simulation uses
27 a four level lattice to keep track of constant values associated
28 with SSA names. Given an SSA name V_i, it may take one of the
29 following values:
31 UNINITIALIZED -> the initial state of the value. This value
32 is replaced with a correct initial value
33 the first time the value is used, so the
34 rest of the pass does not need to care about
35 it. Using this value simplifies initialization
36 of the pass, and prevents us from needlessly
37 scanning statements that are never reached.
39 UNDEFINED -> V_i is a local variable whose definition
40 has not been processed yet. Therefore we
41 don't yet know if its value is a constant
42 or not.
44 CONSTANT -> V_i has been found to hold a constant
45 value C.
47 VARYING -> V_i cannot take a constant value, or if it
48 does, it is not possible to determine it
49 at compile time.
51 The core of SSA-CCP is in ccp_visit_stmt and ccp_visit_phi_node:
53 1- In ccp_visit_stmt, we are interested in assignments whose RHS
54 evaluates into a constant and conditional jumps whose predicate
55 evaluates into a boolean true or false. When an assignment of
56 the form V_i = CONST is found, V_i's lattice value is set to
57 CONSTANT and CONST is associated with it. This causes the
58 propagation engine to add all the SSA edges coming out the
59 assignment into the worklists, so that statements that use V_i
60 can be visited.
62 If the statement is a conditional with a constant predicate, we
63 mark the outgoing edges as executable or not executable
64 depending on the predicate's value. This is then used when
65 visiting PHI nodes to know when a PHI argument can be ignored.
68 2- In ccp_visit_phi_node, if all the PHI arguments evaluate to the
69 same constant C, then the LHS of the PHI is set to C. This
70 evaluation is known as the "meet operation". Since one of the
71 goals of this evaluation is to optimistically return constant
72 values as often as possible, it uses two main short cuts:
74 - If an argument is flowing in through a non-executable edge, it
75 is ignored. This is useful in cases like this:
77 if (PRED)
78 a_9 = 3;
79 else
80 a_10 = 100;
81 a_11 = PHI (a_9, a_10)
83 If PRED is known to always evaluate to false, then we can
84 assume that a_11 will always take its value from a_10, meaning
85 that instead of consider it VARYING (a_9 and a_10 have
86 different values), we can consider it CONSTANT 100.
88 - If an argument has an UNDEFINED value, then it does not affect
89 the outcome of the meet operation. If a variable V_i has an
90 UNDEFINED value, it means that either its defining statement
91 hasn't been visited yet or V_i has no defining statement, in
92 which case the original symbol 'V' is being used
93 uninitialized. Since 'V' is a local variable, the compiler
94 may assume any initial value for it.
97 After propagation, every variable V_i that ends up with a lattice
98 value of CONSTANT will have the associated constant value in the
99 array CONST_VAL[i].VALUE. That is fed into substitute_and_fold for
100 final substitution and folding.
102 References:
104 Constant propagation with conditional branches,
105 Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
107 Building an Optimizing Compiler,
108 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
110 Advanced Compiler Design and Implementation,
111 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
113 #include "config.h"
114 #include "system.h"
115 #include "coretypes.h"
116 #include "tm.h"
117 #include "tree.h"
118 #include "flags.h"
119 #include "tm_p.h"
120 #include "basic-block.h"
121 #include "output.h"
122 #include "function.h"
123 #include "tree-pretty-print.h"
124 #include "gimple-pretty-print.h"
125 #include "timevar.h"
126 #include "tree-dump.h"
127 #include "tree-flow.h"
128 #include "tree-pass.h"
129 #include "tree-ssa-propagate.h"
130 #include "value-prof.h"
131 #include "langhooks.h"
132 #include "target.h"
133 #include "diagnostic-core.h"
134 #include "toplev.h"
135 #include "dbgcnt.h"
138 /* Possible lattice values. */
139 typedef enum
141 UNINITIALIZED,
142 UNDEFINED,
143 CONSTANT,
144 VARYING
145 } ccp_lattice_t;
147 struct prop_value_d {
148 /* Lattice value. */
149 ccp_lattice_t lattice_val;
151 /* Propagated value. */
152 tree value;
154 /* Mask that applies to the propagated value during CCP. For
155 X with a CONSTANT lattice value X & ~mask == value & ~mask. */
156 double_int mask;
159 typedef struct prop_value_d prop_value_t;
161 /* Array of propagated constant values. After propagation,
162 CONST_VAL[I].VALUE holds the constant value for SSA_NAME(I). If
163 the constant is held in an SSA name representing a memory store
164 (i.e., a VDEF), CONST_VAL[I].MEM_REF will contain the actual
165 memory reference used to store (i.e., the LHS of the assignment
166 doing the store). */
167 static prop_value_t *const_val;
169 static void canonicalize_float_value (prop_value_t *);
170 static bool ccp_fold_stmt (gimple_stmt_iterator *);
171 static tree fold_ctor_reference (tree type, tree ctor,
172 unsigned HOST_WIDE_INT offset,
173 unsigned HOST_WIDE_INT size);
175 /* Dump constant propagation value VAL to file OUTF prefixed by PREFIX. */
177 static void
178 dump_lattice_value (FILE *outf, const char *prefix, prop_value_t val)
180 switch (val.lattice_val)
182 case UNINITIALIZED:
183 fprintf (outf, "%sUNINITIALIZED", prefix);
184 break;
185 case UNDEFINED:
186 fprintf (outf, "%sUNDEFINED", prefix);
187 break;
188 case VARYING:
189 fprintf (outf, "%sVARYING", prefix);
190 break;
191 case CONSTANT:
192 fprintf (outf, "%sCONSTANT ", prefix);
193 if (TREE_CODE (val.value) != INTEGER_CST
194 || double_int_zero_p (val.mask))
195 print_generic_expr (outf, val.value, dump_flags);
196 else
198 double_int cval = double_int_and_not (tree_to_double_int (val.value),
199 val.mask);
200 fprintf (outf, "%sCONSTANT " HOST_WIDE_INT_PRINT_DOUBLE_HEX,
201 prefix, cval.high, cval.low);
202 fprintf (outf, " (" HOST_WIDE_INT_PRINT_DOUBLE_HEX ")",
203 val.mask.high, val.mask.low);
205 break;
206 default:
207 gcc_unreachable ();
212 /* Print lattice value VAL to stderr. */
214 void debug_lattice_value (prop_value_t val);
216 DEBUG_FUNCTION void
217 debug_lattice_value (prop_value_t val)
219 dump_lattice_value (stderr, "", val);
220 fprintf (stderr, "\n");
224 /* Compute a default value for variable VAR and store it in the
225 CONST_VAL array. The following rules are used to get default
226 values:
228 1- Global and static variables that are declared constant are
229 considered CONSTANT.
231 2- Any other value is considered UNDEFINED. This is useful when
232 considering PHI nodes. PHI arguments that are undefined do not
233 change the constant value of the PHI node, which allows for more
234 constants to be propagated.
236 3- Variables defined by statements other than assignments and PHI
237 nodes are considered VARYING.
239 4- Initial values of variables that are not GIMPLE registers are
240 considered VARYING. */
242 static prop_value_t
243 get_default_value (tree var)
245 tree sym = SSA_NAME_VAR (var);
246 prop_value_t val = { UNINITIALIZED, NULL_TREE, { 0, 0 } };
247 gimple stmt;
249 stmt = SSA_NAME_DEF_STMT (var);
251 if (gimple_nop_p (stmt))
253 /* Variables defined by an empty statement are those used
254 before being initialized. If VAR is a local variable, we
255 can assume initially that it is UNDEFINED, otherwise we must
256 consider it VARYING. */
257 if (is_gimple_reg (sym)
258 && TREE_CODE (sym) == VAR_DECL)
259 val.lattice_val = UNDEFINED;
260 else
262 val.lattice_val = VARYING;
263 val.mask = double_int_minus_one;
266 else if (is_gimple_assign (stmt)
267 /* Value-returning GIMPLE_CALL statements assign to
268 a variable, and are treated similarly to GIMPLE_ASSIGN. */
269 || (is_gimple_call (stmt)
270 && gimple_call_lhs (stmt) != NULL_TREE)
271 || gimple_code (stmt) == GIMPLE_PHI)
273 tree cst;
274 if (gimple_assign_single_p (stmt)
275 && DECL_P (gimple_assign_rhs1 (stmt))
276 && (cst = get_symbol_constant_value (gimple_assign_rhs1 (stmt))))
278 val.lattice_val = CONSTANT;
279 val.value = cst;
281 else
282 /* Any other variable defined by an assignment or a PHI node
283 is considered UNDEFINED. */
284 val.lattice_val = UNDEFINED;
286 else
288 /* Otherwise, VAR will never take on a constant value. */
289 val.lattice_val = VARYING;
290 val.mask = double_int_minus_one;
293 return val;
297 /* Get the constant value associated with variable VAR. */
299 static inline prop_value_t *
300 get_value (tree var)
302 prop_value_t *val;
304 if (const_val == NULL)
305 return NULL;
307 val = &const_val[SSA_NAME_VERSION (var)];
308 if (val->lattice_val == UNINITIALIZED)
309 *val = get_default_value (var);
311 canonicalize_float_value (val);
313 return val;
316 /* Return the constant tree value associated with VAR. */
318 static inline tree
319 get_constant_value (tree var)
321 prop_value_t *val;
322 if (TREE_CODE (var) != SSA_NAME)
324 if (is_gimple_min_invariant (var))
325 return var;
326 return NULL_TREE;
328 val = get_value (var);
329 if (val
330 && val->lattice_val == CONSTANT
331 && (TREE_CODE (val->value) != INTEGER_CST
332 || double_int_zero_p (val->mask)))
333 return val->value;
334 return NULL_TREE;
337 /* Sets the value associated with VAR to VARYING. */
339 static inline void
340 set_value_varying (tree var)
342 prop_value_t *val = &const_val[SSA_NAME_VERSION (var)];
344 val->lattice_val = VARYING;
345 val->value = NULL_TREE;
346 val->mask = double_int_minus_one;
349 /* For float types, modify the value of VAL to make ccp work correctly
350 for non-standard values (-0, NaN):
352 If HONOR_SIGNED_ZEROS is false, and VAL = -0, we canonicalize it to 0.
353 If HONOR_NANS is false, and VAL is NaN, we canonicalize it to UNDEFINED.
354 This is to fix the following problem (see PR 29921): Suppose we have
356 x = 0.0 * y
358 and we set value of y to NaN. This causes value of x to be set to NaN.
359 When we later determine that y is in fact VARYING, fold uses the fact
360 that HONOR_NANS is false, and we try to change the value of x to 0,
361 causing an ICE. With HONOR_NANS being false, the real appearance of
362 NaN would cause undefined behavior, though, so claiming that y (and x)
363 are UNDEFINED initially is correct. */
365 static void
366 canonicalize_float_value (prop_value_t *val)
368 enum machine_mode mode;
369 tree type;
370 REAL_VALUE_TYPE d;
372 if (val->lattice_val != CONSTANT
373 || TREE_CODE (val->value) != REAL_CST)
374 return;
376 d = TREE_REAL_CST (val->value);
377 type = TREE_TYPE (val->value);
378 mode = TYPE_MODE (type);
380 if (!HONOR_SIGNED_ZEROS (mode)
381 && REAL_VALUE_MINUS_ZERO (d))
383 val->value = build_real (type, dconst0);
384 return;
387 if (!HONOR_NANS (mode)
388 && REAL_VALUE_ISNAN (d))
390 val->lattice_val = UNDEFINED;
391 val->value = NULL;
392 return;
396 /* Return whether the lattice transition is valid. */
398 static bool
399 valid_lattice_transition (prop_value_t old_val, prop_value_t new_val)
401 /* Lattice transitions must always be monotonically increasing in
402 value. */
403 if (old_val.lattice_val < new_val.lattice_val)
404 return true;
406 if (old_val.lattice_val != new_val.lattice_val)
407 return false;
409 if (!old_val.value && !new_val.value)
410 return true;
412 /* Now both lattice values are CONSTANT. */
414 /* Allow transitioning from &x to &x & ~3. */
415 if (TREE_CODE (old_val.value) != INTEGER_CST
416 && TREE_CODE (new_val.value) == INTEGER_CST)
417 return true;
419 /* Bit-lattices have to agree in the still valid bits. */
420 if (TREE_CODE (old_val.value) == INTEGER_CST
421 && TREE_CODE (new_val.value) == INTEGER_CST)
422 return double_int_equal_p
423 (double_int_and_not (tree_to_double_int (old_val.value),
424 new_val.mask),
425 double_int_and_not (tree_to_double_int (new_val.value),
426 new_val.mask));
428 /* Otherwise constant values have to agree. */
429 return operand_equal_p (old_val.value, new_val.value, 0);
432 /* Set the value for variable VAR to NEW_VAL. Return true if the new
433 value is different from VAR's previous value. */
435 static bool
436 set_lattice_value (tree var, prop_value_t new_val)
438 /* We can deal with old UNINITIALIZED values just fine here. */
439 prop_value_t *old_val = &const_val[SSA_NAME_VERSION (var)];
441 canonicalize_float_value (&new_val);
443 /* We have to be careful to not go up the bitwise lattice
444 represented by the mask.
