* omp-low.c (MASK_GANG, MASK_WORKER, MASK_VECTOR): Delete.
[official-gcc.git] / gcc / jump.c
blobf0d2af0d28aaa6691c057269112f98d37d8f5bce
1 /* Optimize jump instructions, for GNU compiler.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This is the pathetic reminder of old fame of the jump-optimization pass
21 of the compiler. Now it contains basically a set of utility functions to
22 operate with jumps.
24 Each CODE_LABEL has a count of the times it is used
25 stored in the LABEL_NUSES internal field, and each JUMP_INSN
26 has one label that it refers to stored in the
27 JUMP_LABEL internal field. With this we can detect labels that
28 become unused because of the deletion of all the jumps that
29 formerly used them. The JUMP_LABEL info is sometimes looked
30 at by later passes. For return insns, it contains either a
31 RETURN or a SIMPLE_RETURN rtx.
33 The subroutines redirect_jump and invert_jump are used
34 from other passes as well. */
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "backend.h"
40 #include "cfghooks.h"
41 #include "rtl.h"
42 #include "tm_p.h"
43 #include "flags.h"
44 #include "regs.h"
45 #include "insn-config.h"
46 #include "insn-attr.h"
47 #include "recog.h"
48 #include "cfgrtl.h"
49 #include "tree.h"
50 #include "alias.h"
51 #include "expmed.h"
52 #include "dojump.h"
53 #include "explow.h"
54 #include "calls.h"
55 #include "emit-rtl.h"
56 #include "varasm.h"
57 #include "stmt.h"
58 #include "expr.h"
59 #include "except.h"
60 #include "diagnostic-core.h"
61 #include "reload.h"
62 #include "tree-pass.h"
63 #include "target.h"
64 #include "rtl-iter.h"
66 /* Optimize jump y; x: ... y: jumpif... x?
67 Don't know if it is worth bothering with. */
68 /* Optimize two cases of conditional jump to conditional jump?
69 This can never delete any instruction or make anything dead,
70 or even change what is live at any point.
71 So perhaps let combiner do it. */
73 static void init_label_info (rtx_insn *);
74 static void mark_all_labels (rtx_insn *);
75 static void mark_jump_label_1 (rtx, rtx_insn *, bool, bool);
76 static void mark_jump_label_asm (rtx, rtx_insn *);
77 static void redirect_exp_1 (rtx *, rtx, rtx, rtx);
78 static int invert_exp_1 (rtx, rtx);
80 /* Worker for rebuild_jump_labels and rebuild_jump_labels_chain. */
81 static void
82 rebuild_jump_labels_1 (rtx_insn *f, bool count_forced)
84 rtx_insn_list *insn;
86 timevar_push (TV_REBUILD_JUMP);
87 init_label_info (f);
88 mark_all_labels (f);
90 /* Keep track of labels used from static data; we don't track them
91 closely enough to delete them here, so make sure their reference
92 count doesn't drop to zero. */
94 if (count_forced)
95 for (insn = forced_labels; insn; insn = insn->next ())
96 if (LABEL_P (insn->insn ()))
97 LABEL_NUSES (insn->insn ())++;
98 timevar_pop (TV_REBUILD_JUMP);
101 /* This function rebuilds the JUMP_LABEL field and REG_LABEL_TARGET
102 notes in jumping insns and REG_LABEL_OPERAND notes in non-jumping
103 instructions and jumping insns that have labels as operands
104 (e.g. cbranchsi4). */
105 void
106 rebuild_jump_labels (rtx_insn *f)
108 rebuild_jump_labels_1 (f, true);
111 /* This function is like rebuild_jump_labels, but doesn't run over
112 forced_labels. It can be used on insn chains that aren't the
113 main function chain. */
114 void
115 rebuild_jump_labels_chain (rtx_insn *chain)
117 rebuild_jump_labels_1 (chain, false);
120 /* Some old code expects exactly one BARRIER as the NEXT_INSN of a
121 non-fallthru insn. This is not generally true, as multiple barriers
122 may have crept in, or the BARRIER may be separated from the last
123 real insn by one or more NOTEs.
125 This simple pass moves barriers and removes duplicates so that the
126 old code is happy.
128 static unsigned int
129 cleanup_barriers (void)
131 rtx_insn *insn;
132 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
134 if (BARRIER_P (insn))
136 rtx_insn *prev = prev_nonnote_insn (insn);
137 if (!prev)
138 continue;
140 if (CALL_P (prev))
142 /* Make sure we do not split a call and its corresponding
143 CALL_ARG_LOCATION note. */
144 rtx_insn *next = NEXT_INSN (prev);
146 if (NOTE_P (next)
147 && NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION)
148 prev = next;
151 if (BARRIER_P (prev))
152 delete_insn (insn);
153 else if (prev != PREV_INSN (insn))
155 basic_block bb = BLOCK_FOR_INSN (prev);
156 rtx_insn *end = PREV_INSN (insn);
157 reorder_insns_nobb (insn, insn, prev);
158 if (bb)
160 /* If the backend called in machine reorg compute_bb_for_insn
161 and didn't free_bb_for_insn again, preserve basic block
162 boundaries. Move the end of basic block to PREV since
163 it is followed by a barrier now, and clear BLOCK_FOR_INSN
164 on the following notes.
165 ??? Maybe the proper solution for the targets that have
166 cfg around after machine reorg is not to run cleanup_barriers
167 pass at all. */
168 BB_END (bb) = prev;
171 prev = NEXT_INSN (prev);
172 if (prev != insn && BLOCK_FOR_INSN (prev) == bb)
173 BLOCK_FOR_INSN (prev) = NULL;
175 while (prev != end);
180 return 0;
183 namespace {
185 const pass_data pass_data_cleanup_barriers =
187 RTL_PASS, /* type */
188 "barriers", /* name */
189 OPTGROUP_NONE, /* optinfo_flags */
190 TV_NONE, /* tv_id */
191 0, /* properties_required */
192 0, /* properties_provided */
193 0, /* properties_destroyed */
194 0, /* todo_flags_start */
195 0, /* todo_flags_finish */
198 class pass_cleanup_barriers : public rtl_opt_pass
200 public:
201 pass_cleanup_barriers (gcc::context *ctxt)
202 : rtl_opt_pass (pass_data_cleanup_barriers, ctxt)
205 /* opt_pass methods: */
206 virtual unsigned int execute (function *) { return cleanup_barriers (); }
208 }; // class pass_cleanup_barriers
210 } // anon namespace
212 rtl_opt_pass *
213 make_pass_cleanup_barriers (gcc::context *ctxt)
215 return new pass_cleanup_barriers (ctxt);
219 /* Initialize LABEL_NUSES and JUMP_LABEL fields, add REG_LABEL_TARGET
220 for remaining targets for JUMP_P. Delete any REG_LABEL_OPERAND
221 notes whose labels don't occur in the insn any more. */
223 static void
224 init_label_info (rtx_insn *f)
226 rtx_insn *insn;
228 for (insn = f; insn; insn = NEXT_INSN (insn))
230 if (LABEL_P (insn))
231 LABEL_NUSES (insn) = (LABEL_PRESERVE_P (insn) != 0);
233 /* REG_LABEL_TARGET notes (including the JUMP_LABEL field) are
234 sticky and not reset here; that way we won't lose association
235 with a label when e.g. the source for a target register
236 disappears out of reach for targets that may use jump-target
237 registers. Jump transformations are supposed to transform
238 any REG_LABEL_TARGET notes. The target label reference in a
239 branch may disappear from the branch (and from the
240 instruction before it) for other reasons, like register
241 allocation. */
243 if (INSN_P (insn))
245 rtx note, next;
247 for (note = REG_NOTES (insn); note; note = next)
249 next = XEXP (note, 1);
250 if (REG_NOTE_KIND (note) == REG_LABEL_OPERAND
251 && ! reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
252 remove_note (insn, note);
258 /* A subroutine of mark_all_labels. Trivially propagate a simple label
259 load into a jump_insn that uses it. */
261 static void
262 maybe_propagate_label_ref (rtx_insn *jump_insn, rtx_insn *prev_nonjump_insn)
264 rtx label_note, pc, pc_src;
266 pc = pc_set (jump_insn);
267 pc_src = pc != NULL ? SET_SRC (pc) : NULL;
268 label_note = find_reg_note (prev_nonjump_insn, REG_LABEL_OPERAND, NULL);
270 /* If the previous non-jump insn sets something to a label,
271 something that this jump insn uses, make that label the primary
272 target of this insn if we don't yet have any. That previous
273 insn must be a single_set and not refer to more than one label.
