Daily bump.
[official-gcc.git] / gcc / tree-vrp.c
blob273b5fdfdc07c3b3794c8110e2daa74690d8ae05
1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005, 2006, 2007 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "ggc.h"
26 #include "flags.h"
27 #include "tree.h"
28 #include "basic-block.h"
29 #include "tree-flow.h"
30 #include "tree-pass.h"
31 #include "tree-dump.h"
32 #include "timevar.h"
33 #include "diagnostic.h"
34 #include "toplev.h"
35 #include "intl.h"
36 #include "cfgloop.h"
37 #include "tree-scalar-evolution.h"
38 #include "tree-ssa-propagate.h"
39 #include "tree-chrec.h"
41 /* Set of SSA names found during the dominator traversal of a
42 sub-graph in find_assert_locations. */
43 static sbitmap found_in_subgraph;
45 /* Local functions. */
46 static int compare_values (tree val1, tree val2);
47 static int compare_values_warnv (tree val1, tree val2, bool *);
48 static void vrp_meet (value_range_t *, value_range_t *);
49 static tree vrp_evaluate_conditional_warnv (tree, bool, bool *);
50 static tree vrp_evaluate_conditional_warnv_with_ops (enum tree_code,
51 tree, tree, bool, bool *);
53 /* Location information for ASSERT_EXPRs. Each instance of this
54 structure describes an ASSERT_EXPR for an SSA name. Since a single
55 SSA name may have more than one assertion associated with it, these
56 locations are kept in a linked list attached to the corresponding
57 SSA name. */
58 struct assert_locus_d
60 /* Basic block where the assertion would be inserted. */
61 basic_block bb;
63 /* Some assertions need to be inserted on an edge (e.g., assertions
64 generated by COND_EXPRs). In those cases, BB will be NULL. */
65 edge e;
67 /* Pointer to the statement that generated this assertion. */
68 block_stmt_iterator si;
70 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
71 enum tree_code comp_code;
73 /* Value being compared against. */
74 tree val;
76 /* Expression to compare. */
77 tree expr;
79 /* Next node in the linked list. */
80 struct assert_locus_d *next;
83 typedef struct assert_locus_d *assert_locus_t;
85 /* If bit I is present, it means that SSA name N_i has a list of
86 assertions that should be inserted in the IL. */
87 static bitmap need_assert_for;
89 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
90 holds a list of ASSERT_LOCUS_T nodes that describe where
91 ASSERT_EXPRs for SSA name N_I should be inserted. */
92 static assert_locus_t *asserts_for;
94 /* Set of blocks visited in find_assert_locations. Used to avoid
95 visiting the same block more than once. */
96 static sbitmap blocks_visited;
98 /* Value range array. After propagation, VR_VALUE[I] holds the range
99 of values that SSA name N_I may take. */
100 static value_range_t **vr_value;
102 /* For a PHI node which sets SSA name N_I, VR_COUNTS[I] holds the
103 number of executable edges we saw the last time we visited the
104 node. */
105 static int *vr_phi_edge_counts;
107 typedef struct {
108 tree stmt;
109 tree vec;
110 } switch_update;
112 static VEC (edge, heap) *to_remove_edges;
113 DEF_VEC_O(switch_update);
114 DEF_VEC_ALLOC_O(switch_update, heap);
115 static VEC (switch_update, heap) *to_update_switch_stmts;
118 /* Return the maximum value for TYPEs base type. */
120 static inline tree
121 vrp_val_max (const_tree type)
123 if (!INTEGRAL_TYPE_P (type))
124 return NULL_TREE;
126 /* For integer sub-types the values for the base type are relevant. */
127 if (TREE_TYPE (type))
128 type = TREE_TYPE (type);
130 return TYPE_MAX_VALUE (type);
133 /* Return the minimum value for TYPEs base type. */
135 static inline tree
136 vrp_val_min (const_tree type)
138 if (!INTEGRAL_TYPE_P (type))
139 return NULL_TREE;
141 /* For integer sub-types the values for the base type are relevant. */
142 if (TREE_TYPE (type))
143 type = TREE_TYPE (type);
145 return TYPE_MIN_VALUE (type);
148 /* Return whether VAL is equal to the maximum value of its type. This
149 will be true for a positive overflow infinity. We can't do a
150 simple equality comparison with TYPE_MAX_VALUE because C typedefs
151 and Ada subtypes can produce types whose TYPE_MAX_VALUE is not ==
152 to the integer constant with the same value in the type. */
154 static inline bool
155 vrp_val_is_max (const_tree val)
157 tree type_max = vrp_val_max (TREE_TYPE (val));
158 return (val == type_max
159 || (type_max != NULL_TREE
160 && operand_equal_p (val, type_max, 0)));
163 /* Return whether VAL is equal to the minimum value of its type. This
164 will be true for a negative overflow infinity. */
166 static inline bool
167 vrp_val_is_min (const_tree val)
169 tree type_min = vrp_val_min (TREE_TYPE (val));
170 return (val == type_min
171 || (type_min != NULL_TREE
172 && operand_equal_p (val, type_min, 0)));
176 /* Return whether TYPE should use an overflow infinity distinct from
177 TYPE_{MIN,MAX}_VALUE. We use an overflow infinity value to
178 represent a signed overflow during VRP computations. An infinity
179 is distinct from a half-range, which will go from some number to
180 TYPE_{MIN,MAX}_VALUE. */
182 static inline bool
183 needs_overflow_infinity (const_tree type)
185 return (INTEGRAL_TYPE_P (type)
186 && !TYPE_OVERFLOW_WRAPS (type)
187 /* Integer sub-types never overflow as they are never
188 operands of arithmetic operators. */
189 && !(TREE_TYPE (type) && TREE_TYPE (type) != type));
192 /* Return whether TYPE can support our overflow infinity
193 representation: we use the TREE_OVERFLOW flag, which only exists
194 for constants. If TYPE doesn't support this, we don't optimize
195 cases which would require signed overflow--we drop them to
196 VARYING. */
198 static inline bool
199 supports_overflow_infinity (const_tree type)
201 tree min = vrp_val_min (type), max = vrp_val_max (type);
202 #ifdef ENABLE_CHECKING
203 gcc_assert (needs_overflow_infinity (type));
204 #endif
205 return (min != NULL_TREE
206 && CONSTANT_CLASS_P (min)
207 && max != NULL_TREE
208 && CONSTANT_CLASS_P (max));
211 /* VAL is the maximum or minimum value of a type. Return a
212 corresponding overflow infinity. */
214 static inline tree
215 make_overflow_infinity (tree val)
217 #ifdef ENABLE_CHECKING
218 gcc_assert (val != NULL_TREE && CONSTANT_CLASS_P (val));
219 #endif
220 val = copy_node (val);
221 TREE_OVERFLOW (val) = 1;
222 return val;
225 /* Return a negative overflow infinity for TYPE. */
227 static inline tree
228 negative_overflow_infinity (tree type)
230 #ifdef ENABLE_CHECKING
231 gcc_assert (supports_overflow_infinity (type));
232 #endif
233 return make_overflow_infinity (vrp_val_min (type));
236 /* Return a positive overflow infinity for TYPE. */
238 static inline tree
239 positive_overflow_infinity (tree type)
241 #ifdef ENABLE_CHECKING
242 gcc_assert (supports_overflow_infinity (type));
243 #endif
244 return make_overflow_infinity (vrp_val_max (type));
247 /* Return whether VAL is a negative overflow infinity. */
249 static inline bool
250 is_negative_overflow_infinity (const_tree val)
252 return (needs_overflow_infinity (TREE_TYPE (val))
253 && CONSTANT_CLASS_P (val)
254 && TREE_OVERFLOW (val)
255 && vrp_val_is_min (val));
258 /* Return whether VAL is a positive overflow infinity. */
260 static inline bool
261 is_positive_overflow_infinity (const_tree val)
263 return (needs_overflow_infinity (TREE_TYPE (val))
264 && CONSTANT_CLASS_P (val)
265 && TREE_OVERFLOW (val)
266 && vrp_val_is_max (val));
269 /* Return whether VAL is a positive or negative overflow infinity. */
271 static inline bool
272 is_overflow_infinity (const_tree val)
274 return (needs_overflow_infinity (TREE_TYPE (val))
275 && CONSTANT_CLASS_P (val)
276 && TREE_OVERFLOW (val)
277 && (vrp_val_is_min (val) || vrp_val_is_max (val)));
280 /* If VAL is now an overflow infinity, return VAL. Otherwise, return
281 the same value with TREE_OVERFLOW clear. This can be used to avoid
282 confusing a regular value with an overflow value. */
284 static inline tree
285 avoid_overflow_infinity (tree val)
287 if (!is_overflow_infinity (val))
288 return val;
290 if (vrp_val_is_max (val))
291 return vrp_val_max (TREE_TYPE (val));
292 else
294 #ifdef ENABLE_CHECKING
295 gcc_assert (vrp_val_is_min (val));
296 #endif
297 return vrp_val_min (TREE_TYPE (val));
302 /* Return true if ARG is marked with the nonnull attribute in the
303 current function signature. */
305 static bool
306 nonnull_arg_p (const_tree arg)
308 tree t, attrs, fntype;
309 unsigned HOST_WIDE_INT arg_num;
311 gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
313 /* The static chain decl is always non null. */
314 if (arg == cfun->static_chain_decl)
315 return true;
317 fntype = TREE_TYPE (current_function_decl);
318 attrs = lookup_attribute ("nonnull", TYPE_ATTRIBUTES (fntype));
320 /* If "nonnull" wasn't specified, we know nothing about the argument. */
321 if (attrs == NULL_TREE)
322 return false;
324 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
325 if (TREE_VALUE (attrs) == NULL_TREE)
326 return true;
328 /* Get the position number for ARG in the function signature. */
329 for (arg_num = 1, t = DECL_ARGUMENTS (current_function_decl);
331 t = TREE_CHAIN (t), arg_num++)
333 if (t == arg)
334 break;
337 gcc_assert (t == arg);
339 /* Now see if ARG_NUM is mentioned in the nonnull list. */
340 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
342 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
343 return true;
346 return false;
350 /* Set value range VR to VR_VARYING. */
352 static inline void
353 set_value_range_to_varying (value_range_t *vr)
355 vr->type = VR_VARYING;
356 vr->min = vr->max = NULL_TREE;
357 if (vr->equiv)
358 bitmap_clear (vr->equiv);
362 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
364 static void
365 set_value_range (value_range_t *vr, enum value_range_type t, tree min,
366 tree max, bitmap equiv)
368 #if defined ENABLE_CHECKING
369 /* Check the validity of the range. */
370 if (t == VR_RANGE || t == VR_ANTI_RANGE)
372 int cmp;
374 gcc_assert (min && max);
376 if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
377 gcc_assert (!vrp_val_is_min (min) || !vrp_val_is_max (max));
379 cmp = compare_values (min, max);
380 gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
382 if (needs_overflow_infinity (TREE_TYPE (min)))
383 gcc_assert (!is_overflow_infinity (min)
384 || !is_overflow_infinity (max));
387 if (t == VR_UNDEFINED || t == VR_VARYING)
388 gcc_assert (min == NULL_TREE && max == NULL_TREE);
390 if (t == VR_UNDEFINED || t == VR_VARYING)
391 gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
392 #endif
394 vr->type = t;
395 vr->min = min;
396 vr->max = max;
398 /* Since updating the equivalence set involves deep copying the
399 bitmaps, only do it if absolutely necessary. */
400 if (vr->equiv == NULL
401 && equiv != NULL)
402 vr->equiv = BITMAP_ALLOC (NULL);
404 if (equiv != vr->equiv)
406 if (equiv && !bitmap_empty_p (equiv))
407 bitmap_copy (vr->equiv, equiv);
408 else
409 bitmap_clear (vr->equiv);
414 /* Set value range VR to the canonical form of {T, MIN, MAX, EQUIV}.
415 This means adjusting T, MIN and MAX representing the case of a
416 wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
417 as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges.
418 In corner cases where MAX+1 or MIN-1 wraps this will fall back
419 to varying.
420 This routine exists to ease canonicalization in the case where we
421 extract ranges from var + CST op limit. */
423 static void
424 set_and_canonicalize_value_range (value_range_t *vr, enum value_range_type t,
425 tree min, tree max, bitmap equiv)
427 /* Nothing to canonicalize for symbolic or unknown or varying ranges. */
428 if ((t != VR_RANGE
429 && t != VR_ANTI_RANGE)
430 || TREE_CODE (min) != INTEGER_CST
431 || TREE_CODE (max) != INTEGER_CST)
433 set_value_range (vr, t, min, max, equiv);
434 return;
437 /* Wrong order for min and max, to swap them and the VR type we need
438 to adjust them. */
439 if (tree_int_cst_lt (max, min))
441 tree one = build_int_cst (TREE_TYPE (min), 1);
442 tree tmp = int_const_binop (PLUS_EXPR, max, one, 0);
443 max = int_const_binop (MINUS_EXPR, min, one, 0);
444 min = tmp;
446 /* There's one corner case, if we had [C+1, C] before we now have
447 that again. But this represents an empty value range, so drop
448 to varying in this case. */
449 if (tree_int_cst_lt (max, min))
451 set_value_range_to_varying (vr);
452 return;
455 t = t == VR_RANGE ? VR_ANTI_RANGE : VR_RANGE;
458 /* Anti-ranges that can be represented as ranges should be so. */
459 if (t == VR_ANTI_RANGE)
461 bool is_min = vrp_val_is_min (min);
462 bool is_max = vrp_val_is_max (max);
464 if (is_min && is_max)
466 /* We cannot deal with empty ranges, drop to varying. */
467 set_value_range_to_varying (vr);
468 return;
470 else if (is_min
471 /* As a special exception preserve non-null ranges. */
472 && !(TYPE_UNSIGNED (TREE_TYPE (min))
473 && integer_zerop (max)))
475 tree one = build_int_cst (TREE_TYPE (max), 1);
476 min = int_const_binop (PLUS_EXPR, max, one, 0);
477 max = vrp_val_max (TREE_TYPE (max));
478 t = VR_RANGE;
480 else if (is_max)
482 tree one = build_int_cst (TREE_TYPE (min), 1);
483 max = int_const_binop (MINUS_EXPR, min, one, 0);
484 min = vrp_val_min (TREE_TYPE (min));
485 t = VR_RANGE;
489 set_value_range (vr, t, min, max, equiv);
492 /* Copy value range FROM into value range TO. */
494 static inline void
495 copy_value_range (value_range_t *to, value_range_t *from)
497 set_value_range (to, from->type, from->min, from->max, from->equiv);
500 /* Set value range VR to a single value. This function is only called
501 with values we get from statements, and exists to clear the
502 TREE_OVERFLOW flag so that we don't think we have an overflow
503 infinity when we shouldn't. */
505 static inline void
506 set_value_range_to_value (value_range_t *vr, tree val, bitmap equiv)
508 gcc_assert (is_gimple_min_invariant (val));
509 val = avoid_overflow_infinity (val);
510 set_value_range (vr, VR_RANGE, val, val, equiv);
513 /* Set value range VR to a non-negative range of type TYPE.
514 OVERFLOW_INFINITY indicates whether to use an overflow infinity
515 rather than TYPE_MAX_VALUE; this should be true if we determine
516 that the range is nonnegative based on the assumption that signed
517 overflow does not occur. */
519 static inline void
520 set_value_range_to_nonnegative (value_range_t *vr, tree type,
521 bool overflow_infinity)
523 tree zero;
525 if (overflow_infinity && !supports_overflow_infinity (type))
527 set_value_range_to_varying (vr);
528 return;
531 zero = build_int_cst (type, 0);
532 set_value_range (vr, VR_RANGE, zero,
533 (overflow_infinity
534 ? positive_overflow_infinity (type)
535 : TYPE_MAX_VALUE (type)),
536 vr->equiv);
539 /* Set value range VR to a non-NULL range of type TYPE. */
541 static inline void
542 set_value_range_to_nonnull (value_range_t *vr, tree type)
544 tree zero = build_int_cst (type, 0);
545 set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
549 /* Set value range VR to a NULL range of type TYPE. */
551 static inline void
552 set_value_range_to_null (value_range_t *vr, tree type)
554 set_value_range_to_value (vr, build_int_cst (type, 0), vr->equiv);
558 /* Set value range VR to a range of a truthvalue of type TYPE. */
560 static inline void
561 set_value_range_to_truthvalue (value_range_t *vr, tree type)
563 if (TYPE_PRECISION (type) == 1)
564 set_value_range_to_varying (vr);
565 else
566 set_value_range (vr, VR_RANGE,
567 build_int_cst (type, 0), build_int_cst (type, 1),
568 vr->equiv);
572 /* Set value range VR to VR_UNDEFINED. */
574 static inline void
575 set_value_range_to_undefined (value_range_t *vr)
577 vr->type = VR_UNDEFINED;
578 vr->min = vr->max = NULL_TREE;
579 if (vr->equiv)
580 bitmap_clear (vr->equiv);
584 /* Return value range information for VAR.
586 If we have no values ranges recorded (ie, VRP is not running), then
587 return NULL. Otherwise create an empty range if none existed for VAR. */
589 static value_range_t *
590 get_value_range (const_tree var)
592 value_range_t *vr;
593 tree sym;
594 unsigned ver = SSA_NAME_VERSION (var);
596 /* If we have no recorded ranges, then return NULL. */
597 if (! vr_value)
598 return NULL;
600 vr = vr_value[ver];
601 if (vr)
602 return vr;
604 /* Create a default value range. */
605 vr_value[ver] = vr = XCNEW (value_range_t);
607 /* Defer allocating the equivalence set. */
608 vr->equiv = NULL;
610 /* If VAR is a default definition, the variable can take any value
611 in VAR's type. */
612 sym = SSA_NAME_VAR (var);
613 if (SSA_NAME_IS_DEFAULT_DEF (var))
615 /* Try to use the "nonnull" attribute to create ~[0, 0]
616 anti-ranges for pointers. Note that this is only valid with
617 default definitions of PARM_DECLs. */
618 if (TREE_CODE (sym) == PARM_DECL
619 && POINTER_TYPE_P (TREE_TYPE (sym))
620 && nonnull_arg_p (sym))
621 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
622 else
623 set_value_range_to_varying (vr);
626 return vr;
629 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
631 static inline bool
632 vrp_operand_equal_p (const_tree val1, const_tree val2)
634 if (val1 == val2)
635 return true;
636 if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
637 return false;
638 if (is_overflow_infinity (val1))
639 return is_overflow_infinity (val2);
640 return true;
643 /* Return true, if the bitmaps B1 and B2 are equal. */
645 static inline bool
646 vrp_bitmap_equal_p (const_bitmap b1, const_bitmap b2)
648 return (b1 == b2
649 || (b1 && b2
650 && bitmap_equal_p (b1, b2)));
653 /* Update the value range and equivalence set for variable VAR to
654 NEW_VR. Return true if NEW_VR is different from VAR's previous
655 value.
657 NOTE: This function assumes that NEW_VR is a temporary value range
658 object created for the sole purpose of updating VAR's range. The
659 storage used by the equivalence set from NEW_VR will be freed by
660 this function. Do not call update_value_range when NEW_VR
661 is the range object associated with another SSA name. */
663 static inline bool
664 update_value_range (const_tree var, value_range_t *new_vr)
666 value_range_t *old_vr;
667 bool is_new;
669 /* Update the value range, if necessary. */
670 old_vr = get_value_range (var);
671 is_new = old_vr->type != new_vr->type
672 || !vrp_operand_equal_p (old_vr->min, new_vr->min)
673 || !vrp_operand_equal_p (old_vr->max, new_vr->max)
674 || !vrp_bitmap_equal_p (old_vr->equiv, new_vr->equiv);
676 if (is_new)
677 set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
678 new_vr->equiv);
680 BITMAP_FREE (new_vr->equiv);
682 return is_new;
686 /* Add VAR and VAR's equivalence set to EQUIV. This is the central
687 point where equivalence processing can be turned on/off. */
689 static void
690 add_equivalence (bitmap *equiv, const_tree var)
692 unsigned ver = SSA_NAME_VERSION (var);
693 value_range_t *vr = vr_value[ver];
695 if (*equiv == NULL)
696 *equiv = BITMAP_ALLOC (NULL);
697 bitmap_set_bit (*equiv, ver);
698 if (vr && vr->equiv)
699 bitmap_ior_into (*equiv, vr->equiv);
703 /* Return true if VR is ~[0, 0]. */
705 static inline bool
706 range_is_nonnull (value_range_t *vr)
708 return vr->type == VR_ANTI_RANGE
709 && integer_zerop (vr->min)
710 && integer_zerop (vr->max);
714 /* Return true if VR is [0, 0]. */
716 static inline bool
717 range_is_null (value_range_t *vr)
719 return vr->type == VR_RANGE
720 && integer_zerop (vr->min)
721 && integer_zerop (vr->max);
725 /* Return true if value range VR involves at least one symbol. */
727 static inline bool
728 symbolic_range_p (value_range_t *vr)
730 return (!is_gimple_min_invariant (vr->min)
731 || !is_gimple_min_invariant (vr->max));
734 /* Return true if value range VR uses an overflow infinity. */
736 static inline bool
737 overflow_infinity_range_p (value_range_t *vr)
739 return (vr->type == VR_RANGE
740 && (is_overflow_infinity (vr->min)
741 || is_overflow_infinity (vr->max)));
744 /* Return false if we can not make a valid comparison based on VR;
745 this will be the case if it uses an overflow infinity and overflow
746 is not undefined (i.e., -fno-strict-overflow is in effect).
747 Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
748 uses an overflow infinity. */
750 static bool
751 usable_range_p (value_range_t *vr, bool *strict_overflow_p)
753 gcc_assert (vr->type == VR_RANGE);
754 if (is_overflow_infinity (vr->min))
756 *strict_overflow_p = true;
757 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->min)))
758 return false;
760 if (is_overflow_infinity (vr->max))
762 *strict_overflow_p = true;
763 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->max)))
764 return false;
766 return true;
770 /* Like tree_expr_nonnegative_warnv_p, but this function uses value
771 ranges obtained so far. */
773 static bool
774 vrp_expr_computes_nonnegative (tree expr, bool *strict_overflow_p)
776 return tree_expr_nonnegative_warnv_p (expr, strict_overflow_p);
779 /* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
780 obtained so far. */
782 static bool
783 vrp_expr_computes_nonzero (tree expr, bool *strict_overflow_p)
785 if (tree_expr_nonzero_warnv_p (expr, strict_overflow_p))
786 return true;
788 /* If we have an expression of the form &X->a, then the expression
789 is nonnull if X is nonnull. */
790 if (TREE_CODE (expr) == ADDR_EXPR)
792 tree base = get_base_address (TREE_OPERAND (expr, 0));
794 if (base != NULL_TREE
795 && TREE_CODE (base) == INDIRECT_REF
796 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
798 value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
799 if (range_is_nonnull (vr))
800 return true;
804 return false;
807 /* Returns true if EXPR is a valid value (as expected by compare_values) --
808 a gimple invariant, or SSA_NAME +- CST. */
810 static bool
811 valid_value_p (tree expr)
813 if (TREE_CODE (expr) == SSA_NAME)
814 return true;
816 if (TREE_CODE (expr) == PLUS_EXPR
817 || TREE_CODE (expr) == MINUS_EXPR)
818 return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
819 && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
821 return is_gimple_min_invariant (expr);
824 /* Return
825 1 if VAL < VAL2
826 0 if !(VAL < VAL2)
827 -2 if those are incomparable. */
828 static inline int
829 operand_less_p (tree val, tree val2)
831 /* LT is folded faster than GE and others. Inline the common case. */
832 if (TREE_CODE (val) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
834 if (TYPE_UNSIGNED (TREE_TYPE (val)))
835 return INT_CST_LT_UNSIGNED (val, val2);
836 else
838 if (INT_CST_LT (val, val2))
839 return 1;
842 else
844 tree tcmp;
846 fold_defer_overflow_warnings ();
848 tcmp = fold_binary_to_constant (LT_EXPR, boolean_type_node, val, val2);
850 fold_undefer_and_ignore_overflow_warnings ();
852 if (!tcmp
853 || TREE_CODE (tcmp) != INTEGER_CST)
854 return -2;
856 if (!integer_zerop (tcmp))
857 return 1;
860 /* val >= val2, not considering overflow infinity. */
861 if (is_negative_overflow_infinity (val))
862 return is_negative_overflow_infinity (val2) ? 0 : 1;
863 else if (is_positive_overflow_infinity (val2))
864 return is_positive_overflow_infinity (val) ? 0 : 1;
866 return 0;
869 /* Compare two values VAL1 and VAL2. Return
871 -2 if VAL1 and VAL2 cannot be compared at compile-time,
872 -1 if VAL1 < VAL2,
873 0 if VAL1 == VAL2,
874 +1 if VAL1 > VAL2, and
875 +2 if VAL1 != VAL2
877 This is similar to tree_int_cst_compare but supports pointer values
878 and values that cannot be compared at compile time.