445 ??? This doesn't seem to be the best place to enforce this. */
446 if (new_val.lattice_val == CONSTANT
447 && old_val->lattice_val == CONSTANT
448 && TREE_CODE (new_val.value) == INTEGER_CST
449 && TREE_CODE (old_val->value) == INTEGER_CST)
451 double_int diff;
452 diff = double_int_xor (tree_to_double_int (new_val.value),
453 tree_to_double_int (old_val->value));
454 new_val.mask = double_int_ior (new_val.mask,
455 double_int_ior (old_val->mask, diff));
458 gcc_assert (valid_lattice_transition (*old_val, new_val));
460 /* If *OLD_VAL and NEW_VAL are the same, return false to inform the
461 caller that this was a non-transition. */
462 if (old_val->lattice_val != new_val.lattice_val
463 || (new_val.lattice_val == CONSTANT
464 && TREE_CODE (new_val.value) == INTEGER_CST
465 && (TREE_CODE (old_val->value) != INTEGER_CST
466 || !double_int_equal_p (new_val.mask, old_val->mask))))
468 /* ??? We would like to delay creation of INTEGER_CSTs from
469 partially constants here. */
471 if (dump_file && (dump_flags & TDF_DETAILS))
473 dump_lattice_value (dump_file, "Lattice value changed to ", new_val);
474 fprintf (dump_file, ". Adding SSA edges to worklist.\n");
477 *old_val = new_val;
479 gcc_assert (new_val.lattice_val != UNINITIALIZED);
480 return true;
483 return false;
486 static prop_value_t get_value_for_expr (tree, bool);
487 static prop_value_t bit_value_binop (enum tree_code, tree, tree, tree);
488 static void bit_value_binop_1 (enum tree_code, tree, double_int *, double_int *,
489 tree, double_int, double_int,
490 tree, double_int, double_int);
492 /* Return a double_int that can be used for bitwise simplifications
493 from VAL. */
495 static double_int
496 value_to_double_int (prop_value_t val)
498 if (val.value
499 && TREE_CODE (val.value) == INTEGER_CST)
500 return tree_to_double_int (val.value);
501 else
502 return double_int_zero;
505 /* Return the value for the address expression EXPR based on alignment
506 information. */
508 static prop_value_t
509 get_value_from_alignment (tree expr)
511 prop_value_t val;
512 HOST_WIDE_INT bitsize, bitpos;
513 tree base, offset;
514 enum machine_mode mode;
515 int align;
517 gcc_assert (TREE_CODE (expr) == ADDR_EXPR);
519 base = get_inner_reference (TREE_OPERAND (expr, 0),
520 &bitsize, &bitpos, &offset,
521 &mode, &align, &align, false);
522 if (TREE_CODE (base) == MEM_REF)
523 val = bit_value_binop (PLUS_EXPR, TREE_TYPE (expr),
524 TREE_OPERAND (base, 0), TREE_OPERAND (base, 1));
525 else if (base
526 && ((align = get_object_alignment (base, BIGGEST_ALIGNMENT))
527 > BITS_PER_UNIT))
529 val.lattice_val = CONSTANT;
530 /* We assume pointers are zero-extended. */
531 val.mask = double_int_and_not
532 (double_int_mask (TYPE_PRECISION (TREE_TYPE (expr))),
533 uhwi_to_double_int (align / BITS_PER_UNIT - 1));
534 val.value = build_int_cst (TREE_TYPE (expr), 0);
536 else
538 val.lattice_val = VARYING;
539 val.mask = double_int_minus_one;
540 val.value = NULL_TREE;
542 if (bitpos != 0)
544 double_int value, mask;
545 bit_value_binop_1 (PLUS_EXPR, TREE_TYPE (expr), &value, &mask,
546 TREE_TYPE (expr), value_to_double_int (val), val.mask,
547 TREE_TYPE (expr),
548 shwi_to_double_int (bitpos / BITS_PER_UNIT),
549 double_int_zero);
550 val.lattice_val = double_int_minus_one_p (mask) ? VARYING : CONSTANT;
551 val.mask = mask;
552 if (val.lattice_val == CONSTANT)
553 val.value = double_int_to_tree (TREE_TYPE (expr), value);
554 else
555 val.value = NULL_TREE;
557 /* ??? We should handle i * 4 and more complex expressions from
558 the offset, possibly by just expanding get_value_for_expr. */
559 if (offset != NULL_TREE)
561 double_int value, mask;
562 prop_value_t oval = get_value_for_expr (offset, true);
563 bit_value_binop_1 (PLUS_EXPR, TREE_TYPE (expr), &value, &mask,
564 TREE_TYPE (expr), value_to_double_int (val), val.mask,
565 TREE_TYPE (expr), value_to_double_int (oval),
566 oval.mask);
567 val.mask = mask;
568 if (double_int_minus_one_p (mask))
570 val.lattice_val = VARYING;
571 val.value = NULL_TREE;
573 else
575 val.lattice_val = CONSTANT;
576 val.value = double_int_to_tree (TREE_TYPE (expr), value);
580 return val;
583 /* Return the value for the tree operand EXPR. If FOR_BITS_P is true
584 return constant bits extracted from alignment information for
585 invariant addresses. */
587 static prop_value_t
588 get_value_for_expr (tree expr, bool for_bits_p)
590 prop_value_t val;
592 if (TREE_CODE (expr) == SSA_NAME)
594 val = *get_value (expr);
595 if (for_bits_p
596 && val.lattice_val == CONSTANT
597 && TREE_CODE (val.value) == ADDR_EXPR)
598 val = get_value_from_alignment (val.value);
600 else if (is_gimple_min_invariant (expr)
601 && (!for_bits_p || TREE_CODE (expr) != ADDR_EXPR))
603 val.lattice_val = CONSTANT;
604 val.value = expr;
605 val.mask = double_int_zero;
606 canonicalize_float_value (&val);
608 else if (TREE_CODE (expr) == ADDR_EXPR)
609 val = get_value_from_alignment (expr);
610 else
612 val.lattice_val = VARYING;
613 val.mask = double_int_minus_one;
614 val.value = NULL_TREE;
616 return val;
619 /* Return the likely CCP lattice value for STMT.
621 If STMT has no operands, then return CONSTANT.
623 Else if undefinedness of operands of STMT cause its value to be
624 undefined, then return UNDEFINED.
626 Else if any operands of STMT are constants, then return CONSTANT.
628 Else return VARYING. */
630 static ccp_lattice_t
631 likely_value (gimple stmt)
633 bool has_constant_operand, has_undefined_operand, all_undefined_operands;
634 tree use;
635 ssa_op_iter iter;
636 unsigned i;
638 enum gimple_code code = gimple_code (stmt);
640 /* This function appears to be called only for assignments, calls,
641 conditionals, and switches, due to the logic in visit_stmt. */
642 gcc_assert (code == GIMPLE_ASSIGN
643 || code == GIMPLE_CALL
644 || code == GIMPLE_COND
645 || code == GIMPLE_SWITCH);
647 /* If the statement has volatile operands, it won't fold to a
648 constant value. */
649 if (gimple_has_volatile_ops (stmt))
650 return VARYING;
652 /* Arrive here for more complex cases. */
653 has_constant_operand = false;
654 has_undefined_operand = false;
655 all_undefined_operands = true;
656 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
658 prop_value_t *val = get_value (use);
660 if (val->lattice_val == UNDEFINED)
661 has_undefined_operand = true;
662 else
663 all_undefined_operands = false;
665 if (val->lattice_val == CONSTANT)
666 has_constant_operand = true;
669 /* There may be constants in regular rhs operands. For calls we
670 have to ignore lhs, fndecl and static chain, otherwise only
671 the lhs. */
672 for (i = (is_gimple_call (stmt) ? 2 : 0) + gimple_has_lhs (stmt);
673 i < gimple_num_ops (stmt); ++i)
675 tree op = gimple_op (stmt, i);
676 if (!op || TREE_CODE (op) == SSA_NAME)
677 continue;
678 if (is_gimple_min_invariant (op))
679 has_constant_operand = true;
682 if (has_constant_operand)
683 all_undefined_operands = false;
685 /* If the operation combines operands like COMPLEX_EXPR make sure to
686 not mark the result UNDEFINED if only one part of the result is
687 undefined. */
688 if (has_undefined_operand && all_undefined_operands)
689 return UNDEFINED;
690 else if (code == GIMPLE_ASSIGN && has_undefined_operand)
692 switch (gimple_assign_rhs_code (stmt))
694 /* Unary operators are handled with all_undefined_operands. */
695 case PLUS_EXPR:
696 case MINUS_EXPR:
697 case POINTER_PLUS_EXPR:
698 /* Not MIN_EXPR, MAX_EXPR. One VARYING operand may be selected.
699 Not bitwise operators, one VARYING operand may specify the
700 result completely. Not logical operators for the same reason.
