* gimplify.c (find_single_pointer_decl_1): New static function.
[official-gcc.git] / gcc / ada / sem_ch5.adb
blob2c5e0642bf00ad10be594d929bcf43e0e7b4e5dc
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 5 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2005 Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
20 -- Boston, MA 02110-1301, USA. --
21 -- --
22 -- GNAT was originally developed by the GNAT team at New York University. --
23 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 -- --
25 ------------------------------------------------------------------------------
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Einfo; use Einfo;
30 with Errout; use Errout;
31 with Expander; use Expander;
32 with Exp_Util; use Exp_Util;
33 with Freeze; use Freeze;
34 with Lib.Xref; use Lib.Xref;
35 with Nlists; use Nlists;
36 with Nmake; use Nmake;
37 with Opt; use Opt;
38 with Sem; use Sem;
39 with Sem_Case; use Sem_Case;
40 with Sem_Ch3; use Sem_Ch3;
41 with Sem_Ch8; use Sem_Ch8;
42 with Sem_Disp; use Sem_Disp;
43 with Sem_Eval; use Sem_Eval;
44 with Sem_Res; use Sem_Res;
45 with Sem_Type; use Sem_Type;
46 with Sem_Util; use Sem_Util;
47 with Sem_Warn; use Sem_Warn;
48 with Stand; use Stand;
49 with Sinfo; use Sinfo;
50 with Targparm; use Targparm;
51 with Tbuild; use Tbuild;
52 with Uintp; use Uintp;
54 package body Sem_Ch5 is
56 Unblocked_Exit_Count : Nat := 0;
57 -- This variable is used when processing if statements, case statements,
58 -- and block statements. It counts the number of exit points that are
59 -- not blocked by unconditional transfer instructions (for IF and CASE,
60 -- these are the branches of the conditional, for a block, they are the
61 -- statement sequence of the block, and the statement sequences of any
62 -- exception handlers that are part of the block. When processing is
63 -- complete, if this count is zero, it means that control cannot fall
64 -- through the IF, CASE or block statement. This is used for the
65 -- generation of warning messages. This variable is recursively saved
66 -- on entry to processing the construct, and restored on exit.
68 -----------------------
69 -- Local Subprograms --
70 -----------------------
72 procedure Analyze_Iteration_Scheme (N : Node_Id);
74 procedure Check_Possible_Current_Value_Condition (Cnode : Node_Id);
75 -- Cnode is N_If_Statement, N_Elsif_Part, or N_Iteration_Scheme
76 -- (the latter when a WHILE condition is present). This call checks
77 -- if Condition (Cnode) is of the form ([NOT] var op val), where var
78 -- is a simple object, val is known at compile time, and op is one
79 -- of the six relational operators. If this is the case, and the
80 -- Current_Value field of "var" is not set, then it is set to Cnode.
81 -- See Exp_Util.Set_Current_Value_Condition for further details.
83 ------------------------
84 -- Analyze_Assignment --
85 ------------------------
87 procedure Analyze_Assignment (N : Node_Id) is
88 Lhs : constant Node_Id := Name (N);
89 Rhs : constant Node_Id := Expression (N);
90 T1 : Entity_Id;
91 T2 : Entity_Id;
92 Decl : Node_Id;
93 Ent : Entity_Id;
95 procedure Diagnose_Non_Variable_Lhs (N : Node_Id);
96 -- N is the node for the left hand side of an assignment, and it
97 -- is not a variable. This routine issues an appropriate diagnostic.
99 procedure Set_Assignment_Type
100 (Opnd : Node_Id;
101 Opnd_Type : in out Entity_Id);
102 -- Opnd is either the Lhs or Rhs of the assignment, and Opnd_Type
103 -- is the nominal subtype. This procedure is used to deal with cases
104 -- where the nominal subtype must be replaced by the actual subtype.
106 -------------------------------
107 -- Diagnose_Non_Variable_Lhs --
108 -------------------------------
110 procedure Diagnose_Non_Variable_Lhs (N : Node_Id) is
111 begin
112 -- Not worth posting another error if left hand side already
113 -- flagged as being illegal in some respect
115 if Error_Posted (N) then
116 return;
118 -- Some special bad cases of entity names
120 elsif Is_Entity_Name (N) then
121 if Ekind (Entity (N)) = E_In_Parameter then
122 Error_Msg_N
123 ("assignment to IN mode parameter not allowed", N);
125 -- Private declarations in a protected object are turned into
126 -- constants when compiling a protected function.
128 elsif Present (Scope (Entity (N)))
129 and then Is_Protected_Type (Scope (Entity (N)))
130 and then
131 (Ekind (Current_Scope) = E_Function
132 or else
133 Ekind (Enclosing_Dynamic_Scope (Current_Scope)) = E_Function)
134 then
135 Error_Msg_N
136 ("protected function cannot modify protected object", N);
138 elsif Ekind (Entity (N)) = E_Loop_Parameter then
139 Error_Msg_N
140 ("assignment to loop parameter not allowed", N);
142 else
143 Error_Msg_N
144 ("left hand side of assignment must be a variable", N);
145 end if;
147 -- For indexed components or selected components, test prefix
149 elsif Nkind (N) = N_Indexed_Component then
150 Diagnose_Non_Variable_Lhs (Prefix (N));
152 -- Another special case for assignment to discriminant
154 elsif Nkind (N) = N_Selected_Component then
155 if Present (Entity (Selector_Name (N)))
156 and then Ekind (Entity (Selector_Name (N))) = E_Discriminant
157 then
158 Error_Msg_N
159 ("assignment to discriminant not allowed", N);
160 else
161 Diagnose_Non_Variable_Lhs (Prefix (N));
162 end if;
164 else
165 -- If we fall through, we have no special message to issue!
167 Error_Msg_N ("left hand side of assignment must be a variable", N);
168 end if;
169 end Diagnose_Non_Variable_Lhs;
171 -------------------------
172 -- Set_Assignment_Type --
173 -------------------------
175 procedure Set_Assignment_Type
176 (Opnd : Node_Id;
177 Opnd_Type : in out Entity_Id)
179 begin
180 Require_Entity (Opnd);
182 -- If the assignment operand is an in-out or out parameter, then we
183 -- get the actual subtype (needed for the unconstrained case).