274 The jump insn must not refer to other labels as jump targets
275 and must be a plain (set (pc) ...), maybe in a parallel, and
276 may refer to the item being set only directly or as one of the
277 arms in an IF_THEN_ELSE. */
279 if (label_note != NULL && pc_src != NULL)
281 rtx label_set = single_set (prev_nonjump_insn);
282 rtx label_dest = label_set != NULL ? SET_DEST (label_set) : NULL;
284 if (label_set != NULL
285 /* The source must be the direct LABEL_REF, not a
286 PLUS, UNSPEC, IF_THEN_ELSE etc. */
287 && GET_CODE (SET_SRC (label_set)) == LABEL_REF
288 && (rtx_equal_p (label_dest, pc_src)
289 || (GET_CODE (pc_src) == IF_THEN_ELSE
290 && (rtx_equal_p (label_dest, XEXP (pc_src, 1))
291 || rtx_equal_p (label_dest, XEXP (pc_src, 2))))))
293 /* The CODE_LABEL referred to in the note must be the
294 CODE_LABEL in the LABEL_REF of the "set". We can
295 conveniently use it for the marker function, which
296 requires a LABEL_REF wrapping. */
297 gcc_assert (XEXP (label_note, 0) == LABEL_REF_LABEL (SET_SRC (label_set)));
299 mark_jump_label_1 (label_set, jump_insn, false, true);
301 gcc_assert (JUMP_LABEL (jump_insn) == XEXP (label_note, 0));
306 /* Mark the label each jump jumps to.
307 Combine consecutive labels, and count uses of labels. */
309 static void
310 mark_all_labels (rtx_insn *f)
312 rtx_insn *insn;
314 if (current_ir_type () == IR_RTL_CFGLAYOUT)
316 basic_block bb;
317 FOR_EACH_BB_FN (bb, cfun)
319 /* In cfglayout mode, we don't bother with trivial next-insn
320 propagation of LABEL_REFs into JUMP_LABEL. This will be
321 handled by other optimizers using better algorithms. */
322 FOR_BB_INSNS (bb, insn)
324 gcc_assert (! insn->deleted ());
325 if (NONDEBUG_INSN_P (insn))
326 mark_jump_label (PATTERN (insn), insn, 0);
329 /* In cfglayout mode, there may be non-insns between the
330 basic blocks. If those non-insns represent tablejump data,
331 they contain label references that we must record. */
332 for (insn = BB_HEADER (bb); insn; insn = NEXT_INSN (insn))
333 if (JUMP_TABLE_DATA_P (insn))
334 mark_jump_label (PATTERN (insn), insn, 0);
335 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
336 if (JUMP_TABLE_DATA_P (insn))
337 mark_jump_label (PATTERN (insn), insn, 0);
340 else
342 rtx_insn *prev_nonjump_insn = NULL;
343 for (insn = f; insn; insn = NEXT_INSN (insn))
345 if (insn->deleted ())
347 else if (LABEL_P (insn))
348 prev_nonjump_insn = NULL;
349 else if (JUMP_TABLE_DATA_P (insn))
350 mark_jump_label (PATTERN (insn), insn, 0);
351 else if (NONDEBUG_INSN_P (insn))
353 mark_jump_label (PATTERN (insn), insn, 0);
354 if (JUMP_P (insn))
356 if (JUMP_LABEL (insn) == NULL && prev_nonjump_insn != NULL)
357 maybe_propagate_label_ref (insn, prev_nonjump_insn);
359 else
360 prev_nonjump_insn = insn;
366 /* Given a comparison (CODE ARG0 ARG1), inside an insn, INSN, return a code
367 of reversed comparison if it is possible to do so. Otherwise return UNKNOWN.
368 UNKNOWN may be returned in case we are having CC_MODE compare and we don't
369 know whether it's source is floating point or integer comparison. Machine
370 description should define REVERSIBLE_CC_MODE and REVERSE_CONDITION macros
371 to help this function avoid overhead in these cases. */
372 enum rtx_code
373 reversed_comparison_code_parts (enum rtx_code code, const_rtx arg0,
374 const_rtx arg1, const_rtx insn)
376 machine_mode mode;
378 /* If this is not actually a comparison, we can't reverse it. */
379 if (GET_RTX_CLASS (code) != RTX_COMPARE
380 && GET_RTX_CLASS (code) != RTX_COMM_COMPARE)
381 return UNKNOWN;
383 mode = GET_MODE (arg0);
384 if (mode == VOIDmode)
385 mode = GET_MODE (arg1);
387 /* First see if machine description supplies us way to reverse the
388 comparison. Give it priority over everything else to allow
389 machine description to do tricks. */
390 if (GET_MODE_CLASS (mode) == MODE_CC
391 && REVERSIBLE_CC_MODE (mode))
392 return REVERSE_CONDITION (code, mode);
394 /* Try a few special cases based on the comparison code. */
395 switch (code)
397 case GEU:
398 case GTU:
399 case LEU:
400 case LTU:
401 case NE:
402 case EQ:
403 /* It is always safe to reverse EQ and NE, even for the floating
404 point. Similarly the unsigned comparisons are never used for
405 floating point so we can reverse them in the default way. */
406 return reverse_condition (code);
407 case ORDERED:
408 case UNORDERED:
409 case LTGT:
410 case UNEQ:
411 /* In case we already see unordered comparison, we can be sure to
412 be dealing with floating point so we don't need any more tests. */
413 return reverse_condition_maybe_unordered (code);
414 case UNLT:
415 case UNLE:
416 case UNGT:
417 case UNGE:
418 /* We don't have safe way to reverse these yet. */
419 return UNKNOWN;
420 default:
421 break;
424 if (GET_MODE_CLASS (mode) == MODE_CC || CC0_P (arg0))
426 /* Try to search for the comparison to determine the real mode.