701 Not COMPLEX_EXPR as one VARYING operand makes the result partly
702 not UNDEFINED. Not *DIV_EXPR, comparisons and shifts because
703 the undefined operand may be promoted. */
704 return UNDEFINED;
706 default:
710 /* If there was an UNDEFINED operand but the result may be not UNDEFINED
711 fall back to VARYING even if there were CONSTANT operands. */
712 if (has_undefined_operand)
713 return VARYING;
715 /* We do not consider virtual operands here -- load from read-only
716 memory may have only VARYING virtual operands, but still be
717 constant. */
718 if (has_constant_operand
719 || gimple_references_memory_p (stmt))
720 return CONSTANT;
722 return VARYING;
725 /* Returns true if STMT cannot be constant. */
727 static bool
728 surely_varying_stmt_p (gimple stmt)
730 /* If the statement has operands that we cannot handle, it cannot be
731 constant. */
732 if (gimple_has_volatile_ops (stmt))
733 return true;
735 /* If it is a call and does not return a value or is not a
736 builtin and not an indirect call, it is varying. */
737 if (is_gimple_call (stmt))
739 tree fndecl;
740 if (!gimple_call_lhs (stmt)
741 || ((fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
742 && !DECL_BUILT_IN (fndecl)))
743 return true;
746 /* Any other store operation is not interesting. */
747 else if (gimple_vdef (stmt))
748 return true;
750 /* Anything other than assignments and conditional jumps are not
751 interesting for CCP. */
752 if (gimple_code (stmt) != GIMPLE_ASSIGN
753 && gimple_code (stmt) != GIMPLE_COND
754 && gimple_code (stmt) != GIMPLE_SWITCH
755 && gimple_code (stmt) != GIMPLE_CALL)
756 return true;
758 return false;
761 /* Initialize local data structures for CCP. */
763 static void
764 ccp_initialize (void)
766 basic_block bb;
768 const_val = XCNEWVEC (prop_value_t, num_ssa_names);
770 /* Initialize simulation flags for PHI nodes and statements. */
771 FOR_EACH_BB (bb)
773 gimple_stmt_iterator i;
775 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
777 gimple stmt = gsi_stmt (i);
778 bool is_varying;
780 /* If the statement is a control insn, then we do not
781 want to avoid simulating the statement once. Failure
782 to do so means that those edges will never get added. */
783 if (stmt_ends_bb_p (stmt))
784 is_varying = false;
785 else
786 is_varying = surely_varying_stmt_p (stmt);
788 if (is_varying)
790 tree def;
791 ssa_op_iter iter;
793 /* If the statement will not produce a constant, mark
794 all its outputs VARYING. */
795 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
796 set_value_varying (def);
798 prop_set_simulate_again (stmt, !is_varying);
802 /* Now process PHI nodes. We never clear the simulate_again flag on
803 phi nodes, since we do not know which edges are executable yet,
804 except for phi nodes for virtual operands when we do not do store ccp. */
805 FOR_EACH_BB (bb)
807 gimple_stmt_iterator i;
809 for (i = gsi_start_phis (bb); !gsi_end_p (i); gsi_next (&i))
811 gimple phi = gsi_stmt (i);
813 if (!is_gimple_reg (gimple_phi_result (phi)))
814 prop_set_simulate_again (phi, false);
815 else
816 prop_set_simulate_again (phi, true);
821 /* Debug count support. Reset the values of ssa names
822 VARYING when the total number ssa names analyzed is
823 beyond the debug count specified. */
825 static void
826 do_dbg_cnt (void)
828 unsigned i;
829 for (i = 0; i < num_ssa_names; i++)
831 if (!dbg_cnt (ccp))
833 const_val[i].lattice_val = VARYING;
834 const_val[i].mask = double_int_minus_one;
835 const_val[i].value = NULL_TREE;
841 /* Do final substitution of propagated values, cleanup the flowgraph and
842 free allocated storage.
844 Return TRUE when something was optimized. */
846 static bool
847 ccp_finalize (void)
849 bool something_changed;
850 unsigned i;
852 do_dbg_cnt ();
854 /* Derive alignment and misalignment information from partially
855 constant pointers in the lattice. */
856 for (i = 1; i < num_ssa_names; ++i)
858 tree name = ssa_name (i);
859 prop_value_t *val;
860 struct ptr_info_def *pi;
861 unsigned int tem, align;
863 if (!name
864 || !POINTER_TYPE_P (TREE_TYPE (name)))
865 continue;
867 val = get_value (name);
868 if (val->lattice_val != CONSTANT
869 || TREE_CODE (val->value) != INTEGER_CST)
870 continue;
872 /* Trailing constant bits specify the alignment, trailing value
873 bits the misalignment. */
874 tem = val->mask.low;
875 align = (tem & -tem);
876 if (align == 1)
877 continue;
879 pi = get_ptr_info (name);
880 pi->align = align;
881 pi->misalign = TREE_INT_CST_LOW (val->value) & (align - 1);
884 /* Perform substitutions based on the known constant values. */
885 something_changed = substitute_and_fold (get_constant_value,
886 ccp_fold_stmt, true);
888 free (const_val);
889 const_val = NULL;
890 return something_changed;;
894 /* Compute the meet operator between *VAL1 and *VAL2. Store the result
895 in VAL1.
897 any M UNDEFINED = any
898 any M VARYING = VARYING
899 Ci M Cj = Ci if (i == j)
900 Ci M Cj = VARYING if (i != j)
903 static void
904 ccp_lattice_meet (prop_value_t *val1, prop_value_t *val2)
906 if (val1->lattice_val == UNDEFINED)
908 /* UNDEFINED M any = any */
909 *val1 = *val2;
911 else if (val2->lattice_val == UNDEFINED)
913 /* any M UNDEFINED = any
914 Nothing to do. VAL1 already contains the value we want. */
917 else if (val1->lattice_val == VARYING
918 || val2->lattice_val == VARYING)
920 /* any M VARYING = VARYING. */
921 val1->lattice_val = VARYING;
922 val1->mask = double_int_minus_one;
923 val1->value = NULL_TREE;
925 else if (val1->lattice_val == CONSTANT
926 && val2->lattice_val == CONSTANT
927 && TREE_CODE (val1->value) == INTEGER_CST
928 && TREE_CODE (val2->value) == INTEGER_CST)
930 /* Ci M Cj = Ci if (i == j)
931 Ci M Cj = VARYING if (i != j)
933 For INTEGER_CSTs mask unequal bits. If no equal bits remain,
934 drop to varying. */
935 val1->mask
936 = double_int_ior (double_int_ior (val1->mask,
937 val2->mask),
938 double_int_xor (tree_to_double_int (val1->value),
939 tree_to_double_int (val2->value)));
940 if (double_int_minus_one_p (val1->mask))
942 val1->lattice_val = VARYING;
943 val1->value = NULL_TREE;
946 else if (val1->lattice_val == CONSTANT
947 && val2->lattice_val == CONSTANT
948 && simple_cst_equal (val1->value, val2->value) == 1)
950 /* Ci M Cj = Ci if (i == j)
951 Ci M Cj = VARYING if (i != j)
953 VAL1 already contains the value we want for equivalent values. */
955 else if (val1->lattice_val == CONSTANT
956 && val2->lattice_val == CONSTANT
957 && (TREE_CODE (val1->value) == ADDR_EXPR
958 || TREE_CODE (val2->value) == ADDR_EXPR))
960 /* When not equal addresses are involved try meeting for
961 alignment. */
962 prop_value_t tem = *val2;
963 if (TREE_CODE (val1->value) == ADDR_EXPR)
964 *val1 = get_value_for_expr (val1->value, true);
965 if (TREE_CODE (val2->value) == ADDR_EXPR)
966 tem = get_value_for_expr (val2->value, true);
967 ccp_lattice_meet (val1, &tem);
969 else
971 /* Any other combination is VARYING. */
972 val1->lattice_val = VARYING;
973 val1->mask = double_int_minus_one;
974 val1->value = NULL_TREE;
979 /* Loop through the PHI_NODE's parameters for BLOCK and compare their
980 lattice values to determine PHI_NODE's lattice value. The value of a
981 PHI node is determined calling ccp_lattice_meet with all the arguments
982 of the PHI node that are incoming via executable edges. */
984 static enum ssa_prop_result
985 ccp_visit_phi_node (gimple phi)
987 unsigned i;
988 prop_value_t *old_val, new_val;
990 if (dump_file && (dump_flags & TDF_DETAILS))
992 fprintf (dump_file, "\nVisiting PHI node: ");
993 print_gimple_stmt (dump_file, phi, 0, dump_flags);
996 old_val = get_value (gimple_phi_result (phi));
997 switch (old_val->lattice_val)
999 case VARYING:
1000 return SSA_PROP_VARYING;
1002 case CONSTANT:
1003 new_val = *old_val;
1004 break;
1006 case UNDEFINED:
1007 new_val.lattice_val = UNDEFINED;
1008 new_val.value = NULL_TREE;
1009 break;
1011 default:
1012 gcc_unreachable ();
1015 for (i = 0; i < gimple_phi_num_args (phi); i++)
1017 /* Compute the meet operator over all the PHI arguments flowing
1018 through executable edges. */
1019 edge e = gimple_phi_arg_edge (phi, i);
1021 if (dump_file && (dump_flags & TDF_DETAILS))
1023 fprintf (dump_file,
1024 "\n Argument #%d (%d -> %d %sexecutable)\n",
1025 i, e->src->index, e->dest->index,
1026 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
1029 /* If the incoming edge is executable, Compute the meet operator for
1030 the existing value of the PHI node and the current PHI argument. */
1031 if (e->flags & EDGE_EXECUTABLE)
1033 tree arg = gimple_phi_arg (phi, i)->def;
1034 prop_value_t arg_val = get_value_for_expr (arg, false);
1036 ccp_lattice_meet (&new_val, &arg_val);
1038 if (dump_file && (dump_flags & TDF_DETAILS))
1040 fprintf (dump_file, "\t");
1041 print_generic_expr (dump_file, arg, dump_flags);
1042 dump_lattice_value (dump_file, "\tValue: ", arg_val);
1043 fprintf (dump_file, "\n");
1046 if (new_val.lattice_val == VARYING)
1047 break;
1051 if (dump_file && (dump_flags & TDF_DETAILS))
1053 dump_lattice_value (dump_file, "\n PHI node value: ", new_val);
1054 fprintf (dump_file, "\n\n");
1057 /* Make the transition to the new value. */
1058 if (set_lattice_value (gimple_phi_result (phi), new_val))
1060 if (new_val.lattice_val == VARYING)
1061 return SSA_PROP_VARYING;
1062 else
1063 return SSA_PROP_INTERESTING;
1065 else
1066 return SSA_PROP_NOT_INTERESTING;
1069 /* Return the constant value for OP or OP otherwise. */
1071 static tree
1072 valueize_op (tree op)
1074 if (TREE_CODE (op) == SSA_NAME)
1076 tree tem = get_constant_value (op);
1077 if (tem)
1078 return tem;
1080 return op;
1083 /* CCP specific front-end to the non-destructive constant folding
1084 routines.
1086 Attempt to simplify the RHS of STMT knowing that one or more
1087 operands are constants.
1089 If simplification is possible, return the simplified RHS,
1090 otherwise return the original RHS or NULL_TREE. */
1092 static tree
1093 ccp_fold (gimple stmt)
1095 location_t loc = gimple_location (stmt);
1096 switch (gimple_code (stmt))
1098 case GIMPLE_ASSIGN:
1100 enum tree_code subcode = gimple_assign_rhs_code (stmt);
1102 switch (get_gimple_rhs_class (subcode))
1104 case GIMPLE_SINGLE_RHS:
1106 tree rhs = gimple_assign_rhs1 (stmt);
1107 enum tree_code_class kind = TREE_CODE_CLASS (subcode);
1109 if (TREE_CODE (rhs) == SSA_NAME)
1111 /* If the RHS is an SSA_NAME, return its known constant value,
1112 if any. */
1113 return get_constant_value (rhs);
1115 /* Handle propagating invariant addresses into address operations.
1116 The folding we do here matches that in tree-ssa-forwprop.c. */
1117 else if (TREE_CODE (rhs) == ADDR_EXPR)
1119 tree *base;
1120 base = &TREE_OPERAND (rhs, 0);
1121 while (handled_component_p (*base))
1122 base = &TREE_OPERAND (*base, 0);
1123 if (TREE_CODE (*base) == MEM_REF
1124 && TREE_CODE (TREE_OPERAND (*base, 0)) == SSA_NAME)
1126 tree val = get_constant_value (TREE_OPERAND (*base, 0));
1127 if (val
1128 && TREE_CODE (val) == ADDR_EXPR)
1130 tree ret, save = *base;
1131 tree new_base;
1132 new_base = fold_build2 (MEM_REF, TREE_TYPE (*base),
1133 unshare_expr (val),
1134 TREE_OPERAND (*base, 1));
1135 /* We need to return a new tree, not modify the IL
1136 or share parts of it. So play some tricks to
1137 avoid manually building it. */
1138 *base = new_base;
1139 ret = unshare_expr (rhs);
1140 recompute_tree_invariant_for_addr_expr (ret);
1141 *base = save;
1142 return ret;
1146 else if (TREE_CODE (rhs) == CONSTRUCTOR
1147 && TREE_CODE (TREE_TYPE (rhs)) == VECTOR_TYPE
1148 && (CONSTRUCTOR_NELTS (rhs)
1149 == TYPE_VECTOR_SUBPARTS (TREE_TYPE (rhs))))
1151 unsigned i;
1152 tree val, list;
1154 list = NULL_TREE;
1155 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (rhs), i, val)
1157 val = valueize_op (val);
1158 if (TREE_CODE (val) == INTEGER_CST
1159 || TREE_CODE (val) == REAL_CST
1160 || TREE_CODE (val) == FIXED_CST)
1161 list = tree_cons (NULL_TREE, val, list);
1162 else
1163 return NULL_TREE;
1166 return build_vector (TREE_TYPE (rhs), nreverse (list));
1169 if (kind == tcc_reference)
1171 if ((TREE_CODE (rhs) == VIEW_CONVERT_EXPR
1172 || TREE_CODE (rhs) == REALPART_EXPR
1173 || TREE_CODE (rhs) == IMAGPART_EXPR)
1174 && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME)
1176 tree val = get_constant_value (TREE_OPERAND (rhs, 0));
1177 if (val)
1178 return fold_unary_loc (EXPR_LOCATION (rhs),
1179 TREE_CODE (rhs),
1180 TREE_TYPE (rhs), val);
1182 else if (TREE_CODE (rhs) == MEM_REF
1183 && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME)
1185 tree val = get_constant_value (TREE_OPERAND (rhs, 0));
1186 if (val
1187 && TREE_CODE (val) == ADDR_EXPR)
1189 tree tem = fold_build2 (MEM_REF, TREE_TYPE (rhs),
1190 unshare_expr (val),
1191 TREE_OPERAND (rhs, 1));
1192 if (tem)
1193 rhs = tem;
1196 return fold_const_aggregate_ref (rhs);
1198 else if (kind == tcc_declaration)
1199 return get_symbol_constant_value (rhs);
1200 return rhs;
1203 case GIMPLE_UNARY_RHS:
1205 /* Handle unary operators that can appear in GIMPLE form.