184 -- If the operand is the actual in an entry declaration, then within
185 -- the accept statement it is replaced with a local renaming, which
186 -- may also have an actual subtype.
188 if Is_Entity_Name (Opnd)
189 and then (Ekind (Entity (Opnd)) = E_Out_Parameter
190 or else Ekind (Entity (Opnd)) =
191 E_In_Out_Parameter
192 or else Ekind (Entity (Opnd)) =
193 E_Generic_In_Out_Parameter
194 or else
195 (Ekind (Entity (Opnd)) = E_Variable
196 and then Nkind (Parent (Entity (Opnd))) =
197 N_Object_Renaming_Declaration
198 and then Nkind (Parent (Parent (Entity (Opnd)))) =
199 N_Accept_Statement))
200 then
201 Opnd_Type := Get_Actual_Subtype (Opnd);
203 -- If assignment operand is a component reference, then we get the
204 -- actual subtype of the component for the unconstrained case.
206 elsif
207 (Nkind (Opnd) = N_Selected_Component
208 or else Nkind (Opnd) = N_Explicit_Dereference)
209 and then not Is_Unchecked_Union (Opnd_Type)
210 then
211 Decl := Build_Actual_Subtype_Of_Component (Opnd_Type, Opnd);
213 if Present (Decl) then
214 Insert_Action (N, Decl);
215 Mark_Rewrite_Insertion (Decl);
216 Analyze (Decl);
217 Opnd_Type := Defining_Identifier (Decl);
218 Set_Etype (Opnd, Opnd_Type);
219 Freeze_Itype (Opnd_Type, N);
221 elsif Is_Constrained (Etype (Opnd)) then
222 Opnd_Type := Etype (Opnd);
223 end if;
225 -- For slice, use the constrained subtype created for the slice
227 elsif Nkind (Opnd) = N_Slice then
228 Opnd_Type := Etype (Opnd);
229 end if;
230 end Set_Assignment_Type;
232 -- Start of processing for Analyze_Assignment
234 begin
235 Analyze (Rhs);
236 Analyze (Lhs);
237 T1 := Etype (Lhs);
239 -- In the most general case, both Lhs and Rhs can be overloaded, and we
240 -- must compute the intersection of the possible types on each side.
242 if Is_Overloaded (Lhs) then
243 declare
244 I : Interp_Index;
245 It : Interp;
247 begin
248 T1 := Any_Type;
249 Get_First_Interp (Lhs, I, It);
251 while Present (It.Typ) loop
252 if Has_Compatible_Type (Rhs, It.Typ) then
253 if T1 /= Any_Type then
255 -- An explicit dereference is overloaded if the prefix
256 -- is. Try to remove the ambiguity on the prefix, the
257 -- error will be posted there if the ambiguity is real.
259 if Nkind (Lhs) = N_Explicit_Dereference then
260 declare
261 PI : Interp_Index;
262 PI1 : Interp_Index := 0;
263 PIt : Interp;
264 Found : Boolean;
266 begin
267 Found := False;
268 Get_First_Interp (Prefix (Lhs), PI, PIt);
270 while Present (PIt.Typ) loop
271 if Is_Access_Type (PIt.Typ)
272 and then Has_Compatible_Type
273 (Rhs, Designated_Type (PIt.Typ))
274 then
275 if Found then
276 PIt :=
277 Disambiguate (Prefix (Lhs),
278 PI1, PI, Any_Type);
280 if PIt = No_Interp then
281 Error_Msg_N
282 ("ambiguous left-hand side"
283 & " in assignment", Lhs);
284 exit;
285 else
286 Resolve (Prefix (Lhs), PIt.Typ);
287 end if;
289 exit;
290 else
291 Found := True;
292 PI1 := PI;
293 end if;
294 end if;
296 Get_Next_Interp (PI, PIt);
297 end loop;
298 end;
300 else
301 Error_Msg_N
302 ("ambiguous left-hand side in assignment", Lhs);
303 exit;
304 end if;
305 else
306 T1 := It.Typ;
307 end if;
308 end if;
310 Get_Next_Interp (I, It);
311 end loop;
312 end;
314 if T1 = Any_Type then
315 Error_Msg_N
316 ("no valid types for left-hand side for assignment", Lhs);
317 return;
318 end if;
319 end if;
321 Resolve (Lhs, T1);
323 if not Is_Variable (Lhs) then
324 Diagnose_Non_Variable_Lhs (Lhs);
325 return;
327 elsif Is_Limited_Type (T1)
328 and then not Assignment_OK (Lhs)
329 and then not Assignment_OK (Original_Node (Lhs))
330 then
331 Error_Msg_N
332 ("left hand of assignment must not be limited type", Lhs);
333 Explain_Limited_Type (T1, Lhs);
334 return;
335 end if;
337 -- Resolution may have updated the subtype, in case the left-hand
338 -- side is a private protected component. Use the correct subtype
339 -- to avoid scoping issues in the back-end.
