Skip -fwhole-program when merging LTO options.
[official-gcc.git] / gcc / tree-vect-loop-manip.cc
blob5ec739ed218170c456d43d3db4f2a388af573dc5
1 /* Vectorizer Specific Loop Manipulations
2 Copyright (C) 2003-2022 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
4 and Ira Rosen <irar@il.ibm.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "cfghooks.h"
29 #include "tree-pass.h"
30 #include "ssa.h"
31 #include "fold-const.h"
32 #include "cfganal.h"
33 #include "gimplify.h"
34 #include "gimple-iterator.h"
35 #include "gimplify-me.h"
36 #include "tree-cfg.h"
37 #include "tree-ssa-loop-manip.h"
38 #include "tree-into-ssa.h"
39 #include "tree-ssa.h"
40 #include "cfgloop.h"
41 #include "tree-scalar-evolution.h"
42 #include "tree-vectorizer.h"
43 #include "tree-ssa-loop-ivopts.h"
44 #include "gimple-fold.h"
45 #include "tree-ssa-loop-niter.h"
46 #include "internal-fn.h"
47 #include "stor-layout.h"
48 #include "optabs-query.h"
49 #include "vec-perm-indices.h"
50 #include "insn-config.h"
51 #include "rtl.h"
52 #include "recog.h"
54 /*************************************************************************
55 Simple Loop Peeling Utilities
57 Utilities to support loop peeling for vectorization purposes.
58 *************************************************************************/
61 /* Renames the use *OP_P. */
63 static void
64 rename_use_op (use_operand_p op_p)
66 tree new_name;
68 if (TREE_CODE (USE_FROM_PTR (op_p)) != SSA_NAME)
69 return;
71 new_name = get_current_def (USE_FROM_PTR (op_p));
73 /* Something defined outside of the loop. */
74 if (!new_name)
75 return;
77 /* An ordinary ssa name defined in the loop. */
79 SET_USE (op_p, new_name);
83 /* Renames the variables in basic block BB. Allow renaming of PHI arguments
84 on edges incoming from outer-block header if RENAME_FROM_OUTER_LOOP is
85 true. */
87 static void
88 rename_variables_in_bb (basic_block bb, bool rename_from_outer_loop)
90 gimple *stmt;
91 use_operand_p use_p;
92 ssa_op_iter iter;
93 edge e;
94 edge_iterator ei;
95 class loop *loop = bb->loop_father;
96 class loop *outer_loop = NULL;
98 if (rename_from_outer_loop)
100 gcc_assert (loop);
101 outer_loop = loop_outer (loop);
104 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
105 gsi_next (&gsi))
107 stmt = gsi_stmt (gsi);
108 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
109 rename_use_op (use_p);
112 FOR_EACH_EDGE (e, ei, bb->preds)
114 if (!flow_bb_inside_loop_p (loop, e->src))
116 if (!rename_from_outer_loop)
117 continue;
118 if (e->src != outer_loop->header)
120 if (outer_loop->inner->next)
122 /* If outer_loop has 2 inner loops, allow there to
123 be an extra basic block which decides which of the
124 two loops to use using LOOP_VECTORIZED. */
125 if (!single_pred_p (e->src)
126 || single_pred (e->src) != outer_loop->header)
127 continue;
131 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
132 gsi_next (&gsi))
133 rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (gsi.phi (), e));
138 struct adjust_info
140 tree from, to;
141 basic_block bb;
144 /* A stack of values to be adjusted in debug stmts. We have to
145 process them LIFO, so that the closest substitution applies. If we
146 processed them FIFO, without the stack, we might substitute uses
147 with a PHI DEF that would soon become non-dominant, and when we got
148 to the suitable one, it wouldn't have anything to substitute any
149 more. */
150 static vec<adjust_info, va_heap> adjust_vec;
152 /* Adjust any debug stmts that referenced AI->from values to use the
153 loop-closed AI->to, if the references are dominated by AI->bb and
154 not by the definition of AI->from. */
156 static void
157 adjust_debug_stmts_now (adjust_info *ai)
159 basic_block bbphi = ai->bb;
160 tree orig_def = ai->from;
161 tree new_def = ai->to;
162 imm_use_iterator imm_iter;
163 gimple *stmt;
164 basic_block bbdef = gimple_bb (SSA_NAME_DEF_STMT (orig_def));
166 gcc_assert (dom_info_available_p (CDI_DOMINATORS));
168 /* Adjust any debug stmts that held onto non-loop-closed
169 references. */
170 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, orig_def)
172 use_operand_p use_p;
173 basic_block bbuse;
175 if (!is_gimple_debug (stmt))
176 continue;
178 gcc_assert (gimple_debug_bind_p (stmt));
180 bbuse = gimple_bb (stmt);
182 if ((bbuse == bbphi
183 || dominated_by_p (CDI_DOMINATORS, bbuse, bbphi))
184 && !(bbuse == bbdef
185 || dominated_by_p (CDI_DOMINATORS, bbuse, bbdef)))
187 if (new_def)
188 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
189 SET_USE (use_p, new_def);
190 else
192 gimple_debug_bind_reset_value (stmt);
193 update_stmt (stmt);
199 /* Adjust debug stmts as scheduled before. */
201 static void
202 adjust_vec_debug_stmts (void)
204 if (!MAY_HAVE_DEBUG_BIND_STMTS)
205 return;
207 gcc_assert (adjust_vec.exists ());
209 while (!adjust_vec.is_empty ())
211 adjust_debug_stmts_now (&adjust_vec.last ());
212 adjust_vec.pop ();
216 /* Adjust any debug stmts that referenced FROM values to use the
217 loop-closed TO, if the references are dominated by BB and not by
218 the definition of FROM. If adjust_vec is non-NULL, adjustments
219 will be postponed until adjust_vec_debug_stmts is called. */
221 static void
222 adjust_debug_stmts (tree from, tree to, basic_block bb)
224 adjust_info ai;
226 if (MAY_HAVE_DEBUG_BIND_STMTS
227 && TREE_CODE (from) == SSA_NAME
228 && ! SSA_NAME_IS_DEFAULT_DEF (from)
229 && ! virtual_operand_p (from))
231 ai.from = from;
232 ai.to = to;
233 ai.bb = bb;
235 if (adjust_vec.exists ())
236 adjust_vec.safe_push (ai);
237 else
238 adjust_debug_stmts_now (&ai);
242 /* Change E's phi arg in UPDATE_PHI to NEW_DEF, and record information
243 to adjust any debug stmts that referenced the old phi arg,
244 presumably non-loop-closed references left over from other
245 transformations. */
247 static void
248 adjust_phi_and_debug_stmts (gimple *update_phi, edge e, tree new_def)
250 tree orig_def = PHI_ARG_DEF_FROM_EDGE (update_phi, e);
252 SET_PHI_ARG_DEF (update_phi, e->dest_idx, new_def);
254 if (MAY_HAVE_DEBUG_BIND_STMTS)
255 adjust_debug_stmts (orig_def, PHI_RESULT (update_phi),
256 gimple_bb (update_phi));
259 /* Define one loop rgroup control CTRL from loop LOOP. INIT_CTRL is the value
260 that the control should have during the first iteration and NEXT_CTRL is the
261 value that it should have on subsequent iterations. */
263 static void
264 vect_set_loop_control (class loop *loop, tree ctrl, tree init_ctrl,
265 tree next_ctrl)
267 gphi *phi = create_phi_node (ctrl, loop->header);
268 add_phi_arg (phi, init_ctrl, loop_preheader_edge (loop), UNKNOWN_LOCATION);
269 add_phi_arg (phi, next_ctrl, loop_latch_edge (loop), UNKNOWN_LOCATION);
272 /* Add SEQ to the end of LOOP's preheader block. */
274 static void
275 add_preheader_seq (class loop *loop, gimple_seq seq)
277 if (seq)
279 edge pe = loop_preheader_edge (loop);
280 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
281 gcc_assert (!new_bb);
285 /* Add SEQ to the beginning of LOOP's header block. */
287 static void
288 add_header_seq (class loop *loop, gimple_seq seq)
290 if (seq)
292 gimple_stmt_iterator gsi = gsi_after_labels (loop->header);
293 gsi_insert_seq_before (&gsi, seq, GSI_SAME_STMT);
297 /* Return true if the target can interleave elements of two vectors.
298 OFFSET is 0 if the first half of the vectors should be interleaved
299 or 1 if the second half should. When returning true, store the
300 associated permutation in INDICES. */
302 static bool
303 interleave_supported_p (vec_perm_indices *indices, tree vectype,
304 unsigned int offset)
306 poly_uint64 nelts = TYPE_VECTOR_SUBPARTS (vectype);
307 poly_uint64 base = exact_div (nelts, 2) * offset;
308 vec_perm_builder sel (nelts, 2, 3);
309 for (unsigned int i = 0; i < 3; ++i)
311 sel.quick_push (base + i);
312 sel.quick_push (base + i + nelts);
314 indices->new_vector (sel, 2, nelts);
315 return can_vec_perm_const_p (TYPE_MODE (vectype), TYPE_MODE (vectype),
316 *indices);
319 /* Try to use permutes to define the masks in DEST_RGM using the masks
320 in SRC_RGM, given that the former has twice as many masks as the
321 latter. Return true on success, adding any new statements to SEQ. */
323 static bool
324 vect_maybe_permute_loop_masks (gimple_seq *seq, rgroup_controls *dest_rgm,
325 rgroup_controls *src_rgm)
327 tree src_masktype = src_rgm->type;
328 tree dest_masktype = dest_rgm->type;
329 machine_mode src_mode = TYPE_MODE (src_masktype);
330 insn_code icode1, icode2;
331 if (dest_rgm->max_nscalars_per_iter <= src_rgm->max_nscalars_per_iter
332 && (icode1 = optab_handler (vec_unpacku_hi_optab,
333 src_mode)) != CODE_FOR_nothing
334 && (icode2 = optab_handler (vec_unpacku_lo_optab,
335 src_mode)) != CODE_FOR_nothing)
337 /* Unpacking the source masks gives at least as many mask bits as
338 we need. We can then VIEW_CONVERT any excess bits away. */
339 machine_mode dest_mode = insn_data[icode1].operand[0].mode;
340 gcc_assert (dest_mode == insn_data[icode2].operand[0].mode);
341 tree unpack_masktype = vect_halve_mask_nunits (src_masktype, dest_mode);
342 for (unsigned int i = 0; i < dest_rgm->controls.length (); ++i)
344 tree src = src_rgm->controls[i / 2];
345 tree dest = dest_rgm->controls[i];
346 tree_code code = ((i & 1) == (BYTES_BIG_ENDIAN ? 0 : 1)
347 ? VEC_UNPACK_HI_EXPR
348 : VEC_UNPACK_LO_EXPR);
349 gassign *stmt;
350 if (dest_masktype == unpack_masktype)
351 stmt = gimple_build_assign (dest, code, src);
352 else
354 tree temp = make_ssa_name (unpack_masktype);
355 stmt = gimple_build_assign (temp, code, src);
356 gimple_seq_add_stmt (seq, stmt);
357 stmt = gimple_build_assign (dest, VIEW_CONVERT_EXPR,
358 build1 (VIEW_CONVERT_EXPR,
359 dest_masktype, temp));
361 gimple_seq_add_stmt (seq, stmt);
363 return true;
365 vec_perm_indices indices[2];
366 if (dest_masktype == src_masktype
367 && interleave_supported_p (&indices[0], src_masktype, 0)
368 && interleave_supported_p (&indices[1], src_masktype, 1))
370 /* The destination requires twice as many mask bits as the source, so
371 we can use interleaving permutes to double up the number of bits. */
372 tree masks[2];
373 for (unsigned int i = 0; i < 2; ++i)
374 masks[i] = vect_gen_perm_mask_checked (src_masktype, indices[i]);
375 for (unsigned int i = 0; i < dest_rgm->controls.length (); ++i)
377 tree src = src_rgm->controls[i / 2];
378 tree dest = dest_rgm->controls[i];
379 gimple *stmt = gimple_build_assign (dest, VEC_PERM_EXPR,
380 src, src, masks[i & 1]);
381 gimple_seq_add_stmt (seq, stmt);
383 return true;
385 return false;
388 /* Helper for vect_set_loop_condition_partial_vectors. Generate definitions
389 for all the rgroup controls in RGC and return a control that is nonzero
390 when the loop needs to iterate. Add any new preheader statements to
391 PREHEADER_SEQ. Use LOOP_COND_GSI to insert code before the exit gcond.
393 RGC belongs to loop LOOP. The loop originally iterated NITERS
394 times and has been vectorized according to LOOP_VINFO.
396 If NITERS_SKIP is nonnull, the first iteration of the vectorized loop
397 starts with NITERS_SKIP dummy iterations of the scalar loop before
398 the real work starts. The mask elements for these dummy iterations
399 must be 0, to ensure that the extra iterations do not have an effect.
401 It is known that:
403 NITERS * RGC->max_nscalars_per_iter * RGC->factor
405 does not overflow. However, MIGHT_WRAP_P says whether an induction
406 variable that starts at 0 and has step:
408 VF * RGC->max_nscalars_per_iter * RGC->factor
410 might overflow before hitting a value above:
412 (NITERS + NITERS_SKIP) * RGC->max_nscalars_per_iter * RGC->factor
414 This means that we cannot guarantee that such an induction variable
415 would ever hit a value that produces a set of all-false masks or zero
416 lengths for RGC.
418 Note: the cost of the code generated by this function is modeled
419 by vect_estimate_min_profitable_iters, so changes here may need
420 corresponding changes there. */
422 static tree
423 vect_set_loop_controls_directly (class loop *loop, loop_vec_info loop_vinfo,
424 gimple_seq *preheader_seq,
425 gimple_seq *header_seq,
426 gimple_stmt_iterator loop_cond_gsi,
427 rgroup_controls *rgc, tree niters,
428 tree niters_skip, bool might_wrap_p)
430 tree compare_type = LOOP_VINFO_RGROUP_COMPARE_TYPE (loop_vinfo);
431 tree iv_type = LOOP_VINFO_RGROUP_IV_TYPE (loop_vinfo);
432 bool use_masks_p = LOOP_VINFO_FULLY_MASKED_P (loop_vinfo);
434 tree ctrl_type = rgc->type;
435 unsigned int nitems_per_iter = rgc->max_nscalars_per_iter * rgc->factor;
436 poly_uint64 nitems_per_ctrl = TYPE_VECTOR_SUBPARTS (ctrl_type) * rgc->factor;
437 poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
438 tree length_limit = NULL_TREE;
439 /* For length, we need length_limit to ensure length in range. */
440 if (!use_masks_p)
441 length_limit = build_int_cst (compare_type, nitems_per_ctrl);
443 /* Calculate the maximum number of item values that the rgroup
444 handles in total, the number that it handles for each iteration
445 of the vector loop, and the number that it should skip during the
446 first iteration of the vector loop. */
447 tree nitems_total = niters;
448 tree nitems_step = build_int_cst (iv_type, vf);
449 tree nitems_skip = niters_skip;
450 if (nitems_per_iter != 1)
452 /* We checked before setting LOOP_VINFO_USING_PARTIAL_VECTORS_P that
453 these multiplications don't overflow. */
454 tree compare_factor = build_int_cst (compare_type, nitems_per_iter);
455 tree iv_factor = build_int_cst (iv_type, nitems_per_iter);
456 nitems_total = gimple_build (preheader_seq, MULT_EXPR, compare_type,
457 nitems_total, compare_factor);
458 nitems_step = gimple_build (preheader_seq, MULT_EXPR, iv_type,
459 nitems_step, iv_factor);
460 if (nitems_skip)
461 nitems_skip = gimple_build (preheader_seq, MULT_EXPR, compare_type,
462 nitems_skip, compare_factor);
465 /* Create an induction variable that counts the number of items
466 processed. */
467 tree index_before_incr, index_after_incr;
468 gimple_stmt_iterator incr_gsi;
469 bool insert_after;
470 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
471 create_iv (build_int_cst (iv_type, 0), nitems_step, NULL_TREE, loop,
472 &incr_gsi, insert_after, &index_before_incr, &index_after_incr);
474 tree zero_index = build_int_cst (compare_type, 0);
475 tree test_index, test_limit, first_limit;
476 gimple_stmt_iterator *test_gsi;
477 if (might_wrap_p)
479 /* In principle the loop should stop iterating once the incremented
480 IV reaches a value greater than or equal to:
482 NITEMS_TOTAL +[infinite-prec] NITEMS_SKIP
484 However, there's no guarantee that this addition doesn't overflow
485 the comparison type, or that the IV hits a value above it before
486 wrapping around. We therefore adjust the limit down by one
487 IV step:
489 (NITEMS_TOTAL +[infinite-prec] NITEMS_SKIP)
490 -[infinite-prec] NITEMS_STEP
492 and compare the IV against this limit _before_ incrementing it.