880 If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
881 true if the return value is only valid if we assume that signed
882 overflow is undefined. */
884 static int
885 compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
887 if (val1 == val2)
888 return 0;
890 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
891 both integers. */
892 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
893 == POINTER_TYPE_P (TREE_TYPE (val2)));
894 /* Convert the two values into the same type. This is needed because
895 sizetype causes sign extension even for unsigned types. */
896 val2 = fold_convert (TREE_TYPE (val1), val2);
897 STRIP_USELESS_TYPE_CONVERSION (val2);
899 if ((TREE_CODE (val1) == SSA_NAME
900 || TREE_CODE (val1) == PLUS_EXPR
901 || TREE_CODE (val1) == MINUS_EXPR)
902 && (TREE_CODE (val2) == SSA_NAME
903 || TREE_CODE (val2) == PLUS_EXPR
904 || TREE_CODE (val2) == MINUS_EXPR))
906 tree n1, c1, n2, c2;
907 enum tree_code code1, code2;
909 /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
910 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
911 same name, return -2. */
912 if (TREE_CODE (val1) == SSA_NAME)
914 code1 = SSA_NAME;
915 n1 = val1;
916 c1 = NULL_TREE;
918 else
920 code1 = TREE_CODE (val1);
921 n1 = TREE_OPERAND (val1, 0);
922 c1 = TREE_OPERAND (val1, 1);
923 if (tree_int_cst_sgn (c1) == -1)
925 if (is_negative_overflow_infinity (c1))
926 return -2;
927 c1 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c1), c1);
928 if (!c1)
929 return -2;
930 code1 = code1 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
934 if (TREE_CODE (val2) == SSA_NAME)
936 code2 = SSA_NAME;
937 n2 = val2;
938 c2 = NULL_TREE;
940 else
942 code2 = TREE_CODE (val2);
943 n2 = TREE_OPERAND (val2, 0);
944 c2 = TREE_OPERAND (val2, 1);
945 if (tree_int_cst_sgn (c2) == -1)
947 if (is_negative_overflow_infinity (c2))
948 return -2;
949 c2 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c2), c2);
950 if (!c2)
951 return -2;
952 code2 = code2 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
956 /* Both values must use the same name. */
957 if (n1 != n2)
958 return -2;
960 if (code1 == SSA_NAME
961 && code2 == SSA_NAME)
962 /* NAME == NAME */
963 return 0;
965 /* If overflow is defined we cannot simplify more. */
966 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1)))
967 return -2;
969 if (strict_overflow_p != NULL
970 && (code1 == SSA_NAME || !TREE_NO_WARNING (val1))
971 && (code2 == SSA_NAME || !TREE_NO_WARNING (val2)))
972 *strict_overflow_p = true;
974 if (code1 == SSA_NAME)
976 if (code2 == PLUS_EXPR)
977 /* NAME < NAME + CST */
978 return -1;
979 else if (code2 == MINUS_EXPR)
980 /* NAME > NAME - CST */
981 return 1;
983 else if (code1 == PLUS_EXPR)
985 if (code2 == SSA_NAME)
986 /* NAME + CST > NAME */
987 return 1;
988 else if (code2 == PLUS_EXPR)
989 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
990 return compare_values_warnv (c1, c2, strict_overflow_p);
991 else if (code2 == MINUS_EXPR)
992 /* NAME + CST1 > NAME - CST2 */
993 return 1;
995 else if (code1 == MINUS_EXPR)
997 if (code2 == SSA_NAME)
998 /* NAME - CST < NAME */
999 return -1;
1000 else if (code2 == PLUS_EXPR)
1001 /* NAME - CST1 < NAME + CST2 */
1002 return -1;
1003 else if (code2 == MINUS_EXPR)
1004 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
1005 C1 and C2 are swapped in the call to compare_values. */
1006 return compare_values_warnv (c2, c1, strict_overflow_p);
1009 gcc_unreachable ();
1012 /* We cannot compare non-constants. */
1013 if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
1014 return -2;
1016 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
1018 /* We cannot compare overflowed values, except for overflow
1019 infinities. */
1020 if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
1022 if (strict_overflow_p != NULL)
1023 *strict_overflow_p = true;
1024 if (is_negative_overflow_infinity (val1))
1025 return is_negative_overflow_infinity (val2) ? 0 : -1;
1026 else if (is_negative_overflow_infinity (val2))
1027 return 1;
1028 else if (is_positive_overflow_infinity (val1))
1029 return is_positive_overflow_infinity (val2) ? 0 : 1;
1030 else if (is_positive_overflow_infinity (val2))
1031 return -1;
1032 return -2;
1035 return tree_int_cst_compare (val1, val2);
1037 else
1039 tree t;
1041 /* First see if VAL1 and VAL2 are not the same. */
1042 if (val1 == val2 || operand_equal_p (val1, val2, 0))
1043 return 0;
1045 /* If VAL1 is a lower address than VAL2, return -1. */
1046 if (operand_less_p (val1, val2) == 1)
1047 return -1;
1049 /* If VAL1 is a higher address than VAL2, return +1. */
1050 if (operand_less_p (val2, val1) == 1)
1051 return 1;
1053 /* If VAL1 is different than VAL2, return +2.
1054 For integer constants we either have already returned -1 or 1
1055 or they are equivalent. We still might succeed in proving
1056 something about non-trivial operands. */
1057 if (TREE_CODE (val1) != INTEGER_CST
1058 || TREE_CODE (val2) != INTEGER_CST)
1060 t = fold_binary_to_constant (NE_EXPR, boolean_type_node, val1, val2);
1061 if (t && integer_onep (t))
1062 return 2;
1065 return -2;
1069 /* Compare values like compare_values_warnv, but treat comparisons of
1070 nonconstants which rely on undefined overflow as incomparable. */
1072 static int
1073 compare_values (tree val1, tree val2)
1075 bool sop;
1076 int ret;
1078 sop = false;
1079 ret = compare_values_warnv (val1, val2, &sop);
1080 if (sop
1081 && (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2)))
1082 ret = -2;
1083 return ret;
1087 /* Return 1 if VAL is inside value range VR (VR->MIN <= VAL <= VR->MAX),
1088 0 if VAL is not inside VR,
1089 -2 if we cannot tell either way.
1091 FIXME, the current semantics of this functions are a bit quirky
1092 when taken in the context of VRP. In here we do not care
1093 about VR's type. If VR is the anti-range ~[3, 5] the call
1094 value_inside_range (4, VR) will return 1.
1096 This is counter-intuitive in a strict sense, but the callers
1097 currently expect this. They are calling the function
1098 merely to determine whether VR->MIN <= VAL <= VR->MAX. The
1099 callers are applying the VR_RANGE/VR_ANTI_RANGE semantics
1100 themselves.
1102 This also applies to value_ranges_intersect_p and
1103 range_includes_zero_p. The semantics of VR_RANGE and
1104 VR_ANTI_RANGE should be encoded here, but that also means
1105 adapting the users of these functions to the new semantics.
1107 Benchmark compile/20001226-1.c compilation time after changing this
1108 function. */
1110 static inline int
1111 value_inside_range (tree val, value_range_t * vr)
1113 int cmp1, cmp2;
1115 cmp1 = operand_less_p (val, vr->min);
1116 if (cmp1 == -2)
1117 return -2;
1118 if (cmp1 == 1)
1119 return 0;
1121 cmp2 = operand_less_p (vr->max, val);
1122 if (cmp2 == -2)
1123 return -2;
1125 return !cmp2;
1129 /* Return true if value ranges VR0 and VR1 have a non-empty
1130 intersection.
1132 Benchmark compile/20001226-1.c compilation time after changing this
1133 function.
1136 static inline bool
1137 value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
1139 /* The value ranges do not intersect if the maximum of the first range is
1140 less than the minimum of the second range or vice versa.
1141 When those relations are unknown, we can't do any better. */
1142 if (operand_less_p (vr0->max, vr1->min) != 0)
1143 return false;
1144 if (operand_less_p (vr1->max, vr0->min) != 0)
1145 return false;
1146 return true;
1150 /* Return true if VR includes the value zero, false otherwise. FIXME,
1151 currently this will return false for an anti-range like ~[-4, 3].
1152 This will be wrong when the semantics of value_inside_range are
1153 modified (currently the users of this function expect these
1154 semantics). */
1156 static inline bool
1157 range_includes_zero_p (value_range_t *vr)
1159 tree zero;
1161 gcc_assert (vr->type != VR_UNDEFINED
1162 && vr->type != VR_VARYING
1163 && !symbolic_range_p (vr));
1165 zero = build_int_cst (TREE_TYPE (vr->min), 0);
1166 return (value_inside_range (zero, vr) == 1);
1169 /* Return true if T, an SSA_NAME, is known to be nonnegative. Return
1170 false otherwise or if no value range information is available. */
1172 bool
1173 ssa_name_nonnegative_p (const_tree t)
1175 value_range_t *vr = get_value_range (t);
1177 if (!vr)
1178 return false;
1180 /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
1181 which would return a useful value should be encoded as a VR_RANGE. */
1182 if (vr->type == VR_RANGE)
1184 int result = compare_values (vr->min, integer_zero_node);
1186 return (result == 0 || result == 1);
1188 return false;
1191 /* Return true if T, an SSA_NAME, is known to be nonzero. Return
1192 false otherwise or if no value range information is available. */
1194 bool
1195 ssa_name_nonzero_p (const_tree t)
1197 value_range_t *vr = get_value_range (t);
1199 if (!vr)
1200 return false;
1202 /* A VR_RANGE which does not include zero is a nonzero value. */
1203 if (vr->type == VR_RANGE && !symbolic_range_p (vr))
1204 return ! range_includes_zero_p (vr);
1206 /* A VR_ANTI_RANGE which does include zero is a nonzero value. */
1207 if (vr->type == VR_ANTI_RANGE && !symbolic_range_p (vr))
1208 return range_includes_zero_p (vr);
1210 return false;
1214 /* Extract value range information from an ASSERT_EXPR EXPR and store
1215 it in *VR_P. */
1217 static void
1218 extract_range_from_assert (value_range_t *vr_p, tree expr)
1220 tree var, cond, limit, min, max, type;
1221 value_range_t *var_vr, *limit_vr;
1222 enum tree_code cond_code;
1224 var = ASSERT_EXPR_VAR (expr);
1225 cond = ASSERT_EXPR_COND (expr);
1227 gcc_assert (COMPARISON_CLASS_P (cond));
1229 /* Find VAR in the ASSERT_EXPR conditional. */
1230 if (var == TREE_OPERAND (cond, 0)
1231 || TREE_CODE (TREE_OPERAND (cond, 0)) == PLUS_EXPR
1232 || TREE_CODE (TREE_OPERAND (cond, 0)) == NOP_EXPR)
1234 /* If the predicate is of the form VAR COMP LIMIT, then we just
1235 take LIMIT from the RHS and use the same comparison code. */
1236 cond_code = TREE_CODE (cond);
1237 limit = TREE_OPERAND (cond, 1);
1238 cond = TREE_OPERAND (cond, 0);
1240 else
1242 /* If the predicate is of the form LIMIT COMP VAR, then we need
1243 to flip around the comparison code to create the proper range
1244 for VAR. */
1245 cond_code = swap_tree_comparison (TREE_CODE (cond));
1246 limit = TREE_OPERAND (cond, 0);
1247 cond = TREE_OPERAND (cond, 1);
1250 limit = avoid_overflow_infinity (limit);
1252 type = TREE_TYPE (limit);
1253 gcc_assert (limit != var);
1255 /* For pointer arithmetic, we only keep track of pointer equality
1256 and inequality. */
1257 if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
1259 set_value_range_to_varying (vr_p);
1260 return;
1263 /* If LIMIT is another SSA name and LIMIT has a range of its own,
1264 try to use LIMIT's range to avoid creating symbolic ranges
1265 unnecessarily. */
1266 limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
1268 /* LIMIT's range is only interesting if it has any useful information. */
1269 if (limit_vr
1270 && (limit_vr->type == VR_UNDEFINED
1271 || limit_vr->type == VR_VARYING
1272 || symbolic_range_p (limit_vr)))
1273 limit_vr = NULL;
1275 /* Initially, the new range has the same set of equivalences of
1276 VAR's range. This will be revised before returning the final
1277 value. Since assertions may be chained via mutually exclusive
1278 predicates, we will need to trim the set of equivalences before
1279 we are done. */
1280 gcc_assert (vr_p->equiv == NULL);
1281 add_equivalence (&vr_p->equiv, var);
1283 /* Extract a new range based on the asserted comparison for VAR and
1284 LIMIT's value range. Notice that if LIMIT has an anti-range, we
1285 will only use it for equality comparisons (EQ_EXPR). For any
1286 other kind of assertion, we cannot derive a range from LIMIT's
1287 anti-range that can be used to describe the new range. For
1288 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
1289 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
1290 no single range for x_2 that could describe LE_EXPR, so we might
1291 as well build the range [b_4, +INF] for it.
1292 One special case we handle is extracting a range from a
1293 range test encoded as (unsigned)var + CST <= limit. */
1294 if (TREE_CODE (cond) == NOP_EXPR
1295 || TREE_CODE (cond) == PLUS_EXPR)
1297 if (TREE_CODE (cond) == PLUS_EXPR)
1299 min = fold_build1 (NEGATE_EXPR, TREE_TYPE (TREE_OPERAND (cond, 1)),
1300 TREE_OPERAND (cond, 1));
1301 max = int_const_binop (PLUS_EXPR, limit, min, 0);
1302 cond = TREE_OPERAND (cond, 0);
1304 else
1306 min = build_int_cst (TREE_TYPE (var), 0);
1307 max = limit;
1310 /* Make sure to not set TREE_OVERFLOW on the final type
1311 conversion. We are willingly interpreting large positive
1312 unsigned values as negative singed values here. */
1313 min = force_fit_type_double (TREE_TYPE (var), TREE_INT_CST_LOW (min),
1314 TREE_INT_CST_HIGH (min), 0, false);
1315 max = force_fit_type_double (TREE_TYPE (var), TREE_INT_CST_LOW (max),
1316 TREE_INT_CST_HIGH (max), 0, false);
1318 /* We can transform a max, min range to an anti-range or
1319 vice-versa. Use set_and_canonicalize_value_range which does
1320 this for us. */
1321 if (cond_code == LE_EXPR)
1322 set_and_canonicalize_value_range (vr_p, VR_RANGE,
1323 min, max, vr_p->equiv);
1324 else if (cond_code == GT_EXPR)
1325 set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
1326 min, max, vr_p->equiv);
1327 else
1328 gcc_unreachable ();
1330 else if (cond_code == EQ_EXPR)
1332 enum value_range_type range_type;
1334 if (limit_vr)
1336 range_type = limit_vr->type;
1337 min = limit_vr->min;
1338 max = limit_vr->max;
1340 else
1342 range_type = VR_RANGE;
1343 min = limit;
1344 max = limit;
1347 set_value_range (vr_p, range_type, min, max, vr_p->equiv);
1349 /* When asserting the equality VAR == LIMIT and LIMIT is another
1350 SSA name, the new range will also inherit the equivalence set
1351 from LIMIT. */
1352 if (TREE_CODE (limit) == SSA_NAME)
1353 add_equivalence (&vr_p->equiv, limit);
1355 else if (cond_code == NE_EXPR)
1357 /* As described above, when LIMIT's range is an anti-range and
1358 this assertion is an inequality (NE_EXPR), then we cannot
1359 derive anything from the anti-range. For instance, if
1360 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
1361 not imply that VAR's range is [0, 0]. So, in the case of
1362 anti-ranges, we just assert the inequality using LIMIT and
1363 not its anti-range.
1365 If LIMIT_VR is a range, we can only use it to build a new
1366 anti-range if LIMIT_VR is a single-valued range. For
1367 instance, if LIMIT_VR is [0, 1], the predicate
1368 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
1369 Rather, it means that for value 0 VAR should be ~[0, 0]
1370 and for value 1, VAR should be ~[1, 1]. We cannot
1371 represent these ranges.
1373 The only situation in which we can build a valid
1374 anti-range is when LIMIT_VR is a single-valued range
1375 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
1376 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
1377 if (limit_vr
1378 && limit_vr->type == VR_RANGE
1379 && compare_values (limit_vr->min, limit_vr->max) == 0)
1381 min = limit_vr->min;
1382 max = limit_vr->max;
1384 else
1386 /* In any other case, we cannot use LIMIT's range to build a
1387 valid anti-range. */
1388 min = max = limit;
1391 /* If MIN and MAX cover the whole range for their type, then
1392 just use the original LIMIT. */
1393 if (INTEGRAL_TYPE_P (type)
1394 && vrp_val_is_min (min)
1395 && vrp_val_is_max (max))
1396 min = max = limit;
1398 set_value_range (vr_p, VR_ANTI_RANGE, min, max, vr_p->equiv);
1400 else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
1402 min = TYPE_MIN_VALUE (type);
1404 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1405 max = limit;
1406 else
1408 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1409 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
1410 LT_EXPR. */
1411 max = limit_vr->max;
1414 /* If the maximum value forces us to be out of bounds, simply punt.
1415 It would be pointless to try and do anything more since this
1416 all should be optimized away above us. */
1417 if ((cond_code == LT_EXPR
1418 && compare_values (max, min) == 0)
1419 || is_overflow_infinity (max))
1420 set_value_range_to_varying (vr_p);
1421 else
1423 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
1424 if (cond_code == LT_EXPR)
1426 tree one = build_int_cst (type, 1);
1427 max = fold_build2 (MINUS_EXPR, type, max, one);
1428 if (EXPR_P (max))
1429 TREE_NO_WARNING (max) = 1;
1432 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1435 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
1437 max = TYPE_MAX_VALUE (type);
1439 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1440 min = limit;
1441 else
1443 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1444 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
1445 GT_EXPR. */
1446 min = limit_vr->min;
1449 /* If the minimum value forces us to be out of bounds, simply punt.
1450 It would be pointless to try and do anything more since this
1451 all should be optimized away above us. */
1452 if ((cond_code == GT_EXPR
1453 && compare_values (min, max) == 0)
1454 || is_overflow_infinity (min))
1455 set_value_range_to_varying (vr_p);
1456 else
1458 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
1459 if (cond_code == GT_EXPR)
1461 tree one = build_int_cst (type, 1);
1462 min = fold_build2 (PLUS_EXPR, type, min, one);
1463 if (EXPR_P (min))
1464 TREE_NO_WARNING (min) = 1;
1467 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1470 else
1471 gcc_unreachable ();
1473 /* If VAR already had a known range, it may happen that the new
1474 range we have computed and VAR's range are not compatible. For
1475 instance,
1477 if (p_5 == NULL)
1478 p_6 = ASSERT_EXPR <p_5, p_5 == NULL>;
1479 x_7 = p_6->fld;
1480 p_8 = ASSERT_EXPR <p_6, p_6 != NULL>;
1482 While the above comes from a faulty program, it will cause an ICE
1483 later because p_8 and p_6 will have incompatible ranges and at
1484 the same time will be considered equivalent. A similar situation
1485 would arise from
1487 if (i_5 > 10)
1488 i_6 = ASSERT_EXPR <i_5, i_5 > 10>;
1489 if (i_5 < 5)
1490 i_7 = ASSERT_EXPR <i_6, i_6 < 5>;
1492 Again i_6 and i_7 will have incompatible ranges. It would be
1493 pointless to try and do anything with i_7's range because
1494 anything dominated by 'if (i_5 < 5)' will be optimized away.
1495 Note, due to the wa in which simulation proceeds, the statement
1496 i_7 = ASSERT_EXPR <...> we would never be visited because the
1497 conditional 'if (i_5 < 5)' always evaluates to false. However,
1498 this extra check does not hurt and may protect against future
1499 changes to VRP that may get into a situation similar to the
1500 NULL pointer dereference example.
1502 Note that these compatibility tests are only needed when dealing
1503 with ranges or a mix of range and anti-range. If VAR_VR and VR_P
1504 are both anti-ranges, they will always be compatible, because two
1505 anti-ranges will always have a non-empty intersection. */
1507 var_vr = get_value_range (var);
1509 /* We may need to make adjustments when VR_P and VAR_VR are numeric
1510 ranges or anti-ranges. */
1511 if (vr_p->type == VR_VARYING
1512 || vr_p->type == VR_UNDEFINED
1513 || var_vr->type == VR_VARYING
1514 || var_vr->type == VR_UNDEFINED
1515 || symbolic_range_p (vr_p)
1516 || symbolic_range_p (var_vr))
1517 return;
1519 if (var_vr->type == VR_RANGE && vr_p->type == VR_RANGE)
1521 /* If the two ranges have a non-empty intersection, we can
1522 refine the resulting range. Since the assert expression
1523 creates an equivalency and at the same time it asserts a
1524 predicate, we can take the intersection of the two ranges to
1525 get better precision. */
1526 if (value_ranges_intersect_p (var_vr, vr_p))
1528 /* Use the larger of the two minimums. */
1529 if (compare_values (vr_p->min, var_vr->min) == -1)
1530 min = var_vr->min;
1531 else
1532 min = vr_p->min;
1534 /* Use the smaller of the two maximums. */
1535 if (compare_values (vr_p->max, var_vr->max) == 1)
1536 max = var_vr->max;
1537 else
1538 max = vr_p->max;
1540 set_value_range (vr_p, vr_p->type, min, max, vr_p->equiv);
1542 else
1544 /* The two ranges do not intersect, set the new range to
1545 VARYING, because we will not be able to do anything
1546 meaningful with it. */
1547 set_value_range_to_varying (vr_p);
1550 else if ((var_vr->type == VR_RANGE && vr_p->type == VR_ANTI_RANGE)
1551 || (var_vr->type == VR_ANTI_RANGE && vr_p->type == VR_RANGE))
1553 /* A range and an anti-range will cancel each other only if
1554 their ends are the same. For instance, in the example above,
1555 p_8's range ~[0, 0] and p_6's range [0, 0] are incompatible,
1556 so VR_P should be set to VR_VARYING. */
1557 if (compare_values (var_vr->min, vr_p->min) == 0
1558 && compare_values (var_vr->max, vr_p->max) == 0)
1559 set_value_range_to_varying (vr_p);
1560 else
1562 tree min, max, anti_min, anti_max, real_min, real_max;
1563 int cmp;
1565 /* We want to compute the logical AND of the two ranges;
1566 there are three cases to consider.
1569 1. The VR_ANTI_RANGE range is completely within the
1570 VR_RANGE and the endpoints of the ranges are
1571 different. In that case the resulting range
1572 should be whichever range is more precise.
1573 Typically that will be the VR_RANGE.
1575 2. The VR_ANTI_RANGE is completely disjoint from
1576 the VR_RANGE. In this case the resulting range
1577 should be the VR_RANGE.
1579 3. There is some overlap between the VR_ANTI_RANGE
1580 and the VR_RANGE.
1582 3a. If the high limit of the VR_ANTI_RANGE resides
1583 within the VR_RANGE, then the result is a new
1584 VR_RANGE starting at the high limit of the
1585 the VR_ANTI_RANGE + 1 and extending to the
1586 high limit of the original VR_RANGE.
1588 3b. If the low limit of the VR_ANTI_RANGE resides
1589 within the VR_RANGE, then the result is a new
1590 VR_RANGE starting at the low limit of the original
1591 VR_RANGE and extending to the low limit of the
1592 VR_ANTI_RANGE - 1. */
1593 if (vr_p->type == VR_ANTI_RANGE)
1595 anti_min = vr_p->min;
1596 anti_max = vr_p->max;
1597 real_min = var_vr->min;
1598 real_max = var_vr->max;
1600 else
1602 anti_min = var_vr->min;
1603 anti_max = var_vr->max;
1604 real_min = vr_p->min;
1605 real_max = vr_p->max;
1609 /* Case 1, VR_ANTI_RANGE completely within VR_RANGE,
1610 not including any endpoints. */
1611 if (compare_values (anti_max, real_max) == -1
1612 && compare_values (anti_min, real_min) == 1)
1614 /* If the range is covering the whole valid range of
1615 the type keep the anti-range. */
1616 if (!vrp_val_is_min (real_min)
1617 || !vrp_val_is_max (real_max))
1618 set_value_range (vr_p, VR_RANGE, real_min,
1619 real_max, vr_p->equiv);
1621 /* Case 2, VR_ANTI_RANGE completely disjoint from
1622 VR_RANGE. */
1623 else if (compare_values (anti_min, real_max) == 1
1624 || compare_values (anti_max, real_min) == -1)
1626 set_value_range (vr_p, VR_RANGE, real_min,
1627 real_max, vr_p->equiv);
1629 /* Case 3a, the anti-range extends into the low
1630 part of the real range. Thus creating a new
1631 low for the real range. */
1632 else if (((cmp = compare_values (anti_max, real_min)) == 1
1633 || cmp == 0)
1634 && compare_values (anti_max, real_max) == -1)
1636 gcc_assert (!is_positive_overflow_infinity (anti_max));
1637 if (needs_overflow_infinity (TREE_TYPE (anti_max))
1638 && vrp_val_is_max (anti_max))
1640 if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
1642 set_value_range_to_varying (vr_p);
1643 return;
1645 min = positive_overflow_infinity (TREE_TYPE (var_vr->min));
1647 else if (!POINTER_TYPE_P (TREE_TYPE (var_vr->min)))
1648 min = fold_build2 (PLUS_EXPR, TREE_TYPE (var_vr->min),
1649 anti_max,
1650 build_int_cst (TREE_TYPE (var_vr->min), 1));
1651 else
1652 min = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (var_vr->min),
1653 anti_max, size_int (1));
1654 max = real_max;
1655 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1657 /* Case 3b, the anti-range extends into the high
1658 part of the real range. Thus creating a new
1659 higher for the real range. */
1660 else if (compare_values (anti_min, real_min) == 1
1661 && ((cmp = compare_values (anti_min, real_max)) == -1
1662 || cmp == 0))
1664 gcc_assert (!is_negative_overflow_infinity (anti_min));
1665 if (needs_overflow_infinity (TREE_TYPE (anti_min))
1666 && vrp_val_is_min (anti_min))
1668 if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
1670 set_value_range_to_varying (vr_p);
1671 return;
1673 max = negative_overflow_infinity (TREE_TYPE (var_vr->min));
1675 else if (!POINTER_TYPE_P (TREE_TYPE (var_vr->min)))
1676 max = fold_build2 (MINUS_EXPR, TREE_TYPE (var_vr->min),
1677 anti_min,
1678 build_int_cst (TREE_TYPE (var_vr->min), 1));
1679 else
1680 max = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (var_vr->min),
1681 anti_min,
1682 size_int (-1));
1683 min = real_min;
1684 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1691 /* Extract range information from SSA name VAR and store it in VR. If
1692 VAR has an interesting range, use it. Otherwise, create the
1693 range [VAR, VAR] and return it. This is useful in situations where
1694 we may have conditionals testing values of VARYING names. For
1695 instance,
1697 x_3 = y_5;
1698 if (x_3 > y_5)
1701 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1702 always false. */
1704 static void
1705 extract_range_from_ssa_name (value_range_t *vr, tree var)
1707 value_range_t *var_vr = get_value_range (var);
1709 if (var_vr->type != VR_UNDEFINED && var_vr->type != VR_VARYING)
1710 copy_value_range (vr, var_vr);
1711 else
1712 set_value_range (vr, VR_RANGE, var, var, NULL);
1714 add_equivalence (&vr->equiv, var);
1718 /* Wrapper around int_const_binop. If the operation overflows and we
1719 are not using wrapping arithmetic, then adjust the result to be
1720 -INF or +INF depending on CODE, VAL1 and VAL2. This can return
1721 NULL_TREE if we need to use an overflow infinity representation but
1722 the type does not support it. */
1724 static tree
1725 vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
1727 tree res;
1729 res = int_const_binop (code, val1, val2, 0);
1731 /* If we are not using wrapping arithmetic, operate symbolically
1732 on -INF and +INF. */
1733 if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1)))
1735 int checkz = compare_values (res, val1);
1736 bool overflow = false;
1738 /* Ensure that res = val1 [+*] val2 >= val1
1739 or that res = val1 - val2 <= val1. */
1740 if ((code == PLUS_EXPR
1741 && !(checkz == 1 || checkz == 0))
1742 || (code == MINUS_EXPR
1743 && !(checkz == 0 || checkz == -1)))
1745 overflow = true;
1747 /* Checking for multiplication overflow is done by dividing the
1748 output of the multiplication by the first input of the
1749 multiplication. If the result of that division operation is
1750 not equal to the second input of the multiplication, then the
1751 multiplication overflowed. */
1752 else if (code == MULT_EXPR && !integer_zerop (val1))
1754 tree tmp = int_const_binop (TRUNC_DIV_EXPR,
1755 res,
1756 val1, 0);
1757 int check = compare_values (tmp, val2);
1759 if (check != 0)
1760 overflow = true;
1763 if (overflow)
1765 res = copy_node (res);
1766 TREE_OVERFLOW (res) = 1;
1770 else if ((TREE_OVERFLOW (res)
1771 && !TREE_OVERFLOW (val1)
1772 && !TREE_OVERFLOW (val2))
1773 || is_overflow_infinity (val1)
1774 || is_overflow_infinity (val2))
1776 /* If the operation overflowed but neither VAL1 nor VAL2 are
1777 overflown, return -INF or +INF depending on the operation
1778 and the combination of signs of the operands. */
1779 int sgn1 = tree_int_cst_sgn (val1);
1780 int sgn2 = tree_int_cst_sgn (val2);
1782 if (needs_overflow_infinity (TREE_TYPE (res))
1783 && !supports_overflow_infinity (TREE_TYPE (res)))
1784 return NULL_TREE;
1786 /* We have to punt on adding infinities of different signs,
1787 since we can't tell what the sign of the result should be.