427 This code is expensive, but with sane machine description it
428 will be never used, since REVERSIBLE_CC_MODE will return true
429 in all cases. */
430 if (! insn)
431 return UNKNOWN;
433 /* These CONST_CAST's are okay because prev_nonnote_insn just
434 returns its argument and we assign it to a const_rtx
435 variable. */
436 for (rtx_insn *prev = prev_nonnote_insn (CONST_CAST_RTX (insn));
437 prev != 0 && !LABEL_P (prev);
438 prev = prev_nonnote_insn (prev))
440 const_rtx set = set_of (arg0, prev);
441 if (set && GET_CODE (set) == SET
442 && rtx_equal_p (SET_DEST (set), arg0))
444 rtx src = SET_SRC (set);
446 if (GET_CODE (src) == COMPARE)
448 rtx comparison = src;
449 arg0 = XEXP (src, 0);
450 mode = GET_MODE (arg0);
451 if (mode == VOIDmode)
452 mode = GET_MODE (XEXP (comparison, 1));
453 break;
455 /* We can get past reg-reg moves. This may be useful for model
456 of i387 comparisons that first move flag registers around. */
457 if (REG_P (src))
459 arg0 = src;
460 continue;
463 /* If register is clobbered in some ununderstandable way,
464 give up. */
465 if (set)
466 return UNKNOWN;
470 /* Test for an integer condition, or a floating-point comparison
471 in which NaNs can be ignored. */
472 if (CONST_INT_P (arg0)
473 || (GET_MODE (arg0) != VOIDmode
474 && GET_MODE_CLASS (mode) != MODE_CC
475 && !HONOR_NANS (mode)))
476 return reverse_condition (code);
478 return UNKNOWN;
481 /* A wrapper around the previous function to take COMPARISON as rtx
482 expression. This simplifies many callers. */
483 enum rtx_code
484 reversed_comparison_code (const_rtx comparison, const_rtx insn)
486 if (!COMPARISON_P (comparison))
487 return UNKNOWN;
488 return reversed_comparison_code_parts (GET_CODE (comparison),
489 XEXP (comparison, 0),
490 XEXP (comparison, 1), insn);
493 /* Return comparison with reversed code of EXP.
494 Return NULL_RTX in case we fail to do the reversal. */
496 reversed_comparison (const_rtx exp, machine_mode mode)
498 enum rtx_code reversed_code = reversed_comparison_code (exp, NULL_RTX);
499 if (reversed_code == UNKNOWN)
500 return NULL_RTX;
501 else
502 return simplify_gen_relational (reversed_code, mode, VOIDmode,
503 XEXP (exp, 0), XEXP (exp, 1));
507 /* Given an rtx-code for a comparison, return the code for the negated
508 comparison. If no such code exists, return UNKNOWN.
510 WATCH OUT! reverse_condition is not safe to use on a jump that might
511 be acting on the results of an IEEE floating point comparison, because
512 of the special treatment of non-signaling nans in comparisons.
513 Use reversed_comparison_code instead. */
515 enum rtx_code
516 reverse_condition (enum rtx_code code)
518 switch (code)
520 case EQ:
521 return NE;
522 case NE:
523 return EQ;
524 case GT:
525 return LE;
526 case GE:
527 return LT;
528 case LT:
529 return GE;
530 case LE:
531 return GT;
532 case GTU:
533 return LEU;
534 case GEU:
535 return LTU;
536 case LTU:
537 return GEU;
538 case LEU:
539 return GTU;
540 case UNORDERED:
541 return ORDERED;
542 case ORDERED:
543 return UNORDERED;
545 case UNLT:
546 case UNLE:
547 case UNGT:
548 case UNGE:
549 case UNEQ:
550 case LTGT:
551 return UNKNOWN;
553 default:
554 gcc_unreachable ();
558 /* Similar, but we're allowed to generate unordered comparisons, which
559 makes it safe for IEEE floating-point. Of course, we have to recognize
560 that the target will support them too... */
562 enum rtx_code
563 reverse_condition_maybe_unordered (enum rtx_code code)
565 switch (code)
567 case EQ:
568 return NE;
569 case NE:
570 return EQ;
571 case GT:
572 return UNLE;
573 case GE:
574 return UNLT;
575 case LT:
576 return UNGE;
577 case LE:
578 return UNGT;
579 case LTGT:
580 return UNEQ;
581 case UNORDERED:
582 return ORDERED;
583 case ORDERED:
584 return UNORDERED;
585 case UNLT:
586 return GE;
587 case UNLE:
588 return GT;
589 case UNGT:
590 return LE;
591 case UNGE:
592 return LT;
593 case UNEQ:
594 return LTGT;
596 default:
597 gcc_unreachable ();
601 /* Similar, but return the code when two operands of a comparison are swapped.
602 This IS safe for IEEE floating-point. */
604 enum rtx_code
605 swap_condition (enum rtx_code code)
607 switch (code)
609 case EQ:
610 case NE:
611 case UNORDERED:
612 case ORDERED:
613 case UNEQ:
614 case LTGT:
615 return code;
617 case GT:
618 return LT;
619 case GE:
620 return LE;
621 case LT:
622 return GT;
623 case LE:
624 return GE;
625 case GTU:
626 return LTU;
627 case GEU:
628 return LEU;
629 case LTU:
630 return GTU;
631 case LEU:
632 return GEU;
633 case UNLT:
634 return UNGT;
635 case UNLE:
636 return UNGE;
637 case UNGT:
638 return UNLT;
639 case UNGE:
640 return UNLE;
642 default:
643 gcc_unreachable ();
647 /* Given a comparison CODE, return the corresponding unsigned comparison.
648 If CODE is an equality comparison or already an unsigned comparison,
649 CODE is returned. */
651 enum rtx_code
652 unsigned_condition (enum rtx_code code)
654 switch (code)
656 case EQ:
657 case NE:
658 case GTU:
659 case GEU:
660 case LTU:
661 case LEU:
662 return code;
664 case GT:
665 return GTU;
666 case GE:
667 return GEU;
668 case LT:
669 return LTU;
670 case LE:
671 return LEU;
673 default:
674 gcc_unreachable ();
678 /* Similarly, return the signed version of a comparison. */
680 enum rtx_code
681 signed_condition (enum rtx_code code)
683 switch (code)
685 case EQ:
686 case NE:
687 case GT:
688 case GE:
689 case LT:
690 case LE:
691 return code;
693 case GTU:
694 return GT;
695 case GEU:
696 return GE;
697 case LTU:
698 return LT;
699 case LEU:
700 return LE;
702 default:
703 gcc_unreachable ();
707 /* Return nonzero if CODE1 is more strict than CODE2, i.e., if the
708 truth of CODE1 implies the truth of CODE2. */
711 comparison_dominates_p (enum rtx_code code1, enum rtx_code code2)
713 /* UNKNOWN comparison codes can happen as a result of trying to revert
714 comparison codes.
715 They can't match anything, so we have to reject them here. */
716 if (code1 == UNKNOWN || code2 == UNKNOWN)
717 return 0;
719 if (code1 == code2)
720 return 1;
722 switch (code1)
724 case UNEQ:
725 if (code2 == UNLE || code2 == UNGE)
726 return 1;
727 break;
729 case EQ:
730 if (code2 == LE || code2 == LEU || code2 == GE || code2 == GEU
731 || code2 == ORDERED)
732 return 1;
733 break;
735 case UNLT:
736 if (code2 == UNLE || code2 == NE)
737 return 1;
738 break;
740 case LT:
741 if (code2 == LE || code2 == NE || code2 == ORDERED || code2 == LTGT)
742 return 1;
743 break;
745 case UNGT:
746 if (code2 == UNGE || code2 == NE)
747 return 1;
748 break;
750 case GT:
751 if (code2 == GE || code2 == NE || code2 == ORDERED || code2 == LTGT)
752 return 1;
753 break;
755 case GE:
756 case LE:
757 if (code2 == ORDERED)
758 return 1;
759 break;
761 case LTGT:
762 if (code2 == NE || code2 == ORDERED)
763 return 1;
764 break;
766 case LTU:
767 if (code2 == LEU || code2 == NE)
768 return 1;
769 break;
771 case GTU:
772 if (code2 == GEU || code2 == NE)
773 return 1;
774 break;
776 case UNORDERED:
777 if (code2 == NE || code2 == UNEQ || code2 == UNLE || code2 == UNLT
778 || code2 == UNGE || code2 == UNGT)
779 return 1;
780 break;
782 default:
783 break;
786 return 0;
789 /* Return 1 if INSN is an unconditional jump and nothing else. */
792 simplejump_p (const rtx_insn *insn)
794 return (JUMP_P (insn)
795 && GET_CODE (PATTERN (insn)) == SET
796 && GET_CODE (SET_DEST (PATTERN (insn))) == PC
797 && GET_CODE (SET_SRC (PATTERN (insn))) == LABEL_REF);
800 /* Return nonzero if INSN is a (possibly) conditional jump
801 and nothing more.