493 Since the comparison type is unsigned, we actually want the
494 subtraction to saturate at zero:
496 (NITEMS_TOTAL +[infinite-prec] NITEMS_SKIP)
497 -[sat] NITEMS_STEP
499 And since NITEMS_SKIP < NITEMS_STEP, we can reassociate this as:
501 NITEMS_TOTAL -[sat] (NITEMS_STEP - NITEMS_SKIP)
503 where the rightmost subtraction can be done directly in
504 COMPARE_TYPE. */
505 test_index = index_before_incr;
506 tree adjust = gimple_convert (preheader_seq, compare_type,
507 nitems_step);
508 if (nitems_skip)
509 adjust = gimple_build (preheader_seq, MINUS_EXPR, compare_type,
510 adjust, nitems_skip);
511 test_limit = gimple_build (preheader_seq, MAX_EXPR, compare_type,
512 nitems_total, adjust);
513 test_limit = gimple_build (preheader_seq, MINUS_EXPR, compare_type,
514 test_limit, adjust);
515 test_gsi = &incr_gsi;
517 /* Get a safe limit for the first iteration. */
518 if (nitems_skip)
520 /* The first vector iteration can handle at most NITEMS_STEP
521 items. NITEMS_STEP <= CONST_LIMIT, and adding
522 NITEMS_SKIP to that cannot overflow. */
523 tree const_limit = build_int_cst (compare_type,
524 LOOP_VINFO_VECT_FACTOR (loop_vinfo)
525 * nitems_per_iter);
526 first_limit = gimple_build (preheader_seq, MIN_EXPR, compare_type,
527 nitems_total, const_limit);
528 first_limit = gimple_build (preheader_seq, PLUS_EXPR, compare_type,
529 first_limit, nitems_skip);
531 else
532 /* For the first iteration it doesn't matter whether the IV hits
533 a value above NITEMS_TOTAL. That only matters for the latch
534 condition. */
535 first_limit = nitems_total;
537 else
539 /* Test the incremented IV, which will always hit a value above
540 the bound before wrapping. */
541 test_index = index_after_incr;
542 test_limit = nitems_total;
543 if (nitems_skip)
544 test_limit = gimple_build (preheader_seq, PLUS_EXPR, compare_type,
545 test_limit, nitems_skip);
546 test_gsi = &loop_cond_gsi;
548 first_limit = test_limit;
551 /* Convert the IV value to the comparison type (either a no-op or
552 a demotion). */
553 gimple_seq test_seq = NULL;
554 test_index = gimple_convert (&test_seq, compare_type, test_index);
555 gsi_insert_seq_before (test_gsi, test_seq, GSI_SAME_STMT);
557 /* Provide a definition of each control in the group. */
558 tree next_ctrl = NULL_TREE;
559 tree ctrl;
560 unsigned int i;
561 FOR_EACH_VEC_ELT_REVERSE (rgc->controls, i, ctrl)
563 /* Previous controls will cover BIAS items. This control covers the
564 next batch. */
565 poly_uint64 bias = nitems_per_ctrl * i;
566 tree bias_tree = build_int_cst (compare_type, bias);
568 /* See whether the first iteration of the vector loop is known
569 to have a full control. */
570 poly_uint64 const_limit;
571 bool first_iteration_full
572 = (poly_int_tree_p (first_limit, &const_limit)
573 && known_ge (const_limit, (i + 1) * nitems_per_ctrl));
575 /* Rather than have a new IV that starts at BIAS and goes up to
576 TEST_LIMIT, prefer to use the same 0-based IV for each control
577 and adjust the bound down by BIAS. */
578 tree this_test_limit = test_limit;
579 if (i != 0)
581 this_test_limit = gimple_build (preheader_seq, MAX_EXPR,
582 compare_type, this_test_limit,
583 bias_tree);
584 this_test_limit = gimple_build (preheader_seq, MINUS_EXPR,
585 compare_type, this_test_limit,
586 bias_tree);
589 /* Create the initial control. First include all items that
590 are within the loop limit. */
591 tree init_ctrl = NULL_TREE;
592 if (!first_iteration_full)
594 tree start, end;
595 if (first_limit == test_limit)
597 /* Use a natural test between zero (the initial IV value)
598 and the loop limit. The "else" block would be valid too,
599 but this choice can avoid the need to load BIAS_TREE into
600 a register. */
601 start = zero_index;
602 end = this_test_limit;
604 else
606 /* FIRST_LIMIT is the maximum number of items handled by the
607 first iteration of the vector loop. Test the portion
608 associated with this control. */
609 start = bias_tree;
610 end = first_limit;
613 if (use_masks_p)
614 init_ctrl = vect_gen_while (preheader_seq, ctrl_type,
615 start, end, "max_mask");
616 else
618 init_ctrl = make_temp_ssa_name (compare_type, NULL, "max_len");
619 gimple_seq seq = vect_gen_len (init_ctrl, start,
620 end, length_limit);
621 gimple_seq_add_seq (preheader_seq, seq);
625 /* Now AND out the bits that are within the number of skipped
626 items. */
627 poly_uint64 const_skip;
628 if (nitems_skip
629 && !(poly_int_tree_p (nitems_skip, &const_skip)
630 && known_le (const_skip, bias)))
632 gcc_assert (use_masks_p);
633 tree unskipped_mask = vect_gen_while_not (preheader_seq, ctrl_type,
634 bias_tree, nitems_skip);
635 if (init_ctrl)
636 init_ctrl = gimple_build (preheader_seq, BIT_AND_EXPR, ctrl_type,
637 init_ctrl, unskipped_mask);
638 else
639 init_ctrl = unskipped_mask;
642 if (!init_ctrl)
644 /* First iteration is full. */
645 if (use_masks_p)
646 init_ctrl = build_minus_one_cst (ctrl_type);
647 else
648 init_ctrl = length_limit;
651 /* Get the control value for the next iteration of the loop. */
652 if (use_masks_p)
654 gimple_seq stmts = NULL;
655 next_ctrl = vect_gen_while (&stmts, ctrl_type, test_index,
656 this_test_limit, "next_mask");
657 gsi_insert_seq_before (test_gsi, stmts, GSI_SAME_STMT);
659 else
661 next_ctrl = make_temp_ssa_name (compare_type, NULL, "next_len");
662 gimple_seq seq = vect_gen_len (next_ctrl, test_index, this_test_limit,
663 length_limit);
664 gsi_insert_seq_before (test_gsi, seq, GSI_SAME_STMT);
667 vect_set_loop_control (loop, ctrl, init_ctrl, next_ctrl);
670 int partial_load_bias = LOOP_VINFO_PARTIAL_LOAD_STORE_BIAS (loop_vinfo);
671 if (partial_load_bias != 0)
673 tree adjusted_len = rgc->bias_adjusted_ctrl;
674 gassign *minus = gimple_build_assign (adjusted_len, PLUS_EXPR,
675 rgc->controls[0],
676 build_int_cst
677 (TREE_TYPE (rgc->controls[0]),
678 partial_load_bias));
679 gimple_seq_add_stmt (header_seq, minus);
682 return next_ctrl;
685 /* Set up the iteration condition and rgroup controls for LOOP, given
686 that LOOP_VINFO_USING_PARTIAL_VECTORS_P is true for the vectorized
687 loop. LOOP_VINFO describes the vectorization of LOOP. NITERS is
688 the number of iterations of the original scalar loop that should be
689 handled by the vector loop. NITERS_MAYBE_ZERO and FINAL_IV are as
690 for vect_set_loop_condition.
692 Insert the branch-back condition before LOOP_COND_GSI and return the
693 final gcond. */
695 static gcond *
696 vect_set_loop_condition_partial_vectors (class loop *loop,
697 loop_vec_info loop_vinfo, tree niters,
698 tree final_iv, bool niters_maybe_zero,
699 gimple_stmt_iterator loop_cond_gsi)
701 gimple_seq preheader_seq = NULL;
702 gimple_seq header_seq = NULL;
704 bool use_masks_p = LOOP_VINFO_FULLY_MASKED_P (loop_vinfo);
705 tree compare_type = LOOP_VINFO_RGROUP_COMPARE_TYPE (loop_vinfo);
706 unsigned int compare_precision = TYPE_PRECISION (compare_type);
707 tree orig_niters = niters;
709 /* Type of the initial value of NITERS. */
710 tree ni_actual_type = TREE_TYPE (niters);
711 unsigned int ni_actual_precision = TYPE_PRECISION (ni_actual_type);
712 tree niters_skip = LOOP_VINFO_MASK_SKIP_NITERS (loop_vinfo);
714 /* Convert NITERS to the same size as the compare. */
715 if (compare_precision > ni_actual_precision
716 && niters_maybe_zero)
718 /* We know that there is always at least one iteration, so if the
719 count is zero then it must have wrapped. Cope with this by
720 subtracting 1 before the conversion and adding 1 to the result. */
721 gcc_assert (TYPE_UNSIGNED (ni_actual_type));
722 niters = gimple_build (&preheader_seq, PLUS_EXPR, ni_actual_type,
723 niters, build_minus_one_cst (ni_actual_type));
724 niters = gimple_convert (&preheader_seq, compare_type, niters);
725 niters = gimple_build (&preheader_seq, PLUS_EXPR, compare_type,
726 niters, build_one_cst (compare_type));
728 else
729 niters = gimple_convert (&preheader_seq, compare_type, niters);
731 /* Iterate over all the rgroups and fill in their controls. We could use
732 the first control from any rgroup for the loop condition; here we
733 arbitrarily pick the last. */
734 tree test_ctrl = NULL_TREE;
735 rgroup_controls *rgc;
736 unsigned int i;
737 auto_vec<rgroup_controls> *controls = use_masks_p
738 ? &LOOP_VINFO_MASKS (loop_vinfo)
739 : &LOOP_VINFO_LENS (loop_vinfo);
740 FOR_EACH_VEC_ELT (*controls, i, rgc)
741 if (!rgc->controls.is_empty ())
743 /* First try using permutes. This adds a single vector
744 instruction to the loop for each mask, but needs no extra
745 loop invariants or IVs. */
746 unsigned int nmasks = i + 1;
747 if (use_masks_p && (nmasks & 1) == 0)
749 rgroup_controls *half_rgc = &(*controls)[nmasks / 2 - 1];
750 if (!half_rgc->controls.is_empty ()
751 && vect_maybe_permute_loop_masks (&header_seq, rgc, half_rgc))
752 continue;
755 /* See whether zero-based IV would ever generate all-false masks
756 or zero length before wrapping around. */
757 bool might_wrap_p = vect_rgroup_iv_might_wrap_p (loop_vinfo, rgc);
759 /* Set up all controls for this group. */
760 test_ctrl = vect_set_loop_controls_directly (loop, loop_vinfo,
761 &preheader_seq,
762 &header_seq,
763 loop_cond_gsi, rgc,
764 niters, niters_skip,
765 might_wrap_p);
768 /* Emit all accumulated statements. */
769 add_preheader_seq (loop, preheader_seq);
770 add_header_seq (loop, header_seq);
772 /* Get a boolean result that tells us whether to iterate. */
773 edge exit_edge = single_exit (loop);
774 tree_code code = (exit_edge->flags & EDGE_TRUE_VALUE) ? EQ_EXPR : NE_EXPR;
775 tree zero_ctrl = build_zero_cst (TREE_TYPE (test_ctrl));
776 gcond *cond_stmt = gimple_build_cond (code, test_ctrl, zero_ctrl,
777 NULL_TREE, NULL_TREE);
778 gsi_insert_before (&loop_cond_gsi, cond_stmt, GSI_SAME_STMT);
780 /* The loop iterates (NITERS - 1) / VF + 1 times.
781 Subtract one from this to get the latch count. */
782 tree step = build_int_cst (compare_type,
783 LOOP_VINFO_VECT_FACTOR (loop_vinfo));
784 tree niters_minus_one = fold_build2 (PLUS_EXPR, compare_type, niters,
785 build_minus_one_cst (compare_type));
786 loop->nb_iterations = fold_build2 (TRUNC_DIV_EXPR, compare_type,
787 niters_minus_one, step);
789 if (final_iv)
791 gassign *assign = gimple_build_assign (final_iv, orig_niters);
792 gsi_insert_on_edge_immediate (single_exit (loop), assign);
795 return cond_stmt;
798 /* Like vect_set_loop_condition, but handle the case in which the vector
799 loop handles exactly VF scalars per iteration. */
801 static gcond *
802 vect_set_loop_condition_normal (class loop *loop, tree niters, tree step,
803 tree final_iv, bool niters_maybe_zero,
804 gimple_stmt_iterator loop_cond_gsi)
806 tree indx_before_incr, indx_after_incr;
807 gcond *cond_stmt;
808 gcond *orig_cond;
809 edge pe = loop_preheader_edge (loop);
810 edge exit_edge = single_exit (loop);
811 gimple_stmt_iterator incr_gsi;
812 bool insert_after;
813 enum tree_code code;
814 tree niters_type = TREE_TYPE (niters);
816 orig_cond = get_loop_exit_condition (loop);
817 gcc_assert (orig_cond);
818 loop_cond_gsi = gsi_for_stmt (orig_cond);
820 tree init, limit;
821 if (!niters_maybe_zero && integer_onep (step))
823 /* In this case we can use a simple 0-based IV:
826 x = 0;
830 x += 1;
832 while (x < NITERS); */
833 code = (exit_edge->flags & EDGE_TRUE_VALUE) ? GE_EXPR : LT_EXPR;
834 init = build_zero_cst (niters_type);
835 limit = niters;
837 else
839 /* The following works for all values of NITERS except 0:
842 x = 0;
846 x += STEP;
848 while (x <= NITERS - STEP);
850 so that the loop continues to iterate if x + STEP - 1 < NITERS
851 but stops if x + STEP - 1 >= NITERS.
853 However, if NITERS is zero, x never hits a value above NITERS - STEP
854 before wrapping around. There are two obvious ways of dealing with
855 this:
857 - start at STEP - 1 and compare x before incrementing it
858 - start at -1 and compare x after incrementing it
860 The latter is simpler and is what we use. The loop in this case
861 looks like:
864 x = -1;
868 x += STEP;
870 while (x < NITERS - STEP);
872 In both cases the loop limit is NITERS - STEP. */
873 gimple_seq seq = NULL;
874 limit = force_gimple_operand (niters, &seq, true, NULL_TREE);
875 limit = gimple_build (&seq, MINUS_EXPR, TREE_TYPE (limit), limit, step);
876 if (seq)
878 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
879 gcc_assert (!new_bb);
881 if (niters_maybe_zero)
883 /* Case C. */
884 code = (exit_edge->flags & EDGE_TRUE_VALUE) ? GE_EXPR : LT_EXPR;
885 init = build_all_ones_cst (niters_type);
887 else
889 /* Case B. */
890 code = (exit_edge->flags & EDGE_TRUE_VALUE) ? GT_EXPR : LE_EXPR;
891 init = build_zero_cst (niters_type);
895 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
896 create_iv (init, step, NULL_TREE, loop,
897 &incr_gsi, insert_after, &indx_before_incr, &indx_after_incr);
898 indx_after_incr = force_gimple_operand_gsi (&loop_cond_gsi, indx_after_incr,
899 true, NULL_TREE, true,
900 GSI_SAME_STMT);
901 limit = force_gimple_operand_gsi (&loop_cond_gsi, limit, true, NULL_TREE,
902 true, GSI_SAME_STMT);
904 cond_stmt = gimple_build_cond (code, indx_after_incr, limit, NULL_TREE,
905 NULL_TREE);
907 gsi_insert_before (&loop_cond_gsi, cond_stmt, GSI_SAME_STMT);
909 /* Record the number of latch iterations. */
910 if (limit == niters)
911 /* Case A: the loop iterates NITERS times. Subtract one to get the
912 latch count. */
913 loop->nb_iterations = fold_build2 (MINUS_EXPR, niters_type, niters,
914 build_int_cst (niters_type, 1));
915 else
916 /* Case B or C: the loop iterates (NITERS - STEP) / STEP + 1 times.
917 Subtract one from this to get the latch count. */
918 loop->nb_iterations = fold_build2 (TRUNC_DIV_EXPR, niters_type,
919 limit, step);
921 if (final_iv)
923 gassign *assign;
924 edge exit = single_exit (loop);
925 gcc_assert (single_pred_p (exit->dest));
926 tree phi_dest
927 = integer_zerop (init) ? final_iv : copy_ssa_name (indx_after_incr);
928 /* Make sure to maintain LC SSA form here and elide the subtraction
929 if the value is zero. */
930 gphi *phi = create_phi_node (phi_dest, exit->dest);
931 add_phi_arg (phi, indx_after_incr, exit, UNKNOWN_LOCATION);
932 if (!integer_zerop (init))
934 assign = gimple_build_assign (final_iv, MINUS_EXPR,
935 phi_dest, init);
936 gimple_stmt_iterator gsi = gsi_after_labels (exit->dest);
937 gsi_insert_before (&gsi, assign, GSI_SAME_STMT);
941 return cond_stmt;
944 /* If we're using fully-masked loops, make LOOP iterate:
946 N == (NITERS - 1) / STEP + 1
948 times. When NITERS is zero, this is equivalent to making the loop
949 execute (1 << M) / STEP times, where M is the precision of NITERS.
950 NITERS_MAYBE_ZERO is true if this last case might occur.
952 If we're not using fully-masked loops, make LOOP iterate:
954 N == (NITERS - STEP) / STEP + 1
956 times, where NITERS is known to be outside the range [1, STEP - 1].
957 This is equivalent to making the loop execute NITERS / STEP times
958 when NITERS is nonzero and (1 << M) / STEP times otherwise.
959 NITERS_MAYBE_ZERO again indicates whether this last case might occur.
961 If FINAL_IV is nonnull, it is an SSA name that should be set to
962 N * STEP on exit from the loop.
964 Assumption: the exit-condition of LOOP is the last stmt in the loop. */
966 void
967 vect_set_loop_condition (class loop *loop, loop_vec_info loop_vinfo,
968 tree niters, tree step, tree final_iv,
969 bool niters_maybe_zero)
971 gcond *cond_stmt;
972 gcond *orig_cond = get_loop_exit_condition (loop);
973 gimple_stmt_iterator loop_cond_gsi = gsi_for_stmt (orig_cond);
975 if (loop_vinfo && LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo))
976 cond_stmt = vect_set_loop_condition_partial_vectors (loop, loop_vinfo,
977 niters, final_iv,
978 niters_maybe_zero,
979 loop_cond_gsi);
980 else
981 cond_stmt = vect_set_loop_condition_normal (loop, niters, step, final_iv,
982 niters_maybe_zero,
983 loop_cond_gsi);
985 /* Remove old loop exit test. */
986 stmt_vec_info orig_cond_info;
987 if (loop_vinfo
988 && (orig_cond_info = loop_vinfo->lookup_stmt (orig_cond)))
989 loop_vinfo->remove_stmt (orig_cond_info);
990 else
991 gsi_remove (&loop_cond_gsi, true);
993 if (dump_enabled_p ())
994 dump_printf_loc (MSG_NOTE, vect_location, "New loop exit condition: %G",
995 (gimple *) cond_stmt);
998 /* Helper routine of slpeel_tree_duplicate_loop_to_edge_cfg.