341 T1 := Etype (Lhs);
343 -- Ada 2005 (AI-50217, AI-326): Check wrong dereference of incomplete
344 -- type. For example:
346 -- limited with P;
347 -- package Pkg is
348 -- type Acc is access P.T;
349 -- end Pkg;
351 -- with Pkg; use Acc;
352 -- procedure Example is
353 -- A, B : Acc;
354 -- begin
355 -- A.all := B.all; -- ERROR
356 -- end Example;
358 if Nkind (Lhs) = N_Explicit_Dereference
359 and then Ekind (T1) = E_Incomplete_Type
360 then
361 Error_Msg_N ("invalid use of incomplete type", Lhs);
362 return;
363 end if;
365 Set_Assignment_Type (Lhs, T1);
367 Resolve (Rhs, T1);
368 Check_Unset_Reference (Rhs);
370 -- Remaining steps are skipped if Rhs was syntactically in error
372 if Rhs = Error then
373 return;
374 end if;
376 T2 := Etype (Rhs);
378 if not Covers (T1, T2) then
379 Wrong_Type (Rhs, Etype (Lhs));
380 return;
381 end if;
383 -- Ada 2005 (AI-326): In case of explicit dereference of incomplete
384 -- types, use the non-limited view if available
386 if Nkind (Rhs) = N_Explicit_Dereference
387 and then Ekind (T2) = E_Incomplete_Type
388 and then Is_Tagged_Type (T2)
389 and then Present (Non_Limited_View (T2))
390 then
391 T2 := Non_Limited_View (T2);
392 end if;
394 Set_Assignment_Type (Rhs, T2);
396 if Total_Errors_Detected /= 0 then
397 if No (T1) then
398 T1 := Any_Type;
399 end if;
401 if No (T2) then
402 T2 := Any_Type;
403 end if;
404 end if;
406 if T1 = Any_Type or else T2 = Any_Type then
407 return;
408 end if;
410 if (Is_Class_Wide_Type (T2) or else Is_Dynamically_Tagged (Rhs))
411 and then not Is_Class_Wide_Type (T1)
412 then
413 Error_Msg_N ("dynamically tagged expression not allowed!", Rhs);
415 elsif Is_Class_Wide_Type (T1)
416 and then not Is_Class_Wide_Type (T2)
417 and then not Is_Tag_Indeterminate (Rhs)
418 and then not Is_Dynamically_Tagged (Rhs)
419 then
420 Error_Msg_N ("dynamically tagged expression required!", Rhs);
421 end if;
423 -- Tag propagation is done only in semantics mode only. If expansion
424 -- is on, the rhs tag indeterminate function call has been expanded
425 -- and tag propagation would have happened too late, so the
426 -- propagation take place in expand_call instead.
428 if not Expander_Active
429 and then Is_Class_Wide_Type (T1)
430 and then Is_Tag_Indeterminate (Rhs)
431 then
432 Propagate_Tag (Lhs, Rhs);
433 end if;
435 -- Ada 2005 (AI-230 and AI-385): When the lhs type is an anonymous
436 -- access type, apply an implicit conversion of the rhs to that type
437 -- to force appropriate static and run-time accessibility checks.
439 if Ada_Version >= Ada_05
440 and then Ekind (T1) = E_Anonymous_Access_Type
441 then
442 Rewrite (Rhs, Convert_To (T1, Relocate_Node (Rhs)));
443 Analyze_And_Resolve (Rhs, T1);
444 end if;
446 -- Ada 2005 (AI-231)
448 if Ada_Version >= Ada_05
449 and then Can_Never_Be_Null (T1)
450 and then not Assignment_OK (Lhs)
451 then
452 if Nkind (Rhs) = N_Null then
453 Apply_Compile_Time_Constraint_Error
454 (N => Rhs,
455 Msg => "(Ada 2005) NULL not allowed in null-excluding objects?",
456 Reason => CE_Null_Not_Allowed);
457 return;
459 elsif not Can_Never_Be_Null (T2) then
460 Rewrite (Rhs,
461 Convert_To (T1, Relocate_Node (Rhs)));
462 Analyze_And_Resolve (Rhs, T1);
463 end if;
464 end if;
466 if Is_Scalar_Type (T1) then
467 Apply_Scalar_Range_Check (Rhs, Etype (Lhs));
469 elsif Is_Array_Type (T1)
470 and then
471 (Nkind (Rhs) /= N_Type_Conversion
472 or else Is_Constrained (Etype (Rhs)))
473 then
474 -- Assignment verifies that the length of the Lsh and Rhs are equal,
475 -- but of course the indices do not have to match. If the right-hand
476 -- side is a type conversion to an unconstrained type, a length check
477 -- is performed on the expression itself during expansion. In rare
478 -- cases, the redundant length check is computed on an index type
479 -- with a different representation, triggering incorrect code in
480 -- the back end.
482 Apply_Length_Check (Rhs, Etype (Lhs));
484 else
485 -- Discriminant checks are applied in the course of expansion
487 null;
488 end if;
490 -- Note: modifications of the Lhs may only be recorded after
491 -- checks have been applied.
493 Note_Possible_Modification (Lhs);
495 -- ??? a real accessibility check is needed when ???
497 -- Post warning for useless assignment
499 if Warn_On_Redundant_Constructs
501 -- We only warn for source constructs
503 and then Comes_From_Source (N)
505 -- Where the entity is the same on both sides
507 and then Is_Entity_Name (Lhs)
508 and then Is_Entity_Name (Original_Node (Rhs))
509 and then Entity (Lhs) = Entity (Original_Node (Rhs))
511 -- But exclude the case where the right side was an operation
512 -- that got rewritten (e.g. JUNK + K, where K was known to be
513 -- zero). We don't want to warn in such a case, since it is
514 -- reasonable to write such expressions especially when K is
515 -- defined symbolically in some other package.
517 and then Nkind (Original_Node (Rhs)) not in N_Op
518 then
519 Error_Msg_NE
520 ("?useless assignment of & to itself", N, Entity (Lhs));
521 end if;
523 -- Check for non-allowed composite assignment
525 if not Support_Composite_Assign_On_Target
526 and then (Is_Array_Type (T1) or else Is_Record_Type (T1))
527 and then (not Has_Size_Clause (T1) or else Esize (T1) > 64)
528 then
529 Error_Msg_CRT ("composite assignment", N);
530 end if;
532 -- One more step. Let's see if we have a simple assignment of a
533 -- known at compile time value to a simple variable. If so, we
534 -- can record the value as the current value providing that:
536 -- We still have a simple assignment statement (no expansion
537 -- activity has modified it in some peculiar manner)
539 -- The type is a discrete type
541 -- The assignment is to a named entity
543 -- The value is known at compile time
545 if Nkind (N) /= N_Assignment_Statement
546 or else not Is_Discrete_Type (T1)
547 or else not Is_Entity_Name (Lhs)
548 or else not Compile_Time_Known_Value (Rhs)
549 then
550 return;
551 end if;
553 Ent := Entity (Lhs);
555 -- Capture value if safe to do so
557 if Safe_To_Capture_Value (N, Ent) then
558 Set_Current_Value (Ent, Rhs);
559 end if;
560 end Analyze_Assignment;
562 -----------------------------
563 -- Analyze_Block_Statement --
564 -----------------------------
566 procedure Analyze_Block_Statement (N : Node_Id) is
567 Decls : constant List_Id := Declarations (N);
568 Id : constant Node_Id := Identifier (N);
569 HSS : constant Node_Id := Handled_Statement_Sequence (N);
571 begin
572 -- If no handled statement sequence is present, things are really
573 -- messed up, and we just return immediately (this is a defence
574 -- against previous errors).