803 Use of this function is deprecated, since we need to support combined
804 branch and compare insns. Use any_condjump_p instead whenever possible. */
807 condjump_p (const rtx_insn *insn)
809 const_rtx x = PATTERN (insn);
811 if (GET_CODE (x) != SET
812 || GET_CODE (SET_DEST (x)) != PC)
813 return 0;
815 x = SET_SRC (x);
816 if (GET_CODE (x) == LABEL_REF)
817 return 1;
818 else
819 return (GET_CODE (x) == IF_THEN_ELSE
820 && ((GET_CODE (XEXP (x, 2)) == PC
821 && (GET_CODE (XEXP (x, 1)) == LABEL_REF
822 || ANY_RETURN_P (XEXP (x, 1))))
823 || (GET_CODE (XEXP (x, 1)) == PC
824 && (GET_CODE (XEXP (x, 2)) == LABEL_REF
825 || ANY_RETURN_P (XEXP (x, 2))))));
828 /* Return nonzero if INSN is a (possibly) conditional jump inside a
829 PARALLEL.
831 Use this function is deprecated, since we need to support combined
832 branch and compare insns. Use any_condjump_p instead whenever possible. */
835 condjump_in_parallel_p (const rtx_insn *insn)
837 const_rtx x = PATTERN (insn);
839 if (GET_CODE (x) != PARALLEL)
840 return 0;
841 else
842 x = XVECEXP (x, 0, 0);
844 if (GET_CODE (x) != SET)
845 return 0;
846 if (GET_CODE (SET_DEST (x)) != PC)
847 return 0;
848 if (GET_CODE (SET_SRC (x)) == LABEL_REF)
849 return 1;
850 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
851 return 0;
852 if (XEXP (SET_SRC (x), 2) == pc_rtx
853 && (GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF
854 || ANY_RETURN_P (XEXP (SET_SRC (x), 1))))
855 return 1;
856 if (XEXP (SET_SRC (x), 1) == pc_rtx
857 && (GET_CODE (XEXP (SET_SRC (x), 2)) == LABEL_REF
858 || ANY_RETURN_P (XEXP (SET_SRC (x), 2))))
859 return 1;
860 return 0;
863 /* Return set of PC, otherwise NULL. */
866 pc_set (const rtx_insn *insn)
868 rtx pat;
869 if (!JUMP_P (insn))
870 return NULL_RTX;
871 pat = PATTERN (insn);
873 /* The set is allowed to appear either as the insn pattern or
874 the first set in a PARALLEL. */
875 if (GET_CODE (pat) == PARALLEL)
876 pat = XVECEXP (pat, 0, 0);
877 if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == PC)
878 return pat;
880 return NULL_RTX;
883 /* Return true when insn is an unconditional direct jump,
884 possibly bundled inside a PARALLEL. */
887 any_uncondjump_p (const rtx_insn *insn)
889 const_rtx x = pc_set (insn);
890 if (!x)
891 return 0;
892 if (GET_CODE (SET_SRC (x)) != LABEL_REF)
893 return 0;
894 if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
895 return 0;
896 return 1;
899 /* Return true when insn is a conditional jump. This function works for
900 instructions containing PC sets in PARALLELs. The instruction may have
901 various other effects so before removing the jump you must verify
902 onlyjump_p.
904 Note that unlike condjump_p it returns false for unconditional jumps. */
907 any_condjump_p (const rtx_insn *insn)
909 const_rtx x = pc_set (insn);
910 enum rtx_code a, b;
912 if (!x)
913 return 0;
914 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
915 return 0;
917 a = GET_CODE (XEXP (SET_SRC (x), 1));
918 b = GET_CODE (XEXP (SET_SRC (x), 2));
920 return ((b == PC && (a == LABEL_REF || a == RETURN || a == SIMPLE_RETURN))
921 || (a == PC
922 && (b == LABEL_REF || b == RETURN || b == SIMPLE_RETURN)));
925 /* Return the label of a conditional jump. */
928 condjump_label (const rtx_insn *insn)
930 rtx x = pc_set (insn);
932 if (!x)
933 return NULL_RTX;
934 x = SET_SRC (x);
935 if (GET_CODE (x) == LABEL_REF)
936 return x;
937 if (GET_CODE (x) != IF_THEN_ELSE)
938 return NULL_RTX;
939 if (XEXP (x, 2) == pc_rtx && GET_CODE (XEXP (x, 1)) == LABEL_REF)
940 return XEXP (x, 1);
941 if (XEXP (x, 1) == pc_rtx && GET_CODE (XEXP (x, 2)) == LABEL_REF)
942 return XEXP (x, 2);
943 return NULL_RTX;
946 /* Return TRUE if INSN is a return jump. */
949 returnjump_p (const rtx_insn *insn)
951 if (JUMP_P (insn))
953 subrtx_iterator::array_type array;
954 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
956 const_rtx x = *iter;
957 switch (GET_CODE (x))
959 case RETURN:
960 case SIMPLE_RETURN:
961 case EH_RETURN:
962 return true;
964 case SET:
965 if (SET_IS_RETURN_P (x))
966 return true;
967 break;
969 default:
970 break;
974 return false;
977 /* Return true if INSN is a (possibly conditional) return insn. */
980 eh_returnjump_p (rtx_insn *insn)
982 if (JUMP_P (insn))
984 subrtx_iterator::array_type array;
985 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
986 if (GET_CODE (*iter) == EH_RETURN)
987 return true;
989 return false;
992 /* Return true if INSN is a jump that only transfers control and
993 nothing more. */
996 onlyjump_p (const rtx_insn *insn)
998 rtx set;
1000 if (!JUMP_P (insn))
1001 return 0;
1003 set = single_set (insn);
1004 if (set == NULL)
1005 return 0;
1006 if (GET_CODE (SET_DEST (set)) != PC)
1007 return 0;
1008 if (side_effects_p (SET_SRC (set)))
1009 return 0;
1011 return 1;
1014 /* Return true iff INSN is a jump and its JUMP_LABEL is a label, not
1015 NULL or a return. */
1016 bool
1017 jump_to_label_p (const rtx_insn *insn)
1019 return (JUMP_P (insn)
1020 && JUMP_LABEL (insn) != NULL && !ANY_RETURN_P (JUMP_LABEL (insn)));
1023 /* Return nonzero if X is an RTX that only sets the condition codes
1024 and has no side effects. */
1027 only_sets_cc0_p (const_rtx x)
1029 if (! x)
1030 return 0;
1032 if (INSN_P (x))
1033 x = PATTERN (x);
1035 return sets_cc0_p (x) == 1 && ! side_effects_p (x);
1038 /* Return 1 if X is an RTX that does nothing but set the condition codes
1039 and CLOBBER or USE registers.