999 For all PHI arguments in FROM->dest and TO->dest from those
1000 edges ensure that TO->dest PHI arguments have current_def
1001 to that in from. */
1003 static void
1004 slpeel_duplicate_current_defs_from_edges (edge from, edge to)
1006 gimple_stmt_iterator gsi_from, gsi_to;
1008 for (gsi_from = gsi_start_phis (from->dest),
1009 gsi_to = gsi_start_phis (to->dest);
1010 !gsi_end_p (gsi_from) && !gsi_end_p (gsi_to);)
1012 gimple *from_phi = gsi_stmt (gsi_from);
1013 gimple *to_phi = gsi_stmt (gsi_to);
1014 tree from_arg = PHI_ARG_DEF_FROM_EDGE (from_phi, from);
1015 tree to_arg = PHI_ARG_DEF_FROM_EDGE (to_phi, to);
1016 if (virtual_operand_p (from_arg))
1018 gsi_next (&gsi_from);
1019 continue;
1021 if (virtual_operand_p (to_arg))
1023 gsi_next (&gsi_to);
1024 continue;
1026 if (TREE_CODE (from_arg) != SSA_NAME)
1027 gcc_assert (operand_equal_p (from_arg, to_arg, 0));
1028 else if (TREE_CODE (to_arg) == SSA_NAME
1029 && from_arg != to_arg)
1031 if (get_current_def (to_arg) == NULL_TREE)
1033 gcc_assert (types_compatible_p (TREE_TYPE (to_arg),
1034 TREE_TYPE (get_current_def
1035 (from_arg))));
1036 set_current_def (to_arg, get_current_def (from_arg));
1039 gsi_next (&gsi_from);
1040 gsi_next (&gsi_to);
1043 gphi *from_phi = get_virtual_phi (from->dest);
1044 gphi *to_phi = get_virtual_phi (to->dest);
1045 if (from_phi)
1046 set_current_def (PHI_ARG_DEF_FROM_EDGE (to_phi, to),
1047 get_current_def (PHI_ARG_DEF_FROM_EDGE (from_phi, from)));
1051 /* Given LOOP this function generates a new copy of it and puts it
1052 on E which is either the entry or exit of LOOP. If SCALAR_LOOP is
1053 non-NULL, assume LOOP and SCALAR_LOOP are equivalent and copy the
1054 basic blocks from SCALAR_LOOP instead of LOOP, but to either the
1055 entry or exit of LOOP. */
1057 class loop *
1058 slpeel_tree_duplicate_loop_to_edge_cfg (class loop *loop,
1059 class loop *scalar_loop, edge e)
1061 class loop *new_loop;
1062 basic_block *new_bbs, *bbs, *pbbs;
1063 bool at_exit;
1064 bool was_imm_dom;
1065 basic_block exit_dest;
1066 edge exit, new_exit;
1067 bool duplicate_outer_loop = false;
1069 exit = single_exit (loop);
1070 at_exit = (e == exit);
1071 if (!at_exit && e != loop_preheader_edge (loop))
1072 return NULL;
1074 if (scalar_loop == NULL)
1075 scalar_loop = loop;
1077 bbs = XNEWVEC (basic_block, scalar_loop->num_nodes + 1);
1078 pbbs = bbs + 1;
1079 get_loop_body_with_size (scalar_loop, pbbs, scalar_loop->num_nodes);
1080 /* Allow duplication of outer loops. */
1081 if (scalar_loop->inner)
1082 duplicate_outer_loop = true;
1083 /* Check whether duplication is possible. */
1084 if (!can_copy_bbs_p (pbbs, scalar_loop->num_nodes))
1086 free (bbs);
1087 return NULL;
1090 /* Generate new loop structure. */
1091 new_loop = duplicate_loop (scalar_loop, loop_outer (scalar_loop));
1092 duplicate_subloops (scalar_loop, new_loop);
1094 exit_dest = exit->dest;
1095 was_imm_dom = (get_immediate_dominator (CDI_DOMINATORS,
1096 exit_dest) == loop->header ?
1097 true : false);
1099 /* Also copy the pre-header, this avoids jumping through hoops to
1100 duplicate the loop entry PHI arguments. Create an empty
1101 pre-header unconditionally for this. */
1102 basic_block preheader = split_edge (loop_preheader_edge (scalar_loop));
1103 edge entry_e = single_pred_edge (preheader);
1104 bbs[0] = preheader;
1105 new_bbs = XNEWVEC (basic_block, scalar_loop->num_nodes + 1);
1107 exit = single_exit (scalar_loop);
1108 copy_bbs (bbs, scalar_loop->num_nodes + 1, new_bbs,
1109 &exit, 1, &new_exit, NULL,
1110 at_exit ? loop->latch : e->src, true);
1111 exit = single_exit (loop);
1112 basic_block new_preheader = new_bbs[0];
1114 /* Before installing PHI arguments make sure that the edges
1115 into them match that of the scalar loop we analyzed. This
1116 makes sure the SLP tree matches up between the main vectorized
1117 loop and the epilogue vectorized copies. */
1118 if (single_succ_edge (preheader)->dest_idx
1119 != single_succ_edge (new_bbs[0])->dest_idx)
1121 basic_block swap_bb = new_bbs[1];
1122 gcc_assert (EDGE_COUNT (swap_bb->preds) == 2);
1123 std::swap (EDGE_PRED (swap_bb, 0), EDGE_PRED (swap_bb, 1));
1124 EDGE_PRED (swap_bb, 0)->dest_idx = 0;
1125 EDGE_PRED (swap_bb, 1)->dest_idx = 1;
1127 if (duplicate_outer_loop)
1129 class loop *new_inner_loop = get_loop_copy (scalar_loop->inner);
1130 if (loop_preheader_edge (scalar_loop)->dest_idx
1131 != loop_preheader_edge (new_inner_loop)->dest_idx)
1133 basic_block swap_bb = new_inner_loop->header;
1134 gcc_assert (EDGE_COUNT (swap_bb->preds) == 2);
1135 std::swap (EDGE_PRED (swap_bb, 0), EDGE_PRED (swap_bb, 1));
1136 EDGE_PRED (swap_bb, 0)->dest_idx = 0;
1137 EDGE_PRED (swap_bb, 1)->dest_idx = 1;
1141 add_phi_args_after_copy (new_bbs, scalar_loop->num_nodes + 1, NULL);
1143 /* Skip new preheader since it's deleted if copy loop is added at entry. */
1144 for (unsigned i = (at_exit ? 0 : 1); i < scalar_loop->num_nodes + 1; i++)
1145 rename_variables_in_bb (new_bbs[i], duplicate_outer_loop);
1147 if (scalar_loop != loop)
1149 /* If we copied from SCALAR_LOOP rather than LOOP, SSA_NAMEs from
1150 SCALAR_LOOP will have current_def set to SSA_NAMEs in the new_loop,
1151 but LOOP will not. slpeel_update_phi_nodes_for_guard{1,2} expects
1152 the LOOP SSA_NAMEs (on the exit edge and edge from latch to
1153 header) to have current_def set, so copy them over. */
1154 slpeel_duplicate_current_defs_from_edges (single_exit (scalar_loop),
1155 exit);
1156 slpeel_duplicate_current_defs_from_edges (EDGE_SUCC (scalar_loop->latch,
1158 EDGE_SUCC (loop->latch, 0));
1161 if (at_exit) /* Add the loop copy at exit. */
1163 if (scalar_loop != loop)
1165 gphi_iterator gsi;
1166 new_exit = redirect_edge_and_branch (new_exit, exit_dest);
1168 for (gsi = gsi_start_phis (exit_dest); !gsi_end_p (gsi);
1169 gsi_next (&gsi))
1171 gphi *phi = gsi.phi ();
1172 tree orig_arg = PHI_ARG_DEF_FROM_EDGE (phi, e);
1173 location_t orig_locus
1174 = gimple_phi_arg_location_from_edge (phi, e);
1176 add_phi_arg (phi, orig_arg, new_exit, orig_locus);
1179 redirect_edge_and_branch_force (e, new_preheader);
1180 flush_pending_stmts (e);
1181 set_immediate_dominator (CDI_DOMINATORS, new_preheader, e->src);
1182 if (was_imm_dom || duplicate_outer_loop)
1183 set_immediate_dominator (CDI_DOMINATORS, exit_dest, new_exit->src);
1185 /* And remove the non-necessary forwarder again. Keep the other
1186 one so we have a proper pre-header for the loop at the exit edge. */
1187 redirect_edge_pred (single_succ_edge (preheader),
1188 single_pred (preheader));
1189 delete_basic_block (preheader);
1190 set_immediate_dominator (CDI_DOMINATORS, scalar_loop->header,
1191 loop_preheader_edge (scalar_loop)->src);
1193 else /* Add the copy at entry. */
1195 if (scalar_loop != loop)
1197 /* Remove the non-necessary forwarder of scalar_loop again. */
1198 redirect_edge_pred (single_succ_edge (preheader),
1199 single_pred (preheader));
1200 delete_basic_block (preheader);
1201 set_immediate_dominator (CDI_DOMINATORS, scalar_loop->header,
1202 loop_preheader_edge (scalar_loop)->src);
1203 preheader = split_edge (loop_preheader_edge (loop));
1204 entry_e = single_pred_edge (preheader);
1207 redirect_edge_and_branch_force (entry_e, new_preheader);
1208 flush_pending_stmts (entry_e);
1209 set_immediate_dominator (CDI_DOMINATORS, new_preheader, entry_e->src);
1211 redirect_edge_and_branch_force (new_exit, preheader);
1212 flush_pending_stmts (new_exit);
1213 set_immediate_dominator (CDI_DOMINATORS, preheader, new_exit->src);
1215 /* And remove the non-necessary forwarder again. Keep the other
1216 one so we have a proper pre-header for the loop at the exit edge. */
1217 redirect_edge_pred (single_succ_edge (new_preheader),
1218 single_pred (new_preheader));
1219 delete_basic_block (new_preheader);
1220 set_immediate_dominator (CDI_DOMINATORS, new_loop->header,
1221 loop_preheader_edge (new_loop)->src);
1224 if (scalar_loop != loop)
1226 /* Update new_loop->header PHIs, so that on the preheader
1227 edge they are the ones from loop rather than scalar_loop. */
1228 gphi_iterator gsi_orig, gsi_new;
1229 edge orig_e = loop_preheader_edge (loop);
1230 edge new_e = loop_preheader_edge (new_loop);
1232 for (gsi_orig = gsi_start_phis (loop->header),
1233 gsi_new = gsi_start_phis (new_loop->header);
1234 !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_new);
1235 gsi_next (&gsi_orig), gsi_next (&gsi_new))
1237 gphi *orig_phi = gsi_orig.phi ();
1238 gphi *new_phi = gsi_new.phi ();
1239 tree orig_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, orig_e);
1240 location_t orig_locus
1241 = gimple_phi_arg_location_from_edge (orig_phi, orig_e);
1243 add_phi_arg (new_phi, orig_arg, new_e, orig_locus);
1247 free (new_bbs);
1248 free (bbs);
1250 checking_verify_dominators (CDI_DOMINATORS);
1252 return new_loop;
1256 /* Given the condition expression COND, put it as the last statement of
1257 GUARD_BB; set both edges' probability; set dominator of GUARD_TO to
1258 DOM_BB; return the skip edge. GUARD_TO is the target basic block to
1259 skip the loop. PROBABILITY is the skip edge's probability. Mark the
1260 new edge as irreducible if IRREDUCIBLE_P is true. */
1262 static edge
1263 slpeel_add_loop_guard (basic_block guard_bb, tree cond,
1264 basic_block guard_to, basic_block dom_bb,
1265 profile_probability probability, bool irreducible_p)
1267 gimple_stmt_iterator gsi;
1268 edge new_e, enter_e;
1269 gcond *cond_stmt;
1270 gimple_seq gimplify_stmt_list = NULL;
1272 enter_e = EDGE_SUCC (guard_bb, 0);
1273 enter_e->flags &= ~EDGE_FALLTHRU;
1274 enter_e->flags |= EDGE_FALSE_VALUE;
1275 gsi = gsi_last_bb (guard_bb);
1277 cond = force_gimple_operand_1 (cond, &gimplify_stmt_list,
1278 is_gimple_condexpr_for_cond, NULL_TREE);
1279 if (gimplify_stmt_list)
1280 gsi_insert_seq_after (&gsi, gimplify_stmt_list, GSI_NEW_STMT);
1282 cond_stmt = gimple_build_cond_from_tree (cond, NULL_TREE, NULL_TREE);
1283 gsi = gsi_last_bb (guard_bb);
1284 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
1286 /* Add new edge to connect guard block to the merge/loop-exit block. */
1287 new_e = make_edge (guard_bb, guard_to, EDGE_TRUE_VALUE);
1289 new_e->probability = probability;
1290 if (irreducible_p)
1291 new_e->flags |= EDGE_IRREDUCIBLE_LOOP;
1293 enter_e->probability = probability.invert ();
1294 set_immediate_dominator (CDI_DOMINATORS, guard_to, dom_bb);
1296 /* Split enter_e to preserve LOOPS_HAVE_PREHEADERS. */
1297 if (enter_e->dest->loop_father->header == enter_e->dest)
1298 split_edge (enter_e);
1300 return new_e;
1304 /* This function verifies that the following restrictions apply to LOOP:
1305 (1) it consists of exactly 2 basic blocks - header, and an empty latch
1306 for innermost loop and 5 basic blocks for outer-loop.
1307 (2) it is single entry, single exit
1308 (3) its exit condition is the last stmt in the header
1309 (4) E is the entry/exit edge of LOOP.
1312 bool
1313 slpeel_can_duplicate_loop_p (const class loop *loop, const_edge e)
1315 edge exit_e = single_exit (loop);
1316 edge entry_e = loop_preheader_edge (loop);
1317 gcond *orig_cond = get_loop_exit_condition (loop);
1318 gimple_stmt_iterator loop_exit_gsi = gsi_last_bb (exit_e->src);
1319 unsigned int num_bb = loop->inner? 5 : 2;
1321 /* All loops have an outer scope; the only case loop->outer is NULL is for
1322 the function itself. */
1323 if (!loop_outer (loop)
1324 || loop->num_nodes != num_bb
1325 || !empty_block_p (loop->latch)
1326 || !single_exit (loop)
1327 /* Verify that new loop exit condition can be trivially modified. */
1328 || (!orig_cond || orig_cond != gsi_stmt (loop_exit_gsi))
1329 || (e != exit_e && e != entry_e))
1330 return false;
1332 return true;
1335 /* Function vect_get_loop_location.
1337 Extract the location of the loop in the source code.
1338 If the loop is not well formed for vectorization, an estimated
1339 location is calculated.
1340 Return the loop location if succeed and NULL if not. */
1342 dump_user_location_t
1343 find_loop_location (class loop *loop)
1345 gimple *stmt = NULL;
1346 basic_block bb;
1347 gimple_stmt_iterator si;
1349 if (!loop)
1350 return dump_user_location_t ();
1352 stmt = get_loop_exit_condition (loop);
1354 if (stmt
1355 && LOCATION_LOCUS (gimple_location (stmt)) > BUILTINS_LOCATION)
1356 return stmt;
1358 /* If we got here the loop is probably not "well formed",
1359 try to estimate the loop location */
1361 if (!loop->header)
1362 return dump_user_location_t ();
1364 bb = loop->header;
1366 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1368 stmt = gsi_stmt (si);
1369 if (LOCATION_LOCUS (gimple_location (stmt)) > BUILTINS_LOCATION)
1370 return stmt;
1373 return dump_user_location_t ();
1376 /* Return true if the phi described by STMT_INFO defines an IV of the
1377 loop to be vectorized. */
1379 static bool
1380 iv_phi_p (stmt_vec_info stmt_info)
1382 gphi *phi = as_a <gphi *> (stmt_info->stmt);
1383 if (virtual_operand_p (PHI_RESULT (phi)))
1384 return false;
1386 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def
1387 || STMT_VINFO_DEF_TYPE (stmt_info) == vect_double_reduction_def)
1388 return false;
1390 return true;
1393 /* Function vect_can_advance_ivs_p
1395 In case the number of iterations that LOOP iterates is unknown at compile
1396 time, an epilog loop will be generated, and the loop induction variables
1397 (IVs) will be "advanced" to the value they are supposed to take just before
1398 the epilog loop. Here we check that the access function of the loop IVs
1399 and the expression that represents the loop bound are simple enough.
1400 These restrictions will be relaxed in the future. */
1402 bool
1403 vect_can_advance_ivs_p (loop_vec_info loop_vinfo)
1405 class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1406 basic_block bb = loop->header;
1407 gphi_iterator gsi;
1409 /* Analyze phi functions of the loop header. */
1411 if (dump_enabled_p ())
1412 dump_printf_loc (MSG_NOTE, vect_location, "vect_can_advance_ivs_p:\n");
1413 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1415 tree evolution_part;
1416 enum vect_induction_op_type induction_type;
1418 gphi *phi = gsi.phi ();
1419 stmt_vec_info phi_info = loop_vinfo->lookup_stmt (phi);
1420 if (dump_enabled_p ())
1421 dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: %G",
1422 phi_info->stmt);
1424 /* Skip virtual phi's. The data dependences that are associated with
1425 virtual defs/uses (i.e., memory accesses) are analyzed elsewhere.
1427 Skip reduction phis. */
1428 if (!iv_phi_p (phi_info))
1430 if (dump_enabled_p ())
1431 dump_printf_loc (MSG_NOTE, vect_location,
1432 "reduc or virtual phi. skip.\n");
1433 continue;
1436 induction_type = STMT_VINFO_LOOP_PHI_EVOLUTION_TYPE (phi_info);
1437 if (induction_type != vect_step_op_add)
1439 if (!vect_can_peel_nonlinear_iv_p (loop_vinfo, induction_type))
1440 return false;
1442 continue;
1445 /* Analyze the evolution function. */
1447 evolution_part = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (phi_info);
1448 if (evolution_part == NULL_TREE)
1450 if (dump_enabled_p ())
1451 dump_printf (MSG_MISSED_OPTIMIZATION,
1452 "No access function or evolution.\n");
1453 return false;
1456 /* FORNOW: We do not transform initial conditions of IVs
1457 which evolution functions are not invariants in the loop. */
1459 if (!expr_invariant_in_loop_p (loop, evolution_part))
1461 if (dump_enabled_p ())
1462 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1463 "evolution not invariant in loop.\n");
1464 return false;
1467 /* FORNOW: We do not transform initial conditions of IVs
1468 which evolution functions are a polynomial of degree >= 2. */
1470 if (tree_is_chrec (evolution_part))
1472 if (dump_enabled_p ())
1473 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1474 "evolution is chrec.\n");
1475 return false;
1479 return true;
1483 /* Function vect_update_ivs_after_vectorizer.
1485 "Advance" the induction variables of LOOP to the value they should take
1486 after the execution of LOOP. This is currently necessary because the
1487 vectorizer does not handle induction variables that are used after the
1488 loop. Such a situation occurs when the last iterations of LOOP are
1489 peeled, because:
1490 1. We introduced new uses after LOOP for IVs that were not originally used
1491 after LOOP: the IVs of LOOP are now used by an epilog loop.
1492 2. LOOP is going to be vectorized; this means that it will iterate N/VF
1493 times, whereas the loop IVs should be bumped N times.
1495 Input:
1496 - LOOP - a loop that is going to be vectorized. The last few iterations
1497 of LOOP were peeled.
1498 - NITERS - the number of iterations that LOOP executes (before it is
1499 vectorized). i.e, the number of times the ivs should be bumped.
1500 - UPDATE_E - a successor edge of LOOP->exit that is on the (only) path
1501 coming out from LOOP on which there are uses of the LOOP ivs
1502 (this is the path from LOOP->exit to epilog_loop->preheader).