576 if No (HSS) then
577 return;
578 end if;
580 -- Normal processing with HSS present
582 declare
583 EH : constant List_Id := Exception_Handlers (HSS);
584 Ent : Entity_Id := Empty;
585 S : Entity_Id;
587 Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
588 -- Recursively save value of this global, will be restored on exit
590 begin
591 -- Initialize unblocked exit count for statements of begin block
592 -- plus one for each excption handler that is present.
594 Unblocked_Exit_Count := 1;
596 if Present (EH) then
597 Unblocked_Exit_Count := Unblocked_Exit_Count + List_Length (EH);
598 end if;
600 -- If a label is present analyze it and mark it as referenced
602 if Present (Id) then
603 Analyze (Id);
604 Ent := Entity (Id);
606 -- An error defense. If we have an identifier, but no entity,
607 -- then something is wrong. If we have previous errors, then
608 -- just remove the identifier and continue, otherwise raise
609 -- an exception.
611 if No (Ent) then
612 if Total_Errors_Detected /= 0 then
613 Set_Identifier (N, Empty);
614 else
615 raise Program_Error;
616 end if;
618 else
619 Set_Ekind (Ent, E_Block);
620 Generate_Reference (Ent, N, ' ');
621 Generate_Definition (Ent);
623 if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then
624 Set_Label_Construct (Parent (Ent), N);
625 end if;
626 end if;
627 end if;
629 -- If no entity set, create a label entity
631 if No (Ent) then
632 Ent := New_Internal_Entity (E_Block, Current_Scope, Sloc (N), 'B');
633 Set_Identifier (N, New_Occurrence_Of (Ent, Sloc (N)));
634 Set_Parent (Ent, N);
635 end if;
637 Set_Etype (Ent, Standard_Void_Type);
638 Set_Block_Node (Ent, Identifier (N));
639 New_Scope (Ent);
641 if Present (Decls) then
642 Analyze_Declarations (Decls);
643 Check_Completion;
644 end if;
646 Analyze (HSS);
647 Process_End_Label (HSS, 'e', Ent);
649 -- If exception handlers are present, then we indicate that
650 -- enclosing scopes contain a block with handlers. We only
651 -- need to mark non-generic scopes.
653 if Present (EH) then
654 S := Scope (Ent);
655 loop
656 Set_Has_Nested_Block_With_Handler (S);
657 exit when Is_Overloadable (S)
658 or else Ekind (S) = E_Package
659 or else Is_Generic_Unit (S);
660 S := Scope (S);
661 end loop;
662 end if;
664 Check_References (Ent);
665 End_Scope;
667 if Unblocked_Exit_Count = 0 then
668 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
669 Check_Unreachable_Code (N);
670 else
671 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
672 end if;
673 end;
674 end Analyze_Block_Statement;
676 ----------------------------
677 -- Analyze_Case_Statement --
678 ----------------------------
680 procedure Analyze_Case_Statement (N : Node_Id) is
681 Exp : Node_Id;
682 Exp_Type : Entity_Id;
683 Exp_Btype : Entity_Id;
684 Last_Choice : Nat;
685 Dont_Care : Boolean;
686 Others_Present : Boolean;
688 Statements_Analyzed : Boolean := False;
689 -- Set True if at least some statement sequences get analyzed.
690 -- If False on exit, means we had a serious error that prevented
691 -- full analysis of the case statement, and as a result it is not
692 -- a good idea to output warning messages about unreachable code.
694 Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
695 -- Recursively save value of this global, will be restored on exit
697 procedure Non_Static_Choice_Error (Choice : Node_Id);
698 -- Error routine invoked by the generic instantiation below when
699 -- the case statment has a non static choice.
701 procedure Process_Statements (Alternative : Node_Id);
702 -- Analyzes all the statements associated to a case alternative.
703 -- Needed by the generic instantiation below.
705 package Case_Choices_Processing is new
706 Generic_Choices_Processing
707 (Get_Alternatives => Alternatives,
708 Get_Choices => Discrete_Choices,
709 Process_Empty_Choice => No_OP,
710 Process_Non_Static_Choice => Non_Static_Choice_Error,
711 Process_Associated_Node => Process_Statements);
712 use Case_Choices_Processing;
713 -- Instantiation of the generic choice processing package
715 -----------------------------
716 -- Non_Static_Choice_Error --
717 -----------------------------
719 procedure Non_Static_Choice_Error (Choice : Node_Id) is
720 begin
721 Flag_Non_Static_Expr
722 ("choice given in case statement is not static!", Choice);
723 end Non_Static_Choice_Error;
725 ------------------------
726 -- Process_Statements --
727 ------------------------
729 procedure Process_Statements (Alternative : Node_Id) is
730 Choices : constant List_Id := Discrete_Choices (Alternative);
731 Ent : Entity_Id;
733 begin
734 Unblocked_Exit_Count := Unblocked_Exit_Count + 1;
735 Statements_Analyzed := True;
737 -- An interesting optimization. If the case statement expression
738 -- is a simple entity, then we can set the current value within
739 -- an alternative if the alternative has one possible value.
741 -- case N is
742 -- when 1 => alpha
743 -- when 2 | 3 => beta
744 -- when others => gamma
746 -- Here we know that N is initially 1 within alpha, but for beta
747 -- and gamma, we do not know anything more about the initial value.
749 if Is_Entity_Name (Exp) then
750 Ent := Entity (Exp);
752 if Ekind (Ent) = E_Variable
753 or else
754 Ekind (Ent) = E_In_Out_Parameter
755 or else
756 Ekind (Ent) = E_Out_Parameter
757 then
758 if List_Length (Choices) = 1
759 and then Nkind (First (Choices)) in N_Subexpr
760 and then Compile_Time_Known_Value (First (Choices))
761 then
762 Set_Current_Value (Entity (Exp), First (Choices));
763 end if;
765 Analyze_Statements (Statements (Alternative));
767 -- After analyzing the case, set the current value to empty
768 -- since we won't know what it is for the next alternative
769 -- (unless reset by this same circuit), or after the case.