1206 Note that we know the single operand must be a constant,
1207 so this should almost always return a simplified RHS. */
1208 tree lhs = gimple_assign_lhs (stmt);
1209 tree op0 = valueize_op (gimple_assign_rhs1 (stmt));
1211 /* Conversions are useless for CCP purposes if they are
1212 value-preserving. Thus the restrictions that
1213 useless_type_conversion_p places for pointer type conversions
1214 do not apply here. Substitution later will only substitute to
1215 allowed places. */
1216 if (CONVERT_EXPR_CODE_P (subcode)
1217 && POINTER_TYPE_P (TREE_TYPE (lhs))
1218 && POINTER_TYPE_P (TREE_TYPE (op0)))
1220 tree tem;
1221 /* Try to re-construct array references on-the-fly. */
1222 if (!useless_type_conversion_p (TREE_TYPE (lhs),
1223 TREE_TYPE (op0))
1224 && ((tem = maybe_fold_offset_to_address
1225 (loc,
1226 op0, integer_zero_node, TREE_TYPE (lhs)))
1227 != NULL_TREE))
1228 return tem;
1229 return op0;
1232 return
1233 fold_unary_ignore_overflow_loc (loc, subcode,
1234 gimple_expr_type (stmt), op0);
1237 case GIMPLE_BINARY_RHS:
1239 /* Handle binary operators that can appear in GIMPLE form. */
1240 tree op0 = valueize_op (gimple_assign_rhs1 (stmt));
1241 tree op1 = valueize_op (gimple_assign_rhs2 (stmt));
1243 /* Translate &x + CST into an invariant form suitable for
1244 further propagation. */
1245 if (gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR
1246 && TREE_CODE (op0) == ADDR_EXPR
1247 && TREE_CODE (op1) == INTEGER_CST)
1249 tree off = fold_convert (ptr_type_node, op1);
1250 return build_fold_addr_expr
1251 (fold_build2 (MEM_REF,
1252 TREE_TYPE (TREE_TYPE (op0)),
1253 unshare_expr (op0), off));
1256 return fold_binary_loc (loc, subcode,
1257 gimple_expr_type (stmt), op0, op1);
1260 case GIMPLE_TERNARY_RHS:
1262 /* Handle ternary operators that can appear in GIMPLE form. */
1263 tree op0 = valueize_op (gimple_assign_rhs1 (stmt));
1264 tree op1 = valueize_op (gimple_assign_rhs2 (stmt));
1265 tree op2 = valueize_op (gimple_assign_rhs3 (stmt));
1267 return fold_ternary_loc (loc, subcode,
1268 gimple_expr_type (stmt), op0, op1, op2);
1271 default:
1272 gcc_unreachable ();
1275 break;
1277 case GIMPLE_CALL:
1279 tree fn = valueize_op (gimple_call_fn (stmt));
1280 if (TREE_CODE (fn) == ADDR_EXPR
1281 && TREE_CODE (TREE_OPERAND (fn, 0)) == FUNCTION_DECL
1282 && DECL_BUILT_IN (TREE_OPERAND (fn, 0)))
1284 tree *args = XALLOCAVEC (tree, gimple_call_num_args (stmt));
1285 tree call, retval;
1286 unsigned i;
1287 for (i = 0; i < gimple_call_num_args (stmt); ++i)
1288 args[i] = valueize_op (gimple_call_arg (stmt, i));
1289 call = build_call_array_loc (loc,
1290 gimple_call_return_type (stmt),
1291 fn, gimple_call_num_args (stmt), args);
1292 retval = fold_call_expr (EXPR_LOCATION (call), call, false);
1293 if (retval)
1294 /* fold_call_expr wraps the result inside a NOP_EXPR. */
1295 STRIP_NOPS (retval);
1296 return retval;
1298 return NULL_TREE;
1301 case GIMPLE_COND:
1303 /* Handle comparison operators that can appear in GIMPLE form. */
1304 tree op0 = valueize_op (gimple_cond_lhs (stmt));
1305 tree op1 = valueize_op (gimple_cond_rhs (stmt));
1306 enum tree_code code = gimple_cond_code (stmt);
1307 return fold_binary_loc (loc, code, boolean_type_node, op0, op1);
1310 case GIMPLE_SWITCH:
1312 /* Return the constant switch index. */
1313 return valueize_op (gimple_switch_index (stmt));
1316 default:
1317 gcc_unreachable ();
1321 /* See if we can find constructor defining value of BASE.
1322 When we know the consructor with constant offset (such as
1323 base is array[40] and we do know constructor of array), then
1324 BIT_OFFSET is adjusted accordingly.
1326 As a special case, return error_mark_node when constructor
1327 is not explicitly available, but it is known to be zero
1328 such as 'static const int a;'. */
1329 static tree
1330 get_base_constructor (tree base, HOST_WIDE_INT *bit_offset)
1332 HOST_WIDE_INT bit_offset2, size, max_size;
1333 if (TREE_CODE (base) == MEM_REF)
1335 if (!integer_zerop (TREE_OPERAND (base, 1)))
1337 if (!host_integerp (TREE_OPERAND (base, 1), 0))
1338 return NULL_TREE;
1339 *bit_offset += (mem_ref_offset (base).low
1340 * BITS_PER_UNIT);
1343 base = get_constant_value (TREE_OPERAND (base, 0));
1344 if (!base || TREE_CODE (base) != ADDR_EXPR)
1345 return NULL_TREE;
1346 base = TREE_OPERAND (base, 0);
1349 /* Get a CONSTRUCTOR. If BASE is a VAR_DECL, get its
1350 DECL_INITIAL. If BASE is a nested reference into another
1351 ARRAY_REF or COMPONENT_REF, make a recursive call to resolve
1352 the inner reference. */
1353 switch (TREE_CODE (base))
1355 case VAR_DECL:
1356 if (!const_value_known_p (base))
1357 return NULL_TREE;
1359 /* Fallthru. */
1360 case CONST_DECL:
1361 if (!DECL_INITIAL (base)
1362 && (TREE_STATIC (base) || DECL_EXTERNAL (base)))
1363 return error_mark_node;
1364 return DECL_INITIAL (base);
1366 case ARRAY_REF:
1367 case COMPONENT_REF:
1368 base = get_ref_base_and_extent (base, &bit_offset2, &size, &max_size);
1369 if (max_size == -1 || size != max_size)
1370 return NULL_TREE;
1371 *bit_offset += bit_offset2;
1372 return get_base_constructor (base, bit_offset);
1374 case STRING_CST:
1375 case CONSTRUCTOR:
1376 return base;
1378 default:
1379 return NULL_TREE;
1383 /* CTOR is STRING_CST. Fold reference of type TYPE and size SIZE
1384 to the memory at bit OFFSET.
1386 We do only simple job of folding byte accesses. */
1388 static tree
1389 fold_string_cst_ctor_reference (tree type, tree ctor, unsigned HOST_WIDE_INT offset,
1390 unsigned HOST_WIDE_INT size)
1392 if (INTEGRAL_TYPE_P (type)
1393 && (TYPE_MODE (type)
1394 == TYPE_MODE (TREE_TYPE (TREE_TYPE (ctor))))
1395 && (GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (TREE_TYPE (ctor))))
1396 == MODE_INT)
1397 && GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_TYPE (ctor)))) == 1
1398 && size == BITS_PER_UNIT
1399 && !(offset % BITS_PER_UNIT))
1401 offset /= BITS_PER_UNIT;
1402 if (offset < (unsigned HOST_WIDE_INT) TREE_STRING_LENGTH (ctor))
1403 return build_int_cst_type (type, (TREE_STRING_POINTER (ctor)
1404 [offset]));
1405 /* Folding
1406 const char a[20]="hello";
1407 return a[10];
1409 might lead to offset greater than string length. In this case we
1410 know value is either initialized to 0 or out of bounds. Return 0
1411 in both cases. */
1412 return build_zero_cst (type);
1414 return NULL_TREE;
1417 /* CTOR is CONSTRUCTOR of an array type. Fold reference of type TYPE and size
1418 SIZE to the memory at bit OFFSET. */
1420 static tree
1421 fold_array_ctor_reference (tree type, tree ctor,
1422 unsigned HOST_WIDE_INT offset,
1423 unsigned HOST_WIDE_INT size)
1425 unsigned HOST_WIDE_INT cnt;
1426 tree cfield, cval;
1427 double_int low_bound, elt_size;
1428 double_int index, max_index;
1429 double_int access_index;
1430 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ctor));
1431 HOST_WIDE_INT inner_offset;
1433 /* Compute low bound and elt size. */
1434 if (domain_type && TYPE_MIN_VALUE (domain_type))
1436 /* Static constructors for variably sized objects makes no sense. */
1437 gcc_assert (TREE_CODE (TYPE_MIN_VALUE (domain_type)) == INTEGER_CST);
1438 low_bound = tree_to_double_int (TYPE_MIN_VALUE (domain_type));
1440 else
1441 low_bound = double_int_zero;
1442 /* Static constructors for variably sized objects makes no sense. */
1443 gcc_assert (TREE_CODE(TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (ctor))))
1444 == INTEGER_CST);
1445 elt_size =
1446 tree_to_double_int (TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (ctor))));
1449 /* We can handle only constantly sized accesses that are known to not
1450 be larger than size of array element. */
1451 if (!TYPE_SIZE_UNIT (type)
1452 || TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST
1453 || double_int_cmp (elt_size,
1454 tree_to_double_int (TYPE_SIZE_UNIT (type)), 0) < 0)
1455 return NULL_TREE;
1457 /* Compute the array index we look for. */
1458 access_index = double_int_udiv (uhwi_to_double_int (offset / BITS_PER_UNIT),
1459 elt_size, TRUNC_DIV_EXPR);
1460 access_index = double_int_add (access_index, low_bound);
1462 /* And offset within the access. */
1463 inner_offset = offset % (double_int_to_uhwi (elt_size) * BITS_PER_UNIT);
1465 /* See if the array field is large enough to span whole access. We do not
1466 care to fold accesses spanning multiple array indexes. */
1467 if (inner_offset + size > double_int_to_uhwi (elt_size) * BITS_PER_UNIT)
1468 return NULL_TREE;
1470 index = double_int_sub (low_bound, double_int_one);
1471 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), cnt, cfield, cval)
1473 /* Array constructor might explicitely set index, or specify range
1474 or leave index NULL meaning that it is next index after previous
1475 one. */
1476 if (cfield)
1478 if (TREE_CODE (cfield) == INTEGER_CST)
1479 max_index = index = tree_to_double_int (cfield);
1480 else
1482 gcc_assert (TREE_CODE (cfield) == RANGE_EXPR);
1483 index = tree_to_double_int (TREE_OPERAND (cfield, 0));
1484 max_index = tree_to_double_int (TREE_OPERAND (cfield, 1));
1487 else
1488 max_index = index = double_int_add (index, double_int_one);
1490 /* Do we have match? */
1491 if (double_int_cmp (access_index, index, 1) >= 0
1492 && double_int_cmp (access_index, max_index, 1) <= 0)
1493 return fold_ctor_reference (type, cval, inner_offset, size);
1495 /* When memory is not explicitely mentioned in constructor,
1496 it is 0 (or out of range). */
1497 return build_zero_cst (type);
1500 /* CTOR is CONSTRUCTOR of an aggregate or vector.