1040 Return -1 if X does explicitly set the condition codes,
1041 but also does other things. */
1044 sets_cc0_p (const_rtx x)
1046 if (! x)
1047 return 0;
1049 if (INSN_P (x))
1050 x = PATTERN (x);
1052 if (GET_CODE (x) == SET && SET_DEST (x) == cc0_rtx)
1053 return 1;
1054 if (GET_CODE (x) == PARALLEL)
1056 int i;
1057 int sets_cc0 = 0;
1058 int other_things = 0;
1059 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1061 if (GET_CODE (XVECEXP (x, 0, i)) == SET
1062 && SET_DEST (XVECEXP (x, 0, i)) == cc0_rtx)
1063 sets_cc0 = 1;
1064 else if (GET_CODE (XVECEXP (x, 0, i)) == SET)
1065 other_things = 1;
1067 return ! sets_cc0 ? 0 : other_things ? -1 : 1;
1069 return 0;
1072 /* Find all CODE_LABELs referred to in X, and increment their use
1073 counts. If INSN is a JUMP_INSN and there is at least one
1074 CODE_LABEL referenced in INSN as a jump target, then store the last
1075 one in JUMP_LABEL (INSN). For a tablejump, this must be the label
1076 for the ADDR_VEC. Store any other jump targets as REG_LABEL_TARGET
1077 notes. If INSN is an INSN or a CALL_INSN or non-target operands of
1078 a JUMP_INSN, and there is at least one CODE_LABEL referenced in
1079 INSN, add a REG_LABEL_OPERAND note containing that label to INSN.
1080 For returnjumps, the JUMP_LABEL will also be set as appropriate.
1082 Note that two labels separated by a loop-beginning note
1083 must be kept distinct if we have not yet done loop-optimization,
1084 because the gap between them is where loop-optimize
1085 will want to move invariant code to. CROSS_JUMP tells us
1086 that loop-optimization is done with. */
1088 void
1089 mark_jump_label (rtx x, rtx_insn *insn, int in_mem)
1091 rtx asmop = extract_asm_operands (x);
1092 if (asmop)
1093 mark_jump_label_asm (asmop, insn);
1094 else
1095 mark_jump_label_1 (x, insn, in_mem != 0,
1096 (insn != NULL && x == PATTERN (insn) && JUMP_P (insn)));
1099 /* Worker function for mark_jump_label. IN_MEM is TRUE when X occurs
1100 within a (MEM ...). IS_TARGET is TRUE when X is to be treated as a
1101 jump-target; when the JUMP_LABEL field of INSN should be set or a
1102 REG_LABEL_TARGET note should be added, not a REG_LABEL_OPERAND
1103 note. */
1105 static void
1106 mark_jump_label_1 (rtx x, rtx_insn *insn, bool in_mem, bool is_target)
1108 RTX_CODE code = GET_CODE (x);
1109 int i;
1110 const char *fmt;
1112 switch (code)
1114 case PC:
1115 case CC0:
1116 case REG:
1117 case CLOBBER:
1118 case CALL:
1119 return;
1121 case RETURN:
1122 case SIMPLE_RETURN:
1123 if (is_target)
1125 gcc_assert (JUMP_LABEL (insn) == NULL || JUMP_LABEL (insn) == x);
1126 JUMP_LABEL (insn) = x;
1128 return;
1130 case MEM:
1131 in_mem = true;
1132 break;
1134 case SEQUENCE:
1136 rtx_sequence *seq = as_a <rtx_sequence *> (x);
1137 for (i = 0; i < seq->len (); i++)
1138 mark_jump_label (PATTERN (seq->insn (i)),
1139 seq->insn (i), 0);
1141 return;
1143 case SYMBOL_REF:
1144 if (!in_mem)
1145 return;
1147 /* If this is a constant-pool reference, see if it is a label. */
1148 if (CONSTANT_POOL_ADDRESS_P (x))
1149 mark_jump_label_1 (get_pool_constant (x), insn, in_mem, is_target);
1150 break;
1152 /* Handle operands in the condition of an if-then-else as for a
1153 non-jump insn. */
1154 case IF_THEN_ELSE:
1155 if (!is_target)
1156 break;
1157 mark_jump_label_1 (XEXP (x, 0), insn, in_mem, false);
1158 mark_jump_label_1 (XEXP (x, 1), insn, in_mem, true);
1159 mark_jump_label_1 (XEXP (x, 2), insn, in_mem, true);
1160 return;
1162 case LABEL_REF:
1164 rtx label = LABEL_REF_LABEL (x);
1166 /* Ignore remaining references to unreachable labels that
1167 have been deleted. */
1168 if (NOTE_P (label)
1169 && NOTE_KIND (label) == NOTE_INSN_DELETED_LABEL)
1170 break;
1172 gcc_assert (LABEL_P (label));
1174 /* Ignore references to labels of containing functions. */
1175 if (LABEL_REF_NONLOCAL_P (x))
1176 break;
1178 LABEL_REF_LABEL (x) = label;
1179 if (! insn || ! insn->deleted ())
1180 ++LABEL_NUSES (label);
1182 if (insn)
1184 if (is_target
1185 /* Do not change a previous setting of JUMP_LABEL. If the
1186 JUMP_LABEL slot is occupied by a different label,
1187 create a note for this label. */
1188 && (JUMP_LABEL (insn) == NULL || JUMP_LABEL (insn) == label))
1189 JUMP_LABEL (insn) = label;
1190 else
1192 enum reg_note kind
1193 = is_target ? REG_LABEL_TARGET : REG_LABEL_OPERAND;
1195 /* Add a REG_LABEL_OPERAND or REG_LABEL_TARGET note
1196 for LABEL unless there already is one. All uses of
1197 a label, except for the primary target of a jump,
1198 must have such a note. */
1199 if (! find_reg_note (insn, kind, label))
1200 add_reg_note (insn, kind, label);
1203 return;
1206 /* Do walk the labels in a vector, but not the first operand of an
1207 ADDR_DIFF_VEC. Don't set the JUMP_LABEL of a vector. */
1208 case ADDR_VEC:
1209 case ADDR_DIFF_VEC:
1210 if (! insn->deleted ())
1212 int eltnum = code == ADDR_DIFF_VEC ? 1 : 0;
1214 for (i = 0; i < XVECLEN (x, eltnum); i++)
1215 mark_jump_label_1 (XVECEXP (x, eltnum, i), NULL, in_mem,
1216 is_target);
1218 return;
1220 default:
1221 break;
1224 fmt = GET_RTX_FORMAT (code);
1226 /* The primary target of a tablejump is the label of the ADDR_VEC,
1227 which is canonically mentioned *last* in the insn. To get it
1228 marked as JUMP_LABEL, we iterate over items in reverse order. */
1229 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1231 if (fmt[i] == 'e')
1232 mark_jump_label_1 (XEXP (x, i), insn, in_mem, is_target);
1233 else if (fmt[i] == 'E')
1235 int j;
1237 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1238 mark_jump_label_1 (XVECEXP (x, i, j), insn, in_mem,
1239 is_target);
1244 /* Worker function for mark_jump_label. Handle asm insns specially.
1245 In particular, output operands need not be considered so we can
1246 avoid re-scanning the replicated asm_operand. Also, the asm_labels
1247 need to be considered targets. */
1249 static void
1250 mark_jump_label_asm (rtx asmop, rtx_insn *insn)
1252 int i;
1254 for (i = ASM_OPERANDS_INPUT_LENGTH (asmop) - 1; i >= 0; --i)
1255 mark_jump_label_1 (ASM_OPERANDS_INPUT (asmop, i), insn, false, false);
1257 for (i = ASM_OPERANDS_LABEL_LENGTH (asmop) - 1; i >= 0; --i)
1258 mark_jump_label_1 (ASM_OPERANDS_LABEL (asmop, i), insn, false, true);
1261 /* Delete insn INSN from the chain of insns and update label ref counts
1262 and delete insns now unreachable.