1788 Likewise for subtracting infinities of the same sign. */
1789 if (((code == PLUS_EXPR && sgn1 != sgn2)
1790 || (code == MINUS_EXPR && sgn1 == sgn2))
1791 && is_overflow_infinity (val1)
1792 && is_overflow_infinity (val2))
1793 return NULL_TREE;
1795 /* Don't try to handle division or shifting of infinities. */
1796 if ((code == TRUNC_DIV_EXPR
1797 || code == FLOOR_DIV_EXPR
1798 || code == CEIL_DIV_EXPR
1799 || code == EXACT_DIV_EXPR
1800 || code == ROUND_DIV_EXPR
1801 || code == RSHIFT_EXPR)
1802 && (is_overflow_infinity (val1)
1803 || is_overflow_infinity (val2)))
1804 return NULL_TREE;
1806 /* Notice that we only need to handle the restricted set of
1807 operations handled by extract_range_from_binary_expr.
1808 Among them, only multiplication, addition and subtraction
1809 can yield overflow without overflown operands because we
1810 are working with integral types only... except in the
1811 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
1812 for division too. */
1814 /* For multiplication, the sign of the overflow is given
1815 by the comparison of the signs of the operands. */
1816 if ((code == MULT_EXPR && sgn1 == sgn2)
1817 /* For addition, the operands must be of the same sign
1818 to yield an overflow. Its sign is therefore that
1819 of one of the operands, for example the first. For
1820 infinite operands X + -INF is negative, not positive. */
1821 || (code == PLUS_EXPR
1822 && (sgn1 >= 0
1823 ? !is_negative_overflow_infinity (val2)
1824 : is_positive_overflow_infinity (val2)))
1825 /* For subtraction, non-infinite operands must be of
1826 different signs to yield an overflow. Its sign is
1827 therefore that of the first operand or the opposite of
1828 that of the second operand. A first operand of 0 counts
1829 as positive here, for the corner case 0 - (-INF), which
1830 overflows, but must yield +INF. For infinite operands 0
1831 - INF is negative, not positive. */
1832 || (code == MINUS_EXPR
1833 && (sgn1 >= 0
1834 ? !is_positive_overflow_infinity (val2)
1835 : is_negative_overflow_infinity (val2)))
1836 /* We only get in here with positive shift count, so the
1837 overflow direction is the same as the sign of val1.
1838 Actually rshift does not overflow at all, but we only
1839 handle the case of shifting overflowed -INF and +INF. */
1840 || (code == RSHIFT_EXPR
1841 && sgn1 >= 0)
1842 /* For division, the only case is -INF / -1 = +INF. */
1843 || code == TRUNC_DIV_EXPR
1844 || code == FLOOR_DIV_EXPR
1845 || code == CEIL_DIV_EXPR
1846 || code == EXACT_DIV_EXPR
1847 || code == ROUND_DIV_EXPR)
1848 return (needs_overflow_infinity (TREE_TYPE (res))
1849 ? positive_overflow_infinity (TREE_TYPE (res))
1850 : TYPE_MAX_VALUE (TREE_TYPE (res)));
1851 else
1852 return (needs_overflow_infinity (TREE_TYPE (res))
1853 ? negative_overflow_infinity (TREE_TYPE (res))
1854 : TYPE_MIN_VALUE (TREE_TYPE (res)));
1857 return res;
1861 /* Extract range information from a binary expression EXPR based on
1862 the ranges of each of its operands and the expression code. */
1864 static void
1865 extract_range_from_binary_expr (value_range_t *vr,
1866 enum tree_code code,
1867 tree expr_type, tree op0, tree op1)
1869 enum value_range_type type;
1870 tree min, max;
1871 int cmp;
1872 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1873 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1875 /* Not all binary expressions can be applied to ranges in a
1876 meaningful way. Handle only arithmetic operations. */
1877 if (code != PLUS_EXPR
1878 && code != MINUS_EXPR
1879 && code != POINTER_PLUS_EXPR
1880 && code != MULT_EXPR
1881 && code != TRUNC_DIV_EXPR
1882 && code != FLOOR_DIV_EXPR
1883 && code != CEIL_DIV_EXPR
1884 && code != EXACT_DIV_EXPR
1885 && code != ROUND_DIV_EXPR
1886 && code != RSHIFT_EXPR
1887 && code != MIN_EXPR
1888 && code != MAX_EXPR
1889 && code != BIT_AND_EXPR
1890 && code != TRUTH_ANDIF_EXPR
1891 && code != TRUTH_ORIF_EXPR
1892 && code != TRUTH_AND_EXPR
1893 && code != TRUTH_OR_EXPR)
1895 set_value_range_to_varying (vr);
1896 return;
1899 /* Get value ranges for each operand. For constant operands, create
1900 a new value range with the operand to simplify processing. */
1901 if (TREE_CODE (op0) == SSA_NAME)
1902 vr0 = *(get_value_range (op0));
1903 else if (is_gimple_min_invariant (op0))
1904 set_value_range_to_value (&vr0, op0, NULL);
1905 else
1906 set_value_range_to_varying (&vr0);
1908 if (TREE_CODE (op1) == SSA_NAME)
1909 vr1 = *(get_value_range (op1));
1910 else if (is_gimple_min_invariant (op1))
1911 set_value_range_to_value (&vr1, op1, NULL);
1912 else
1913 set_value_range_to_varying (&vr1);
1915 /* If either range is UNDEFINED, so is the result. */
1916 if (vr0.type == VR_UNDEFINED || vr1.type == VR_UNDEFINED)
1918 set_value_range_to_undefined (vr);
1919 return;
1922 /* The type of the resulting value range defaults to VR0.TYPE. */
1923 type = vr0.type;
1925 /* Refuse to operate on VARYING ranges, ranges of different kinds
1926 and symbolic ranges. As an exception, we allow BIT_AND_EXPR
1927 because we may be able to derive a useful range even if one of
1928 the operands is VR_VARYING or symbolic range. TODO, we may be
1929 able to derive anti-ranges in some cases. */
1930 if (code != BIT_AND_EXPR
1931 && code != TRUTH_AND_EXPR
1932 && code != TRUTH_OR_EXPR
1933 && (vr0.type == VR_VARYING
1934 || vr1.type == VR_VARYING
1935 || vr0.type != vr1.type
1936 || symbolic_range_p (&vr0)
1937 || symbolic_range_p (&vr1)))
1939 set_value_range_to_varying (vr);
1940 return;
1943 /* Now evaluate the expression to determine the new range. */
1944 if (POINTER_TYPE_P (expr_type)
1945 || POINTER_TYPE_P (TREE_TYPE (op0))
1946 || POINTER_TYPE_P (TREE_TYPE (op1)))
1948 if (code == MIN_EXPR || code == MAX_EXPR)
1950 /* For MIN/MAX expressions with pointers, we only care about
1951 nullness, if both are non null, then the result is nonnull.
1952 If both are null, then the result is null. Otherwise they
1953 are varying. */
1954 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
1955 set_value_range_to_nonnull (vr, expr_type);
1956 else if (range_is_null (&vr0) && range_is_null (&vr1))
1957 set_value_range_to_null (vr, expr_type);
1958 else
1959 set_value_range_to_varying (vr);
1961 return;
1963 gcc_assert (code == POINTER_PLUS_EXPR);
1964 /* For pointer types, we are really only interested in asserting
1965 whether the expression evaluates to non-NULL. */
1966 if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
1967 set_value_range_to_nonnull (vr, expr_type);
1968 else if (range_is_null (&vr0) && range_is_null (&vr1))
1969 set_value_range_to_null (vr, expr_type);
1970 else
1971 set_value_range_to_varying (vr);
1973 return;
1976 /* For integer ranges, apply the operation to each end of the
1977 range and see what we end up with. */
1978 if (code == TRUTH_ANDIF_EXPR
1979 || code == TRUTH_ORIF_EXPR
1980 || code == TRUTH_AND_EXPR
1981 || code == TRUTH_OR_EXPR)
1983 /* If one of the operands is zero, we know that the whole
1984 expression evaluates zero. */
1985 if (code == TRUTH_AND_EXPR
1986 && ((vr0.type == VR_RANGE
1987 && integer_zerop (vr0.min)
1988 && integer_zerop (vr0.max))
1989 || (vr1.type == VR_RANGE
1990 && integer_zerop (vr1.min)
1991 && integer_zerop (vr1.max))))
1993 type = VR_RANGE;
1994 min = max = build_int_cst (expr_type, 0);
1996 /* If one of the operands is one, we know that the whole
1997 expression evaluates one. */
1998 else if (code == TRUTH_OR_EXPR
1999 && ((vr0.type == VR_RANGE
2000 && integer_onep (vr0.min)
2001 && integer_onep (vr0.max))
2002 || (vr1.type == VR_RANGE
2003 && integer_onep (vr1.min)
2004 && integer_onep (vr1.max))))
2006 type = VR_RANGE;
2007 min = max = build_int_cst (expr_type, 1);
2009 else if (vr0.type != VR_VARYING
2010 && vr1.type != VR_VARYING
2011 && vr0.type == vr1.type
2012 && !symbolic_range_p (&vr0)
2013 && !overflow_infinity_range_p (&vr0)
2014 && !symbolic_range_p (&vr1)
2015 && !overflow_infinity_range_p (&vr1))
2017 /* Boolean expressions cannot be folded with int_const_binop. */
2018 min = fold_binary (code, expr_type, vr0.min, vr1.min);
2019 max = fold_binary (code, expr_type, vr0.max, vr1.max);
2021 else
2023 /* The result of a TRUTH_*_EXPR is always true or false. */
2024 set_value_range_to_truthvalue (vr, expr_type);
2025 return;
2028 else if (code == PLUS_EXPR
2029 || code == MIN_EXPR
2030 || code == MAX_EXPR)
2032 /* If we have a PLUS_EXPR with two VR_ANTI_RANGEs, drop to
2033 VR_VARYING. It would take more effort to compute a precise
2034 range for such a case. For example, if we have op0 == 1 and
2035 op1 == -1 with their ranges both being ~[0,0], we would have
2036 op0 + op1 == 0, so we cannot claim that the sum is in ~[0,0].
2037 Note that we are guaranteed to have vr0.type == vr1.type at
2038 this point. */
2039 if (code == PLUS_EXPR && vr0.type == VR_ANTI_RANGE)
2041 set_value_range_to_varying (vr);
2042 return;
2045 /* For operations that make the resulting range directly
2046 proportional to the original ranges, apply the operation to
2047 the same end of each range. */
2048 min = vrp_int_const_binop (code, vr0.min, vr1.min);
2049 max = vrp_int_const_binop (code, vr0.max, vr1.max);
2051 else if (code == MULT_EXPR
2052 || code == TRUNC_DIV_EXPR
2053 || code == FLOOR_DIV_EXPR
2054 || code == CEIL_DIV_EXPR
2055 || code == EXACT_DIV_EXPR
2056 || code == ROUND_DIV_EXPR
2057 || code == RSHIFT_EXPR)
2059 tree val[4];
2060 size_t i;
2061 bool sop;
2063 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
2064 drop to VR_VARYING. It would take more effort to compute a
2065 precise range for such a case. For example, if we have
2066 op0 == 65536 and op1 == 65536 with their ranges both being
2067 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
2068 we cannot claim that the product is in ~[0,0]. Note that we
2069 are guaranteed to have vr0.type == vr1.type at this
2070 point. */
2071 if (code == MULT_EXPR
2072 && vr0.type == VR_ANTI_RANGE
2073 && !TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0)))
2075 set_value_range_to_varying (vr);
2076 return;
2079 /* If we have a RSHIFT_EXPR with any shift values outside [0..prec-1],
2080 then drop to VR_VARYING. Outside of this range we get undefined
2081 behavior from the shift operation. We cannot even trust
2082 SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
2083 shifts, and the operation at the tree level may be widened. */
2084 if (code == RSHIFT_EXPR)
2086 if (vr1.type == VR_ANTI_RANGE
2087 || !vrp_expr_computes_nonnegative (op1, &sop)
2088 || (operand_less_p
2089 (build_int_cst (TREE_TYPE (vr1.max),
2090 TYPE_PRECISION (expr_type) - 1),
2091 vr1.max) != 0))
2093 set_value_range_to_varying (vr);
2094 return;
2098 /* Multiplications and divisions are a bit tricky to handle,
2099 depending on the mix of signs we have in the two ranges, we
2100 need to operate on different values to get the minimum and
2101 maximum values for the new range. One approach is to figure
2102 out all the variations of range combinations and do the
2103 operations.
2105 However, this involves several calls to compare_values and it
2106 is pretty convoluted. It's simpler to do the 4 operations
2107 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
2108 MAX1) and then figure the smallest and largest values to form
2109 the new range. */
2111 /* Divisions by zero result in a VARYING value. */
2112 else if (code != MULT_EXPR
2113 && (vr0.type == VR_ANTI_RANGE || range_includes_zero_p (&vr1)))
2115 set_value_range_to_varying (vr);
2116 return;
2119 /* Compute the 4 cross operations. */
2120 sop = false;
2121 val[0] = vrp_int_const_binop (code, vr0.min, vr1.min);
2122 if (val[0] == NULL_TREE)
2123 sop = true;
2125 if (vr1.max == vr1.min)
2126 val[1] = NULL_TREE;
2127 else
2129 val[1] = vrp_int_const_binop (code, vr0.min, vr1.max);
2130 if (val[1] == NULL_TREE)
2131 sop = true;
2134 if (vr0.max == vr0.min)
2135 val[2] = NULL_TREE;
2136 else
2138 val[2] = vrp_int_const_binop (code, vr0.max, vr1.min);
2139 if (val[2] == NULL_TREE)
2140 sop = true;
2143 if (vr0.min == vr0.max || vr1.min == vr1.max)
2144 val[3] = NULL_TREE;
2145 else
2147 val[3] = vrp_int_const_binop (code, vr0.max, vr1.max);
2148 if (val[3] == NULL_TREE)
2149 sop = true;
2152 if (sop)
2154 set_value_range_to_varying (vr);
2155 return;
2158 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
2159 of VAL[i]. */
2160 min = val[0];
2161 max = val[0];
2162 for (i = 1; i < 4; i++)
2164 if (!is_gimple_min_invariant (min)
2165 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2166 || !is_gimple_min_invariant (max)
2167 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2168 break;
2170 if (val[i])
2172 if (!is_gimple_min_invariant (val[i])
2173 || (TREE_OVERFLOW (val[i])
2174 && !is_overflow_infinity (val[i])))
2176 /* If we found an overflowed value, set MIN and MAX
2177 to it so that we set the resulting range to
2178 VARYING. */
2179 min = max = val[i];
2180 break;
2183 if (compare_values (val[i], min) == -1)
2184 min = val[i];
2186 if (compare_values (val[i], max) == 1)
2187 max = val[i];
2191 else if (code == MINUS_EXPR)
2193 /* If we have a MINUS_EXPR with two VR_ANTI_RANGEs, drop to
2194 VR_VARYING. It would take more effort to compute a precise
2195 range for such a case. For example, if we have op0 == 1 and
2196 op1 == 1 with their ranges both being ~[0,0], we would have
2197 op0 - op1 == 0, so we cannot claim that the difference is in
2198 ~[0,0]. Note that we are guaranteed to have
2199 vr0.type == vr1.type at this point. */
2200 if (vr0.type == VR_ANTI_RANGE)
2202 set_value_range_to_varying (vr);
2203 return;
2206 /* For MINUS_EXPR, apply the operation to the opposite ends of
2207 each range. */
2208 min = vrp_int_const_binop (code, vr0.min, vr1.max);
2209 max = vrp_int_const_binop (code, vr0.max, vr1.min);
2211 else if (code == BIT_AND_EXPR)
2213 if (vr0.type == VR_RANGE
2214 && vr0.min == vr0.max
2215 && TREE_CODE (vr0.max) == INTEGER_CST
2216 && !TREE_OVERFLOW (vr0.max)
2217 && tree_int_cst_sgn (vr0.max) >= 0)
2219 min = build_int_cst (expr_type, 0);
2220 max = vr0.max;
2222 else if (vr1.type == VR_RANGE
2223 && vr1.min == vr1.max
2224 && TREE_CODE (vr1.max) == INTEGER_CST
2225 && !TREE_OVERFLOW (vr1.max)
2226 && tree_int_cst_sgn (vr1.max) >= 0)
2228 type = VR_RANGE;
2229 min = build_int_cst (expr_type, 0);
2230 max = vr1.max;
2232 else
2234 set_value_range_to_varying (vr);
2235 return;
2238 else
2239 gcc_unreachable ();
2241 /* If either MIN or MAX overflowed, then set the resulting range to
2242 VARYING. But we do accept an overflow infinity
2243 representation. */
2244 if (min == NULL_TREE
2245 || !is_gimple_min_invariant (min)
2246 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2247 || max == NULL_TREE
2248 || !is_gimple_min_invariant (max)
2249 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2251 set_value_range_to_varying (vr);
2252 return;
2255 /* We punt if:
2256 1) [-INF, +INF]
2257 2) [-INF, +-INF(OVF)]
2258 3) [+-INF(OVF), +INF]
2259 4) [+-INF(OVF), +-INF(OVF)]
2260 We learn nothing when we have INF and INF(OVF) on both sides.
2261 Note that we do accept [-INF, -INF] and [+INF, +INF] without
2262 overflow. */
2263 if ((vrp_val_is_min (min) || is_overflow_infinity (min))
2264 && (vrp_val_is_max (max) || is_overflow_infinity (max)))
2266 set_value_range_to_varying (vr);
2267 return;
2270 cmp = compare_values (min, max);
2271 if (cmp == -2 || cmp == 1)
2273 /* If the new range has its limits swapped around (MIN > MAX),
2274 then the operation caused one of them to wrap around, mark
2275 the new range VARYING. */
2276 set_value_range_to_varying (vr);
2278 else
2279 set_value_range (vr, type, min, max, NULL);
2283 /* Extract range information from a unary expression EXPR based on
2284 the range of its operand and the expression code. */
2286 static void
2287 extract_range_from_unary_expr (value_range_t *vr, enum tree_code code,
2288 tree type, tree op0)
2290 tree min, max;
2291 int cmp;
2292 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2294 /* Refuse to operate on certain unary expressions for which we
2295 cannot easily determine a resulting range. */
2296 if (code == FIX_TRUNC_EXPR
2297 || code == FLOAT_EXPR
2298 || code == BIT_NOT_EXPR
2299 || code == NON_LVALUE_EXPR
2300 || code == CONJ_EXPR)
2302 set_value_range_to_varying (vr);
2303 return;
2306 /* Get value ranges for the operand. For constant operands, create
2307 a new value range with the operand to simplify processing. */
2308 if (TREE_CODE (op0) == SSA_NAME)
2309 vr0 = *(get_value_range (op0));
2310 else if (is_gimple_min_invariant (op0))
2311 set_value_range_to_value (&vr0, op0, NULL);
2312 else
2313 set_value_range_to_varying (&vr0);
2315 /* If VR0 is UNDEFINED, so is the result. */
2316 if (vr0.type == VR_UNDEFINED)
2318 set_value_range_to_undefined (vr);
2319 return;
2322 /* Refuse to operate on symbolic ranges, or if neither operand is
2323 a pointer or integral type. */
2324 if ((!INTEGRAL_TYPE_P (TREE_TYPE (op0))
2325 && !POINTER_TYPE_P (TREE_TYPE (op0)))
2326 || (vr0.type != VR_VARYING
2327 && symbolic_range_p (&vr0)))
2329 set_value_range_to_varying (vr);
2330 return;
2333 /* If the expression involves pointers, we are only interested in
2334 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
2335 if (POINTER_TYPE_P (type) || POINTER_TYPE_P (TREE_TYPE (op0)))
2337 bool sop;
2339 sop = false;
2340 if (range_is_nonnull (&vr0)
2341 || (tree_unary_nonzero_warnv_p (code, type, op0, &sop)
2342 && !sop))
2343 set_value_range_to_nonnull (vr, type);
2344 else if (range_is_null (&vr0))
2345 set_value_range_to_null (vr, type);
2346 else
2347 set_value_range_to_varying (vr);
2349 return;
2352 /* Handle unary expressions on integer ranges. */
2353 if ((code == NOP_EXPR
2354 || code == CONVERT_EXPR)
2355 && INTEGRAL_TYPE_P (type)
2356 && INTEGRAL_TYPE_P (TREE_TYPE (op0)))
2358 tree inner_type = TREE_TYPE (op0);
2359 tree outer_type = type;
2361 /* Always use base-types here. This is important for the
2362 correct signedness. */
2363 if (TREE_TYPE (inner_type))
2364 inner_type = TREE_TYPE (inner_type);
2365 if (TREE_TYPE (outer_type))
2366 outer_type = TREE_TYPE (outer_type);
2368 /* If VR0 is varying and we increase the type precision, assume
2369 a full range for the following transformation. */
2370 if (vr0.type == VR_VARYING
2371 && TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type))
2373 vr0.type = VR_RANGE;
2374 vr0.min = TYPE_MIN_VALUE (inner_type);
2375 vr0.max = TYPE_MAX_VALUE (inner_type);
2378 /* If VR0 is a constant range or anti-range and the conversion is
2379 not truncating we can convert the min and max values and
2380 canonicalize the resulting range. Otherwise we can do the
2381 conversion if the size of the range is less than what the
2382 precision of the target type can represent and the range is
2383 not an anti-range. */
2384 if ((vr0.type == VR_RANGE
2385 || vr0.type == VR_ANTI_RANGE)
2386 && TREE_CODE (vr0.min) == INTEGER_CST
2387 && TREE_CODE (vr0.max) == INTEGER_CST
2388 && !is_overflow_infinity (vr0.min)
2389 && !is_overflow_infinity (vr0.max)
2390 && (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
2391 || (vr0.type == VR_RANGE
2392 && integer_zerop (int_const_binop (RSHIFT_EXPR,
2393 int_const_binop (MINUS_EXPR, vr0.max, vr0.min, 0),
2394 size_int (TYPE_PRECISION (outer_type)), 0)))))
2396 tree new_min, new_max;
2397 new_min = force_fit_type_double (outer_type,
2398 TREE_INT_CST_LOW (vr0.min),
2399 TREE_INT_CST_HIGH (vr0.min), 0, 0);
2400 new_max = force_fit_type_double (outer_type,
2401 TREE_INT_CST_LOW (vr0.max),
2402 TREE_INT_CST_HIGH (vr0.max), 0, 0);
2403 set_and_canonicalize_value_range (vr, vr0.type,
2404 new_min, new_max, NULL);
2405 return;
2408 set_value_range_to_varying (vr);
2409 return;
2412 /* Conversion of a VR_VARYING value to a wider type can result
2413 in a usable range. So wait until after we've handled conversions
2414 before dropping the result to VR_VARYING if we had a source
2415 operand that is VR_VARYING. */
2416 if (vr0.type == VR_VARYING)
2418 set_value_range_to_varying (vr);
2419 return;
2422 /* Apply the operation to each end of the range and see what we end
2423 up with. */
2424 if (code == NEGATE_EXPR
2425 && !TYPE_UNSIGNED (type))
2427 /* NEGATE_EXPR flips the range around. We need to treat
2428 TYPE_MIN_VALUE specially. */
2429 if (is_positive_overflow_infinity (vr0.max))
2430 min = negative_overflow_infinity (type);
2431 else if (is_negative_overflow_infinity (vr0.max))
2432 min = positive_overflow_infinity (type);
2433 else if (!vrp_val_is_min (vr0.max))
2434 min = fold_unary_to_constant (code, type, vr0.max);
2435 else if (needs_overflow_infinity (type))
2437 if (supports_overflow_infinity (type)
2438 && !is_overflow_infinity (vr0.min)
2439 && !vrp_val_is_min (vr0.min))
2440 min = positive_overflow_infinity (type);
2441 else
2443 set_value_range_to_varying (vr);
2444 return;
2447 else
2448 min = TYPE_MIN_VALUE (type);
2450 if (is_positive_overflow_infinity (vr0.min))
2451 max = negative_overflow_infinity (type);
2452 else if (is_negative_overflow_infinity (vr0.min))
2453 max = positive_overflow_infinity (type);
2454 else if (!vrp_val_is_min (vr0.min))
2455 max = fold_unary_to_constant (code, type, vr0.min);
2456 else if (needs_overflow_infinity (type))
2458 if (supports_overflow_infinity (type))
2459 max = positive_overflow_infinity (type);
2460 else
2462 set_value_range_to_varying (vr);
2463 return;
2466 else
2467 max = TYPE_MIN_VALUE (type);
2469 else if (code == NEGATE_EXPR
2470 && TYPE_UNSIGNED (type))
2472 if (!range_includes_zero_p (&vr0))
2474 max = fold_unary_to_constant (code, type, vr0.min);
2475 min = fold_unary_to_constant (code, type, vr0.max);
2477 else
2479 if (range_is_null (&vr0))
2480 set_value_range_to_null (vr, type);
2481 else
2482 set_value_range_to_varying (vr);
2483 return;
2486 else if (code == ABS_EXPR
2487 && !TYPE_UNSIGNED (type))
2489 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
2490 useful range. */
2491 if (!TYPE_OVERFLOW_UNDEFINED (type)
2492 && ((vr0.type == VR_RANGE
2493 && vrp_val_is_min (vr0.min))
2494 || (vr0.type == VR_ANTI_RANGE
2495 && !vrp_val_is_min (vr0.min)
2496 && !range_includes_zero_p (&vr0))))
2498 set_value_range_to_varying (vr);
2499 return;
2502 /* ABS_EXPR may flip the range around, if the original range
2503 included negative values. */
2504 if (is_overflow_infinity (vr0.min))
2505 min = positive_overflow_infinity (type);
2506 else if (!vrp_val_is_min (vr0.min))
2507 min = fold_unary_to_constant (code, type, vr0.min);
2508 else if (!needs_overflow_infinity (type))
2509 min = TYPE_MAX_VALUE (type);
2510 else if (supports_overflow_infinity (type))
2511 min = positive_overflow_infinity (type);
2512 else
2514 set_value_range_to_varying (vr);
2515 return;
2518 if (is_overflow_infinity (vr0.max))
2519 max = positive_overflow_infinity (type);
2520 else if (!vrp_val_is_min (vr0.max))
2521 max = fold_unary_to_constant (code, type, vr0.max);
2522 else if (!needs_overflow_infinity (type))
2523 max = TYPE_MAX_VALUE (type);
2524 else if (supports_overflow_infinity (type))
2525 max = positive_overflow_infinity (type);
2526 else
2528 set_value_range_to_varying (vr);
2529 return;
2532 cmp = compare_values (min, max);
2534 /* If a VR_ANTI_RANGEs contains zero, then we have
2535 ~[-INF, min(MIN, MAX)]. */
2536 if (vr0.type == VR_ANTI_RANGE)
2538 if (range_includes_zero_p (&vr0))
2540 /* Take the lower of the two values. */
2541 if (cmp != 1)
2542 max = min;
2544 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
2545 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
2546 flag_wrapv is set and the original anti-range doesn't include
2547 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
2548 if (TYPE_OVERFLOW_WRAPS (type))
2550 tree type_min_value = TYPE_MIN_VALUE (type);
2552 min = (vr0.min != type_min_value
2553 ? int_const_binop (PLUS_EXPR, type_min_value,
2554 integer_one_node, 0)
2555 : type_min_value);
2557 else
2559 if (overflow_infinity_range_p (&vr0))
2560 min = negative_overflow_infinity (type);
2561 else
2562 min = TYPE_MIN_VALUE (type);
2565 else
2567 /* All else has failed, so create the range [0, INF], even for
2568 flag_wrapv since TYPE_MIN_VALUE is in the original
2569 anti-range. */
2570 vr0.type = VR_RANGE;
2571 min = build_int_cst (type, 0);
2572 if (needs_overflow_infinity (type))
2574 if (supports_overflow_infinity (type))
2575 max = positive_overflow_infinity (type);
2576 else
2578 set_value_range_to_varying (vr);
2579 return;
2582 else
2583 max = TYPE_MAX_VALUE (type);
2587 /* If the range contains zero then we know that the minimum value in the
2588 range will be zero. */
2589 else if (range_includes_zero_p (&vr0))
2591 if (cmp == 1)
2592 max = min;
2593 min = build_int_cst (type, 0);
2595 else
2597 /* If the range was reversed, swap MIN and MAX. */
2598 if (cmp == 1)
2600 tree t = min;
2601 min = max;
2602 max = t;
2606 else
2608 /* Otherwise, operate on each end of the range. */
2609 min = fold_unary_to_constant (code, type, vr0.min);
2610 max = fold_unary_to_constant (code, type, vr0.max);
2612 if (needs_overflow_infinity (type))
2614 gcc_assert (code != NEGATE_EXPR && code != ABS_EXPR);
2616 /* If both sides have overflowed, we don't know
2617 anything. */
2618 if ((is_overflow_infinity (vr0.min)
2619 || TREE_OVERFLOW (min))
2620 && (is_overflow_infinity (vr0.max)
2621 || TREE_OVERFLOW (max)))
2623 set_value_range_to_varying (vr);
2624 return;
2627 if (is_overflow_infinity (vr0.min))
2628 min = vr0.min;
2629 else if (TREE_OVERFLOW (min))
2631 if (supports_overflow_infinity (type))
2632 min = (tree_int_cst_sgn (min) >= 0
2633 ? positive_overflow_infinity (TREE_TYPE (min))
2634 : negative_overflow_infinity (TREE_TYPE (min)));
2635 else
2637 set_value_range_to_varying (vr);
2638 return;
2642 if (is_overflow_infinity (vr0.max))
2643 max = vr0.max;
2644 else if (TREE_OVERFLOW (max))
2646 if (supports_overflow_infinity (type))
2647 max = (tree_int_cst_sgn (max) >= 0
2648 ? positive_overflow_infinity (TREE_TYPE (max))
2649 : negative_overflow_infinity (TREE_TYPE (max)));
2650 else
2652 set_value_range_to_varying (vr);
2653 return;
2659 cmp = compare_values (min, max);
2660 if (cmp == -2 || cmp == 1)
2662 /* If the new range has its limits swapped around (MIN > MAX),