1501 Fold reference of type TYPE and size SIZE to the memory at bit OFFSET. */
1503 static tree
1504 fold_nonarray_ctor_reference (tree type, tree ctor,
1505 unsigned HOST_WIDE_INT offset,
1506 unsigned HOST_WIDE_INT size)
1508 unsigned HOST_WIDE_INT cnt;
1509 tree cfield, cval;
1511 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), cnt, cfield,
1512 cval)
1514 tree byte_offset = DECL_FIELD_OFFSET (cfield);
1515 tree field_offset = DECL_FIELD_BIT_OFFSET (cfield);
1516 tree field_size = DECL_SIZE (cfield);
1517 double_int bitoffset;
1518 double_int byte_offset_cst = tree_to_double_int (byte_offset);
1519 double_int bits_per_unit_cst = uhwi_to_double_int (BITS_PER_UNIT);
1520 double_int bitoffset_end;
1522 /* Variable sized objects in static constructors makes no sense,
1523 but field_size can be NULL for flexible array members. */
1524 gcc_assert (TREE_CODE (field_offset) == INTEGER_CST
1525 && TREE_CODE (byte_offset) == INTEGER_CST
1526 && (field_size != NULL_TREE
1527 ? TREE_CODE (field_size) == INTEGER_CST
1528 : TREE_CODE (TREE_TYPE (cfield)) == ARRAY_TYPE));
1530 /* Compute bit offset of the field. */
1531 bitoffset = double_int_add (tree_to_double_int (field_offset),
1532 double_int_mul (byte_offset_cst,
1533 bits_per_unit_cst));
1534 /* Compute bit offset where the field ends. */
1535 if (field_size != NULL_TREE)
1536 bitoffset_end = double_int_add (bitoffset,
1537 tree_to_double_int (field_size));
1538 else
1539 bitoffset_end = double_int_zero;
1541 /* Is OFFSET in the range (BITOFFSET, BITOFFSET_END)? */
1542 if (double_int_cmp (uhwi_to_double_int (offset), bitoffset, 0) >= 0
1543 && (field_size == NULL_TREE
1544 || double_int_cmp (uhwi_to_double_int (offset),
1545 bitoffset_end, 0) < 0))
1547 double_int access_end = double_int_add (uhwi_to_double_int (offset),
1548 uhwi_to_double_int (size));
1549 double_int inner_offset = double_int_sub (uhwi_to_double_int (offset),
1550 bitoffset);
1551 /* We do have overlap. Now see if field is large enough to
1552 cover the access. Give up for accesses spanning multiple
1553 fields. */
1554 if (double_int_cmp (access_end, bitoffset_end, 0) > 0)
1555 return NULL_TREE;
1556 return fold_ctor_reference (type, cval,
1557 double_int_to_uhwi (inner_offset), size);
1560 /* When memory is not explicitely mentioned in constructor, it is 0. */
1561 return build_zero_cst (type);
1564 /* CTOR is value initializing memory, fold reference of type TYPE and size SIZE
1565 to the memory at bit OFFSET. */
1567 static tree
1568 fold_ctor_reference (tree type, tree ctor, unsigned HOST_WIDE_INT offset,
1569 unsigned HOST_WIDE_INT size)
1571 tree ret;
1573 /* We found the field with exact match. */
1574 if (useless_type_conversion_p (type, TREE_TYPE (ctor))
1575 && !offset)
1576 return canonicalize_constructor_val (ctor);
1578 /* We are at the end of walk, see if we can view convert the
1579 result. */
1580 if (!AGGREGATE_TYPE_P (TREE_TYPE (ctor)) && !offset
1581 /* VIEW_CONVERT_EXPR is defined only for matching sizes. */
1582 && operand_equal_p (TYPE_SIZE (type),
1583 TYPE_SIZE (TREE_TYPE (ctor)), 0))
1585 ret = canonicalize_constructor_val (ctor);
1586 ret = fold_unary (VIEW_CONVERT_EXPR, type, ret);
1587 if (ret)
1588 STRIP_NOPS (ret);
1589 return ret;
1591 if (TREE_CODE (ctor) == STRING_CST)
1592 return fold_string_cst_ctor_reference (type, ctor, offset, size);
1593 if (TREE_CODE (ctor) == CONSTRUCTOR)
1596 if (TREE_CODE (TREE_TYPE (ctor)) == ARRAY_TYPE)
1597 return fold_array_ctor_reference (type, ctor, offset, size);
1598 else
1599 return fold_nonarray_ctor_reference (type, ctor, offset, size);
1602 return NULL_TREE;
1605 /* Return the tree representing the element referenced by T if T is an
1606 ARRAY_REF or COMPONENT_REF into constant aggregates. Return
1607 NULL_TREE otherwise. */
1609 tree
1610 fold_const_aggregate_ref (tree t)
1612 tree ctor, idx, base;
1613 HOST_WIDE_INT offset, size, max_size;
1614 tree tem;
1616 if (TREE_CODE_CLASS (TREE_CODE (t)) == tcc_declaration)
1617 return get_symbol_constant_value (t);
1619 tem = fold_read_from_constant_string (t);
1620 if (tem)
1621 return tem;
1623 switch (TREE_CODE (t))
1625 case ARRAY_REF:
1626 case ARRAY_RANGE_REF:
1627 /* Constant indexes are handled well by get_base_constructor.
1628 Only special case variable offsets.
1629 FIXME: This code can't handle nested references with variable indexes
1630 (they will be handled only by iteration of ccp). Perhaps we can bring
1631 get_ref_base_and_extent here and make it use get_constant_value. */
1632 if (TREE_CODE (TREE_OPERAND (t, 1)) == SSA_NAME
1633 && (idx = get_constant_value (TREE_OPERAND (t, 1)))
1634 && host_integerp (idx, 0))
1636 tree low_bound, unit_size;
1638 /* If the resulting bit-offset is constant, track it. */
1639 if ((low_bound = array_ref_low_bound (t),
1640 host_integerp (low_bound, 0))
1641 && (unit_size = array_ref_element_size (t),
1642 host_integerp (unit_size, 1)))
1644 offset = TREE_INT_CST_LOW (idx);
1645 offset -= TREE_INT_CST_LOW (low_bound);
1646 offset *= TREE_INT_CST_LOW (unit_size);
1647 offset *= BITS_PER_UNIT;
1649 base = TREE_OPERAND (t, 0);
1650 ctor = get_base_constructor (base, &offset);
1651 /* Empty constructor. Always fold to 0. */
1652 if (ctor == error_mark_node)
1653 return build_zero_cst (TREE_TYPE (t));
1654 /* Out of bound array access. Value is undefined, but don't fold. */
1655 if (offset < 0)
1656 return NULL_TREE;
1657 /* We can not determine ctor. */
1658 if (!ctor)
1659 return NULL_TREE;
1660 return fold_ctor_reference (TREE_TYPE (t), ctor, offset,
1661 TREE_INT_CST_LOW (unit_size)
1662 * BITS_PER_UNIT);
1665 /* Fallthru. */
1667 case COMPONENT_REF:
1668 case BIT_FIELD_REF:
1669 case TARGET_MEM_REF:
1670 case MEM_REF:
1671 base = get_ref_base_and_extent (t, &offset, &size, &max_size);
1672 ctor = get_base_constructor (base, &offset);
1674 /* Empty constructor. Always fold to 0. */
1675 if (ctor == error_mark_node)
1676 return build_zero_cst (TREE_TYPE (t));
1677 /* We do not know precise address. */
1678 if (max_size == -1 || max_size != size)
1679 return NULL_TREE;
1680 /* We can not determine ctor. */
1681 if (!ctor)
1682 return NULL_TREE;
1684 /* Out of bound array access. Value is undefined, but don't fold. */
1685 if (offset < 0)
1686 return NULL_TREE;
1688 return fold_ctor_reference (TREE_TYPE (t), ctor, offset, size);
1690 case REALPART_EXPR:
1691 case IMAGPART_EXPR:
1693 tree c = fold_const_aggregate_ref (TREE_OPERAND (t, 0));
1694 if (c && TREE_CODE (c) == COMPLEX_CST)
1695 return fold_build1_loc (EXPR_LOCATION (t),
1696 TREE_CODE (t), TREE_TYPE (t), c);
1697 break;
1700 default:
1701 break;
1704 return NULL_TREE;
1707 /* Apply the operation CODE in type TYPE to the value, mask pair
1708 RVAL and RMASK representing a value of type RTYPE and set
1709 the value, mask pair *VAL and *MASK to the result. */
1711 static void
1712 bit_value_unop_1 (enum tree_code code, tree type,
1713 double_int *val, double_int *mask,
1714 tree rtype, double_int rval, double_int rmask)
1716 switch (code)
1718 case BIT_NOT_EXPR:
1719 *mask = rmask;
1720 *val = double_int_not (rval);
1721 break;
1723 case NEGATE_EXPR:
1725 double_int temv, temm;
1726 /* Return ~rval + 1. */
1727 bit_value_unop_1 (BIT_NOT_EXPR, type, &temv, &temm, type, rval, rmask);
1728 bit_value_binop_1 (PLUS_EXPR, type, val, mask,
1729 type, temv, temm,
1730 type, double_int_one, double_int_zero);
1731 break;
1734 CASE_CONVERT:
1736 bool uns;
1738 /* First extend mask and value according to the original type. */
1739 uns = (TREE_CODE (rtype) == INTEGER_TYPE && TYPE_IS_SIZETYPE (rtype)
1740 ? 0 : TYPE_UNSIGNED (rtype));
1741 *mask = double_int_ext (rmask, TYPE_PRECISION (rtype), uns);
1742 *val = double_int_ext (rval, TYPE_PRECISION (rtype), uns);
1744 /* Then extend mask and value according to the target type. */
1745 uns = (TREE_CODE (type) == INTEGER_TYPE && TYPE_IS_SIZETYPE (type)
1746 ? 0 : TYPE_UNSIGNED (type));
1747 *mask = double_int_ext (*mask, TYPE_PRECISION (type), uns);
1748 *val = double_int_ext (*val, TYPE_PRECISION (type), uns);
1749 break;
1752 default:
1753 *mask = double_int_minus_one;
1754 break;
1758 /* Apply the operation CODE in type TYPE to the value, mask pairs
1759 R1VAL, R1MASK and R2VAL, R2MASK representing a values of type R1TYPE
1760 and R2TYPE and set the value, mask pair *VAL and *MASK to the result. */
1762 static void
1763 bit_value_binop_1 (enum tree_code code, tree type,
1764 double_int *val, double_int *mask,
1765 tree r1type, double_int r1val, double_int r1mask,
1766 tree r2type, double_int r2val, double_int r2mask)
1768 bool uns = (TREE_CODE (type) == INTEGER_TYPE
1769 && TYPE_IS_SIZETYPE (type) ? 0 : TYPE_UNSIGNED (type));
1770 /* Assume we'll get a constant result. Use an initial varying value,
1771 we fall back to varying in the end if necessary. */
1772 *mask = double_int_minus_one;
1773 switch (code)
1775 case BIT_AND_EXPR:
1776 /* The mask is constant where there is a known not
1777 set bit, (m1 | m2) & ((v1 | m1) & (v2 | m2)) */
1778 *mask = double_int_and (double_int_ior (r1mask, r2mask),
1779 double_int_and (double_int_ior (r1val, r1mask),
1780 double_int_ior (r2val, r2mask)));
1781 *val = double_int_and (r1val, r2val);
1782 break;
1784 case BIT_IOR_EXPR:
1785 /* The mask is constant where there is a known
1786 set bit, (m1 | m2) & ~((v1 & ~m1) | (v2 & ~m2)). */
1787 *mask = double_int_and_not
1788 (double_int_ior (r1mask, r2mask),
1789 double_int_ior (double_int_and_not (r1val, r1mask),
1790 double_int_and_not (r2val, r2mask)));
1791 *val = double_int_ior (r1val, r2val);
1792 break;
1794 case BIT_XOR_EXPR:
1795 /* m1 | m2 */
1796 *mask = double_int_ior (r1mask, r2mask);
1797 *val = double_int_xor (r1val, r2val);
1798 break;
1800 case LROTATE_EXPR:
1801 case RROTATE_EXPR:
1802 if (double_int_zero_p (r2mask))
1804 HOST_WIDE_INT shift = r2val.low;
1805 if (code == RROTATE_EXPR)
1806 shift = -shift;
1807 *mask = double_int_lrotate (r1mask, shift, TYPE_PRECISION (type));
1808 *val = double_int_lrotate (r1val, shift, TYPE_PRECISION (type));
1810 break;
1812 case LSHIFT_EXPR:
1813 case RSHIFT_EXPR:
1814 /* ??? We can handle partially known shift counts if we know
1815 its sign. That way we can tell that (x << (y | 8)) & 255
1816 is zero. */
1817 if (double_int_zero_p (r2mask))
1819 HOST_WIDE_INT shift = r2val.low;
1820 if (code == RSHIFT_EXPR)
1821 shift = -shift;
1822 /* We need to know if we are doing a left or a right shift
1823 to properly shift in zeros for left shift and unsigned
1824 right shifts and the sign bit for signed right shifts.