771 Set_Current_Value (Entity (Exp), Empty);
772 return;
773 end if;
774 end if;
776 -- Case where expression is not an entity name of a variable
778 Analyze_Statements (Statements (Alternative));
779 end Process_Statements;
781 -- Table to record choices. Put after subprograms since we make
782 -- a call to Number_Of_Choices to get the right number of entries.
784 Case_Table : Choice_Table_Type (1 .. Number_Of_Choices (N));
786 -- Start of processing for Analyze_Case_Statement
788 begin
789 Unblocked_Exit_Count := 0;
790 Exp := Expression (N);
791 Analyze (Exp);
793 -- The expression must be of any discrete type. In rare cases, the
794 -- expander constructs a case statement whose expression has a private
795 -- type whose full view is discrete. This can happen when generating
796 -- a stream operation for a variant type after the type is frozen,
797 -- when the partial of view of the type of the discriminant is private.
798 -- In that case, use the full view to analyze case alternatives.
800 if not Is_Overloaded (Exp)
801 and then not Comes_From_Source (N)
802 and then Is_Private_Type (Etype (Exp))
803 and then Present (Full_View (Etype (Exp)))
804 and then Is_Discrete_Type (Full_View (Etype (Exp)))
805 then
806 Resolve (Exp, Etype (Exp));
807 Exp_Type := Full_View (Etype (Exp));
809 else
810 Analyze_And_Resolve (Exp, Any_Discrete);
811 Exp_Type := Etype (Exp);
812 end if;
814 Check_Unset_Reference (Exp);
815 Exp_Btype := Base_Type (Exp_Type);
817 -- The expression must be of a discrete type which must be determinable
818 -- independently of the context in which the expression occurs, but
819 -- using the fact that the expression must be of a discrete type.
820 -- Moreover, the type this expression must not be a character literal
821 -- (which is always ambiguous) or, for Ada-83, a generic formal type.
823 -- If error already reported by Resolve, nothing more to do
825 if Exp_Btype = Any_Discrete
826 or else Exp_Btype = Any_Type
827 then
828 return;
830 elsif Exp_Btype = Any_Character then
831 Error_Msg_N
832 ("character literal as case expression is ambiguous", Exp);
833 return;
835 elsif Ada_Version = Ada_83
836 and then (Is_Generic_Type (Exp_Btype)
837 or else Is_Generic_Type (Root_Type (Exp_Btype)))
838 then
839 Error_Msg_N
840 ("(Ada 83) case expression cannot be of a generic type", Exp);
841 return;
842 end if;
844 -- If the case expression is a formal object of mode in out, then
845 -- treat it as having a nonstatic subtype by forcing use of the base
846 -- type (which has to get passed to Check_Case_Choices below). Also
847 -- use base type when the case expression is parenthesized.
849 if Paren_Count (Exp) > 0
850 or else (Is_Entity_Name (Exp)
851 and then Ekind (Entity (Exp)) = E_Generic_In_Out_Parameter)
852 then
853 Exp_Type := Exp_Btype;
854 end if;
856 -- Call instantiated Analyze_Choices which does the rest of the work
858 Analyze_Choices
859 (N, Exp_Type, Case_Table, Last_Choice, Dont_Care, Others_Present);
861 if Exp_Type = Universal_Integer and then not Others_Present then
862 Error_Msg_N ("case on universal integer requires OTHERS choice", Exp);
863 end if;
865 -- If all our exits were blocked by unconditional transfers of control,
866 -- then the entire CASE statement acts as an unconditional transfer of
867 -- control, so treat it like one, and check unreachable code. Skip this
868 -- test if we had serious errors preventing any statement analysis.
870 if Unblocked_Exit_Count = 0 and then Statements_Analyzed then
871 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
872 Check_Unreachable_Code (N);
873 else
874 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
875 end if;
877 if not Expander_Active
878 and then Compile_Time_Known_Value (Expression (N))
879 and then Serious_Errors_Detected = 0
880 then
881 declare
882 Chosen : constant Node_Id := Find_Static_Alternative (N);
883 Alt : Node_Id;
885 begin
886 Alt := First (Alternatives (N));
888 while Present (Alt) loop
889 if Alt /= Chosen then
890 Remove_Warning_Messages (Statements (Alt));
891 end if;
893 Next (Alt);
894 end loop;
895 end;
896 end if;
897 end Analyze_Case_Statement;
899 ----------------------------
900 -- Analyze_Exit_Statement --
901 ----------------------------
903 -- If the exit includes a name, it must be the name of a currently open
904 -- loop. Otherwise there must be an innermost open loop on the stack,
905 -- to which the statement implicitly refers.