2663 then the operation caused one of them to wrap around, mark
2664 the new range VARYING. */
2665 set_value_range_to_varying (vr);
2667 else
2668 set_value_range (vr, vr0.type, min, max, NULL);
2672 /* Extract range information from a conditional expression EXPR based on
2673 the ranges of each of its operands and the expression code. */
2675 static void
2676 extract_range_from_cond_expr (value_range_t *vr, tree expr)
2678 tree op0, op1;
2679 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2680 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2682 /* Get value ranges for each operand. For constant operands, create
2683 a new value range with the operand to simplify processing. */
2684 op0 = COND_EXPR_THEN (expr);
2685 if (TREE_CODE (op0) == SSA_NAME)
2686 vr0 = *(get_value_range (op0));
2687 else if (is_gimple_min_invariant (op0))
2688 set_value_range_to_value (&vr0, op0, NULL);
2689 else
2690 set_value_range_to_varying (&vr0);
2692 op1 = COND_EXPR_ELSE (expr);
2693 if (TREE_CODE (op1) == SSA_NAME)
2694 vr1 = *(get_value_range (op1));
2695 else if (is_gimple_min_invariant (op1))
2696 set_value_range_to_value (&vr1, op1, NULL);
2697 else
2698 set_value_range_to_varying (&vr1);
2700 /* The resulting value range is the union of the operand ranges */
2701 vrp_meet (&vr0, &vr1);
2702 copy_value_range (vr, &vr0);
2706 /* Extract range information from a comparison expression EXPR based
2707 on the range of its operand and the expression code. */
2709 static void
2710 extract_range_from_comparison (value_range_t *vr, enum tree_code code,
2711 tree type, tree op0, tree op1)
2713 bool sop = false;
2714 tree val = vrp_evaluate_conditional_warnv_with_ops (code,
2715 op0,
2716 op1,
2717 false, &sop);
2719 /* A disadvantage of using a special infinity as an overflow
2720 representation is that we lose the ability to record overflow
2721 when we don't have an infinity. So we have to ignore a result
2722 which relies on overflow. */
2724 if (val && !is_overflow_infinity (val) && !sop)
2726 /* Since this expression was found on the RHS of an assignment,
2727 its type may be different from _Bool. Convert VAL to EXPR's
2728 type. */
2729 val = fold_convert (type, val);
2730 if (is_gimple_min_invariant (val))
2731 set_value_range_to_value (vr, val, vr->equiv);
2732 else
2733 set_value_range (vr, VR_RANGE, val, val, vr->equiv);
2735 else
2736 /* The result of a comparison is always true or false. */
2737 set_value_range_to_truthvalue (vr, type);
2741 /* Try to compute a useful range out of expression EXPR and store it
2742 in *VR. */
2744 static void
2745 extract_range_from_expr (value_range_t *vr, tree expr)
2747 enum tree_code code = TREE_CODE (expr);
2749 if (code == ASSERT_EXPR)
2750 extract_range_from_assert (vr, expr);
2751 else if (code == SSA_NAME)
2752 extract_range_from_ssa_name (vr, expr);
2753 else if (TREE_CODE_CLASS (code) == tcc_binary
2754 || code == TRUTH_ANDIF_EXPR
2755 || code == TRUTH_ORIF_EXPR
2756 || code == TRUTH_AND_EXPR
2757 || code == TRUTH_OR_EXPR
2758 || code == TRUTH_XOR_EXPR)
2759 extract_range_from_binary_expr (vr, TREE_CODE (expr), TREE_TYPE (expr),
2760 TREE_OPERAND (expr, 0),
2761 TREE_OPERAND (expr, 1));
2762 else if (TREE_CODE_CLASS (code) == tcc_unary)
2763 extract_range_from_unary_expr (vr, TREE_CODE (expr), TREE_TYPE (expr),
2764 TREE_OPERAND (expr, 0));
2765 else if (code == COND_EXPR)
2766 extract_range_from_cond_expr (vr, expr);
2767 else if (TREE_CODE_CLASS (code) == tcc_comparison)
2768 extract_range_from_comparison (vr, TREE_CODE (expr), TREE_TYPE (expr),
2769 TREE_OPERAND (expr, 0),
2770 TREE_OPERAND (expr, 1));
2771 else if (is_gimple_min_invariant (expr))
2772 set_value_range_to_value (vr, expr, NULL);
2773 else
2774 set_value_range_to_varying (vr);
2776 /* If we got a varying range from the tests above, try a final
2777 time to derive a nonnegative or nonzero range. This time
2778 relying primarily on generic routines in fold in conjunction
2779 with range data. */
2780 if (vr->type == VR_VARYING)
2782 bool sop = false;
2784 if (INTEGRAL_TYPE_P (TREE_TYPE (expr))
2785 && vrp_expr_computes_nonnegative (expr, &sop))
2786 set_value_range_to_nonnegative (vr, TREE_TYPE (expr),
2787 sop || is_overflow_infinity (expr));
2788 else if (vrp_expr_computes_nonzero (expr, &sop)
2789 && !sop)
2790 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
2794 /* Given a range VR, a LOOP and a variable VAR, determine whether it
2795 would be profitable to adjust VR using scalar evolution information
2796 for VAR. If so, update VR with the new limits. */
2798 static void
2799 adjust_range_with_scev (value_range_t *vr, struct loop *loop, tree stmt,
2800 tree var)
2802 tree init, step, chrec, tmin, tmax, min, max, type;
2803 enum ev_direction dir;
2805 /* TODO. Don't adjust anti-ranges. An anti-range may provide
2806 better opportunities than a regular range, but I'm not sure. */
2807 if (vr->type == VR_ANTI_RANGE)
2808 return;
2810 /* Ensure that there are not values in the scev cache based on assumptions
2811 on ranges of ssa names that were changed
2812 (in set_value_range/set_value_range_to_varying). Preserve cached numbers
2813 of iterations, that were computed before the start of VRP (we do not
2814 recompute these each time to save the compile time). */
2815 scev_reset_except_niters ();
2817 chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
2819 /* Like in PR19590, scev can return a constant function. */
2820 if (is_gimple_min_invariant (chrec))
2822 set_value_range_to_value (vr, chrec, vr->equiv);
2823 return;
2826 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
2827 return;
2829 init = initial_condition_in_loop_num (chrec, loop->num);
2830 step = evolution_part_in_loop_num (chrec, loop->num);
2832 /* If STEP is symbolic, we can't know whether INIT will be the
2833 minimum or maximum value in the range. Also, unless INIT is
2834 a simple expression, compare_values and possibly other functions
2835 in tree-vrp won't be able to handle it. */
2836 if (step == NULL_TREE
2837 || !is_gimple_min_invariant (step)
2838 || !valid_value_p (init))
2839 return;
2841 dir = scev_direction (chrec);
2842 if (/* Do not adjust ranges if we do not know whether the iv increases
2843 or decreases, ... */
2844 dir == EV_DIR_UNKNOWN
2845 /* ... or if it may wrap. */
2846 || scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
2847 true))
2848 return;
2850 /* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
2851 negative_overflow_infinity and positive_overflow_infinity,
2852 because we have concluded that the loop probably does not
2853 wrap. */
2855 type = TREE_TYPE (var);
2856 if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
2857 tmin = lower_bound_in_type (type, type);
2858 else
2859 tmin = TYPE_MIN_VALUE (type);
2860 if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
2861 tmax = upper_bound_in_type (type, type);
2862 else
2863 tmax = TYPE_MAX_VALUE (type);
2865 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
2867 min = tmin;
2868 max = tmax;
2870 /* For VARYING or UNDEFINED ranges, just about anything we get
2871 from scalar evolutions should be better. */
2873 if (dir == EV_DIR_DECREASES)
2874 max = init;
2875 else
2876 min = init;
2878 /* If we would create an invalid range, then just assume we
2879 know absolutely nothing. This may be over-conservative,
2880 but it's clearly safe, and should happen only in unreachable
2881 parts of code, or for invalid programs. */
2882 if (compare_values (min, max) == 1)
2883 return;
2885 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
2887 else if (vr->type == VR_RANGE)
2889 min = vr->min;
2890 max = vr->max;
2892 if (dir == EV_DIR_DECREASES)
2894 /* INIT is the maximum value. If INIT is lower than VR->MAX
2895 but no smaller than VR->MIN, set VR->MAX to INIT. */
2896 if (compare_values (init, max) == -1)
2898 max = init;
2900 /* If we just created an invalid range with the minimum
2901 greater than the maximum, we fail conservatively.
2902 This should happen only in unreachable
2903 parts of code, or for invalid programs. */
2904 if (compare_values (min, max) == 1)
2905 return;
2908 /* According to the loop information, the variable does not
2909 overflow. If we think it does, probably because of an
2910 overflow due to arithmetic on a different INF value,
2911 reset now. */
2912 if (is_negative_overflow_infinity (min))
2913 min = tmin;
2915 else
2917 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
2918 if (compare_values (init, min) == 1)
2920 min = init;
2922 /* Again, avoid creating invalid range by failing. */
2923 if (compare_values (min, max) == 1)
2924 return;
2927 if (is_positive_overflow_infinity (max))
2928 max = tmax;
2931 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
2935 /* Return true if VAR may overflow at STMT. This checks any available
2936 loop information to see if we can determine that VAR does not
2937 overflow. */
2939 static bool
2940 vrp_var_may_overflow (tree var, tree stmt)
2942 struct loop *l;
2943 tree chrec, init, step;
2945 if (current_loops == NULL)
2946 return true;
2948 l = loop_containing_stmt (stmt);
2949 if (l == NULL)
2950 return true;
2952 chrec = instantiate_parameters (l, analyze_scalar_evolution (l, var));
2953 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
2954 return true;
2956 init = initial_condition_in_loop_num (chrec, l->num);
2957 step = evolution_part_in_loop_num (chrec, l->num);
2959 if (step == NULL_TREE
2960 || !is_gimple_min_invariant (step)
2961 || !valid_value_p (init))
2962 return true;
2964 /* If we get here, we know something useful about VAR based on the
2965 loop information. If it wraps, it may overflow. */
2967 if (scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
2968 true))
2969 return true;
2971 if (dump_file && (dump_flags & TDF_DETAILS) != 0)
2973 print_generic_expr (dump_file, var, 0);
2974 fprintf (dump_file, ": loop information indicates does not overflow\n");
2977 return false;
2981 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
2983 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
2984 all the values in the ranges.
2986 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
2988 - Return NULL_TREE if it is not always possible to determine the
2989 value of the comparison.
2991 Also set *STRICT_OVERFLOW_P to indicate whether a range with an
2992 overflow infinity was used in the test. */
2995 static tree
2996 compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1,
2997 bool *strict_overflow_p)
2999 /* VARYING or UNDEFINED ranges cannot be compared. */
3000 if (vr0->type == VR_VARYING
3001 || vr0->type == VR_UNDEFINED
3002 || vr1->type == VR_VARYING
3003 || vr1->type == VR_UNDEFINED)
3004 return NULL_TREE;
3006 /* Anti-ranges need to be handled separately. */
3007 if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
3009 /* If both are anti-ranges, then we cannot compute any
3010 comparison. */
3011 if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
3012 return NULL_TREE;
3014 /* These comparisons are never statically computable. */
3015 if (comp == GT_EXPR
3016 || comp == GE_EXPR
3017 || comp == LT_EXPR
3018 || comp == LE_EXPR)
3019 return NULL_TREE;
3021 /* Equality can be computed only between a range and an
3022 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
3023 if (vr0->type == VR_RANGE)
3025 /* To simplify processing, make VR0 the anti-range. */
3026 value_range_t *tmp = vr0;
3027 vr0 = vr1;
3028 vr1 = tmp;
3031 gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
3033 if (compare_values_warnv (vr0->min, vr1->min, strict_overflow_p) == 0
3034 && compare_values_warnv (vr0->max, vr1->max, strict_overflow_p) == 0)
3035 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
3037 return NULL_TREE;
3040 if (!usable_range_p (vr0, strict_overflow_p)
3041 || !usable_range_p (vr1, strict_overflow_p))
3042 return NULL_TREE;
3044 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
3045 operands around and change the comparison code. */
3046 if (comp == GT_EXPR || comp == GE_EXPR)
3048 value_range_t *tmp;
3049 comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
3050 tmp = vr0;
3051 vr0 = vr1;
3052 vr1 = tmp;
3055 if (comp == EQ_EXPR)
3057 /* Equality may only be computed if both ranges represent
3058 exactly one value. */
3059 if (compare_values_warnv (vr0->min, vr0->max, strict_overflow_p) == 0
3060 && compare_values_warnv (vr1->min, vr1->max, strict_overflow_p) == 0)
3062 int cmp_min = compare_values_warnv (vr0->min, vr1->min,
3063 strict_overflow_p);
3064 int cmp_max = compare_values_warnv (vr0->max, vr1->max,
3065 strict_overflow_p);
3066 if (cmp_min == 0 && cmp_max == 0)
3067 return boolean_true_node;
3068 else if (cmp_min != -2 && cmp_max != -2)
3069 return boolean_false_node;
3071 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
3072 else if (compare_values_warnv (vr0->min, vr1->max,
3073 strict_overflow_p) == 1
3074 || compare_values_warnv (vr1->min, vr0->max,
3075 strict_overflow_p) == 1)
3076 return boolean_false_node;
3078 return NULL_TREE;
3080 else if (comp == NE_EXPR)
3082 int cmp1, cmp2;
3084 /* If VR0 is completely to the left or completely to the right
3085 of VR1, they are always different. Notice that we need to
3086 make sure that both comparisons yield similar results to
3087 avoid comparing values that cannot be compared at
3088 compile-time. */
3089 cmp1 = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
3090 cmp2 = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
3091 if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
3092 return boolean_true_node;
3094 /* If VR0 and VR1 represent a single value and are identical,
3095 return false. */
3096 else if (compare_values_warnv (vr0->min, vr0->max,
3097 strict_overflow_p) == 0
3098 && compare_values_warnv (vr1->min, vr1->max,
3099 strict_overflow_p) == 0
3100 && compare_values_warnv (vr0->min, vr1->min,
3101 strict_overflow_p) == 0
3102 && compare_values_warnv (vr0->max, vr1->max,
3103 strict_overflow_p) == 0)
3104 return boolean_false_node;
3106 /* Otherwise, they may or may not be different. */
3107 else
3108 return NULL_TREE;
3110 else if (comp == LT_EXPR || comp == LE_EXPR)
3112 int tst;
3114 /* If VR0 is to the left of VR1, return true. */
3115 tst = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
3116 if ((comp == LT_EXPR && tst == -1)
3117 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
3119 if (overflow_infinity_range_p (vr0)
3120 || overflow_infinity_range_p (vr1))
3121 *strict_overflow_p = true;
3122 return boolean_true_node;
3125 /* If VR0 is to the right of VR1, return false. */
3126 tst = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
3127 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
3128 || (comp == LE_EXPR && tst == 1))
3130 if (overflow_infinity_range_p (vr0)
3131 || overflow_infinity_range_p (vr1))
3132 *strict_overflow_p = true;
3133 return boolean_false_node;
3136 /* Otherwise, we don't know. */
3137 return NULL_TREE;
3140 gcc_unreachable ();
3144 /* Given a value range VR, a value VAL and a comparison code COMP, return
3145 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
3146 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
3147 always returns false. Return NULL_TREE if it is not always
3148 possible to determine the value of the comparison. Also set
3149 *STRICT_OVERFLOW_P to indicate whether a range with an overflow
3150 infinity was used in the test. */
3152 static tree
3153 compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val,
3154 bool *strict_overflow_p)
3156 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
3157 return NULL_TREE;
3159 /* Anti-ranges need to be handled separately. */
3160 if (vr->type == VR_ANTI_RANGE)
3162 /* For anti-ranges, the only predicates that we can compute at
3163 compile time are equality and inequality. */
3164 if (comp == GT_EXPR
3165 || comp == GE_EXPR
3166 || comp == LT_EXPR
3167 || comp == LE_EXPR)
3168 return NULL_TREE;
3170 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
3171 if (value_inside_range (val, vr) == 1)
3172 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
3174 return NULL_TREE;
3177 if (!usable_range_p (vr, strict_overflow_p))
3178 return NULL_TREE;
3180 if (comp == EQ_EXPR)
3182 /* EQ_EXPR may only be computed if VR represents exactly
3183 one value. */
3184 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0)
3186 int cmp = compare_values_warnv (vr->min, val, strict_overflow_p);
3187 if (cmp == 0)
3188 return boolean_true_node;
3189 else if (cmp == -1 || cmp == 1 || cmp == 2)
3190 return boolean_false_node;
3192 else if (compare_values_warnv (val, vr->min, strict_overflow_p) == -1
3193 || compare_values_warnv (vr->max, val, strict_overflow_p) == -1)
3194 return boolean_false_node;
3196 return NULL_TREE;
3198 else if (comp == NE_EXPR)
3200 /* If VAL is not inside VR, then they are always different. */
3201 if (compare_values_warnv (vr->max, val, strict_overflow_p) == -1
3202 || compare_values_warnv (vr->min, val, strict_overflow_p) == 1)
3203 return boolean_true_node;
3205 /* If VR represents exactly one value equal to VAL, then return
3206 false. */
3207 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0
3208 && compare_values_warnv (vr->min, val, strict_overflow_p) == 0)
3209 return boolean_false_node;
3211 /* Otherwise, they may or may not be different. */
3212 return NULL_TREE;
3214 else if (comp == LT_EXPR || comp == LE_EXPR)
3216 int tst;
3218 /* If VR is to the left of VAL, return true. */
3219 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
3220 if ((comp == LT_EXPR && tst == -1)
3221 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
3223 if (overflow_infinity_range_p (vr))
3224 *strict_overflow_p = true;
3225 return boolean_true_node;
3228 /* If VR is to the right of VAL, return false. */
3229 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
3230 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
3231 || (comp == LE_EXPR && tst == 1))
3233 if (overflow_infinity_range_p (vr))
3234 *strict_overflow_p = true;
3235 return boolean_false_node;
3238 /* Otherwise, we don't know. */
3239 return NULL_TREE;
3241 else if (comp == GT_EXPR || comp == GE_EXPR)
3243 int tst;
3245 /* If VR is to the right of VAL, return true. */
3246 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
3247 if ((comp == GT_EXPR && tst == 1)
3248 || (comp == GE_EXPR && (tst == 0 || tst == 1)))
3250 if (overflow_infinity_range_p (vr))
3251 *strict_overflow_p = true;
3252 return boolean_true_node;
3255 /* If VR is to the left of VAL, return false. */
3256 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
3257 if ((comp == GT_EXPR && (tst == -1 || tst == 0))
3258 || (comp == GE_EXPR && tst == -1))
3260 if (overflow_infinity_range_p (vr))
3261 *strict_overflow_p = true;
3262 return boolean_false_node;
3265 /* Otherwise, we don't know. */
3266 return NULL_TREE;
3269 gcc_unreachable ();
3273 /* Debugging dumps. */
3275 void dump_value_range (FILE *, value_range_t *);
3276 void debug_value_range (value_range_t *);
3277 void dump_all_value_ranges (FILE *);
3278 void debug_all_value_ranges (void);
3279 void dump_vr_equiv (FILE *, bitmap);
3280 void debug_vr_equiv (bitmap);
3283 /* Dump value range VR to FILE. */
3285 void
3286 dump_value_range (FILE *file, value_range_t *vr)
3288 if (vr == NULL)
3289 fprintf (file, "[]");
3290 else if (vr->type == VR_UNDEFINED)
3291 fprintf (file, "UNDEFINED");
3292 else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
3294 tree type = TREE_TYPE (vr->min);
3296 fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
3298 if (is_negative_overflow_infinity (vr->min))
3299 fprintf (file, "-INF(OVF)");
3300 else if (INTEGRAL_TYPE_P (type)
3301 && !TYPE_UNSIGNED (type)
3302 && vrp_val_is_min (vr->min))
3303 fprintf (file, "-INF");
3304 else
3305 print_generic_expr (file, vr->min, 0);
3307 fprintf (file, ", ");
3309 if (is_positive_overflow_infinity (vr->max))
3310 fprintf (file, "+INF(OVF)");
3311 else if (INTEGRAL_TYPE_P (type)
3312 && vrp_val_is_max (vr->max))
3313 fprintf (file, "+INF");
3314 else
3315 print_generic_expr (file, vr->max, 0);
3317 fprintf (file, "]");
3319 if (vr->equiv)
3321 bitmap_iterator bi;
3322 unsigned i, c = 0;
3324 fprintf (file, " EQUIVALENCES: { ");
3326 EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
3328 print_generic_expr (file, ssa_name (i), 0);
3329 fprintf (file, " ");
3330 c++;
3333 fprintf (file, "} (%u elements)", c);
3336 else if (vr->type == VR_VARYING)
3337 fprintf (file, "VARYING");
3338 else
3339 fprintf (file, "INVALID RANGE");
3343 /* Dump value range VR to stderr. */
3345 void
3346 debug_value_range (value_range_t *vr)
3348 dump_value_range (stderr, vr);
3349 fprintf (stderr, "\n");
3353 /* Dump value ranges of all SSA_NAMEs to FILE. */
3355 void
3356 dump_all_value_ranges (FILE *file)
3358 size_t i;
3360 for (i = 0; i < num_ssa_names; i++)
3362 if (vr_value[i])
3364 print_generic_expr (file, ssa_name (i), 0);
3365 fprintf (file, ": ");
3366 dump_value_range (file, vr_value[i]);
3367 fprintf (file, "\n");
3371 fprintf (file, "\n");
3375 /* Dump all value ranges to stderr. */
3377 void
3378 debug_all_value_ranges (void)
3380 dump_all_value_ranges (stderr);
3384 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
3385 create a new SSA name N and return the assertion assignment
3386 'V = ASSERT_EXPR <V, V OP W>'. */
3388 static tree
3389 build_assert_expr_for (tree cond, tree v)
3391 tree n, assertion;
3393 gcc_assert (TREE_CODE (v) == SSA_NAME);
3394 n = duplicate_ssa_name (v, NULL_TREE);
3396 if (COMPARISON_CLASS_P (cond))
3398 tree a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
3399 assertion = build_gimple_modify_stmt (n, a);
3401 else if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
3403 /* Given !V, build the assignment N = false. */
3404 tree op0 = TREE_OPERAND (cond, 0);
3405 gcc_assert (op0 == v);
3406 assertion = build_gimple_modify_stmt (n, boolean_false_node);
3408 else if (TREE_CODE (cond) == SSA_NAME)
3410 /* Given V, build the assignment N = true. */
3411 gcc_assert (v == cond);
3412 assertion = build_gimple_modify_stmt (n, boolean_true_node);
3414 else
3415 gcc_unreachable ();
3417 SSA_NAME_DEF_STMT (n) = assertion;
3419 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
3420 operand of the ASSERT_EXPR. Register the new name and the old one
3421 in the replacement table so that we can fix the SSA web after
3422 adding all the ASSERT_EXPRs. */
3423 register_new_name_mapping (n, v);
3425 return assertion;
3429 /* Return false if EXPR is a predicate expression involving floating
3430 point values. */
3432 static inline bool
3433 fp_predicate (const_tree expr)
3435 return (COMPARISON_CLASS_P (expr)
3436 && FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0))));
3440 /* If the range of values taken by OP can be inferred after STMT executes,
3441 return the comparison code (COMP_CODE_P) and value (VAL_P) that
3442 describes the inferred range. Return true if a range could be
3443 inferred. */
3445 static bool
3446 infer_value_range (tree stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
3448 *val_p = NULL_TREE;
3449 *comp_code_p = ERROR_MARK;
3451 /* Do not attempt to infer anything in names that flow through
3452 abnormal edges. */
3453 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
3454 return false;
3456 /* Similarly, don't infer anything from statements that may throw
3457 exceptions. */
3458 if (tree_could_throw_p (stmt))
3459 return false;
3461 /* If STMT is the last statement of a basic block with no
3462 successors, there is no point inferring anything about any of its
3463 operands. We would not be able to find a proper insertion point
3464 for the assertion, anyway. */
3465 if (stmt_ends_bb_p (stmt) && EDGE_COUNT (bb_for_stmt (stmt)->succs) == 0)
3466 return false;
3468 /* We can only assume that a pointer dereference will yield
3469 non-NULL if -fdelete-null-pointer-checks is enabled. */
3470 if (flag_delete_null_pointer_checks && POINTER_TYPE_P (TREE_TYPE (op)))
3472 unsigned num_uses, num_loads, num_stores;
3474 count_uses_and_derefs (op, stmt, &num_uses, &num_loads, &num_stores);
3475 if (num_loads + num_stores > 0)
3477 *val_p = build_int_cst (TREE_TYPE (op), 0);
3478 *comp_code_p = NE_EXPR;
3479 return true;
3483 return false;
3487 void dump_asserts_for (FILE *, tree);
3488 void debug_asserts_for (tree);
3489 void dump_all_asserts (FILE *);
3490 void debug_all_asserts (void);
3492 /* Dump all the registered assertions for NAME to FILE. */
3494 void
3495 dump_asserts_for (FILE *file, tree name)
3497 assert_locus_t loc;
3499 fprintf (file, "Assertions to be inserted for ");
3500 print_generic_expr (file, name, 0);
3501 fprintf (file, "\n");
3503 loc = asserts_for[SSA_NAME_VERSION (name)];
3504 while (loc)
3506 fprintf (file, "\t");
3507 print_generic_expr (file, bsi_stmt (loc->si), 0);
3508 fprintf (file, "\n\tBB #%d", loc->bb->index);
3509 if (loc->e)
3511 fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
3512 loc->e->dest->index);
3513 dump_edge_info (file, loc->e, 0);
3515 fprintf (file, "\n\tPREDICATE: ");
3516 print_generic_expr (file, name, 0);
3517 fprintf (file, " %s ", tree_code_name[(int)loc->comp_code]);
3518 print_generic_expr (file, loc->val, 0);
3519 fprintf (file, "\n\n");
3520 loc = loc->next;
3523 fprintf (file, "\n");
3527 /* Dump all the registered assertions for NAME to stderr. */
3529 void
3530 debug_asserts_for (tree name)
3532 dump_asserts_for (stderr, name);
3536 /* Dump all the registered assertions for all the names to FILE. */
3538 void
3539 dump_all_asserts (FILE *file)
3541 unsigned i;
3542 bitmap_iterator bi;
3544 fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
3545 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
3546 dump_asserts_for (file, ssa_name (i));
3547 fprintf (file, "\n");
3551 /* Dump all the registered assertions for all the names to stderr. */
3553 void
3554 debug_all_asserts (void)
3556 dump_all_asserts (stderr);
3560 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
3561 'EXPR COMP_CODE VAL' at a location that dominates block BB or
3562 E->DEST, then register this location as a possible insertion point
3563 for ASSERT_EXPR <NAME, EXPR COMP_CODE VAL>.