1825 For signed right shifts we shift in varying in case
1826 the sign bit was varying. */
1827 if (shift > 0)
1829 *mask = double_int_lshift (r1mask, shift,
1830 TYPE_PRECISION (type), false);
1831 *val = double_int_lshift (r1val, shift,
1832 TYPE_PRECISION (type), false);
1834 else if (shift < 0)
1836 shift = -shift;
1837 *mask = double_int_rshift (r1mask, shift,
1838 TYPE_PRECISION (type), !uns);
1839 *val = double_int_rshift (r1val, shift,
1840 TYPE_PRECISION (type), !uns);
1842 else
1844 *mask = r1mask;
1845 *val = r1val;
1848 break;
1850 case PLUS_EXPR:
1851 case POINTER_PLUS_EXPR:
1853 double_int lo, hi;
1854 /* Do the addition with unknown bits set to zero, to give carry-ins of
1855 zero wherever possible. */
1856 lo = double_int_add (double_int_and_not (r1val, r1mask),
1857 double_int_and_not (r2val, r2mask));
1858 lo = double_int_ext (lo, TYPE_PRECISION (type), uns);
1859 /* Do the addition with unknown bits set to one, to give carry-ins of
1860 one wherever possible. */
1861 hi = double_int_add (double_int_ior (r1val, r1mask),
1862 double_int_ior (r2val, r2mask));
1863 hi = double_int_ext (hi, TYPE_PRECISION (type), uns);
1864 /* Each bit in the result is known if (a) the corresponding bits in
1865 both inputs are known, and (b) the carry-in to that bit position
1866 is known. We can check condition (b) by seeing if we got the same
1867 result with minimised carries as with maximised carries. */
1868 *mask = double_int_ior (double_int_ior (r1mask, r2mask),
1869 double_int_xor (lo, hi));
1870 *mask = double_int_ext (*mask, TYPE_PRECISION (type), uns);
1871 /* It shouldn't matter whether we choose lo or hi here. */
1872 *val = lo;
1873 break;
1876 case MINUS_EXPR:
1878 double_int temv, temm;
1879 bit_value_unop_1 (NEGATE_EXPR, r2type, &temv, &temm,
1880 r2type, r2val, r2mask);
1881 bit_value_binop_1 (PLUS_EXPR, type, val, mask,
1882 r1type, r1val, r1mask,
1883 r2type, temv, temm);
1884 break;
1887 case MULT_EXPR:
1889 /* Just track trailing zeros in both operands and transfer
1890 them to the other. */
1891 int r1tz = double_int_ctz (double_int_ior (r1val, r1mask));
1892 int r2tz = double_int_ctz (double_int_ior (r2val, r2mask));
1893 if (r1tz + r2tz >= HOST_BITS_PER_DOUBLE_INT)
1895 *mask = double_int_zero;
1896 *val = double_int_zero;
1898 else if (r1tz + r2tz > 0)
1900 *mask = double_int_not (double_int_mask (r1tz + r2tz));
1901 *mask = double_int_ext (*mask, TYPE_PRECISION (type), uns);
1902 *val = double_int_zero;
1904 break;
1907 case EQ_EXPR:
1908 case NE_EXPR:
1910 double_int m = double_int_ior (r1mask, r2mask);
1911 if (!double_int_equal_p (double_int_and_not (r1val, m),
1912 double_int_and_not (r2val, m)))
1914 *mask = double_int_zero;
1915 *val = ((code == EQ_EXPR) ? double_int_zero : double_int_one);
1917 else
1919 /* We know the result of a comparison is always one or zero. */
1920 *mask = double_int_one;
1921 *val = double_int_zero;
1923 break;
1926 case GE_EXPR:
1927 case GT_EXPR:
1929 double_int tem = r1val;
1930 r1val = r2val;
1931 r2val = tem;
1932 tem = r1mask;
1933 r1mask = r2mask;
1934 r2mask = tem;
1935 code = swap_tree_comparison (code);
1937 /* Fallthru. */
1938 case LT_EXPR:
1939 case LE_EXPR:
1941 int minmax, maxmin;
1942 /* If the most significant bits are not known we know nothing. */
1943 if (double_int_negative_p (r1mask) || double_int_negative_p (r2mask))
1944 break;
1946 /* If we know the most significant bits we know the values
1947 value ranges by means of treating varying bits as zero
1948 or one. Do a cross comparison of the max/min pairs. */
1949 maxmin = double_int_cmp (double_int_ior (r1val, r1mask),
1950 double_int_and_not (r2val, r2mask), uns);
1951 minmax = double_int_cmp (double_int_and_not (r1val, r1mask),
1952 double_int_ior (r2val, r2mask), uns);
1953 if (maxmin < 0) /* r1 is less than r2. */
1955 *mask = double_int_zero;
1956 *val = double_int_one;
1958 else if (minmax > 0) /* r1 is not less or equal to r2. */
1960 *mask = double_int_zero;
1961 *val = double_int_zero;
1963 else if (maxmin == minmax) /* r1 and r2 are equal. */
1965 /* This probably should never happen as we'd have
1966 folded the thing during fully constant value folding. */
1967 *mask = double_int_zero;
1968 *val = (code == LE_EXPR ? double_int_one : double_int_zero);
1970 else
1972 /* We know the result of a comparison is always one or zero. */
1973 *mask = double_int_one;
1974 *val = double_int_zero;
1976 break;
1979 default:;
1983 /* Return the propagation value when applying the operation CODE to
1984 the value RHS yielding type TYPE. */
1986 static prop_value_t
1987 bit_value_unop (enum tree_code code, tree type, tree rhs)
1989 prop_value_t rval = get_value_for_expr (rhs, true);
1990 double_int value, mask;
1991 prop_value_t val;
1992 gcc_assert ((rval.lattice_val == CONSTANT
1993 && TREE_CODE (rval.value) == INTEGER_CST)
1994 || double_int_minus_one_p (rval.mask));
1995 bit_value_unop_1 (code, type, &value, &mask,
1996 TREE_TYPE (rhs), value_to_double_int (rval), rval.mask);
1997 if (!double_int_minus_one_p (mask))
1999 val.lattice_val = CONSTANT;
2000 val.mask = mask;
2001 /* ??? Delay building trees here. */
2002 val.value = double_int_to_tree (type, value);
2004 else
2006 val.lattice_val = VARYING;
2007 val.value = NULL_TREE;
2008 val.mask = double_int_minus_one;
2010 return val;
2013 /* Return the propagation value when applying the operation CODE to
2014 the values RHS1 and RHS2 yielding type TYPE. */
2016 static prop_value_t
2017 bit_value_binop (enum tree_code code, tree type, tree rhs1, tree rhs2)
2019 prop_value_t r1val = get_value_for_expr (rhs1, true);
2020 prop_value_t r2val = get_value_for_expr (rhs2, true);
2021 double_int value, mask;
2022 prop_value_t val;
2023 gcc_assert ((r1val.lattice_val == CONSTANT
2024 && TREE_CODE (r1val.value) == INTEGER_CST)
2025 || double_int_minus_one_p (r1val.mask));
2026 gcc_assert ((r2val.lattice_val == CONSTANT
2027 && TREE_CODE (r2val.value) == INTEGER_CST)
2028 || double_int_minus_one_p (r2val.mask));
2029 bit_value_binop_1 (code, type, &value, &mask,
2030 TREE_TYPE (rhs1), value_to_double_int (r1val), r1val.mask,
2031 TREE_TYPE (rhs2), value_to_double_int (r2val), r2val.mask);
2032 if (!double_int_minus_one_p (mask))
2034 val.lattice_val = CONSTANT;
2035 val.mask = mask;
2036 /* ??? Delay building trees here. */
2037 val.value = double_int_to_tree (type, value);
2039 else
2041 val.lattice_val = VARYING;
2042 val.value = NULL_TREE;
2043 val.mask = double_int_minus_one;
2045 return val;
2048 /* Evaluate statement STMT.
2049 Valid only for assignments, calls, conditionals, and switches. */
2051 static prop_value_t
2052 evaluate_stmt (gimple stmt)
2054 prop_value_t val;
2055 tree simplified = NULL_TREE;
2056 ccp_lattice_t likelyvalue = likely_value (stmt);
2057 bool is_constant = false;
2059 if (dump_file && (dump_flags & TDF_DETAILS))
2061 fprintf (dump_file, "which is likely ");
2062 switch (likelyvalue)
2064 case CONSTANT:
2065 fprintf (dump_file, "CONSTANT");
2066 break;
2067 case UNDEFINED:
2068 fprintf (dump_file, "UNDEFINED");
2069 break;
2070 case VARYING:
2071 fprintf (dump_file, "VARYING");
2072 break;
2073 default:;
2075 fprintf (dump_file, "\n");
2078 /* If the statement is likely to have a CONSTANT result, then try
2079 to fold the statement to determine the constant value. */
2080 /* FIXME. This is the only place that we call ccp_fold.