1264 Returns the first insn after INSN that was not deleted.
1266 Usage of this instruction is deprecated. Use delete_insn instead and
1267 subsequent cfg_cleanup pass to delete unreachable code if needed. */
1269 rtx_insn *
1270 delete_related_insns (rtx uncast_insn)
1272 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
1273 int was_code_label = (LABEL_P (insn));
1274 rtx note;
1275 rtx_insn *next = NEXT_INSN (insn), *prev = PREV_INSN (insn);
1277 while (next && next->deleted ())
1278 next = NEXT_INSN (next);
1280 /* This insn is already deleted => return first following nondeleted. */
1281 if (insn->deleted ())
1282 return next;
1284 delete_insn (insn);
1286 /* If instruction is followed by a barrier,
1287 delete the barrier too. */
1289 if (next != 0 && BARRIER_P (next))
1290 delete_insn (next);
1292 /* If this is a call, then we have to remove the var tracking note
1293 for the call arguments. */
1295 if (CALL_P (insn)
1296 || (NONJUMP_INSN_P (insn)
1297 && GET_CODE (PATTERN (insn)) == SEQUENCE
1298 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))))
1300 rtx_insn *p;
1302 for (p = next && next->deleted () ? NEXT_INSN (next) : next;
1303 p && NOTE_P (p);
1304 p = NEXT_INSN (p))
1305 if (NOTE_KIND (p) == NOTE_INSN_CALL_ARG_LOCATION)
1307 remove_insn (p);
1308 break;
1312 /* If deleting a jump, decrement the count of the label,
1313 and delete the label if it is now unused. */
1315 if (jump_to_label_p (insn))
1317 rtx lab = JUMP_LABEL (insn);
1318 rtx_jump_table_data *lab_next;
1320 if (LABEL_NUSES (lab) == 0)
1321 /* This can delete NEXT or PREV,
1322 either directly if NEXT is JUMP_LABEL (INSN),
1323 or indirectly through more levels of jumps. */
1324 delete_related_insns (lab);
1325 else if (tablejump_p (insn, NULL, &lab_next))
1327 /* If we're deleting the tablejump, delete the dispatch table.
1328 We may not be able to kill the label immediately preceding
1329 just yet, as it might be referenced in code leading up to
1330 the tablejump. */
1331 delete_related_insns (lab_next);
1335 /* Likewise if we're deleting a dispatch table. */
1337 if (rtx_jump_table_data *table = dyn_cast <rtx_jump_table_data *> (insn))
1339 rtvec labels = table->get_labels ();
1340 int i;
1341 int len = GET_NUM_ELEM (labels);
1343 for (i = 0; i < len; i++)
1344 if (LABEL_NUSES (XEXP (RTVEC_ELT (labels, i), 0)) == 0)
1345 delete_related_insns (XEXP (RTVEC_ELT (labels, i), 0));
1346 while (next && next->deleted ())
1347 next = NEXT_INSN (next);
1348 return next;
1351 /* Likewise for any JUMP_P / INSN / CALL_INSN with a
1352 REG_LABEL_OPERAND or REG_LABEL_TARGET note. */
1353 if (INSN_P (insn))
1354 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1355 if ((REG_NOTE_KIND (note) == REG_LABEL_OPERAND
1356 || REG_NOTE_KIND (note) == REG_LABEL_TARGET)
1357 /* This could also be a NOTE_INSN_DELETED_LABEL note. */
1358 && LABEL_P (XEXP (note, 0)))
1359 if (LABEL_NUSES (XEXP (note, 0)) == 0)
1360 delete_related_insns (XEXP (note, 0));
1362 while (prev && (prev->deleted () || NOTE_P (prev)))
1363 prev = PREV_INSN (prev);
1365 /* If INSN was a label and a dispatch table follows it,
1366 delete the dispatch table. The tablejump must have gone already.
1367 It isn't useful to fall through into a table. */
1369 if (was_code_label
1370 && NEXT_INSN (insn) != 0
1371 && JUMP_TABLE_DATA_P (NEXT_INSN (insn)))
1372 next = delete_related_insns (NEXT_INSN (insn));
1374 /* If INSN was a label, delete insns following it if now unreachable. */
1376 if (was_code_label && prev && BARRIER_P (prev))
1378 enum rtx_code code;
1379 while (next)
1381 code = GET_CODE (next);
1382 if (code == NOTE)
1383 next = NEXT_INSN (next);
1384 /* Keep going past other deleted labels to delete what follows. */
1385 else if (code == CODE_LABEL && next->deleted ())
1386 next = NEXT_INSN (next);
1387 /* Keep the (use (insn))s created by dbr_schedule, which needs
1388 them in order to track liveness relative to a previous
1389 barrier. */
1390 else if (INSN_P (next)
1391 && GET_CODE (PATTERN (next)) == USE
1392 && INSN_P (XEXP (PATTERN (next), 0)))
1393 next = NEXT_INSN (next);
1394 else if (code == BARRIER || INSN_P (next))
1395 /* Note: if this deletes a jump, it can cause more
1396 deletion of unreachable code, after a different label.
1397 As long as the value from this recursive call is correct,
1398 this invocation functions correctly. */
1399 next = delete_related_insns (next);
1400 else
1401 break;
1405 /* I feel a little doubtful about this loop,
1406 but I see no clean and sure alternative way
1407 to find the first insn after INSN that is not now deleted.
1408 I hope this works. */
1409 while (next && next->deleted ())
1410 next = NEXT_INSN (next);
1411 return next;
1414 /* Delete a range of insns from FROM to TO, inclusive.