3565 BB, E and SI provide the exact insertion point for the new
3566 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
3567 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
3568 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
3569 must not be NULL. */
3571 static void
3572 register_new_assert_for (tree name, tree expr,
3573 enum tree_code comp_code,
3574 tree val,
3575 basic_block bb,
3576 edge e,
3577 block_stmt_iterator si)
3579 assert_locus_t n, loc, last_loc;
3580 bool found;
3581 basic_block dest_bb;
3583 #if defined ENABLE_CHECKING
3584 gcc_assert (bb == NULL || e == NULL);
3586 if (e == NULL)
3587 gcc_assert (TREE_CODE (bsi_stmt (si)) != COND_EXPR
3588 && TREE_CODE (bsi_stmt (si)) != SWITCH_EXPR);
3589 #endif
3591 /* The new assertion A will be inserted at BB or E. We need to
3592 determine if the new location is dominated by a previously
3593 registered location for A. If we are doing an edge insertion,
3594 assume that A will be inserted at E->DEST. Note that this is not
3595 necessarily true.
3597 If E is a critical edge, it will be split. But even if E is
3598 split, the new block will dominate the same set of blocks that
3599 E->DEST dominates.
3601 The reverse, however, is not true, blocks dominated by E->DEST
3602 will not be dominated by the new block created to split E. So,
3603 if the insertion location is on a critical edge, we will not use
3604 the new location to move another assertion previously registered
3605 at a block dominated by E->DEST. */
3606 dest_bb = (bb) ? bb : e->dest;
3608 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
3609 VAL at a block dominating DEST_BB, then we don't need to insert a new
3610 one. Similarly, if the same assertion already exists at a block
3611 dominated by DEST_BB and the new location is not on a critical
3612 edge, then update the existing location for the assertion (i.e.,
3613 move the assertion up in the dominance tree).
3615 Note, this is implemented as a simple linked list because there
3616 should not be more than a handful of assertions registered per
3617 name. If this becomes a performance problem, a table hashed by
3618 COMP_CODE and VAL could be implemented. */
3619 loc = asserts_for[SSA_NAME_VERSION (name)];
3620 last_loc = loc;
3621 found = false;
3622 while (loc)
3624 if (loc->comp_code == comp_code
3625 && (loc->val == val
3626 || operand_equal_p (loc->val, val, 0))
3627 && (loc->expr == expr
3628 || operand_equal_p (loc->expr, expr, 0)))
3630 /* If the assertion NAME COMP_CODE VAL has already been
3631 registered at a basic block that dominates DEST_BB, then
3632 we don't need to insert the same assertion again. Note
3633 that we don't check strict dominance here to avoid
3634 replicating the same assertion inside the same basic
3635 block more than once (e.g., when a pointer is
3636 dereferenced several times inside a block).
3638 An exception to this rule are edge insertions. If the
3639 new assertion is to be inserted on edge E, then it will
3640 dominate all the other insertions that we may want to
3641 insert in DEST_BB. So, if we are doing an edge
3642 insertion, don't do this dominance check. */
3643 if (e == NULL
3644 && dominated_by_p (CDI_DOMINATORS, dest_bb, loc->bb))
3645 return;
3647 /* Otherwise, if E is not a critical edge and DEST_BB
3648 dominates the existing location for the assertion, move
3649 the assertion up in the dominance tree by updating its
3650 location information. */
3651 if ((e == NULL || !EDGE_CRITICAL_P (e))
3652 && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
3654 loc->bb = dest_bb;
3655 loc->e = e;
3656 loc->si = si;
3657 return;
3661 /* Update the last node of the list and move to the next one. */
3662 last_loc = loc;
3663 loc = loc->next;
3666 /* If we didn't find an assertion already registered for
3667 NAME COMP_CODE VAL, add a new one at the end of the list of
3668 assertions associated with NAME. */
3669 n = XNEW (struct assert_locus_d);
3670 n->bb = dest_bb;
3671 n->e = e;
3672 n->si = si;
3673 n->comp_code = comp_code;
3674 n->val = val;
3675 n->expr = expr;
3676 n->next = NULL;
3678 if (last_loc)
3679 last_loc->next = n;
3680 else
3681 asserts_for[SSA_NAME_VERSION (name)] = n;
3683 bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
3686 /* (COND_OP0 COND_CODE COND_OP1) is a predicate which uses NAME.
3687 Extract a suitable test code and value and store them into *CODE_P and
3688 *VAL_P so the predicate is normalized to NAME *CODE_P *VAL_P.
3690 If no extraction was possible, return FALSE, otherwise return TRUE.
3692 If INVERT is true, then we invert the result stored into *CODE_P. */
3694 static bool
3695 extract_code_and_val_from_cond_with_ops (tree name, enum tree_code cond_code,
3696 tree cond_op0, tree cond_op1,
3697 bool invert, enum tree_code *code_p,
3698 tree *val_p)
3700 enum tree_code comp_code;
3701 tree val;
3703 /* Otherwise, we have a comparison of the form NAME COMP VAL
3704 or VAL COMP NAME. */
3705 if (name == cond_op1)
3707 /* If the predicate is of the form VAL COMP NAME, flip
3708 COMP around because we need to register NAME as the
3709 first operand in the predicate. */
3710 comp_code = swap_tree_comparison (cond_code);
3711 val = cond_op0;
3713 else
3715 /* The comparison is of the form NAME COMP VAL, so the
3716 comparison code remains unchanged. */
3717 comp_code = cond_code;
3718 val = cond_op1;
3721 /* Invert the comparison code as necessary. */
3722 if (invert)
3723 comp_code = invert_tree_comparison (comp_code, 0);
3725 /* VRP does not handle float types. */
3726 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (val)))
3727 return false;
3729 /* Do not register always-false predicates.
3730 FIXME: this works around a limitation in fold() when dealing with
3731 enumerations. Given 'enum { N1, N2 } x;', fold will not
3732 fold 'if (x > N2)' to 'if (0)'. */
3733 if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
3734 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
3736 tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
3737 tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
3739 if (comp_code == GT_EXPR
3740 && (!max
3741 || compare_values (val, max) == 0))
3742 return false;
3744 if (comp_code == LT_EXPR
3745 && (!min
3746 || compare_values (val, min) == 0))
3747 return false;
3749 *code_p = comp_code;
3750 *val_p = val;
3751 return true;
3754 /* Try to register an edge assertion for SSA name NAME on edge E for
3755 the condition COND contributing to the conditional jump pointed to by BSI.
3756 Invert the condition COND if INVERT is true.
3757 Return true if an assertion for NAME could be registered. */
3759 static bool
3760 register_edge_assert_for_2 (tree name, edge e, block_stmt_iterator bsi,
3761 enum tree_code cond_code,
3762 tree cond_op0, tree cond_op1, bool invert)
3764 tree val;
3765 enum tree_code comp_code;
3766 bool retval = false;
3768 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
3769 cond_op0,
3770 cond_op1,
3771 invert, &comp_code, &val))
3772 return false;
3774 /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
3775 reachable from E. */
3776 if (TEST_BIT (found_in_subgraph, SSA_NAME_VERSION (name))
3777 && !has_single_use (name))
3779 register_new_assert_for (name, name, comp_code, val, NULL, e, bsi);
3780 retval = true;
3783 /* In the case of NAME <= CST and NAME being defined as
3784 NAME = (unsigned) NAME2 + CST2 we can assert NAME2 >= -CST2
3785 and NAME2 <= CST - CST2. We can do the same for NAME > CST.
3786 This catches range and anti-range tests. */
3787 if ((comp_code == LE_EXPR
3788 || comp_code == GT_EXPR)
3789 && TREE_CODE (val) == INTEGER_CST
3790 && TYPE_UNSIGNED (TREE_TYPE (val)))
3792 tree def_stmt = SSA_NAME_DEF_STMT (name);
3793 tree cst2 = NULL_TREE, name2 = NULL_TREE, name3 = NULL_TREE;
3795 /* Extract CST2 from the (optional) addition. */
3796 if (TREE_CODE (def_stmt) == GIMPLE_MODIFY_STMT
3797 && TREE_CODE (GIMPLE_STMT_OPERAND (def_stmt, 1)) == PLUS_EXPR)
3799 name2 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 0);
3800 cst2 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 1);
3801 if (TREE_CODE (name2) == SSA_NAME
3802 && TREE_CODE (cst2) == INTEGER_CST)
3803 def_stmt = SSA_NAME_DEF_STMT (name2);
3806 /* Extract NAME2 from the (optional) sign-changing cast. */
3807 if (TREE_CODE (def_stmt) == GIMPLE_MODIFY_STMT
3808 && (TREE_CODE (GIMPLE_STMT_OPERAND (def_stmt, 1)) == NOP_EXPR
3809 || TREE_CODE (GIMPLE_STMT_OPERAND (def_stmt, 1)) == CONVERT_EXPR))
3811 tree rhs = GIMPLE_STMT_OPERAND (def_stmt, 1);
3812 if ((TREE_CODE (rhs) == NOP_EXPR
3813 || TREE_CODE (rhs) == CONVERT_EXPR)
3814 && ! TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (rhs, 0)))
3815 && (TYPE_PRECISION (TREE_TYPE (rhs))
3816 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (rhs, 0)))))
3817 name3 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 0);
3820 /* If name3 is used later, create an ASSERT_EXPR for it. */
3821 if (name3 != NULL_TREE
3822 && TREE_CODE (name3) == SSA_NAME
3823 && (cst2 == NULL_TREE
3824 || TREE_CODE (cst2) == INTEGER_CST)
3825 && INTEGRAL_TYPE_P (TREE_TYPE (name3))
3826 && TEST_BIT (found_in_subgraph, SSA_NAME_VERSION (name3))
3827 && !has_single_use (name3))
3829 tree tmp;
3831 /* Build an expression for the range test. */
3832 tmp = build1 (NOP_EXPR, TREE_TYPE (name), name3);
3833 if (cst2 != NULL_TREE)
3834 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
3836 if (dump_file)
3838 fprintf (dump_file, "Adding assert for ");
3839 print_generic_expr (dump_file, name3, 0);
3840 fprintf (dump_file, " from ");
3841 print_generic_expr (dump_file, tmp, 0);
3842 fprintf (dump_file, "\n");
3845 register_new_assert_for (name3, tmp, comp_code, val, NULL, e, bsi);
3847 retval = true;
3850 /* If name2 is used later, create an ASSERT_EXPR for it. */
3851 if (name2 != NULL_TREE
3852 && TREE_CODE (name2) == SSA_NAME
3853 && TREE_CODE (cst2) == INTEGER_CST
3854 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
3855 && TEST_BIT (found_in_subgraph, SSA_NAME_VERSION (name2))
3856 && !has_single_use (name2))
3858 tree tmp;
3860 /* Build an expression for the range test. */
3861 tmp = name2;
3862 if (TREE_TYPE (name) != TREE_TYPE (name2))
3863 tmp = build1 (NOP_EXPR, TREE_TYPE (name), tmp);
3864 if (cst2 != NULL_TREE)
3865 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
3867 if (dump_file)
3869 fprintf (dump_file, "Adding assert for ");
3870 print_generic_expr (dump_file, name2, 0);
3871 fprintf (dump_file, " from ");
3872 print_generic_expr (dump_file, tmp, 0);
3873 fprintf (dump_file, "\n");
3876 register_new_assert_for (name2, tmp, comp_code, val, NULL, e, bsi);
3878 retval = true;
3882 return retval;
3885 /* OP is an operand of a truth value expression which is known to have
3886 a particular value. Register any asserts for OP and for any
3887 operands in OP's defining statement.
3889 If CODE is EQ_EXPR, then we want to register OP is zero (false),
3890 if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
3892 static bool
3893 register_edge_assert_for_1 (tree op, enum tree_code code,
3894 edge e, block_stmt_iterator bsi)
3896 bool retval = false;
3897 tree op_def, rhs, val;
3898 enum tree_code rhs_code;
3900 /* We only care about SSA_NAMEs. */
3901 if (TREE_CODE (op) != SSA_NAME)
3902 return false;
3904 /* We know that OP will have a zero or nonzero value. If OP is used
3905 more than once go ahead and register an assert for OP.
3907 The FOUND_IN_SUBGRAPH support is not helpful in this situation as
3908 it will always be set for OP (because OP is used in a COND_EXPR in
3909 the subgraph). */
3910 if (!has_single_use (op))
3912 val = build_int_cst (TREE_TYPE (op), 0);
3913 register_new_assert_for (op, op, code, val, NULL, e, bsi);
3914 retval = true;
3917 /* Now look at how OP is set. If it's set from a comparison,
3918 a truth operation or some bit operations, then we may be able
3919 to register information about the operands of that assignment. */
3920 op_def = SSA_NAME_DEF_STMT (op);
3921 if (TREE_CODE (op_def) != GIMPLE_MODIFY_STMT)
3922 return retval;
3924 rhs = GIMPLE_STMT_OPERAND (op_def, 1);
3925 rhs_code = TREE_CODE (rhs);
3927 if (COMPARISON_CLASS_P (rhs))
3929 bool invert = (code == EQ_EXPR ? true : false);
3930 tree op0 = TREE_OPERAND (rhs, 0);
3931 tree op1 = TREE_OPERAND (rhs, 1);
3933 if (TREE_CODE (op0) == SSA_NAME)
3934 retval |= register_edge_assert_for_2 (op0, e, bsi, rhs_code, op0, op1,
3935 invert);
3936 if (TREE_CODE (op1) == SSA_NAME)
3937 retval |= register_edge_assert_for_2 (op1, e, bsi, rhs_code, op0, op1,
3938 invert);
3940 else if ((code == NE_EXPR
3941 && (TREE_CODE (rhs) == TRUTH_AND_EXPR
3942 || TREE_CODE (rhs) == BIT_AND_EXPR))
3943 || (code == EQ_EXPR
3944 && (TREE_CODE (rhs) == TRUTH_OR_EXPR
3945 || TREE_CODE (rhs) == BIT_IOR_EXPR)))
3947 /* Recurse on each operand. */
3948 retval |= register_edge_assert_for_1 (TREE_OPERAND (rhs, 0),
3949 code, e, bsi);
3950 retval |= register_edge_assert_for_1 (TREE_OPERAND (rhs, 1),
3951 code, e, bsi);
3953 else if (TREE_CODE (rhs) == TRUTH_NOT_EXPR)
3955 /* Recurse, flipping CODE. */
3956 code = invert_tree_comparison (code, false);
3957 retval |= register_edge_assert_for_1 (TREE_OPERAND (rhs, 0),
3958 code, e, bsi);
3960 else if (TREE_CODE (rhs) == SSA_NAME)
3962 /* Recurse through the copy. */
3963 retval |= register_edge_assert_for_1 (rhs, code, e, bsi);
3965 else if (TREE_CODE (rhs) == NOP_EXPR
3966 || TREE_CODE (rhs) == CONVERT_EXPR
3967 || TREE_CODE (rhs) == NON_LVALUE_EXPR)
3969 /* Recurse through the type conversion. */
3970 retval |= register_edge_assert_for_1 (TREE_OPERAND (rhs, 0),
3971 code, e, bsi);
3974 return retval;
3977 /* Try to register an edge assertion for SSA name NAME on edge E for
3978 the condition COND contributing to the conditional jump pointed to by SI.
3979 Return true if an assertion for NAME could be registered. */
3981 static bool
3982 register_edge_assert_for (tree name, edge e, block_stmt_iterator si,
3983 enum tree_code cond_code, tree cond_op0,
3984 tree cond_op1)
3986 tree val;
3987 enum tree_code comp_code;
3988 bool retval = false;
3989 bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
3991 /* Do not attempt to infer anything in names that flow through
3992 abnormal edges. */
3993 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
3994 return false;
3996 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
3997 cond_op0, cond_op1,
3998 is_else_edge,
3999 &comp_code, &val))
4000 return false;
4002 /* Register ASSERT_EXPRs for name. */
4003 retval |= register_edge_assert_for_2 (name, e, si, cond_code, cond_op0,
4004 cond_op1, is_else_edge);
4007 /* If COND is effectively an equality test of an SSA_NAME against
4008 the value zero or one, then we may be able to assert values
4009 for SSA_NAMEs which flow into COND. */
4011 /* In the case of NAME == 1 or NAME != 0, for TRUTH_AND_EXPR defining
4012 statement of NAME we can assert both operands of the TRUTH_AND_EXPR
4013 have nonzero value. */
4014 if (((comp_code == EQ_EXPR && integer_onep (val))
4015 || (comp_code == NE_EXPR && integer_zerop (val))))
4017 tree def_stmt = SSA_NAME_DEF_STMT (name);
4019 if (TREE_CODE (def_stmt) == GIMPLE_MODIFY_STMT
4020 && (TREE_CODE (GIMPLE_STMT_OPERAND (def_stmt, 1)) == TRUTH_AND_EXPR
4021 || TREE_CODE (GIMPLE_STMT_OPERAND (def_stmt, 1)) == BIT_AND_EXPR))
4023 tree op0 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 0);
4024 tree op1 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 1);
4025 retval |= register_edge_assert_for_1 (op0, NE_EXPR, e, si);
4026 retval |= register_edge_assert_for_1 (op1, NE_EXPR, e, si);
4030 /* In the case of NAME == 0 or NAME != 1, for TRUTH_OR_EXPR defining
4031 statement of NAME we can assert both operands of the TRUTH_OR_EXPR
4032 have zero value. */
4033 if (((comp_code == EQ_EXPR && integer_zerop (val))
4034 || (comp_code == NE_EXPR && integer_onep (val))))
4036 tree def_stmt = SSA_NAME_DEF_STMT (name);
4038 if (TREE_CODE (def_stmt) == GIMPLE_MODIFY_STMT
4039 && (TREE_CODE (GIMPLE_STMT_OPERAND (def_stmt, 1)) == TRUTH_OR_EXPR
4040 /* For BIT_IOR_EXPR only if NAME == 0 both operands have
4041 necessarily zero value. */
4042 || (comp_code == EQ_EXPR
4043 && (TREE_CODE (GIMPLE_STMT_OPERAND (def_stmt, 1))
4044 == BIT_IOR_EXPR))))
4046 tree op0 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 0);
4047 tree op1 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 1);
4048 retval |= register_edge_assert_for_1 (op0, EQ_EXPR, e, si);
4049 retval |= register_edge_assert_for_1 (op1, EQ_EXPR, e, si);
4053 return retval;
4057 static bool find_assert_locations (basic_block bb);
4059 /* Determine whether the outgoing edges of BB should receive an
4060 ASSERT_EXPR for each of the operands of BB's LAST statement.
4061 The last statement of BB must be a COND_EXPR.
4063 If any of the sub-graphs rooted at BB have an interesting use of
4064 the predicate operands, an assert location node is added to the
4065 list of assertions for the corresponding operands. */
4067 static bool
4068 find_conditional_asserts (basic_block bb, tree last)
4070 bool need_assert;
4071 block_stmt_iterator bsi;
4072 tree op;
4073 edge_iterator ei;
4074 edge e;
4075 ssa_op_iter iter;
4077 need_assert = false;
4078 bsi = bsi_for_stmt (last);
4080 /* Look for uses of the operands in each of the sub-graphs
4081 rooted at BB. We need to check each of the outgoing edges
4082 separately, so that we know what kind of ASSERT_EXPR to
4083 insert. */
4084 FOR_EACH_EDGE (e, ei, bb->succs)
4086 if (e->dest == bb)
4087 continue;
4089 /* Remove the COND_EXPR operands from the FOUND_IN_SUBGRAPH bitmap.
4090 Otherwise, when we finish traversing each of the sub-graphs, we
4091 won't know whether the variables were found in the sub-graphs or
4092 if they had been found in a block upstream from BB.
4094 This is actually a bad idea is some cases, particularly jump
4095 threading. Consider a CFG like the following:
4105 Assume that one or more operands in the conditional at the
4106 end of block 0 are used in a conditional in block 2, but not
4107 anywhere in block 1. In this case we will not insert any
4108 assert statements in block 1, which may cause us to miss
4109 opportunities to optimize, particularly for jump threading. */
4110 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
4111 RESET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
4113 /* Traverse the strictly dominated sub-graph rooted at E->DEST
4114 to determine if any of the operands in the conditional
4115 predicate are used. */
4116 need_assert |= find_assert_locations (e->dest);
4118 /* Register the necessary assertions for each operand in the
4119 conditional predicate. */
4120 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
4122 tree cond = COND_EXPR_COND (last);
4123 if (op != cond)
4124 need_assert |= register_edge_assert_for (op, e, bsi,
4125 TREE_CODE (cond),
4126 TREE_OPERAND (cond, 0),
4127 TREE_OPERAND (cond, 1));
4128 else
4129 need_assert |= register_edge_assert_for (op, e, bsi, EQ_EXPR, op,
4130 boolean_true_node);
4134 /* Finally, indicate that we have found the operands in the
4135 conditional. */
4136 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
4137 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
4139 return need_assert;
4142 /* Compare two case labels sorting first by the destination label uid
4143 and then by the case value. */
4145 static int
4146 compare_case_labels (const void *p1, const void *p2)
4148 const_tree const case1 = *(const_tree const*)p1;
4149 const_tree const case2 = *(const_tree const*)p2;
4150 unsigned int uid1 = DECL_UID (CASE_LABEL (case1));
4151 unsigned int uid2 = DECL_UID (CASE_LABEL (case2));
4153 if (uid1 < uid2)
4154 return -1;
4155 else if (uid1 == uid2)
4157 /* Make sure the default label is first in a group. */
4158 if (!CASE_LOW (case1))
4159 return -1;
4160 else if (!CASE_LOW (case2))
4161 return 1;
4162 else
4163 return tree_int_cst_compare (CASE_LOW (case1), CASE_LOW (case2));
4165 else
4166 return 1;
4169 /* Determine whether the outgoing edges of BB should receive an
4170 ASSERT_EXPR for each of the operands of BB's LAST statement.
4171 The last statement of BB must be a SWITCH_EXPR.
4173 If any of the sub-graphs rooted at BB have an interesting use of
4174 the predicate operands, an assert location node is added to the
4175 list of assertions for the corresponding operands. */
4177 static bool
4178 find_switch_asserts (basic_block bb, tree last)
4180 bool need_assert;
4181 block_stmt_iterator bsi;
4182 tree op;
4183 edge e;
4184 tree vec = SWITCH_LABELS (last), vec2;
4185 size_t n = TREE_VEC_LENGTH (vec);
4186 unsigned int idx;
4188 need_assert = false;
4189 bsi = bsi_for_stmt (last);
4190 op = TREE_OPERAND (last, 0);
4191 if (TREE_CODE (op) != SSA_NAME)
4192 return false;
4194 /* Build a vector of case labels sorted by destination label. */
4195 vec2 = make_tree_vec (n);
4196 for (idx = 0; idx < n; ++idx)
4197 TREE_VEC_ELT (vec2, idx) = TREE_VEC_ELT (vec, idx);
4198 qsort (&TREE_VEC_ELT (vec2, 0), n, sizeof (tree), compare_case_labels);
4200 for (idx = 0; idx < n; ++idx)
4202 tree min, max;
4203 tree cl = TREE_VEC_ELT (vec2, idx);
4205 min = CASE_LOW (cl);
4206 max = CASE_HIGH (cl);
4208 /* If there are multiple case labels with the same destination
4209 we need to combine them to a single value range for the edge. */
4210 if (idx + 1 < n
4211 && CASE_LABEL (cl) == CASE_LABEL (TREE_VEC_ELT (vec2, idx + 1)))
4213 /* Skip labels until the last of the group. */
4214 do {
4215 ++idx;
4216 } while (idx < n
4217 && CASE_LABEL (cl) == CASE_LABEL (TREE_VEC_ELT (vec2, idx)));
4218 --idx;
4220 /* Pick up the maximum of the case label range. */
4221 if (CASE_HIGH (TREE_VEC_ELT (vec2, idx)))
4222 max = CASE_HIGH (TREE_VEC_ELT (vec2, idx));
4223 else
4224 max = CASE_LOW (TREE_VEC_ELT (vec2, idx));
4227 /* Nothing to do if the range includes the default label until we
4228 can register anti-ranges. */
4229 if (min == NULL_TREE)
4230 continue;
4232 /* Find the edge to register the assert expr on. */
4233 e = find_edge (bb, label_to_block (CASE_LABEL (cl)));
4235 /* Remove the SWITCH_EXPR operand from the FOUND_IN_SUBGRAPH bitmap.
4236 Otherwise, when we finish traversing each of the sub-graphs, we
4237 won't know whether the variables were found in the sub-graphs or
4238 if they had been found in a block upstream from BB. */
4239 RESET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
4241 /* Traverse the strictly dominated sub-graph rooted at E->DEST
4242 to determine if any of the operands in the conditional
4243 predicate are used. */
4244 if (e->dest != bb)
4245 need_assert |= find_assert_locations (e->dest);
4247 /* Register the necessary assertions for the operand in the
4248 SWITCH_EXPR. */
4249 need_assert |= register_edge_assert_for (op, e, bsi,
4250 max ? GE_EXPR : EQ_EXPR,
4252 fold_convert (TREE_TYPE (op),
4253 min));
4254 if (max)
4256 need_assert |= register_edge_assert_for (op, e, bsi, LE_EXPR,
4258 fold_convert (TREE_TYPE (op),
4259 max));
4263 /* Finally, indicate that we have found the operand in the
4264 SWITCH_EXPR. */
4265 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
4267 return need_assert;
4271 /* Traverse all the statements in block BB looking for statements that
4272 may generate useful assertions for the SSA names in their operand.