2081 Since likely_value never returns CONSTANT for calls, we will
2082 not attempt to fold them, including builtins that may profit. */
2083 if (likelyvalue == CONSTANT)
2085 fold_defer_overflow_warnings ();
2086 simplified = ccp_fold (stmt);
2087 is_constant = simplified && is_gimple_min_invariant (simplified);
2088 fold_undefer_overflow_warnings (is_constant, stmt, 0);
2089 if (is_constant)
2091 /* The statement produced a constant value. */
2092 val.lattice_val = CONSTANT;
2093 val.value = simplified;
2094 val.mask = double_int_zero;
2097 /* If the statement is likely to have a VARYING result, then do not
2098 bother folding the statement. */
2099 else if (likelyvalue == VARYING)
2101 enum gimple_code code = gimple_code (stmt);
2102 if (code == GIMPLE_ASSIGN)
2104 enum tree_code subcode = gimple_assign_rhs_code (stmt);
2106 /* Other cases cannot satisfy is_gimple_min_invariant
2107 without folding. */
2108 if (get_gimple_rhs_class (subcode) == GIMPLE_SINGLE_RHS)
2109 simplified = gimple_assign_rhs1 (stmt);
2111 else if (code == GIMPLE_SWITCH)
2112 simplified = gimple_switch_index (stmt);
2113 else
2114 /* These cannot satisfy is_gimple_min_invariant without folding. */
2115 gcc_assert (code == GIMPLE_CALL || code == GIMPLE_COND);
2116 is_constant = simplified && is_gimple_min_invariant (simplified);
2117 if (is_constant)
2119 /* The statement produced a constant value. */
2120 val.lattice_val = CONSTANT;
2121 val.value = simplified;
2122 val.mask = double_int_zero;
2126 /* Resort to simplification for bitwise tracking. */
2127 if (flag_tree_bit_ccp
2128 && likelyvalue == CONSTANT
2129 && !is_constant)
2131 enum gimple_code code = gimple_code (stmt);
2132 tree fndecl;
2133 val.lattice_val = VARYING;
2134 val.value = NULL_TREE;
2135 val.mask = double_int_minus_one;
2136 if (code == GIMPLE_ASSIGN)
2138 enum tree_code subcode = gimple_assign_rhs_code (stmt);
2139 tree rhs1 = gimple_assign_rhs1 (stmt);
2140 switch (get_gimple_rhs_class (subcode))
2142 case GIMPLE_SINGLE_RHS:
2143 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
2144 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
2145 val = get_value_for_expr (rhs1, true);
2146 break;
2148 case GIMPLE_UNARY_RHS:
2149 if ((INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
2150 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
2151 && (INTEGRAL_TYPE_P (gimple_expr_type (stmt))
2152 || POINTER_TYPE_P (gimple_expr_type (stmt))))
2153 val = bit_value_unop (subcode, gimple_expr_type (stmt), rhs1);
2154 break;
2156 case GIMPLE_BINARY_RHS:
2157 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
2158 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
2160 tree rhs2 = gimple_assign_rhs2 (stmt);
2161 val = bit_value_binop (subcode,
2162 TREE_TYPE (rhs1), rhs1, rhs2);
2164 break;
2166 default:;
2169 else if (code == GIMPLE_COND)
2171 enum tree_code code = gimple_cond_code (stmt);
2172 tree rhs1 = gimple_cond_lhs (stmt);
2173 tree rhs2 = gimple_cond_rhs (stmt);
2174 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
2175 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
2176 val = bit_value_binop (code, TREE_TYPE (rhs1), rhs1, rhs2);
2178 else if (code == GIMPLE_CALL
2179 && (fndecl = gimple_call_fndecl (stmt))
2180 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
2182 switch (DECL_FUNCTION_CODE (fndecl))
2184 case BUILT_IN_MALLOC:
2185 case BUILT_IN_REALLOC:
2186 case BUILT_IN_CALLOC:
2187 val.lattice_val = CONSTANT;
2188 val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
2189 val.mask = shwi_to_double_int
2190 (~(((HOST_WIDE_INT) MALLOC_ABI_ALIGNMENT)
2191 / BITS_PER_UNIT - 1));
2192 break;
2194 case BUILT_IN_ALLOCA:
2195 val.lattice_val = CONSTANT;
2196 val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
2197 val.mask = shwi_to_double_int
2198 (~(((HOST_WIDE_INT) BIGGEST_ALIGNMENT)
2199 / BITS_PER_UNIT - 1));
2200 break;
2202 default:;
2205 is_constant = (val.lattice_val == CONSTANT);
2208 if (!is_constant)
2210 /* The statement produced a nonconstant value. If the statement
2211 had UNDEFINED operands, then the result of the statement
2212 should be UNDEFINED. Otherwise, the statement is VARYING. */
2213 if (likelyvalue == UNDEFINED)
2215 val.lattice_val = likelyvalue;
2216 val.mask = double_int_zero;
2218 else
2220 val.lattice_val = VARYING;
2221 val.mask = double_int_minus_one;
2224 val.value = NULL_TREE;
2227 return val;
2230 /* Fold the stmt at *GSI with CCP specific information that propagating
2231 and regular folding does not catch. */
2233 static bool
2234 ccp_fold_stmt (gimple_stmt_iterator *gsi)
2236 gimple stmt = gsi_stmt (*gsi);
2238 switch (gimple_code (stmt))
2240 case GIMPLE_COND:
2242 prop_value_t val;
2243 /* Statement evaluation will handle type mismatches in constants
2244 more gracefully than the final propagation. This allows us to
2245 fold more conditionals here. */
2246 val = evaluate_stmt (stmt);
2247 if (val.lattice_val != CONSTANT
2248 || !double_int_zero_p (val.mask))
2249 return false;
2251 if (dump_file)
2253 fprintf (dump_file, "Folding predicate ");
2254 print_gimple_expr (dump_file, stmt, 0, 0);
2255 fprintf (dump_file, " to ");
2256 print_generic_expr (dump_file, val.value, 0);
2257 fprintf (dump_file, "\n");
2260 if (integer_zerop (val.value))
2261 gimple_cond_make_false (stmt);
2262 else
2263 gimple_cond_make_true (stmt);
2265 return true;
2268 case GIMPLE_CALL:
2270 tree lhs = gimple_call_lhs (stmt);
2271 tree val;
2272 tree argt;
2273 tree callee;
2274 bool changed = false;
2275 unsigned i;
2277 /* If the call was folded into a constant make sure it goes
2278 away even if we cannot propagate into all uses because of
2279 type issues. */
2280 if (lhs
2281 && TREE_CODE (lhs) == SSA_NAME
2282 && (val = get_constant_value (lhs)))
2284 tree new_rhs = unshare_expr (val);
2285 bool res;
2286 if (!useless_type_conversion_p (TREE_TYPE (lhs),
2287 TREE_TYPE (new_rhs)))
2288 new_rhs = fold_convert (TREE_TYPE (lhs), new_rhs);
2289 res = update_call_from_tree (gsi, new_rhs);
2290 gcc_assert (res);
2291 return true;
2294 /* Propagate into the call arguments. Compared to replace_uses_in
2295 this can use the argument slot types for type verification
2296 instead of the current argument type. We also can safely
2297 drop qualifiers here as we are dealing with constants anyway. */
2298 argt = TYPE_ARG_TYPES (TREE_TYPE (TREE_TYPE (gimple_call_fn (stmt))));
2299 for (i = 0; i < gimple_call_num_args (stmt) && argt;
2300 ++i, argt = TREE_CHAIN (argt))
2302 tree arg = gimple_call_arg (stmt, i);
2303 if (TREE_CODE (arg) == SSA_NAME
2304 && (val = get_constant_value (arg))
2305 && useless_type_conversion_p
2306 (TYPE_MAIN_VARIANT (TREE_VALUE (argt)),
2307 TYPE_MAIN_VARIANT (TREE_TYPE (val))))
2309 gimple_call_set_arg (stmt, i, unshare_expr (val));
2310 changed = true;
2314 callee = gimple_call_fn (stmt);
2315 if (TREE_CODE (callee) == OBJ_TYPE_REF
2316 && TREE_CODE (OBJ_TYPE_REF_EXPR (callee)) == SSA_NAME)
2318 tree expr = OBJ_TYPE_REF_EXPR (callee);
2319 OBJ_TYPE_REF_EXPR (callee) = valueize_op (expr);
2320 if (TREE_CODE (OBJ_TYPE_REF_EXPR (callee)) == ADDR_EXPR)
2322 tree t;
2323 t = gimple_fold_obj_type_ref (callee, NULL_TREE);
2324 if (t)
2326 gimple_call_set_fn (stmt, t);
2327 changed = true;
2330 OBJ_TYPE_REF_EXPR (callee) = expr;
2333 return changed;
2336 case GIMPLE_ASSIGN:
2338 tree lhs = gimple_assign_lhs (stmt);
2339 tree val;
2341 /* If we have a load that turned out to be constant replace it
2342 as we cannot propagate into all uses in all cases. */
2343 if (gimple_assign_single_p (stmt)
2344 && TREE_CODE (lhs) == SSA_NAME
2345 && (val = get_constant_value (lhs)))
2347 tree rhs = unshare_expr (val);
2348 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
2349 rhs = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (lhs), rhs);
2350 gimple_assign_set_rhs_from_tree (gsi, rhs);
2351 return true;
2354 return false;
2357 default:
2358 return false;
2362 /* Visit the assignment statement STMT. Set the value of its LHS to the
2363 value computed by the RHS and store LHS in *OUTPUT_P. If STMT
2364 creates virtual definitions, set the value of each new name to that
2365 of the RHS (if we can derive a constant out of the RHS).
2366 Value-returning call statements also perform an assignment, and
2367 are handled here. */
2369 static enum ssa_prop_result
2370 visit_assignment (gimple stmt, tree *output_p)
2372 prop_value_t val;
2373 enum ssa_prop_result retval;
2375 tree lhs = gimple_get_lhs (stmt);
2377 gcc_assert (gimple_code (stmt) != GIMPLE_CALL
2378 || gimple_call_lhs (stmt) != NULL_TREE);
2380 if (gimple_assign_single_p (stmt)
2381 && gimple_assign_rhs_code (stmt) == SSA_NAME)
2382 /* For a simple copy operation, we copy the lattice values. */
2383 val = *get_value (gimple_assign_rhs1 (stmt));
2384 else
2385 /* Evaluate the statement, which could be
2386 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
2387 val = evaluate_stmt (stmt);
2389 retval = SSA_PROP_NOT_INTERESTING;
2391 /* Set the lattice value of the statement's output. */
2392 if (TREE_CODE (lhs) == SSA_NAME)
2394 /* If STMT is an assignment to an SSA_NAME, we only have one
2395 value to set. */
2396 if (set_lattice_value (lhs, val))
2398 *output_p = lhs;
2399 if (val.lattice_val == VARYING)
2400 retval = SSA_PROP_VARYING;
2401 else
2402 retval = SSA_PROP_INTERESTING;
2406 return retval;
2410 /* Visit the conditional statement STMT. Return SSA_PROP_INTERESTING
2411 if it can determine which edge will be taken. Otherwise, return
2412 SSA_PROP_VARYING. */
2414 static enum ssa_prop_result
2415 visit_cond_stmt (gimple stmt, edge *taken_edge_p)
2417 prop_value_t val;
2418 basic_block block;
2420 block = gimple_bb (stmt);
2421 val = evaluate_stmt (stmt);
2422 if (val.lattice_val != CONSTANT
2423 || !double_int_zero_p (val.mask))
2424 return SSA_PROP_VARYING;
2426 /* Find which edge out of the conditional block will be taken and add it
2427 to the worklist. If no single edge can be determined statically,
2428 return SSA_PROP_VARYING to feed all the outgoing edges to the
2429 propagation engine. */
2430 *taken_edge_p = find_taken_edge (block, val.value);
2431 if (*taken_edge_p)
2432 return SSA_PROP_INTERESTING;
2433 else
2434 return SSA_PROP_VARYING;
2438 /* Evaluate statement STMT. If the statement produces an output value and
2439 its evaluation changes the lattice value of its output, return
2440 SSA_PROP_INTERESTING and set *OUTPUT_P to the SSA_NAME holding the
2441 output value.