1504 The new definitions of the ivs are placed in LOOP->exit.
1505 The phi args associated with the edge UPDATE_E in the bb
1506 UPDATE_E->dest are updated accordingly.
1508 Assumption 1: Like the rest of the vectorizer, this function assumes
1509 a single loop exit that has a single predecessor.
1511 Assumption 2: The phi nodes in the LOOP header and in update_bb are
1512 organized in the same order.
1514 Assumption 3: The access function of the ivs is simple enough (see
1515 vect_can_advance_ivs_p). This assumption will be relaxed in the future.
1517 Assumption 4: Exactly one of the successors of LOOP exit-bb is on a path
1518 coming out of LOOP on which the ivs of LOOP are used (this is the path
1519 that leads to the epilog loop; other paths skip the epilog loop). This
1520 path starts with the edge UPDATE_E, and its destination (denoted update_bb)
1521 needs to have its phis updated.
1524 static void
1525 vect_update_ivs_after_vectorizer (loop_vec_info loop_vinfo,
1526 tree niters, edge update_e)
1528 gphi_iterator gsi, gsi1;
1529 class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1530 basic_block update_bb = update_e->dest;
1531 basic_block exit_bb = single_exit (loop)->dest;
1533 /* Make sure there exists a single-predecessor exit bb: */
1534 gcc_assert (single_pred_p (exit_bb));
1535 gcc_assert (single_succ_edge (exit_bb) == update_e);
1537 for (gsi = gsi_start_phis (loop->header), gsi1 = gsi_start_phis (update_bb);
1538 !gsi_end_p (gsi) && !gsi_end_p (gsi1);
1539 gsi_next (&gsi), gsi_next (&gsi1))
1541 tree init_expr;
1542 tree step_expr, off;
1543 tree type;
1544 tree var, ni, ni_name;
1545 gimple_stmt_iterator last_gsi;
1547 gphi *phi = gsi.phi ();
1548 gphi *phi1 = gsi1.phi ();
1549 stmt_vec_info phi_info = loop_vinfo->lookup_stmt (phi);
1550 if (dump_enabled_p ())
1551 dump_printf_loc (MSG_NOTE, vect_location,
1552 "vect_update_ivs_after_vectorizer: phi: %G",
1553 (gimple *) phi);
1555 /* Skip reduction and virtual phis. */
1556 if (!iv_phi_p (phi_info))
1558 if (dump_enabled_p ())
1559 dump_printf_loc (MSG_NOTE, vect_location,
1560 "reduc or virtual phi. skip.\n");
1561 continue;
1564 type = TREE_TYPE (gimple_phi_result (phi));
1565 step_expr = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (phi_info);
1566 step_expr = unshare_expr (step_expr);
1568 /* FORNOW: We do not support IVs whose evolution function is a polynomial
1569 of degree >= 2 or exponential. */
1570 gcc_assert (!tree_is_chrec (step_expr));
1572 init_expr = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
1573 gimple_seq stmts = NULL;
1574 enum vect_induction_op_type induction_type
1575 = STMT_VINFO_LOOP_PHI_EVOLUTION_TYPE (phi_info);
1577 if (induction_type == vect_step_op_add)
1579 tree stype = TREE_TYPE (step_expr);
1580 off = fold_build2 (MULT_EXPR, stype,
1581 fold_convert (stype, niters), step_expr);
1582 if (POINTER_TYPE_P (type))
1583 ni = fold_build_pointer_plus (init_expr, off);
1584 else
1585 ni = fold_convert (type,
1586 fold_build2 (PLUS_EXPR, stype,
1587 fold_convert (stype, init_expr),
1588 off));
1590 /* Don't bother call vect_peel_nonlinear_iv_init. */
1591 else if (induction_type == vect_step_op_neg)
1592 ni = init_expr;
1593 else
1594 ni = vect_peel_nonlinear_iv_init (&stmts, init_expr,
1595 niters, step_expr,
1596 induction_type);
1598 var = create_tmp_var (type, "tmp");
1600 last_gsi = gsi_last_bb (exit_bb);
1601 gimple_seq new_stmts = NULL;
1602 ni_name = force_gimple_operand (ni, &new_stmts, false, var);
1603 /* Exit_bb shouldn't be empty. */
1604 if (!gsi_end_p (last_gsi))
1606 gsi_insert_seq_after (&last_gsi, stmts, GSI_SAME_STMT);
1607 gsi_insert_seq_after (&last_gsi, new_stmts, GSI_SAME_STMT);
1609 else
1611 gsi_insert_seq_before (&last_gsi, stmts, GSI_SAME_STMT);
1612 gsi_insert_seq_before (&last_gsi, new_stmts, GSI_SAME_STMT);
1615 /* Fix phi expressions in the successor bb. */
1616 adjust_phi_and_debug_stmts (phi1, update_e, ni_name);
1620 /* Return a gimple value containing the misalignment (measured in vector
1621 elements) for the loop described by LOOP_VINFO, i.e. how many elements
1622 it is away from a perfectly aligned address. Add any new statements
1623 to SEQ. */
1625 static tree
1626 get_misalign_in_elems (gimple **seq, loop_vec_info loop_vinfo)
1628 dr_vec_info *dr_info = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
1629 stmt_vec_info stmt_info = dr_info->stmt;
1630 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
1632 poly_uint64 target_align = DR_TARGET_ALIGNMENT (dr_info);
1633 unsigned HOST_WIDE_INT target_align_c;
1634 tree target_align_minus_1;
1636 bool negative = tree_int_cst_compare (DR_STEP (dr_info->dr),
1637 size_zero_node) < 0;
1638 tree offset = (negative
1639 ? size_int ((-TYPE_VECTOR_SUBPARTS (vectype) + 1)
1640 * TREE_INT_CST_LOW
1641 (TYPE_SIZE_UNIT (TREE_TYPE (vectype))))
1642 : size_zero_node);
1643 tree start_addr = vect_create_addr_base_for_vector_ref (loop_vinfo,
1644 stmt_info, seq,
1645 offset);
1646 tree type = unsigned_type_for (TREE_TYPE (start_addr));
1647 if (target_align.is_constant (&target_align_c))
1648 target_align_minus_1 = build_int_cst (type, target_align_c - 1);
1649 else
1651 tree vla = build_int_cst (type, target_align);
1652 tree vla_align = fold_build2 (BIT_AND_EXPR, type, vla,
1653 fold_build2 (MINUS_EXPR, type,
1654 build_int_cst (type, 0), vla));
1655 target_align_minus_1 = fold_build2 (MINUS_EXPR, type, vla_align,
1656 build_int_cst (type, 1));
1659 HOST_WIDE_INT elem_size
1660 = int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype)));
1661 tree elem_size_log = build_int_cst (type, exact_log2 (elem_size));
1663 /* Create: misalign_in_bytes = addr & (target_align - 1). */
1664 tree int_start_addr = fold_convert (type, start_addr);
1665 tree misalign_in_bytes = fold_build2 (BIT_AND_EXPR, type, int_start_addr,
1666 target_align_minus_1);
1668 /* Create: misalign_in_elems = misalign_in_bytes / element_size. */
1669 tree misalign_in_elems = fold_build2 (RSHIFT_EXPR, type, misalign_in_bytes,
1670 elem_size_log);
1672 return misalign_in_elems;
1675 /* Function vect_gen_prolog_loop_niters
1677 Generate the number of iterations which should be peeled as prolog for the
1678 loop represented by LOOP_VINFO. It is calculated as the misalignment of
1679 DR - the data reference recorded in LOOP_VINFO_UNALIGNED_DR (LOOP_VINFO).
1680 As a result, after the execution of this loop, the data reference DR will
1681 refer to an aligned location. The following computation is generated:
1683 If the misalignment of DR is known at compile time:
1684 addr_mis = int mis = DR_MISALIGNMENT (dr);
1685 Else, compute address misalignment in bytes:
1686 addr_mis = addr & (target_align - 1)
1688 prolog_niters = ((VF - addr_mis/elem_size)&(VF-1))/step
1690 (elem_size = element type size; an element is the scalar element whose type
1691 is the inner type of the vectype)
1693 The computations will be emitted at the end of BB. We also compute and
1694 store upper bound (included) of the result in BOUND.
1696 When the step of the data-ref in the loop is not 1 (as in interleaved data
1697 and SLP), the number of iterations of the prolog must be divided by the step
1698 (which is equal to the size of interleaved group).
1700 The above formulas assume that VF == number of elements in the vector. This
1701 may not hold when there are multiple-types in the loop.
1702 In this case, for some data-references in the loop the VF does not represent
1703 the number of elements that fit in the vector. Therefore, instead of VF we
1704 use TYPE_VECTOR_SUBPARTS. */
1706 static tree
1707 vect_gen_prolog_loop_niters (loop_vec_info loop_vinfo,
1708 basic_block bb, int *bound)
1710 dr_vec_info *dr_info = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
1711 tree var;
1712 tree niters_type = TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo));
1713 gimple_seq stmts = NULL, new_stmts = NULL;
1714 tree iters, iters_name;
1715 stmt_vec_info stmt_info = dr_info->stmt;
1716 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
1717 poly_uint64 target_align = DR_TARGET_ALIGNMENT (dr_info);
1719 if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
1721 int npeel = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
1723 if (dump_enabled_p ())
1724 dump_printf_loc (MSG_NOTE, vect_location,
1725 "known peeling = %d.\n", npeel);
1727 iters = build_int_cst (niters_type, npeel);
1728 *bound = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
1730 else
1732 tree misalign_in_elems = get_misalign_in_elems (&stmts, loop_vinfo);
1733 tree type = TREE_TYPE (misalign_in_elems);
1734 HOST_WIDE_INT elem_size
1735 = int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype)));
1736 /* We only do prolog peeling if the target alignment is known at compile
1737 time. */
1738 poly_uint64 align_in_elems =
1739 exact_div (target_align, elem_size);
1740 tree align_in_elems_minus_1 =
1741 build_int_cst (type, align_in_elems - 1);
1742 tree align_in_elems_tree = build_int_cst (type, align_in_elems);
1744 /* Create: (niters_type) ((align_in_elems - misalign_in_elems)
1745 & (align_in_elems - 1)). */
1746 bool negative = tree_int_cst_compare (DR_STEP (dr_info->dr),
1747 size_zero_node) < 0;
1748 if (negative)
1749 iters = fold_build2 (MINUS_EXPR, type, misalign_in_elems,
1750 align_in_elems_tree);
1751 else
1752 iters = fold_build2 (MINUS_EXPR, type, align_in_elems_tree,
1753 misalign_in_elems);
1754 iters = fold_build2 (BIT_AND_EXPR, type, iters, align_in_elems_minus_1);
1755 iters = fold_convert (niters_type, iters);
1756 unsigned HOST_WIDE_INT align_in_elems_c;
1757 if (align_in_elems.is_constant (&align_in_elems_c))
1758 *bound = align_in_elems_c - 1;
1759 else
1760 *bound = -1;
1763 if (dump_enabled_p ())
1764 dump_printf_loc (MSG_NOTE, vect_location,
1765 "niters for prolog loop: %T\n", iters);
1767 var = create_tmp_var (niters_type, "prolog_loop_niters");
1768 iters_name = force_gimple_operand (iters, &new_stmts, false, var);
1770 if (new_stmts)
1771 gimple_seq_add_seq (&stmts, new_stmts);
1772 if (stmts)
1774 gcc_assert (single_succ_p (bb));
1775 gimple_stmt_iterator gsi = gsi_last_bb (bb);
1776 if (gsi_end_p (gsi))
1777 gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
1778 else
1779 gsi_insert_seq_after (&gsi, stmts, GSI_SAME_STMT);
1781 return iters_name;
1785 /* Function vect_update_init_of_dr
1787 If CODE is PLUS, the vector loop starts NITERS iterations after the
1788 scalar one, otherwise CODE is MINUS and the vector loop starts NITERS
1789 iterations before the scalar one (using masking to skip inactive
1790 elements). This function updates the information recorded in DR to
1791 account for the difference. Specifically, it updates the OFFSET
1792 field of DR_INFO. */
1794 static void
1795 vect_update_init_of_dr (dr_vec_info *dr_info, tree niters, tree_code code)
1797 struct data_reference *dr = dr_info->dr;
1798 tree offset = dr_info->offset;
1799 if (!offset)
1800 offset = build_zero_cst (sizetype);
1802 niters = fold_build2 (MULT_EXPR, sizetype,
1803 fold_convert (sizetype, niters),
1804 fold_convert (sizetype, DR_STEP (dr)));
1805 offset = fold_build2 (code, sizetype,
1806 fold_convert (sizetype, offset), niters);
1807 dr_info->offset = offset;
1811 /* Function vect_update_inits_of_drs
1813 Apply vect_update_inits_of_dr to all accesses in LOOP_VINFO.
1814 CODE and NITERS are as for vect_update_inits_of_dr. */
1816 void
1817 vect_update_inits_of_drs (loop_vec_info loop_vinfo, tree niters,
1818 tree_code code)
1820 unsigned int i;
1821 vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
1822 struct data_reference *dr;
1824 DUMP_VECT_SCOPE ("vect_update_inits_of_dr");
1826 /* Adjust niters to sizetype. We used to insert the stmts on loop preheader
1827 here, but since we might use these niters to update the epilogues niters
1828 and data references we can't insert them here as this definition might not
1829 always dominate its uses. */
1830 if (!types_compatible_p (sizetype, TREE_TYPE (niters)))
1831 niters = fold_convert (sizetype, niters);
1833 FOR_EACH_VEC_ELT (datarefs, i, dr)
1835 dr_vec_info *dr_info = loop_vinfo->lookup_dr (dr);
1836 if (!STMT_VINFO_GATHER_SCATTER_P (dr_info->stmt)
1837 && !STMT_VINFO_SIMD_LANE_ACCESS_P (dr_info->stmt))
1838 vect_update_init_of_dr (dr_info, niters, code);
1842 /* For the information recorded in LOOP_VINFO prepare the loop for peeling
1843 by masking. This involves calculating the number of iterations to
1844 be peeled and then aligning all memory references appropriately. */
1846 void
1847 vect_prepare_for_masked_peels (loop_vec_info loop_vinfo)
1849 tree misalign_in_elems;
1850 tree type = LOOP_VINFO_RGROUP_COMPARE_TYPE (loop_vinfo);
1852 gcc_assert (vect_use_loop_mask_for_alignment_p (loop_vinfo));
1854 /* From the information recorded in LOOP_VINFO get the number of iterations
1855 that need to be skipped via masking. */
1856 if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
1858 poly_int64 misalign = (LOOP_VINFO_VECT_FACTOR (loop_vinfo)
1859 - LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo));
1860 misalign_in_elems = build_int_cst (type, misalign);
1862 else
1864 gimple_seq seq1 = NULL, seq2 = NULL;
1865 misalign_in_elems = get_misalign_in_elems (&seq1, loop_vinfo);
1866 misalign_in_elems = fold_convert (type, misalign_in_elems);
1867 misalign_in_elems = force_gimple_operand (misalign_in_elems,
1868 &seq2, true, NULL_TREE);
1869 gimple_seq_add_seq (&seq1, seq2);
1870 if (seq1)
1872 edge pe = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
1873 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, seq1);
1874 gcc_assert (!new_bb);
1878 if (dump_enabled_p ())
1879 dump_printf_loc (MSG_NOTE, vect_location,
1880 "misalignment for fully-masked loop: %T\n",
1881 misalign_in_elems);
1883 LOOP_VINFO_MASK_SKIP_NITERS (loop_vinfo) = misalign_in_elems;
1885 vect_update_inits_of_drs (loop_vinfo, misalign_in_elems, MINUS_EXPR);
1888 /* This function builds ni_name = number of iterations. Statements
1889 are emitted on the loop preheader edge. If NEW_VAR_P is not NULL, set
1890 it to TRUE if new ssa_var is generated. */
1892 tree
1893 vect_build_loop_niters (loop_vec_info loop_vinfo, bool *new_var_p)
1895 tree ni = unshare_expr (LOOP_VINFO_NITERS (loop_vinfo));
1896 if (TREE_CODE (ni) == INTEGER_CST)
1897 return ni;
1898 else
1900 tree ni_name, var;
1901 gimple_seq stmts = NULL;
1902 edge pe = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
1904 var = create_tmp_var (TREE_TYPE (ni), "niters");
1905 ni_name = force_gimple_operand (ni, &stmts, false, var);
1906 if (stmts)
1908 gsi_insert_seq_on_edge_immediate (pe, stmts);
1909 if (new_var_p != NULL)
1910 *new_var_p = true;
1913 return ni_name;
1917 /* Calculate the number of iterations above which vectorized loop will be
1918 preferred than scalar loop. NITERS_PROLOG is the number of iterations
1919 of prolog loop. If it's integer const, the integer number is also passed
1920 in INT_NITERS_PROLOG. BOUND_PROLOG is the upper bound (inclusive) of the
1921 number of iterations of the prolog loop. BOUND_EPILOG is the corresponding
1922 value for the epilog loop. If CHECK_PROFITABILITY is true, TH is the
1923 threshold below which the scalar (rather than vectorized) loop will be
1924 executed. This function stores the upper bound (inclusive) of the result
1925 in BOUND_SCALAR. */
1927 static tree
1928 vect_gen_scalar_loop_niters (tree niters_prolog, int int_niters_prolog,
1929 int bound_prolog, poly_int64 bound_epilog, int th,
1930 poly_uint64 *bound_scalar,
1931 bool check_profitability)
1933 tree type = TREE_TYPE (niters_prolog);
1934 tree niters = fold_build2 (PLUS_EXPR, type, niters_prolog,
1935 build_int_cst (type, bound_epilog));
1937 *bound_scalar = bound_prolog + bound_epilog;
1938 if (check_profitability)
1940 /* TH indicates the minimum niters of vectorized loop, while we
1941 compute the maximum niters of scalar loop. */
1942 th--;
1943 /* Peeling for constant times. */
1944 if (int_niters_prolog >= 0)
1946 *bound_scalar = upper_bound (int_niters_prolog + bound_epilog, th);
1947 return build_int_cst (type, *bound_scalar);
1949 /* Peeling an unknown number of times. Note that both BOUND_PROLOG
1950 and BOUND_EPILOG are inclusive upper bounds. */
1951 if (known_ge (th, bound_prolog + bound_epilog))
1953 *bound_scalar = th;
1954 return build_int_cst (type, th);
1956 /* Need to do runtime comparison. */
1957 else if (maybe_gt (th, bound_epilog))
1959 *bound_scalar = upper_bound (*bound_scalar, th);
1960 return fold_build2 (MAX_EXPR, type,
1961 build_int_cst (type, th), niters);
1964 return niters;
1967 /* NITERS is the number of times that the original scalar loop executes
1968 after peeling. Work out the maximum number of iterations N that can
1969 be handled by the vectorized form of the loop and then either:
1971 a) set *STEP_VECTOR_PTR to the vectorization factor and generate:
1973 niters_vector = N
1975 b) set *STEP_VECTOR_PTR to one and generate:
1977 niters_vector = N / vf
1979 In both cases, store niters_vector in *NITERS_VECTOR_PTR and add
1980 any new statements on the loop preheader edge. NITERS_NO_OVERFLOW
1981 is true if NITERS doesn't overflow (i.e. if NITERS is always nonzero). */
1983 void
1984 vect_gen_vector_loop_niters (loop_vec_info loop_vinfo, tree niters,
1985 tree *niters_vector_ptr, tree *step_vector_ptr,
1986 bool niters_no_overflow)
1988 tree ni_minus_gap, var;
1989 tree niters_vector, step_vector, type = TREE_TYPE (niters);
1990 poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1991 edge pe = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
1992 tree log_vf = NULL_TREE;
1994 /* If epilogue loop is required because of data accesses with gaps, we
1995 subtract one iteration from the total number of iterations here for
1996 correct calculation of RATIO. */
1997 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
1999 ni_minus_gap = fold_build2 (MINUS_EXPR, type, niters,
2000 build_one_cst (type));
2001 if (!is_gimple_val (ni_minus_gap))
2003 var = create_tmp_var (type, "ni_gap");
2004 gimple *stmts = NULL;
2005 ni_minus_gap = force_gimple_operand (ni_minus_gap, &stmts,
2006 true, var);
2007 gsi_insert_seq_on_edge_immediate (pe, stmts);
2010 else
2011 ni_minus_gap = niters;
2013 /* To silence some unexpected warnings, simply initialize to 0. */
2014 unsigned HOST_WIDE_INT const_vf = 0;
2015 if (vf.is_constant (&const_vf)
2016 && !LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo))
2018 /* Create: niters >> log2(vf) */
2019 /* If it's known that niters == number of latch executions + 1 doesn't
2020 overflow, we can generate niters >> log2(vf); otherwise we generate
2021 (niters - vf) >> log2(vf) + 1 by using the fact that we know ratio
2022 will be at least one. */
2023 log_vf = build_int_cst (type, exact_log2 (const_vf));
2024 if (niters_no_overflow)
2025 niters_vector = fold_build2 (RSHIFT_EXPR, type, ni_minus_gap, log_vf);
2026 else
2027 niters_vector
2028 = fold_build2 (PLUS_EXPR, type,
2029 fold_build2 (RSHIFT_EXPR, type,
2030 fold_build2 (MINUS_EXPR, type,
2031 ni_minus_gap,
2032 build_int_cst (type, vf)),
2033 log_vf),
2034 build_int_cst (type, 1));
2035 step_vector = build_one_cst (type);
2037 else
2039 niters_vector = ni_minus_gap;
2040 step_vector = build_int_cst (type, vf);
2043 if (!is_gimple_val (niters_vector))
2045 var = create_tmp_var (type, "bnd");
2046 gimple_seq stmts = NULL;
2047 niters_vector = force_gimple_operand (niters_vector, &stmts, true, var);
2048 gsi_insert_seq_on_edge_immediate (pe, stmts);
2049 /* Peeling algorithm guarantees that vector loop bound is at least ONE,
2050 we set range information to make niters analyzer's life easier.
