PR target/16201
[official-gcc.git] / gcc / ada / sem_util.adb
blobcc0cc6fd43bdea76fddd20b051956cb1b4b1a798
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ U T I L --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2004, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
20 -- MA 02111-1307, USA. --
21 -- --
22 -- GNAT was originally developed by the GNAT team at New York University. --
23 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 -- --
25 ------------------------------------------------------------------------------
27 with Atree; use Atree;
28 with Casing; use Casing;
29 with Checks; use Checks;
30 with Debug; use Debug;
31 with Errout; use Errout;
32 with Elists; use Elists;
33 with Exp_Tss; use Exp_Tss;
34 with Exp_Util; use Exp_Util;
35 with Fname; use Fname;
36 with Freeze; use Freeze;
37 with Lib; use Lib;
38 with Lib.Xref; use Lib.Xref;
39 with Namet; use Namet;
40 with Nlists; use Nlists;
41 with Nmake; use Nmake;
42 with Output; use Output;
43 with Opt; use Opt;
44 with Rtsfind; use Rtsfind;
45 with Scans; use Scans;
46 with Scn; use Scn;
47 with Sem; use Sem;
48 with Sem_Ch8; use Sem_Ch8;
49 with Sem_Eval; use Sem_Eval;
50 with Sem_Res; use Sem_Res;
51 with Sem_Type; use Sem_Type;
52 with Sinfo; use Sinfo;
53 with Sinput; use Sinput;
54 with Snames; use Snames;
55 with Stand; use Stand;
56 with Style;
57 with Stringt; use Stringt;
58 with Targparm; use Targparm;
59 with Tbuild; use Tbuild;
60 with Ttypes; use Ttypes;
61 with Uname; use Uname;
63 package body Sem_Util is
65 -----------------------
66 -- Local Subprograms --
67 -----------------------
69 function Build_Component_Subtype
70 (C : List_Id;
71 Loc : Source_Ptr;
72 T : Entity_Id) return Node_Id;
73 -- This function builds the subtype for Build_Actual_Subtype_Of_Component
74 -- and Build_Discriminal_Subtype_Of_Component. C is a list of constraints,
75 -- Loc is the source location, T is the original subtype.
77 function Is_Fully_Initialized_Variant (Typ : Entity_Id) return Boolean;
78 -- Subsidiary to Is_Fully_Initialized_Type. For an unconstrained type
79 -- with discriminants whose default values are static, examine only the
80 -- components in the selected variant to determine whether all of them
81 -- have a default.
83 function Has_Null_Extension (T : Entity_Id) return Boolean;
84 -- T is a derived tagged type. Check whether the type extension is null.
85 -- If the parent type is fully initialized, T can be treated as such.
87 --------------------------------
88 -- Add_Access_Type_To_Process --
89 --------------------------------
91 procedure Add_Access_Type_To_Process (E : Entity_Id; A : Entity_Id) is
92 L : Elist_Id;
94 begin
95 Ensure_Freeze_Node (E);
96 L := Access_Types_To_Process (Freeze_Node (E));
98 if No (L) then
99 L := New_Elmt_List;
100 Set_Access_Types_To_Process (Freeze_Node (E), L);
101 end if;
103 Append_Elmt (A, L);
104 end Add_Access_Type_To_Process;
106 -----------------------
107 -- Alignment_In_Bits --
108 -----------------------
110 function Alignment_In_Bits (E : Entity_Id) return Uint is
111 begin
112 return Alignment (E) * System_Storage_Unit;
113 end Alignment_In_Bits;
115 -----------------------------------------
116 -- Apply_Compile_Time_Constraint_Error --
117 -----------------------------------------
119 procedure Apply_Compile_Time_Constraint_Error
120 (N : Node_Id;
121 Msg : String;
122 Reason : RT_Exception_Code;
123 Ent : Entity_Id := Empty;
124 Typ : Entity_Id := Empty;
125 Loc : Source_Ptr := No_Location;
126 Rep : Boolean := True;
127 Warn : Boolean := False)
129 Stat : constant Boolean := Is_Static_Expression (N);
130 Rtyp : Entity_Id;
132 begin
133 if No (Typ) then
134 Rtyp := Etype (N);
135 else
136 Rtyp := Typ;
137 end if;
139 Discard_Node (
140 Compile_Time_Constraint_Error (N, Msg, Ent, Loc, Warn => Warn));
142 if not Rep then
143 return;
144 end if;
146 -- Now we replace the node by an N_Raise_Constraint_Error node
147 -- This does not need reanalyzing, so set it as analyzed now.
149 Rewrite (N,
150 Make_Raise_Constraint_Error (Sloc (N),
151 Reason => Reason));
152 Set_Analyzed (N, True);
153 Set_Etype (N, Rtyp);
154 Set_Raises_Constraint_Error (N);
156 -- If the original expression was marked as static, the result is
157 -- still marked as static, but the Raises_Constraint_Error flag is
158 -- always set so that further static evaluation is not attempted.
160 if Stat then
161 Set_Is_Static_Expression (N);
162 end if;
163 end Apply_Compile_Time_Constraint_Error;
165 --------------------------
166 -- Build_Actual_Subtype --
167 --------------------------
169 function Build_Actual_Subtype
170 (T : Entity_Id;
171 N : Node_Or_Entity_Id) return Node_Id
173 Obj : Node_Id;
175 Loc : constant Source_Ptr := Sloc (N);
176 Constraints : List_Id;
177 Decl : Node_Id;
178 Discr : Entity_Id;
179 Hi : Node_Id;
180 Lo : Node_Id;
181 Subt : Entity_Id;
182 Disc_Type : Entity_Id;
184 begin
185 if Nkind (N) = N_Defining_Identifier then
186 Obj := New_Reference_To (N, Loc);
187 else
188 Obj := N;
189 end if;
191 if Is_Array_Type (T) then
192 Constraints := New_List;
194 for J in 1 .. Number_Dimensions (T) loop
196 -- Build an array subtype declaration with the nominal
197 -- subtype and the bounds of the actual. Add the declaration
198 -- in front of the local declarations for the subprogram, for
199 -- analysis before any reference to the formal in the body.
201 Lo :=
202 Make_Attribute_Reference (Loc,
203 Prefix =>
204 Duplicate_Subexpr_No_Checks (Obj, Name_Req => True),
205 Attribute_Name => Name_First,
206 Expressions => New_List (
207 Make_Integer_Literal (Loc, J)));
209 Hi :=
210 Make_Attribute_Reference (Loc,
211 Prefix =>
212 Duplicate_Subexpr_No_Checks (Obj, Name_Req => True),
213 Attribute_Name => Name_Last,
214 Expressions => New_List (
215 Make_Integer_Literal (Loc, J)));
217 Append (Make_Range (Loc, Lo, Hi), Constraints);
218 end loop;
220 -- If the type has unknown discriminants there is no constrained
221 -- subtype to build. This is never called for a formal or for a
222 -- lhs, so returning the type is ok ???
224 elsif Has_Unknown_Discriminants (T) then
225 return T;
227 else
228 Constraints := New_List;
230 if Is_Private_Type (T) and then No (Full_View (T)) then
232 -- Type is a generic derived type. Inherit discriminants from
233 -- Parent type.
235 Disc_Type := Etype (Base_Type (T));
236 else
237 Disc_Type := T;
238 end if;
240 Discr := First_Discriminant (Disc_Type);
242 while Present (Discr) loop
243 Append_To (Constraints,
244 Make_Selected_Component (Loc,
245 Prefix =>
246 Duplicate_Subexpr_No_Checks (Obj),
247 Selector_Name => New_Occurrence_Of (Discr, Loc)));
248 Next_Discriminant (Discr);
249 end loop;
250 end if;
252 Subt :=
253 Make_Defining_Identifier (Loc,
254 Chars => New_Internal_Name ('S'));
255 Set_Is_Internal (Subt);
257 Decl :=
258 Make_Subtype_Declaration (Loc,
259 Defining_Identifier => Subt,
260 Subtype_Indication =>
261 Make_Subtype_Indication (Loc,
262 Subtype_Mark => New_Reference_To (T, Loc),
263 Constraint =>
264 Make_Index_Or_Discriminant_Constraint (Loc,
265 Constraints => Constraints)));
267 Mark_Rewrite_Insertion (Decl);
268 return Decl;
269 end Build_Actual_Subtype;
271 ---------------------------------------
272 -- Build_Actual_Subtype_Of_Component --
273 ---------------------------------------
275 function Build_Actual_Subtype_Of_Component
276 (T : Entity_Id;
277 N : Node_Id) return Node_Id
279 Loc : constant Source_Ptr := Sloc (N);
280 P : constant Node_Id := Prefix (N);
281 D : Elmt_Id;
282 Id : Node_Id;
283 Indx_Type : Entity_Id;
285 Deaccessed_T : Entity_Id;
286 -- This is either a copy of T, or if T is an access type, then it is
287 -- the directly designated type of this access type.
289 function Build_Actual_Array_Constraint return List_Id;
290 -- If one or more of the bounds of the component depends on
291 -- discriminants, build actual constraint using the discriminants
292 -- of the prefix.
294 function Build_Actual_Record_Constraint return List_Id;
295 -- Similar to previous one, for discriminated components constrained
296 -- by the discriminant of the enclosing object.
298 -----------------------------------
299 -- Build_Actual_Array_Constraint --
300 -----------------------------------
302 function Build_Actual_Array_Constraint return List_Id is
303 Constraints : constant List_Id := New_List;
304 Indx : Node_Id;
305 Hi : Node_Id;
306 Lo : Node_Id;
307 Old_Hi : Node_Id;
308 Old_Lo : Node_Id;
310 begin
311 Indx := First_Index (Deaccessed_T);
312 while Present (Indx) loop
313 Old_Lo := Type_Low_Bound (Etype (Indx));
314 Old_Hi := Type_High_Bound (Etype (Indx));
316 if Denotes_Discriminant (Old_Lo) then
317 Lo :=
318 Make_Selected_Component (Loc,
319 Prefix => New_Copy_Tree (P),
320 Selector_Name => New_Occurrence_Of (Entity (Old_Lo), Loc));
322 else
323 Lo := New_Copy_Tree (Old_Lo);
325 -- The new bound will be reanalyzed in the enclosing
326 -- declaration. For literal bounds that come from a type
327 -- declaration, the type of the context must be imposed, so
328 -- insure that analysis will take place. For non-universal
329 -- types this is not strictly necessary.
331 Set_Analyzed (Lo, False);
332 end if;
334 if Denotes_Discriminant (Old_Hi) then
335 Hi :=
336 Make_Selected_Component (Loc,
337 Prefix => New_Copy_Tree (P),
338 Selector_Name => New_Occurrence_Of (Entity (Old_Hi), Loc));
340 else
341 Hi := New_Copy_Tree (Old_Hi);
342 Set_Analyzed (Hi, False);
343 end if;
345 Append (Make_Range (Loc, Lo, Hi), Constraints);
346 Next_Index (Indx);
347 end loop;
349 return Constraints;
350 end Build_Actual_Array_Constraint;
352 ------------------------------------
353 -- Build_Actual_Record_Constraint --
354 ------------------------------------
356 function Build_Actual_Record_Constraint return List_Id is
357 Constraints : constant List_Id := New_List;
358 D : Elmt_Id;
359 D_Val : Node_Id;
361 begin
362 D := First_Elmt (Discriminant_Constraint (Deaccessed_T));
363 while Present (D) loop
365 if Denotes_Discriminant (Node (D)) then
366 D_Val := Make_Selected_Component (Loc,
367 Prefix => New_Copy_Tree (P),
368 Selector_Name => New_Occurrence_Of (Entity (Node (D)), Loc));
370 else
371 D_Val := New_Copy_Tree (Node (D));
372 end if;
374 Append (D_Val, Constraints);
375 Next_Elmt (D);
376 end loop;
378 return Constraints;
379 end Build_Actual_Record_Constraint;
381 -- Start of processing for Build_Actual_Subtype_Of_Component
383 begin
384 if In_Default_Expression then
385 return Empty;
387 elsif Nkind (N) = N_Explicit_Dereference then
388 if Is_Composite_Type (T)
389 and then not Is_Constrained (T)
390 and then not (Is_Class_Wide_Type (T)
391 and then Is_Constrained (Root_Type (T)))
392 and then not Has_Unknown_Discriminants (T)
393 then
394 -- If the type of the dereference is already constrained, it
395 -- is an actual subtype.
397 if Is_Array_Type (Etype (N))
398 and then Is_Constrained (Etype (N))
399 then
400 return Empty;
401 else
402 Remove_Side_Effects (P);
403 return Build_Actual_Subtype (T, N);
404 end if;
405 else
406 return Empty;
407 end if;
408 end if;
410 if Ekind (T) = E_Access_Subtype then
411 Deaccessed_T := Designated_Type (T);
412 else
413 Deaccessed_T := T;
414 end if;
416 if Ekind (Deaccessed_T) = E_Array_Subtype then
417 Id := First_Index (Deaccessed_T);
418 Indx_Type := Underlying_Type (Etype (Id));
420 while Present (Id) loop
422 if Denotes_Discriminant (Type_Low_Bound (Indx_Type)) or else
423 Denotes_Discriminant (Type_High_Bound (Indx_Type))
424 then
425 Remove_Side_Effects (P);
426 return
427 Build_Component_Subtype (
428 Build_Actual_Array_Constraint, Loc, Base_Type (T));
429 end if;
431 Next_Index (Id);
432 end loop;
434 elsif Is_Composite_Type (Deaccessed_T)
435 and then Has_Discriminants (Deaccessed_T)
436 and then not Has_Unknown_Discriminants (Deaccessed_T)
437 then
438 D := First_Elmt (Discriminant_Constraint (Deaccessed_T));
439 while Present (D) loop
441 if Denotes_Discriminant (Node (D)) then
442 Remove_Side_Effects (P);
443 return
444 Build_Component_Subtype (
445 Build_Actual_Record_Constraint, Loc, Base_Type (T));
446 end if;
448 Next_Elmt (D);
449 end loop;
450 end if;
452 -- If none of the above, the actual and nominal subtypes are the same
454 return Empty;
455 end Build_Actual_Subtype_Of_Component;
457 -----------------------------
458 -- Build_Component_Subtype --
459 -----------------------------
461 function Build_Component_Subtype
462 (C : List_Id;
463 Loc : Source_Ptr;
464 T : Entity_Id) return Node_Id
466 Subt : Entity_Id;
467 Decl : Node_Id;
469 begin
470 -- Unchecked_Union components do not require component subtypes
472 if Is_Unchecked_Union (T) then
473 return Empty;
474 end if;
476 Subt :=
477 Make_Defining_Identifier (Loc,
478 Chars => New_Internal_Name ('S'));
479 Set_Is_Internal (Subt);
481 Decl :=
482 Make_Subtype_Declaration (Loc,
483 Defining_Identifier => Subt,
484 Subtype_Indication =>
485 Make_Subtype_Indication (Loc,
486 Subtype_Mark => New_Reference_To (Base_Type (T), Loc),
487 Constraint =>
488 Make_Index_Or_Discriminant_Constraint (Loc,
489 Constraints => C)));
491 Mark_Rewrite_Insertion (Decl);
492 return Decl;
493 end Build_Component_Subtype;
495 --------------------------------------------
496 -- Build_Discriminal_Subtype_Of_Component --
497 --------------------------------------------
499 function Build_Discriminal_Subtype_Of_Component
500 (T : Entity_Id) return Node_Id
502 Loc : constant Source_Ptr := Sloc (T);
503 D : Elmt_Id;
504 Id : Node_Id;
506 function Build_Discriminal_Array_Constraint return List_Id;
507 -- If one or more of the bounds of the component depends on
508 -- discriminants, build actual constraint using the discriminants
509 -- of the prefix.
511 function Build_Discriminal_Record_Constraint return List_Id;
512 -- Similar to previous one, for discriminated components constrained
513 -- by the discriminant of the enclosing object.
515 ----------------------------------------
516 -- Build_Discriminal_Array_Constraint --
517 ----------------------------------------
519 function Build_Discriminal_Array_Constraint return List_Id is
520 Constraints : constant List_Id := New_List;
521 Indx : Node_Id;
522 Hi : Node_Id;
523 Lo : Node_Id;
524 Old_Hi : Node_Id;
525 Old_Lo : Node_Id;
527 begin
528 Indx := First_Index (T);
529 while Present (Indx) loop
530 Old_Lo := Type_Low_Bound (Etype (Indx));
531 Old_Hi := Type_High_Bound (Etype (Indx));
533 if Denotes_Discriminant (Old_Lo) then
534 Lo := New_Occurrence_Of (Discriminal (Entity (Old_Lo)), Loc);
536 else
537 Lo := New_Copy_Tree (Old_Lo);
538 end if;
540 if Denotes_Discriminant (Old_Hi) then
541 Hi := New_Occurrence_Of (Discriminal (Entity (Old_Hi)), Loc);
543 else
544 Hi := New_Copy_Tree (Old_Hi);
545 end if;
547 Append (Make_Range (Loc, Lo, Hi), Constraints);
548 Next_Index (Indx);
549 end loop;
551 return Constraints;
552 end Build_Discriminal_Array_Constraint;
554 -----------------------------------------
555 -- Build_Discriminal_Record_Constraint --
556 -----------------------------------------
558 function Build_Discriminal_Record_Constraint return List_Id is
559 Constraints : constant List_Id := New_List;
560 D : Elmt_Id;
561 D_Val : Node_Id;
563 begin
564 D := First_Elmt (Discriminant_Constraint (T));
565 while Present (D) loop
566 if Denotes_Discriminant (Node (D)) then
567 D_Val :=
568 New_Occurrence_Of (Discriminal (Entity (Node (D))), Loc);
570 else
571 D_Val := New_Copy_Tree (Node (D));
572 end if;
574 Append (D_Val, Constraints);
575 Next_Elmt (D);
576 end loop;
578 return Constraints;
579 end Build_Discriminal_Record_Constraint;
581 -- Start of processing for Build_Discriminal_Subtype_Of_Component
583 begin
584 if Ekind (T) = E_Array_Subtype then
585 Id := First_Index (T);
587 while Present (Id) loop
588 if Denotes_Discriminant (Type_Low_Bound (Etype (Id))) or else
589 Denotes_Discriminant (Type_High_Bound (Etype (Id)))
590 then
591 return Build_Component_Subtype
592 (Build_Discriminal_Array_Constraint, Loc, T);
593 end if;
595 Next_Index (Id);
596 end loop;
598 elsif Ekind (T) = E_Record_Subtype
599 and then Has_Discriminants (T)
600 and then not Has_Unknown_Discriminants (T)
601 then
602 D := First_Elmt (Discriminant_Constraint (T));
603 while Present (D) loop
604 if Denotes_Discriminant (Node (D)) then
605 return Build_Component_Subtype
606 (Build_Discriminal_Record_Constraint, Loc, T);
607 end if;
609 Next_Elmt (D);
610 end loop;
611 end if;
613 -- If none of the above, the actual and nominal subtypes are the same
615 return Empty;
616 end Build_Discriminal_Subtype_Of_Component;
618 ------------------------------
619 -- Build_Elaboration_Entity --
620 ------------------------------
622 procedure Build_Elaboration_Entity (N : Node_Id; Spec_Id : Entity_Id) is
623 Loc : constant Source_Ptr := Sloc (N);
624 Unum : constant Unit_Number_Type := Get_Source_Unit (Loc);
625 Decl : Node_Id;
626 P : Natural;
627 Elab_Ent : Entity_Id;
629 begin
630 -- Ignore if already constructed
632 if Present (Elaboration_Entity (Spec_Id)) then
633 return;
634 end if;
636 -- Construct name of elaboration entity as xxx_E, where xxx
637 -- is the unit name with dots replaced by double underscore.
638 -- We have to manually construct this name, since it will
639 -- be elaborated in the outer scope, and thus will not have
640 -- the unit name automatically prepended.
642 Get_Name_String (Unit_Name (Unum));
644 -- Replace the %s by _E
646 Name_Buffer (Name_Len - 1 .. Name_Len) := "_E";
648 -- Replace dots by double underscore
650 P := 2;
651 while P < Name_Len - 2 loop
652 if Name_Buffer (P) = '.' then
653 Name_Buffer (P + 2 .. Name_Len + 1) :=
654 Name_Buffer (P + 1 .. Name_Len);
655 Name_Len := Name_Len + 1;
656 Name_Buffer (P) := '_';
657 Name_Buffer (P + 1) := '_';
658 P := P + 3;
659 else
660 P := P + 1;
661 end if;
662 end loop;
664 -- Create elaboration flag
666 Elab_Ent :=
667 Make_Defining_Identifier (Loc, Chars => Name_Find);
668 Set_Elaboration_Entity (Spec_Id, Elab_Ent);
670 if No (Declarations (Aux_Decls_Node (N))) then
671 Set_Declarations (Aux_Decls_Node (N), New_List);
672 end if;
674 Decl :=
675 Make_Object_Declaration (Loc,
676 Defining_Identifier => Elab_Ent,
677 Object_Definition =>
678 New_Occurrence_Of (Standard_Boolean, Loc),
679 Expression =>
680 New_Occurrence_Of (Standard_False, Loc));
682 Append_To (Declarations (Aux_Decls_Node (N)), Decl);
683 Analyze (Decl);
685 -- Reset True_Constant indication, since we will indeed
686 -- assign a value to the variable in the binder main.
688 Set_Is_True_Constant (Elab_Ent, False);
689 Set_Current_Value (Elab_Ent, Empty);
691 -- We do not want any further qualification of the name (if we did
692 -- not do this, we would pick up the name of the generic package
693 -- in the case of a library level generic instantiation).
695 Set_Has_Qualified_Name (Elab_Ent);
696 Set_Has_Fully_Qualified_Name (Elab_Ent);
697 end Build_Elaboration_Entity;
699 -----------------------------------
700 -- Cannot_Raise_Constraint_Error --
701 -----------------------------------
703 function Cannot_Raise_Constraint_Error (Expr : Node_Id) return Boolean is
704 begin
705 if Compile_Time_Known_Value (Expr) then
706 return True;
708 elsif Do_Range_Check (Expr) then
709 return False;
711 elsif Raises_Constraint_Error (Expr) then
712 return False;
714 else
715 case Nkind (Expr) is
716 when N_Identifier =>
717 return True;
719 when N_Expanded_Name =>
720 return True;
722 when N_Selected_Component =>
723 return not Do_Discriminant_Check (Expr);
725 when N_Attribute_Reference =>
726 if Do_Overflow_Check (Expr) then
727 return False;
729 elsif No (Expressions (Expr)) then
730 return True;
732 else
733 declare
734 N : Node_Id := First (Expressions (Expr));
736 begin
737 while Present (N) loop
738 if Cannot_Raise_Constraint_Error (N) then
739 Next (N);
740 else
741 return False;
742 end if;
743 end loop;
745 return True;
746 end;
747 end if;
749 when N_Type_Conversion =>
750 if Do_Overflow_Check (Expr)
751 or else Do_Length_Check (Expr)
752 or else Do_Tag_Check (Expr)
753 then
754 return False;
755 else
756 return
757 Cannot_Raise_Constraint_Error (Expression (Expr));
758 end if;
760 when N_Unchecked_Type_Conversion =>
761 return Cannot_Raise_Constraint_Error (Expression (Expr));
763 when N_Unary_Op =>
764 if Do_Overflow_Check (Expr) then
765 return False;
766 else
767 return
768 Cannot_Raise_Constraint_Error (Right_Opnd (Expr));
769 end if;
771 when N_Op_Divide |
772 N_Op_Mod |
773 N_Op_Rem
775 if Do_Division_Check (Expr)
776 or else Do_Overflow_Check (Expr)
777 then
778 return False;
779 else
780 return
781 Cannot_Raise_Constraint_Error (Left_Opnd (Expr))
782 and then
783 Cannot_Raise_Constraint_Error (Right_Opnd (Expr));
784 end if;
786 when N_Op_Add |
787 N_Op_And |
788 N_Op_Concat |
789 N_Op_Eq |
790 N_Op_Expon |
791 N_Op_Ge |
792 N_Op_Gt |
793 N_Op_Le |
794 N_Op_Lt |
795 N_Op_Multiply |
796 N_Op_Ne |
797 N_Op_Or |
798 N_Op_Rotate_Left |
799 N_Op_Rotate_Right |
800 N_Op_Shift_Left |
801 N_Op_Shift_Right |
802 N_Op_Shift_Right_Arithmetic |
803 N_Op_Subtract |
804 N_Op_Xor
806 if Do_Overflow_Check (Expr) then
807 return False;
808 else
809 return
810 Cannot_Raise_Constraint_Error (Left_Opnd (Expr))
811 and then
812 Cannot_Raise_Constraint_Error (Right_Opnd (Expr));
813 end if;
815 when others =>
816 return False;
817 end case;
818 end if;
819 end Cannot_Raise_Constraint_Error;
821 --------------------------
822 -- Check_Fully_Declared --
823 --------------------------
825 procedure Check_Fully_Declared (T : Entity_Id; N : Node_Id) is
826 begin
827 if Ekind (T) = E_Incomplete_Type then
829 -- Ada 2005 (AI-50217): If the type is available through a limited
830 -- with_clause, verify that its full view has been analyzed.
832 if From_With_Type (T)
833 and then Present (Non_Limited_View (T))
834 and then Ekind (Non_Limited_View (T)) /= E_Incomplete_Type
835 then
836 -- The non-limited view is fully declared
837 null;
839 else
840 Error_Msg_NE
841 ("premature usage of incomplete}", N, First_Subtype (T));
842 end if;
844 elsif Has_Private_Component (T)
845 and then not Is_Generic_Type (Root_Type (T))
846 and then not In_Default_Expression
847 then
849 -- Special case: if T is the anonymous type created for a single
850 -- task or protected object, use the name of the source object.