907 procedure Analyze_Exit_Statement (N : Node_Id) is
908 Target : constant Node_Id := Name (N);
909 Cond : constant Node_Id := Condition (N);
910 Scope_Id : Entity_Id;
911 U_Name : Entity_Id;
912 Kind : Entity_Kind;
914 begin
915 if No (Cond) then
916 Check_Unreachable_Code (N);
917 end if;
919 if Present (Target) then
920 Analyze (Target);
921 U_Name := Entity (Target);
923 if not In_Open_Scopes (U_Name) or else Ekind (U_Name) /= E_Loop then
924 Error_Msg_N ("invalid loop name in exit statement", N);
925 return;
926 else
927 Set_Has_Exit (U_Name);
928 end if;
930 else
931 U_Name := Empty;
932 end if;
934 for J in reverse 0 .. Scope_Stack.Last loop
935 Scope_Id := Scope_Stack.Table (J).Entity;
936 Kind := Ekind (Scope_Id);
938 if Kind = E_Loop
939 and then (No (Target) or else Scope_Id = U_Name) then
940 Set_Has_Exit (Scope_Id);
941 exit;
943 elsif Kind = E_Block or else Kind = E_Loop then
944 null;
946 else
947 Error_Msg_N
948 ("cannot exit from program unit or accept statement", N);
949 exit;
950 end if;
951 end loop;
953 -- Verify that if present the condition is a Boolean expression
955 if Present (Cond) then
956 Analyze_And_Resolve (Cond, Any_Boolean);
957 Check_Unset_Reference (Cond);
958 end if;
959 end Analyze_Exit_Statement;
961 ----------------------------
962 -- Analyze_Goto_Statement --
963 ----------------------------
965 procedure Analyze_Goto_Statement (N : Node_Id) is
966 Label : constant Node_Id := Name (N);
967 Scope_Id : Entity_Id;
968 Label_Scope : Entity_Id;
970 begin
971 Check_Unreachable_Code (N);
973 Analyze (Label);
975 if Entity (Label) = Any_Id then
976 return;
978 elsif Ekind (Entity (Label)) /= E_Label then
979 Error_Msg_N ("target of goto statement must be a label", Label);
980 return;
982 elsif not Reachable (Entity (Label)) then
983 Error_Msg_N ("target of goto statement is not reachable", Label);
984 return;
985 end if;
987 Label_Scope := Enclosing_Scope (Entity (Label));
989 for J in reverse 0 .. Scope_Stack.Last loop
990 Scope_Id := Scope_Stack.Table (J).Entity;
992 if Label_Scope = Scope_Id
993 or else (Ekind (Scope_Id) /= E_Block
994 and then Ekind (Scope_Id) /= E_Loop)
995 then
996 if Scope_Id /= Label_Scope then
997 Error_Msg_N
998 ("cannot exit from program unit or accept statement", N);
999 end if;
1001 return;
1002 end if;
1003 end loop;
1005 raise Program_Error;
1006 end Analyze_Goto_Statement;
1008 --------------------------
1009 -- Analyze_If_Statement --
1010 --------------------------
1012 -- A special complication arises in the analysis of if statements
1014 -- The expander has circuitry to completely delete code that it
1015 -- can tell will not be executed (as a result of compile time known
1016 -- conditions). In the analyzer, we ensure that code that will be
1017 -- deleted in this manner is analyzed but not expanded. This is
1018 -- obviously more efficient, but more significantly, difficulties
1019 -- arise if code is expanded and then eliminated (e.g. exception
1020 -- table entries disappear). Similarly, itypes generated in deleted
1021 -- code must be frozen from start, because the nodes on which they
1022 -- depend will not be available at the freeze point.
1024 procedure Analyze_If_Statement (N : Node_Id) is
1025 E : Node_Id;
1027 Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
1028 -- Recursively save value of this global, will be restored on exit
1030 Save_In_Deleted_Code : Boolean;
1032 Del : Boolean := False;
1033 -- This flag gets set True if a True condition has been found,
1034 -- which means that remaining ELSE/ELSIF parts are deleted.
1036 procedure Analyze_Cond_Then (Cnode : Node_Id);
1037 -- This is applied to either the N_If_Statement node itself or
1038 -- to an N_Elsif_Part node. It deals with analyzing the condition
1039 -- and the THEN statements associated with it.
1041 -----------------------
1042 -- Analyze_Cond_Then --
1043 -----------------------
1045 procedure Analyze_Cond_Then (Cnode : Node_Id) is
1046 Cond : constant Node_Id := Condition (Cnode);
1047 Tstm : constant List_Id := Then_Statements (Cnode);
1049 begin
1050 Unblocked_Exit_Count := Unblocked_Exit_Count + 1;
1051 Analyze_And_Resolve (Cond, Any_Boolean);
1052 Check_Unset_Reference (Cond);
1053 Check_Possible_Current_Value_Condition (Cnode);
1055 -- If already deleting, then just analyze then statements
1057 if Del then
1058 Analyze_Statements (Tstm);
1060 -- Compile time known value, not deleting yet
1062 elsif Compile_Time_Known_Value (Cond) then
1063 Save_In_Deleted_Code := In_Deleted_Code;
1065 -- If condition is True, then analyze the THEN statements
1066 -- and set no expansion for ELSE and ELSIF parts.
1068 if Is_True (Expr_Value (Cond)) then
1069 Analyze_Statements (Tstm);
1070 Del := True;
1071 Expander_Mode_Save_And_Set (False);
1072 In_Deleted_Code := True;
1074 -- If condition is False, analyze THEN with expansion off
1076 else -- Is_False (Expr_Value (Cond))
1077 Expander_Mode_Save_And_Set (False);
1078 In_Deleted_Code := True;
1079 Analyze_Statements (Tstm);
1080 Expander_Mode_Restore;
1081 In_Deleted_Code := Save_In_Deleted_Code;
1082 end if;
1084 -- Not known at compile time, not deleting, normal analysis
1086 else
1087 Analyze_Statements (Tstm);
1088 end if;
1089 end Analyze_Cond_Then;
1091 -- Start of Analyze_If_Statement
1093 begin
1094 -- Initialize exit count for else statements. If there is no else
1095 -- part, this count will stay non-zero reflecting the fact that the
1096 -- uncovered else case is an unblocked exit.
1098 Unblocked_Exit_Count := 1;
1099 Analyze_Cond_Then (N);
1101 -- Now to analyze the elsif parts if any are present
1103 if Present (Elsif_Parts (N)) then
1104 E := First (Elsif_Parts (N));
1105 while Present (E) loop
1106 Analyze_Cond_Then (E);
1107 Next (E);
1108 end loop;
1109 end if;
1111 if Present (Else_Statements (N)) then
1112 Analyze_Statements (Else_Statements (N));
1113 end if;
1115 -- If all our exits were blocked by unconditional transfers of control,
1116 -- then the entire IF statement acts as an unconditional transfer of
1117 -- control, so treat it like one, and check unreachable code.