2051 Note the number of latch iteration value can be TYPE_MAX_VALUE so
2052 we have to represent the vector niter TYPE_MAX_VALUE + 1 >> log_vf. */
2053 if (stmts != NULL && log_vf)
2055 if (niters_no_overflow)
2057 value_range vr (type,
2058 wi::one (TYPE_PRECISION (type)),
2059 wi::rshift (wi::max_value (TYPE_PRECISION (type),
2060 TYPE_SIGN (type)),
2061 exact_log2 (const_vf),
2062 TYPE_SIGN (type)));
2063 set_range_info (niters_vector, vr);
2065 /* For VF == 1 the vector IV might also overflow so we cannot
2066 assert a minimum value of 1. */
2067 else if (const_vf > 1)
2069 value_range vr (type,
2070 wi::one (TYPE_PRECISION (type)),
2071 wi::rshift (wi::max_value (TYPE_PRECISION (type),
2072 TYPE_SIGN (type))
2073 - (const_vf - 1),
2074 exact_log2 (const_vf), TYPE_SIGN (type))
2075 + 1);
2076 set_range_info (niters_vector, vr);
2080 *niters_vector_ptr = niters_vector;
2081 *step_vector_ptr = step_vector;
2083 return;
2086 /* Given NITERS_VECTOR which is the number of iterations for vectorized
2087 loop specified by LOOP_VINFO after vectorization, compute the number
2088 of iterations before vectorization (niters_vector * vf) and store it
2089 to NITERS_VECTOR_MULT_VF_PTR. */
2091 static void
2092 vect_gen_vector_loop_niters_mult_vf (loop_vec_info loop_vinfo,
2093 tree niters_vector,
2094 tree *niters_vector_mult_vf_ptr)
2096 /* We should be using a step_vector of VF if VF is variable. */
2097 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo).to_constant ();
2098 class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2099 tree type = TREE_TYPE (niters_vector);
2100 tree log_vf = build_int_cst (type, exact_log2 (vf));
2101 basic_block exit_bb = single_exit (loop)->dest;
2103 gcc_assert (niters_vector_mult_vf_ptr != NULL);
2104 tree niters_vector_mult_vf = fold_build2 (LSHIFT_EXPR, type,
2105 niters_vector, log_vf);
2106 if (!is_gimple_val (niters_vector_mult_vf))
2108 tree var = create_tmp_var (type, "niters_vector_mult_vf");
2109 gimple_seq stmts = NULL;
2110 niters_vector_mult_vf = force_gimple_operand (niters_vector_mult_vf,
2111 &stmts, true, var);
2112 gimple_stmt_iterator gsi = gsi_start_bb (exit_bb);
2113 gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
2115 *niters_vector_mult_vf_ptr = niters_vector_mult_vf;
2118 /* LCSSA_PHI is a lcssa phi of EPILOG loop which is copied from LOOP,
2119 this function searches for the corresponding lcssa phi node in exit
2120 bb of LOOP. If it is found, return the phi result; otherwise return
2121 NULL. */
2123 static tree
2124 find_guard_arg (class loop *loop, class loop *epilog ATTRIBUTE_UNUSED,
2125 gphi *lcssa_phi)
2127 gphi_iterator gsi;
2128 edge e = single_exit (loop);
2130 gcc_assert (single_pred_p (e->dest));
2131 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
2133 gphi *phi = gsi.phi ();
2134 if (operand_equal_p (PHI_ARG_DEF (phi, 0),
2135 PHI_ARG_DEF (lcssa_phi, 0), 0))
2136 return PHI_RESULT (phi);
2138 return NULL_TREE;
2141 /* Function slpeel_tree_duplicate_loop_to_edge_cfg duplciates FIRST/SECOND
2142 from SECOND/FIRST and puts it at the original loop's preheader/exit
2143 edge, the two loops are arranged as below:
2145 preheader_a:
2146 first_loop:
2147 header_a:
2148 i_1 = PHI<i_0, i_2>;
2150 i_2 = i_1 + 1;
2151 if (cond_a)
2152 goto latch_a;
2153 else
2154 goto between_bb;
2155 latch_a:
2156 goto header_a;
2158 between_bb:
2159 ;; i_x = PHI<i_2>; ;; LCSSA phi node to be created for FIRST,
2161 second_loop:
2162 header_b:
2163 i_3 = PHI<i_0, i_4>; ;; Use of i_0 to be replaced with i_x,
2164 or with i_2 if no LCSSA phi is created
2165 under condition of CREATE_LCSSA_FOR_IV_PHIS.
2167 i_4 = i_3 + 1;
2168 if (cond_b)
2169 goto latch_b;
2170 else
2171 goto exit_bb;
2172 latch_b:
2173 goto header_b;
2175 exit_bb:
2177 This function creates loop closed SSA for the first loop; update the
2178 second loop's PHI nodes by replacing argument on incoming edge with the
2179 result of newly created lcssa PHI nodes. IF CREATE_LCSSA_FOR_IV_PHIS
2180 is false, Loop closed ssa phis will only be created for non-iv phis for
2181 the first loop.
2183 This function assumes exit bb of the first loop is preheader bb of the
2184 second loop, i.e, between_bb in the example code. With PHIs updated,
2185 the second loop will execute rest iterations of the first. */
2187 static void
2188 slpeel_update_phi_nodes_for_loops (loop_vec_info loop_vinfo,
2189 class loop *first, class loop *second,
2190 bool create_lcssa_for_iv_phis)
2192 gphi_iterator gsi_update, gsi_orig;
2193 class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2195 edge first_latch_e = EDGE_SUCC (first->latch, 0);
2196 edge second_preheader_e = loop_preheader_edge (second);
2197 basic_block between_bb = single_exit (first)->dest;
2199 gcc_assert (between_bb == second_preheader_e->src);
2200 gcc_assert (single_pred_p (between_bb) && single_succ_p (between_bb));
2201 /* Either the first loop or the second is the loop to be vectorized. */
2202 gcc_assert (loop == first || loop == second);
2204 for (gsi_orig = gsi_start_phis (first->header),
2205 gsi_update = gsi_start_phis (second->header);
2206 !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_update);
2207 gsi_next (&gsi_orig), gsi_next (&gsi_update))
2209 gphi *orig_phi = gsi_orig.phi ();
2210 gphi *update_phi = gsi_update.phi ();
2212 tree arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, first_latch_e);
2213 /* Generate lcssa PHI node for the first loop. */
2214 gphi *vect_phi = (loop == first) ? orig_phi : update_phi;
2215 stmt_vec_info vect_phi_info = loop_vinfo->lookup_stmt (vect_phi);
2216 if (create_lcssa_for_iv_phis || !iv_phi_p (vect_phi_info))
2218 tree new_res = copy_ssa_name (PHI_RESULT (orig_phi));
2219 gphi *lcssa_phi = create_phi_node (new_res, between_bb);
2220 add_phi_arg (lcssa_phi, arg, single_exit (first), UNKNOWN_LOCATION);
2221 arg = new_res;
2224 /* Update PHI node in the second loop by replacing arg on the loop's
2225 incoming edge. */
2226 adjust_phi_and_debug_stmts (update_phi, second_preheader_e, arg);
2229 /* For epilogue peeling we have to make sure to copy all LC PHIs
2230 for correct vectorization of live stmts. */
2231 if (loop == first)
2233 basic_block orig_exit = single_exit (second)->dest;
2234 for (gsi_orig = gsi_start_phis (orig_exit);
2235 !gsi_end_p (gsi_orig); gsi_next (&gsi_orig))
2237 gphi *orig_phi = gsi_orig.phi ();
2238 tree orig_arg = PHI_ARG_DEF (orig_phi, 0);
2239 if (TREE_CODE (orig_arg) != SSA_NAME || virtual_operand_p (orig_arg))
2240 continue;
2242 /* Already created in the above loop. */
2243 if (find_guard_arg (first, second, orig_phi))
2244 continue;
2246 tree new_res = copy_ssa_name (orig_arg);
2247 gphi *lcphi = create_phi_node (new_res, between_bb);
2248 add_phi_arg (lcphi, orig_arg, single_exit (first), UNKNOWN_LOCATION);
2253 /* Function slpeel_add_loop_guard adds guard skipping from the beginning
2254 of SKIP_LOOP to the beginning of UPDATE_LOOP. GUARD_EDGE and MERGE_EDGE
2255 are two pred edges of the merge point before UPDATE_LOOP. The two loops
2256 appear like below:
2258 guard_bb:
2259 if (cond)
2260 goto merge_bb;
2261 else
2262 goto skip_loop;
2264 skip_loop:
2265 header_a:
2266 i_1 = PHI<i_0, i_2>;
2268 i_2 = i_1 + 1;
2269 if (cond_a)
2270 goto latch_a;
2271 else
2272 goto exit_a;
2273 latch_a:
2274 goto header_a;
2276 exit_a:
2277 i_5 = PHI<i_2>;
2279 merge_bb:
2280 ;; PHI (i_x = PHI<i_0, i_5>) to be created at merge point.
2282 update_loop:
2283 header_b:
2284 i_3 = PHI<i_5, i_4>; ;; Use of i_5 to be replaced with i_x.
2286 i_4 = i_3 + 1;
2287 if (cond_b)
2288 goto latch_b;
2289 else
2290 goto exit_bb;
2291 latch_b:
2292 goto header_b;
2294 exit_bb:
2296 This function creates PHI nodes at merge_bb and replaces the use of i_5
2297 in the update_loop's PHI node with the result of new PHI result. */
2299 static void
2300 slpeel_update_phi_nodes_for_guard1 (class loop *skip_loop,
2301 class loop *update_loop,
2302 edge guard_edge, edge merge_edge)
2304 location_t merge_loc, guard_loc;
2305 edge orig_e = loop_preheader_edge (skip_loop);
2306 edge update_e = loop_preheader_edge (update_loop);
2307 gphi_iterator gsi_orig, gsi_update;
2309 for ((gsi_orig = gsi_start_phis (skip_loop->header),
2310 gsi_update = gsi_start_phis (update_loop->header));
2311 !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_update);
2312 gsi_next (&gsi_orig), gsi_next (&gsi_update))
2314 gphi *orig_phi = gsi_orig.phi ();
2315 gphi *update_phi = gsi_update.phi ();
2317 /* Generate new phi node at merge bb of the guard. */
2318 tree new_res = copy_ssa_name (PHI_RESULT (orig_phi));
2319 gphi *new_phi = create_phi_node (new_res, guard_edge->dest);
2321 /* Merge bb has two incoming edges: GUARD_EDGE and MERGE_EDGE. Set the
2322 args in NEW_PHI for these edges. */
2323 tree merge_arg = PHI_ARG_DEF_FROM_EDGE (update_phi, update_e);
2324 tree guard_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, orig_e);
2325 merge_loc = gimple_phi_arg_location_from_edge (update_phi, update_e);
2326 guard_loc = gimple_phi_arg_location_from_edge (orig_phi, orig_e);
2327 add_phi_arg (new_phi, merge_arg, merge_edge, merge_loc);
2328 add_phi_arg (new_phi, guard_arg, guard_edge, guard_loc);
2330 /* Update phi in UPDATE_PHI. */
2331 adjust_phi_and_debug_stmts (update_phi, update_e, new_res);
2335 /* LOOP and EPILOG are two consecutive loops in CFG and EPILOG is copied
2336 from LOOP. Function slpeel_add_loop_guard adds guard skipping from a
2337 point between the two loops to the end of EPILOG. Edges GUARD_EDGE
2338 and MERGE_EDGE are the two pred edges of merge_bb at the end of EPILOG.
2339 The CFG looks like:
2341 loop:
2342 header_a:
2343 i_1 = PHI<i_0, i_2>;
2345 i_2 = i_1 + 1;
2346 if (cond_a)
2347 goto latch_a;
2348 else
2349 goto exit_a;
2350 latch_a:
2351 goto header_a;
2353 exit_a:
2355 guard_bb:
2356 if (cond)
2357 goto merge_bb;
2358 else
2359 goto epilog_loop;
2361 ;; fall_through_bb
2363 epilog_loop:
2364 header_b:
2365 i_3 = PHI<i_2, i_4>;
2367 i_4 = i_3 + 1;
2368 if (cond_b)
2369 goto latch_b;
2370 else
2371 goto merge_bb;
2372 latch_b:
2373 goto header_b;
2375 merge_bb:
2376 ; PHI node (i_y = PHI<i_2, i_4>) to be created at merge point.
2378 exit_bb:
2379 i_x = PHI<i_4>; ;Use of i_4 to be replaced with i_y in merge_bb.
2381 For each name used out side EPILOG (i.e - for each name that has a lcssa
2382 phi in exit_bb) we create a new PHI in merge_bb. The new PHI has two
2383 args corresponding to GUARD_EDGE and MERGE_EDGE. Arg for MERGE_EDGE is
2384 the arg of the original PHI in exit_bb, arg for GUARD_EDGE is defined
2385 by LOOP and is found in the exit bb of LOOP. Arg of the original PHI
2386 in exit_bb will also be updated. */
2388 static void
2389 slpeel_update_phi_nodes_for_guard2 (class loop *loop, class loop *epilog,
2390 edge guard_edge, edge merge_edge)
2392 gphi_iterator gsi;
2393 basic_block merge_bb = guard_edge->dest;
2395 gcc_assert (single_succ_p (merge_bb));
2396 edge e = single_succ_edge (merge_bb);
2397 basic_block exit_bb = e->dest;
2398 gcc_assert (single_pred_p (exit_bb));
2399 gcc_assert (single_pred (exit_bb) == single_exit (epilog)->dest);
2401 for (gsi = gsi_start_phis (exit_bb); !gsi_end_p (gsi); gsi_next (&gsi))
2403 gphi *update_phi = gsi.phi ();
2404 tree old_arg = PHI_ARG_DEF (update_phi, 0);
2406 tree merge_arg = NULL_TREE;
2408 /* If the old argument is a SSA_NAME use its current_def. */
2409 if (TREE_CODE (old_arg) == SSA_NAME)
2410 merge_arg = get_current_def (old_arg);
2411 /* If it's a constant or doesn't have a current_def, just use the old
2412 argument. */
2413 if (!merge_arg)
2414 merge_arg = old_arg;
2416 tree guard_arg = find_guard_arg (loop, epilog, update_phi);
2417 /* If the var is live after loop but not a reduction, we simply
2418 use the old arg. */
2419 if (!guard_arg)
2420 guard_arg = old_arg;
2422 /* Create new phi node in MERGE_BB: */
2423 tree new_res = copy_ssa_name (PHI_RESULT (update_phi));
2424 gphi *merge_phi = create_phi_node (new_res, merge_bb);
2426 /* MERGE_BB has two incoming edges: GUARD_EDGE and MERGE_EDGE, Set
2427 the two PHI args in merge_phi for these edges. */
2428 add_phi_arg (merge_phi, merge_arg, merge_edge, UNKNOWN_LOCATION);
2429 add_phi_arg (merge_phi, guard_arg, guard_edge, UNKNOWN_LOCATION);
2431 /* Update the original phi in exit_bb. */
2432 adjust_phi_and_debug_stmts (update_phi, e, new_res);
2436 /* EPILOG loop is duplicated from the original loop for vectorizing,
2437 the arg of its loop closed ssa PHI needs to be updated. */
2439 static void
2440 slpeel_update_phi_nodes_for_lcssa (class loop *epilog)
2442 gphi_iterator gsi;
2443 basic_block exit_bb = single_exit (epilog)->dest;
2445 gcc_assert (single_pred_p (exit_bb));
2446 edge e = EDGE_PRED (exit_bb, 0);
2447 for (gsi = gsi_start_phis (exit_bb); !gsi_end_p (gsi); gsi_next (&gsi))
2448 rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (gsi.phi (), e));
2451 /* EPILOGUE_VINFO is an epilogue loop that we now know would need to
2452 iterate exactly CONST_NITERS times. Make a final decision about
2453 whether the epilogue loop should be used, returning true if so. */
2455 static bool
2456 vect_update_epilogue_niters (loop_vec_info epilogue_vinfo,
2457 unsigned HOST_WIDE_INT const_niters)
2459 /* Avoid wrap-around when computing const_niters - 1. Also reject
2460 using an epilogue loop for a single scalar iteration, even if
2461 we could in principle implement that using partial vectors. */
2462 unsigned int gap_niters = LOOP_VINFO_PEELING_FOR_GAPS (epilogue_vinfo);
2463 if (const_niters <= gap_niters + 1)
2464 return false;
2466 /* Install the number of iterations. */
2467 tree niters_type = TREE_TYPE (LOOP_VINFO_NITERS (epilogue_vinfo));
2468 tree niters_tree = build_int_cst (niters_type, const_niters);
2469 tree nitersm1_tree = build_int_cst (niters_type, const_niters - 1);
2471 LOOP_VINFO_NITERS (epilogue_vinfo) = niters_tree;
2472 LOOP_VINFO_NITERSM1 (epilogue_vinfo) = nitersm1_tree;
2474 /* Decide what to do if the number of epilogue iterations is not
2475 a multiple of the epilogue loop's vectorization factor. */
2476 return vect_determine_partial_vectors_and_peeling (epilogue_vinfo, true);
2479 /* LOOP_VINFO is an epilogue loop whose corresponding main loop can be skipped.