4273 If a statement produces a useful assertion A for name N_i, then the
4274 list of assertions already generated for N_i is scanned to
4275 determine if A is actually needed.
4277 If N_i already had the assertion A at a location dominating the
4278 current location, then nothing needs to be done. Otherwise, the
4279 new location for A is recorded instead.
4281 1- For every statement S in BB, all the variables used by S are
4282 added to bitmap FOUND_IN_SUBGRAPH.
4284 2- If statement S uses an operand N in a way that exposes a known
4285 value range for N, then if N was not already generated by an
4286 ASSERT_EXPR, create a new assert location for N. For instance,
4287 if N is a pointer and the statement dereferences it, we can
4288 assume that N is not NULL.
4290 3- COND_EXPRs are a special case of #2. We can derive range
4291 information from the predicate but need to insert different
4292 ASSERT_EXPRs for each of the sub-graphs rooted at the
4293 conditional block. If the last statement of BB is a conditional
4294 expression of the form 'X op Y', then
4296 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
4298 b) If the conditional is the only entry point to the sub-graph
4299 corresponding to the THEN_CLAUSE, recurse into it. On
4300 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
4301 an ASSERT_EXPR is added for the corresponding variable.
4303 c) Repeat step (b) on the ELSE_CLAUSE.
4305 d) Mark X and Y in FOUND_IN_SUBGRAPH.
4307 For instance,
4309 if (a == 9)
4310 b = a;
4311 else
4312 b = c + 1;
4314 In this case, an assertion on the THEN clause is useful to
4315 determine that 'a' is always 9 on that edge. However, an assertion
4316 on the ELSE clause would be unnecessary.
4318 4- If BB does not end in a conditional expression, then we recurse
4319 into BB's dominator children.
4321 At the end of the recursive traversal, every SSA name will have a
4322 list of locations where ASSERT_EXPRs should be added. When a new
4323 location for name N is found, it is registered by calling
4324 register_new_assert_for. That function keeps track of all the
4325 registered assertions to prevent adding unnecessary assertions.
4326 For instance, if a pointer P_4 is dereferenced more than once in a
4327 dominator tree, only the location dominating all the dereference of
4328 P_4 will receive an ASSERT_EXPR.
4330 If this function returns true, then it means that there are names
4331 for which we need to generate ASSERT_EXPRs. Those assertions are
4332 inserted by process_assert_insertions. */
4334 static bool
4335 find_assert_locations (basic_block bb)
4337 block_stmt_iterator si;
4338 tree last, phi;
4339 bool need_assert;
4340 basic_block son;
4342 if (TEST_BIT (blocks_visited, bb->index))
4343 return false;
4345 SET_BIT (blocks_visited, bb->index);
4347 need_assert = false;
4349 /* Traverse all PHI nodes in BB marking used operands. */
4350 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
4352 use_operand_p arg_p;
4353 ssa_op_iter i;
4355 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
4357 tree arg = USE_FROM_PTR (arg_p);
4358 if (TREE_CODE (arg) == SSA_NAME)
4360 gcc_assert (is_gimple_reg (PHI_RESULT (phi)));
4361 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (arg));
4366 /* Traverse all the statements in BB marking used names and looking
4367 for statements that may infer assertions for their used operands. */
4368 last = NULL_TREE;
4369 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
4371 tree stmt, op;
4372 ssa_op_iter i;
4374 stmt = bsi_stmt (si);
4376 /* See if we can derive an assertion for any of STMT's operands. */
4377 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
4379 tree value;
4380 enum tree_code comp_code;
4382 /* Mark OP in bitmap FOUND_IN_SUBGRAPH. If STMT is inside
4383 the sub-graph of a conditional block, when we return from
4384 this recursive walk, our parent will use the
4385 FOUND_IN_SUBGRAPH bitset to determine if one of the
4386 operands it was looking for was present in the sub-graph. */
4387 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
4389 /* If OP is used in such a way that we can infer a value
4390 range for it, and we don't find a previous assertion for
4391 it, create a new assertion location node for OP. */
4392 if (infer_value_range (stmt, op, &comp_code, &value))
4394 /* If we are able to infer a nonzero value range for OP,
4395 then walk backwards through the use-def chain to see if OP
4396 was set via a typecast.
4398 If so, then we can also infer a nonzero value range
4399 for the operand of the NOP_EXPR. */
4400 if (comp_code == NE_EXPR && integer_zerop (value))
4402 tree t = op;
4403 tree def_stmt = SSA_NAME_DEF_STMT (t);
4405 while (TREE_CODE (def_stmt) == GIMPLE_MODIFY_STMT
4406 && TREE_CODE
4407 (GIMPLE_STMT_OPERAND (def_stmt, 1)) == NOP_EXPR
4408 && TREE_CODE
4409 (TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1),
4410 0)) == SSA_NAME
4411 && POINTER_TYPE_P
4412 (TREE_TYPE (TREE_OPERAND
4413 (GIMPLE_STMT_OPERAND (def_stmt,
4414 1), 0))))
4416 t = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 0);
4417 def_stmt = SSA_NAME_DEF_STMT (t);
4419 /* Note we want to register the assert for the
4420 operand of the NOP_EXPR after SI, not after the
4421 conversion. */
4422 if (! has_single_use (t))
4424 register_new_assert_for (t, t, comp_code, value,
4425 bb, NULL, si);
4426 need_assert = true;
4431 /* If OP is used only once, namely in this STMT, don't
4432 bother creating an ASSERT_EXPR for it. Such an
4433 ASSERT_EXPR would do nothing but increase compile time. */
4434 if (!has_single_use (op))
4436 register_new_assert_for (op, op, comp_code, value,
4437 bb, NULL, si);
4438 need_assert = true;
4443 /* Remember the last statement of the block. */
4444 last = stmt;
4447 /* If BB's last statement is a conditional expression
4448 involving integer operands, recurse into each of the sub-graphs
4449 rooted at BB to determine if we need to add ASSERT_EXPRs. */
4450 if (last
4451 && TREE_CODE (last) == COND_EXPR
4452 && !fp_predicate (COND_EXPR_COND (last))
4453 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
4454 need_assert |= find_conditional_asserts (bb, last);
4456 if (last
4457 && TREE_CODE (last) == SWITCH_EXPR
4458 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
4459 need_assert |= find_switch_asserts (bb, last);
4461 /* Recurse into the dominator children of BB. */
4462 for (son = first_dom_son (CDI_DOMINATORS, bb);
4463 son;
4464 son = next_dom_son (CDI_DOMINATORS, son))
4465 need_assert |= find_assert_locations (son);
4467 return need_assert;
4471 /* Create an ASSERT_EXPR for NAME and insert it in the location
4472 indicated by LOC. Return true if we made any edge insertions. */
4474 static bool
4475 process_assert_insertions_for (tree name, assert_locus_t loc)
4477 /* Build the comparison expression NAME_i COMP_CODE VAL. */
4478 tree stmt, cond, assert_expr;
4479 edge_iterator ei;
4480 edge e;
4482 cond = build2 (loc->comp_code, boolean_type_node, loc->expr, loc->val);
4483 assert_expr = build_assert_expr_for (cond, name);
4485 if (loc->e)
4487 /* We have been asked to insert the assertion on an edge. This
4488 is used only by COND_EXPR and SWITCH_EXPR assertions. */
4489 #if defined ENABLE_CHECKING
4490 gcc_assert (TREE_CODE (bsi_stmt (loc->si)) == COND_EXPR
4491 || TREE_CODE (bsi_stmt (loc->si)) == SWITCH_EXPR);
4492 #endif
4494 bsi_insert_on_edge (loc->e, assert_expr);
4495 return true;
4498 /* Otherwise, we can insert right after LOC->SI iff the
4499 statement must not be the last statement in the block. */
4500 stmt = bsi_stmt (loc->si);
4501 if (!stmt_ends_bb_p (stmt))
4503 bsi_insert_after (&loc->si, assert_expr, BSI_SAME_STMT);
4504 return false;
4507 /* If STMT must be the last statement in BB, we can only insert new
4508 assertions on the non-abnormal edge out of BB. Note that since
4509 STMT is not control flow, there may only be one non-abnormal edge
4510 out of BB. */
4511 FOR_EACH_EDGE (e, ei, loc->bb->succs)
4512 if (!(e->flags & EDGE_ABNORMAL))
4514 bsi_insert_on_edge (e, assert_expr);
4515 return true;
4518 gcc_unreachable ();
4522 /* Process all the insertions registered for every name N_i registered
4523 in NEED_ASSERT_FOR. The list of assertions to be inserted are
4524 found in ASSERTS_FOR[i]. */
4526 static void
4527 process_assert_insertions (void)
4529 unsigned i;
4530 bitmap_iterator bi;
4531 bool update_edges_p = false;
4532 int num_asserts = 0;
4534 if (dump_file && (dump_flags & TDF_DETAILS))
4535 dump_all_asserts (dump_file);
4537 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
4539 assert_locus_t loc = asserts_for[i];
4540 gcc_assert (loc);
4542 while (loc)
4544 assert_locus_t next = loc->next;
4545 update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
4546 free (loc);
4547 loc = next;
4548 num_asserts++;
4552 if (update_edges_p)
4553 bsi_commit_edge_inserts ();
4555 if (dump_file && (dump_flags & TDF_STATS))
4556 fprintf (dump_file, "\nNumber of ASSERT_EXPR expressions inserted: %d\n\n",
4557 num_asserts);
4561 /* Traverse the flowgraph looking for conditional jumps to insert range
4562 expressions. These range expressions are meant to provide information
4563 to optimizations that need to reason in terms of value ranges. They
4564 will not be expanded into RTL. For instance, given:
4566 x = ...
4567 y = ...
4568 if (x < y)
4569 y = x - 2;
4570 else
4571 x = y + 3;
4573 this pass will transform the code into:
4575 x = ...
4576 y = ...
4577 if (x < y)
4579 x = ASSERT_EXPR <x, x < y>
4580 y = x - 2
4582 else
4584 y = ASSERT_EXPR <y, x <= y>
4585 x = y + 3
4588 The idea is that once copy and constant propagation have run, other
4589 optimizations will be able to determine what ranges of values can 'x'
4590 take in different paths of the code, simply by checking the reaching
4591 definition of 'x'. */
4593 static void
4594 insert_range_assertions (void)
4596 edge e;
4597 edge_iterator ei;
4598 bool update_ssa_p;
4600 found_in_subgraph = sbitmap_alloc (num_ssa_names);
4601 sbitmap_zero (found_in_subgraph);
4603 blocks_visited = sbitmap_alloc (last_basic_block);
4604 sbitmap_zero (blocks_visited);
4606 need_assert_for = BITMAP_ALLOC (NULL);
4607 asserts_for = XCNEWVEC (assert_locus_t, num_ssa_names);
4609 calculate_dominance_info (CDI_DOMINATORS);
4611 update_ssa_p = false;
4612 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
4613 if (find_assert_locations (e->dest))
4614 update_ssa_p = true;
4616 if (update_ssa_p)
4618 process_assert_insertions ();
4619 update_ssa (TODO_update_ssa_no_phi);
4622 if (dump_file && (dump_flags & TDF_DETAILS))
4624 fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
4625 dump_function_to_file (current_function_decl, dump_file, dump_flags);
4628 sbitmap_free (found_in_subgraph);
4629 free (asserts_for);
4630 BITMAP_FREE (need_assert_for);
4633 /* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
4634 and "struct" hacks. If VRP can determine that the
4635 array subscript is a constant, check if it is outside valid
4636 range. If the array subscript is a RANGE, warn if it is
4637 non-overlapping with valid range.
4638 IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
4640 static void
4641 check_array_ref (tree ref, location_t* locus, bool ignore_off_by_one)
4643 value_range_t* vr = NULL;
4644 tree low_sub, up_sub;
4645 tree low_bound, up_bound = array_ref_up_bound (ref);
4647 low_sub = up_sub = TREE_OPERAND (ref, 1);
4649 if (!up_bound || TREE_NO_WARNING (ref)
4650 || TREE_CODE (up_bound) != INTEGER_CST
4651 /* Can not check flexible arrays. */
4652 || (TYPE_SIZE (TREE_TYPE (ref)) == NULL_TREE
4653 && TYPE_DOMAIN (TREE_TYPE (ref)) != NULL_TREE
4654 && TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (ref))) == NULL_TREE)
4655 /* Accesses after the end of arrays of size 0 (gcc
4656 extension) and 1 are likely intentional ("struct
4657 hack"). */
4658 || compare_tree_int (up_bound, 1) <= 0)
4659 return;
4661 low_bound = array_ref_low_bound (ref);
4663 if (TREE_CODE (low_sub) == SSA_NAME)
4665 vr = get_value_range (low_sub);
4666 if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
4668 low_sub = vr->type == VR_RANGE ? vr->max : vr->min;
4669 up_sub = vr->type == VR_RANGE ? vr->min : vr->max;
4673 if (vr && vr->type == VR_ANTI_RANGE)
4675 if (TREE_CODE (up_sub) == INTEGER_CST
4676 && tree_int_cst_lt (up_bound, up_sub)
4677 && TREE_CODE (low_sub) == INTEGER_CST
4678 && tree_int_cst_lt (low_sub, low_bound))
4680 warning (OPT_Warray_bounds,
4681 "%Harray subscript is outside array bounds", locus);
4682 TREE_NO_WARNING (ref) = 1;
4685 else if (TREE_CODE (up_sub) == INTEGER_CST
4686 && tree_int_cst_lt (up_bound, up_sub)
4687 && !tree_int_cst_equal (up_bound, up_sub)
4688 && (!ignore_off_by_one
4689 || !tree_int_cst_equal (int_const_binop (PLUS_EXPR,
4690 up_bound,
4691 integer_one_node,
4693 up_sub)))
4695 warning (OPT_Warray_bounds, "%Harray subscript is above array bounds",
4696 locus);
4697 TREE_NO_WARNING (ref) = 1;
4699 else if (TREE_CODE (low_sub) == INTEGER_CST
4700 && tree_int_cst_lt (low_sub, low_bound))
4702 warning (OPT_Warray_bounds, "%Harray subscript is below array bounds",
4703 locus);
4704 TREE_NO_WARNING (ref) = 1;
4708 /* Searches if the expr T, located at LOCATION computes
4709 address of an ARRAY_REF, and call check_array_ref on it. */
4711 static void
4712 search_for_addr_array(tree t, location_t* location)
4714 while (TREE_CODE (t) == SSA_NAME)
4716 t = SSA_NAME_DEF_STMT (t);
4717 if (TREE_CODE (t) != GIMPLE_MODIFY_STMT)
4718 return;
4719 t = GIMPLE_STMT_OPERAND (t, 1);
4723 /* We are only interested in addresses of ARRAY_REF's. */
4724 if (TREE_CODE (t) != ADDR_EXPR)
4725 return;
4727 /* Check each ARRAY_REFs in the reference chain. */
4730 if (TREE_CODE (t) == ARRAY_REF)
4731 check_array_ref (t, location, true /*ignore_off_by_one*/);
4733 t = TREE_OPERAND(t,0);
4735 while (handled_component_p (t));
4738 /* walk_tree() callback that checks if *TP is
4739 an ARRAY_REF inside an ADDR_EXPR (in which an array
4740 subscript one outside the valid range is allowed). Call
4741 check_array_ref for each ARRAY_REF found. The location is
4742 passed in DATA. */
4744 static tree
4745 check_array_bounds (tree *tp, int *walk_subtree, void *data)
4747 tree t = *tp;
4748 tree stmt = (tree)data;
4749 location_t *location = EXPR_LOCUS (stmt);
4751 if (!EXPR_HAS_LOCATION (stmt))
4753 *walk_subtree = FALSE;
4754 return NULL_TREE;
4757 *walk_subtree = TRUE;
4759 if (TREE_CODE (t) == ARRAY_REF)
4760 check_array_ref (t, location, false /*ignore_off_by_one*/);
4762 if (TREE_CODE (t) == INDIRECT_REF
4763 || (TREE_CODE (t) == RETURN_EXPR && TREE_OPERAND (t, 0)))
4764 search_for_addr_array (TREE_OPERAND (t, 0), location);
4765 else if (TREE_CODE (t) == CALL_EXPR)
4767 tree arg;
4768 call_expr_arg_iterator iter;
4770 FOR_EACH_CALL_EXPR_ARG (arg, iter, t)
4771 search_for_addr_array (arg, location);
4774 if (TREE_CODE (t) == ADDR_EXPR)
4775 *walk_subtree = FALSE;
4777 return NULL_TREE;
4780 /* Walk over all statements of all reachable BBs and call check_array_bounds
4781 on them. */
4783 static void
4784 check_all_array_refs (void)
4786 basic_block bb;
4787 block_stmt_iterator si;
4789 FOR_EACH_BB (bb)
4791 /* Skip bb's that are clearly unreachable. */
4792 if (single_pred_p (bb))
4794 basic_block pred_bb = EDGE_PRED (bb, 0)->src;
4795 tree ls = NULL_TREE;
4797 if (!bsi_end_p (bsi_last (pred_bb)))
4798 ls = bsi_stmt (bsi_last (pred_bb));
4800 if (ls && TREE_CODE (ls) == COND_EXPR
4801 && ((COND_EXPR_COND (ls) == boolean_false_node
4802 && (EDGE_PRED (bb, 0)->flags & EDGE_TRUE_VALUE))
4803 || (COND_EXPR_COND (ls) == boolean_true_node
4804 && (EDGE_PRED (bb, 0)->flags & EDGE_FALSE_VALUE))))
4805 continue;
4807 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
4808 walk_tree (bsi_stmt_ptr (si), check_array_bounds,
4809 bsi_stmt (si), NULL);
4813 /* Convert range assertion expressions into the implied copies and
4814 copy propagate away the copies. Doing the trivial copy propagation
4815 here avoids the need to run the full copy propagation pass after
4816 VRP.
4818 FIXME, this will eventually lead to copy propagation removing the
4819 names that had useful range information attached to them. For
4820 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
4821 then N_i will have the range [3, +INF].
4823 However, by converting the assertion into the implied copy
4824 operation N_i = N_j, we will then copy-propagate N_j into the uses
4825 of N_i and lose the range information. We may want to hold on to
4826 ASSERT_EXPRs a little while longer as the ranges could be used in
4827 things like jump threading.
4829 The problem with keeping ASSERT_EXPRs around is that passes after
4830 VRP need to handle them appropriately.
4832 Another approach would be to make the range information a first
4833 class property of the SSA_NAME so that it can be queried from
4834 any pass. This is made somewhat more complex by the need for
4835 multiple ranges to be associated with one SSA_NAME. */
4837 static void
4838 remove_range_assertions (void)
4840 basic_block bb;
4841 block_stmt_iterator si;
4843 /* Note that the BSI iterator bump happens at the bottom of the
4844 loop and no bump is necessary if we're removing the statement
4845 referenced by the current BSI. */
4846 FOR_EACH_BB (bb)
4847 for (si = bsi_start (bb); !bsi_end_p (si);)
4849 tree stmt = bsi_stmt (si);
4850 tree use_stmt;
4852 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT
4853 && TREE_CODE (GIMPLE_STMT_OPERAND (stmt, 1)) == ASSERT_EXPR)
4855 tree rhs = GIMPLE_STMT_OPERAND (stmt, 1), var;
4856 tree cond = fold (ASSERT_EXPR_COND (rhs));
4857 use_operand_p use_p;
4858 imm_use_iterator iter;
4860 gcc_assert (cond != boolean_false_node);
4862 /* Propagate the RHS into every use of the LHS. */
4863 var = ASSERT_EXPR_VAR (rhs);
4864 FOR_EACH_IMM_USE_STMT (use_stmt, iter,
4865 GIMPLE_STMT_OPERAND (stmt, 0))
4866 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
4868 SET_USE (use_p, var);
4869 gcc_assert (TREE_CODE (var) == SSA_NAME);
4872 /* And finally, remove the copy, it is not needed. */
4873 bsi_remove (&si, true);
4874 release_defs (stmt);
4876 else
4877 bsi_next (&si);
4880 sbitmap_free (blocks_visited);
4884 /* Return true if STMT is interesting for VRP. */
4886 static bool
4887 stmt_interesting_for_vrp (tree stmt)
4889 if (TREE_CODE (stmt) == PHI_NODE
4890 && is_gimple_reg (PHI_RESULT (stmt))
4891 && (INTEGRAL_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))
4892 || POINTER_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))))
4893 return true;
4894 else if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT)
4896 tree lhs = GIMPLE_STMT_OPERAND (stmt, 0);
4897 tree rhs = GIMPLE_STMT_OPERAND (stmt, 1);
4899 /* In general, assignments with virtual operands are not useful
4900 for deriving ranges, with the obvious exception of calls to
4901 builtin functions. */
4902 if (TREE_CODE (lhs) == SSA_NAME
4903 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
4904 || POINTER_TYPE_P (TREE_TYPE (lhs)))
4905 && ((TREE_CODE (rhs) == CALL_EXPR
4906 && TREE_CODE (CALL_EXPR_FN (rhs)) == ADDR_EXPR
4907 && DECL_P (TREE_OPERAND (CALL_EXPR_FN (rhs), 0))
4908 && DECL_IS_BUILTIN (TREE_OPERAND (CALL_EXPR_FN (rhs), 0)))
4909 || ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS)))
4910 return true;
4912 else if (TREE_CODE (stmt) == COND_EXPR || TREE_CODE (stmt) == SWITCH_EXPR)
4913 return true;
4915 return false;
4919 /* Initialize local data structures for VRP. */
4921 static void
4922 vrp_initialize (void)
4924 basic_block bb;
4926 vr_value = XCNEWVEC (value_range_t *, num_ssa_names);
4927 vr_phi_edge_counts = XCNEWVEC (int, num_ssa_names);
4929 FOR_EACH_BB (bb)
4931 block_stmt_iterator si;
4932 tree phi;
4934 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
4936 if (!stmt_interesting_for_vrp (phi))
4938 tree lhs = PHI_RESULT (phi);
4939 set_value_range_to_varying (get_value_range (lhs));
4940 DONT_SIMULATE_AGAIN (phi) = true;
4942 else
4943 DONT_SIMULATE_AGAIN (phi) = false;
4946 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
4948 tree stmt = bsi_stmt (si);
4950 if (!stmt_interesting_for_vrp (stmt))
4952 ssa_op_iter i;
4953 tree def;
4954 FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
4955 set_value_range_to_varying (get_value_range (def));
4956 DONT_SIMULATE_AGAIN (stmt) = true;
4958 else
4960 DONT_SIMULATE_AGAIN (stmt) = false;
4967 /* Visit assignment STMT. If it produces an interesting range, record
4968 the SSA name in *OUTPUT_P. */
4970 static enum ssa_prop_result
4971 vrp_visit_assignment (tree stmt, tree *output_p)
4973 tree lhs, rhs, def;
4974 ssa_op_iter iter;
4976 lhs = GIMPLE_STMT_OPERAND (stmt, 0);
4977 rhs = GIMPLE_STMT_OPERAND (stmt, 1);
4979 /* We only keep track of ranges in integral and pointer types. */
4980 if (TREE_CODE (lhs) == SSA_NAME
4981 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
4982 /* It is valid to have NULL MIN/MAX values on a type. See
4983 build_range_type. */
4984 && TYPE_MIN_VALUE (TREE_TYPE (lhs))
4985 && TYPE_MAX_VALUE (TREE_TYPE (lhs)))
4986 || POINTER_TYPE_P (TREE_TYPE (lhs))))
4988 struct loop *l;
4989 value_range_t new_vr = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
4991 extract_range_from_expr (&new_vr, rhs);
4993 /* If STMT is inside a loop, we may be able to know something
4994 else about the range of LHS by examining scalar evolution
4995 information. */
4996 if (current_loops && (l = loop_containing_stmt (stmt)))
4997 adjust_range_with_scev (&new_vr, l, stmt, lhs);
4999 if (update_value_range (lhs, &new_vr))
5001 *output_p = lhs;
5003 if (dump_file && (dump_flags & TDF_DETAILS))
5005 fprintf (dump_file, "Found new range for ");
5006 print_generic_expr (dump_file, lhs, 0);
5007 fprintf (dump_file, ": ");
5008 dump_value_range (dump_file, &new_vr);
5009 fprintf (dump_file, "\n\n");
5012 if (new_vr.type == VR_VARYING)
5013 return SSA_PROP_VARYING;
5015 return SSA_PROP_INTERESTING;
5018 return SSA_PROP_NOT_INTERESTING;
5021 /* Every other statement produces no useful ranges. */
5022 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
5023 set_value_range_to_varying (get_value_range (def));
5025 return SSA_PROP_VARYING;
5028 /* Helper that gets the value range of the SSA_NAME with version I
5029 or a symbolic range containing the SSA_NAME only if the value range
5030 is varying or undefined. */
5032 static inline value_range_t
5033 get_vr_for_comparison (int i)
5035 value_range_t vr = *(vr_value[i]);
5037 /* If name N_i does not have a valid range, use N_i as its own
5038 range. This allows us to compare against names that may
5039 have N_i in their ranges. */
5040 if (vr.type == VR_VARYING || vr.type == VR_UNDEFINED)
5042 vr.type = VR_RANGE;
5043 vr.min = ssa_name (i);
5044 vr.max = ssa_name (i);
5047 return vr;
5050 /* Compare all the value ranges for names equivalent to VAR with VAL
5051 using comparison code COMP. Return the same value returned by
5052 compare_range_with_value, including the setting of
5053 *STRICT_OVERFLOW_P. */
5055 static tree
5056 compare_name_with_value (enum tree_code comp, tree var, tree val,
5057 bool *strict_overflow_p)
5059 bitmap_iterator bi;
5060 unsigned i;
5061 bitmap e;
5062 tree retval, t;
5063 int used_strict_overflow;
5064 bool sop;
5065 value_range_t equiv_vr;
5067 /* Get the set of equivalences for VAR. */
5068 e = get_value_range (var)->equiv;
5070 /* Start at -1. Set it to 0 if we do a comparison without relying
5071 on overflow, or 1 if all comparisons rely on overflow. */
5072 used_strict_overflow = -1;
5074 /* Compare vars' value range with val. */
5075 equiv_vr = get_vr_for_comparison (SSA_NAME_VERSION (var));
5076 sop = false;
5077 retval = compare_range_with_value (comp, &equiv_vr, val, &sop);
5078 if (retval)
5079 used_strict_overflow = sop ? 1 : 0;
5081 /* If the equiv set is empty we have done all work we need to do. */
5082 if (e == NULL)
5084 if (retval
5085 && used_strict_overflow > 0)
5086 *strict_overflow_p = true;
5087 return retval;
5090 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
5092 equiv_vr = get_vr_for_comparison (i);
5093 sop = false;
5094 t = compare_range_with_value (comp, &equiv_vr, val, &sop);
5095 if (t)
5097 /* If we get different answers from different members
5098 of the equivalence set this check must be in a dead
5099 code region. Folding it to a trap representation
5100 would be correct here. For now just return don't-know. */
5101 if (retval != NULL
5102 && t != retval)
5104 retval = NULL_TREE;
5105 break;
5107 retval = t;
5109 if (!sop)
5110 used_strict_overflow = 0;
5111 else if (used_strict_overflow < 0)
5112 used_strict_overflow = 1;
5116 if (retval
5117 && used_strict_overflow > 0)
5118 *strict_overflow_p = true;
5120 return retval;
5124 /* Given a comparison code COMP and names N1 and N2, compare all the
5125 ranges equivalent to N1 against all the ranges equivalent to N2
5126 to determine the value of N1 COMP N2. Return the same value
5127 returned by compare_ranges. Set *STRICT_OVERFLOW_P to indicate
5128 whether we relied on an overflow infinity in the comparison. */
5131 static tree
5132 compare_names (enum tree_code comp, tree n1, tree n2,
5133 bool *strict_overflow_p)
5135 tree t, retval;
5136 bitmap e1, e2;
5137 bitmap_iterator bi1, bi2;
5138 unsigned i1, i2;
5139 int used_strict_overflow;
5140 static bitmap_obstack *s_obstack = NULL;
5141 static bitmap s_e1 = NULL, s_e2 = NULL;
5143 /* Compare the ranges of every name equivalent to N1 against the
5144 ranges of every name equivalent to N2. */
5145 e1 = get_value_range (n1)->equiv;
5146 e2 = get_value_range (n2)->equiv;
5148 /* Use the fake bitmaps if e1 or e2 are not available. */
5149 if (s_obstack == NULL)
5151 s_obstack = XNEW (bitmap_obstack);
5152 bitmap_obstack_initialize (s_obstack);
5153 s_e1 = BITMAP_ALLOC (s_obstack);
5154 s_e2 = BITMAP_ALLOC (s_obstack);
5156 if (e1 == NULL)
5157 e1 = s_e1;
5158 if (e2 == NULL)
5159 e2 = s_e2;
5161 /* Add N1 and N2 to their own set of equivalences to avoid
5162 duplicating the body of the loop just to check N1 and N2
5163 ranges. */
5164 bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
5165 bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
5167 /* If the equivalence sets have a common intersection, then the two
5168 names can be compared without checking their ranges. */
5169 if (bitmap_intersect_p (e1, e2))
5171 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5172 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5174 return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
5175 ? boolean_true_node
5176 : boolean_false_node;
5179 /* Start at -1. Set it to 0 if we do a comparison without relying
5180 on overflow, or 1 if all comparisons rely on overflow. */
5181 used_strict_overflow = -1;
5183 /* Otherwise, compare all the equivalent ranges. First, add N1 and
5184 N2 to their own set of equivalences to avoid duplicating the body
5185 of the loop just to check N1 and N2 ranges. */
5186 EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
5188 value_range_t vr1 = get_vr_for_comparison (i1);
5190 t = retval = NULL_TREE;
5191 EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
5193 bool sop = false;
5195 value_range_t vr2 = get_vr_for_comparison (i2);
5197 t = compare_ranges (comp, &vr1, &vr2, &sop);
5198 if (t)
5200 /* If we get different answers from different members
5201 of the equivalence set this check must be in a dead
5202 code region. Folding it to a trap representation
5203 would be correct here. For now just return don't-know. */
5204 if (retval != NULL
5205 && t != retval)
5207 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5208 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5209 return NULL_TREE;
5211 retval = t;
5213 if (!sop)
5214 used_strict_overflow = 0;
5215 else if (used_strict_overflow < 0)
5216 used_strict_overflow = 1;
5220 if (retval)
5222 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5223 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5224 if (used_strict_overflow > 0)
5225 *strict_overflow_p = true;
5226 return retval;
5230 /* None of the equivalent ranges are useful in computing this
5231 comparison. */
5232 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5233 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5234 return NULL_TREE;
5237 /* Helper function for vrp_evaluate_conditional_warnv. */
5239 static tree
5240 vrp_evaluate_conditional_warnv_with_ops (enum tree_code code, tree op0,
5241 tree op1, bool use_equiv_p,
5242 bool *strict_overflow_p)
5244 /* We only deal with integral and pointer types. */
5245 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
5246 && !POINTER_TYPE_P (TREE_TYPE (op0)))
5247 return NULL_TREE;
5249 if (use_equiv_p)
5251 if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
5252 return compare_names (code, op0, op1,
5253 strict_overflow_p);
5254 else if (TREE_CODE (op0) == SSA_NAME)
5255 return compare_name_with_value (code, op0, op1,
5256 strict_overflow_p);
5257 else if (TREE_CODE (op1) == SSA_NAME)
5258 return (compare_name_with_value
5259 (swap_tree_comparison (code), op1, op0,
5260 strict_overflow_p));
5262 else
5264 value_range_t *vr0, *vr1;
5266 vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
5267 vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
5269 if (vr0 && vr1)
5270 return compare_ranges (code, vr0, vr1,
5271 strict_overflow_p);
5272 else if (vr0 && vr1 == NULL)
5273 return compare_range_with_value (code, vr0, op1,
5274 strict_overflow_p);
5275 else if (vr0 == NULL && vr1)
5276 return (compare_range_with_value
5277 (swap_tree_comparison (code), vr1, op0,
5278 strict_overflow_p));
5280 return NULL_TREE;