852 if Is_Concurrent_Type (T)
853 and then not Comes_From_Source (T)
854 and then Nkind (N) = N_Object_Declaration
855 then
856 Error_Msg_NE ("type of& has incomplete component", N,
857 Defining_Identifier (N));
859 else
860 Error_Msg_NE
861 ("premature usage of incomplete}", N, First_Subtype (T));
862 end if;
863 end if;
864 end Check_Fully_Declared;
866 ------------------------------------------
867 -- Check_Potentially_Blocking_Operation --
868 ------------------------------------------
870 procedure Check_Potentially_Blocking_Operation (N : Node_Id) is
871 S : Entity_Id;
873 begin
874 -- N is one of the potentially blocking operations listed in 9.5.1(8).
875 -- When pragma Detect_Blocking is active, the run time will raise
876 -- Program_Error. Here we only issue a warning, since we generally
877 -- support the use of potentially blocking operations in the absence
878 -- of the pragma.
880 -- Indirect blocking through a subprogram call cannot be diagnosed
881 -- statically without interprocedural analysis, so we do not attempt
882 -- to do it here.
884 S := Scope (Current_Scope);
885 while Present (S) and then S /= Standard_Standard loop
886 if Is_Protected_Type (S) then
887 Error_Msg_N
888 ("potentially blocking operation in protected operation?", N);
890 return;
891 end if;
893 S := Scope (S);
894 end loop;
895 end Check_Potentially_Blocking_Operation;
897 ---------------
898 -- Check_VMS --
899 ---------------
901 procedure Check_VMS (Construct : Node_Id) is
902 begin
903 if not OpenVMS_On_Target then
904 Error_Msg_N
905 ("this construct is allowed only in Open'V'M'S", Construct);
906 end if;
907 end Check_VMS;
909 ----------------------------------
910 -- Collect_Primitive_Operations --
911 ----------------------------------
913 function Collect_Primitive_Operations (T : Entity_Id) return Elist_Id is
914 B_Type : constant Entity_Id := Base_Type (T);
915 B_Decl : constant Node_Id := Original_Node (Parent (B_Type));
916 B_Scope : Entity_Id := Scope (B_Type);
917 Op_List : Elist_Id;
918 Formal : Entity_Id;
919 Is_Prim : Boolean;
920 Formal_Derived : Boolean := False;
921 Id : Entity_Id;
923 begin
924 -- For tagged types, the primitive operations are collected as they
925 -- are declared, and held in an explicit list which is simply returned.
927 if Is_Tagged_Type (B_Type) then
928 return Primitive_Operations (B_Type);
930 -- An untagged generic type that is a derived type inherits the
931 -- primitive operations of its parent type. Other formal types only
932 -- have predefined operators, which are not explicitly represented.
934 elsif Is_Generic_Type (B_Type) then
935 if Nkind (B_Decl) = N_Formal_Type_Declaration
936 and then Nkind (Formal_Type_Definition (B_Decl))
937 = N_Formal_Derived_Type_Definition
938 then
939 Formal_Derived := True;
940 else
941 return New_Elmt_List;
942 end if;
943 end if;
945 Op_List := New_Elmt_List;
947 if B_Scope = Standard_Standard then
948 if B_Type = Standard_String then
949 Append_Elmt (Standard_Op_Concat, Op_List);
951 elsif B_Type = Standard_Wide_String then
952 Append_Elmt (Standard_Op_Concatw, Op_List);
954 else
955 null;
956 end if;
958 elsif (Is_Package (B_Scope)
959 and then Nkind (
960 Parent (Declaration_Node (First_Subtype (T))))
961 /= N_Package_Body)
963 or else Is_Derived_Type (B_Type)
964 then
965 -- The primitive operations appear after the base type, except
966 -- if the derivation happens within the private part of B_Scope
967 -- and the type is a private type, in which case both the type
968 -- and some primitive operations may appear before the base
969 -- type, and the list of candidates starts after the type.
971 if In_Open_Scopes (B_Scope)
972 and then Scope (T) = B_Scope
973 and then In_Private_Part (B_Scope)
974 then
975 Id := Next_Entity (T);
976 else
977 Id := Next_Entity (B_Type);
978 end if;
980 while Present (Id) loop
982 -- Note that generic formal subprograms are not
983 -- considered to be primitive operations and thus
984 -- are never inherited.
986 if Is_Overloadable (Id)
987 and then Nkind (Parent (Parent (Id)))
988 /= N_Formal_Subprogram_Declaration
989 then
990 Is_Prim := False;
992 if Base_Type (Etype (Id)) = B_Type then
993 Is_Prim := True;
994 else
995 Formal := First_Formal (Id);
996 while Present (Formal) loop
997 if Base_Type (Etype (Formal)) = B_Type then
998 Is_Prim := True;
999 exit;
1001 elsif Ekind (Etype (Formal)) = E_Anonymous_Access_Type
1002 and then Base_Type
1003 (Designated_Type (Etype (Formal))) = B_Type
1004 then
1005 Is_Prim := True;
1006 exit;
1007 end if;
1009 Next_Formal (Formal);
1010 end loop;
1011 end if;
1013 -- For a formal derived type, the only primitives are the
1014 -- ones inherited from the parent type. Operations appearing
1015 -- in the package declaration are not primitive for it.
1017 if Is_Prim
1018 and then (not Formal_Derived
1019 or else Present (Alias (Id)))
1020 then
1021 Append_Elmt (Id, Op_List);
1022 end if;
1023 end if;
1025 Next_Entity (Id);
1027 -- For a type declared in System, some of its operations
1028 -- may appear in the target-specific extension to System.
1030 if No (Id)
1031 and then Chars (B_Scope) = Name_System
1032 and then Scope (B_Scope) = Standard_Standard
1033 and then Present_System_Aux
1034 then
1035 B_Scope := System_Aux_Id;
1036 Id := First_Entity (System_Aux_Id);
1037 end if;
1038 end loop;
1039 end if;
1041 return Op_List;
1042 end Collect_Primitive_Operations;
1044 -----------------------------------
1045 -- Compile_Time_Constraint_Error --
1046 -----------------------------------
1048 function Compile_Time_Constraint_Error
1049 (N : Node_Id;
1050 Msg : String;
1051 Ent : Entity_Id := Empty;
1052 Loc : Source_Ptr := No_Location;
1053 Warn : Boolean := False) return Node_Id
1055 Msgc : String (1 .. Msg'Length + 2);
1056 Msgl : Natural;
1057 Wmsg : Boolean;
1058 P : Node_Id;
1059 Msgs : Boolean;
1060 Eloc : Source_Ptr;
1062 begin
1063 -- A static constraint error in an instance body is not a fatal error.
1064 -- we choose to inhibit the message altogether, because there is no
1065 -- obvious node (for now) on which to post it. On the other hand the
1066 -- offending node must be replaced with a constraint_error in any case.
1068 -- No messages are generated if we already posted an error on this node
1070 if not Error_Posted (N) then
1071 if Loc /= No_Location then
1072 Eloc := Loc;
1073 else
1074 Eloc := Sloc (N);
1075 end if;
1077 -- Make all such messages unconditional
1079 Msgc (1 .. Msg'Length) := Msg;
1080 Msgc (Msg'Length + 1) := '!';
1081 Msgl := Msg'Length + 1;
1083 -- Message is a warning, even in Ada 95 case
1085 if Msg (Msg'Length) = '?' then
1086 Wmsg := True;
1088 -- In Ada 83, all messages are warnings. In the private part and
1089 -- the body of an instance, constraint_checks are only warnings.
1090 -- We also make this a warning if the Warn parameter is set.
1092 elsif Warn
1093 or else (Ada_Version = Ada_83 and then Comes_From_Source (N))
1094 then
1095 Msgl := Msgl + 1;
1096 Msgc (Msgl) := '?';
1097 Wmsg := True;
1099 elsif In_Instance_Not_Visible then
1100 Msgl := Msgl + 1;
1101 Msgc (Msgl) := '?';
1102 Wmsg := True;
1104 -- Otherwise we have a real error message (Ada 95 static case)
1106 else
1107 Wmsg := False;
1108 end if;
1110 -- Should we generate a warning? The answer is not quite yes. The
1111 -- very annoying exception occurs in the case of a short circuit
1112 -- operator where the left operand is static and decisive. Climb
1113 -- parents to see if that is the case we have here.
1115 Msgs := True;
1116 P := N;
1118 loop
1119 P := Parent (P);
1121 if (Nkind (P) = N_And_Then
1122 and then Compile_Time_Known_Value (Left_Opnd (P))
1123 and then Is_False (Expr_Value (Left_Opnd (P))))
1124 or else (Nkind (P) = N_Or_Else
1125 and then Compile_Time_Known_Value (Left_Opnd (P))
1126 and then Is_True (Expr_Value (Left_Opnd (P))))
1127 then
1128 Msgs := False;
1129 exit;
1131 elsif Nkind (P) = N_Component_Association
1132 and then Nkind (Parent (P)) = N_Aggregate
1133 then
1134 null; -- Keep going.
1136 else
1137 exit when Nkind (P) not in N_Subexpr;
1138 end if;
1139 end loop;
1141 if Msgs then
1142 if Present (Ent) then
1143 Error_Msg_NEL (Msgc (1 .. Msgl), N, Ent, Eloc);
1144 else
1145 Error_Msg_NEL (Msgc (1 .. Msgl), N, Etype (N), Eloc);
1146 end if;
1148 if Wmsg then
1149 if Inside_Init_Proc then
1150 Error_Msg_NEL
1151 ("\& will be raised for objects of this type!?",
1152 N, Standard_Constraint_Error, Eloc);
1153 else
1154 Error_Msg_NEL
1155 ("\& will be raised at run time!?",
1156 N, Standard_Constraint_Error, Eloc);
1157 end if;
1158 else
1159 Error_Msg_NEL
1160 ("\static expression raises&!",
1161 N, Standard_Constraint_Error, Eloc);
1162 end if;
1163 end if;
1164 end if;
1166 return N;
1167 end Compile_Time_Constraint_Error;
1169 -----------------------
1170 -- Conditional_Delay --
1171 -----------------------
1173 procedure Conditional_Delay (New_Ent, Old_Ent : Entity_Id) is
1174 begin
1175 if Has_Delayed_Freeze (Old_Ent) and then not Is_Frozen (Old_Ent) then
1176 Set_Has_Delayed_Freeze (New_Ent);
1177 end if;
1178 end Conditional_Delay;
1180 --------------------
1181 -- Current_Entity --
1182 --------------------
1184 -- The currently visible definition for a given identifier is the
1185 -- one most chained at the start of the visibility chain, i.e. the
1186 -- one that is referenced by the Node_Id value of the name of the
1187 -- given identifier.
1189 function Current_Entity (N : Node_Id) return Entity_Id is
1190 begin
1191 return Get_Name_Entity_Id (Chars (N));
1192 end Current_Entity;
1194 -----------------------------
1195 -- Current_Entity_In_Scope --
1196 -----------------------------
1198 function Current_Entity_In_Scope (N : Node_Id) return Entity_Id is
1199 E : Entity_Id;
1200 CS : constant Entity_Id := Current_Scope;
1202 Transient_Case : constant Boolean := Scope_Is_Transient;
1204 begin
1205 E := Get_Name_Entity_Id (Chars (N));
1207 while Present (E)
1208 and then Scope (E) /= CS
1209 and then (not Transient_Case or else Scope (E) /= Scope (CS))
1210 loop
1211 E := Homonym (E);
1212 end loop;
1214 return E;
1215 end Current_Entity_In_Scope;
1217 -------------------
1218 -- Current_Scope --
1219 -------------------
1221 function Current_Scope return Entity_Id is
1222 begin
1223 if Scope_Stack.Last = -1 then
1224 return Standard_Standard;
1225 else
1226 declare
1227 C : constant Entity_Id :=
1228 Scope_Stack.Table (Scope_Stack.Last).Entity;
1229 begin
1230 if Present (C) then
1231 return C;
1232 else
1233 return Standard_Standard;
1234 end if;
1235 end;
1236 end if;
1237 end Current_Scope;
1239 ------------------------
1240 -- Current_Subprogram --
1241 ------------------------
1243 function Current_Subprogram return Entity_Id is
1244 Scop : constant Entity_Id := Current_Scope;
1246 begin
1247 if Is_Subprogram (Scop) or else Is_Generic_Subprogram (Scop) then
1248 return Scop;
1249 else
1250 return Enclosing_Subprogram (Scop);
1251 end if;
1252 end Current_Subprogram;
1254 ---------------------
1255 -- Defining_Entity --
1256 ---------------------
1258 function Defining_Entity (N : Node_Id) return Entity_Id is
1259 K : constant Node_Kind := Nkind (N);
1260 Err : Entity_Id := Empty;
1262 begin
1263 case K is
1264 when
1265 N_Subprogram_Declaration |
1266 N_Abstract_Subprogram_Declaration |
1267 N_Subprogram_Body |
1268 N_Package_Declaration |
1269 N_Subprogram_Renaming_Declaration |
1270 N_Subprogram_Body_Stub |
1271 N_Generic_Subprogram_Declaration |
1272 N_Generic_Package_Declaration |
1273 N_Formal_Subprogram_Declaration
1275 return Defining_Entity (Specification (N));
1277 when
1278 N_Component_Declaration |
1279 N_Defining_Program_Unit_Name |
1280 N_Discriminant_Specification |
1281 N_Entry_Body |
1282 N_Entry_Declaration |
1283 N_Entry_Index_Specification |
1284 N_Exception_Declaration |
1285 N_Exception_Renaming_Declaration |
1286 N_Formal_Object_Declaration |
1287 N_Formal_Package_Declaration |
1288 N_Formal_Type_Declaration |
1289 N_Full_Type_Declaration |
1290 N_Implicit_Label_Declaration |
1291 N_Incomplete_Type_Declaration |
1292 N_Loop_Parameter_Specification |
1293 N_Number_Declaration |
1294 N_Object_Declaration |
1295 N_Object_Renaming_Declaration |
1296 N_Package_Body_Stub |
1297 N_Parameter_Specification |
1298 N_Private_Extension_Declaration |
1299 N_Private_Type_Declaration |
1300 N_Protected_Body |
1301 N_Protected_Body_Stub |
1302 N_Protected_Type_Declaration |
1303 N_Single_Protected_Declaration |
1304 N_Single_Task_Declaration |
1305 N_Subtype_Declaration |
1306 N_Task_Body |
1307 N_Task_Body_Stub |
1308 N_Task_Type_Declaration
1310 return Defining_Identifier (N);
1312 when N_Subunit =>
1313 return Defining_Entity (Proper_Body (N));
1315 when
1316 N_Function_Instantiation |
1317 N_Function_Specification |
1318 N_Generic_Function_Renaming_Declaration |
1319 N_Generic_Package_Renaming_Declaration |
1320 N_Generic_Procedure_Renaming_Declaration |
1321 N_Package_Body |
1322 N_Package_Instantiation |
1323 N_Package_Renaming_Declaration |
1324 N_Package_Specification |
1325 N_Procedure_Instantiation |
1326 N_Procedure_Specification
1328 declare
1329 Nam : constant Node_Id := Defining_Unit_Name (N);
1331 begin
1332 if Nkind (Nam) in N_Entity then
1333 return Nam;
1335 -- For Error, make up a name and attach to declaration
1336 -- so we can continue semantic analysis
1338 elsif Nam = Error then
1339 Err :=
1340 Make_Defining_Identifier (Sloc (N),
1341 Chars => New_Internal_Name ('T'));
1342 Set_Defining_Unit_Name (N, Err);
1344 return Err;
1345 -- If not an entity, get defining identifier
1347 else
1348 return Defining_Identifier (Nam);
1349 end if;
1350 end;
1352 when N_Block_Statement =>
1353 return Entity (Identifier (N));
1355 when others =>
1356 raise Program_Error;
1358 end case;
1359 end Defining_Entity;
1361 --------------------------
1362 -- Denotes_Discriminant --
1363 --------------------------
1365 function Denotes_Discriminant
1366 (N : Node_Id;
1367 Check_Protected : Boolean := False) return Boolean
1369 E : Entity_Id;
1370 begin
1371 if not Is_Entity_Name (N)
1372 or else No (Entity (N))
1373 then
1374 return False;
1375 else
1376 E := Entity (N);
1377 end if;
1379 -- If we are checking for a protected type, the discriminant may have
1380 -- been rewritten as the corresponding discriminal of the original type
1381 -- or of the corresponding concurrent record, depending on whether we
1382 -- are in the spec or body of the protected type.
1384 return Ekind (E) = E_Discriminant
1385 or else
1386 (Check_Protected
1387 and then Ekind (E) = E_In_Parameter
1388 and then Present (Discriminal_Link (E))
1389 and then
1390 (Is_Protected_Type (Scope (Discriminal_Link (E)))
1391 or else
1392 Is_Concurrent_Record_Type (Scope (Discriminal_Link (E)))));
1394 end Denotes_Discriminant;
1396 -----------------------------
1397 -- Depends_On_Discriminant --
1398 -----------------------------
1400 function Depends_On_Discriminant (N : Node_Id) return Boolean is
1401 L : Node_Id;
1402 H : Node_Id;
1404 begin
1405 Get_Index_Bounds (N, L, H);
1406 return Denotes_Discriminant (L) or else Denotes_Discriminant (H);
1407 end Depends_On_Discriminant;
1409 -------------------------
1410 -- Designate_Same_Unit --
1411 -------------------------
1413 function Designate_Same_Unit
1414 (Name1 : Node_Id;
1415 Name2 : Node_Id) return Boolean
1417 K1 : constant Node_Kind := Nkind (Name1);
1418 K2 : constant Node_Kind := Nkind (Name2);
1420 function Prefix_Node (N : Node_Id) return Node_Id;
1421 -- Returns the parent unit name node of a defining program unit name
1422 -- or the prefix if N is a selected component or an expanded name.
1424 function Select_Node (N : Node_Id) return Node_Id;
1425 -- Returns the defining identifier node of a defining program unit
1426 -- name or the selector node if N is a selected component or an
1427 -- expanded name.
1429 -----------------
1430 -- Prefix_Node --
1431 -----------------
1433 function Prefix_Node (N : Node_Id) return Node_Id is
1434 begin
1435 if Nkind (N) = N_Defining_Program_Unit_Name then
1436 return Name (N);
1438 else
1439 return Prefix (N);
1440 end if;
1441 end Prefix_Node;
1443 -----------------
1444 -- Select_Node --
1445 -----------------
1447 function Select_Node (N : Node_Id) return Node_Id is
1448 begin
1449 if Nkind (N) = N_Defining_Program_Unit_Name then
1450 return Defining_Identifier (N);
1452 else
1453 return Selector_Name (N);
1454 end if;
1455 end Select_Node;
1457 -- Start of processing for Designate_Next_Unit
1459 begin
1460 if (K1 = N_Identifier or else
1461 K1 = N_Defining_Identifier)
1462 and then
1463 (K2 = N_Identifier or else
1464 K2 = N_Defining_Identifier)
1465 then
1466 return Chars (Name1) = Chars (Name2);
1468 elsif
1469 (K1 = N_Expanded_Name or else
1470 K1 = N_Selected_Component or else
1471 K1 = N_Defining_Program_Unit_Name)
1472 and then
1473 (K2 = N_Expanded_Name or else
1474 K2 = N_Selected_Component or else
1475 K2 = N_Defining_Program_Unit_Name)
1476 then
1477 return
1478 (Chars (Select_Node (Name1)) = Chars (Select_Node (Name2)))
1479 and then
1480 Designate_Same_Unit (Prefix_Node (Name1), Prefix_Node (Name2));
1482 else
1483 return False;
1484 end if;
1485 end Designate_Same_Unit;
1487 ----------------------------
1488 -- Enclosing_Generic_Body --
1489 ----------------------------
1491 function Enclosing_Generic_Body
1492 (E : Entity_Id) return Node_Id
1494 P : Node_Id;
1495 Decl : Node_Id;
1496 Spec : Node_Id;
1498 begin
1499 P := Parent (E);
1501 while Present (P) loop
1502 if Nkind (P) = N_Package_Body
1503 or else Nkind (P) = N_Subprogram_Body
1504 then
1505 Spec := Corresponding_Spec (P);
1507 if Present (Spec) then
1508 Decl := Unit_Declaration_Node (Spec);
1510 if Nkind (Decl) = N_Generic_Package_Declaration
1511 or else Nkind (Decl) = N_Generic_Subprogram_Declaration
1512 then
1513 return P;
1514 end if;
1515 end if;
1516 end if;
1518 P := Parent (P);
1519 end loop;
1521 return Empty;
1522 end Enclosing_Generic_Body;
1524 -------------------------------
1525 -- Enclosing_Lib_Unit_Entity --
1526 -------------------------------
1528 function Enclosing_Lib_Unit_Entity return Entity_Id is
1529 Unit_Entity : Entity_Id := Current_Scope;
1531 begin
1532 -- Look for enclosing library unit entity by following scope links.
1533 -- Equivalent to, but faster than indexing through the scope stack.
1535 while (Present (Scope (Unit_Entity))
1536 and then Scope (Unit_Entity) /= Standard_Standard)
1537 and not Is_Child_Unit (Unit_Entity)
1538 loop
1539 Unit_Entity := Scope (Unit_Entity);
1540 end loop;
1542 return Unit_Entity;
1543 end Enclosing_Lib_Unit_Entity;
1545 -----------------------------
1546 -- Enclosing_Lib_Unit_Node --
1547 -----------------------------
1549 function Enclosing_Lib_Unit_Node (N : Node_Id) return Node_Id is
1550 Current_Node : Node_Id := N;
1552 begin
1553 while Present (Current_Node)
1554 and then Nkind (Current_Node) /= N_Compilation_Unit
1555 loop
1556 Current_Node := Parent (Current_Node);
1557 end loop;
1559 if Nkind (Current_Node) /= N_Compilation_Unit then
1560 return Empty;
1561 end if;
1563 return Current_Node;
1564 end Enclosing_Lib_Unit_Node;
1566 --------------------------
1567 -- Enclosing_Subprogram --
1568 --------------------------
1570 function Enclosing_Subprogram (E : Entity_Id) return Entity_Id is
1571 Dynamic_Scope : constant Entity_Id := Enclosing_Dynamic_Scope (E);
1573 begin
1574 if Dynamic_Scope = Standard_Standard then
1575 return Empty;
1577 elsif Ekind (Dynamic_Scope) = E_Subprogram_Body then
1578 return Corresponding_Spec (Parent (Parent (Dynamic_Scope)));
1580 elsif Ekind (Dynamic_Scope) = E_Block then
1581 return Enclosing_Subprogram (Dynamic_Scope);
1583 elsif Ekind (Dynamic_Scope) = E_Task_Type then
1584 return Get_Task_Body_Procedure (Dynamic_Scope);
1586 elsif Convention (Dynamic_Scope) = Convention_Protected then
1587 return Protected_Body_Subprogram (Dynamic_Scope);
1589 else
1590 return Dynamic_Scope;
1591 end if;
1592 end Enclosing_Subprogram;
1594 ------------------------
1595 -- Ensure_Freeze_Node --
1596 ------------------------
1598 procedure Ensure_Freeze_Node (E : Entity_Id) is
1599 FN : Node_Id;
1601 begin
1602 if No (Freeze_Node (E)) then
1603 FN := Make_Freeze_Entity (Sloc (E));
1604 Set_Has_Delayed_Freeze (E);
1605 Set_Freeze_Node (E, FN);
1606 Set_Access_Types_To_Process (FN, No_Elist);
1607 Set_TSS_Elist (FN, No_Elist);
1608 Set_Entity (FN, E);
1609 end if;
1610 end Ensure_Freeze_Node;
1612 ----------------
1613 -- Enter_Name --
1614 ----------------
1616 procedure Enter_Name (Def_Id : Node_Id) is
1617 C : constant Entity_Id := Current_Entity (Def_Id);
1618 E : constant Entity_Id := Current_Entity_In_Scope (Def_Id);
1619 S : constant Entity_Id := Current_Scope;
1621 begin
1622 Generate_Definition (Def_Id);
1624 -- Add new name to current scope declarations. Check for duplicate
1625 -- declaration, which may or may not be a genuine error.
1627 if Present (E) then
1629 -- Case of previous entity entered because of a missing declaration
1630 -- or else a bad subtype indication. Best is to use the new entity,
1631 -- and make the previous one invisible.
1633 if Etype (E) = Any_Type then
1634 Set_Is_Immediately_Visible (E, False);
1636 -- Case of renaming declaration constructed for package instances.
1637 -- if there is an explicit declaration with the same identifier,
1638 -- the renaming is not immediately visible any longer, but remains
1639 -- visible through selected component notation.
1641 elsif Nkind (Parent (E)) = N_Package_Renaming_Declaration
1642 and then not Comes_From_Source (E)
1643 then
1644 Set_Is_Immediately_Visible (E, False);
1646 -- The new entity may be the package renaming, which has the same
1647 -- same name as a generic formal which has been seen already.
1649 elsif Nkind (Parent (Def_Id)) = N_Package_Renaming_Declaration
1650 and then not Comes_From_Source (Def_Id)
1651 then
1652 Set_Is_Immediately_Visible (E, False);
1654 -- For a fat pointer corresponding to a remote access to subprogram,
1655 -- we use the same identifier as the RAS type, so that the proper
1656 -- name appears in the stub. This type is only retrieved through
1657 -- the RAS type and never by visibility, and is not added to the
1658 -- visibility list (see below).
1660 elsif Nkind (Parent (Def_Id)) = N_Full_Type_Declaration
1661 and then Present (Corresponding_Remote_Type (Def_Id))
1662 then
1663 null;
1665 -- A controller component for a type extension overrides the
1666 -- inherited component.
1668 elsif Chars (E) = Name_uController then
1669 null;
1671 -- Case of an implicit operation or derived literal. The new entity
1672 -- hides the implicit one, which is removed from all visibility,
1673 -- i.e. the entity list of its scope, and homonym chain of its name.
1675 elsif (Is_Overloadable (E) and then Is_Inherited_Operation (E))
1676 or else Is_Internal (E)
1677 then
1678 declare
1679 Prev : Entity_Id;
1680 Prev_Vis : Entity_Id;
1681 Decl : constant Node_Id := Parent (E);
1683 begin
1684 -- If E is an implicit declaration, it cannot be the first
1685 -- entity in the scope.