2480 Return a value that equals:
2482 - MAIN_LOOP_VALUE when LOOP_VINFO is entered from the main loop and
2483 - SKIP_VALUE when the main loop is skipped. */
2485 tree
2486 vect_get_main_loop_result (loop_vec_info loop_vinfo, tree main_loop_value,
2487 tree skip_value)
2489 gcc_assert (loop_vinfo->main_loop_edge);
2491 tree phi_result = make_ssa_name (TREE_TYPE (main_loop_value));
2492 basic_block bb = loop_vinfo->main_loop_edge->dest;
2493 gphi *new_phi = create_phi_node (phi_result, bb);
2494 add_phi_arg (new_phi, main_loop_value, loop_vinfo->main_loop_edge,
2495 UNKNOWN_LOCATION);
2496 add_phi_arg (new_phi, skip_value,
2497 loop_vinfo->skip_main_loop_edge, UNKNOWN_LOCATION);
2498 return phi_result;
2501 /* Function vect_do_peeling.
2503 Input:
2504 - LOOP_VINFO: Represent a loop to be vectorized, which looks like:
2506 preheader:
2507 LOOP:
2508 header_bb:
2509 loop_body
2510 if (exit_loop_cond) goto exit_bb
2511 else goto header_bb
2512 exit_bb:
2514 - NITERS: The number of iterations of the loop.
2515 - NITERSM1: The number of iterations of the loop's latch.
2516 - NITERS_NO_OVERFLOW: No overflow in computing NITERS.
2517 - TH, CHECK_PROFITABILITY: Threshold of niters to vectorize loop if
2518 CHECK_PROFITABILITY is true.
2519 Output:
2520 - *NITERS_VECTOR and *STEP_VECTOR describe how the main loop should
2521 iterate after vectorization; see vect_set_loop_condition for details.
2522 - *NITERS_VECTOR_MULT_VF_VAR is either null or an SSA name that
2523 should be set to the number of scalar iterations handled by the
2524 vector loop. The SSA name is only used on exit from the loop.
2526 This function peels prolog and epilog from the loop, adds guards skipping
2527 PROLOG and EPILOG for various conditions. As a result, the changed CFG
2528 would look like:
2530 guard_bb_1:
2531 if (prefer_scalar_loop) goto merge_bb_1
2532 else goto guard_bb_2
2534 guard_bb_2:
2535 if (skip_prolog) goto merge_bb_2
2536 else goto prolog_preheader
2538 prolog_preheader:
2539 PROLOG:
2540 prolog_header_bb:
2541 prolog_body
2542 if (exit_prolog_cond) goto prolog_exit_bb
2543 else goto prolog_header_bb
2544 prolog_exit_bb:
2546 merge_bb_2:
2548 vector_preheader:
2549 VECTOR LOOP:
2550 vector_header_bb:
2551 vector_body
2552 if (exit_vector_cond) goto vector_exit_bb
2553 else goto vector_header_bb
2554 vector_exit_bb:
2556 guard_bb_3:
2557 if (skip_epilog) goto merge_bb_3
2558 else goto epilog_preheader
2560 merge_bb_1:
2562 epilog_preheader:
2563 EPILOG:
2564 epilog_header_bb:
2565 epilog_body
2566 if (exit_epilog_cond) goto merge_bb_3
2567 else goto epilog_header_bb
2569 merge_bb_3:
2571 Note this function peels prolog and epilog only if it's necessary,
2572 as well as guards.
2573 This function returns the epilogue loop if a decision was made to vectorize
2574 it, otherwise NULL.
2576 The analysis resulting in this epilogue loop's loop_vec_info was performed
2577 in the same vect_analyze_loop call as the main loop's. At that time
2578 vect_analyze_loop constructs a list of accepted loop_vec_info's for lower
2579 vectorization factors than the main loop. This list is stored in the main
2580 loop's loop_vec_info in the 'epilogue_vinfos' member. Everytime we decide to
2581 vectorize the epilogue loop for a lower vectorization factor, the
2582 loop_vec_info sitting at the top of the epilogue_vinfos list is removed,
2583 updated and linked to the epilogue loop. This is later used to vectorize
2584 the epilogue. The reason the loop_vec_info needs updating is that it was
2585 constructed based on the original main loop, and the epilogue loop is a
2586 copy of this loop, so all links pointing to statements in the original loop
2587 need updating. Furthermore, these loop_vec_infos share the
2588 data_reference's records, which will also need to be updated.
2590 TODO: Guard for prefer_scalar_loop should be emitted along with
2591 versioning conditions if loop versioning is needed. */
2594 class loop *
2595 vect_do_peeling (loop_vec_info loop_vinfo, tree niters, tree nitersm1,
2596 tree *niters_vector, tree *step_vector,
2597 tree *niters_vector_mult_vf_var, int th,
2598 bool check_profitability, bool niters_no_overflow,
2599 tree *advance)
2601 edge e, guard_e;
2602 tree type = TREE_TYPE (niters), guard_cond;
2603 basic_block guard_bb, guard_to;
2604 profile_probability prob_prolog, prob_vector, prob_epilog;
2605 int estimated_vf;
2606 int prolog_peeling = 0;
2607 bool vect_epilogues = loop_vinfo->epilogue_vinfos.length () > 0;
2608 bool vect_epilogues_updated_niters = false;
2609 /* We currently do not support prolog peeling if the target alignment is not
2610 known at compile time. 'vect_gen_prolog_loop_niters' depends on the
2611 target alignment being constant. */
2612 dr_vec_info *dr_info = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
2613 if (dr_info && !DR_TARGET_ALIGNMENT (dr_info).is_constant ())
2614 return NULL;
2616 if (!vect_use_loop_mask_for_alignment_p (loop_vinfo))
2617 prolog_peeling = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
2619 poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2620 poly_uint64 bound_epilog = 0;
2621 if (!LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo)
2622 && LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo))
2623 bound_epilog += vf - 1;
2624 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
2625 bound_epilog += 1;
2626 bool epilog_peeling = maybe_ne (bound_epilog, 0U);
2627 poly_uint64 bound_scalar = bound_epilog;
2629 if (!prolog_peeling && !epilog_peeling)
2630 return NULL;
2632 /* Before doing any peeling make sure to reset debug binds outside of
2633 the loop refering to defs not in LC SSA. */
2634 class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2635 for (unsigned i = 0; i < loop->num_nodes; ++i)
2637 basic_block bb = LOOP_VINFO_BBS (loop_vinfo)[i];
2638 imm_use_iterator ui;
2639 gimple *use_stmt;
2640 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
2641 gsi_next (&gsi))
2643 FOR_EACH_IMM_USE_STMT (use_stmt, ui, gimple_phi_result (gsi.phi ()))
2644 if (gimple_debug_bind_p (use_stmt)
2645 && loop != gimple_bb (use_stmt)->loop_father
2646 && !flow_loop_nested_p (loop,
2647 gimple_bb (use_stmt)->loop_father))
2649 gimple_debug_bind_reset_value (use_stmt);
2650 update_stmt (use_stmt);
2653 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
2654 gsi_next (&gsi))
2656 ssa_op_iter op_iter;
2657 def_operand_p def_p;
2658 FOR_EACH_SSA_DEF_OPERAND (def_p, gsi_stmt (gsi), op_iter, SSA_OP_DEF)
2659 FOR_EACH_IMM_USE_STMT (use_stmt, ui, DEF_FROM_PTR (def_p))
2660 if (gimple_debug_bind_p (use_stmt)
2661 && loop != gimple_bb (use_stmt)->loop_father
2662 && !flow_loop_nested_p (loop,
2663 gimple_bb (use_stmt)->loop_father))
2665 gimple_debug_bind_reset_value (use_stmt);
2666 update_stmt (use_stmt);
2671 prob_vector = profile_probability::guessed_always ().apply_scale (9, 10);
2672 estimated_vf = vect_vf_for_cost (loop_vinfo);
2673 if (estimated_vf == 2)
2674 estimated_vf = 3;
2675 prob_prolog = prob_epilog = profile_probability::guessed_always ()
2676 .apply_scale (estimated_vf - 1, estimated_vf);
2678 class loop *prolog, *epilog = NULL;
2679 class loop *first_loop = loop;
2680 bool irred_flag = loop_preheader_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP;
2682 /* SSA form needs to be up-to-date since we are going to manually
2683 update SSA form in slpeel_tree_duplicate_loop_to_edge_cfg and delete all
2684 update SSA state after that, so we have to make sure to not lose any
2685 pending update needs. */
2686 gcc_assert (!need_ssa_update_p (cfun));
2688 /* If we're vectorizing an epilogue loop, we have ensured that the
2689 virtual operand is in SSA form throughout the vectorized main loop.
2690 Normally it is possible to trace the updated
2691 vector-stmt vdefs back to scalar-stmt vdefs and vector-stmt vuses
2692 back to scalar-stmt vuses, meaning that the effect of the SSA update
2693 remains local to the main loop. However, there are rare cases in
2694 which the vectorized loop should have vdefs even when the original scalar
2695 loop didn't. For example, vectorizing a load with IFN_LOAD_LANES
2696 introduces clobbers of the temporary vector array, which in turn
2697 needs new vdefs. If the scalar loop doesn't write to memory, these
2698 new vdefs will be the only ones in the vector loop.
2699 We are currently defering updating virtual SSA form and creating
2700 of a virtual PHI for this case so we do not have to make sure the
2701 newly introduced virtual def is in LCSSA form. */
2703 if (MAY_HAVE_DEBUG_BIND_STMTS)
2705 gcc_assert (!adjust_vec.exists ());
2706 adjust_vec.create (32);
2708 initialize_original_copy_tables ();
2710 /* Record the anchor bb at which the guard should be placed if the scalar
2711 loop might be preferred. */
2712 basic_block anchor = loop_preheader_edge (loop)->src;
2714 /* Generate the number of iterations for the prolog loop. We do this here
2715 so that we can also get the upper bound on the number of iterations. */
2716 tree niters_prolog;
2717 int bound_prolog = 0;
2718 if (prolog_peeling)
2719 niters_prolog = vect_gen_prolog_loop_niters (loop_vinfo, anchor,
2720 &bound_prolog);
2721 else
2722 niters_prolog = build_int_cst (type, 0);
2724 loop_vec_info epilogue_vinfo = NULL;
2725 if (vect_epilogues)
2727 epilogue_vinfo = loop_vinfo->epilogue_vinfos[0];
2728 loop_vinfo->epilogue_vinfos.ordered_remove (0);
2731 tree niters_vector_mult_vf = NULL_TREE;
2732 /* Saving NITERs before the loop, as this may be changed by prologue. */
2733 tree before_loop_niters = LOOP_VINFO_NITERS (loop_vinfo);
2734 edge update_e = NULL, skip_e = NULL;
2735 unsigned int lowest_vf = constant_lower_bound (vf);
2736 /* If we know the number of scalar iterations for the main loop we should
2737 check whether after the main loop there are enough iterations left over
2738 for the epilogue. */
2739 if (vect_epilogues
2740 && LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
2741 && prolog_peeling >= 0
2742 && known_eq (vf, lowest_vf))
2744 unsigned HOST_WIDE_INT eiters
2745 = (LOOP_VINFO_INT_NITERS (loop_vinfo)
2746 - LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo));
2748 eiters -= prolog_peeling;
2749 eiters
2750 = eiters % lowest_vf + LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo);
2752 while (!vect_update_epilogue_niters (epilogue_vinfo, eiters))
2754 delete epilogue_vinfo;
2755 epilogue_vinfo = NULL;
2756 if (loop_vinfo->epilogue_vinfos.length () == 0)
2758 vect_epilogues = false;
2759 break;
2761 epilogue_vinfo = loop_vinfo->epilogue_vinfos[0];
2762 loop_vinfo->epilogue_vinfos.ordered_remove (0);
2764 vect_epilogues_updated_niters = true;
2766 /* Prolog loop may be skipped. */
2767 bool skip_prolog = (prolog_peeling != 0);
2768 /* Skip this loop to epilog when there are not enough iterations to enter this
2769 vectorized loop. If true we should perform runtime checks on the NITERS
2770 to check whether we should skip the current vectorized loop. If we know
2771 the number of scalar iterations we may choose to add a runtime check if
2772 this number "maybe" smaller than the number of iterations required
2773 when we know the number of scalar iterations may potentially
2774 be smaller than the number of iterations required to enter this loop, for
2775 this we use the upper bounds on the prolog and epilog peeling. When we
2776 don't know the number of iterations and don't require versioning it is
2777 because we have asserted that there are enough scalar iterations to enter
2778 the main loop, so this skip is not necessary. When we are versioning then
2779 we only add such a skip if we have chosen to vectorize the epilogue. */
2780 bool skip_vector = (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
2781 ? maybe_lt (LOOP_VINFO_INT_NITERS (loop_vinfo),
2782 bound_prolog + bound_epilog)
2783 : (!LOOP_REQUIRES_VERSIONING (loop_vinfo)
2784 || vect_epilogues));
2785 /* Epilog loop must be executed if the number of iterations for epilog
2786 loop is known at compile time, otherwise we need to add a check at
2787 the end of vector loop and skip to the end of epilog loop. */
2788 bool skip_epilog = (prolog_peeling < 0
2789 || !LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
2790 || !vf.is_constant ());
2791 /* PEELING_FOR_GAPS is special because epilog loop must be executed. */
2792 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
2793 skip_epilog = false;
2795 class loop *scalar_loop = LOOP_VINFO_SCALAR_LOOP (loop_vinfo);
2796 auto_vec<profile_count> original_counts;
2797 basic_block *original_bbs = NULL;
2799 if (skip_vector)
2801 split_edge (loop_preheader_edge (loop));
2803 if (epilog_peeling && (vect_epilogues || scalar_loop == NULL))
2805 original_bbs = get_loop_body (loop);
2806 for (unsigned int i = 0; i < loop->num_nodes; i++)
2807 original_counts.safe_push(original_bbs[i]->count);
2810 /* Due to the order in which we peel prolog and epilog, we first
2811 propagate probability to the whole loop. The purpose is to
2812 avoid adjusting probabilities of both prolog and vector loops
2813 separately. Note in this case, the probability of epilog loop
2814 needs to be scaled back later. */
2815 basic_block bb_before_loop = loop_preheader_edge (loop)->src;
2816 if (prob_vector.initialized_p ())
2818 scale_bbs_frequencies (&bb_before_loop, 1, prob_vector);
2819 scale_loop_profile (loop, prob_vector, 0);
2823 dump_user_location_t loop_loc = find_loop_location (loop);
2824 if (vect_epilogues)
2825 /* Make sure to set the epilogue's epilogue scalar loop, such that we can
2826 use the original scalar loop as remaining epilogue if necessary. */
2827 LOOP_VINFO_SCALAR_LOOP (epilogue_vinfo)
2828 = LOOP_VINFO_SCALAR_LOOP (loop_vinfo);
2830 if (prolog_peeling)
2832 e = loop_preheader_edge (loop);
2833 if (!slpeel_can_duplicate_loop_p (loop, e))
2835 dump_printf_loc (MSG_MISSED_OPTIMIZATION, loop_loc,
2836 "loop can't be duplicated to preheader edge.\n");
2837 gcc_unreachable ();
2839 /* Peel prolog and put it on preheader edge of loop. */
2840 prolog = slpeel_tree_duplicate_loop_to_edge_cfg (loop, scalar_loop, e);
2841 if (!prolog)
2843 dump_printf_loc (MSG_MISSED_OPTIMIZATION, loop_loc,
2844 "slpeel_tree_duplicate_loop_to_edge_cfg failed.\n");
2845 gcc_unreachable ();
2847 prolog->force_vectorize = false;
2848 slpeel_update_phi_nodes_for_loops (loop_vinfo, prolog, loop, true);
2849 first_loop = prolog;
2850 reset_original_copy_tables ();
2852 /* Update the number of iterations for prolog loop. */
2853 tree step_prolog = build_one_cst (TREE_TYPE (niters_prolog));
2854 vect_set_loop_condition (prolog, NULL, niters_prolog,
2855 step_prolog, NULL_TREE, false);
2857 /* Skip the prolog loop. */
2858 if (skip_prolog)
2860 guard_cond = fold_build2 (EQ_EXPR, boolean_type_node,
2861 niters_prolog, build_int_cst (type, 0));
2862 guard_bb = loop_preheader_edge (prolog)->src;
2863 basic_block bb_after_prolog = loop_preheader_edge (loop)->src;
2864 guard_to = split_edge (loop_preheader_edge (loop));
2865 guard_e = slpeel_add_loop_guard (guard_bb, guard_cond,
2866 guard_to, guard_bb,
2867 prob_prolog.invert (),
2868 irred_flag);
2869 e = EDGE_PRED (guard_to, 0);
2870 e = (e != guard_e ? e : EDGE_PRED (guard_to, 1));
2871 slpeel_update_phi_nodes_for_guard1 (prolog, loop, guard_e, e);
2873 scale_bbs_frequencies (&bb_after_prolog, 1, prob_prolog);
2874 scale_loop_profile (prolog, prob_prolog, bound_prolog);
2877 /* Update init address of DRs. */
2878 vect_update_inits_of_drs (loop_vinfo, niters_prolog, PLUS_EXPR);
2879 /* Update niters for vector loop. */
2880 LOOP_VINFO_NITERS (loop_vinfo)
2881 = fold_build2 (MINUS_EXPR, type, niters, niters_prolog);
2882 LOOP_VINFO_NITERSM1 (loop_vinfo)
2883 = fold_build2 (MINUS_EXPR, type,
2884 LOOP_VINFO_NITERSM1 (loop_vinfo), niters_prolog);
2885 bool new_var_p = false;
2886 niters = vect_build_loop_niters (loop_vinfo, &new_var_p);
2887 /* It's guaranteed that vector loop bound before vectorization is at
2888 least VF, so set range information for newly generated var. */
2889 if (new_var_p)
2891 value_range vr (type,
2892 wi::to_wide (build_int_cst (type, vf)),
2893 wi::to_wide (TYPE_MAX_VALUE (type)));
2894 set_range_info (niters, vr);
2897 /* Prolog iterates at most bound_prolog times, latch iterates at
2898 most bound_prolog - 1 times. */
2899 record_niter_bound (prolog, bound_prolog - 1, false, true);
2900 delete_update_ssa ();
2901 adjust_vec_debug_stmts ();
2902 scev_reset ();
2905 if (epilog_peeling)
2907 e = single_exit (loop);
2908 if (!slpeel_can_duplicate_loop_p (loop, e))
2910 dump_printf_loc (MSG_MISSED_OPTIMIZATION, loop_loc,
2911 "loop can't be duplicated to exit edge.\n");
2912 gcc_unreachable ();
2914 /* Peel epilog and put it on exit edge of loop. If we are vectorizing
2915 said epilog then we should use a copy of the main loop as a starting
2916 point. This loop may have already had some preliminary transformations
2917 to allow for more optimal vectorization, for example if-conversion.