1119 if Unblocked_Exit_Count = 0 then
1120 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1121 Check_Unreachable_Code (N);
1122 else
1123 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1124 end if;
1126 if Del then
1127 Expander_Mode_Restore;
1128 In_Deleted_Code := Save_In_Deleted_Code;
1129 end if;
1131 if not Expander_Active
1132 and then Compile_Time_Known_Value (Condition (N))
1133 and then Serious_Errors_Detected = 0
1134 then
1135 if Is_True (Expr_Value (Condition (N))) then
1136 Remove_Warning_Messages (Else_Statements (N));
1138 if Present (Elsif_Parts (N)) then
1139 E := First (Elsif_Parts (N));
1141 while Present (E) loop
1142 Remove_Warning_Messages (Then_Statements (E));
1143 Next (E);
1144 end loop;
1145 end if;
1147 else
1148 Remove_Warning_Messages (Then_Statements (N));
1149 end if;
1150 end if;
1151 end Analyze_If_Statement;
1153 ----------------------------------------
1154 -- Analyze_Implicit_Label_Declaration --
1155 ----------------------------------------
1157 -- An implicit label declaration is generated in the innermost
1158 -- enclosing declarative part. This is done for labels as well as
1159 -- block and loop names.
1161 -- Note: any changes in this routine may need to be reflected in
1162 -- Analyze_Label_Entity.
1164 procedure Analyze_Implicit_Label_Declaration (N : Node_Id) is
1165 Id : constant Node_Id := Defining_Identifier (N);
1166 begin
1167 Enter_Name (Id);
1168 Set_Ekind (Id, E_Label);
1169 Set_Etype (Id, Standard_Void_Type);
1170 Set_Enclosing_Scope (Id, Current_Scope);
1171 end Analyze_Implicit_Label_Declaration;
1173 ------------------------------
1174 -- Analyze_Iteration_Scheme --
1175 ------------------------------
1177 procedure Analyze_Iteration_Scheme (N : Node_Id) is
1179 procedure Process_Bounds (R : Node_Id);
1180 -- If the iteration is given by a range, create temporaries and
1181 -- assignment statements block to capture the bounds and perform
1182 -- required finalization actions in case a bound includes a function
1183 -- call that uses the temporary stack. We first pre-analyze a copy of
1184 -- the range in order to determine the expected type, and analyze and
1185 -- resolve the original bounds.
1187 procedure Check_Controlled_Array_Attribute (DS : Node_Id);
1188 -- If the bounds are given by a 'Range reference on a function call
1189 -- that returns a controlled array, introduce an explicit declaration
1190 -- to capture the bounds, so that the function result can be finalized
1191 -- in timely fashion.
1193 --------------------
1194 -- Process_Bounds --
1195 --------------------
1197 procedure Process_Bounds (R : Node_Id) is
1198 Loc : constant Source_Ptr := Sloc (N);
1199 R_Copy : constant Node_Id := New_Copy_Tree (R);
1200 Lo : constant Node_Id := Low_Bound (R);
1201 Hi : constant Node_Id := High_Bound (R);
1202 New_Lo_Bound : Node_Id := Empty;
1203 New_Hi_Bound : Node_Id := Empty;
1204 Typ : Entity_Id;
1206 function One_Bound
1207 (Original_Bound : Node_Id;
1208 Analyzed_Bound : Node_Id) return Node_Id;
1209 -- Create one declaration followed by one assignment statement
1210 -- to capture the value of bound. We create a separate assignment
1211 -- in order to force the creation of a block in case the bound
1212 -- contains a call that uses the secondary stack.
1214 ---------------
1215 -- One_Bound --
1216 ---------------
1218 function One_Bound
1219 (Original_Bound : Node_Id;
1220 Analyzed_Bound : Node_Id) return Node_Id
1222 Assign : Node_Id;
1223 Id : Entity_Id;
1224 Decl : Node_Id;
1226 begin
1227 -- If the bound is a constant or an object, no need for a separate
1228 -- declaration. If the bound is the result of previous expansion
1229 -- it is already analyzed and should not be modified. Note that
1230 -- the Bound will be resolved later, if needed, as part of the
1231 -- call to Make_Index (literal bounds may need to be resolved to
1232 -- type Integer).
1234 if Analyzed (Original_Bound) then
1235 return Original_Bound;
1237 elsif Nkind (Analyzed_Bound) = N_Integer_Literal
1238 or else Is_Entity_Name (Analyzed_Bound)
1239 then
1240 Analyze_And_Resolve (Original_Bound, Typ);
1241 return Original_Bound;
1243 else
1244 Analyze_And_Resolve (Original_Bound, Typ);
1245 end if;
1247 Id :=
1248 Make_Defining_Identifier (Loc,
1249 Chars => New_Internal_Name ('S'));
1251 Decl :=
1252 Make_Object_Declaration (Loc,
1253 Defining_Identifier => Id,
1254 Object_Definition => New_Occurrence_Of (Typ, Loc));
1256 Insert_Before (Parent (N), Decl);
1257 Analyze (Decl);
1259 Assign :=
1260 Make_Assignment_Statement (Loc,
1261 Name => New_Occurrence_Of (Id, Loc),
1262 Expression => Relocate_Node (Original_Bound));
1264 Insert_Before (Parent (N), Assign);
1265 Analyze (Assign);
1267 Rewrite (Original_Bound, New_Occurrence_Of (Id, Loc));
1269 if Nkind (Assign) = N_Assignment_Statement then
1270 return Expression (Assign);
1271 else
1272 return Original_Bound;
1273 end if;
1274 end One_Bound;
1276 -- Start of processing for Process_Bounds
1278 begin
1279 -- Determine expected type of range by analyzing separate copy
1281 Set_Parent (R_Copy, Parent (R));
1282 Pre_Analyze_And_Resolve (R_Copy);
1283 Typ := Etype (R_Copy);
1285 -- If the type of the discrete range is Universal_Integer, then
1286 -- the bound's type must be resolved to Integer, and any object
1287 -- used to hold the bound must also have type Integer.
1289 if Typ = Universal_Integer then
1290 Typ := Standard_Integer;
1291 end if;
1293 Set_Etype (R, Typ);
1295 New_Lo_Bound := One_Bound (Lo, Low_Bound (R_Copy));
1296 New_Hi_Bound := One_Bound (Hi, High_Bound (R_Copy));
1298 -- Propagate staticness to loop range itself, in case the
1299 -- corresponding subtype is static.