1687 Prev := First_Entity (Current_Scope);
1689 while Present (Prev)
1690 and then Next_Entity (Prev) /= E
1691 loop
1692 Next_Entity (Prev);
1693 end loop;
1695 if No (Prev) then
1697 -- If E is not on the entity chain of the current scope,
1698 -- it is an implicit declaration in the generic formal
1699 -- part of a generic subprogram. When analyzing the body,
1700 -- the generic formals are visible but not on the entity
1701 -- chain of the subprogram. The new entity will become
1702 -- the visible one in the body.
1704 pragma Assert
1705 (Nkind (Parent (Decl)) = N_Generic_Subprogram_Declaration);
1706 null;
1708 else
1709 Set_Next_Entity (Prev, Next_Entity (E));
1711 if No (Next_Entity (Prev)) then
1712 Set_Last_Entity (Current_Scope, Prev);
1713 end if;
1715 if E = Current_Entity (E) then
1716 Prev_Vis := Empty;
1718 else
1719 Prev_Vis := Current_Entity (E);
1720 while Homonym (Prev_Vis) /= E loop
1721 Prev_Vis := Homonym (Prev_Vis);
1722 end loop;
1723 end if;
1725 if Present (Prev_Vis) then
1727 -- Skip E in the visibility chain
1729 Set_Homonym (Prev_Vis, Homonym (E));
1731 else
1732 Set_Name_Entity_Id (Chars (E), Homonym (E));
1733 end if;
1734 end if;
1735 end;
1737 -- This section of code could use a comment ???
1739 elsif Present (Etype (E))
1740 and then Is_Concurrent_Type (Etype (E))
1741 and then E = Def_Id
1742 then
1743 return;
1745 -- In the body or private part of an instance, a type extension
1746 -- may introduce a component with the same name as that of an
1747 -- actual. The legality rule is not enforced, but the semantics
1748 -- of the full type with two components of the same name are not
1749 -- clear at this point ???
1751 elsif In_Instance_Not_Visible then
1752 null;
1754 -- When compiling a package body, some child units may have become
1755 -- visible. They cannot conflict with local entities that hide them.
1757 elsif Is_Child_Unit (E)
1758 and then In_Open_Scopes (Scope (E))
1759 and then not Is_Immediately_Visible (E)
1760 then
1761 null;
1763 -- Conversely, with front-end inlining we may compile the parent
1764 -- body first, and a child unit subsequently. The context is now
1765 -- the parent spec, and body entities are not visible.
1767 elsif Is_Child_Unit (Def_Id)
1768 and then Is_Package_Body_Entity (E)
1769 and then not In_Package_Body (Current_Scope)
1770 then
1771 null;
1773 -- Case of genuine duplicate declaration
1775 else
1776 Error_Msg_Sloc := Sloc (E);
1778 -- If the previous declaration is an incomplete type declaration
1779 -- this may be an attempt to complete it with a private type.
1780 -- The following avoids confusing cascaded errors.
1782 if Nkind (Parent (E)) = N_Incomplete_Type_Declaration
1783 and then Nkind (Parent (Def_Id)) = N_Private_Type_Declaration
1784 then
1785 Error_Msg_N
1786 ("incomplete type cannot be completed" &
1787 " with a private declaration",
1788 Parent (Def_Id));
1789 Set_Is_Immediately_Visible (E, False);
1790 Set_Full_View (E, Def_Id);
1792 elsif Ekind (E) = E_Discriminant
1793 and then Present (Scope (Def_Id))
1794 and then Scope (Def_Id) /= Current_Scope
1795 then
1796 -- An inherited component of a record conflicts with
1797 -- a new discriminant. The discriminant is inserted first
1798 -- in the scope, but the error should be posted on it, not
1799 -- on the component.
1801 Error_Msg_Sloc := Sloc (Def_Id);
1802 Error_Msg_N ("& conflicts with declaration#", E);
1803 return;
1805 -- If the name of the unit appears in its own context clause,
1806 -- a dummy package with the name has already been created, and
1807 -- the error emitted. Try to continue quietly.
1809 elsif Error_Posted (E)
1810 and then Sloc (E) = No_Location
1811 and then Nkind (Parent (E)) = N_Package_Specification
1812 and then Current_Scope = Standard_Standard
1813 then
1814 Set_Scope (Def_Id, Current_Scope);
1815 return;
1817 else
1818 Error_Msg_N ("& conflicts with declaration#", Def_Id);
1820 -- Avoid cascaded messages with duplicate components in
1821 -- derived types.
1823 if Ekind (E) = E_Component
1824 or else Ekind (E) = E_Discriminant
1825 then
1826 return;
1827 end if;
1828 end if;
1830 if Nkind (Parent (Parent (Def_Id)))
1831 = N_Generic_Subprogram_Declaration
1832 and then Def_Id =
1833 Defining_Entity (Specification (Parent (Parent (Def_Id))))
1834 then
1835 Error_Msg_N ("\generic units cannot be overloaded", Def_Id);
1836 end if;
1838 -- If entity is in standard, then we are in trouble, because
1839 -- it means that we have a library package with a duplicated
1840 -- name. That's hard to recover from, so abort!
1842 if S = Standard_Standard then
1843 raise Unrecoverable_Error;
1845 -- Otherwise we continue with the declaration. Having two
1846 -- identical declarations should not cause us too much trouble!
1848 else
1849 null;
1850 end if;
1851 end if;
1852 end if;
1854 -- If we fall through, declaration is OK , or OK enough to continue
1856 -- If Def_Id is a discriminant or a record component we are in the
1857 -- midst of inheriting components in a derived record definition.
1858 -- Preserve their Ekind and Etype.
1860 if Ekind (Def_Id) = E_Discriminant
1861 or else Ekind (Def_Id) = E_Component
1862 then
1863 null;
1865 -- If a type is already set, leave it alone (happens whey a type
1866 -- declaration is reanalyzed following a call to the optimizer)
1868 elsif Present (Etype (Def_Id)) then
1869 null;
1871 -- Otherwise, the kind E_Void insures that premature uses of the entity
1872 -- will be detected. Any_Type insures that no cascaded errors will occur
1874 else
1875 Set_Ekind (Def_Id, E_Void);
1876 Set_Etype (Def_Id, Any_Type);
1877 end if;
1879 -- Inherited discriminants and components in derived record types are
1880 -- immediately visible. Itypes are not.
1882 if Ekind (Def_Id) = E_Discriminant
1883 or else Ekind (Def_Id) = E_Component
1884 or else (No (Corresponding_Remote_Type (Def_Id))
1885 and then not Is_Itype (Def_Id))
1886 then
1887 Set_Is_Immediately_Visible (Def_Id);
1888 Set_Current_Entity (Def_Id);
1889 end if;
1891 Set_Homonym (Def_Id, C);
1892 Append_Entity (Def_Id, S);
1893 Set_Public_Status (Def_Id);
1895 -- Warn if new entity hides an old one
1897 if Warn_On_Hiding
1898 and then Present (C)
1899 and then Length_Of_Name (Chars (C)) /= 1
1900 and then Comes_From_Source (C)
1901 and then Comes_From_Source (Def_Id)
1902 and then In_Extended_Main_Source_Unit (Def_Id)
1903 then
1904 Error_Msg_Sloc := Sloc (C);
1905 Error_Msg_N ("declaration hides &#?", Def_Id);
1906 end if;
1907 end Enter_Name;
1909 --------------------------
1910 -- Explain_Limited_Type --
1911 --------------------------
1913 procedure Explain_Limited_Type (T : Entity_Id; N : Node_Id) is
1914 C : Entity_Id;
1916 begin
1917 -- For array, component type must be limited
1919 if Is_Array_Type (T) then
1920 Error_Msg_Node_2 := T;
1921 Error_Msg_NE
1922 ("component type& of type& is limited", N, Component_Type (T));
1923 Explain_Limited_Type (Component_Type (T), N);
1925 elsif Is_Record_Type (T) then
1927 -- No need for extra messages if explicit limited record
1929 if Is_Limited_Record (Base_Type (T)) then
1930 return;
1931 end if;
1933 -- Otherwise find a limited component. Check only components that
1934 -- come from source, or inherited components that appear in the
1935 -- source of the ancestor.
1937 C := First_Component (T);
1938 while Present (C) loop
1939 if Is_Limited_Type (Etype (C))
1940 and then
1941 (Comes_From_Source (C)
1942 or else
1943 (Present (Original_Record_Component (C))
1944 and then
1945 Comes_From_Source (Original_Record_Component (C))))
1946 then
1947 Error_Msg_Node_2 := T;
1948 Error_Msg_NE ("\component& of type& has limited type", N, C);
1949 Explain_Limited_Type (Etype (C), N);
1950 return;
1951 end if;
1953 Next_Component (C);
1954 end loop;
1956 -- The type may be declared explicitly limited, even if no component
1957 -- of it is limited, in which case we fall out of the loop.
1958 return;
1959 end if;
1960 end Explain_Limited_Type;
1962 -------------------------------------
1963 -- Find_Corresponding_Discriminant --
1964 -------------------------------------
1966 function Find_Corresponding_Discriminant
1967 (Id : Node_Id;
1968 Typ : Entity_Id) return Entity_Id
1970 Par_Disc : Entity_Id;
1971 Old_Disc : Entity_Id;
1972 New_Disc : Entity_Id;
1974 begin
1975 Par_Disc := Original_Record_Component (Original_Discriminant (Id));
1977 -- The original type may currently be private, and the discriminant
1978 -- only appear on its full view.
1980 if Is_Private_Type (Scope (Par_Disc))
1981 and then not Has_Discriminants (Scope (Par_Disc))
1982 and then Present (Full_View (Scope (Par_Disc)))
1983 then
1984 Old_Disc := First_Discriminant (Full_View (Scope (Par_Disc)));
1985 else
1986 Old_Disc := First_Discriminant (Scope (Par_Disc));
1987 end if;
1989 if Is_Class_Wide_Type (Typ) then
1990 New_Disc := First_Discriminant (Root_Type (Typ));
1991 else
1992 New_Disc := First_Discriminant (Typ);
1993 end if;
1995 while Present (Old_Disc) and then Present (New_Disc) loop
1996 if Old_Disc = Par_Disc then
1997 return New_Disc;
1998 else
1999 Next_Discriminant (Old_Disc);
2000 Next_Discriminant (New_Disc);
2001 end if;
2002 end loop;
2004 -- Should always find it
2006 raise Program_Error;
2007 end Find_Corresponding_Discriminant;
2009 -----------------------------
2010 -- Find_Static_Alternative --
2011 -----------------------------
2013 function Find_Static_Alternative (N : Node_Id) return Node_Id is
2014 Expr : constant Node_Id := Expression (N);
2015 Val : constant Uint := Expr_Value (Expr);
2016 Alt : Node_Id;
2017 Choice : Node_Id;
2019 begin
2020 Alt := First (Alternatives (N));
2022 Search : loop
2023 if Nkind (Alt) /= N_Pragma then
2024 Choice := First (Discrete_Choices (Alt));
2026 while Present (Choice) loop
2028 -- Others choice, always matches
2030 if Nkind (Choice) = N_Others_Choice then
2031 exit Search;
2033 -- Range, check if value is in the range
2035 elsif Nkind (Choice) = N_Range then
2036 exit Search when
2037 Val >= Expr_Value (Low_Bound (Choice))
2038 and then
2039 Val <= Expr_Value (High_Bound (Choice));
2041 -- Choice is a subtype name. Note that we know it must
2042 -- be a static subtype, since otherwise it would have
2043 -- been diagnosed as illegal.
2045 elsif Is_Entity_Name (Choice)
2046 and then Is_Type (Entity (Choice))
2047 then
2048 exit Search when Is_In_Range (Expr, Etype (Choice));
2050 -- Choice is a subtype indication
2052 elsif Nkind (Choice) = N_Subtype_Indication then
2053 declare
2054 C : constant Node_Id := Constraint (Choice);
2055 R : constant Node_Id := Range_Expression (C);
2057 begin
2058 exit Search when
2059 Val >= Expr_Value (Low_Bound (R))
2060 and then
2061 Val <= Expr_Value (High_Bound (R));
2062 end;
2064 -- Choice is a simple expression
2066 else
2067 exit Search when Val = Expr_Value (Choice);
2068 end if;
2070 Next (Choice);
2071 end loop;
2072 end if;
2074 Next (Alt);
2075 pragma Assert (Present (Alt));
2076 end loop Search;
2078 -- The above loop *must* terminate by finding a match, since
2079 -- we know the case statement is valid, and the value of the
2080 -- expression is known at compile time. When we fall out of
2081 -- the loop, Alt points to the alternative that we know will
2082 -- be selected at run time.
2084 return Alt;
2085 end Find_Static_Alternative;
2087 ------------------
2088 -- First_Actual --
2089 ------------------
2091 function First_Actual (Node : Node_Id) return Node_Id is
2092 N : Node_Id;
2094 begin
2095 if No (Parameter_Associations (Node)) then
2096 return Empty;
2097 end if;
2099 N := First (Parameter_Associations (Node));
2101 if Nkind (N) = N_Parameter_Association then
2102 return First_Named_Actual (Node);
2103 else
2104 return N;
2105 end if;
2106 end First_Actual;
2108 -------------------------
2109 -- Full_Qualified_Name --
2110 -------------------------
2112 function Full_Qualified_Name (E : Entity_Id) return String_Id is
2113 Res : String_Id;
2114 pragma Warnings (Off, Res);
2116 function Internal_Full_Qualified_Name (E : Entity_Id) return String_Id;
2117 -- Compute recursively the qualified name without NUL at the end
2119 ----------------------------------
2120 -- Internal_Full_Qualified_Name --
2121 ----------------------------------
2123 function Internal_Full_Qualified_Name (E : Entity_Id) return String_Id is
2124 Ent : Entity_Id := E;
2125 Parent_Name : String_Id := No_String;
2127 begin
2128 -- Deals properly with child units
2130 if Nkind (Ent) = N_Defining_Program_Unit_Name then
2131 Ent := Defining_Identifier (Ent);
2132 end if;
2134 -- Compute recursively the qualification. Only "Standard" has no
2135 -- scope.
2137 if Present (Scope (Scope (Ent))) then
2138 Parent_Name := Internal_Full_Qualified_Name (Scope (Ent));
2139 end if;
2141 -- Every entity should have a name except some expanded blocks
2142 -- don't bother about those.
2144 if Chars (Ent) = No_Name then
2145 return Parent_Name;
2146 end if;
2148 -- Add a period between Name and qualification
2150 if Parent_Name /= No_String then
2151 Start_String (Parent_Name);
2152 Store_String_Char (Get_Char_Code ('.'));
2154 else
2155 Start_String;
2156 end if;
2158 -- Generates the entity name in upper case
2160 Get_Name_String (Chars (Ent));
2161 Set_All_Upper_Case;
2162 Store_String_Chars (Name_Buffer (1 .. Name_Len));
2163 return End_String;
2164 end Internal_Full_Qualified_Name;
2166 -- Start of processing for Full_Qualified_Name
2168 begin
2169 Res := Internal_Full_Qualified_Name (E);
2170 Store_String_Char (Get_Char_Code (ASCII.nul));
2171 return End_String;
2172 end Full_Qualified_Name;
2174 -----------------------
2175 -- Gather_Components --
2176 -----------------------
2178 procedure Gather_Components
2179 (Typ : Entity_Id;
2180 Comp_List : Node_Id;
2181 Governed_By : List_Id;
2182 Into : Elist_Id;
2183 Report_Errors : out Boolean)
2185 Assoc : Node_Id;
2186 Variant : Node_Id;
2187 Discrete_Choice : Node_Id;
2188 Comp_Item : Node_Id;
2190 Discrim : Entity_Id;
2191 Discrim_Name : Node_Id;
2192 Discrim_Value : Node_Id;
2194 begin
2195 Report_Errors := False;
2197 if No (Comp_List) or else Null_Present (Comp_List) then
2198 return;
2200 elsif Present (Component_Items (Comp_List)) then
2201 Comp_Item := First (Component_Items (Comp_List));
2203 else
2204 Comp_Item := Empty;
2205 end if;
2207 while Present (Comp_Item) loop
2209 -- Skip the tag of a tagged record, as well as all items
2210 -- that are not user components (anonymous types, rep clauses,
2211 -- Parent field, controller field).
2213 if Nkind (Comp_Item) = N_Component_Declaration
2214 and then Chars (Defining_Identifier (Comp_Item)) /= Name_uTag
2215 and then Chars (Defining_Identifier (Comp_Item)) /= Name_uParent
2216 and then Chars (Defining_Identifier (Comp_Item)) /= Name_uController
2217 then
2218 Append_Elmt (Defining_Identifier (Comp_Item), Into);
2219 end if;
2221 Next (Comp_Item);
2222 end loop;
2224 if No (Variant_Part (Comp_List)) then
2225 return;
2226 else
2227 Discrim_Name := Name (Variant_Part (Comp_List));
2228 Variant := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
2229 end if;
2231 -- Look for the discriminant that governs this variant part.
2232 -- The discriminant *must* be in the Governed_By List
2234 Assoc := First (Governed_By);
2235 Find_Constraint : loop
2236 Discrim := First (Choices (Assoc));
2237 exit Find_Constraint when Chars (Discrim_Name) = Chars (Discrim)
2238 or else (Present (Corresponding_Discriminant (Entity (Discrim)))
2239 and then
2240 Chars (Corresponding_Discriminant (Entity (Discrim)))
2241 = Chars (Discrim_Name))
2242 or else Chars (Original_Record_Component (Entity (Discrim)))
2243 = Chars (Discrim_Name);
2245 if No (Next (Assoc)) then
2246 if not Is_Constrained (Typ)
2247 and then Is_Derived_Type (Typ)
2248 and then Present (Stored_Constraint (Typ))
2249 then
2251 -- If the type is a tagged type with inherited discriminants,
2252 -- use the stored constraint on the parent in order to find
2253 -- the values of discriminants that are otherwise hidden by an
2254 -- explicit constraint. Renamed discriminants are handled in
2255 -- the code above.
2257 -- If several parent discriminants are renamed by a single
2258 -- discriminant of the derived type, the call to obtain the
2259 -- Corresponding_Discriminant field only retrieves the last
2260 -- of them. We recover the constraint on the others from the
2261 -- Stored_Constraint as well.
2263 declare
2264 D : Entity_Id;
2265 C : Elmt_Id;
2267 begin
2268 D := First_Discriminant (Etype (Typ));
2269 C := First_Elmt (Stored_Constraint (Typ));
2271 while Present (D)
2272 and then Present (C)
2273 loop
2274 if Chars (Discrim_Name) = Chars (D) then
2275 if Is_Entity_Name (Node (C))
2276 and then Entity (Node (C)) = Entity (Discrim)
2277 then
2278 -- D is renamed by Discrim, whose value is
2279 -- given in Assoc.
2281 null;
2283 else
2284 Assoc :=
2285 Make_Component_Association (Sloc (Typ),
2286 New_List
2287 (New_Occurrence_Of (D, Sloc (Typ))),
2288 Duplicate_Subexpr_No_Checks (Node (C)));
2289 end if;
2290 exit Find_Constraint;
2291 end if;
2293 D := Next_Discriminant (D);
2294 Next_Elmt (C);
2295 end loop;
2296 end;
2297 end if;
2298 end if;
2300 if No (Next (Assoc)) then
2301 Error_Msg_NE (" missing value for discriminant&",
2302 First (Governed_By), Discrim_Name);
2303 Report_Errors := True;
2304 return;
2305 end if;
2307 Next (Assoc);
2308 end loop Find_Constraint;
2310 Discrim_Value := Expression (Assoc);
2312 if not Is_OK_Static_Expression (Discrim_Value) then
2313 Error_Msg_FE
2314 ("value for discriminant & must be static!",
2315 Discrim_Value, Discrim);
2316 Why_Not_Static (Discrim_Value);
2317 Report_Errors := True;
2318 return;
2319 end if;
2321 Search_For_Discriminant_Value : declare
2322 Low : Node_Id;
2323 High : Node_Id;
2325 UI_High : Uint;
2326 UI_Low : Uint;
2327 UI_Discrim_Value : constant Uint := Expr_Value (Discrim_Value);
2329 begin
2330 Find_Discrete_Value : while Present (Variant) loop
2331 Discrete_Choice := First (Discrete_Choices (Variant));
2332 while Present (Discrete_Choice) loop
2334 exit Find_Discrete_Value when
2335 Nkind (Discrete_Choice) = N_Others_Choice;
2337 Get_Index_Bounds (Discrete_Choice, Low, High);
2339 UI_Low := Expr_Value (Low);
2340 UI_High := Expr_Value (High);
2342 exit Find_Discrete_Value when
2343 UI_Low <= UI_Discrim_Value
2344 and then
2345 UI_High >= UI_Discrim_Value;
2347 Next (Discrete_Choice);
2348 end loop;
2350 Next_Non_Pragma (Variant);
2351 end loop Find_Discrete_Value;
2352 end Search_For_Discriminant_Value;
2354 if No (Variant) then
2355 Error_Msg_NE
2356 ("value of discriminant & is out of range", Discrim_Value, Discrim);
2357 Report_Errors := True;
2358 return;
2359 end if;
2361 -- If we have found the corresponding choice, recursively add its
2362 -- components to the Into list.
2364 Gather_Components (Empty,
2365 Component_List (Variant), Governed_By, Into, Report_Errors);
2366 end Gather_Components;
2368 ------------------------
2369 -- Get_Actual_Subtype --
2370 ------------------------
2372 function Get_Actual_Subtype (N : Node_Id) return Entity_Id is
2373 Typ : constant Entity_Id := Etype (N);
2374 Utyp : Entity_Id := Underlying_Type (Typ);
2375 Decl : Node_Id;
2376 Atyp : Entity_Id;
2378 begin
2379 if not Present (Utyp) then
2380 Utyp := Typ;
2381 end if;
2383 -- If what we have is an identifier that references a subprogram
2384 -- formal, or a variable or constant object, then we get the actual
2385 -- subtype from the referenced entity if one has been built.
2387 if Nkind (N) = N_Identifier
2388 and then
2389 (Is_Formal (Entity (N))
2390 or else Ekind (Entity (N)) = E_Constant
2391 or else Ekind (Entity (N)) = E_Variable)
2392 and then Present (Actual_Subtype (Entity (N)))
2393 then
2394 return Actual_Subtype (Entity (N));
2396 -- Actual subtype of unchecked union is always itself. We never need
2397 -- the "real" actual subtype. If we did, we couldn't get it anyway
2398 -- because the discriminant is not available. The restrictions on
2399 -- Unchecked_Union are designed to make sure that this is OK.
2401 elsif Is_Unchecked_Union (Base_Type (Utyp)) then
2402 return Typ;
2404 -- Here for the unconstrained case, we must find actual subtype
2405 -- No actual subtype is available, so we must build it on the fly.
2407 -- Checking the type, not the underlying type, for constrainedness
2408 -- seems to be necessary. Maybe all the tests should be on the type???
2410 elsif (not Is_Constrained (Typ))
2411 and then (Is_Array_Type (Utyp)
2412 or else (Is_Record_Type (Utyp)
2413 and then Has_Discriminants (Utyp)))
2414 and then not Has_Unknown_Discriminants (Utyp)
2415 and then not (Ekind (Utyp) = E_String_Literal_Subtype)
2416 then
2417 -- Nothing to do if in default expression
2419 if In_Default_Expression then
2420 return Typ;
2422 elsif Is_Private_Type (Typ)
2423 and then not Has_Discriminants (Typ)
2424 then
2425 -- If the type has no discriminants, there is no subtype to
2426 -- build, even if the underlying type is discriminated.
2428 return Typ;
2430 -- Else build the actual subtype
2432 else
2433 Decl := Build_Actual_Subtype (Typ, N);
2434 Atyp := Defining_Identifier (Decl);
2436 -- If Build_Actual_Subtype generated a new declaration then use it
2438 if Atyp /= Typ then
2440 -- The actual subtype is an Itype, so analyze the declaration,
2441 -- but do not attach it to the tree, to get the type defined.
2443 Set_Parent (Decl, N);
2444 Set_Is_Itype (Atyp);
2445 Analyze (Decl, Suppress => All_Checks);
2446 Set_Associated_Node_For_Itype (Atyp, N);
2447 Set_Has_Delayed_Freeze (Atyp, False);
2449 -- We need to freeze the actual subtype immediately. This is
2450 -- needed, because otherwise this Itype will not get frozen
2451 -- at all, and it is always safe to freeze on creation because
2452 -- any associated types must be frozen at this point.
2454 Freeze_Itype (Atyp, N);
2455 return Atyp;
2457 -- Otherwise we did not build a declaration, so return original
2459 else
2460 return Typ;
2461 end if;
2462 end if;
2464 -- For all remaining cases, the actual subtype is the same as
2465 -- the nominal type.
2467 else
2468 return Typ;
2469 end if;
2470 end Get_Actual_Subtype;
2472 -------------------------------------
2473 -- Get_Actual_Subtype_If_Available --
2474 -------------------------------------
2476 function Get_Actual_Subtype_If_Available (N : Node_Id) return Entity_Id is
2477 Typ : constant Entity_Id := Etype (N);
2479 begin
2480 -- If what we have is an identifier that references a subprogram
2481 -- formal, or a variable or constant object, then we get the actual
2482 -- subtype from the referenced entity if one has been built.