2918 If we are not vectorizing the epilog then we should use the scalar loop
2919 as the transformations mentioned above make less or no sense when not
2920 vectorizing. */
2921 epilog = vect_epilogues ? get_loop_copy (loop) : scalar_loop;
2922 epilog = slpeel_tree_duplicate_loop_to_edge_cfg (loop, epilog, e);
2923 if (!epilog)
2925 dump_printf_loc (MSG_MISSED_OPTIMIZATION, loop_loc,
2926 "slpeel_tree_duplicate_loop_to_edge_cfg failed.\n");
2927 gcc_unreachable ();
2929 epilog->force_vectorize = false;
2930 slpeel_update_phi_nodes_for_loops (loop_vinfo, loop, epilog, false);
2932 /* Scalar version loop may be preferred. In this case, add guard
2933 and skip to epilog. Note this only happens when the number of
2934 iterations of loop is unknown at compile time, otherwise this
2935 won't be vectorized. */
2936 if (skip_vector)
2938 /* Additional epilogue iteration is peeled if gap exists. */
2939 tree t = vect_gen_scalar_loop_niters (niters_prolog, prolog_peeling,
2940 bound_prolog, bound_epilog,
2941 th, &bound_scalar,
2942 check_profitability);
2943 /* Build guard against NITERSM1 since NITERS may overflow. */
2944 guard_cond = fold_build2 (LT_EXPR, boolean_type_node, nitersm1, t);
2945 guard_bb = anchor;
2946 guard_to = split_edge (loop_preheader_edge (epilog));
2947 guard_e = slpeel_add_loop_guard (guard_bb, guard_cond,
2948 guard_to, guard_bb,
2949 prob_vector.invert (),
2950 irred_flag);
2951 skip_e = guard_e;
2952 e = EDGE_PRED (guard_to, 0);
2953 e = (e != guard_e ? e : EDGE_PRED (guard_to, 1));
2954 slpeel_update_phi_nodes_for_guard1 (first_loop, epilog, guard_e, e);
2956 /* Simply propagate profile info from guard_bb to guard_to which is
2957 a merge point of control flow. */
2958 guard_to->count = guard_bb->count;
2960 /* Restore the counts of the epilog loop if we didn't use the scalar loop. */
2961 if (vect_epilogues || scalar_loop == NULL)
2963 gcc_assert(epilog->num_nodes == loop->num_nodes);
2964 basic_block *bbs = get_loop_body (epilog);
2965 for (unsigned int i = 0; i < epilog->num_nodes; i++)
2967 gcc_assert(get_bb_original (bbs[i]) == original_bbs[i]);
2968 bbs[i]->count = original_counts[i];
2970 free (bbs);
2971 free (original_bbs);
2975 basic_block bb_before_epilog = loop_preheader_edge (epilog)->src;
2976 /* If loop is peeled for non-zero constant times, now niters refers to
2977 orig_niters - prolog_peeling, it won't overflow even the orig_niters
2978 overflows. */
2979 niters_no_overflow |= (prolog_peeling > 0);
2980 vect_gen_vector_loop_niters (loop_vinfo, niters,
2981 niters_vector, step_vector,
2982 niters_no_overflow);
2983 if (!integer_onep (*step_vector))
2985 /* On exit from the loop we will have an easy way of calcalating
2986 NITERS_VECTOR / STEP * STEP. Install a dummy definition
2987 until then. */
2988 niters_vector_mult_vf = make_ssa_name (TREE_TYPE (*niters_vector));
2989 SSA_NAME_DEF_STMT (niters_vector_mult_vf) = gimple_build_nop ();
2990 *niters_vector_mult_vf_var = niters_vector_mult_vf;
2992 else
2993 vect_gen_vector_loop_niters_mult_vf (loop_vinfo, *niters_vector,
2994 &niters_vector_mult_vf);
2995 /* Update IVs of original loop as if they were advanced by
2996 niters_vector_mult_vf steps. */
2997 gcc_checking_assert (vect_can_advance_ivs_p (loop_vinfo));
2998 update_e = skip_vector ? e : loop_preheader_edge (epilog);
2999 vect_update_ivs_after_vectorizer (loop_vinfo, niters_vector_mult_vf,
3000 update_e);
3002 if (skip_epilog)
3004 guard_cond = fold_build2 (EQ_EXPR, boolean_type_node,
3005 niters, niters_vector_mult_vf);
3006 guard_bb = single_exit (loop)->dest;
3007 guard_to = split_edge (single_exit (epilog));
3008 guard_e = slpeel_add_loop_guard (guard_bb, guard_cond, guard_to,
3009 skip_vector ? anchor : guard_bb,
3010 prob_epilog.invert (),
3011 irred_flag);
3012 if (vect_epilogues)
3013 epilogue_vinfo->skip_this_loop_edge = guard_e;
3014 slpeel_update_phi_nodes_for_guard2 (loop, epilog, guard_e,
3015 single_exit (epilog));
3016 /* Only need to handle basic block before epilog loop if it's not
3017 the guard_bb, which is the case when skip_vector is true. */
3018 if (guard_bb != bb_before_epilog)
3020 prob_epilog = prob_vector * prob_epilog + prob_vector.invert ();
3022 scale_bbs_frequencies (&bb_before_epilog, 1, prob_epilog);
3024 scale_loop_profile (epilog, prob_epilog, 0);
3026 else
3027 slpeel_update_phi_nodes_for_lcssa (epilog);
3029 unsigned HOST_WIDE_INT bound;
3030 if (bound_scalar.is_constant (&bound))
3032 gcc_assert (bound != 0);
3033 /* -1 to convert loop iterations to latch iterations. */
3034 record_niter_bound (epilog, bound - 1, false, true);
3037 delete_update_ssa ();
3038 adjust_vec_debug_stmts ();
3039 scev_reset ();
3042 if (vect_epilogues)
3044 epilog->aux = epilogue_vinfo;
3045 LOOP_VINFO_LOOP (epilogue_vinfo) = epilog;
3047 loop_constraint_clear (epilog, LOOP_C_INFINITE);
3049 /* We now must calculate the number of NITERS performed by the previous
3050 loop and EPILOGUE_NITERS to be performed by the epilogue. */
3051 tree niters = fold_build2 (PLUS_EXPR, TREE_TYPE (niters_vector_mult_vf),
3052 niters_prolog, niters_vector_mult_vf);
3054 /* If skip_vector we may skip the previous loop, we insert a phi-node to
3055 determine whether we are coming from the previous vectorized loop
3056 using the update_e edge or the skip_vector basic block using the
3057 skip_e edge. */
3058 if (skip_vector)
3060 gcc_assert (update_e != NULL
3061 && skip_e != NULL
3062 && !vect_epilogues_updated_niters);
3063 gphi *new_phi = create_phi_node (make_ssa_name (TREE_TYPE (niters)),
3064 update_e->dest);
3065 tree new_ssa = make_ssa_name (TREE_TYPE (niters));
3066 gimple *stmt = gimple_build_assign (new_ssa, niters);
3067 gimple_stmt_iterator gsi;
3068 if (TREE_CODE (niters_vector_mult_vf) == SSA_NAME
3069 && SSA_NAME_DEF_STMT (niters_vector_mult_vf)->bb != NULL)
3071 gsi = gsi_for_stmt (SSA_NAME_DEF_STMT (niters_vector_mult_vf));
3072 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
3074 else
3076 gsi = gsi_last_bb (update_e->src);
3077 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
3080 niters = new_ssa;
3081 add_phi_arg (new_phi, niters, update_e, UNKNOWN_LOCATION);
3082 add_phi_arg (new_phi, build_zero_cst (TREE_TYPE (niters)), skip_e,
3083 UNKNOWN_LOCATION);
3084 niters = PHI_RESULT (new_phi);
3085 epilogue_vinfo->main_loop_edge = update_e;
3086 epilogue_vinfo->skip_main_loop_edge = skip_e;
3089 /* Set ADVANCE to the number of iterations performed by the previous
3090 loop and its prologue. */
3091 *advance = niters;
3093 if (!vect_epilogues_updated_niters)
3095 /* Subtract the number of iterations performed by the vectorized loop
3096 from the number of total iterations. */
3097 tree epilogue_niters = fold_build2 (MINUS_EXPR, TREE_TYPE (niters),
3098 before_loop_niters,
3099 niters);
3101 LOOP_VINFO_NITERS (epilogue_vinfo) = epilogue_niters;
3102 LOOP_VINFO_NITERSM1 (epilogue_vinfo)
3103 = fold_build2 (MINUS_EXPR, TREE_TYPE (epilogue_niters),
3104 epilogue_niters,
3105 build_one_cst (TREE_TYPE (epilogue_niters)));
3107 /* Decide what to do if the number of epilogue iterations is not
3108 a multiple of the epilogue loop's vectorization factor.
3109 We should have rejected the loop during the analysis phase
3110 if this fails. */
3111 if (!vect_determine_partial_vectors_and_peeling (epilogue_vinfo,
3112 true))
3113 gcc_unreachable ();
3117 adjust_vec.release ();
3118 free_original_copy_tables ();
3120 return vect_epilogues ? epilog : NULL;
3123 /* Function vect_create_cond_for_niters_checks.
3125 Create a conditional expression that represents the run-time checks for
3126 loop's niter. The loop is guaranteed to terminate if the run-time
3127 checks hold.
3129 Input:
3130 COND_EXPR - input conditional expression. New conditions will be chained
3131 with logical AND operation. If it is NULL, then the function
3132 is used to return the number of alias checks.
3133 LOOP_VINFO - field LOOP_VINFO_MAY_ALIAS_STMTS contains the list of ddrs
3134 to be checked.
3136 Output:
3137 COND_EXPR - conditional expression.
3139 The returned COND_EXPR is the conditional expression to be used in the
3140 if statement that controls which version of the loop gets executed at
3141 runtime. */
3143 static void
3144 vect_create_cond_for_niters_checks (loop_vec_info loop_vinfo, tree *cond_expr)
3146 tree part_cond_expr = LOOP_VINFO_NITERS_ASSUMPTIONS (loop_vinfo);
3148 if (*cond_expr)
3149 *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
3150 *cond_expr, part_cond_expr);
3151 else
3152 *cond_expr = part_cond_expr;
3155 /* Set *COND_EXPR to a tree that is true when both the original *COND_EXPR
3156 and PART_COND_EXPR are true. Treat a null *COND_EXPR as "true". */
3158 static void
3159 chain_cond_expr (tree *cond_expr, tree part_cond_expr)
3161 if (*cond_expr)
3162 *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
3163 *cond_expr, part_cond_expr);
3164 else
3165 *cond_expr = part_cond_expr;
3168 /* Function vect_create_cond_for_align_checks.
3170 Create a conditional expression that represents the alignment checks for
3171 all of data references (array element references) whose alignment must be
3172 checked at runtime.
3174 Input:
3175 COND_EXPR - input conditional expression. New conditions will be chained
3176 with logical AND operation.
3177 LOOP_VINFO - two fields of the loop information are used.
3178 LOOP_VINFO_PTR_MASK is the mask used to check the alignment.
3179 LOOP_VINFO_MAY_MISALIGN_STMTS contains the refs to be checked.
3181 Output:
3182 COND_EXPR_STMT_LIST - statements needed to construct the conditional
3183 expression.
3184 The returned value is the conditional expression to be used in the if
3185 statement that controls which version of the loop gets executed at runtime.
3187 The algorithm makes two assumptions:
3188 1) The number of bytes "n" in a vector is a power of 2.
3189 2) An address "a" is aligned if a%n is zero and that this
3190 test can be done as a&(n-1) == 0. For example, for 16
3191 byte vectors the test is a&0xf == 0. */
3193 static void
3194 vect_create_cond_for_align_checks (loop_vec_info loop_vinfo,
3195 tree *cond_expr,
3196 gimple_seq *cond_expr_stmt_list)
3198 const vec<stmt_vec_info> &may_misalign_stmts
3199 = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
3200 stmt_vec_info stmt_info;
3201 int mask = LOOP_VINFO_PTR_MASK (loop_vinfo);
3202 tree mask_cst;
3203 unsigned int i;
3204 tree int_ptrsize_type;
3205 char tmp_name[20];
3206 tree or_tmp_name = NULL_TREE;
3207 tree and_tmp_name;
3208 gimple *and_stmt;
3209 tree ptrsize_zero;
3210 tree part_cond_expr;
3212 /* Check that mask is one less than a power of 2, i.e., mask is
3213 all zeros followed by all ones. */
3214 gcc_assert ((mask != 0) && ((mask & (mask+1)) == 0));
3216 int_ptrsize_type = signed_type_for (ptr_type_node);
3218 /* Create expression (mask & (dr_1 || ... || dr_n)) where dr_i is the address
3219 of the first vector of the i'th data reference. */
3221 FOR_EACH_VEC_ELT (may_misalign_stmts, i, stmt_info)
3223 gimple_seq new_stmt_list = NULL;
3224 tree addr_base;
3225 tree addr_tmp_name;
3226 tree new_or_tmp_name;
3227 gimple *addr_stmt, *or_stmt;
3228 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
3229 bool negative = tree_int_cst_compare
3230 (DR_STEP (STMT_VINFO_DATA_REF (stmt_info)), size_zero_node) < 0;
3231 tree offset = negative
3232 ? size_int ((-TYPE_VECTOR_SUBPARTS (vectype) + 1)
3233 * TREE_INT_CST_LOW (TYPE_SIZE_UNIT (TREE_TYPE (vectype))))
3234 : size_zero_node;
3236 /* create: addr_tmp = (int)(address_of_first_vector) */
3237 addr_base =
3238 vect_create_addr_base_for_vector_ref (loop_vinfo,
3239 stmt_info, &new_stmt_list,
3240 offset);
3241 if (new_stmt_list != NULL)
3242 gimple_seq_add_seq (cond_expr_stmt_list, new_stmt_list);
3244 sprintf (tmp_name, "addr2int%d", i);
3245 addr_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, tmp_name);
3246 addr_stmt = gimple_build_assign (addr_tmp_name, NOP_EXPR, addr_base);
3247 gimple_seq_add_stmt (cond_expr_stmt_list, addr_stmt);
3249 /* The addresses are OR together. */
3251 if (or_tmp_name != NULL_TREE)
3253 /* create: or_tmp = or_tmp | addr_tmp */
3254 sprintf (tmp_name, "orptrs%d", i);
3255 new_or_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, tmp_name);
3256 or_stmt = gimple_build_assign (new_or_tmp_name, BIT_IOR_EXPR,
3257 or_tmp_name, addr_tmp_name);
3258 gimple_seq_add_stmt (cond_expr_stmt_list, or_stmt);
3259 or_tmp_name = new_or_tmp_name;
3261 else
3262 or_tmp_name = addr_tmp_name;
3264 } /* end for i */
3266 mask_cst = build_int_cst (int_ptrsize_type, mask);
3268 /* create: and_tmp = or_tmp & mask */
3269 and_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, "andmask");
3271 and_stmt = gimple_build_assign (and_tmp_name, BIT_AND_EXPR,
3272 or_tmp_name, mask_cst);
3273 gimple_seq_add_stmt (cond_expr_stmt_list, and_stmt);
3275 /* Make and_tmp the left operand of the conditional test against zero.
3276 if and_tmp has a nonzero bit then some address is unaligned. */
3277 ptrsize_zero = build_int_cst (int_ptrsize_type, 0);
3278 part_cond_expr = fold_build2 (EQ_EXPR, boolean_type_node,
3279 and_tmp_name, ptrsize_zero);
3280 chain_cond_expr (cond_expr, part_cond_expr);
3283 /* If LOOP_VINFO_CHECK_UNEQUAL_ADDRS contains <A1, B1>, ..., <An, Bn>,
3284 create a tree representation of: (&A1 != &B1) && ... && (&An != &Bn).