2443 If STMT is a conditional branch and we can determine its truth
2444 value, set *TAKEN_EDGE_P accordingly. If STMT produces a varying
2445 value, return SSA_PROP_VARYING. */
2447 static enum ssa_prop_result
2448 ccp_visit_stmt (gimple stmt, edge *taken_edge_p, tree *output_p)
2450 tree def;
2451 ssa_op_iter iter;
2453 if (dump_file && (dump_flags & TDF_DETAILS))
2455 fprintf (dump_file, "\nVisiting statement:\n");
2456 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2459 switch (gimple_code (stmt))
2461 case GIMPLE_ASSIGN:
2462 /* If the statement is an assignment that produces a single
2463 output value, evaluate its RHS to see if the lattice value of
2464 its output has changed. */
2465 return visit_assignment (stmt, output_p);
2467 case GIMPLE_CALL:
2468 /* A value-returning call also performs an assignment. */
2469 if (gimple_call_lhs (stmt) != NULL_TREE)
2470 return visit_assignment (stmt, output_p);
2471 break;
2473 case GIMPLE_COND:
2474 case GIMPLE_SWITCH:
2475 /* If STMT is a conditional branch, see if we can determine
2476 which branch will be taken. */
2477 /* FIXME. It appears that we should be able to optimize
2478 computed GOTOs here as well. */
2479 return visit_cond_stmt (stmt, taken_edge_p);
2481 default:
2482 break;
2485 /* Any other kind of statement is not interesting for constant
2486 propagation and, therefore, not worth simulating. */
2487 if (dump_file && (dump_flags & TDF_DETAILS))
2488 fprintf (dump_file, "No interesting values produced. Marked VARYING.\n");
2490 /* Definitions made by statements other than assignments to
2491 SSA_NAMEs represent unknown modifications to their outputs.
2492 Mark them VARYING. */
2493 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
2495 prop_value_t v = { VARYING, NULL_TREE, { -1, (HOST_WIDE_INT) -1 } };
2496 set_lattice_value (def, v);
2499 return SSA_PROP_VARYING;
2503 /* Main entry point for SSA Conditional Constant Propagation. */
2505 static unsigned int
2506 do_ssa_ccp (void)
2508 ccp_initialize ();
2509 ssa_propagate (ccp_visit_stmt, ccp_visit_phi_node);
2510 if (ccp_finalize ())
2511 return (TODO_cleanup_cfg | TODO_update_ssa | TODO_remove_unused_locals);
2512 else
2513 return 0;
2517 static bool
2518 gate_ccp (void)
2520 return flag_tree_ccp != 0;
2524 struct gimple_opt_pass pass_ccp =
2527 GIMPLE_PASS,
2528 "ccp", /* name */
2529 gate_ccp, /* gate */
2530 do_ssa_ccp, /* execute */
2531 NULL, /* sub */
2532 NULL, /* next */
2533 0, /* static_pass_number */
2534 TV_TREE_CCP, /* tv_id */
2535 PROP_cfg | PROP_ssa, /* properties_required */
2536 0, /* properties_provided */
2537 0, /* properties_destroyed */
2538 0, /* todo_flags_start */
2539 TODO_dump_func | TODO_verify_ssa
2540 | TODO_verify_stmts | TODO_ggc_collect/* todo_flags_finish */
2546 /* Try to optimize out __builtin_stack_restore. Optimize it out
2547 if there is another __builtin_stack_restore in the same basic
2548 block and no calls or ASM_EXPRs are in between, or if this block's
2549 only outgoing edge is to EXIT_BLOCK and there are no calls or
2550 ASM_EXPRs after this __builtin_stack_restore. */
2552 static tree
2553 optimize_stack_restore (gimple_stmt_iterator i)
2555 tree callee;
2556 gimple stmt;
2558 basic_block bb = gsi_bb (i);
2559 gimple call = gsi_stmt (i);
2561 if (gimple_code (call) != GIMPLE_CALL
2562 || gimple_call_num_args (call) != 1
2563 || TREE_CODE (gimple_call_arg (call, 0)) != SSA_NAME
2564 || !POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (call, 0))))
2565 return NULL_TREE;
2567 for (gsi_next (&i); !gsi_end_p (i); gsi_next (&i))
2569 stmt = gsi_stmt (i);
2570 if (gimple_code (stmt) == GIMPLE_ASM)
2571 return NULL_TREE;
2572 if (gimple_code (stmt) != GIMPLE_CALL)
2573 continue;
2575 callee = gimple_call_fndecl (stmt);
2576 if (!callee
2577 || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL
2578 /* All regular builtins are ok, just obviously not alloca. */
2579 || DECL_FUNCTION_CODE (callee) == BUILT_IN_ALLOCA)
2580 return NULL_TREE;
2582 if (DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_RESTORE)
2583 goto second_stack_restore;
2586 if (!gsi_end_p (i))
2587 return NULL_TREE;
2589 /* Allow one successor of the exit block, or zero successors. */
2590 switch (EDGE_COUNT (bb->succs))
2592 case 0:
2593 break;
2594 case 1:
2595 if (single_succ_edge (bb)->dest != EXIT_BLOCK_PTR)
2596 return NULL_TREE;
2597 break;
2598 default:
2599 return NULL_TREE;
2601 second_stack_restore:
2603 /* If there's exactly one use, then zap the call to __builtin_stack_save.
2604 If there are multiple uses, then the last one should remove the call.
2605 In any case, whether the call to __builtin_stack_save can be removed
2606 or not is irrelevant to removing the call to __builtin_stack_restore. */
2607 if (has_single_use (gimple_call_arg (call, 0)))
2609 gimple stack_save = SSA_NAME_DEF_STMT (gimple_call_arg (call, 0));
2610 if (is_gimple_call (stack_save))
2612 callee = gimple_call_fndecl (stack_save);
2613 if (callee
2614 && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
2615 && DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_SAVE)
2617 gimple_stmt_iterator stack_save_gsi;
2618 tree rhs;
2620 stack_save_gsi = gsi_for_stmt (stack_save);
2621 rhs = build_int_cst (TREE_TYPE (gimple_call_arg (call, 0)), 0);
2622 update_call_from_tree (&stack_save_gsi, rhs);
2627 /* No effect, so the statement will be deleted. */
2628 return integer_zero_node;
2631 /* If va_list type is a simple pointer and nothing special is needed,
2632 optimize __builtin_va_start (&ap, 0) into ap = __builtin_next_arg (0),
2633 __builtin_va_end (&ap) out as NOP and __builtin_va_copy into a simple
2634 pointer assignment. */
2636 static tree
2637 optimize_stdarg_builtin (gimple call)
2639 tree callee, lhs, rhs, cfun_va_list;
2640 bool va_list_simple_ptr;
2641 location_t loc = gimple_location (call);
2643 if (gimple_code (call) != GIMPLE_CALL)
2644 return NULL_TREE;
2646 callee = gimple_call_fndecl (call);
2648 cfun_va_list = targetm.fn_abi_va_list (callee);
2649 va_list_simple_ptr = POINTER_TYPE_P (cfun_va_list)
2650 && (TREE_TYPE (cfun_va_list) == void_type_node
2651 || TREE_TYPE (cfun_va_list) == char_type_node);
2653 switch (DECL_FUNCTION_CODE (callee))
2655 case BUILT_IN_VA_START:
2656 if (!va_list_simple_ptr
2657 || targetm.expand_builtin_va_start != NULL
2658 || built_in_decls[BUILT_IN_NEXT_ARG] == NULL)
2659 return NULL_TREE;
2661 if (gimple_call_num_args (call) != 2)
2662 return NULL_TREE;
2664 lhs = gimple_call_arg (call, 0);
2665 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
2666 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
2667 != TYPE_MAIN_VARIANT (cfun_va_list))
2668 return NULL_TREE;
2670 lhs = build_fold_indirect_ref_loc (loc, lhs);
2671 rhs = build_call_expr_loc (loc, built_in_decls[BUILT_IN_NEXT_ARG],
2672 1, integer_zero_node);
2673 rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
2674 return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
2676 case BUILT_IN_VA_COPY:
2677 if (!va_list_simple_ptr)
2678 return NULL_TREE;
2680 if (gimple_call_num_args (call) != 2)
2681 return NULL_TREE;
2683 lhs = gimple_call_arg (call, 0);
2684 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
2685 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
2686 != TYPE_MAIN_VARIANT (cfun_va_list))
2687 return NULL_TREE;
2689 lhs = build_fold_indirect_ref_loc (loc, lhs);
2690 rhs = gimple_call_arg (call, 1);
2691 if (TYPE_MAIN_VARIANT (TREE_TYPE (rhs))
2692 != TYPE_MAIN_VARIANT (cfun_va_list))
2693 return NULL_TREE;
2695 rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
2696 return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
2698 case BUILT_IN_VA_END:
2699 /* No effect, so the statement will be deleted. */
2700 return integer_zero_node;
2702 default:
2703 gcc_unreachable ();
2707 /* A simple pass that attempts to fold all builtin functions. This pass
2708 is run after we've propagated as many constants as we can. */
2710 static unsigned int
2711 execute_fold_all_builtins (void)
2713 bool cfg_changed = false;
2714 basic_block bb;
2715 unsigned int todoflags = 0;
2717 FOR_EACH_BB (bb)
2719 gimple_stmt_iterator i;
2720 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
2722 gimple stmt, old_stmt;
2723 tree callee, result;
2724 enum built_in_function fcode;
2726 stmt = gsi_stmt (i);
2728 if (gimple_code (stmt) != GIMPLE_CALL)
2730 gsi_next (&i);
2731 continue;
2733 callee = gimple_call_fndecl (stmt);
2734 if (!callee || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL)
2736 gsi_next (&i);
2737 continue;
2739 fcode = DECL_FUNCTION_CODE (callee);
2741 result = gimple_fold_builtin (stmt);
2743 if (result)
2744 gimple_remove_stmt_histograms (cfun, stmt);
2746 if (!result)
2747 switch (DECL_FUNCTION_CODE (callee))
2749 case BUILT_IN_CONSTANT_P:
2750 /* Resolve __builtin_constant_p. If it hasn't been
2751 folded to integer_one_node by now, it's fairly
2752 certain that the value simply isn't constant. */
2753 result = integer_zero_node;
2754 break;
2756 case BUILT_IN_STACK_RESTORE:
2757 result = optimize_stack_restore (i);
2758 if (result)
2759 break;
2760 gsi_next (&i);
2761 continue;
2763 case BUILT_IN_VA_START:
2764 case BUILT_IN_VA_END:
2765 case BUILT_IN_VA_COPY:
2766 /* These shouldn't be folded before pass_stdarg. */
2767 result = optimize_stdarg_builtin (stmt);
2768 if (result)
2769 break;
2770 /* FALLTHRU */
2772 default:
2773 gsi_next (&i);
2774 continue;
2777 if (dump_file && (dump_flags & TDF_DETAILS))
2779 fprintf (dump_file, "Simplified\n ");
2780 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2783 old_stmt = stmt;
2784 if (!update_call_from_tree (&i, result))
2786 gimplify_and_update_call_from_tree (&i, result);
2787 todoflags |= TODO_update_address_taken;
2790 stmt = gsi_stmt (i);
2791 update_stmt (stmt);
2793 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt)
2794 && gimple_purge_dead_eh_edges (bb))
2795 cfg_changed = true;
2797 if (dump_file && (dump_flags & TDF_DETAILS))
2799 fprintf (dump_file, "to\n ");
2800 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2801 fprintf (dump_file, "\n");
2804 /* Retry the same statement if it changed into another
2805 builtin, there might be new opportunities now. */
2806 if (gimple_code (stmt) != GIMPLE_CALL)
2808 gsi_next (&i);
2809 continue;
2811 callee = gimple_call_fndecl (stmt);
2812 if (!callee
2813 || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL
2814 || DECL_FUNCTION_CODE (callee) == fcode)
2815 gsi_next (&i);
2819 /* Delete unreachable blocks. */
2820 if (cfg_changed)
2821 todoflags |= TODO_cleanup_cfg;
2823 return todoflags;
2827 struct gimple_opt_pass pass_fold_builtins =
2830 GIMPLE_PASS,
2831 "fab", /* name */
2832 NULL, /* gate */
2833 execute_fold_all_builtins, /* execute */
2834 NULL, /* sub */
2835 NULL, /* next */
2836 0, /* static_pass_number */
2837 TV_NONE, /* tv_id */
2838 PROP_cfg | PROP_ssa, /* properties_required */
2839 0, /* properties_provided */
2840 0, /* properties_destroyed */
2841 0, /* todo_flags_start */
2842 TODO_dump_func
2843 | TODO_verify_ssa
2844 | TODO_update_ssa /* todo_flags_finish */