2484 if Nkind (N) = N_Identifier
2485 and then
2486 (Is_Formal (Entity (N))
2487 or else Ekind (Entity (N)) = E_Constant
2488 or else Ekind (Entity (N)) = E_Variable)
2489 and then Present (Actual_Subtype (Entity (N)))
2490 then
2491 return Actual_Subtype (Entity (N));
2493 -- Otherwise the Etype of N is returned unchanged
2495 else
2496 return Typ;
2497 end if;
2498 end Get_Actual_Subtype_If_Available;
2500 -------------------------------
2501 -- Get_Default_External_Name --
2502 -------------------------------
2504 function Get_Default_External_Name (E : Node_Or_Entity_Id) return Node_Id is
2505 begin
2506 Get_Decoded_Name_String (Chars (E));
2508 if Opt.External_Name_Imp_Casing = Uppercase then
2509 Set_Casing (All_Upper_Case);
2510 else
2511 Set_Casing (All_Lower_Case);
2512 end if;
2514 return
2515 Make_String_Literal (Sloc (E),
2516 Strval => String_From_Name_Buffer);
2517 end Get_Default_External_Name;
2519 ---------------------------
2520 -- Get_Enum_Lit_From_Pos --
2521 ---------------------------
2523 function Get_Enum_Lit_From_Pos
2524 (T : Entity_Id;
2525 Pos : Uint;
2526 Loc : Source_Ptr) return Node_Id
2528 Lit : Node_Id;
2529 P : constant Nat := UI_To_Int (Pos);
2531 begin
2532 -- In the case where the literal is either of type Wide_Character
2533 -- or Character or of a type derived from them, there needs to be
2534 -- some special handling since there is no explicit chain of
2535 -- literals to search. Instead, an N_Character_Literal node is
2536 -- created with the appropriate Char_Code and Chars fields.
2538 if Root_Type (T) = Standard_Character
2539 or else Root_Type (T) = Standard_Wide_Character
2540 then
2541 Set_Character_Literal_Name (Char_Code (P));
2542 return
2543 Make_Character_Literal (Loc,
2544 Chars => Name_Find,
2545 Char_Literal_Value => Char_Code (P));
2547 -- For all other cases, we have a complete table of literals, and
2548 -- we simply iterate through the chain of literal until the one
2549 -- with the desired position value is found.
2552 else
2553 Lit := First_Literal (Base_Type (T));
2554 for J in 1 .. P loop
2555 Next_Literal (Lit);
2556 end loop;
2558 return New_Occurrence_Of (Lit, Loc);
2559 end if;
2560 end Get_Enum_Lit_From_Pos;
2562 ------------------------
2563 -- Get_Generic_Entity --
2564 ------------------------
2566 function Get_Generic_Entity (N : Node_Id) return Entity_Id is
2567 Ent : constant Entity_Id := Entity (Name (N));
2569 begin
2570 if Present (Renamed_Object (Ent)) then
2571 return Renamed_Object (Ent);
2572 else
2573 return Ent;
2574 end if;
2575 end Get_Generic_Entity;
2577 ----------------------
2578 -- Get_Index_Bounds --
2579 ----------------------
2581 procedure Get_Index_Bounds (N : Node_Id; L, H : out Node_Id) is
2582 Kind : constant Node_Kind := Nkind (N);
2583 R : Node_Id;
2585 begin
2586 if Kind = N_Range then
2587 L := Low_Bound (N);
2588 H := High_Bound (N);
2590 elsif Kind = N_Subtype_Indication then
2591 R := Range_Expression (Constraint (N));
2593 if R = Error then
2594 L := Error;
2595 H := Error;
2596 return;
2598 else
2599 L := Low_Bound (Range_Expression (Constraint (N)));
2600 H := High_Bound (Range_Expression (Constraint (N)));
2601 end if;
2603 elsif Is_Entity_Name (N) and then Is_Type (Entity (N)) then
2604 if Error_Posted (Scalar_Range (Entity (N))) then
2605 L := Error;
2606 H := Error;
2608 elsif Nkind (Scalar_Range (Entity (N))) = N_Subtype_Indication then
2609 Get_Index_Bounds (Scalar_Range (Entity (N)), L, H);
2611 else
2612 L := Low_Bound (Scalar_Range (Entity (N)));
2613 H := High_Bound (Scalar_Range (Entity (N)));
2614 end if;
2616 else
2617 -- N is an expression, indicating a range with one value
2619 L := N;
2620 H := N;
2621 end if;
2622 end Get_Index_Bounds;
2624 ----------------------------------
2625 -- Get_Library_Unit_Name_string --
2626 ----------------------------------
2628 procedure Get_Library_Unit_Name_String (Decl_Node : Node_Id) is
2629 Unit_Name_Id : constant Unit_Name_Type := Get_Unit_Name (Decl_Node);
2631 begin
2632 Get_Unit_Name_String (Unit_Name_Id);
2634 -- Remove seven last character (" (spec)" or " (body)")
2636 Name_Len := Name_Len - 7;
2637 pragma Assert (Name_Buffer (Name_Len + 1) = ' ');
2638 end Get_Library_Unit_Name_String;
2640 ------------------------
2641 -- Get_Name_Entity_Id --
2642 ------------------------
2644 function Get_Name_Entity_Id (Id : Name_Id) return Entity_Id is
2645 begin
2646 return Entity_Id (Get_Name_Table_Info (Id));
2647 end Get_Name_Entity_Id;
2649 ---------------------------
2650 -- Get_Referenced_Object --
2651 ---------------------------
2653 function Get_Referenced_Object (N : Node_Id) return Node_Id is
2654 R : Node_Id := N;
2656 begin
2657 while Is_Entity_Name (R)
2658 and then Present (Renamed_Object (Entity (R)))
2659 loop
2660 R := Renamed_Object (Entity (R));
2661 end loop;
2663 return R;
2664 end Get_Referenced_Object;
2666 -------------------------
2667 -- Get_Subprogram_Body --
2668 -------------------------
2670 function Get_Subprogram_Body (E : Entity_Id) return Node_Id is
2671 Decl : Node_Id;
2673 begin
2674 Decl := Unit_Declaration_Node (E);
2676 if Nkind (Decl) = N_Subprogram_Body then
2677 return Decl;
2679 -- The below comment is bad, because it is possible for
2680 -- Nkind (Decl) to be an N_Subprogram_Body_Stub ???
2682 else -- Nkind (Decl) = N_Subprogram_Declaration
2684 if Present (Corresponding_Body (Decl)) then
2685 return Unit_Declaration_Node (Corresponding_Body (Decl));
2687 -- Imported subprogram case
2689 else
2690 return Empty;
2691 end if;
2692 end if;
2693 end Get_Subprogram_Body;
2695 -----------------------------
2696 -- Get_Task_Body_Procedure --
2697 -----------------------------
2699 function Get_Task_Body_Procedure (E : Entity_Id) return Node_Id is
2700 begin
2701 return Task_Body_Procedure (Declaration_Node (Root_Type (E)));
2702 end Get_Task_Body_Procedure;
2704 -----------------------
2705 -- Has_Access_Values --
2706 -----------------------
2708 function Has_Access_Values (T : Entity_Id) return Boolean is
2709 Typ : constant Entity_Id := Underlying_Type (T);
2711 begin
2712 -- Case of a private type which is not completed yet. This can only
2713 -- happen in the case of a generic format type appearing directly, or
2714 -- as a component of the type to which this function is being applied
2715 -- at the top level. Return False in this case, since we certainly do
2716 -- not know that the type contains access types.
2718 if No (Typ) then
2719 return False;
2721 elsif Is_Access_Type (Typ) then
2722 return True;
2724 elsif Is_Array_Type (Typ) then
2725 return Has_Access_Values (Component_Type (Typ));
2727 elsif Is_Record_Type (Typ) then
2728 declare
2729 Comp : Entity_Id;
2731 begin
2732 Comp := First_Entity (Typ);
2733 while Present (Comp) loop
2734 if (Ekind (Comp) = E_Component
2735 or else
2736 Ekind (Comp) = E_Discriminant)
2737 and then Has_Access_Values (Etype (Comp))
2738 then
2739 return True;
2740 end if;
2742 Next_Entity (Comp);
2743 end loop;
2744 end;
2746 return False;
2748 else
2749 return False;
2750 end if;
2751 end Has_Access_Values;
2753 ----------------------
2754 -- Has_Declarations --
2755 ----------------------
2757 function Has_Declarations (N : Node_Id) return Boolean is
2758 K : constant Node_Kind := Nkind (N);
2759 begin
2760 return K = N_Accept_Statement
2761 or else K = N_Block_Statement
2762 or else K = N_Compilation_Unit_Aux
2763 or else K = N_Entry_Body
2764 or else K = N_Package_Body
2765 or else K = N_Protected_Body
2766 or else K = N_Subprogram_Body
2767 or else K = N_Task_Body
2768 or else K = N_Package_Specification;
2769 end Has_Declarations;
2771 --------------------
2772 -- Has_Infinities --
2773 --------------------
2775 function Has_Infinities (E : Entity_Id) return Boolean is
2776 begin
2777 return
2778 Is_Floating_Point_Type (E)
2779 and then Nkind (Scalar_Range (E)) = N_Range
2780 and then Includes_Infinities (Scalar_Range (E));
2781 end Has_Infinities;
2783 ------------------------
2784 -- Has_Null_Extension --
2785 ------------------------
2787 function Has_Null_Extension (T : Entity_Id) return Boolean is
2788 B : constant Entity_Id := Base_Type (T);
2789 Comps : Node_Id;
2790 Ext : Node_Id;
2792 begin
2793 if Nkind (Parent (B)) = N_Full_Type_Declaration
2794 and then Present (Record_Extension_Part (Type_Definition (Parent (B))))
2795 then
2796 Ext := Record_Extension_Part (Type_Definition (Parent (B)));
2798 if Present (Ext) then
2799 if Null_Present (Ext) then
2800 return True;
2801 else
2802 Comps := Component_List (Ext);
2804 -- The null component list is rewritten during analysis to
2805 -- include the parent component. Any other component indicates
2806 -- that the extension was not originally null.
2808 return Null_Present (Comps)
2809 or else No (Next (First (Component_Items (Comps))));
2810 end if;
2811 else
2812 return False;
2813 end if;
2815 else
2816 return False;
2817 end if;
2818 end Has_Null_Extension;
2820 ---------------------------
2821 -- Has_Private_Component --
2822 ---------------------------
2824 function Has_Private_Component (Type_Id : Entity_Id) return Boolean is
2825 Btype : Entity_Id := Base_Type (Type_Id);
2826 Component : Entity_Id;
2828 begin
2829 if Error_Posted (Type_Id)
2830 or else Error_Posted (Btype)
2831 then
2832 return False;
2833 end if;
2835 if Is_Class_Wide_Type (Btype) then
2836 Btype := Root_Type (Btype);
2837 end if;
2839 if Is_Private_Type (Btype) then
2840 declare
2841 UT : constant Entity_Id := Underlying_Type (Btype);
2842 begin
2843 if No (UT) then
2845 if No (Full_View (Btype)) then
2846 return not Is_Generic_Type (Btype)
2847 and then not Is_Generic_Type (Root_Type (Btype));
2849 else
2850 return not Is_Generic_Type (Root_Type (Full_View (Btype)));
2851 end if;
2853 else
2854 return not Is_Frozen (UT) and then Has_Private_Component (UT);
2855 end if;
2856 end;
2857 elsif Is_Array_Type (Btype) then
2858 return Has_Private_Component (Component_Type (Btype));
2860 elsif Is_Record_Type (Btype) then
2862 Component := First_Component (Btype);
2863 while Present (Component) loop
2865 if Has_Private_Component (Etype (Component)) then
2866 return True;
2867 end if;
2869 Next_Component (Component);
2870 end loop;
2872 return False;
2874 elsif Is_Protected_Type (Btype)
2875 and then Present (Corresponding_Record_Type (Btype))
2876 then
2877 return Has_Private_Component (Corresponding_Record_Type (Btype));
2879 else
2880 return False;
2881 end if;
2882 end Has_Private_Component;
2884 ----------------
2885 -- Has_Stream --
2886 ----------------
2888 function Has_Stream (T : Entity_Id) return Boolean is
2889 E : Entity_Id;
2891 begin
2892 if No (T) then
2893 return False;
2895 elsif Is_RTE (Root_Type (T), RE_Root_Stream_Type) then
2896 return True;
2898 elsif Is_Array_Type (T) then
2899 return Has_Stream (Component_Type (T));
2901 elsif Is_Record_Type (T) then
2902 E := First_Component (T);
2903 while Present (E) loop
2904 if Has_Stream (Etype (E)) then
2905 return True;
2906 else
2907 Next_Component (E);
2908 end if;
2909 end loop;
2911 return False;
2913 elsif Is_Private_Type (T) then
2914 return Has_Stream (Underlying_Type (T));
2916 else
2917 return False;
2918 end if;
2919 end Has_Stream;
2921 --------------------------
2922 -- Has_Tagged_Component --
2923 --------------------------
2925 function Has_Tagged_Component (Typ : Entity_Id) return Boolean is
2926 Comp : Entity_Id;
2928 begin
2929 if Is_Private_Type (Typ)
2930 and then Present (Underlying_Type (Typ))
2931 then
2932 return Has_Tagged_Component (Underlying_Type (Typ));
2934 elsif Is_Array_Type (Typ) then
2935 return Has_Tagged_Component (Component_Type (Typ));
2937 elsif Is_Tagged_Type (Typ) then
2938 return True;
2940 elsif Is_Record_Type (Typ) then
2941 Comp := First_Component (Typ);
2943 while Present (Comp) loop
2944 if Has_Tagged_Component (Etype (Comp)) then
2945 return True;
2946 end if;
2948 Comp := Next_Component (Typ);
2949 end loop;
2951 return False;
2953 else
2954 return False;
2955 end if;
2956 end Has_Tagged_Component;
2958 -----------------
2959 -- In_Instance --
2960 -----------------
2962 function In_Instance return Boolean is
2963 S : Entity_Id := Current_Scope;
2965 begin
2966 while Present (S)
2967 and then S /= Standard_Standard
2968 loop
2969 if (Ekind (S) = E_Function
2970 or else Ekind (S) = E_Package
2971 or else Ekind (S) = E_Procedure)
2972 and then Is_Generic_Instance (S)
2973 then
2974 return True;
2975 end if;
2977 S := Scope (S);
2978 end loop;
2980 return False;
2981 end In_Instance;
2983 ----------------------
2984 -- In_Instance_Body --
2985 ----------------------
2987 function In_Instance_Body return Boolean is
2988 S : Entity_Id := Current_Scope;
2990 begin
2991 while Present (S)
2992 and then S /= Standard_Standard
2993 loop
2994 if (Ekind (S) = E_Function
2995 or else Ekind (S) = E_Procedure)
2996 and then Is_Generic_Instance (S)
2997 then
2998 return True;
3000 elsif Ekind (S) = E_Package
3001 and then In_Package_Body (S)
3002 and then Is_Generic_Instance (S)
3003 then
3004 return True;
3005 end if;
3007 S := Scope (S);
3008 end loop;
3010 return False;
3011 end In_Instance_Body;
3013 -----------------------------
3014 -- In_Instance_Not_Visible --
3015 -----------------------------
3017 function In_Instance_Not_Visible return Boolean is
3018 S : Entity_Id := Current_Scope;
3020 begin
3021 while Present (S)
3022 and then S /= Standard_Standard
3023 loop
3024 if (Ekind (S) = E_Function
3025 or else Ekind (S) = E_Procedure)
3026 and then Is_Generic_Instance (S)
3027 then
3028 return True;
3030 elsif Ekind (S) = E_Package
3031 and then (In_Package_Body (S) or else In_Private_Part (S))
3032 and then Is_Generic_Instance (S)
3033 then
3034 return True;
3035 end if;
3037 S := Scope (S);
3038 end loop;
3040 return False;
3041 end In_Instance_Not_Visible;
3043 ------------------------------
3044 -- In_Instance_Visible_Part --
3045 ------------------------------
3047 function In_Instance_Visible_Part return Boolean is
3048 S : Entity_Id := Current_Scope;
3050 begin
3051 while Present (S)
3052 and then S /= Standard_Standard
3053 loop
3054 if Ekind (S) = E_Package
3055 and then Is_Generic_Instance (S)
3056 and then not In_Package_Body (S)
3057 and then not In_Private_Part (S)
3058 then
3059 return True;
3060 end if;
3062 S := Scope (S);
3063 end loop;
3065 return False;
3066 end In_Instance_Visible_Part;
3068 ----------------------
3069 -- In_Packiage_Body --
3070 ----------------------
3072 function In_Package_Body return Boolean is
3073 S : Entity_Id := Current_Scope;
3075 begin
3076 while Present (S)
3077 and then S /= Standard_Standard
3078 loop
3079 if Ekind (S) = E_Package
3080 and then In_Package_Body (S)
3081 then
3082 return True;
3083 else
3084 S := Scope (S);
3085 end if;
3086 end loop;
3088 return False;
3089 end In_Package_Body;
3091 --------------------------------------
3092 -- In_Subprogram_Or_Concurrent_Unit --
3093 --------------------------------------
3095 function In_Subprogram_Or_Concurrent_Unit return Boolean is
3096 E : Entity_Id;
3097 K : Entity_Kind;
3099 begin
3100 -- Use scope chain to check successively outer scopes
3102 E := Current_Scope;
3103 loop
3104 K := Ekind (E);
3106 if K in Subprogram_Kind
3107 or else K in Concurrent_Kind
3108 or else K in Generic_Subprogram_Kind
3109 then
3110 return True;
3112 elsif E = Standard_Standard then
3113 return False;
3114 end if;
3116 E := Scope (E);
3117 end loop;
3118 end In_Subprogram_Or_Concurrent_Unit;
3120 ---------------------
3121 -- In_Visible_Part --
3122 ---------------------
3124 function In_Visible_Part (Scope_Id : Entity_Id) return Boolean is
3125 begin
3126 return
3127 Is_Package (Scope_Id)
3128 and then In_Open_Scopes (Scope_Id)
3129 and then not In_Package_Body (Scope_Id)
3130 and then not In_Private_Part (Scope_Id);
3131 end In_Visible_Part;
3133 ---------------------------------
3134 -- Insert_Explicit_Dereference --
3135 ---------------------------------
3137 procedure Insert_Explicit_Dereference (N : Node_Id) is
3138 New_Prefix : constant Node_Id := Relocate_Node (N);
3139 Ent : Entity_Id := Empty;
3140 I : Interp_Index;
3141 It : Interp;
3142 T : Entity_Id;
3144 begin
3145 Save_Interps (N, New_Prefix);
3146 Rewrite (N,
3147 Make_Explicit_Dereference (Sloc (N), Prefix => New_Prefix));
3149 Set_Etype (N, Designated_Type (Etype (New_Prefix)));
3151 if Is_Overloaded (New_Prefix) then
3153 -- The deference is also overloaded, and its interpretations are the
3154 -- designated types of the interpretations of the original node.
3156 Set_Etype (N, Any_Type);
3157 Get_First_Interp (New_Prefix, I, It);
3159 while Present (It.Nam) loop
3160 T := It.Typ;
3162 if Is_Access_Type (T) then
3163 Add_One_Interp (N, Designated_Type (T), Designated_Type (T));
3164 end if;
3166 Get_Next_Interp (I, It);
3167 end loop;
3169 End_Interp_List;
3171 else
3172 -- Prefix is unambiguous: mark the original prefix (which might
3173 -- Come_From_Source) as a reference, since the new (relocated) one
3174 -- won't be taken into account.
3176 if Is_Entity_Name (New_Prefix) then
3177 Ent := Entity (New_Prefix);
3178 elsif Nkind (New_Prefix) = N_Selected_Component then
3179 Ent := Entity (Selector_Name (New_Prefix));
3180 end if;
3182 if Present (Ent) then
3183 Generate_Reference (Ent, New_Prefix);
3184 end if;
3185 end if;
3186 end Insert_Explicit_Dereference;
3188 -------------------
3189 -- Is_AAMP_Float --
3190 -------------------
3192 function Is_AAMP_Float (E : Entity_Id) return Boolean is
3193 begin
3194 pragma Assert (Is_Type (E));
3196 return AAMP_On_Target
3197 and then Is_Floating_Point_Type (E)
3198 and then E = Base_Type (E);
3199 end Is_AAMP_Float;
3201 -------------------------
3202 -- Is_Actual_Parameter --
3203 -------------------------
3205 function Is_Actual_Parameter (N : Node_Id) return Boolean is
3206 PK : constant Node_Kind := Nkind (Parent (N));
3208 begin
3209 case PK is
3210 when N_Parameter_Association =>
3211 return N = Explicit_Actual_Parameter (Parent (N));
3213 when N_Function_Call | N_Procedure_Call_Statement =>
3214 return Is_List_Member (N)
3215 and then
3216 List_Containing (N) = Parameter_Associations (Parent (N));
3218 when others =>
3219 return False;
3220 end case;
3221 end Is_Actual_Parameter;
3223 ---------------------
3224 -- Is_Aliased_View --
3225 ---------------------
3227 function Is_Aliased_View (Obj : Node_Id) return Boolean is
3228 E : Entity_Id;
3230 begin
3231 if Is_Entity_Name (Obj) then
3233 E := Entity (Obj);
3235 return
3236 (Is_Object (E)
3237 and then
3238 (Is_Aliased (E)
3239 or else (Present (Renamed_Object (E))
3240 and then Is_Aliased_View (Renamed_Object (E)))))
3242 or else ((Is_Formal (E)
3243 or else Ekind (E) = E_Generic_In_Out_Parameter
3244 or else Ekind (E) = E_Generic_In_Parameter)
3245 and then Is_Tagged_Type (Etype (E)))
3247 or else ((Ekind (E) = E_Task_Type
3248 or else Ekind (E) = E_Protected_Type)
3249 and then In_Open_Scopes (E))
3251 -- Current instance of type
3253 or else (Is_Type (E) and then E = Current_Scope)
3254 or else (Is_Incomplete_Or_Private_Type (E)
3255 and then Full_View (E) = Current_Scope);
3257 elsif Nkind (Obj) = N_Selected_Component then
3258 return Is_Aliased (Entity (Selector_Name (Obj)));
3260 elsif Nkind (Obj) = N_Indexed_Component then
3261 return Has_Aliased_Components (Etype (Prefix (Obj)))
3262 or else
3263 (Is_Access_Type (Etype (Prefix (Obj)))
3264 and then
3265 Has_Aliased_Components
3266 (Designated_Type (Etype (Prefix (Obj)))));
3268 elsif Nkind (Obj) = N_Unchecked_Type_Conversion
3269 or else Nkind (Obj) = N_Type_Conversion
3270 then
3271 return Is_Tagged_Type (Etype (Obj))
3272 and then Is_Aliased_View (Expression (Obj));
3274 elsif Nkind (Obj) = N_Explicit_Dereference then
3275 return Nkind (Original_Node (Obj)) /= N_Function_Call;
3277 else
3278 return False;
3279 end if;
3280 end Is_Aliased_View;
3282 -------------------------
3283 -- Is_Ancestor_Package --
3284 -------------------------
3286 function Is_Ancestor_Package
3287 (E1 : Entity_Id;
3288 E2 : Entity_Id) return Boolean
3290 Par : Entity_Id;
3292 begin
3293 Par := E2;
3294 while Present (Par)
3295 and then Par /= Standard_Standard
3296 loop
3297 if Par = E1 then
3298 return True;
3299 end if;
3301 Par := Scope (Par);
3302 end loop;
3304 return False;
3305 end Is_Ancestor_Package;
3307 ----------------------
3308 -- Is_Atomic_Object --
3309 ----------------------
3311 function Is_Atomic_Object (N : Node_Id) return Boolean is
3313 function Object_Has_Atomic_Components (N : Node_Id) return Boolean;
3314 -- Determines if given object has atomic components
3316 function Is_Atomic_Prefix (N : Node_Id) return Boolean;
3317 -- If prefix is an implicit dereference, examine designated type
3319 function Is_Atomic_Prefix (N : Node_Id) return Boolean is
3320 begin
3321 if Is_Access_Type (Etype (N)) then
3322 return
3323 Has_Atomic_Components (Designated_Type (Etype (N)));
3324 else
3325 return Object_Has_Atomic_Components (N);
3326 end if;
3327 end Is_Atomic_Prefix;
3329 function Object_Has_Atomic_Components (N : Node_Id) return Boolean is
3330 begin
3331 if Has_Atomic_Components (Etype (N))
3332 or else Is_Atomic (Etype (N))
3333 then
3334 return True;
3336 elsif Is_Entity_Name (N)
3337 and then (Has_Atomic_Components (Entity (N))
3338 or else Is_Atomic (Entity (N)))
3339 then
3340 return True;
3342 elsif Nkind (N) = N_Indexed_Component
3343 or else Nkind (N) = N_Selected_Component
3344 then
3345 return Is_Atomic_Prefix (Prefix (N));
3347 else
3348 return False;
3349 end if;
3350 end Object_Has_Atomic_Components;
3352 -- Start of processing for Is_Atomic_Object
3354 begin
3355 if Is_Atomic (Etype (N))
3356 or else (Is_Entity_Name (N) and then Is_Atomic (Entity (N)))
3357 then
3358 return True;
3360 elsif Nkind (N) = N_Indexed_Component
3361 or else Nkind (N) = N_Selected_Component
3362 then
3363 return Is_Atomic_Prefix (Prefix (N));
3365 else
3366 return False;
3367 end if;
3368 end Is_Atomic_Object;
3370 ----------------------------------------------
3371 -- Is_Dependent_Component_Of_Mutable_Object --
3372 ----------------------------------------------
3374 function Is_Dependent_Component_Of_Mutable_Object
3375 (Object : Node_Id) return Boolean
3377 P : Node_Id;
3378 Prefix_Type : Entity_Id;
3379 P_Aliased : Boolean := False;
3380 Comp : Entity_Id;
3382 function Has_Dependent_Constraint (Comp : Entity_Id) return Boolean;
3383 -- Returns True if and only if Comp has a constrained subtype
3384 -- that depends on a discriminant.