1415 This is for the sake of peephole optimization, so assume
1416 that whatever these insns do will still be done by a new
1417 peephole insn that will replace them. */
1419 void
1420 delete_for_peephole (rtx_insn *from, rtx_insn *to)
1422 rtx_insn *insn = from;
1424 while (1)
1426 rtx_insn *next = NEXT_INSN (insn);
1427 rtx_insn *prev = PREV_INSN (insn);
1429 if (!NOTE_P (insn))
1431 insn->set_deleted();
1433 /* Patch this insn out of the chain. */
1434 /* We don't do this all at once, because we
1435 must preserve all NOTEs. */
1436 if (prev)
1437 SET_NEXT_INSN (prev) = next;
1439 if (next)
1440 SET_PREV_INSN (next) = prev;
1443 if (insn == to)
1444 break;
1445 insn = next;
1448 /* Note that if TO is an unconditional jump
1449 we *do not* delete the BARRIER that follows,
1450 since the peephole that replaces this sequence
1451 is also an unconditional jump in that case. */
1454 /* A helper function for redirect_exp_1; examines its input X and returns
1455 either a LABEL_REF around a label, or a RETURN if X was NULL. */
1456 static rtx
1457 redirect_target (rtx x)
1459 if (x == NULL_RTX)
1460 return ret_rtx;
1461 if (!ANY_RETURN_P (x))
1462 return gen_rtx_LABEL_REF (Pmode, x);
1463 return x;
1466 /* Throughout LOC, redirect OLABEL to NLABEL. Treat null OLABEL or
1467 NLABEL as a return. Accrue modifications into the change group. */
1469 static void
1470 redirect_exp_1 (rtx *loc, rtx olabel, rtx nlabel, rtx insn)
1472 rtx x = *loc;
1473 RTX_CODE code = GET_CODE (x);
1474 int i;
1475 const char *fmt;
1477 if ((code == LABEL_REF && LABEL_REF_LABEL (x) == olabel)
1478 || x == olabel)
1480 x = redirect_target (nlabel);
1481 if (GET_CODE (x) == LABEL_REF && loc == &PATTERN (insn))
1482 x = gen_rtx_SET (pc_rtx, x);
1483 validate_change (insn, loc, x, 1);
1484 return;
1487 if (code == SET && SET_DEST (x) == pc_rtx
1488 && ANY_RETURN_P (nlabel)
1489 && GET_CODE (SET_SRC (x)) == LABEL_REF
1490 && LABEL_REF_LABEL (SET_SRC (x)) == olabel)
1492 validate_change (insn, loc, nlabel, 1);
1493 return;
1496 if (code == IF_THEN_ELSE)
1498 /* Skip the condition of an IF_THEN_ELSE. We only want to
1499 change jump destinations, not eventual label comparisons. */
1500 redirect_exp_1 (&XEXP (x, 1), olabel, nlabel, insn);
1501 redirect_exp_1 (&XEXP (x, 2), olabel, nlabel, insn);
1502 return;
1505 fmt = GET_RTX_FORMAT (code);
1506 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1508 if (fmt[i] == 'e')
1509 redirect_exp_1 (&XEXP (x, i), olabel, nlabel, insn);
1510 else if (fmt[i] == 'E')
1512 int j;
1513 for (j = 0; j < XVECLEN (x, i); j++)
1514 redirect_exp_1 (&XVECEXP (x, i, j), olabel, nlabel, insn);
1519 /* Make JUMP go to NLABEL instead of where it jumps now. Accrue
1520 the modifications into the change group. Return false if we did
1521 not see how to do that. */
1524 redirect_jump_1 (rtx_insn *jump, rtx nlabel)
1526 int ochanges = num_validated_changes ();
1527 rtx *loc, asmop;
1529 gcc_assert (nlabel != NULL_RTX);
1530 asmop = extract_asm_operands (PATTERN (jump));
1531 if (asmop)
1533 if (nlabel == NULL)
1534 return 0;
1535 gcc_assert (ASM_OPERANDS_LABEL_LENGTH (asmop) == 1);
1536 loc = &ASM_OPERANDS_LABEL (asmop, 0);
1538 else if (GET_CODE (PATTERN (jump)) == PARALLEL)
1539 loc = &XVECEXP (PATTERN (jump), 0, 0);
1540 else
1541 loc = &PATTERN (jump);
1543 redirect_exp_1 (loc, JUMP_LABEL (jump), nlabel, jump);
1544 return num_validated_changes () > ochanges;
1547 /* Make JUMP go to NLABEL instead of where it jumps now. If the old
1548 jump target label is unused as a result, it and the code following
1549 it may be deleted.
1551 Normally, NLABEL will be a label, but it may also be a RETURN rtx;
1552 in that case we are to turn the jump into a (possibly conditional)
1553 return insn.
1555 The return value will be 1 if the change was made, 0 if it wasn't
1556 (this can only occur when trying to produce return insns). */
1559 redirect_jump (rtx_jump_insn *jump, rtx nlabel, int delete_unused)
1561 rtx olabel = jump->jump_label ();
1563 if (!nlabel)
1565 /* If there is no label, we are asked to redirect to the EXIT block.
1566 When before the epilogue is emitted, return/simple_return cannot be
1567 created so we return 0 immediately. After the epilogue is emitted,
1568 we always expect a label, either a non-null label, or a
1569 return/simple_return RTX. */
1571 if (!epilogue_completed)
1572 return 0;
1573 gcc_unreachable ();
1576 if (nlabel == olabel)
1577 return 1;
1579 if (! redirect_jump_1 (jump, nlabel) || ! apply_change_group ())
1580 return 0;
1582 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 0);
1583 return 1;
1586 /* Fix up JUMP_LABEL and label ref counts after OLABEL has been replaced with
1587 NLABEL in JUMP.
1588 If DELETE_UNUSED is positive, delete related insn to OLABEL if its ref
1589 count has dropped to zero. */
1590 void
1591 redirect_jump_2 (rtx_jump_insn *jump, rtx olabel, rtx nlabel, int delete_unused,
1592 int invert)
1594 rtx note;
1596 gcc_assert (JUMP_LABEL (jump) == olabel);
1598 /* Negative DELETE_UNUSED used to be used to signalize behavior on
1599 moving FUNCTION_END note. Just sanity check that no user still worry
1600 about this. */
1601 gcc_assert (delete_unused >= 0);
1602 JUMP_LABEL (jump) = nlabel;
1603 if (!ANY_RETURN_P (nlabel))
1604 ++LABEL_NUSES (nlabel);
1606 /* Update labels in any REG_EQUAL note. */
1607 if ((note = find_reg_note (jump, REG_EQUAL, NULL_RTX)) != NULL_RTX)
1609 if (ANY_RETURN_P (nlabel)
1610 || (invert && !invert_exp_1 (XEXP (note, 0), jump)))
1611 remove_note (jump, note);
1612 else
1614 redirect_exp_1 (&XEXP (note, 0), olabel, nlabel, jump);
1615 confirm_change_group ();
1619 /* Handle the case where we had a conditional crossing jump to a return
1620 label and are now changing it into a direct conditional return.
1621 The jump is no longer crossing in that case. */
1622 if (ANY_RETURN_P (nlabel))
1623 CROSSING_JUMP_P (jump) = 0;
1625 if (!ANY_RETURN_P (olabel)
1626 && --LABEL_NUSES (olabel) == 0 && delete_unused > 0
1627 /* Undefined labels will remain outside the insn stream. */
1628 && INSN_UID (olabel))
1629 delete_related_insns (olabel);
1630 if (invert)
1631 invert_br_probabilities (jump);
1634 /* Invert the jump condition X contained in jump insn INSN. Accrue the
1635 modifications into the change group. Return nonzero for success. */
1636 static int
1637 invert_exp_1 (rtx x, rtx insn)
1639 RTX_CODE code = GET_CODE (x);
1641 if (code == IF_THEN_ELSE)
1643 rtx comp = XEXP (x, 0);
1644 rtx tem;
1645 enum rtx_code reversed_code;
1647 /* We can do this in two ways: The preferable way, which can only
1648 be done if this is not an integer comparison, is to reverse
1649 the comparison code. Otherwise, swap the THEN-part and ELSE-part
1650 of the IF_THEN_ELSE. If we can't do either, fail. */
1652 reversed_code = reversed_comparison_code (comp, insn);
1654 if (reversed_code != UNKNOWN)
1656 validate_change (insn, &XEXP (x, 0),
1657 gen_rtx_fmt_ee (reversed_code,
1658 GET_MODE (comp), XEXP (comp, 0),
1659 XEXP (comp, 1)),
1661 return 1;
1664 tem = XEXP (x, 1);
1665 validate_change (insn, &XEXP (x, 1), XEXP (x, 2), 1);
1666 validate_change (insn, &XEXP (x, 2), tem, 1);
1667 return 1;
1669 else
1670 return 0;