5283 /* Given a conditional predicate COND, try to determine if COND yields
5284 true or false based on the value ranges of its operands. Return
5285 BOOLEAN_TRUE_NODE if the conditional always evaluates to true,
5286 BOOLEAN_FALSE_NODE if the conditional always evaluates to false, and,
5287 NULL if the conditional cannot be evaluated at compile time.
5289 If USE_EQUIV_P is true, the ranges of all the names equivalent with
5290 the operands in COND are used when trying to compute its value.
5291 This is only used during final substitution. During propagation,
5292 we only check the range of each variable and not its equivalents.
5294 Set *STRICT_OVERFLOW_P to indicate whether we relied on an overflow
5295 infinity to produce the result. */
5297 static tree
5298 vrp_evaluate_conditional_warnv (tree cond, bool use_equiv_p,
5299 bool *strict_overflow_p)
5301 gcc_assert (TREE_CODE (cond) == SSA_NAME
5302 || TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison);
5304 if (TREE_CODE (cond) == SSA_NAME)
5306 value_range_t *vr;
5307 tree retval;
5309 if (use_equiv_p)
5310 retval = compare_name_with_value (NE_EXPR, cond, boolean_false_node,
5311 strict_overflow_p);
5312 else
5314 value_range_t *vr = get_value_range (cond);
5315 retval = compare_range_with_value (NE_EXPR, vr, boolean_false_node,
5316 strict_overflow_p);
5319 /* If COND has a known boolean range, return it. */
5320 if (retval)
5321 return retval;
5323 /* Otherwise, if COND has a symbolic range of exactly one value,
5324 return it. */
5325 vr = get_value_range (cond);
5326 if (vr->type == VR_RANGE && vr->min == vr->max)
5327 return vr->min;
5329 else
5330 return vrp_evaluate_conditional_warnv_with_ops (TREE_CODE (cond),
5331 TREE_OPERAND (cond, 0),
5332 TREE_OPERAND (cond, 1),
5333 use_equiv_p,
5334 strict_overflow_p);
5336 /* Anything else cannot be computed statically. */
5337 return NULL_TREE;
5340 /* Given COND within STMT, try to simplify it based on value range
5341 information. Return NULL if the conditional can not be evaluated.
5342 The ranges of all the names equivalent with the operands in COND
5343 will be used when trying to compute the value. If the result is
5344 based on undefined signed overflow, issue a warning if
5345 appropriate. */
5347 tree
5348 vrp_evaluate_conditional (tree cond, tree stmt)
5350 bool sop;
5351 tree ret;
5353 sop = false;
5354 ret = vrp_evaluate_conditional_warnv (cond, true, &sop);
5356 if (ret && sop)
5358 enum warn_strict_overflow_code wc;
5359 const char* warnmsg;
5361 if (is_gimple_min_invariant (ret))
5363 wc = WARN_STRICT_OVERFLOW_CONDITIONAL;
5364 warnmsg = G_("assuming signed overflow does not occur when "
5365 "simplifying conditional to constant");
5367 else
5369 wc = WARN_STRICT_OVERFLOW_COMPARISON;
5370 warnmsg = G_("assuming signed overflow does not occur when "
5371 "simplifying conditional");
5374 if (issue_strict_overflow_warning (wc))
5376 location_t locus;
5378 if (!EXPR_HAS_LOCATION (stmt))
5379 locus = input_location;
5380 else
5381 locus = EXPR_LOCATION (stmt);
5382 warning (OPT_Wstrict_overflow, "%H%s", &locus, warnmsg);
5386 if (warn_type_limits
5387 && ret
5388 && TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison
5389 && TREE_CODE (TREE_OPERAND (cond, 0)) == SSA_NAME)
5391 /* If the comparison is being folded and the operand on the LHS
5392 is being compared against a constant value that is outside of
5393 the natural range of OP0's type, then the predicate will
5394 always fold regardless of the value of OP0. If -Wtype-limits
5395 was specified, emit a warning. */
5396 const char *warnmsg = NULL;
5397 tree op0 = TREE_OPERAND (cond, 0);
5398 tree op1 = TREE_OPERAND (cond, 1);
5399 tree type = TREE_TYPE (op0);
5400 value_range_t *vr0 = get_value_range (op0);
5402 if (vr0->type != VR_VARYING
5403 && INTEGRAL_TYPE_P (type)
5404 && vrp_val_is_min (vr0->min)
5405 && vrp_val_is_max (vr0->max)
5406 && is_gimple_min_invariant (op1))
5408 if (integer_zerop (ret))
5409 warnmsg = G_("comparison always false due to limited range of "
5410 "data type");
5411 else
5412 warnmsg = G_("comparison always true due to limited range of "
5413 "data type");
5416 if (warnmsg)
5418 location_t locus;
5420 if (!EXPR_HAS_LOCATION (stmt))
5421 locus = input_location;
5422 else
5423 locus = EXPR_LOCATION (stmt);
5425 warning (OPT_Wtype_limits, "%H%s", &locus, warnmsg);
5429 return ret;
5433 /* Visit conditional statement STMT. If we can determine which edge
5434 will be taken out of STMT's basic block, record it in
5435 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
5436 SSA_PROP_VARYING. */
5438 static enum ssa_prop_result
5439 vrp_visit_cond_stmt (tree stmt, edge *taken_edge_p)
5441 tree cond, val;
5442 bool sop;
5444 *taken_edge_p = NULL;
5445 cond = COND_EXPR_COND (stmt);
5447 if (dump_file && (dump_flags & TDF_DETAILS))
5449 tree use;
5450 ssa_op_iter i;
5452 fprintf (dump_file, "\nVisiting conditional with predicate: ");
5453 print_generic_expr (dump_file, cond, 0);
5454 fprintf (dump_file, "\nWith known ranges\n");
5456 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
5458 fprintf (dump_file, "\t");
5459 print_generic_expr (dump_file, use, 0);
5460 fprintf (dump_file, ": ");
5461 dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
5464 fprintf (dump_file, "\n");
5467 /* Compute the value of the predicate COND by checking the known
5468 ranges of each of its operands.
5470 Note that we cannot evaluate all the equivalent ranges here
5471 because those ranges may not yet be final and with the current
5472 propagation strategy, we cannot determine when the value ranges
5473 of the names in the equivalence set have changed.
5475 For instance, given the following code fragment
5477 i_5 = PHI <8, i_13>
5479 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
5480 if (i_14 == 1)
5483 Assume that on the first visit to i_14, i_5 has the temporary
5484 range [8, 8] because the second argument to the PHI function is
5485 not yet executable. We derive the range ~[0, 0] for i_14 and the
5486 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
5487 the first time, since i_14 is equivalent to the range [8, 8], we
5488 determine that the predicate is always false.
5490 On the next round of propagation, i_13 is determined to be
5491 VARYING, which causes i_5 to drop down to VARYING. So, another
5492 visit to i_14 is scheduled. In this second visit, we compute the
5493 exact same range and equivalence set for i_14, namely ~[0, 0] and
5494 { i_5 }. But we did not have the previous range for i_5
5495 registered, so vrp_visit_assignment thinks that the range for
5496 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
5497 is not visited again, which stops propagation from visiting
5498 statements in the THEN clause of that if().
5500 To properly fix this we would need to keep the previous range
5501 value for the names in the equivalence set. This way we would've
5502 discovered that from one visit to the other i_5 changed from
5503 range [8, 8] to VR_VARYING.
5505 However, fixing this apparent limitation may not be worth the
5506 additional checking. Testing on several code bases (GCC, DLV,
5507 MICO, TRAMP3D and SPEC2000) showed that doing this results in
5508 4 more predicates folded in SPEC. */
5509 sop = false;
5510 val = vrp_evaluate_conditional_warnv (cond, false, &sop);
5511 if (val)
5513 if (!sop)
5514 *taken_edge_p = find_taken_edge (bb_for_stmt (stmt), val);
5515 else
5517 if (dump_file && (dump_flags & TDF_DETAILS))
5518 fprintf (dump_file,
5519 "\nIgnoring predicate evaluation because "
5520 "it assumes that signed overflow is undefined");
5521 val = NULL_TREE;
5525 if (dump_file && (dump_flags & TDF_DETAILS))
5527 fprintf (dump_file, "\nPredicate evaluates to: ");
5528 if (val == NULL_TREE)
5529 fprintf (dump_file, "DON'T KNOW\n");
5530 else
5531 print_generic_stmt (dump_file, val, 0);
5534 return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
5538 /* Searches the case label vector VEC for the index *IDX the CASE_LABEL
5539 includes the value VAL. The search starts at index START_IDX and
5540 true is returned if *IDX corresponds to such an index. False is
5541 returned in case VAL hits the default case label and *IDX in this
5542 case is the next higher or the next lower case label index. */
5544 static bool
5545 find_case_label_index (tree vec, size_t start_idx, tree val, size_t *idx)
5547 size_t n = TREE_VEC_LENGTH (vec);
5548 size_t low, high, i = start_idx;
5550 /* Find case label for minimum of the value range or the next one. */
5551 for (low = start_idx - 1, high = n - 1; high - low > 1; )
5553 tree t;
5554 int cmp;
5555 i = (high + low) / 2;
5556 t = TREE_VEC_ELT (vec, i);
5558 /* Cache the result of comparing CASE_LOW and val. */
5559 cmp = tree_int_cst_compare (CASE_LOW (t), val);
5561 if (cmp > 0)
5562 high = i;
5563 else
5564 low = i;
5566 if (CASE_HIGH (t) == NULL)
5568 /* A singe-valued case label. */
5569 if (cmp == 0)
5571 *idx = i;
5572 return true;
5575 else
5577 /* A case range. We can only handle integer ranges. */
5578 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
5580 *idx = i;
5581 return true;
5586 *idx = i;
5587 return false;
5590 /* Visit switch statement STMT. If we can determine which edge
5591 will be taken out of STMT's basic block, record it in
5592 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
5593 SSA_PROP_VARYING. */
5595 static enum ssa_prop_result
5596 vrp_visit_switch_stmt (tree stmt, edge *taken_edge_p)
5598 tree op, val;
5599 value_range_t *vr;
5600 size_t i = 0, j = 0, n;
5601 tree vec;
5602 bool min_take_default, max_take_default;
5604 *taken_edge_p = NULL;
5605 op = TREE_OPERAND (stmt, 0);
5606 if (TREE_CODE (op) != SSA_NAME)
5607 return SSA_PROP_VARYING;
5609 vr = get_value_range (op);
5610 if (dump_file && (dump_flags & TDF_DETAILS))
5612 fprintf (dump_file, "\nVisiting switch expression with operand ");
5613 print_generic_expr (dump_file, op, 0);
5614 fprintf (dump_file, " with known range ");
5615 dump_value_range (dump_file, vr);
5616 fprintf (dump_file, "\n");
5619 if (vr->type != VR_RANGE
5620 || symbolic_range_p (vr))
5621 return SSA_PROP_VARYING;
5623 /* Find the single edge that is taken from the switch expression. */
5624 vec = SWITCH_LABELS (stmt);
5625 n = TREE_VEC_LENGTH (vec);
5627 /* Find case label for minimum of the value range or the next one. */
5628 min_take_default = !find_case_label_index (vec, 0, vr->min, &i);
5630 /* Find case label for maximum of the value range or the previous one. */
5631 max_take_default = !find_case_label_index (vec, i, vr->max, &j);
5633 /* Check if we reach the default label only. */
5634 if (j < i)
5635 val = TREE_VEC_ELT (vec, n - 1);
5636 /* Check if we reach exactly one label and not the default label. */
5637 else if (i == j
5638 && !min_take_default
5639 && !max_take_default)
5640 val = TREE_VEC_ELT (vec, i);
5641 else
5643 /* Check if labels with index i to j are all reaching the same label.
5644 If we don't hit a single case label only, the default case also has
5645 to branch to the same label. */
5646 val = TREE_VEC_ELT (vec, i);
5647 if (CASE_LABEL (TREE_VEC_ELT (vec, n - 1)) != CASE_LABEL (val))
5649 if (dump_file && (dump_flags & TDF_DETAILS))
5650 fprintf (dump_file, " not a single destination for this "
5651 "range\n");
5652 return SSA_PROP_VARYING;
5654 for (++i; i <= j; ++i)
5656 if (CASE_LABEL (TREE_VEC_ELT (vec, i)) != CASE_LABEL (val))
5658 if (dump_file && (dump_flags & TDF_DETAILS))
5659 fprintf (dump_file, " not a single destination for this "
5660 "range\n");
5661 return SSA_PROP_VARYING;
5666 *taken_edge_p = find_edge (bb_for_stmt (stmt),
5667 label_to_block (CASE_LABEL (val)));
5669 if (dump_file && (dump_flags & TDF_DETAILS))
5671 fprintf (dump_file, " will take edge to ");
5672 print_generic_stmt (dump_file, CASE_LABEL (val), 0);
5675 return SSA_PROP_INTERESTING;
5679 /* Evaluate statement STMT. If the statement produces a useful range,
5680 return SSA_PROP_INTERESTING and record the SSA name with the
5681 interesting range into *OUTPUT_P.
5683 If STMT is a conditional branch and we can determine its truth
5684 value, the taken edge is recorded in *TAKEN_EDGE_P.
5686 If STMT produces a varying value, return SSA_PROP_VARYING. */
5688 static enum ssa_prop_result
5689 vrp_visit_stmt (tree stmt, edge *taken_edge_p, tree *output_p)
5691 tree def;
5692 ssa_op_iter iter;
5693 stmt_ann_t ann;
5695 if (dump_file && (dump_flags & TDF_DETAILS))
5697 fprintf (dump_file, "\nVisiting statement:\n");
5698 print_generic_stmt (dump_file, stmt, dump_flags);
5699 fprintf (dump_file, "\n");
5702 ann = stmt_ann (stmt);
5703 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT)
5705 tree rhs = GIMPLE_STMT_OPERAND (stmt, 1);
5707 /* In general, assignments with virtual operands are not useful
5708 for deriving ranges, with the obvious exception of calls to
5709 builtin functions. */
5710 if ((TREE_CODE (rhs) == CALL_EXPR
5711 && TREE_CODE (CALL_EXPR_FN (rhs)) == ADDR_EXPR
5712 && DECL_P (TREE_OPERAND (CALL_EXPR_FN (rhs), 0))
5713 && DECL_IS_BUILTIN (TREE_OPERAND (CALL_EXPR_FN (rhs), 0)))
5714 || ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
5715 return vrp_visit_assignment (stmt, output_p);
5717 else if (TREE_CODE (stmt) == COND_EXPR)
5718 return vrp_visit_cond_stmt (stmt, taken_edge_p);
5719 else if (TREE_CODE (stmt) == SWITCH_EXPR)
5720 return vrp_visit_switch_stmt (stmt, taken_edge_p);
5722 /* All other statements produce nothing of interest for VRP, so mark
5723 their outputs varying and prevent further simulation. */
5724 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
5725 set_value_range_to_varying (get_value_range (def));
5727 return SSA_PROP_VARYING;
5731 /* Meet operation for value ranges. Given two value ranges VR0 and
5732 VR1, store in VR0 a range that contains both VR0 and VR1. This
5733 may not be the smallest possible such range. */
5735 static void
5736 vrp_meet (value_range_t *vr0, value_range_t *vr1)
5738 if (vr0->type == VR_UNDEFINED)
5740 copy_value_range (vr0, vr1);
5741 return;
5744 if (vr1->type == VR_UNDEFINED)
5746 /* Nothing to do. VR0 already has the resulting range. */
5747 return;
5750 if (vr0->type == VR_VARYING)
5752 /* Nothing to do. VR0 already has the resulting range. */
5753 return;
5756 if (vr1->type == VR_VARYING)
5758 set_value_range_to_varying (vr0);
5759 return;
5762 if (vr0->type == VR_RANGE && vr1->type == VR_RANGE)
5764 int cmp;
5765 tree min, max;
5767 /* Compute the convex hull of the ranges. The lower limit of
5768 the new range is the minimum of the two ranges. If they
5769 cannot be compared, then give up. */
5770 cmp = compare_values (vr0->min, vr1->min);
5771 if (cmp == 0 || cmp == 1)
5772 min = vr1->min;
5773 else if (cmp == -1)
5774 min = vr0->min;
5775 else
5776 goto give_up;
5778 /* Similarly, the upper limit of the new range is the maximum
5779 of the two ranges. If they cannot be compared, then
5780 give up. */
5781 cmp = compare_values (vr0->max, vr1->max);
5782 if (cmp == 0 || cmp == -1)
5783 max = vr1->max;
5784 else if (cmp == 1)
5785 max = vr0->max;
5786 else
5787 goto give_up;
5789 /* Check for useless ranges. */
5790 if (INTEGRAL_TYPE_P (TREE_TYPE (min))
5791 && ((vrp_val_is_min (min) || is_overflow_infinity (min))
5792 && (vrp_val_is_max (max) || is_overflow_infinity (max))))
5793 goto give_up;
5795 /* The resulting set of equivalences is the intersection of
5796 the two sets. */
5797 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
5798 bitmap_and_into (vr0->equiv, vr1->equiv);
5799 else if (vr0->equiv && !vr1->equiv)
5800 bitmap_clear (vr0->equiv);
5802 set_value_range (vr0, vr0->type, min, max, vr0->equiv);
5804 else if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
5806 /* Two anti-ranges meet only if their complements intersect.
5807 Only handle the case of identical ranges. */
5808 if (compare_values (vr0->min, vr1->min) == 0
5809 && compare_values (vr0->max, vr1->max) == 0
5810 && compare_values (vr0->min, vr0->max) == 0)
5812 /* The resulting set of equivalences is the intersection of
5813 the two sets. */
5814 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
5815 bitmap_and_into (vr0->equiv, vr1->equiv);
5816 else if (vr0->equiv && !vr1->equiv)
5817 bitmap_clear (vr0->equiv);
5819 else
5820 goto give_up;
5822 else if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
5824 /* For a numeric range [VAL1, VAL2] and an anti-range ~[VAL3, VAL4],
5825 only handle the case where the ranges have an empty intersection.