3386 function Is_Declared_Within_Variant (Comp : Entity_Id) return Boolean;
3387 -- Returns True if and only if Comp is declared within a variant part
3389 ------------------------------
3390 -- Has_Dependent_Constraint --
3391 ------------------------------
3393 function Has_Dependent_Constraint (Comp : Entity_Id) return Boolean is
3394 Comp_Decl : constant Node_Id := Parent (Comp);
3395 Subt_Indic : constant Node_Id :=
3396 Subtype_Indication (Component_Definition (Comp_Decl));
3397 Constr : Node_Id;
3398 Assn : Node_Id;
3400 begin
3401 if Nkind (Subt_Indic) = N_Subtype_Indication then
3402 Constr := Constraint (Subt_Indic);
3404 if Nkind (Constr) = N_Index_Or_Discriminant_Constraint then
3405 Assn := First (Constraints (Constr));
3406 while Present (Assn) loop
3407 case Nkind (Assn) is
3408 when N_Subtype_Indication |
3409 N_Range |
3410 N_Identifier
3412 if Depends_On_Discriminant (Assn) then
3413 return True;
3414 end if;
3416 when N_Discriminant_Association =>
3417 if Depends_On_Discriminant (Expression (Assn)) then
3418 return True;
3419 end if;
3421 when others =>
3422 null;
3424 end case;
3426 Next (Assn);
3427 end loop;
3428 end if;
3429 end if;
3431 return False;
3432 end Has_Dependent_Constraint;
3434 --------------------------------
3435 -- Is_Declared_Within_Variant --
3436 --------------------------------
3438 function Is_Declared_Within_Variant (Comp : Entity_Id) return Boolean is
3439 Comp_Decl : constant Node_Id := Parent (Comp);
3440 Comp_List : constant Node_Id := Parent (Comp_Decl);
3442 begin
3443 return Nkind (Parent (Comp_List)) = N_Variant;
3444 end Is_Declared_Within_Variant;
3446 -- Start of processing for Is_Dependent_Component_Of_Mutable_Object
3448 begin
3449 if Is_Variable (Object) then
3451 if Nkind (Object) = N_Selected_Component then
3452 P := Prefix (Object);
3453 Prefix_Type := Etype (P);
3455 if Is_Entity_Name (P) then
3457 if Ekind (Entity (P)) = E_Generic_In_Out_Parameter then
3458 Prefix_Type := Base_Type (Prefix_Type);
3459 end if;
3461 if Is_Aliased (Entity (P)) then
3462 P_Aliased := True;
3463 end if;
3465 -- A discriminant check on a selected component may be
3466 -- expanded into a dereference when removing side-effects.
3467 -- Recover the original node and its type, which may be
3468 -- unconstrained.
3470 elsif Nkind (P) = N_Explicit_Dereference
3471 and then not (Comes_From_Source (P))
3472 then
3473 P := Original_Node (P);
3474 Prefix_Type := Etype (P);
3476 else
3477 -- Check for prefix being an aliased component ???
3478 null;
3480 end if;
3482 if Is_Access_Type (Prefix_Type)
3483 or else Nkind (P) = N_Explicit_Dereference
3484 then
3485 return False;
3486 end if;
3488 Comp :=
3489 Original_Record_Component (Entity (Selector_Name (Object)));
3491 -- As per AI-0017, the renaming is illegal in a generic body,
3492 -- even if the subtype is indefinite.
3494 if not Is_Constrained (Prefix_Type)
3495 and then (not Is_Indefinite_Subtype (Prefix_Type)
3496 or else
3497 (Is_Generic_Type (Prefix_Type)
3498 and then Ekind (Current_Scope) = E_Generic_Package
3499 and then In_Package_Body (Current_Scope)))
3501 and then (Is_Declared_Within_Variant (Comp)
3502 or else Has_Dependent_Constraint (Comp))
3503 and then not P_Aliased
3504 then
3505 return True;
3507 else
3508 return
3509 Is_Dependent_Component_Of_Mutable_Object (Prefix (Object));
3511 end if;
3513 elsif Nkind (Object) = N_Indexed_Component
3514 or else Nkind (Object) = N_Slice
3515 then
3516 return Is_Dependent_Component_Of_Mutable_Object (Prefix (Object));
3518 -- A type conversion that Is_Variable is a view conversion:
3519 -- go back to the denoted object.
3521 elsif Nkind (Object) = N_Type_Conversion then
3522 return
3523 Is_Dependent_Component_Of_Mutable_Object (Expression (Object));
3524 end if;
3525 end if;
3527 return False;
3528 end Is_Dependent_Component_Of_Mutable_Object;
3530 ---------------------
3531 -- Is_Dereferenced --
3532 ---------------------
3534 function Is_Dereferenced (N : Node_Id) return Boolean is
3535 P : constant Node_Id := Parent (N);
3537 begin
3538 return
3539 (Nkind (P) = N_Selected_Component
3540 or else
3541 Nkind (P) = N_Explicit_Dereference
3542 or else
3543 Nkind (P) = N_Indexed_Component
3544 or else
3545 Nkind (P) = N_Slice)
3546 and then Prefix (P) = N;
3547 end Is_Dereferenced;
3549 ----------------------
3550 -- Is_Descendent_Of --
3551 ----------------------
3553 function Is_Descendent_Of (T1 : Entity_Id; T2 : Entity_Id) return Boolean is
3554 T : Entity_Id;
3555 Etyp : Entity_Id;
3557 begin
3558 pragma Assert (Nkind (T1) in N_Entity);
3559 pragma Assert (Nkind (T2) in N_Entity);
3561 T := Base_Type (T1);
3563 -- Immediate return if the types match
3565 if T = T2 then
3566 return True;
3568 -- Comment needed here ???
3570 elsif Ekind (T) = E_Class_Wide_Type then
3571 return Etype (T) = T2;
3573 -- All other cases
3575 else
3576 loop
3577 Etyp := Etype (T);
3579 -- Done if we found the type we are looking for
3581 if Etyp = T2 then
3582 return True;
3584 -- Done if no more derivations to check
3586 elsif T = T1
3587 or else T = Etyp
3588 then
3589 return False;
3591 -- Following test catches error cases resulting from prev errors
3593 elsif No (Etyp) then
3594 return False;
3596 elsif Is_Private_Type (T) and then Etyp = Full_View (T) then
3597 return False;
3599 elsif Is_Private_Type (Etyp) and then Full_View (Etyp) = T then
3600 return False;
3601 end if;
3603 T := Base_Type (Etyp);
3604 end loop;
3605 end if;
3607 raise Program_Error;
3608 end Is_Descendent_Of;
3610 ------------------------------
3611 -- Is_Descendent_Of_Address --
3612 ------------------------------
3614 function Is_Descendent_Of_Address (T1 : Entity_Id) return Boolean is
3615 begin
3616 -- If Address has not been loaded, answer must be False
3618 if not RTU_Loaded (System) then
3619 return False;
3621 -- Otherwise we can get the entity we are interested in without
3622 -- causing an unwanted dependency on System, and do the test.
3624 else
3625 return Is_Descendent_Of (T1, Base_Type (RTE (RE_Address)));
3626 end if;
3627 end Is_Descendent_Of_Address;
3629 --------------
3630 -- Is_False --
3631 --------------
3633 function Is_False (U : Uint) return Boolean is
3634 begin
3635 return (U = 0);
3636 end Is_False;
3638 ---------------------------
3639 -- Is_Fixed_Model_Number --
3640 ---------------------------
3642 function Is_Fixed_Model_Number (U : Ureal; T : Entity_Id) return Boolean is
3643 S : constant Ureal := Small_Value (T);
3644 M : Urealp.Save_Mark;
3645 R : Boolean;
3647 begin
3648 M := Urealp.Mark;
3649 R := (U = UR_Trunc (U / S) * S);
3650 Urealp.Release (M);
3651 return R;
3652 end Is_Fixed_Model_Number;
3654 -------------------------------
3655 -- Is_Fully_Initialized_Type --
3656 -------------------------------
3658 function Is_Fully_Initialized_Type (Typ : Entity_Id) return Boolean is
3659 begin
3660 if Is_Scalar_Type (Typ) then
3661 return False;
3663 elsif Is_Access_Type (Typ) then
3664 return True;
3666 elsif Is_Array_Type (Typ) then
3667 if Is_Fully_Initialized_Type (Component_Type (Typ)) then
3668 return True;
3669 end if;
3671 -- An interesting case, if we have a constrained type one of whose
3672 -- bounds is known to be null, then there are no elements to be
3673 -- initialized, so all the elements are initialized!
3675 if Is_Constrained (Typ) then
3676 declare
3677 Indx : Node_Id;
3678 Indx_Typ : Entity_Id;
3679 Lbd, Hbd : Node_Id;
3681 begin
3682 Indx := First_Index (Typ);
3683 while Present (Indx) loop
3685 if Etype (Indx) = Any_Type then
3686 return False;
3688 -- If index is a range, use directly
3690 elsif Nkind (Indx) = N_Range then
3691 Lbd := Low_Bound (Indx);
3692 Hbd := High_Bound (Indx);
3694 else
3695 Indx_Typ := Etype (Indx);
3697 if Is_Private_Type (Indx_Typ) then
3698 Indx_Typ := Full_View (Indx_Typ);
3699 end if;
3701 if No (Indx_Typ) then
3702 return False;
3703 else
3704 Lbd := Type_Low_Bound (Indx_Typ);
3705 Hbd := Type_High_Bound (Indx_Typ);
3706 end if;
3707 end if;
3709 if Compile_Time_Known_Value (Lbd)
3710 and then Compile_Time_Known_Value (Hbd)
3711 then
3712 if Expr_Value (Hbd) < Expr_Value (Lbd) then
3713 return True;
3714 end if;
3715 end if;
3717 Next_Index (Indx);
3718 end loop;
3719 end;
3720 end if;
3722 -- If no null indexes, then type is not fully initialized
3724 return False;
3726 -- Record types
3728 elsif Is_Record_Type (Typ) then
3729 if Has_Discriminants (Typ)
3730 and then
3731 Present (Discriminant_Default_Value (First_Discriminant (Typ)))
3732 and then Is_Fully_Initialized_Variant (Typ)
3733 then
3734 return True;
3735 end if;
3737 -- Controlled records are considered to be fully initialized if
3738 -- there is a user defined Initialize routine. This may not be
3739 -- entirely correct, but as the spec notes, we are guessing here
3740 -- what is best from the point of view of issuing warnings.
3742 if Is_Controlled (Typ) then
3743 declare
3744 Utyp : constant Entity_Id := Underlying_Type (Typ);
3746 begin
3747 if Present (Utyp) then
3748 declare
3749 Init : constant Entity_Id :=
3750 (Find_Prim_Op
3751 (Underlying_Type (Typ), Name_Initialize));
3753 begin
3754 if Present (Init)
3755 and then Comes_From_Source (Init)
3756 and then not
3757 Is_Predefined_File_Name
3758 (File_Name (Get_Source_File_Index (Sloc (Init))))
3759 then
3760 return True;
3762 elsif Has_Null_Extension (Typ)
3763 and then
3764 Is_Fully_Initialized_Type
3765 (Etype (Base_Type (Typ)))
3766 then
3767 return True;
3768 end if;
3769 end;
3770 end if;
3771 end;
3772 end if;
3774 -- Otherwise see if all record components are initialized
3776 declare
3777 Ent : Entity_Id;
3779 begin
3780 Ent := First_Entity (Typ);
3782 while Present (Ent) loop
3783 if Chars (Ent) = Name_uController then
3784 null;
3786 elsif Ekind (Ent) = E_Component
3787 and then (No (Parent (Ent))
3788 or else No (Expression (Parent (Ent))))
3789 and then not Is_Fully_Initialized_Type (Etype (Ent))
3790 then
3791 return False;
3792 end if;
3794 Next_Entity (Ent);
3795 end loop;
3796 end;
3798 -- No uninitialized components, so type is fully initialized.
3799 -- Note that this catches the case of no components as well.
3801 return True;
3803 elsif Is_Concurrent_Type (Typ) then
3804 return True;
3806 elsif Is_Private_Type (Typ) then
3807 declare
3808 U : constant Entity_Id := Underlying_Type (Typ);
3810 begin
3811 if No (U) then
3812 return False;
3813 else
3814 return Is_Fully_Initialized_Type (U);
3815 end if;
3816 end;
3818 else
3819 return False;
3820 end if;
3821 end Is_Fully_Initialized_Type;
3823 ----------------------------------
3824 -- Is_Fully_Initialized_Variant --
3825 ----------------------------------
3827 function Is_Fully_Initialized_Variant (Typ : Entity_Id) return Boolean is
3828 Loc : constant Source_Ptr := Sloc (Typ);
3829 Constraints : constant List_Id := New_List;
3830 Components : constant Elist_Id := New_Elmt_List;
3831 Comp_Elmt : Elmt_Id;
3832 Comp_Id : Node_Id;
3833 Comp_List : Node_Id;
3834 Discr : Entity_Id;
3835 Discr_Val : Node_Id;
3836 Report_Errors : Boolean;
3838 begin
3839 if Serious_Errors_Detected > 0 then
3840 return False;
3841 end if;
3843 if Is_Record_Type (Typ)
3844 and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
3845 and then Nkind (Type_Definition (Parent (Typ))) = N_Record_Definition
3846 then
3847 Comp_List := Component_List (Type_Definition (Parent (Typ)));
3848 Discr := First_Discriminant (Typ);
3850 while Present (Discr) loop
3851 if Nkind (Parent (Discr)) = N_Discriminant_Specification then
3852 Discr_Val := Expression (Parent (Discr));
3854 if Present (Discr_Val)
3855 and then Is_OK_Static_Expression (Discr_Val)
3856 then
3857 Append_To (Constraints,
3858 Make_Component_Association (Loc,
3859 Choices => New_List (New_Occurrence_Of (Discr, Loc)),
3860 Expression => New_Copy (Discr_Val)));
3861 else
3862 return False;
3863 end if;
3864 else
3865 return False;
3866 end if;
3868 Next_Discriminant (Discr);
3869 end loop;
3871 Gather_Components
3872 (Typ => Typ,
3873 Comp_List => Comp_List,
3874 Governed_By => Constraints,
3875 Into => Components,
3876 Report_Errors => Report_Errors);
3878 -- Check that each component present is fully initialized
3880 Comp_Elmt := First_Elmt (Components);
3882 while Present (Comp_Elmt) loop
3883 Comp_Id := Node (Comp_Elmt);
3885 if Ekind (Comp_Id) = E_Component
3886 and then (No (Parent (Comp_Id))
3887 or else No (Expression (Parent (Comp_Id))))
3888 and then not Is_Fully_Initialized_Type (Etype (Comp_Id))
3889 then
3890 return False;
3891 end if;
3893 Next_Elmt (Comp_Elmt);
3894 end loop;
3896 return True;
3898 elsif Is_Private_Type (Typ) then
3899 declare
3900 U : constant Entity_Id := Underlying_Type (Typ);
3902 begin
3903 if No (U) then
3904 return False;
3905 else
3906 return Is_Fully_Initialized_Variant (U);
3907 end if;
3908 end;
3909 else
3910 return False;
3911 end if;
3912 end Is_Fully_Initialized_Variant;
3914 ----------------------------
3915 -- Is_Inherited_Operation --
3916 ----------------------------
3918 function Is_Inherited_Operation (E : Entity_Id) return Boolean is
3919 Kind : constant Node_Kind := Nkind (Parent (E));
3921 begin
3922 pragma Assert (Is_Overloadable (E));
3923 return Kind = N_Full_Type_Declaration
3924 or else Kind = N_Private_Extension_Declaration
3925 or else Kind = N_Subtype_Declaration
3926 or else (Ekind (E) = E_Enumeration_Literal
3927 and then Is_Derived_Type (Etype (E)));
3928 end Is_Inherited_Operation;
3930 -----------------------------
3931 -- Is_Library_Level_Entity --
3932 -----------------------------
3934 function Is_Library_Level_Entity (E : Entity_Id) return Boolean is
3935 begin
3936 -- The following is a small optimization, and it also handles
3937 -- properly discriminals, which in task bodies might appear in
3938 -- expressions before the corresponding procedure has been
3939 -- created, and which therefore do not have an assigned scope.
3941 if Ekind (E) in Formal_Kind then
3942 return False;
3943 end if;
3945 -- Normal test is simply that the enclosing dynamic scope is Standard
3947 return Enclosing_Dynamic_Scope (E) = Standard_Standard;
3948 end Is_Library_Level_Entity;
3950 ---------------------------------
3951 -- Is_Local_Variable_Reference --
3952 ---------------------------------
3954 function Is_Local_Variable_Reference (Expr : Node_Id) return Boolean is
3955 begin
3956 if not Is_Entity_Name (Expr) then
3957 return False;
3959 else
3960 declare
3961 Ent : constant Entity_Id := Entity (Expr);
3962 Sub : constant Entity_Id := Enclosing_Subprogram (Ent);
3964 begin
3965 if Ekind (Ent) /= E_Variable
3966 and then
3967 Ekind (Ent) /= E_In_Out_Parameter
3968 then
3969 return False;
3971 else
3972 return Present (Sub) and then Sub = Current_Subprogram;
3973 end if;
3974 end;
3975 end if;
3976 end Is_Local_Variable_Reference;
3978 ---------------
3979 -- Is_Lvalue --
3980 ---------------
3982 function Is_Lvalue (N : Node_Id) return Boolean is
3983 P : constant Node_Id := Parent (N);
3985 begin
3986 case Nkind (P) is
3988 -- Test left side of assignment
3990 when N_Assignment_Statement =>
3991 return N = Name (P);
3993 -- Test prefix of component or attribute
3995 when N_Attribute_Reference |
3996 N_Expanded_Name |
3997 N_Explicit_Dereference |
3998 N_Indexed_Component |
3999 N_Reference |
4000 N_Selected_Component |
4001 N_Slice =>
4002 return N = Prefix (P);
4004 -- Test subprogram parameter (we really should check the
4005 -- parameter mode, but it is not worth the trouble)
4007 when N_Function_Call |
4008 N_Procedure_Call_Statement |
4009 N_Accept_Statement |
4010 N_Parameter_Association =>
4011 return True;
4013 -- Test for appearing in a conversion that itself appears
4014 -- in an lvalue context, since this should be an lvalue.
4016 when N_Type_Conversion =>
4017 return Is_Lvalue (P);
4019 -- Test for appearence in object renaming declaration
4021 when N_Object_Renaming_Declaration =>
4022 return True;
4024 -- All other references are definitely not Lvalues
4026 when others =>
4027 return False;
4029 end case;
4030 end Is_Lvalue;
4032 -------------------------
4033 -- Is_Object_Reference --
4034 -------------------------
4036 function Is_Object_Reference (N : Node_Id) return Boolean is
4037 begin
4038 if Is_Entity_Name (N) then
4039 return Is_Object (Entity (N));
4041 else
4042 case Nkind (N) is
4043 when N_Indexed_Component | N_Slice =>
4044 return Is_Object_Reference (Prefix (N));
4046 -- In Ada95, a function call is a constant object
4048 when N_Function_Call =>
4049 return True;
4051 -- A reference to the stream attribute Input is a function call
4053 when N_Attribute_Reference =>
4054 return Attribute_Name (N) = Name_Input;
4056 when N_Selected_Component =>
4057 return
4058 Is_Object_Reference (Selector_Name (N))
4059 and then Is_Object_Reference (Prefix (N));
4061 when N_Explicit_Dereference =>
4062 return True;
4064 -- A view conversion of a tagged object is an object reference
4066 when N_Type_Conversion =>
4067 return Is_Tagged_Type (Etype (Subtype_Mark (N)))
4068 and then Is_Tagged_Type (Etype (Expression (N)))
4069 and then Is_Object_Reference (Expression (N));
4071 -- An unchecked type conversion is considered to be an object if
4072 -- the operand is an object (this construction arises only as a
4073 -- result of expansion activities).
4075 when N_Unchecked_Type_Conversion =>
4076 return True;
4078 when others =>
4079 return False;
4080 end case;
4081 end if;
4082 end Is_Object_Reference;
4084 -----------------------------------
4085 -- Is_OK_Variable_For_Out_Formal --
4086 -----------------------------------
4088 function Is_OK_Variable_For_Out_Formal (AV : Node_Id) return Boolean is
4089 begin
4090 Note_Possible_Modification (AV);
4092 -- We must reject parenthesized variable names. The check for
4093 -- Comes_From_Source is present because there are currently
4094 -- cases where the compiler violates this rule (e.g. passing
4095 -- a task object to its controlled Initialize routine).
4097 if Paren_Count (AV) > 0 and then Comes_From_Source (AV) then
4098 return False;
4100 -- A variable is always allowed
4102 elsif Is_Variable (AV) then
4103 return True;
4105 -- Unchecked conversions are allowed only if they come from the
4106 -- generated code, which sometimes uses unchecked conversions for
4107 -- out parameters in cases where code generation is unaffected.
4108 -- We tell source unchecked conversions by seeing if they are
4109 -- rewrites of an original UC function call, or of an explicit
4110 -- conversion of a function call.
4112 elsif Nkind (AV) = N_Unchecked_Type_Conversion then
4113 if Nkind (Original_Node (AV)) = N_Function_Call then
4114 return False;
4116 elsif Comes_From_Source (AV)
4117 and then Nkind (Original_Node (Expression (AV))) = N_Function_Call
4118 then
4119 return False;
4121 elsif Nkind (Original_Node (AV)) = N_Type_Conversion then
4122 return Is_OK_Variable_For_Out_Formal (Expression (AV));
4124 else
4125 return True;
4126 end if;
4128 -- Normal type conversions are allowed if argument is a variable
4130 elsif Nkind (AV) = N_Type_Conversion then
4131 if Is_Variable (Expression (AV))
4132 and then Paren_Count (Expression (AV)) = 0
4133 then
4134 Note_Possible_Modification (Expression (AV));
4135 return True;
4137 -- We also allow a non-parenthesized expression that raises
4138 -- constraint error if it rewrites what used to be a variable
4140 elsif Raises_Constraint_Error (Expression (AV))
4141 and then Paren_Count (Expression (AV)) = 0
4142 and then Is_Variable (Original_Node (Expression (AV)))
4143 then
4144 return True;
4146 -- Type conversion of something other than a variable
4148 else
4149 return False;
4150 end if;
4152 -- If this node is rewritten, then test the original form, if that is
4153 -- OK, then we consider the rewritten node OK (for example, if the
4154 -- original node is a conversion, then Is_Variable will not be true
4155 -- but we still want to allow the conversion if it converts a variable).
4157 elsif Original_Node (AV) /= AV then
4158 return Is_OK_Variable_For_Out_Formal (Original_Node (AV));
4160 -- All other non-variables are rejected
4162 else
4163 return False;
4164 end if;
4165 end Is_OK_Variable_For_Out_Formal;
4167 -----------------------------------
4168 -- Is_Partially_Initialized_Type --
4169 -----------------------------------
4171 function Is_Partially_Initialized_Type (Typ : Entity_Id) return Boolean is
4172 begin
4173 if Is_Scalar_Type (Typ) then
4174 return False;
4176 elsif Is_Access_Type (Typ) then
4177 return True;
4179 elsif Is_Array_Type (Typ) then
4181 -- If component type is partially initialized, so is array type
4183 if Is_Partially_Initialized_Type (Component_Type (Typ)) then
4184 return True;
4186 -- Otherwise we are only partially initialized if we are fully
4187 -- initialized (this is the empty array case, no point in us
4188 -- duplicating that code here).
4190 else
4191 return Is_Fully_Initialized_Type (Typ);
4192 end if;
4194 elsif Is_Record_Type (Typ) then
4196 -- A discriminated type is always partially initialized
4198 if Has_Discriminants (Typ) then
4199 return True;
4201 -- A tagged type is always partially initialized
4203 elsif Is_Tagged_Type (Typ) then
4204 return True;
4206 -- Case of non-discriminated record
4208 else
4209 declare
4210 Ent : Entity_Id;
4212 Component_Present : Boolean := False;
4213 -- Set True if at least one component is present. If no
4214 -- components are present, then record type is fully
4215 -- initialized (another odd case, like the null array).
4217 begin
4218 -- Loop through components
4220 Ent := First_Entity (Typ);
4221 while Present (Ent) loop
4222 if Ekind (Ent) = E_Component then
4223 Component_Present := True;
4225 -- If a component has an initialization expression then
4226 -- the enclosing record type is partially initialized
4228 if Present (Parent (Ent))
4229 and then Present (Expression (Parent (Ent)))
4230 then
4231 return True;
4233 -- If a component is of a type which is itself partially
4234 -- initialized, then the enclosing record type is also.
4236 elsif Is_Partially_Initialized_Type (Etype (Ent)) then
4237 return True;
4238 end if;
4239 end if;
4241 Next_Entity (Ent);
4242 end loop;
4244 -- No initialized components found. If we found any components
4245 -- they were all uninitialized so the result is false.
4247 if Component_Present then
4248 return False;
4250 -- But if we found no components, then all the components are
4251 -- initialized so we consider the type to be initialized.
4253 else
4254 return True;
4255 end if;
4256 end;
4257 end if;
4259 -- Concurrent types are always fully initialized
4261 elsif Is_Concurrent_Type (Typ) then
4262 return True;
4264 -- For a private type, go to underlying type. If there is no underlying
4265 -- type then just assume this partially initialized. Not clear if this
4266 -- can happen in a non-error case, but no harm in testing for this.