1673 /* Invert the condition of the jump JUMP, and make it jump to label
1674 NLABEL instead of where it jumps now. Accrue changes into the
1675 change group. Return false if we didn't see how to perform the
1676 inversion and redirection. */
1679 invert_jump_1 (rtx_jump_insn *jump, rtx nlabel)
1681 rtx x = pc_set (jump);
1682 int ochanges;
1683 int ok;
1685 ochanges = num_validated_changes ();
1686 if (x == NULL)
1687 return 0;
1688 ok = invert_exp_1 (SET_SRC (x), jump);
1689 gcc_assert (ok);
1691 if (num_validated_changes () == ochanges)
1692 return 0;
1694 /* redirect_jump_1 will fail of nlabel == olabel, and the current use is
1695 in Pmode, so checking this is not merely an optimization. */
1696 return nlabel == JUMP_LABEL (jump) || redirect_jump_1 (jump, nlabel);
1699 /* Invert the condition of the jump JUMP, and make it jump to label
1700 NLABEL instead of where it jumps now. Return true if successful. */
1703 invert_jump (rtx_jump_insn *jump, rtx nlabel, int delete_unused)
1705 rtx olabel = JUMP_LABEL (jump);
1707 if (invert_jump_1 (jump, nlabel) && apply_change_group ())
1709 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 1);
1710 return 1;
1712 cancel_changes (0);
1713 return 0;
1717 /* Like rtx_equal_p except that it considers two REGs as equal
1718 if they renumber to the same value and considers two commutative
1719 operations to be the same if the order of the operands has been
1720 reversed. */
1723 rtx_renumbered_equal_p (const_rtx x, const_rtx y)
1725 int i;
1726 const enum rtx_code code = GET_CODE (x);
1727 const char *fmt;
1729 if (x == y)
1730 return 1;
1732 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
1733 && (REG_P (y) || (GET_CODE (y) == SUBREG
1734 && REG_P (SUBREG_REG (y)))))
1736 int reg_x = -1, reg_y = -1;
1737 int byte_x = 0, byte_y = 0;
1738 struct subreg_info info;
1740 if (GET_MODE (x) != GET_MODE (y))
1741 return 0;
1743 /* If we haven't done any renumbering, don't
1744 make any assumptions. */
1745 if (reg_renumber == 0)
1746 return rtx_equal_p (x, y);
1748 if (code == SUBREG)
1750 reg_x = REGNO (SUBREG_REG (x));
1751 byte_x = SUBREG_BYTE (x);
1753 if (reg_renumber[reg_x] >= 0)
1755 subreg_get_info (reg_renumber[reg_x],
1756 GET_MODE (SUBREG_REG (x)), byte_x,
1757 GET_MODE (x), &info);
1758 if (!info.representable_p)
1759 return 0;
1760 reg_x = info.offset;
1761 byte_x = 0;
1764 else
1766 reg_x = REGNO (x);
1767 if (reg_renumber[reg_x] >= 0)
1768 reg_x = reg_renumber[reg_x];
1771 if (GET_CODE (y) == SUBREG)
1773 reg_y = REGNO (SUBREG_REG (y));
1774 byte_y = SUBREG_BYTE (y);
1776 if (reg_renumber[reg_y] >= 0)
1778 subreg_get_info (reg_renumber[reg_y],
1779 GET_MODE (SUBREG_REG (y)), byte_y,
1780 GET_MODE (y), &info);
1781 if (!info.representable_p)
1782 return 0;
1783 reg_y = info.offset;
1784 byte_y = 0;
1787 else
1789 reg_y = REGNO (y);
1790 if (reg_renumber[reg_y] >= 0)
1791 reg_y = reg_renumber[reg_y];
1794 return reg_x >= 0 && reg_x == reg_y && byte_x == byte_y;
1797 /* Now we have disposed of all the cases
1798 in which different rtx codes can match. */
1799 if (code != GET_CODE (y))
1800 return 0;
1802 switch (code)
1804 case PC:
1805 case CC0:
1806 case ADDR_VEC:
1807 case ADDR_DIFF_VEC:
1808 CASE_CONST_UNIQUE:
1809 return 0;
1811 case LABEL_REF:
1812 /* We can't assume nonlocal labels have their following insns yet. */
1813 if (LABEL_REF_NONLOCAL_P (x) || LABEL_REF_NONLOCAL_P (y))
1814 return LABEL_REF_LABEL (x) == LABEL_REF_LABEL (y);
1816 /* Two label-refs are equivalent if they point at labels
1817 in the same position in the instruction stream. */
1818 return (next_real_insn (LABEL_REF_LABEL (x))
1819 == next_real_insn (LABEL_REF_LABEL (y)));
1821 case SYMBOL_REF:
1822 return XSTR (x, 0) == XSTR (y, 0);
1824 case CODE_LABEL:
1825 /* If we didn't match EQ equality above, they aren't the same. */
1826 return 0;
1828 default:
1829 break;
1832 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1834 if (GET_MODE (x) != GET_MODE (y))
1835 return 0;
1837 /* MEMs referring to different address space are not equivalent. */
1838 if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
1839 return 0;
1841 /* For commutative operations, the RTX match if the operand match in any
1842 order. Also handle the simple binary and unary cases without a loop. */
1843 if (targetm.commutative_p (x, UNKNOWN))
1844 return ((rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1845 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)))
1846 || (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 1))
1847 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 0))));
1848 else if (NON_COMMUTATIVE_P (x))
1849 return (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1850 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)));
1851 else if (UNARY_P (x))
1852 return rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0));
1854 /* Compare the elements. If any pair of corresponding elements
1855 fail to match, return 0 for the whole things. */
1857 fmt = GET_RTX_FORMAT (code);
1858 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1860 int j;
1861 switch (fmt[i])
1863 case 'w':
1864 if (XWINT (x, i) != XWINT (y, i))
1865 return 0;
1866 break;
1868 case 'i':
1869 if (XINT (x, i) != XINT (y, i))
1871 if (((code == ASM_OPERANDS && i == 6)
1872 || (code == ASM_INPUT && i == 1)))
1873 break;
1874 return 0;
1876 break;
1878 case 't':
1879 if (XTREE (x, i) != XTREE (y, i))
1880 return 0;
1881 break;
1883 case 's':
1884 if (strcmp (XSTR (x, i), XSTR (y, i)))
1885 return 0;
1886 break;
1888 case 'e':
1889 if (! rtx_renumbered_equal_p (XEXP (x, i), XEXP (y, i)))
1890 return 0;
1891 break;
1893 case 'u':
1894 if (XEXP (x, i) != XEXP (y, i))
1895 return 0;
1896 /* Fall through. */
1897 case '0':
1898 break;
1900 case 'E':
1901 if (XVECLEN (x, i) != XVECLEN (y, i))
1902 return 0;
1903 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1904 if (!rtx_renumbered_equal_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
1905 return 0;
1906 break;
1908 default:
1909 gcc_unreachable ();
1912 return 1;
1915 /* If X is a hard register or equivalent to one or a subregister of one,
1916 return the hard register number. If X is a pseudo register that was not
1917 assigned a hard register, return the pseudo register number. Otherwise,
1918 return -1. Any rtx is valid for X. */
1921 true_regnum (const_rtx x)
1923 if (REG_P (x))
1925 if (REGNO (x) >= FIRST_PSEUDO_REGISTER
1926 && (lra_in_progress || reg_renumber[REGNO (x)] >= 0))
1927 return reg_renumber[REGNO (x)];
1928 return REGNO (x);
1930 if (GET_CODE (x) == SUBREG)
1932 int base = true_regnum (SUBREG_REG (x));
1933 if (base >= 0
1934 && base < FIRST_PSEUDO_REGISTER)
1936 struct subreg_info info;
1938 subreg_get_info (lra_in_progress
1939 ? (unsigned) base : REGNO (SUBREG_REG (x)),
1940 GET_MODE (SUBREG_REG (x)),
1941 SUBREG_BYTE (x), GET_MODE (x), &info);
1943 if (info.representable_p)
1944 return base + info.offset;
1947 return -1;
1950 /* Return regno of the register REG and handle subregs too. */
1951 unsigned int
1952 reg_or_subregno (const_rtx reg)
1954 if (GET_CODE (reg) == SUBREG)
1955 reg = SUBREG_REG (reg);
1956 gcc_assert (REG_P (reg));
1957 return REGNO (reg);