5826 The result of the meet operation is the anti-range. */
5827 if (!symbolic_range_p (vr0)
5828 && !symbolic_range_p (vr1)
5829 && !value_ranges_intersect_p (vr0, vr1))
5831 /* Copy most of VR1 into VR0. Don't copy VR1's equivalence
5832 set. We need to compute the intersection of the two
5833 equivalence sets. */
5834 if (vr1->type == VR_ANTI_RANGE)
5835 set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr0->equiv);
5837 /* The resulting set of equivalences is the intersection of
5838 the two sets. */
5839 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
5840 bitmap_and_into (vr0->equiv, vr1->equiv);
5841 else if (vr0->equiv && !vr1->equiv)
5842 bitmap_clear (vr0->equiv);
5844 else
5845 goto give_up;
5847 else
5848 gcc_unreachable ();
5850 return;
5852 give_up:
5853 /* Failed to find an efficient meet. Before giving up and setting
5854 the result to VARYING, see if we can at least derive a useful
5855 anti-range. FIXME, all this nonsense about distinguishing
5856 anti-ranges from ranges is necessary because of the odd
5857 semantics of range_includes_zero_p and friends. */
5858 if (!symbolic_range_p (vr0)
5859 && ((vr0->type == VR_RANGE && !range_includes_zero_p (vr0))
5860 || (vr0->type == VR_ANTI_RANGE && range_includes_zero_p (vr0)))
5861 && !symbolic_range_p (vr1)
5862 && ((vr1->type == VR_RANGE && !range_includes_zero_p (vr1))
5863 || (vr1->type == VR_ANTI_RANGE && range_includes_zero_p (vr1))))
5865 set_value_range_to_nonnull (vr0, TREE_TYPE (vr0->min));
5867 /* Since this meet operation did not result from the meeting of
5868 two equivalent names, VR0 cannot have any equivalences. */
5869 if (vr0->equiv)
5870 bitmap_clear (vr0->equiv);
5872 else
5873 set_value_range_to_varying (vr0);
5877 /* Visit all arguments for PHI node PHI that flow through executable
5878 edges. If a valid value range can be derived from all the incoming
5879 value ranges, set a new range for the LHS of PHI. */
5881 static enum ssa_prop_result
5882 vrp_visit_phi_node (tree phi)
5884 int i;
5885 tree lhs = PHI_RESULT (phi);
5886 value_range_t *lhs_vr = get_value_range (lhs);
5887 value_range_t vr_result = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
5888 int edges, old_edges;
5890 copy_value_range (&vr_result, lhs_vr);
5892 if (dump_file && (dump_flags & TDF_DETAILS))
5894 fprintf (dump_file, "\nVisiting PHI node: ");
5895 print_generic_expr (dump_file, phi, dump_flags);
5898 edges = 0;
5899 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
5901 edge e = PHI_ARG_EDGE (phi, i);
5903 if (dump_file && (dump_flags & TDF_DETAILS))
5905 fprintf (dump_file,
5906 "\n Argument #%d (%d -> %d %sexecutable)\n",
5907 i, e->src->index, e->dest->index,
5908 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
5911 if (e->flags & EDGE_EXECUTABLE)
5913 tree arg = PHI_ARG_DEF (phi, i);
5914 value_range_t vr_arg;
5916 ++edges;
5918 if (TREE_CODE (arg) == SSA_NAME)
5920 vr_arg = *(get_value_range (arg));
5922 else
5924 if (is_overflow_infinity (arg))
5926 arg = copy_node (arg);
5927 TREE_OVERFLOW (arg) = 0;
5930 vr_arg.type = VR_RANGE;
5931 vr_arg.min = arg;
5932 vr_arg.max = arg;
5933 vr_arg.equiv = NULL;
5936 if (dump_file && (dump_flags & TDF_DETAILS))
5938 fprintf (dump_file, "\t");
5939 print_generic_expr (dump_file, arg, dump_flags);
5940 fprintf (dump_file, "\n\tValue: ");
5941 dump_value_range (dump_file, &vr_arg);
5942 fprintf (dump_file, "\n");
5945 vrp_meet (&vr_result, &vr_arg);
5947 if (vr_result.type == VR_VARYING)
5948 break;
5952 if (vr_result.type == VR_VARYING)
5953 goto varying;
5955 old_edges = vr_phi_edge_counts[SSA_NAME_VERSION (lhs)];
5956 vr_phi_edge_counts[SSA_NAME_VERSION (lhs)] = edges;
5958 /* To prevent infinite iterations in the algorithm, derive ranges
5959 when the new value is slightly bigger or smaller than the
5960 previous one. We don't do this if we have seen a new executable
5961 edge; this helps us avoid an overflow infinity for conditionals
5962 which are not in a loop. */
5963 if (lhs_vr->type == VR_RANGE && vr_result.type == VR_RANGE
5964 && edges <= old_edges)
5966 if (!POINTER_TYPE_P (TREE_TYPE (lhs)))
5968 int cmp_min = compare_values (lhs_vr->min, vr_result.min);
5969 int cmp_max = compare_values (lhs_vr->max, vr_result.max);
5971 /* If the new minimum is smaller or larger than the previous
5972 one, go all the way to -INF. In the first case, to avoid
5973 iterating millions of times to reach -INF, and in the
5974 other case to avoid infinite bouncing between different
5975 minimums. */
5976 if (cmp_min > 0 || cmp_min < 0)
5978 /* If we will end up with a (-INF, +INF) range, set it
5979 to VARYING. */
5980 if (vrp_val_is_max (vr_result.max))
5981 goto varying;
5983 if (!needs_overflow_infinity (TREE_TYPE (vr_result.min))
5984 || !vrp_var_may_overflow (lhs, phi))
5985 vr_result.min = TYPE_MIN_VALUE (TREE_TYPE (vr_result.min));
5986 else if (supports_overflow_infinity (TREE_TYPE (vr_result.min)))
5987 vr_result.min =
5988 negative_overflow_infinity (TREE_TYPE (vr_result.min));
5989 else
5990 goto varying;
5993 /* Similarly, if the new maximum is smaller or larger than
5994 the previous one, go all the way to +INF. */
5995 if (cmp_max < 0 || cmp_max > 0)
5997 /* If we will end up with a (-INF, +INF) range, set it
5998 to VARYING. */
5999 if (vrp_val_is_min (vr_result.min))
6000 goto varying;
6002 if (!needs_overflow_infinity (TREE_TYPE (vr_result.max))
6003 || !vrp_var_may_overflow (lhs, phi))
6004 vr_result.max = TYPE_MAX_VALUE (TREE_TYPE (vr_result.max));
6005 else if (supports_overflow_infinity (TREE_TYPE (vr_result.max)))
6006 vr_result.max =
6007 positive_overflow_infinity (TREE_TYPE (vr_result.max));
6008 else
6009 goto varying;
6014 /* If the new range is different than the previous value, keep
6015 iterating. */
6016 if (update_value_range (lhs, &vr_result))
6017 return SSA_PROP_INTERESTING;
6019 /* Nothing changed, don't add outgoing edges. */
6020 return SSA_PROP_NOT_INTERESTING;
6022 /* No match found. Set the LHS to VARYING. */
6023 varying:
6024 set_value_range_to_varying (lhs_vr);
6025 return SSA_PROP_VARYING;
6028 /* Simplify a division or modulo operator to a right shift or
6029 bitwise and if the first operand is unsigned or is greater
6030 than zero and the second operand is an exact power of two. */
6032 static void
6033 simplify_div_or_mod_using_ranges (tree stmt, tree rhs, enum tree_code rhs_code)
6035 tree val = NULL;
6036 tree op = TREE_OPERAND (rhs, 0);
6037 value_range_t *vr = get_value_range (TREE_OPERAND (rhs, 0));
6039 if (TYPE_UNSIGNED (TREE_TYPE (op)))
6041 val = integer_one_node;
6043 else
6045 bool sop = false;
6047 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
6049 if (val
6050 && sop
6051 && integer_onep (val)
6052 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
6054 location_t locus;
6056 if (!EXPR_HAS_LOCATION (stmt))
6057 locus = input_location;
6058 else
6059 locus = EXPR_LOCATION (stmt);
6060 warning (OPT_Wstrict_overflow,
6061 ("%Hassuming signed overflow does not occur when "
6062 "simplifying / or %% to >> or &"),
6063 &locus);
6067 if (val && integer_onep (val))
6069 tree t;
6070 tree op0 = TREE_OPERAND (rhs, 0);
6071 tree op1 = TREE_OPERAND (rhs, 1);
6073 if (rhs_code == TRUNC_DIV_EXPR)
6075 t = build_int_cst (NULL_TREE, tree_log2 (op1));
6076 t = build2 (RSHIFT_EXPR, TREE_TYPE (op0), op0, t);
6078 else
6080 t = build_int_cst (TREE_TYPE (op1), 1);
6081 t = int_const_binop (MINUS_EXPR, op1, t, 0);
6082 t = fold_convert (TREE_TYPE (op0), t);
6083 t = build2 (BIT_AND_EXPR, TREE_TYPE (op0), op0, t);
6086 GIMPLE_STMT_OPERAND (stmt, 1) = t;
6087 update_stmt (stmt);
6091 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
6092 ABS_EXPR. If the operand is <= 0, then simplify the
6093 ABS_EXPR into a NEGATE_EXPR. */
6095 static void
6096 simplify_abs_using_ranges (tree stmt, tree rhs)
6098 tree val = NULL;
6099 tree op = TREE_OPERAND (rhs, 0);
6100 tree type = TREE_TYPE (op);
6101 value_range_t *vr = get_value_range (TREE_OPERAND (rhs, 0));
6103 if (TYPE_UNSIGNED (type))
6105 val = integer_zero_node;
6107 else if (vr)
6109 bool sop = false;
6111 val = compare_range_with_value (LE_EXPR, vr, integer_zero_node, &sop);
6112 if (!val)
6114 sop = false;
6115 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node,
6116 &sop);
6118 if (val)
6120 if (integer_zerop (val))
6121 val = integer_one_node;
6122 else if (integer_onep (val))
6123 val = integer_zero_node;
6127 if (val
6128 && (integer_onep (val) || integer_zerop (val)))
6130 tree t;
6132 if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
6134 location_t locus;
6136 if (!EXPR_HAS_LOCATION (stmt))
6137 locus = input_location;
6138 else
6139 locus = EXPR_LOCATION (stmt);
6140 warning (OPT_Wstrict_overflow,
6141 ("%Hassuming signed overflow does not occur when "
6142 "simplifying abs (X) to X or -X"),
6143 &locus);
6146 if (integer_onep (val))
6147 t = build1 (NEGATE_EXPR, TREE_TYPE (op), op);
6148 else
6149 t = op;
6151 GIMPLE_STMT_OPERAND (stmt, 1) = t;
6152 update_stmt (stmt);
6157 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
6158 a known value range VR.
6160 If there is one and only one value which will satisfy the
6161 conditional, then return that value. Else return NULL. */
6163 static tree
6164 test_for_singularity (enum tree_code cond_code, tree op0,
6165 tree op1, value_range_t *vr)
6167 tree min = NULL;
6168 tree max = NULL;
6170 /* Extract minimum/maximum values which satisfy the
6171 the conditional as it was written. */
6172 if (cond_code == LE_EXPR || cond_code == LT_EXPR)
6174 /* This should not be negative infinity; there is no overflow
6175 here. */
6176 min = TYPE_MIN_VALUE (TREE_TYPE (op0));
6178 max = op1;
6179 if (cond_code == LT_EXPR && !is_overflow_infinity (max))
6181 tree one = build_int_cst (TREE_TYPE (op0), 1);
6182 max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
6183 if (EXPR_P (max))
6184 TREE_NO_WARNING (max) = 1;
6187 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
6189 /* This should not be positive infinity; there is no overflow
6190 here. */
6191 max = TYPE_MAX_VALUE (TREE_TYPE (op0));
6193 min = op1;
6194 if (cond_code == GT_EXPR && !is_overflow_infinity (min))
6196 tree one = build_int_cst (TREE_TYPE (op0), 1);
6197 min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
6198 if (EXPR_P (min))
6199 TREE_NO_WARNING (min) = 1;
6203 /* Now refine the minimum and maximum values using any
6204 value range information we have for op0. */
6205 if (min && max)
6207 if (compare_values (vr->min, min) == -1)
6208 min = min;
6209 else
6210 min = vr->min;
6211 if (compare_values (vr->max, max) == 1)
6212 max = max;
6213 else
6214 max = vr->max;
6216 /* If the new min/max values have converged to a single value,
6217 then there is only one value which can satisfy the condition,
6218 return that value. */
6219 if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
6220 return min;
6222 return NULL;
6225 /* Simplify a conditional using a relational operator to an equality
6226 test if the range information indicates only one value can satisfy
6227 the original conditional. */
6229 static void
6230 simplify_cond_using_ranges (tree stmt)
6232 tree cond = COND_EXPR_COND (stmt);
6233 tree op0 = TREE_OPERAND (cond, 0);
6234 tree op1 = TREE_OPERAND (cond, 1);
6235 enum tree_code cond_code = TREE_CODE (cond);
6237 if (cond_code != NE_EXPR
6238 && cond_code != EQ_EXPR
6239 && TREE_CODE (op0) == SSA_NAME
6240 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
6241 && is_gimple_min_invariant (op1))
6243 value_range_t *vr = get_value_range (op0);
6245 /* If we have range information for OP0, then we might be
6246 able to simplify this conditional. */
6247 if (vr->type == VR_RANGE)
6249 tree new = test_for_singularity (cond_code, op0, op1, vr);
6251 if (new)
6253 if (dump_file)
6255 fprintf (dump_file, "Simplified relational ");
6256 print_generic_expr (dump_file, cond, 0);
6257 fprintf (dump_file, " into ");
6260 COND_EXPR_COND (stmt)
6261 = build2 (EQ_EXPR, boolean_type_node, op0, new);
6262 update_stmt (stmt);
6264 if (dump_file)
6266 print_generic_expr (dump_file, COND_EXPR_COND (stmt), 0);
6267 fprintf (dump_file, "\n");
6269 return;
6273 /* Try again after inverting the condition. We only deal
6274 with integral types here, so no need to worry about
6275 issues with inverting FP comparisons. */
6276 cond_code = invert_tree_comparison (cond_code, false);
6277 new = test_for_singularity (cond_code, op0, op1, vr);
6279 if (new)
6281 if (dump_file)
6283 fprintf (dump_file, "Simplified relational ");
6284 print_generic_expr (dump_file, cond, 0);
6285 fprintf (dump_file, " into ");
6288 COND_EXPR_COND (stmt)
6289 = build2 (NE_EXPR, boolean_type_node, op0, new);
6290 update_stmt (stmt);
6292 if (dump_file)
6294 print_generic_expr (dump_file, COND_EXPR_COND (stmt), 0);
6295 fprintf (dump_file, "\n");
6297 return;
6304 /* Simplify a switch statement using the value range of the switch
6305 argument. */
6307 static void
6308 simplify_switch_using_ranges (tree stmt)
6310 tree op = TREE_OPERAND (stmt, 0);
6311 value_range_t *vr;
6312 bool take_default;
6313 edge e;
6314 edge_iterator ei;
6315 size_t i = 0, j = 0, n, n2;
6316 tree vec, vec2;
6317 switch_update su;
6319 if (TREE_CODE (op) != SSA_NAME)
6320 return;
6322 vr = get_value_range (op);
6324 /* We can only handle integer ranges. */
6325 if (vr->type != VR_RANGE
6326 || symbolic_range_p (vr))
6327 return;
6329 /* Find case label for min/max of the value range. */
6330 vec = SWITCH_LABELS (stmt);
6331 n = TREE_VEC_LENGTH (vec);
6332 take_default = !find_case_label_index (vec, 0, vr->min, &i);
6333 take_default |= !find_case_label_index (vec, i, vr->max, &j);
6335 /* If the case label range is continuous, we do not need to
6336 preserve the default case label. Verify that. */
6337 if (!take_default && j > i)
6339 tree low, high;
6340 size_t k;
6342 high = CASE_LOW (TREE_VEC_ELT (vec, i));
6343 if (CASE_HIGH (TREE_VEC_ELT (vec, i)))
6344 high = CASE_HIGH (TREE_VEC_ELT (vec, i));
6345 for (k = i + 1; k <= j; ++k)
6347 low = CASE_LOW (TREE_VEC_ELT (vec, k));
6348 if (!integer_onep (int_const_binop (MINUS_EXPR, low, high, 0)))
6350 take_default = true;
6351 break;
6353 high = low;
6354 if (CASE_HIGH (TREE_VEC_ELT (vec, k)))
6355 high = CASE_HIGH (TREE_VEC_ELT (vec, k));
6359 /* Bail out if this is just all edges taken. */
6360 if (i == 0
6361 && j == n - 2
6362 && take_default)
6363 return;
6365 /* Build a new vector of taken case labels. */
6366 vec2 = make_tree_vec (j - i + 1 + (int)take_default);
6367 for (n2 = 0; i <= j; ++i, ++n2)
6368 TREE_VEC_ELT (vec2, n2) = TREE_VEC_ELT (vec, i);
6370 /* Add the default edge, if necessary. */
6371 if (take_default)
6372 TREE_VEC_ELT (vec2, n2++) = TREE_VEC_ELT (vec, n - 1);
6374 /* Mark needed edges. */
6375 for (i = 0; i < n2; ++i)
6377 e = find_edge (bb_for_stmt (stmt),
6378 label_to_block (CASE_LABEL (TREE_VEC_ELT (vec2, i))));
6379 e->aux = (void *)-1;
6382 /* Queue not needed edges for later removal. */
6383 FOR_EACH_EDGE (e, ei, bb_for_stmt (stmt)->succs)
6385 if (e->aux == (void *)-1)
6387 e->aux = NULL;
6388 continue;
6391 if (dump_file && (dump_flags & TDF_DETAILS))
6393 fprintf (dump_file, "removing unreachable case label\n");
6395 VEC_safe_push (edge, heap, to_remove_edges, e);
6398 /* And queue an update for the stmt. */
6399 su.stmt = stmt;
6400 su.vec = vec2;
6401 VEC_safe_push (switch_update, heap, to_update_switch_stmts, &su);
6404 /* Simplify STMT using ranges if possible. */
6406 void
6407 simplify_stmt_using_ranges (tree stmt)
6409 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT)
6411 tree rhs = GIMPLE_STMT_OPERAND (stmt, 1);
6412 enum tree_code rhs_code = TREE_CODE (rhs);
6414 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
6415 and BIT_AND_EXPR respectively if the first operand is greater
6416 than zero and the second operand is an exact power of two. */
6417 if ((rhs_code == TRUNC_DIV_EXPR || rhs_code == TRUNC_MOD_EXPR)
6418 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0)))
6419 && integer_pow2p (TREE_OPERAND (rhs, 1)))
6420 simplify_div_or_mod_using_ranges (stmt, rhs, rhs_code);
6422 /* Transform ABS (X) into X or -X as appropriate. */
6423 if (rhs_code == ABS_EXPR
6424 && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME
6425 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0))))
6426 simplify_abs_using_ranges (stmt, rhs);
6428 else if (TREE_CODE (stmt) == COND_EXPR
6429 && COMPARISON_CLASS_P (COND_EXPR_COND (stmt)))
6430 simplify_cond_using_ranges (stmt);
6431 else if (TREE_CODE (stmt) == SWITCH_EXPR)
6432 simplify_switch_using_ranges (stmt);
6435 /* Stack of dest,src equivalency pairs that need to be restored after
6436 each attempt to thread a block's incoming edge to an outgoing edge.
6438 A NULL entry is used to mark the end of pairs which need to be
6439 restored. */
6440 static VEC(tree,heap) *stack;
6442 /* A trivial wrapper so that we can present the generic jump threading
6443 code with a simple API for simplifying statements. STMT is the
6444 statement we want to simplify, WITHIN_STMT provides the location
6445 for any overflow warnings. */
6447 static tree
6448 simplify_stmt_for_jump_threading (tree stmt, tree within_stmt)
6450 /* We only use VRP information to simplify conditionals. This is
6451 overly conservative, but it's unclear if doing more would be
6452 worth the compile time cost. */
6453 if (TREE_CODE (stmt) != COND_EXPR)
6454 return NULL;
6456 return vrp_evaluate_conditional (COND_EXPR_COND (stmt), within_stmt);
6459 /* Blocks which have more than one predecessor and more than
6460 one successor present jump threading opportunities. ie,
6461 when the block is reached from a specific predecessor, we
6462 may be able to determine which of the outgoing edges will
6463 be traversed. When this optimization applies, we are able
6464 to avoid conditionals at runtime and we may expose secondary
6465 optimization opportunities.
6467 This routine is effectively a driver for the generic jump
6468 threading code. It basically just presents the generic code
6469 with edges that may be suitable for jump threading.
6471 Unlike DOM, we do not iterate VRP if jump threading was successful.
6472 While iterating may expose new opportunities for VRP, it is expected
6473 those opportunities would be very limited and the compile time cost
6474 to expose those opportunities would be significant.
6476 As jump threading opportunities are discovered, they are registered
6477 for later realization. */
6479 static void
6480 identify_jump_threads (void)
6482 basic_block bb;
6483 tree dummy;
6484 int i;
6485 edge e;
6487 /* Ugh. When substituting values earlier in this pass we can
6488 wipe the dominance information. So rebuild the dominator
6489 information as we need it within the jump threading code. */
6490 calculate_dominance_info (CDI_DOMINATORS);
6492 /* We do not allow VRP information to be used for jump threading
6493 across a back edge in the CFG. Otherwise it becomes too
6494 difficult to avoid eliminating loop exit tests. Of course
6495 EDGE_DFS_BACK is not accurate at this time so we have to
6496 recompute it. */
6497 mark_dfs_back_edges ();
6499 /* Do not thread across edges we are about to remove. Just marking
6500 them as EDGE_DFS_BACK will do. */
6501 for (i = 0; VEC_iterate (edge, to_remove_edges, i, e); ++i)
6502 e->flags |= EDGE_DFS_BACK;
6504 /* Allocate our unwinder stack to unwind any temporary equivalences
6505 that might be recorded. */
6506 stack = VEC_alloc (tree, heap, 20);
6508 /* To avoid lots of silly node creation, we create a single
6509 conditional and just modify it in-place when attempting to
6510 thread jumps. */
6511 dummy = build2 (EQ_EXPR, boolean_type_node, NULL, NULL);
6512 dummy = build3 (COND_EXPR, void_type_node, dummy, NULL, NULL);
6514 /* Walk through all the blocks finding those which present a
6515 potential jump threading opportunity. We could set this up
6516 as a dominator walker and record data during the walk, but
6517 I doubt it's worth the effort for the classes of jump
6518 threading opportunities we are trying to identify at this
6519 point in compilation. */
6520 FOR_EACH_BB (bb)
6522 tree last, cond;
6524 /* If the generic jump threading code does not find this block
6525 interesting, then there is nothing to do. */
6526 if (! potentially_threadable_block (bb))
6527 continue;
6529 /* We only care about blocks ending in a COND_EXPR. While there
6530 may be some value in handling SWITCH_EXPR here, I doubt it's
6531 terribly important. */
6532 last = bsi_stmt (bsi_last (bb));
6533 if (TREE_CODE (last) != COND_EXPR)
6534 continue;
6536 /* We're basically looking for any kind of conditional with
6537 integral type arguments. */
6538 cond = COND_EXPR_COND (last);
6539 if ((TREE_CODE (cond) == SSA_NAME
6540 && INTEGRAL_TYPE_P (TREE_TYPE (cond)))
6541 || (COMPARISON_CLASS_P (cond)
6542 && TREE_CODE (TREE_OPERAND (cond, 0)) == SSA_NAME
6543 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (cond, 0)))
6544 && (TREE_CODE (TREE_OPERAND (cond, 1)) == SSA_NAME
6545 || is_gimple_min_invariant (TREE_OPERAND (cond, 1)))
6546 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (cond, 1)))))
6548 edge_iterator ei;
6550 /* We've got a block with multiple predecessors and multiple
6551 successors which also ends in a suitable conditional. For
6552 each predecessor, see if we can thread it to a specific
6553 successor. */
6554 FOR_EACH_EDGE (e, ei, bb->preds)
6556 /* Do not thread across back edges or abnormal edges
6557 in the CFG. */
6558 if (e->flags & (EDGE_DFS_BACK | EDGE_COMPLEX))
6559 continue;
6561 thread_across_edge (dummy, e, true,
6562 &stack,
6563 simplify_stmt_for_jump_threading);
6568 /* We do not actually update the CFG or SSA graphs at this point as
6569 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
6570 handle ASSERT_EXPRs gracefully. */
6573 /* We identified all the jump threading opportunities earlier, but could
6574 not transform the CFG at that time. This routine transforms the
6575 CFG and arranges for the dominator tree to be rebuilt if necessary.
6577 Note the SSA graph update will occur during the normal TODO
6578 processing by the pass manager. */
6579 static void
6580 finalize_jump_threads (void)
6582 thread_through_all_blocks (false);
6583 VEC_free (tree, heap, stack);
6587 /* Traverse all the blocks folding conditionals with known ranges. */
6589 static void
6590 vrp_finalize (void)
6592 size_t i;
6593 prop_value_t *single_val_range;
6594 bool do_value_subst_p;
6596 if (dump_file)
6598 fprintf (dump_file, "\nValue ranges after VRP:\n\n");
6599 dump_all_value_ranges (dump_file);
6600 fprintf (dump_file, "\n");
6603 /* We may have ended with ranges that have exactly one value. Those
6604 values can be substituted as any other copy/const propagated
6605 value using substitute_and_fold. */
6606 single_val_range = XCNEWVEC (prop_value_t, num_ssa_names);
6608 do_value_subst_p = false;
6609 for (i = 0; i < num_ssa_names; i++)
6610 if (vr_value[i]
6611 && vr_value[i]->type == VR_RANGE
6612 && vr_value[i]->min == vr_value[i]->max)
6614 single_val_range[i].value = vr_value[i]->min;
6615 do_value_subst_p = true;
6618 if (!do_value_subst_p)
6620 /* We found no single-valued ranges, don't waste time trying to
6621 do single value substitution in substitute_and_fold. */
6622 free (single_val_range);
6623 single_val_range = NULL;
6626 substitute_and_fold (single_val_range, true);
6628 if (warn_array_bounds)
6629 check_all_array_refs ();
6631 /* We must identify jump threading opportunities before we release
6632 the datastructures built by VRP. */
6633 identify_jump_threads ();
6635 /* Free allocated memory. */
6636 for (i = 0; i < num_ssa_names; i++)
6637 if (vr_value[i])
6639 BITMAP_FREE (vr_value[i]->equiv);
6640 free (vr_value[i]);
6643 free (single_val_range);
6644 free (vr_value);
6645 free (vr_phi_edge_counts);
6647 /* So that we can distinguish between VRP data being available
6648 and not available. */
6649 vr_value = NULL;
6650 vr_phi_edge_counts = NULL;
6653 /* Calculates number of iterations for all loops, to ensure that they are
6654 cached. */
6656 static void
6657 record_numbers_of_iterations (void)
6659 loop_iterator li;
6660 struct loop *loop;
6662 FOR_EACH_LOOP (li, loop, 0)
6664 number_of_latch_executions (loop);
6668 /* Main entry point to VRP (Value Range Propagation). This pass is
6669 loosely based on J. R. C. Patterson, ``Accurate Static Branch
6670 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
6671 Programming Language Design and Implementation, pp. 67-78, 1995.
6672 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
6674 This is essentially an SSA-CCP pass modified to deal with ranges
6675 instead of constants.
6677 While propagating ranges, we may find that two or more SSA name
6678 have equivalent, though distinct ranges. For instance,
6680 1 x_9 = p_3->a;
6681 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
6682 3 if (p_4 == q_2)
6683 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
6684 5 endif
6685 6 if (q_2)
6687 In the code above, pointer p_5 has range [q_2, q_2], but from the
6688 code we can also determine that p_5 cannot be NULL and, if q_2 had
6689 a non-varying range, p_5's range should also be compatible with it.
6691 These equivalences are created by two expressions: ASSERT_EXPR and
6692 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
6693 result of another assertion, then we can use the fact that p_5 and
6694 p_4 are equivalent when evaluating p_5's range.
6696 Together with value ranges, we also propagate these equivalences
6697 between names so that we can take advantage of information from
6698 multiple ranges when doing final replacement. Note that this
6699 equivalency relation is transitive but not symmetric.
6701 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
6702 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
6703 in contexts where that assertion does not hold (e.g., in line 6).
6705 TODO, the main difference between this pass and Patterson's is that
6706 we do not propagate edge probabilities. We only compute whether
6707 edges can be taken or not. That is, instead of having a spectrum
6708 of jump probabilities between 0 and 1, we only deal with 0, 1 and
6709 DON'T KNOW. In the future, it may be worthwhile to propagate
6710 probabilities to aid branch prediction. */
6712 static unsigned int
6713 execute_vrp (void)
6715 int i;
6716 edge e;
6717 switch_update *su;
6719 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
6720 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
6721 scev_initialize ();
6723 insert_range_assertions ();
6725 /* Compute the # of iterations for each loop before we start the VRP
6726 analysis. The value ranges determined by VRP are used in expression
6727 simplification, that is also used by the # of iterations analysis.
6728 However, in the middle of the VRP analysis, the value ranges do not take
6729 all the possible paths in CFG into account, so they do not have to be
6730 correct, and the # of iterations analysis can obtain wrong results.
6731 This is a problem, since the results of the # of iterations analysis
6732 are cached, so these mistakes would not be corrected when the value
6733 ranges are corrected. */
6734 record_numbers_of_iterations ();
6736 to_remove_edges = VEC_alloc (edge, heap, 10);
6737 to_update_switch_stmts = VEC_alloc (switch_update, heap, 5);
6739 vrp_initialize ();
6740 ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
6741 vrp_finalize ();
6743 /* Remove dead edges from SWITCH_EXPR optimization. This leaves the
6744 CFG in a broken state and requires a cfg_cleanup run. */
6745 for (i = 0; VEC_iterate (edge, to_remove_edges, i, e); ++i)
6746 remove_edge (e);
6747 /* Update SWITCH_EXPR case label vector. */
6748 for (i = 0; VEC_iterate (switch_update, to_update_switch_stmts, i, su); ++i)
6749 SWITCH_LABELS (su->stmt) = su->vec;
6751 if (VEC_length (edge, to_remove_edges) > 0)
6752 free_dominance_info (CDI_DOMINATORS);
6754 VEC_free (edge, heap, to_remove_edges);
6755 VEC_free (switch_update, heap, to_update_switch_stmts);
6757 /* ASSERT_EXPRs must be removed before finalizing jump threads
6758 as finalizing jump threads calls the CFG cleanup code which
6759 does not properly handle ASSERT_EXPRs. */
6760 remove_range_assertions ();
6762 /* If we exposed any new variables, go ahead and put them into
6763 SSA form now, before we handle jump threading. This simplifies
6764 interactions between rewriting of _DECL nodes into SSA form
6765 and rewriting SSA_NAME nodes into SSA form after block
6766 duplication and CFG manipulation. */
6767 update_ssa (TODO_update_ssa);
6769 finalize_jump_threads ();
6770 scev_finalize ();
6771 loop_optimizer_finalize ();
6773 return 0;
6776 static bool
6777 gate_vrp (void)
6779 return flag_tree_vrp != 0;
6782 struct gimple_opt_pass pass_vrp =
6785 GIMPLE_PASS,
6786 "vrp", /* name */
6787 gate_vrp, /* gate */
6788 execute_vrp, /* execute */
6789 NULL, /* sub */
6790 NULL, /* next */
6791 0, /* static_pass_number */
6792 TV_TREE_VRP, /* tv_id */
6793 PROP_ssa | PROP_alias, /* properties_required */
6794 0, /* properties_provided */
6795 0, /* properties_destroyed */
6796 0, /* todo_flags_start */
6797 TODO_cleanup_cfg
6798 | TODO_ggc_collect
6799 | TODO_verify_ssa
6800 | TODO_dump_func
6801 | TODO_update_ssa /* todo_flags_finish */