4268 elsif Is_Private_Type (Typ) then
4269 declare
4270 U : constant Entity_Id := Underlying_Type (Typ);
4272 begin
4273 if No (U) then
4274 return True;
4275 else
4276 return Is_Partially_Initialized_Type (U);
4277 end if;
4278 end;
4280 -- For any other type (are there any?) assume partially initialized
4282 else
4283 return True;
4284 end if;
4285 end Is_Partially_Initialized_Type;
4287 -----------------------------
4288 -- Is_RCI_Pkg_Spec_Or_Body --
4289 -----------------------------
4291 function Is_RCI_Pkg_Spec_Or_Body (Cunit : Node_Id) return Boolean is
4293 function Is_RCI_Pkg_Decl_Cunit (Cunit : Node_Id) return Boolean;
4294 -- Return True if the unit of Cunit is an RCI package declaration
4296 ---------------------------
4297 -- Is_RCI_Pkg_Decl_Cunit --
4298 ---------------------------
4300 function Is_RCI_Pkg_Decl_Cunit (Cunit : Node_Id) return Boolean is
4301 The_Unit : constant Node_Id := Unit (Cunit);
4303 begin
4304 if Nkind (The_Unit) /= N_Package_Declaration then
4305 return False;
4306 end if;
4307 return Is_Remote_Call_Interface (Defining_Entity (The_Unit));
4308 end Is_RCI_Pkg_Decl_Cunit;
4310 -- Start of processing for Is_RCI_Pkg_Spec_Or_Body
4312 begin
4313 return Is_RCI_Pkg_Decl_Cunit (Cunit)
4314 or else
4315 (Nkind (Unit (Cunit)) = N_Package_Body
4316 and then Is_RCI_Pkg_Decl_Cunit (Library_Unit (Cunit)));
4317 end Is_RCI_Pkg_Spec_Or_Body;
4319 -----------------------------------------
4320 -- Is_Remote_Access_To_Class_Wide_Type --
4321 -----------------------------------------
4323 function Is_Remote_Access_To_Class_Wide_Type
4324 (E : Entity_Id) return Boolean
4326 D : Entity_Id;
4328 function Comes_From_Limited_Private_Type_Declaration
4329 (E : Entity_Id)
4330 return Boolean;
4331 -- Check that the type is declared by a limited type declaration,
4332 -- or else is derived from a Remote_Type ancestor through private
4333 -- extensions.
4335 -------------------------------------------------
4336 -- Comes_From_Limited_Private_Type_Declaration --
4337 -------------------------------------------------
4339 function Comes_From_Limited_Private_Type_Declaration (E : in Entity_Id)
4340 return Boolean
4342 N : constant Node_Id := Declaration_Node (E);
4343 begin
4344 if Nkind (N) = N_Private_Type_Declaration
4345 and then Limited_Present (N)
4346 then
4347 return True;
4348 end if;
4350 if Nkind (N) = N_Private_Extension_Declaration then
4351 return
4352 Comes_From_Limited_Private_Type_Declaration (Etype (E))
4353 or else
4354 (Is_Remote_Types (Etype (E))
4355 and then Is_Limited_Record (Etype (E))
4356 and then Has_Private_Declaration (Etype (E)));
4357 end if;
4359 return False;
4360 end Comes_From_Limited_Private_Type_Declaration;
4362 -- Start of processing for Is_Remote_Access_To_Class_Wide_Type
4364 begin
4365 if not (Is_Remote_Call_Interface (E)
4366 or else Is_Remote_Types (E))
4367 or else Ekind (E) /= E_General_Access_Type
4368 then
4369 return False;
4370 end if;
4372 D := Designated_Type (E);
4374 if Ekind (D) /= E_Class_Wide_Type then
4375 return False;
4376 end if;
4378 return Comes_From_Limited_Private_Type_Declaration
4379 (Defining_Identifier (Parent (D)));
4380 end Is_Remote_Access_To_Class_Wide_Type;
4382 -----------------------------------------
4383 -- Is_Remote_Access_To_Subprogram_Type --
4384 -----------------------------------------
4386 function Is_Remote_Access_To_Subprogram_Type
4387 (E : Entity_Id) return Boolean
4389 begin
4390 return (Ekind (E) = E_Access_Subprogram_Type
4391 or else (Ekind (E) = E_Record_Type
4392 and then Present (Corresponding_Remote_Type (E))))
4393 and then (Is_Remote_Call_Interface (E)
4394 or else Is_Remote_Types (E));
4395 end Is_Remote_Access_To_Subprogram_Type;
4397 --------------------
4398 -- Is_Remote_Call --
4399 --------------------
4401 function Is_Remote_Call (N : Node_Id) return Boolean is
4402 begin
4403 if Nkind (N) /= N_Procedure_Call_Statement
4404 and then Nkind (N) /= N_Function_Call
4405 then
4406 -- An entry call cannot be remote
4408 return False;
4410 elsif Nkind (Name (N)) in N_Has_Entity
4411 and then Is_Remote_Call_Interface (Entity (Name (N)))
4412 then
4413 -- A subprogram declared in the spec of a RCI package is remote
4415 return True;
4417 elsif Nkind (Name (N)) = N_Explicit_Dereference
4418 and then Is_Remote_Access_To_Subprogram_Type
4419 (Etype (Prefix (Name (N))))
4420 then
4421 -- The dereference of a RAS is a remote call
4423 return True;
4425 elsif Present (Controlling_Argument (N))
4426 and then Is_Remote_Access_To_Class_Wide_Type
4427 (Etype (Controlling_Argument (N)))
4428 then
4429 -- Any primitive operation call with a controlling argument of
4430 -- a RACW type is a remote call.
4432 return True;
4433 end if;
4435 -- All other calls are local calls
4437 return False;
4438 end Is_Remote_Call;
4440 ----------------------
4441 -- Is_Selector_Name --
4442 ----------------------
4444 function Is_Selector_Name (N : Node_Id) return Boolean is
4446 begin
4447 if not Is_List_Member (N) then
4448 declare
4449 P : constant Node_Id := Parent (N);
4450 K : constant Node_Kind := Nkind (P);
4452 begin
4453 return
4454 (K = N_Expanded_Name or else
4455 K = N_Generic_Association or else
4456 K = N_Parameter_Association or else
4457 K = N_Selected_Component)
4458 and then Selector_Name (P) = N;
4459 end;
4461 else
4462 declare
4463 L : constant List_Id := List_Containing (N);
4464 P : constant Node_Id := Parent (L);
4466 begin
4467 return (Nkind (P) = N_Discriminant_Association
4468 and then Selector_Names (P) = L)
4469 or else
4470 (Nkind (P) = N_Component_Association
4471 and then Choices (P) = L);
4472 end;
4473 end if;
4474 end Is_Selector_Name;
4476 ------------------
4477 -- Is_Statement --
4478 ------------------
4480 function Is_Statement (N : Node_Id) return Boolean is
4481 begin
4482 return
4483 Nkind (N) in N_Statement_Other_Than_Procedure_Call
4484 or else Nkind (N) = N_Procedure_Call_Statement;
4485 end Is_Statement;
4487 -----------------
4488 -- Is_Transfer --
4489 -----------------
4491 function Is_Transfer (N : Node_Id) return Boolean is
4492 Kind : constant Node_Kind := Nkind (N);
4494 begin
4495 if Kind = N_Return_Statement
4496 or else
4497 Kind = N_Goto_Statement
4498 or else
4499 Kind = N_Raise_Statement
4500 or else
4501 Kind = N_Requeue_Statement
4502 then
4503 return True;
4505 elsif (Kind = N_Exit_Statement or else Kind in N_Raise_xxx_Error)
4506 and then No (Condition (N))
4507 then
4508 return True;
4510 elsif Kind = N_Procedure_Call_Statement
4511 and then Is_Entity_Name (Name (N))
4512 and then Present (Entity (Name (N)))
4513 and then No_Return (Entity (Name (N)))
4514 then
4515 return True;
4517 elsif Nkind (Original_Node (N)) = N_Raise_Statement then
4518 return True;
4520 else
4521 return False;
4522 end if;
4523 end Is_Transfer;
4525 -------------
4526 -- Is_True --
4527 -------------
4529 function Is_True (U : Uint) return Boolean is
4530 begin
4531 return (U /= 0);
4532 end Is_True;
4534 -----------------
4535 -- Is_Variable --
4536 -----------------
4538 function Is_Variable (N : Node_Id) return Boolean is
4540 Orig_Node : constant Node_Id := Original_Node (N);
4541 -- We do the test on the original node, since this is basically a
4542 -- test of syntactic categories, so it must not be disturbed by
4543 -- whatever rewriting might have occurred. For example, an aggregate,
4544 -- which is certainly NOT a variable, could be turned into a variable
4545 -- by expansion.
4547 function In_Protected_Function (E : Entity_Id) return Boolean;
4548 -- Within a protected function, the private components of the
4549 -- enclosing protected type are constants. A function nested within
4550 -- a (protected) procedure is not itself protected.
4552 function Is_Variable_Prefix (P : Node_Id) return Boolean;
4553 -- Prefixes can involve implicit dereferences, in which case we
4554 -- must test for the case of a reference of a constant access
4555 -- type, which can never be a variable.
4557 ---------------------------
4558 -- In_Protected_Function --
4559 ---------------------------
4561 function In_Protected_Function (E : Entity_Id) return Boolean is
4562 Prot : constant Entity_Id := Scope (E);
4563 S : Entity_Id;
4565 begin
4566 if not Is_Protected_Type (Prot) then
4567 return False;
4568 else
4569 S := Current_Scope;
4571 while Present (S) and then S /= Prot loop
4573 if Ekind (S) = E_Function
4574 and then Scope (S) = Prot
4575 then
4576 return True;
4577 end if;
4579 S := Scope (S);
4580 end loop;
4582 return False;
4583 end if;
4584 end In_Protected_Function;
4586 ------------------------
4587 -- Is_Variable_Prefix --
4588 ------------------------
4590 function Is_Variable_Prefix (P : Node_Id) return Boolean is
4591 begin
4592 if Is_Access_Type (Etype (P)) then
4593 return not Is_Access_Constant (Root_Type (Etype (P)));
4594 else
4595 return Is_Variable (P);
4596 end if;
4597 end Is_Variable_Prefix;
4599 -- Start of processing for Is_Variable
4601 begin
4602 -- Definitely OK if Assignment_OK is set. Since this is something that
4603 -- only gets set for expanded nodes, the test is on N, not Orig_Node.
4605 if Nkind (N) in N_Subexpr and then Assignment_OK (N) then
4606 return True;
4608 -- Normally we go to the original node, but there is one exception
4609 -- where we use the rewritten node, namely when it is an explicit
4610 -- dereference. The generated code may rewrite a prefix which is an
4611 -- access type with an explicit dereference. The dereference is a
4612 -- variable, even though the original node may not be (since it could
4613 -- be a constant of the access type).
4615 elsif Nkind (N) = N_Explicit_Dereference
4616 and then Nkind (Orig_Node) /= N_Explicit_Dereference
4617 and then Is_Access_Type (Etype (Orig_Node))
4618 then
4619 return Is_Variable_Prefix (Original_Node (Prefix (N)));
4621 -- All remaining checks use the original node
4623 elsif Is_Entity_Name (Orig_Node) then
4624 declare
4625 E : constant Entity_Id := Entity (Orig_Node);
4626 K : constant Entity_Kind := Ekind (E);
4628 begin
4629 return (K = E_Variable
4630 and then Nkind (Parent (E)) /= N_Exception_Handler)
4631 or else (K = E_Component
4632 and then not In_Protected_Function (E))
4633 or else K = E_Out_Parameter
4634 or else K = E_In_Out_Parameter
4635 or else K = E_Generic_In_Out_Parameter
4637 -- Current instance of type:
4639 or else (Is_Type (E) and then In_Open_Scopes (E))
4640 or else (Is_Incomplete_Or_Private_Type (E)
4641 and then In_Open_Scopes (Full_View (E)));
4642 end;
4644 else
4645 case Nkind (Orig_Node) is
4646 when N_Indexed_Component | N_Slice =>
4647 return Is_Variable_Prefix (Prefix (Orig_Node));
4649 when N_Selected_Component =>
4650 return Is_Variable_Prefix (Prefix (Orig_Node))
4651 and then Is_Variable (Selector_Name (Orig_Node));
4653 -- For an explicit dereference, the type of the prefix cannot
4654 -- be an access to constant or an access to subprogram.
4656 when N_Explicit_Dereference =>
4657 declare
4658 Typ : constant Entity_Id := Etype (Prefix (Orig_Node));
4660 begin
4661 return Is_Access_Type (Typ)
4662 and then not Is_Access_Constant (Root_Type (Typ))
4663 and then Ekind (Typ) /= E_Access_Subprogram_Type;
4664 end;
4666 -- The type conversion is the case where we do not deal with the
4667 -- context dependent special case of an actual parameter. Thus
4668 -- the type conversion is only considered a variable for the
4669 -- purposes of this routine if the target type is tagged. However,
4670 -- a type conversion is considered to be a variable if it does not
4671 -- come from source (this deals for example with the conversions
4672 -- of expressions to their actual subtypes).
4674 when N_Type_Conversion =>
4675 return Is_Variable (Expression (Orig_Node))
4676 and then
4677 (not Comes_From_Source (Orig_Node)
4678 or else
4679 (Is_Tagged_Type (Etype (Subtype_Mark (Orig_Node)))
4680 and then
4681 Is_Tagged_Type (Etype (Expression (Orig_Node)))));
4683 -- GNAT allows an unchecked type conversion as a variable. This
4684 -- only affects the generation of internal expanded code, since
4685 -- calls to instantiations of Unchecked_Conversion are never
4686 -- considered variables (since they are function calls).
4687 -- This is also true for expression actions.
4689 when N_Unchecked_Type_Conversion =>
4690 return Is_Variable (Expression (Orig_Node));
4692 when others =>
4693 return False;
4694 end case;
4695 end if;
4696 end Is_Variable;
4698 ------------------------
4699 -- Is_Volatile_Object --
4700 ------------------------
4702 function Is_Volatile_Object (N : Node_Id) return Boolean is
4704 function Object_Has_Volatile_Components (N : Node_Id) return Boolean;
4705 -- Determines if given object has volatile components
4707 function Is_Volatile_Prefix (N : Node_Id) return Boolean;
4708 -- If prefix is an implicit dereference, examine designated type
4710 ------------------------
4711 -- Is_Volatile_Prefix --
4712 ------------------------
4714 function Is_Volatile_Prefix (N : Node_Id) return Boolean is
4715 Typ : constant Entity_Id := Etype (N);
4717 begin
4718 if Is_Access_Type (Typ) then
4719 declare
4720 Dtyp : constant Entity_Id := Designated_Type (Typ);
4722 begin
4723 return Is_Volatile (Dtyp)
4724 or else Has_Volatile_Components (Dtyp);
4725 end;
4727 else
4728 return Object_Has_Volatile_Components (N);
4729 end if;
4730 end Is_Volatile_Prefix;
4732 ------------------------------------
4733 -- Object_Has_Volatile_Components --
4734 ------------------------------------
4736 function Object_Has_Volatile_Components (N : Node_Id) return Boolean is
4737 Typ : constant Entity_Id := Etype (N);
4739 begin
4740 if Is_Volatile (Typ)
4741 or else Has_Volatile_Components (Typ)
4742 then
4743 return True;
4745 elsif Is_Entity_Name (N)
4746 and then (Has_Volatile_Components (Entity (N))
4747 or else Is_Volatile (Entity (N)))
4748 then
4749 return True;
4751 elsif Nkind (N) = N_Indexed_Component
4752 or else Nkind (N) = N_Selected_Component
4753 then
4754 return Is_Volatile_Prefix (Prefix (N));
4756 else
4757 return False;
4758 end if;
4759 end Object_Has_Volatile_Components;
4761 -- Start of processing for Is_Volatile_Object
4763 begin
4764 if Is_Volatile (Etype (N))
4765 or else (Is_Entity_Name (N) and then Is_Volatile (Entity (N)))
4766 then
4767 return True;
4769 elsif Nkind (N) = N_Indexed_Component
4770 or else Nkind (N) = N_Selected_Component
4771 then
4772 return Is_Volatile_Prefix (Prefix (N));
4774 else
4775 return False;
4776 end if;
4777 end Is_Volatile_Object;
4779 -------------------------
4780 -- Kill_Current_Values --
4781 -------------------------
4783 procedure Kill_Current_Values is
4784 S : Entity_Id;
4786 procedure Kill_Current_Values_For_Entity_Chain (E : Entity_Id);
4787 -- Clear current value for entity E and all entities chained to E
4789 ------------------------------------------
4790 -- Kill_Current_Values_For_Entity_Chain --
4791 ------------------------------------------
4793 procedure Kill_Current_Values_For_Entity_Chain (E : Entity_Id) is
4794 Ent : Entity_Id;
4796 begin
4797 Ent := E;
4798 while Present (Ent) loop
4799 if Is_Object (Ent) then
4800 Set_Current_Value (Ent, Empty);
4802 if not Can_Never_Be_Null (Ent) then
4803 Set_Is_Known_Non_Null (Ent, False);
4804 end if;
4805 end if;
4807 Next_Entity (Ent);
4808 end loop;
4809 end Kill_Current_Values_For_Entity_Chain;
4811 -- Start of processing for Kill_Current_Values
4813 begin
4814 -- Kill all saved checks, a special case of killing saved values
4816 Kill_All_Checks;
4818 -- Loop through relevant scopes, which includes the current scope and
4819 -- any parent scopes if the current scope is a block or a package.
4821 S := Current_Scope;
4822 Scope_Loop : loop
4824 -- Clear current values of all entities in current scope
4826 Kill_Current_Values_For_Entity_Chain (First_Entity (S));
4828 -- If scope is a package, also clear current values of all
4829 -- private entities in the scope.
4831 if Ekind (S) = E_Package
4832 or else
4833 Ekind (S) = E_Generic_Package
4834 or else
4835 Is_Concurrent_Type (S)
4836 then
4837 Kill_Current_Values_For_Entity_Chain (First_Private_Entity (S));
4838 end if;
4840 -- If this is a block or nested package, deal with parent
4842 if Ekind (S) = E_Block
4843 or else (Ekind (S) = E_Package
4844 and then not Is_Library_Level_Entity (S))
4845 then
4846 S := Scope (S);
4847 else
4848 exit Scope_Loop;
4849 end if;
4850 end loop Scope_Loop;
4851 end Kill_Current_Values;
4853 --------------------------
4854 -- Kill_Size_Check_Code --
4855 --------------------------
4857 procedure Kill_Size_Check_Code (E : Entity_Id) is
4858 begin
4859 if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable)
4860 and then Present (Size_Check_Code (E))
4861 then
4862 Remove (Size_Check_Code (E));
4863 Set_Size_Check_Code (E, Empty);
4864 end if;
4865 end Kill_Size_Check_Code;
4867 -------------------------
4868 -- New_External_Entity --
4869 -------------------------
4871 function New_External_Entity
4872 (Kind : Entity_Kind;
4873 Scope_Id : Entity_Id;
4874 Sloc_Value : Source_Ptr;
4875 Related_Id : Entity_Id;
4876 Suffix : Character;
4877 Suffix_Index : Nat := 0;
4878 Prefix : Character := ' ') return Entity_Id
4880 N : constant Entity_Id :=
4881 Make_Defining_Identifier (Sloc_Value,
4882 New_External_Name
4883 (Chars (Related_Id), Suffix, Suffix_Index, Prefix));
4885 begin
4886 Set_Ekind (N, Kind);
4887 Set_Is_Internal (N, True);
4888 Append_Entity (N, Scope_Id);
4889 Set_Public_Status (N);
4891 if Kind in Type_Kind then
4892 Init_Size_Align (N);
4893 end if;
4895 return N;
4896 end New_External_Entity;
4898 -------------------------
4899 -- New_Internal_Entity --
4900 -------------------------
4902 function New_Internal_Entity
4903 (Kind : Entity_Kind;
4904 Scope_Id : Entity_Id;
4905 Sloc_Value : Source_Ptr;
4906 Id_Char : Character) return Entity_Id
4908 N : constant Entity_Id :=
4909 Make_Defining_Identifier (Sloc_Value, New_Internal_Name (Id_Char));
4911 begin
4912 Set_Ekind (N, Kind);
4913 Set_Is_Internal (N, True);
4914 Append_Entity (N, Scope_Id);
4916 if Kind in Type_Kind then
4917 Init_Size_Align (N);
4918 end if;
4920 return N;
4921 end New_Internal_Entity;
4923 -----------------
4924 -- Next_Actual --
4925 -----------------
4927 function Next_Actual (Actual_Id : Node_Id) return Node_Id is
4928 N : Node_Id;
4930 begin
4931 -- If we are pointing at a positional parameter, it is a member of
4932 -- a node list (the list of parameters), and the next parameter
4933 -- is the next node on the list, unless we hit a parameter
4934 -- association, in which case we shift to using the chain whose
4935 -- head is the First_Named_Actual in the parent, and then is
4936 -- threaded using the Next_Named_Actual of the Parameter_Association.
4937 -- All this fiddling is because the original node list is in the
4938 -- textual call order, and what we need is the declaration order.
4940 if Is_List_Member (Actual_Id) then
4941 N := Next (Actual_Id);
4943 if Nkind (N) = N_Parameter_Association then
4944 return First_Named_Actual (Parent (Actual_Id));
4945 else
4946 return N;
4947 end if;
4949 else
4950 return Next_Named_Actual (Parent (Actual_Id));
4951 end if;
4952 end Next_Actual;
4954 procedure Next_Actual (Actual_Id : in out Node_Id) is
4955 begin
4956 Actual_Id := Next_Actual (Actual_Id);
4957 end Next_Actual;
4959 -----------------------
4960 -- Normalize_Actuals --
4961 -----------------------
4963 -- Chain actuals according to formals of subprogram. If there are
4964 -- no named associations, the chain is simply the list of Parameter
4965 -- Associations, since the order is the same as the declaration order.
4966 -- If there are named associations, then the First_Named_Actual field
4967 -- in the N_Procedure_Call_Statement node or N_Function_Call node
4968 -- points to the Parameter_Association node for the parameter that
4969 -- comes first in declaration order. The remaining named parameters
4970 -- are then chained in declaration order using Next_Named_Actual.
4972 -- This routine also verifies that the number of actuals is compatible
4973 -- with the number and default values of formals, but performs no type
4974 -- checking (type checking is done by the caller).
4976 -- If the matching succeeds, Success is set to True, and the caller
4977 -- proceeds with type-checking. If the match is unsuccessful, then
4978 -- Success is set to False, and the caller attempts a different
4979 -- interpretation, if there is one.
4981 -- If the flag Report is on, the call is not overloaded, and a failure
4982 -- to match can be reported here, rather than in the caller.
4984 procedure Normalize_Actuals
4985 (N : Node_Id;
4986 S : Entity_Id;
4987 Report : Boolean;
4988 Success : out Boolean)
4990 Actuals : constant List_Id := Parameter_Associations (N);
4991 Actual : Node_Id := Empty;
4992 Formal : Entity_Id;
4993 Last : Node_Id := Empty;
4994 First_Named : Node_Id := Empty;
4995 Found : Boolean;
4997 Formals_To_Match : Integer := 0;
4998 Actuals_To_Match : Integer := 0;
5000 procedure Chain (A : Node_Id);
5001 -- Add named actual at the proper place in the list, using the
5002 -- Next_Named_Actual link.
5004 function Reporting return Boolean;
5005 -- Determines if an error is to be reported. To report an error, we
5006 -- need Report to be True, and also we do not report errors caused
5007 -- by calls to init procs that occur within other init procs. Such
5008 -- errors must always be cascaded errors, since if all the types are
5009 -- declared correctly, the compiler will certainly build decent calls!
5011 -----------
5012 -- Chain --
5013 -----------
5015 procedure Chain (A : Node_Id) is
5016 begin
5017 if No (Last) then
5019 -- Call node points to first actual in list
5021 Set_First_Named_Actual (N, Explicit_Actual_Parameter (A));
5023 else
5024 Set_Next_Named_Actual (Last, Explicit_Actual_Parameter (A));
5025 end if;
5027 Last := A;
5028 Set_Next_Named_Actual (Last, Empty);
5029 end Chain;
5031 ---------------
5032 -- Reporting --
5033 ---------------
5035 function Reporting return Boolean is
5036 begin
5037 if not Report then
5038 return False;
5040 elsif not Within_Init_Proc then
5041 return True;
5043 elsif Is_Init_Proc (Entity (Name (N))) then
5044 return False;
5046 else
5047 return True;
5048 end if;
5049 end Reporting;
5051 -- Start of processing for Normalize_Actuals
5053 begin
5054 if Is_Access_Type (S) then
5056 -- The name in the call is a function call that returns an access
5057 -- to subprogram. The designated type has the list of formals.
5059 Formal := First_Formal (Designated_Type (S));
5060 else
5061 Formal := First_Formal (S);
5062 end if;
5064 while Present (Formal) loop
5065 Formals_To_Match := Formals_To_Match + 1;
5066 Next_Formal (Formal);
5067 end loop;
5069 -- Find if there is a named association, and verify that no positional
5070 -- associations appear after named ones.
5072 if Present (Actuals) then
5073 Actual := First (Actuals);
5074 end if;
5076 while Present (Actual)
5077 and then Nkind (Actual) /= N_Parameter_Association
5078 loop
5079 Actuals_To_Match := Actuals_To_Match + 1;
5080 Next (Actual);
5081 end loop;
5083 if No (Actual) and Actuals_To_Match = Formals_To_Match then
5085 -- Most common case: positional notation, no defaults
5087 Success := True;
5088 return;
5090 elsif Actuals_To_Match > Formals_To_Match then
5092 -- Too many actuals: will not work
5094 if Reporting then
5095 if Is_Entity_Name (Name (N)) then
5096 Error_Msg_N ("too many arguments in call to&", Name (N));
5097 else
5098 Error_Msg_N ("too many arguments in call", N);
5099 end if;
5100 end if;
5102 Success := False;
5103 return;
5104 end if;
5106 First_Named := Actual;
5108 while Present (Actual) loop
5109 if Nkind (Actual) /= N_Parameter_Association then
5110 Error_Msg_N
5111 ("positional parameters not allowed after named ones", Actual);
5112 Success := False;
5113 return;
5115 else
5116 Actuals_To_Match := Actuals_To_Match + 1;
5117 end if;
5119 Next (Actual);
5120 end loop;
5122 if Present (Actuals) then
5123 Actual := First (Actuals);
5124 end if;
5126 Formal := First_Formal (S);
5127 while Present (Formal) loop
5129 -- Match the formals in order. If the corresponding actual
5130 -- is positional, nothing to do. Else scan the list of named
5131 -- actuals to find the one with the right name.