3285 Set *COND_EXPR to a tree that is true when both the original *COND_EXPR
3286 and this new condition are true. Treat a null *COND_EXPR as "true". */
3288 static void
3289 vect_create_cond_for_unequal_addrs (loop_vec_info loop_vinfo, tree *cond_expr)
3291 const vec<vec_object_pair> &pairs
3292 = LOOP_VINFO_CHECK_UNEQUAL_ADDRS (loop_vinfo);
3293 unsigned int i;
3294 vec_object_pair *pair;
3295 FOR_EACH_VEC_ELT (pairs, i, pair)
3297 tree addr1 = build_fold_addr_expr (pair->first);
3298 tree addr2 = build_fold_addr_expr (pair->second);
3299 tree part_cond_expr = fold_build2 (NE_EXPR, boolean_type_node,
3300 addr1, addr2);
3301 chain_cond_expr (cond_expr, part_cond_expr);
3305 /* Create an expression that is true when all lower-bound conditions for
3306 the vectorized loop are met. Chain this condition with *COND_EXPR. */
3308 static void
3309 vect_create_cond_for_lower_bounds (loop_vec_info loop_vinfo, tree *cond_expr)
3311 const vec<vec_lower_bound> &lower_bounds
3312 = LOOP_VINFO_LOWER_BOUNDS (loop_vinfo);
3313 for (unsigned int i = 0; i < lower_bounds.length (); ++i)
3315 tree expr = lower_bounds[i].expr;
3316 tree type = unsigned_type_for (TREE_TYPE (expr));
3317 expr = fold_convert (type, expr);
3318 poly_uint64 bound = lower_bounds[i].min_value;
3319 if (!lower_bounds[i].unsigned_p)
3321 expr = fold_build2 (PLUS_EXPR, type, expr,
3322 build_int_cstu (type, bound - 1));
3323 bound += bound - 1;
3325 tree part_cond_expr = fold_build2 (GE_EXPR, boolean_type_node, expr,
3326 build_int_cstu (type, bound));
3327 chain_cond_expr (cond_expr, part_cond_expr);
3331 /* Function vect_create_cond_for_alias_checks.
3333 Create a conditional expression that represents the run-time checks for
3334 overlapping of address ranges represented by a list of data references
3335 relations passed as input.
3337 Input:
3338 COND_EXPR - input conditional expression. New conditions will be chained
3339 with logical AND operation. If it is NULL, then the function
3340 is used to return the number of alias checks.
3341 LOOP_VINFO - field LOOP_VINFO_MAY_ALIAS_STMTS contains the list of ddrs
3342 to be checked.
3344 Output:
3345 COND_EXPR - conditional expression.
3347 The returned COND_EXPR is the conditional expression to be used in the if
3348 statement that controls which version of the loop gets executed at runtime.
3351 void
3352 vect_create_cond_for_alias_checks (loop_vec_info loop_vinfo, tree * cond_expr)
3354 const vec<dr_with_seg_len_pair_t> &comp_alias_ddrs =
3355 LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo);
3357 if (comp_alias_ddrs.is_empty ())
3358 return;
3360 create_runtime_alias_checks (LOOP_VINFO_LOOP (loop_vinfo),
3361 &comp_alias_ddrs, cond_expr);
3362 if (dump_enabled_p ())
3363 dump_printf_loc (MSG_NOTE, vect_location,
3364 "created %u versioning for alias checks.\n",
3365 comp_alias_ddrs.length ());
3369 /* Function vect_loop_versioning.
3371 If the loop has data references that may or may not be aligned or/and
3372 has data reference relations whose independence was not proven then
3373 two versions of the loop need to be generated, one which is vectorized
3374 and one which isn't. A test is then generated to control which of the
3375 loops is executed. The test checks for the alignment of all of the
3376 data references that may or may not be aligned. An additional
3377 sequence of runtime tests is generated for each pairs of DDRs whose
3378 independence was not proven. The vectorized version of loop is
3379 executed only if both alias and alignment tests are passed.
3381 The test generated to check which version of loop is executed
3382 is modified to also check for profitability as indicated by the
3383 cost model threshold TH.
3385 The versioning precondition(s) are placed in *COND_EXPR and
3386 *COND_EXPR_STMT_LIST. */
3388 class loop *
3389 vect_loop_versioning (loop_vec_info loop_vinfo,
3390 gimple *loop_vectorized_call)
3392 class loop *loop = LOOP_VINFO_LOOP (loop_vinfo), *nloop;
3393 class loop *scalar_loop = LOOP_VINFO_SCALAR_LOOP (loop_vinfo);
3394 basic_block condition_bb;
3395 gphi_iterator gsi;
3396 gimple_stmt_iterator cond_exp_gsi;
3397 basic_block merge_bb;
3398 basic_block new_exit_bb;
3399 edge new_exit_e, e;
3400 gphi *orig_phi, *new_phi;
3401 tree cond_expr = NULL_TREE;
3402 gimple_seq cond_expr_stmt_list = NULL;
3403 tree arg;
3404 profile_probability prob = profile_probability::likely ();
3405 gimple_seq gimplify_stmt_list = NULL;
3406 tree scalar_loop_iters = LOOP_VINFO_NITERSM1 (loop_vinfo);
3407 bool version_align = LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo);
3408 bool version_alias = LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo);
3409 bool version_niter = LOOP_REQUIRES_VERSIONING_FOR_NITERS (loop_vinfo);
3410 poly_uint64 versioning_threshold
3411 = LOOP_VINFO_VERSIONING_THRESHOLD (loop_vinfo);
3412 tree version_simd_if_cond
3413 = LOOP_REQUIRES_VERSIONING_FOR_SIMD_IF_COND (loop_vinfo);
3414 unsigned th = LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo);
3416 if (vect_apply_runtime_profitability_check_p (loop_vinfo)
3417 && !ordered_p (th, versioning_threshold))
3418 cond_expr = fold_build2 (GE_EXPR, boolean_type_node, scalar_loop_iters,
3419 build_int_cst (TREE_TYPE (scalar_loop_iters),
3420 th - 1));
3421 if (maybe_ne (versioning_threshold, 0U))
3423 tree expr = fold_build2 (GE_EXPR, boolean_type_node, scalar_loop_iters,
3424 build_int_cst (TREE_TYPE (scalar_loop_iters),
3425 versioning_threshold - 1));
3426 if (cond_expr)
3427 cond_expr = fold_build2 (BIT_AND_EXPR, boolean_type_node,
3428 expr, cond_expr);
3429 else
3430 cond_expr = expr;
3433 tree cost_name = NULL_TREE;
3434 profile_probability prob2 = profile_probability::uninitialized ();
3435 if (cond_expr
3436 && !integer_truep (cond_expr)
3437 && (version_niter
3438 || version_align
3439 || version_alias
3440 || version_simd_if_cond))
3442 cost_name = cond_expr = force_gimple_operand_1 (unshare_expr (cond_expr),
3443 &cond_expr_stmt_list,
3444 is_gimple_val, NULL_TREE);
3445 /* Split prob () into two so that the overall probability of passing
3446 both the cost-model and versioning checks is the orig prob. */
3447 prob2 = prob.split (prob);
3450 if (version_niter)
3451 vect_create_cond_for_niters_checks (loop_vinfo, &cond_expr);
3453 if (cond_expr)
3455 gimple_seq tem = NULL;
3456 cond_expr = force_gimple_operand_1 (unshare_expr (cond_expr),
3457 &tem, is_gimple_condexpr_for_cond,
3458 NULL_TREE);
3459 gimple_seq_add_seq (&cond_expr_stmt_list, tem);
3462 if (version_align)
3463 vect_create_cond_for_align_checks (loop_vinfo, &cond_expr,
3464 &cond_expr_stmt_list);
3466 if (version_alias)
3468 vect_create_cond_for_unequal_addrs (loop_vinfo, &cond_expr);
3469 vect_create_cond_for_lower_bounds (loop_vinfo, &cond_expr);
3470 vect_create_cond_for_alias_checks (loop_vinfo, &cond_expr);
3473 if (version_simd_if_cond)
3475 gcc_assert (dom_info_available_p (CDI_DOMINATORS));
3476 if (flag_checking)
3477 if (basic_block bb
3478 = gimple_bb (SSA_NAME_DEF_STMT (version_simd_if_cond)))
3479 gcc_assert (bb != loop->header
3480 && dominated_by_p (CDI_DOMINATORS, loop->header, bb)
3481 && (scalar_loop == NULL
3482 || (bb != scalar_loop->header
3483 && dominated_by_p (CDI_DOMINATORS,
3484 scalar_loop->header, bb))));
3485 tree zero = build_zero_cst (TREE_TYPE (version_simd_if_cond));
3486 tree c = fold_build2 (NE_EXPR, boolean_type_node,
3487 version_simd_if_cond, zero);
3488 if (cond_expr)
3489 cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
3490 c, cond_expr);
3491 else
3492 cond_expr = c;
3493 if (dump_enabled_p ())
3494 dump_printf_loc (MSG_NOTE, vect_location,
3495 "created versioning for simd if condition check.\n");
3498 cond_expr = force_gimple_operand_1 (unshare_expr (cond_expr),
3499 &gimplify_stmt_list,
3500 is_gimple_condexpr_for_cond, NULL_TREE);
3501 gimple_seq_add_seq (&cond_expr_stmt_list, gimplify_stmt_list);
3503 /* Compute the outermost loop cond_expr and cond_expr_stmt_list are
3504 invariant in. */
3505 class loop *outermost = outermost_invariant_loop_for_expr (loop, cond_expr);
3506 for (gimple_stmt_iterator gsi = gsi_start (cond_expr_stmt_list);
3507 !gsi_end_p (gsi); gsi_next (&gsi))
3509 gimple *stmt = gsi_stmt (gsi);
3510 update_stmt (stmt);
3511 ssa_op_iter iter;
3512 use_operand_p use_p;
3513 basic_block def_bb;
3514 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
3515 if ((def_bb = gimple_bb (SSA_NAME_DEF_STMT (USE_FROM_PTR (use_p))))
3516 && flow_bb_inside_loop_p (outermost, def_bb))
3517 outermost = superloop_at_depth (loop, bb_loop_depth (def_bb) + 1);
3520 /* Search for the outermost loop we can version. Avoid versioning of
3521 non-perfect nests but allow if-conversion versioned loops inside. */
3522 class loop *loop_to_version = loop;
3523 if (flow_loop_nested_p (outermost, loop))
3525 if (dump_enabled_p ())
3526 dump_printf_loc (MSG_NOTE, vect_location,
3527 "trying to apply versioning to outer loop %d\n",
3528 outermost->num);
3529 if (outermost->num == 0)
3530 outermost = superloop_at_depth (loop, 1);
3531 /* And avoid applying versioning on non-perfect nests. */
3532 while (loop_to_version != outermost
3533 && (e = single_exit (loop_outer (loop_to_version)))
3534 && !(e->flags & EDGE_COMPLEX)
3535 && (!loop_outer (loop_to_version)->inner->next
3536 || vect_loop_vectorized_call (loop_to_version))
3537 && (!loop_outer (loop_to_version)->inner->next
3538 || !loop_outer (loop_to_version)->inner->next->next))
3539 loop_to_version = loop_outer (loop_to_version);
3542 /* Apply versioning. If there is already a scalar version created by
3543 if-conversion re-use that. Note we cannot re-use the copy of
3544 an if-converted outer-loop when vectorizing the inner loop only. */
3545 gcond *cond;
3546 if ((!loop_to_version->inner || loop == loop_to_version)
3547 && loop_vectorized_call)
3549 gcc_assert (scalar_loop);
3550 condition_bb = gimple_bb (loop_vectorized_call);
3551 cond = as_a <gcond *> (last_stmt (condition_bb));
3552 gimple_cond_set_condition_from_tree (cond, cond_expr);
3553 update_stmt (cond);
3555 if (cond_expr_stmt_list)
3557 cond_exp_gsi = gsi_for_stmt (loop_vectorized_call);
3558 gsi_insert_seq_before (&cond_exp_gsi, cond_expr_stmt_list,
3559 GSI_SAME_STMT);
3562 /* if-conversion uses profile_probability::always () for both paths,
3563 reset the paths probabilities appropriately. */
3564 edge te, fe;
3565 extract_true_false_edges_from_block (condition_bb, &te, &fe);
3566 te->probability = prob;
3567 fe->probability = prob.invert ();
3568 /* We can scale loops counts immediately but have to postpone
3569 scaling the scalar loop because we re-use it during peeling. */
3570 scale_loop_frequencies (loop_to_version, te->probability);
3571 LOOP_VINFO_SCALAR_LOOP_SCALING (loop_vinfo) = fe->probability;
3573 nloop = scalar_loop;
3574 if (dump_enabled_p ())
3575 dump_printf_loc (MSG_NOTE, vect_location,
3576 "reusing %sloop version created by if conversion\n",
3577 loop_to_version != loop ? "outer " : "");
3579 else
3581 if (loop_to_version != loop
3582 && dump_enabled_p ())
3583 dump_printf_loc (MSG_NOTE, vect_location,
3584 "applying loop versioning to outer loop %d\n",
3585 loop_to_version->num);
3587 unsigned orig_pe_idx = loop_preheader_edge (loop)->dest_idx;
3589 initialize_original_copy_tables ();
3590 nloop = loop_version (loop_to_version, cond_expr, &condition_bb,
3591 prob, prob.invert (), prob, prob.invert (), true);
3592 gcc_assert (nloop);
3593 nloop = get_loop_copy (loop);
3595 /* For cycle vectorization with SLP we rely on the PHI arguments
3596 appearing in the same order as the SLP node operands which for the
3597 loop PHI nodes means the preheader edge dest index needs to remain
3598 the same for the analyzed loop which also becomes the vectorized one.
3599 Make it so in case the state after versioning differs by redirecting
3600 the first edge into the header to the same destination which moves
3601 it last. */
3602 if (loop_preheader_edge (loop)->dest_idx != orig_pe_idx)
3604 edge e = EDGE_PRED (loop->header, 0);
3605 ssa_redirect_edge (e, e->dest);
3606 flush_pending_stmts (e);
3608 gcc_assert (loop_preheader_edge (loop)->dest_idx == orig_pe_idx);
3610 /* Kill off IFN_LOOP_VECTORIZED_CALL in the copy, nobody will
3611 reap those otherwise; they also refer to the original
3612 loops. */
3613 class loop *l = loop;
3614 while (gimple *call = vect_loop_vectorized_call (l))
3616 call = SSA_NAME_DEF_STMT (get_current_def (gimple_call_lhs (call)));
3617 fold_loop_internal_call (call, boolean_false_node);
3618 l = loop_outer (l);
3620 free_original_copy_tables ();
3622 if (cond_expr_stmt_list)
3624 cond_exp_gsi = gsi_last_bb (condition_bb);
3625 gsi_insert_seq_before (&cond_exp_gsi, cond_expr_stmt_list,
3626 GSI_SAME_STMT);
3629 /* Loop versioning violates an assumption we try to maintain during
3630 vectorization - that the loop exit block has a single predecessor.
3631 After versioning, the exit block of both loop versions is the same
3632 basic block (i.e. it has two predecessors). Just in order to simplify
3633 following transformations in the vectorizer, we fix this situation
3634 here by adding a new (empty) block on the exit-edge of the loop,
3635 with the proper loop-exit phis to maintain loop-closed-form.
3636 If loop versioning wasn't done from loop, but scalar_loop instead,
3637 merge_bb will have already just a single successor. */
3639 merge_bb = single_exit (loop_to_version)->dest;
3640 if (EDGE_COUNT (merge_bb->preds) >= 2)
3642 gcc_assert (EDGE_COUNT (merge_bb->preds) >= 2);
3643 new_exit_bb = split_edge (single_exit (loop_to_version));
3644 new_exit_e = single_exit (loop_to_version);
3645 e = EDGE_SUCC (new_exit_bb, 0);
3647 for (gsi = gsi_start_phis (merge_bb); !gsi_end_p (gsi);
3648 gsi_next (&gsi))
3650 tree new_res;
3651 orig_phi = gsi.phi ();
3652 new_res = copy_ssa_name (PHI_RESULT (orig_phi));
3653 new_phi = create_phi_node (new_res, new_exit_bb);
3654 arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
3655 add_phi_arg (new_phi, arg, new_exit_e,
3656 gimple_phi_arg_location_from_edge (orig_phi, e));
3657 adjust_phi_and_debug_stmts (orig_phi, e, PHI_RESULT (new_phi));
3661 update_ssa (TODO_update_ssa_no_phi);
3664 /* Split the cost model check off to a separate BB. Costing assumes
3665 this is the only thing we perform when we enter the scalar loop
3666 from a failed cost decision. */
3667 if (cost_name && TREE_CODE (cost_name) == SSA_NAME)
3669 gimple *def = SSA_NAME_DEF_STMT (cost_name);
3670 /* All uses of the cost check are 'true' after the check we
3671 are going to insert. */
3672 replace_uses_by (cost_name, boolean_true_node);
3673 /* And we're going to build the new single use of it. */
3674 gcond *cond = gimple_build_cond (NE_EXPR, cost_name, boolean_false_node,
3675 NULL_TREE, NULL_TREE);
3676 edge e = split_block (gimple_bb (def), def);
3677 gimple_stmt_iterator gsi = gsi_for_stmt (def);
3678 gsi_insert_after (&gsi, cond, GSI_NEW_STMT);
3679 edge true_e, false_e;
3680 extract_true_false_edges_from_block (e->dest, &true_e, &false_e);
3681 e->flags &= ~EDGE_FALLTHRU;
3682 e->flags |= EDGE_TRUE_VALUE;
3683 edge e2 = make_edge (e->src, false_e->dest, EDGE_FALSE_VALUE);
3684 e->probability = prob2;
3685 e2->probability = prob2.invert ();
3686 set_immediate_dominator (CDI_DOMINATORS, false_e->dest, e->src);
3687 auto_vec<basic_block, 3> adj;
3688 for (basic_block son = first_dom_son (CDI_DOMINATORS, e->dest);
3689 son;
3690 son = next_dom_son (CDI_DOMINATORS, son))
3691 if (EDGE_COUNT (son->preds) > 1)
3692 adj.safe_push (son);
3693 for (auto son : adj)
3694 set_immediate_dominator (CDI_DOMINATORS, son, e->src);
3697 if (version_niter)
3699 /* The versioned loop could be infinite, we need to clear existing
3700 niter information which is copied from the original loop. */
3701 gcc_assert (loop_constraint_set_p (loop, LOOP_C_FINITE));
3702 vect_free_loop_info_assumptions (nloop);
3705 if (LOCATION_LOCUS (vect_location.get_location_t ()) != UNKNOWN_LOCATION
3706 && dump_enabled_p ())
3708 if (version_alias)
3709 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS | MSG_PRIORITY_USER_FACING,
3710 vect_location,
3711 "loop versioned for vectorization because of "
3712 "possible aliasing\n");
3713 if (version_align)
3714 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS | MSG_PRIORITY_USER_FACING,
3715 vect_location,
3716 "loop versioned for vectorization to enhance "
3717 "alignment\n");
3721 return nloop;