5133 if Present (Actual)
5134 and then Nkind (Actual) /= N_Parameter_Association
5135 then
5136 Next (Actual);
5137 Actuals_To_Match := Actuals_To_Match - 1;
5138 Formals_To_Match := Formals_To_Match - 1;
5140 else
5141 -- For named parameters, search the list of actuals to find
5142 -- one that matches the next formal name.
5144 Actual := First_Named;
5145 Found := False;
5147 while Present (Actual) loop
5148 if Chars (Selector_Name (Actual)) = Chars (Formal) then
5149 Found := True;
5150 Chain (Actual);
5151 Actuals_To_Match := Actuals_To_Match - 1;
5152 Formals_To_Match := Formals_To_Match - 1;
5153 exit;
5154 end if;
5156 Next (Actual);
5157 end loop;
5159 if not Found then
5160 if Ekind (Formal) /= E_In_Parameter
5161 or else No (Default_Value (Formal))
5162 then
5163 if Reporting then
5164 if (Comes_From_Source (S)
5165 or else Sloc (S) = Standard_Location)
5166 and then Is_Overloadable (S)
5167 then
5168 if No (Actuals)
5169 and then
5170 (Nkind (Parent (N)) = N_Procedure_Call_Statement
5171 or else
5172 (Nkind (Parent (N)) = N_Function_Call
5173 or else
5174 Nkind (Parent (N)) = N_Parameter_Association))
5175 and then Ekind (S) /= E_Function
5176 then
5177 Set_Etype (N, Etype (S));
5178 else
5179 Error_Msg_Name_1 := Chars (S);
5180 Error_Msg_Sloc := Sloc (S);
5181 Error_Msg_NE
5182 ("missing argument for parameter & " &
5183 "in call to % declared #", N, Formal);
5184 end if;
5186 elsif Is_Overloadable (S) then
5187 Error_Msg_Name_1 := Chars (S);
5189 -- Point to type derivation that generated the
5190 -- operation.
5192 Error_Msg_Sloc := Sloc (Parent (S));
5194 Error_Msg_NE
5195 ("missing argument for parameter & " &
5196 "in call to % (inherited) #", N, Formal);
5198 else
5199 Error_Msg_NE
5200 ("missing argument for parameter &", N, Formal);
5201 end if;
5202 end if;
5204 Success := False;
5205 return;
5207 else
5208 Formals_To_Match := Formals_To_Match - 1;
5209 end if;
5210 end if;
5211 end if;
5213 Next_Formal (Formal);
5214 end loop;
5216 if Formals_To_Match = 0 and then Actuals_To_Match = 0 then
5217 Success := True;
5218 return;
5220 else
5221 if Reporting then
5223 -- Find some superfluous named actual that did not get
5224 -- attached to the list of associations.
5226 Actual := First (Actuals);
5228 while Present (Actual) loop
5229 if Nkind (Actual) = N_Parameter_Association
5230 and then Actual /= Last
5231 and then No (Next_Named_Actual (Actual))
5232 then
5233 Error_Msg_N ("unmatched actual & in call",
5234 Selector_Name (Actual));
5235 exit;
5236 end if;
5238 Next (Actual);
5239 end loop;
5240 end if;
5242 Success := False;
5243 return;
5244 end if;
5245 end Normalize_Actuals;
5247 --------------------------------
5248 -- Note_Possible_Modification --
5249 --------------------------------
5251 procedure Note_Possible_Modification (N : Node_Id) is
5252 Modification_Comes_From_Source : constant Boolean :=
5253 Comes_From_Source (Parent (N));
5255 Ent : Entity_Id;
5256 Exp : Node_Id;
5258 begin
5259 -- Loop to find referenced entity, if there is one
5261 Exp := N;
5262 loop
5263 <<Continue>>
5264 Ent := Empty;
5266 if Is_Entity_Name (Exp) then
5267 Ent := Entity (Exp);
5269 elsif Nkind (Exp) = N_Explicit_Dereference then
5270 declare
5271 P : constant Node_Id := Prefix (Exp);
5273 begin
5274 if Nkind (P) = N_Selected_Component
5275 and then Present (
5276 Entry_Formal (Entity (Selector_Name (P))))
5277 then
5278 -- Case of a reference to an entry formal
5280 Ent := Entry_Formal (Entity (Selector_Name (P)));
5282 elsif Nkind (P) = N_Identifier
5283 and then Nkind (Parent (Entity (P))) = N_Object_Declaration
5284 and then Present (Expression (Parent (Entity (P))))
5285 and then Nkind (Expression (Parent (Entity (P))))
5286 = N_Reference
5287 then
5288 -- Case of a reference to a value on which
5289 -- side effects have been removed.
5291 Exp := Prefix (Expression (Parent (Entity (P))));
5293 else
5294 return;
5296 end if;
5297 end;
5299 elsif Nkind (Exp) = N_Type_Conversion
5300 or else Nkind (Exp) = N_Unchecked_Type_Conversion
5301 then
5302 Exp := Expression (Exp);
5304 elsif Nkind (Exp) = N_Slice
5305 or else Nkind (Exp) = N_Indexed_Component
5306 or else Nkind (Exp) = N_Selected_Component
5307 then
5308 Exp := Prefix (Exp);
5310 else
5311 return;
5313 end if;
5315 -- Now look for entity being referenced
5317 if Present (Ent) then
5319 if Is_Object (Ent) then
5320 if Comes_From_Source (Exp)
5321 or else Modification_Comes_From_Source
5322 then
5323 Set_Never_Set_In_Source (Ent, False);
5324 end if;
5326 Set_Is_True_Constant (Ent, False);
5327 Set_Current_Value (Ent, Empty);
5329 if not Can_Never_Be_Null (Ent) then
5330 Set_Is_Known_Non_Null (Ent, False);
5331 end if;
5333 if (Ekind (Ent) = E_Variable or else Ekind (Ent) = E_Constant)
5334 and then Present (Renamed_Object (Ent))
5335 then
5336 Exp := Renamed_Object (Ent);
5337 goto Continue;
5338 end if;
5340 -- Generate a reference only if the assignment comes from
5341 -- source. This excludes, for example, calls to a dispatching
5342 -- assignment operation when the left-hand side is tagged.
5344 if Modification_Comes_From_Source then
5345 Generate_Reference (Ent, Exp, 'm');
5346 end if;
5347 end if;
5349 Kill_Checks (Ent);
5350 return;
5351 end if;
5352 end loop;
5353 end Note_Possible_Modification;
5355 -------------------------
5356 -- Object_Access_Level --
5357 -------------------------
5359 function Object_Access_Level (Obj : Node_Id) return Uint is
5360 E : Entity_Id;
5362 -- Returns the static accessibility level of the view denoted
5363 -- by Obj. Note that the value returned is the result of a
5364 -- call to Scope_Depth. Only scope depths associated with
5365 -- dynamic scopes can actually be returned. Since only
5366 -- relative levels matter for accessibility checking, the fact
5367 -- that the distance between successive levels of accessibility
5368 -- is not always one is immaterial (invariant: if level(E2) is
5369 -- deeper than level(E1), then Scope_Depth(E1) < Scope_Depth(E2)).
5371 begin
5372 if Is_Entity_Name (Obj) then
5373 E := Entity (Obj);
5375 -- If E is a type then it denotes a current instance.
5376 -- For this case we add one to the normal accessibility
5377 -- level of the type to ensure that current instances
5378 -- are treated as always being deeper than than the level
5379 -- of any visible named access type (see 3.10.2(21)).
5381 if Is_Type (E) then
5382 return Type_Access_Level (E) + 1;
5384 elsif Present (Renamed_Object (E)) then
5385 return Object_Access_Level (Renamed_Object (E));
5387 -- Similarly, if E is a component of the current instance of a
5388 -- protected type, any instance of it is assumed to be at a deeper
5389 -- level than the type. For a protected object (whose type is an
5390 -- anonymous protected type) its components are at the same level
5391 -- as the type itself.
5393 elsif not Is_Overloadable (E)
5394 and then Ekind (Scope (E)) = E_Protected_Type
5395 and then Comes_From_Source (Scope (E))
5396 then
5397 return Type_Access_Level (Scope (E)) + 1;
5399 else
5400 return Scope_Depth (Enclosing_Dynamic_Scope (E));
5401 end if;
5403 elsif Nkind (Obj) = N_Selected_Component then
5404 if Is_Access_Type (Etype (Prefix (Obj))) then
5405 return Type_Access_Level (Etype (Prefix (Obj)));
5406 else
5407 return Object_Access_Level (Prefix (Obj));
5408 end if;
5410 elsif Nkind (Obj) = N_Indexed_Component then
5411 if Is_Access_Type (Etype (Prefix (Obj))) then
5412 return Type_Access_Level (Etype (Prefix (Obj)));
5413 else
5414 return Object_Access_Level (Prefix (Obj));
5415 end if;
5417 elsif Nkind (Obj) = N_Explicit_Dereference then
5419 -- If the prefix is a selected access discriminant then
5420 -- we make a recursive call on the prefix, which will
5421 -- in turn check the level of the prefix object of
5422 -- the selected discriminant.
5424 if Nkind (Prefix (Obj)) = N_Selected_Component
5425 and then Ekind (Etype (Prefix (Obj))) = E_Anonymous_Access_Type
5426 and then
5427 Ekind (Entity (Selector_Name (Prefix (Obj)))) = E_Discriminant
5428 then
5429 return Object_Access_Level (Prefix (Obj));
5430 else
5431 return Type_Access_Level (Etype (Prefix (Obj)));
5432 end if;
5434 elsif Nkind (Obj) = N_Type_Conversion
5435 or else Nkind (Obj) = N_Unchecked_Type_Conversion
5436 then
5437 return Object_Access_Level (Expression (Obj));
5439 -- Function results are objects, so we get either the access level
5440 -- of the function or, in the case of an indirect call, the level of
5441 -- of the access-to-subprogram type.
5443 elsif Nkind (Obj) = N_Function_Call then
5444 if Is_Entity_Name (Name (Obj)) then
5445 return Subprogram_Access_Level (Entity (Name (Obj)));
5446 else
5447 return Type_Access_Level (Etype (Prefix (Name (Obj))));
5448 end if;
5450 -- For convenience we handle qualified expressions, even though
5451 -- they aren't technically object names.
5453 elsif Nkind (Obj) = N_Qualified_Expression then
5454 return Object_Access_Level (Expression (Obj));
5456 -- Otherwise return the scope level of Standard.
5457 -- (If there are cases that fall through
5458 -- to this point they will be treated as
5459 -- having global accessibility for now. ???)
5461 else
5462 return Scope_Depth (Standard_Standard);
5463 end if;
5464 end Object_Access_Level;
5466 -----------------------
5467 -- Private_Component --
5468 -----------------------
5470 function Private_Component (Type_Id : Entity_Id) return Entity_Id is
5471 Ancestor : constant Entity_Id := Base_Type (Type_Id);
5473 function Trace_Components
5474 (T : Entity_Id;
5475 Check : Boolean) return Entity_Id;
5476 -- Recursive function that does the work, and checks against circular
5477 -- definition for each subcomponent type.
5479 ----------------------
5480 -- Trace_Components --
5481 ----------------------
5483 function Trace_Components
5484 (T : Entity_Id;
5485 Check : Boolean) return Entity_Id
5487 Btype : constant Entity_Id := Base_Type (T);
5488 Component : Entity_Id;
5489 P : Entity_Id;
5490 Candidate : Entity_Id := Empty;
5492 begin
5493 if Check and then Btype = Ancestor then
5494 Error_Msg_N ("circular type definition", Type_Id);
5495 return Any_Type;
5496 end if;
5498 if Is_Private_Type (Btype)
5499 and then not Is_Generic_Type (Btype)
5500 then
5501 if Present (Full_View (Btype))
5502 and then Is_Record_Type (Full_View (Btype))
5503 and then not Is_Frozen (Btype)
5504 then
5505 -- To indicate that the ancestor depends on a private type,
5506 -- the current Btype is sufficient. However, to check for
5507 -- circular definition we must recurse on the full view.
5509 Candidate := Trace_Components (Full_View (Btype), True);
5511 if Candidate = Any_Type then
5512 return Any_Type;
5513 else
5514 return Btype;
5515 end if;
5517 else
5518 return Btype;
5519 end if;
5521 elsif Is_Array_Type (Btype) then
5522 return Trace_Components (Component_Type (Btype), True);
5524 elsif Is_Record_Type (Btype) then
5525 Component := First_Entity (Btype);
5526 while Present (Component) loop
5528 -- Skip anonymous types generated by constrained components
5530 if not Is_Type (Component) then
5531 P := Trace_Components (Etype (Component), True);
5533 if Present (P) then
5534 if P = Any_Type then
5535 return P;
5536 else
5537 Candidate := P;
5538 end if;
5539 end if;
5540 end if;
5542 Next_Entity (Component);
5543 end loop;
5545 return Candidate;
5547 else
5548 return Empty;
5549 end if;
5550 end Trace_Components;
5552 -- Start of processing for Private_Component
5554 begin
5555 return Trace_Components (Type_Id, False);
5556 end Private_Component;
5558 -----------------------
5559 -- Process_End_Label --
5560 -----------------------
5562 procedure Process_End_Label
5563 (N : Node_Id;
5564 Typ : Character;
5565 Ent : Entity_Id)
5567 Loc : Source_Ptr;
5568 Nam : Node_Id;
5570 Label_Ref : Boolean;
5571 -- Set True if reference to end label itself is required
5573 Endl : Node_Id;
5574 -- Gets set to the operator symbol or identifier that references
5575 -- the entity Ent. For the child unit case, this is the identifier
5576 -- from the designator. For other cases, this is simply Endl.
5578 procedure Generate_Parent_Ref (N : Node_Id);
5579 -- N is an identifier node that appears as a parent unit reference
5580 -- in the case where Ent is a child unit. This procedure generates
5581 -- an appropriate cross-reference entry.
5583 -------------------------
5584 -- Generate_Parent_Ref --
5585 -------------------------
5587 procedure Generate_Parent_Ref (N : Node_Id) is
5588 Parent_Ent : Entity_Id;
5590 begin
5591 -- Search up scope stack. The reason we do this is that normal
5592 -- visibility analysis would not work for two reasons. First in
5593 -- some subunit cases, the entry for the parent unit may not be
5594 -- visible, and in any case there can be a local entity that
5595 -- hides the scope entity.
5597 Parent_Ent := Current_Scope;
5598 while Present (Parent_Ent) loop
5599 if Chars (Parent_Ent) = Chars (N) then
5601 -- Generate the reference. We do NOT consider this as a
5602 -- reference for unreferenced symbol purposes, but we do
5603 -- force a cross-reference even if the end line does not
5604 -- come from source (the caller already generated the
5605 -- appropriate Typ for this situation).
5607 Generate_Reference
5608 (Parent_Ent, N, 'r', Set_Ref => False, Force => True);
5609 Style.Check_Identifier (N, Parent_Ent);
5610 return;
5611 end if;
5613 Parent_Ent := Scope (Parent_Ent);
5614 end loop;
5616 -- Fall through means entity was not found -- that's odd, but
5617 -- the appropriate thing is simply to ignore and not generate
5618 -- any cross-reference for this entry.
5620 return;
5621 end Generate_Parent_Ref;
5623 -- Start of processing for Process_End_Label
5625 begin
5626 -- If no node, ignore. This happens in some error situations,
5627 -- and also for some internally generated structures where no
5628 -- end label references are required in any case.
5630 if No (N) then
5631 return;
5632 end if;
5634 -- Nothing to do if no End_Label, happens for internally generated
5635 -- constructs where we don't want an end label reference anyway.
5636 -- Also nothing to do if Endl is a string literal, which means
5637 -- there was some prior error (bad operator symbol)
5639 Endl := End_Label (N);
5641 if No (Endl) or else Nkind (Endl) = N_String_Literal then
5642 return;
5643 end if;
5645 -- Reference node is not in extended main source unit
5647 if not In_Extended_Main_Source_Unit (N) then
5649 -- Generally we do not collect references except for the
5650 -- extended main source unit. The one exception is the 'e'
5651 -- entry for a package spec, where it is useful for a client
5652 -- to have the ending information to define scopes.
5654 if Typ /= 'e' then
5655 return;
5657 else
5658 Label_Ref := False;
5660 -- For this case, we can ignore any parent references,
5661 -- but we need the package name itself for the 'e' entry.
5663 if Nkind (Endl) = N_Designator then
5664 Endl := Identifier (Endl);
5665 end if;
5666 end if;
5668 -- Reference is in extended main source unit
5670 else
5671 Label_Ref := True;
5673 -- For designator, generate references for the parent entries
5675 if Nkind (Endl) = N_Designator then
5677 -- Generate references for the prefix if the END line comes
5678 -- from source (otherwise we do not need these references)
5680 if Comes_From_Source (Endl) then
5681 Nam := Name (Endl);
5682 while Nkind (Nam) = N_Selected_Component loop
5683 Generate_Parent_Ref (Selector_Name (Nam));
5684 Nam := Prefix (Nam);
5685 end loop;
5687 Generate_Parent_Ref (Nam);
5688 end if;
5690 Endl := Identifier (Endl);
5691 end if;
5692 end if;
5694 -- If the end label is not for the given entity, then either we have
5695 -- some previous error, or this is a generic instantiation for which
5696 -- we do not need to make a cross-reference in this case anyway. In
5697 -- either case we simply ignore the call.
5699 if Chars (Ent) /= Chars (Endl) then
5700 return;
5701 end if;
5703 -- If label was really there, then generate a normal reference
5704 -- and then adjust the location in the end label to point past
5705 -- the name (which should almost always be the semicolon).
5707 Loc := Sloc (Endl);
5709 if Comes_From_Source (Endl) then
5711 -- If a label reference is required, then do the style check
5712 -- and generate an l-type cross-reference entry for the label
5714 if Label_Ref then
5715 if Style_Check then
5716 Style.Check_Identifier (Endl, Ent);
5717 end if;
5718 Generate_Reference (Ent, Endl, 'l', Set_Ref => False);
5719 end if;
5721 -- Set the location to point past the label (normally this will
5722 -- mean the semicolon immediately following the label). This is
5723 -- done for the sake of the 'e' or 't' entry generated below.
5725 Get_Decoded_Name_String (Chars (Endl));
5726 Set_Sloc (Endl, Sloc (Endl) + Source_Ptr (Name_Len));
5727 end if;
5729 -- Now generate the e/t reference
5731 Generate_Reference (Ent, Endl, Typ, Set_Ref => False, Force => True);
5733 -- Restore Sloc, in case modified above, since we have an identifier
5734 -- and the normal Sloc should be left set in the tree.
5736 Set_Sloc (Endl, Loc);
5737 end Process_End_Label;
5739 ------------------
5740 -- Real_Convert --
5741 ------------------
5743 -- We do the conversion to get the value of the real string by using
5744 -- the scanner, see Sinput for details on use of the internal source
5745 -- buffer for scanning internal strings.
5747 function Real_Convert (S : String) return Node_Id is
5748 Save_Src : constant Source_Buffer_Ptr := Source;
5749 Negative : Boolean;
5751 begin
5752 Source := Internal_Source_Ptr;
5753 Scan_Ptr := 1;
5755 for J in S'Range loop
5756 Source (Source_Ptr (J)) := S (J);
5757 end loop;
5759 Source (S'Length + 1) := EOF;
5761 if Source (Scan_Ptr) = '-' then
5762 Negative := True;
5763 Scan_Ptr := Scan_Ptr + 1;
5764 else
5765 Negative := False;
5766 end if;
5768 Scan;
5770 if Negative then
5771 Set_Realval (Token_Node, UR_Negate (Realval (Token_Node)));
5772 end if;
5774 Source := Save_Src;
5775 return Token_Node;
5776 end Real_Convert;
5778 ---------------------
5779 -- Rep_To_Pos_Flag --
5780 ---------------------
5782 function Rep_To_Pos_Flag (E : Entity_Id; Loc : Source_Ptr) return Node_Id is
5783 begin
5784 return New_Occurrence_Of
5785 (Boolean_Literals (not Range_Checks_Suppressed (E)), Loc);
5786 end Rep_To_Pos_Flag;
5788 --------------------
5789 -- Require_Entity --
5790 --------------------
5792 procedure Require_Entity (N : Node_Id) is
5793 begin
5794 if Is_Entity_Name (N) and then No (Entity (N)) then
5795 if Total_Errors_Detected /= 0 then
5796 Set_Entity (N, Any_Id);
5797 else
5798 raise Program_Error;
5799 end if;
5800 end if;
5801 end Require_Entity;
5803 ------------------------------
5804 -- Requires_Transient_Scope --
5805 ------------------------------
5807 -- A transient scope is required when variable-sized temporaries are
5808 -- allocated in the primary or secondary stack, or when finalization
5809 -- actions must be generated before the next instruction.
5811 function Requires_Transient_Scope (Id : Entity_Id) return Boolean is
5812 Typ : constant Entity_Id := Underlying_Type (Id);
5814 -- Start of processing for Requires_Transient_Scope
5816 begin
5817 -- This is a private type which is not completed yet. This can only
5818 -- happen in a default expression (of a formal parameter or of a
5819 -- record component). Do not expand transient scope in this case
5821 if No (Typ) then
5822 return False;
5824 -- Do not expand transient scope for non-existent procedure return
5826 elsif Typ = Standard_Void_Type then
5827 return False;
5829 -- Elementary types do not require a transient scope
5831 elsif Is_Elementary_Type (Typ) then
5832 return False;
5834 -- Generally, indefinite subtypes require a transient scope, since the
5835 -- back end cannot generate temporaries, since this is not a valid type
5836 -- for declaring an object. It might be possible to relax this in the
5837 -- future, e.g. by declaring the maximum possible space for the type.
5839 elsif Is_Indefinite_Subtype (Typ) then
5840 return True;
5842 -- Functions returning tagged types may dispatch on result so their
5843 -- returned value is allocated on the secondary stack. Controlled
5844 -- type temporaries need finalization.
5846 elsif Is_Tagged_Type (Typ)
5847 or else Has_Controlled_Component (Typ)
5848 then
5849 return True;
5851 -- Record type
5853 elsif Is_Record_Type (Typ) then
5855 -- In GCC 2, discriminated records always require a transient
5856 -- scope because the back end otherwise tries to allocate a
5857 -- variable length temporary for the particular variant.
5859 if Opt.GCC_Version = 2
5860 and then Has_Discriminants (Typ)
5861 then
5862 return True;
5864 -- For GCC 3, or for a non-discriminated record in GCC 2, we are
5865 -- OK if none of the component types requires a transient scope.
5866 -- Note that we already know that this is a definite type (i.e.
5867 -- has discriminant defaults if it is a discriminated record).
5869 else
5870 declare
5871 Comp : Entity_Id;
5872 begin
5873 Comp := First_Entity (Typ);
5874 while Present (Comp) loop
5875 if Requires_Transient_Scope (Etype (Comp)) then
5876 return True;
5877 else
5878 Next_Entity (Comp);
5879 end if;
5880 end loop;
5881 end;
5883 return False;
5884 end if;
5886 -- String literal types never require transient scope
5888 elsif Ekind (Typ) = E_String_Literal_Subtype then
5889 return False;
5891 -- Array type. Note that we already know that this is a constrained
5892 -- array, since unconstrained arrays will fail the indefinite test.
5894 elsif Is_Array_Type (Typ) then
5896 -- If component type requires a transient scope, the array does too
5898 if Requires_Transient_Scope (Component_Type (Typ)) then
5899 return True;
5901 -- Otherwise, we only need a transient scope if the size is not
5902 -- known at compile time.
5904 else
5905 return not Size_Known_At_Compile_Time (Typ);
5906 end if;
5908 -- All other cases do not require a transient scope
5910 else
5911 return False;
5912 end if;
5913 end Requires_Transient_Scope;
5915 --------------------------
5916 -- Reset_Analyzed_Flags --
5917 --------------------------
5919 procedure Reset_Analyzed_Flags (N : Node_Id) is
5921 function Clear_Analyzed
5922 (N : Node_Id) return Traverse_Result;
5923 -- Function used to reset Analyzed flags in tree. Note that we do
5924 -- not reset Analyzed flags in entities, since there is no need to
5925 -- renalalyze entities, and indeed, it is wrong to do so, since it
5926 -- can result in generating auxiliary stuff more than once.
5928 --------------------
5929 -- Clear_Analyzed --
5930 --------------------
5932 function Clear_Analyzed
5933 (N : Node_Id) return Traverse_Result
5935 begin
5936 if not Has_Extension (N) then
5937 Set_Analyzed (N, False);
5938 end if;
5940 return OK;
5941 end Clear_Analyzed;
5943 function Reset_Analyzed is
5944 new Traverse_Func (Clear_Analyzed);
5946 Discard : Traverse_Result;
5947 pragma Warnings (Off, Discard);
5949 -- Start of processing for Reset_Analyzed_Flags
5951 begin
5952 Discard := Reset_Analyzed (N);
5953 end Reset_Analyzed_Flags;
5955 ---------------------------
5956 -- Safe_To_Capture_Value --
5957 ---------------------------
5959 function Safe_To_Capture_Value
5960 (N : Node_Id;
5961 Ent : Entity_Id) return Boolean
5963 begin
5964 -- The only entities for which we track constant values are variables,
5965 -- out parameters and in out parameters, so check if we have this case.
5967 if Ekind (Ent) /= E_Variable
5968 and then
5969 Ekind (Ent) /= E_Out_Parameter
5970 and then
5971 Ekind (Ent) /= E_In_Out_Parameter
5972 then
5973 return False;
5974 end if;
5976 -- Skip volatile and aliased variables, since funny things might
5977 -- be going on in these cases which we cannot necessarily track.
5979 if Treat_As_Volatile (Ent) or else Is_Aliased (Ent) then
5980 return False;
5981 end if;
5983 -- OK, all above conditions are met. We also require that the scope
5984 -- of the reference be the same as the scope of the entity, not
5985 -- counting packages and blocks.
5987 declare
5988 E_Scope : constant Entity_Id := Scope (Ent);
5989 R_Scope : Entity_Id;
5991 begin
5992 R_Scope := Current_Scope;
5993 while R_Scope /= Standard_Standard loop
5994 exit when R_Scope = E_Scope;
5996 if Ekind (R_Scope) /= E_Package
5997 and then
5998 Ekind (R_Scope) /= E_Block
5999 then
6000 return False;
6001 else
6002 R_Scope := Scope (R_Scope);
6003 end if;
6004 end loop;
6005 end;
6007 -- We also require that the reference does not appear in a context
6008 -- where it is not sure to be executed (i.e. a conditional context
6009 -- or an exception handler).
6011 declare
6012 P : Node_Id;
6014 begin
6015 P := Parent (N);
6016 while Present (P) loop
6017 if Nkind (P) = N_If_Statement
6018 or else
6019 Nkind (P) = N_Case_Statement
6020 or else
6021 Nkind (P) = N_Exception_Handler
6022 or else
6023 Nkind (P) = N_Selective_Accept
6024 or else
6025 Nkind (P) = N_Conditional_Entry_Call
6026 or else
6027 Nkind (P) = N_Timed_Entry_Call
6028 or else
6029 Nkind (P) = N_Asynchronous_Select
6030 then
6031 return False;
6032 else
6033 P := Parent (P);
6034 end if;
6035 end loop;
6036 end;
6038 -- OK, looks safe to set value
6040 return True;
6041 end Safe_To_Capture_Value;
6043 ---------------
6044 -- Same_Name --
6045 ---------------
6047 function Same_Name (N1, N2 : Node_Id) return Boolean is
6048 K1 : constant Node_Kind := Nkind (N1);
6049 K2 : constant Node_Kind := Nkind (N2);
6051 begin
6052 if (K1 = N_Identifier or else K1 = N_Defining_Identifier)
6053 and then (K2 = N_Identifier or else K2 = N_Defining_Identifier)
6054 then
6055 return Chars (N1) = Chars (N2);
6057 elsif (K1 = N_Selected_Component or else K1 = N_Expanded_Name)
6058 and then (K2 = N_Selected_Component or else K2 = N_Expanded_Name)
6059 then
6060 return Same_Name (Selector_Name (N1), Selector_Name (N2))
6061 and then Same_Name (Prefix (N1), Prefix (N2));
6063 else
6064 return False;
6065 end if;
6066 end Same_Name;
6068 ---------------
6069 -- Same_Type --
6070 ---------------
6072 function Same_Type (T1, T2 : Entity_Id) return Boolean is
6073 begin
6074 if T1 = T2 then
6075 return True;
6077 elsif not Is_Constrained (T1)
6078 and then not Is_Constrained (T2)
6079 and then Base_Type (T1) = Base_Type (T2)
6080 then
6081 return True;
6083 -- For now don't bother with case of identical constraints, to be
6084 -- fiddled with later on perhaps (this is only used for optimization
6085 -- purposes, so it is not critical to do a best possible job)
6087 else
6088 return False;
6089 end if;
6090 end Same_Type;
6092 ------------------------
6093 -- Scope_Is_Transient --
6094 ------------------------
6096 function Scope_Is_Transient return Boolean is
6097 begin
6098 return Scope_Stack.Table (Scope_Stack.Last).Is_Transient;
6099 end Scope_Is_Transient;
6101 ------------------
6102 -- Scope_Within --
6103 ------------------
6105 function Scope_Within (Scope1, Scope2 : Entity_Id) return Boolean is
6106 Scop : Entity_Id;
6108 begin
6109 Scop := Scope1;
6110 while Scop /= Standard_Standard loop
6111 Scop := Scope (Scop);
6113 if Scop = Scope2 then
6114 return True;
6115 end if;
6116 end loop;
6118 return False;
6119 end Scope_Within;
6121 --------------------------
6122 -- Scope_Within_Or_Same --
6123 --------------------------
6125 function Scope_Within_Or_Same (Scope1, Scope2 : Entity_Id) return Boolean is
6126 Scop : Entity_Id;
6128 begin
6129 Scop := Scope1;
6130 while Scop /= Standard_Standard loop
6131 if Scop = Scope2 then
6132 return True;
6133 else
6134 Scop := Scope (Scop);
6135 end if;
6136 end loop;
6138 return False;
6139 end Scope_Within_Or_Same;
6141 ------------------------
6142 -- Set_Current_Entity --
6143 ------------------------
6145 -- The given entity is to be set as the currently visible definition
6146 -- of its associated name (i.e. the Node_Id associated with its name).
6147 -- All we have to do is to get the name from the identifier, and
6148 -- then set the associated Node_Id to point to the given entity.
6150 procedure Set_Current_Entity (E : Entity_Id) is
6151 begin
6152 Set_Name_Entity_Id (Chars (E), E);
6153 end Set_Current_Entity;
6155 ---------------------------------
6156 -- Set_Entity_With_Style_Check --
6157 ---------------------------------
6159 procedure Set_Entity_With_Style_Check (N : Node_Id; Val : Entity_Id) is
6160 Val_Actual : Entity_Id;
6161 Nod : Node_Id;
6163 begin
6164 Set_Entity (N, Val);
6166 if Style_Check
6167 and then not Suppress_Style_Checks (Val)
6168 and then not In_Instance
6169 then
6170 if Nkind (N) = N_Identifier then
6171 Nod := N;
6173 elsif Nkind (N) = N_Expanded_Name then
6174 Nod := Selector_Name (N);
6176 else
6177 return;
6178 end if;
6180 Val_Actual := Val;
6182 -- A special situation arises for derived operations, where we want
6183 -- to do the check against the parent (since the Sloc of the derived
6184 -- operation points to the derived type declaration itself).
6186 while not Comes_From_Source (Val_Actual)
6187 and then Nkind (Val_Actual) in N_Entity
6188 and then (Ekind (Val_Actual) = E_Enumeration_Literal
6189 or else Is_Subprogram (Val_Actual)
6190 or else Is_Generic_Subprogram (Val_Actual))
6191 and then Present (Alias (Val_Actual))
6192 loop
6193 Val_Actual := Alias (Val_Actual);
6194 end loop;
6196 -- Renaming declarations for generic actuals do not come from source,
6197 -- and have a different name from that of the entity they rename, so
6198 -- there is no style check to perform here.
6200 if Chars (Nod) = Chars (Val_Actual) then
6201 Style.Check_Identifier (Nod, Val_Actual);
6202 end if;
6203 end if;
6205 Set_Entity (N, Val);
6206 end Set_Entity_With_Style_Check;
6208 ------------------------
6209 -- Set_Name_Entity_Id --
6210 ------------------------
6212 procedure Set_Name_Entity_Id (Id : Name_Id; Val : Entity_Id) is
6213 begin
6214 Set_Name_Table_Info (Id, Int (Val));
6215 end Set_Name_Entity_Id;
6217 ---------------------
6218 -- Set_Next_Actual --
6219 ---------------------
6221 procedure Set_Next_Actual (Ass1_Id : Node_Id; Ass2_Id : Node_Id) is
6222 begin
6223 if Nkind (Parent (Ass1_Id)) = N_Parameter_Association then
6224 Set_First_Named_Actual (Parent (Ass1_Id), Ass2_Id);
6225 end if;
6226 end Set_Next_Actual;
6228 -----------------------
6229 -- Set_Public_Status --
6230 -----------------------
6232 procedure Set_Public_Status (Id : Entity_Id) is
6233 S : constant Entity_Id := Current_Scope;
6235 begin
6236 if S = Standard_Standard
6237 or else (Is_Public (S)
6238 and then (Ekind (S) = E_Package
6239 or else Is_Record_Type (S)
6240 or else Ekind (S) = E_Void))
6241 then
6242 Set_Is_Public (Id);
6244 -- The bounds of an entry family declaration can generate object
6245 -- declarations that are visible to the back-end, e.g. in the
6246 -- the declaration of a composite type that contains tasks.
6248 elsif Is_Public (S)
6249 and then Is_Concurrent_Type (S)
6250 and then not Has_Completion (S)
6251 and then Nkind (Parent (Id)) = N_Object_Declaration
6252 then
6253 Set_Is_Public (Id);
6254 end if;
6255 end Set_Public_Status;
6257 ----------------------------
6258 -- Set_Scope_Is_Transient --
6259 ----------------------------
6261 procedure Set_Scope_Is_Transient (V : Boolean := True) is
6262 begin
6263 Scope_Stack.Table (Scope_Stack.Last).Is_Transient := V;
6264 end Set_Scope_Is_Transient;
6266 -------------------
6267 -- Set_Size_Info --
6268 -------------------
6270 procedure Set_Size_Info (T1, T2 : Entity_Id) is
6271 begin
6272 -- We copy Esize, but not RM_Size, since in general RM_Size is
6273 -- subtype specific and does not get inherited by all subtypes.
6275 Set_Esize (T1, Esize (T2));
6276 Set_Has_Biased_Representation (T1, Has_Biased_Representation (T2));
6278 if Is_Discrete_Or_Fixed_Point_Type (T1)
6279 and then
6280 Is_Discrete_Or_Fixed_Point_Type (T2)
6281 then
6282 Set_Is_Unsigned_Type (T1, Is_Unsigned_Type (T2));
6283 end if;
6284 Set_Alignment (T1, Alignment (T2));
6285 end Set_Size_Info;
6287 --------------------
6288 -- Static_Integer --
6289 --------------------
6291 function Static_Integer (N : Node_Id) return Uint is
6292 begin
6293 Analyze_And_Resolve (N, Any_Integer);
6295 if N = Error
6296 or else Error_Posted (N)
6297 or else Etype (N) = Any_Type
6298 then
6299 return No_Uint;
6300 end if;
6302 if Is_Static_Expression (N) then
6303 if not Raises_Constraint_Error (N) then
6304 return Expr_Value (N);
6305 else
6306 return No_Uint;
6307 end if;
6309 elsif Etype (N) = Any_Type then
6310 return No_Uint;
6312 else
6313 Flag_Non_Static_Expr
6314 ("static integer expression required here", N);
6315 return No_Uint;
6316 end if;
6317 end Static_Integer;
6319 --------------------------
6320 -- Statically_Different --
6321 --------------------------
6323 function Statically_Different (E1, E2 : Node_Id) return Boolean is
6324 R1 : constant Node_Id := Get_Referenced_Object (E1);
6325 R2 : constant Node_Id := Get_Referenced_Object (E2);
6327 begin
6328 return Is_Entity_Name (R1)
6329 and then Is_Entity_Name (R2)
6330 and then Entity (R1) /= Entity (R2)
6331 and then not Is_Formal (Entity (R1))
6332 and then not Is_Formal (Entity (R2));
6333 end Statically_Different;
6335 -----------------------------
6336 -- Subprogram_Access_Level --
6337 -----------------------------
6339 function Subprogram_Access_Level (Subp : Entity_Id) return Uint is
6340 begin
6341 if Present (Alias (Subp)) then
6342 return Subprogram_Access_Level (Alias (Subp));
6343 else
6344 return Scope_Depth (Enclosing_Dynamic_Scope (Subp));
6345 end if;
6346 end Subprogram_Access_Level;
6348 -----------------
6349 -- Trace_Scope --
6350 -----------------
6352 procedure Trace_Scope (N : Node_Id; E : Entity_Id; Msg : String) is
6353 begin
6354 if Debug_Flag_W then
6355 for J in 0 .. Scope_Stack.Last loop
6356 Write_Str (" ");
6357 end loop;
6359 Write_Str (Msg);
6360 Write_Name (Chars (E));
6361 Write_Str (" line ");
6362 Write_Int (Int (Get_Logical_Line_Number (Sloc (N))));
6363 Write_Eol;
6364 end if;
6365 end Trace_Scope;
6367 -----------------------
6368 -- Transfer_Entities --
6369 -----------------------
6371 procedure Transfer_Entities (From : Entity_Id; To : Entity_Id) is
6372 Ent : Entity_Id := First_Entity (From);
6374 begin
6375 if No (Ent) then
6376 return;
6377 end if;
6379 if (Last_Entity (To)) = Empty then
6380 Set_First_Entity (To, Ent);
6381 else
6382 Set_Next_Entity (Last_Entity (To), Ent);
6383 end if;
6385 Set_Last_Entity (To, Last_Entity (From));
6387 while Present (Ent) loop
6388 Set_Scope (Ent, To);
6390 if not Is_Public (Ent) then
6391 Set_Public_Status (Ent);
6393 if Is_Public (Ent)
6394 and then Ekind (Ent) = E_Record_Subtype
6396 then
6397 -- The components of the propagated Itype must be public
6398 -- as well.
6400 declare
6401 Comp : Entity_Id;
6403 begin
6404 Comp := First_Entity (Ent);
6406 while Present (Comp) loop
6407 Set_Is_Public (Comp);
6408 Next_Entity (Comp);
6409 end loop;
6410 end;
6411 end if;
6412 end if;
6414 Next_Entity (Ent);
6415 end loop;
6417 Set_First_Entity (From, Empty);
6418 Set_Last_Entity (From, Empty);
6419 end Transfer_Entities;
6421 -----------------------
6422 -- Type_Access_Level --
6423 -----------------------
6425 function Type_Access_Level (Typ : Entity_Id) return Uint is
6426 Btyp : Entity_Id;
6428 begin
6429 -- If the type is an anonymous access type we treat it as being
6430 -- declared at the library level to ensure that names such as
6431 -- X.all'access don't fail static accessibility checks.
6433 -- Ada 2005 (AI-230): In case of anonymous access types that are
6434 -- component_definition or discriminants of a nonlimited type,
6435 -- the level is the same as that of the enclosing component type.
6437 Btyp := Base_Type (Typ);
6438 if Ekind (Btyp) in Access_Kind then
6439 if Ekind (Btyp) = E_Anonymous_Access_Type
6440 and then not Is_Array_Type (Scope (Btyp)) -- Ada 2005 (AI-230)
6441 and then Ekind (Scope (Btyp)) /= E_Record_Type -- Ada 2005 (AI-230)
6442 then
6443 return Scope_Depth (Standard_Standard);
6444 end if;
6446 Btyp := Root_Type (Btyp);
6447 end if;
6449 return Scope_Depth (Enclosing_Dynamic_Scope (Btyp));
6450 end Type_Access_Level;
6452 --------------------------
6453 -- Unit_Declaration_Node --
6454 --------------------------
6456 function Unit_Declaration_Node (Unit_Id : Entity_Id) return Node_Id is
6457 N : Node_Id := Parent (Unit_Id);
6459 begin
6460 -- Predefined operators do not have a full function declaration
6462 if Ekind (Unit_Id) = E_Operator then
6463 return N;
6464 end if;
6466 while Nkind (N) /= N_Abstract_Subprogram_Declaration
6467 and then Nkind (N) /= N_Formal_Package_Declaration
6468 and then Nkind (N) /= N_Formal_Subprogram_Declaration
6469 and then Nkind (N) /= N_Function_Instantiation
6470 and then Nkind (N) /= N_Generic_Package_Declaration
6471 and then Nkind (N) /= N_Generic_Subprogram_Declaration
6472 and then Nkind (N) /= N_Package_Declaration
6473 and then Nkind (N) /= N_Package_Body
6474 and then Nkind (N) /= N_Package_Instantiation
6475 and then Nkind (N) /= N_Package_Renaming_Declaration
6476 and then Nkind (N) /= N_Procedure_Instantiation
6477 and then Nkind (N) /= N_Protected_Body
6478 and then Nkind (N) /= N_Subprogram_Declaration
6479 and then Nkind (N) /= N_Subprogram_Body
6480 and then Nkind (N) /= N_Subprogram_Body_Stub
6481 and then Nkind (N) /= N_Subprogram_Renaming_Declaration
6482 and then Nkind (N) /= N_Task_Body
6483 and then Nkind (N) /= N_Task_Type_Declaration
6484 and then Nkind (N) not in N_Generic_Renaming_Declaration
6485 loop
6486 N := Parent (N);
6487 pragma Assert (Present (N));
6488 end loop;
6490 return N;
6491 end Unit_Declaration_Node;
6493 ------------------------------
6494 -- Universal_Interpretation --
6495 ------------------------------
6497 function Universal_Interpretation (Opnd : Node_Id) return Entity_Id is
6498 Index : Interp_Index;
6499 It : Interp;
6501 begin
6502 -- The argument may be a formal parameter of an operator or subprogram
6503 -- with multiple interpretations, or else an expression for an actual.
6505 if Nkind (Opnd) = N_Defining_Identifier
6506 or else not Is_Overloaded (Opnd)
6507 then
6508 if Etype (Opnd) = Universal_Integer
6509 or else Etype (Opnd) = Universal_Real
6510 then
6511 return Etype (Opnd);
6512 else
6513 return Empty;
6514 end if;
6516 else
6517 Get_First_Interp (Opnd, Index, It);
6519 while Present (It.Typ) loop
6521 if It.Typ = Universal_Integer
6522 or else It.Typ = Universal_Real
6523 then
6524 return It.Typ;
6525 end if;
6527 Get_Next_Interp (Index, It);
6528 end loop;
6530 return Empty;
6531 end if;
6532 end Universal_Interpretation;
6534 ----------------------
6535 -- Within_Init_Proc --
6536 ----------------------
6538 function Within_Init_Proc return Boolean is
6539 S : Entity_Id;
6541 begin
6542 S := Current_Scope;
6543 while not Is_Overloadable (S) loop
6544 if S = Standard_Standard then
6545 return False;
6546 else
6547 S := Scope (S);
6548 end if;
6549 end loop;
6551 return Is_Init_Proc (S);
6552 end Within_Init_Proc;
6554 ----------------
6555 -- Wrong_Type --
6556 ----------------
6558 procedure Wrong_Type (Expr : Node_Id; Expected_Type : Entity_Id) is
6559 Found_Type : constant Entity_Id := First_Subtype (Etype (Expr));
6560 Expec_Type : constant Entity_Id := First_Subtype (Expected_Type);
6562 function Has_One_Matching_Field return Boolean;
6563 -- Determines whether Expec_Type is a record type with a single
6564 -- component or discriminant whose type matches the found type or
6565 -- is a one dimensional array whose component type matches the
6566 -- found type.
6568 function Has_One_Matching_Field return Boolean is
6569 E : Entity_Id;
6571 begin
6572 if Is_Array_Type (Expec_Type)
6573 and then Number_Dimensions (Expec_Type) = 1
6574 and then
6575 Covers (Etype (Component_Type (Expec_Type)), Found_Type)
6576 then
6577 return True;
6579 elsif not Is_Record_Type (Expec_Type) then
6580 return False;
6582 else
6583 E := First_Entity (Expec_Type);
6585 loop
6586 if No (E) then
6587 return False;
6589 elsif (Ekind (E) /= E_Discriminant
6590 and then Ekind (E) /= E_Component)
6591 or else (Chars (E) = Name_uTag
6592 or else Chars (E) = Name_uParent)
6593 then
6594 Next_Entity (E);
6596 else
6597 exit;
6598 end if;
6599 end loop;
6601 if not Covers (Etype (E), Found_Type) then
6602 return False;
6604 elsif Present (Next_Entity (E)) then
6605 return False;
6607 else
6608 return True;
6609 end if;
6610 end if;
6611 end Has_One_Matching_Field;
6613 -- Start of processing for Wrong_Type
6615 begin
6616 -- Don't output message if either type is Any_Type, or if a message
6617 -- has already been posted for this node. We need to do the latter
6618 -- check explicitly (it is ordinarily done in Errout), because we
6619 -- are using ! to force the output of the error messages.
6621 if Expec_Type = Any_Type
6622 or else Found_Type = Any_Type
6623 or else Error_Posted (Expr)
6624 then
6625 return;
6627 -- In an instance, there is an ongoing problem with completion of
6628 -- type derived from private types. Their structure is what Gigi
6629 -- expects, but the Etype is the parent type rather than the
6630 -- derived private type itself. Do not flag error in this case. The
6631 -- private completion is an entity without a parent, like an Itype.
6632 -- Similarly, full and partial views may be incorrect in the instance.
6633 -- There is no simple way to insure that it is consistent ???
6635 elsif In_Instance then
6637 if Etype (Etype (Expr)) = Etype (Expected_Type)
6638 and then
6639 (Has_Private_Declaration (Expected_Type)
6640 or else Has_Private_Declaration (Etype (Expr)))
6641 and then No (Parent (Expected_Type))
6642 then
6643 return;
6644 end if;
6645 end if;
6647 -- An interesting special check. If the expression is parenthesized
6648 -- and its type corresponds to the type of the sole component of the
6649 -- expected record type, or to the component type of the expected one
6650 -- dimensional array type, then assume we have a bad aggregate attempt.
6652 if Nkind (Expr) in N_Subexpr
6653 and then Paren_Count (Expr) /= 0
6654 and then Has_One_Matching_Field
6655 then
6656 Error_Msg_N ("positional aggregate cannot have one component", Expr);
6658 -- Another special check, if we are looking for a pool-specific access
6659 -- type and we found an E_Access_Attribute_Type, then we have the case
6660 -- of an Access attribute being used in a context which needs a pool-
6661 -- specific type, which is never allowed. The one extra check we make
6662 -- is that the expected designated type covers the Found_Type.
6664 elsif Is_Access_Type (Expec_Type)
6665 and then Ekind (Found_Type) = E_Access_Attribute_Type
6666 and then Ekind (Base_Type (Expec_Type)) /= E_General_Access_Type
6667 and then Ekind (Base_Type (Expec_Type)) /= E_Anonymous_Access_Type
6668 and then Covers
6669 (Designated_Type (Expec_Type), Designated_Type (Found_Type))
6670 then
6671 Error_Msg_N ("result must be general access type!", Expr);
6672 Error_Msg_NE ("add ALL to }!", Expr, Expec_Type);
6674 -- If the expected type is an anonymous access type, as for access
6675 -- parameters and discriminants, the error is on the designated types.
6677 elsif Ekind (Expec_Type) = E_Anonymous_Access_Type then
6678 if Comes_From_Source (Expec_Type) then
6679 Error_Msg_NE ("expected}!", Expr, Expec_Type);
6680 else
6681 Error_Msg_NE
6682 ("expected an access type with designated}",
6683 Expr, Designated_Type (Expec_Type));
6684 end if;
6686 if Is_Access_Type (Found_Type)
6687 and then not Comes_From_Source (Found_Type)
6688 then
6689 Error_Msg_NE
6690 ("found an access type with designated}!",
6691 Expr, Designated_Type (Found_Type));
6692 else
6693 if From_With_Type (Found_Type) then
6694 Error_Msg_NE ("found incomplete}!", Expr, Found_Type);
6695 Error_Msg_NE
6696 ("\possibly missing with_clause on&", Expr,
6697 Scope (Found_Type));
6698 else
6699 Error_Msg_NE ("found}!", Expr, Found_Type);
6700 end if;
6701 end if;
6703 -- Normal case of one type found, some other type expected
6705 else
6706 -- If the names of the two types are the same, see if some
6707 -- number of levels of qualification will help. Don't try
6708 -- more than three levels, and if we get to standard, it's
6709 -- no use (and probably represents an error in the compiler)
6710 -- Also do not bother with internal scope names.
6712 declare
6713 Expec_Scope : Entity_Id;
6714 Found_Scope : Entity_Id;
6716 begin
6717 Expec_Scope := Expec_Type;
6718 Found_Scope := Found_Type;
6720 for Levels in Int range 0 .. 3 loop
6721 if Chars (Expec_Scope) /= Chars (Found_Scope) then
6722 Error_Msg_Qual_Level := Levels;
6723 exit;
6724 end if;
6726 Expec_Scope := Scope (Expec_Scope);
6727 Found_Scope := Scope (Found_Scope);
6729 exit when Expec_Scope = Standard_Standard
6730 or else
6731 Found_Scope = Standard_Standard
6732 or else
6733 not Comes_From_Source (Expec_Scope)
6734 or else
6735 not Comes_From_Source (Found_Scope);
6736 end loop;
6737 end;
6739 Error_Msg_NE ("expected}!", Expr, Expec_Type);
6741 if Is_Entity_Name (Expr)
6742 and then Is_Package (Entity (Expr))
6743 then
6744 Error_Msg_N ("found package name!", Expr);
6746 elsif Is_Entity_Name (Expr)
6747 and then
6748 (Ekind (Entity (Expr)) = E_Procedure
6749 or else
6750 Ekind (Entity (Expr)) = E_Generic_Procedure)
6751 then
6752 if Ekind (Expec_Type) = E_Access_Subprogram_Type then
6753 Error_Msg_N
6754 ("found procedure name, possibly missing Access attribute!",
6755 Expr);
6756 else
6757 Error_Msg_N ("found procedure name instead of function!", Expr);
6758 end if;
6760 elsif Nkind (Expr) = N_Function_Call
6761 and then Ekind (Expec_Type) = E_Access_Subprogram_Type
6762 and then Etype (Designated_Type (Expec_Type)) = Etype (Expr)
6763 and then No (Parameter_Associations (Expr))
6764 then
6765 Error_Msg_N
6766 ("found function name, possibly missing Access attribute!",
6767 Expr);
6769 -- Catch common error: a prefix or infix operator which is not
6770 -- directly visible because the type isn't.
6772 elsif Nkind (Expr) in N_Op
6773 and then Is_Overloaded (Expr)
6774 and then not Is_Immediately_Visible (Expec_Type)
6775 and then not Is_Potentially_Use_Visible (Expec_Type)
6776 and then not In_Use (Expec_Type)
6777 and then Has_Compatible_Type (Right_Opnd (Expr), Expec_Type)
6778 then
6779 Error_Msg_N (
6780 "operator of the type is not directly visible!", Expr);
6782 elsif Ekind (Found_Type) = E_Void
6783 and then Present (Parent (Found_Type))
6784 and then Nkind (Parent (Found_Type)) = N_Full_Type_Declaration
6785 then
6786 Error_Msg_NE ("found premature usage of}!", Expr, Found_Type);
6788 else
6789 Error_Msg_NE ("found}!", Expr, Found_Type);
6790 end if;
6792 Error_Msg_Qual_Level := 0;
6793 end if;
6794 end Wrong_Type;
6796 end Sem_Util;