1301 if New_Lo_Bound /= Lo
1302 and then Is_Static_Expression (New_Lo_Bound)
1303 then
1304 Rewrite (Low_Bound (R), New_Copy (New_Lo_Bound));
1305 end if;
1307 if New_Hi_Bound /= Hi
1308 and then Is_Static_Expression (New_Hi_Bound)
1309 then
1310 Rewrite (High_Bound (R), New_Copy (New_Hi_Bound));
1311 end if;
1312 end Process_Bounds;
1314 --------------------------------------
1315 -- Check_Controlled_Array_Attribute --
1316 --------------------------------------
1318 procedure Check_Controlled_Array_Attribute (DS : Node_Id) is
1319 begin
1320 if Nkind (DS) = N_Attribute_Reference
1321 and then Is_Entity_Name (Prefix (DS))
1322 and then Ekind (Entity (Prefix (DS))) = E_Function
1323 and then Is_Array_Type (Etype (Entity (Prefix (DS))))
1324 and then
1325 Is_Controlled (
1326 Component_Type (Etype (Entity (Prefix (DS)))))
1327 and then Expander_Active
1328 then
1329 declare
1330 Loc : constant Source_Ptr := Sloc (N);
1331 Arr : constant Entity_Id :=
1332 Etype (Entity (Prefix (DS)));
1333 Indx : constant Entity_Id :=
1334 Base_Type (Etype (First_Index (Arr)));
1335 Subt : constant Entity_Id :=
1336 Make_Defining_Identifier
1337 (Loc, New_Internal_Name ('S'));
1338 Decl : Node_Id;
1340 begin
1341 Decl :=
1342 Make_Subtype_Declaration (Loc,
1343 Defining_Identifier => Subt,
1344 Subtype_Indication =>
1345 Make_Subtype_Indication (Loc,
1346 Subtype_Mark => New_Reference_To (Indx, Loc),
1347 Constraint =>
1348 Make_Range_Constraint (Loc,
1349 Relocate_Node (DS))));
1350 Insert_Before (Parent (N), Decl);
1351 Analyze (Decl);
1353 Rewrite (DS,
1354 Make_Attribute_Reference (Loc,
1355 Prefix => New_Reference_To (Subt, Loc),
1356 Attribute_Name => Attribute_Name (DS)));
1357 Analyze (DS);
1358 end;
1359 end if;
1360 end Check_Controlled_Array_Attribute;
1362 -- Start of processing for Analyze_Iteration_Scheme
1364 begin
1365 -- For an infinite loop, there is no iteration scheme
1367 if No (N) then
1368 return;
1370 else
1371 declare
1372 Cond : constant Node_Id := Condition (N);
1374 begin
1375 -- For WHILE loop, verify that the condition is a Boolean
1376 -- expression and resolve and check it.
1378 if Present (Cond) then
1379 Analyze_And_Resolve (Cond, Any_Boolean);
1380 Check_Unset_Reference (Cond);
1382 -- Else we have a FOR loop
1384 else
1385 declare
1386 LP : constant Node_Id := Loop_Parameter_Specification (N);
1387 Id : constant Entity_Id := Defining_Identifier (LP);
1388 DS : constant Node_Id := Discrete_Subtype_Definition (LP);
1390 begin
1391 Enter_Name (Id);
1393 -- We always consider the loop variable to be referenced,
1394 -- since the loop may be used just for counting purposes.
1396 Generate_Reference (Id, N, ' ');
1398 -- Check for case of loop variable hiding a local
1399 -- variable (used later on to give a nice warning
1400 -- if the hidden variable is never assigned).
1402 declare
1403 H : constant Entity_Id := Homonym (Id);
1404 begin
1405 if Present (H)
1406 and then Enclosing_Dynamic_Scope (H) =
1407 Enclosing_Dynamic_Scope (Id)
1408 and then Ekind (H) = E_Variable
1409 and then Is_Discrete_Type (Etype (H))
1410 then
1411 Set_Hiding_Loop_Variable (H, Id);
1412 end if;
1413 end;
1415 -- Now analyze the subtype definition. If it is
1416 -- a range, create temporaries for bounds.
1418 if Nkind (DS) = N_Range
1419 and then Expander_Active
1420 then
1421 Process_Bounds (DS);
1422 else
1423 Analyze (DS);
1424 end if;
1426 if DS = Error then
1427 return;
1428 end if;
1430 -- The subtype indication may denote the completion
1431 -- of an incomplete type declaration.
1433 if Is_Entity_Name (DS)
1434 and then Present (Entity (DS))
1435 and then Is_Type (Entity (DS))
1436 and then Ekind (Entity (DS)) = E_Incomplete_Type
1437 then
1438 Set_Entity (DS, Get_Full_View (Entity (DS)));
1439 Set_Etype (DS, Entity (DS));
1440 end if;
1442 if not Is_Discrete_Type (Etype (DS)) then
1443 Wrong_Type (DS, Any_Discrete);
1444 Set_Etype (DS, Any_Type);
1445 end if;
1447 Check_Controlled_Array_Attribute (DS);
1449 Make_Index (DS, LP);
1451 Set_Ekind (Id, E_Loop_Parameter);
1452 Set_Etype (Id, Etype (DS));
1453 Set_Is_Known_Valid (Id, True);
1455 -- The loop is not a declarative part, so the only entity
1456 -- declared "within" must be frozen explicitly.
1458 declare
1459 Flist : constant List_Id := Freeze_Entity (Id, Sloc (N));
1460 begin
1461 if Is_Non_Empty_List (Flist) then
1462 Insert_Actions (N, Flist);
1463 end if;
1464 end;
1466 -- Check for null or possibly null range and issue warning.
1467 -- We suppress such messages in generic templates and
1468 -- instances, because in practice they tend to be dubious
1469 -- in these cases.
1471 if Nkind (DS) = N_Range
1472 and then Comes_From_Source (N)
1473 then
1474 declare
1475 L : constant Node_Id := Low_Bound (DS);
1476 H : constant Node_Id := High_Bound (DS);
1478 Llo : Uint;
1479 Lhi : Uint;
1480 LOK : Boolean;
1481 Hlo : Uint;
1482 Hhi : Uint;
1483 HOK : Boolean;
1485 begin
1486 Determine_Range (L, LOK, Llo, Lhi);
1487 Determine_Range (H, HOK, Hlo, Hhi);
1489 -- If range of loop is null, issue warning
1491 if (LOK and HOK) and then Llo > Hhi then
1493 -- Suppress the warning if inside a generic
1494 -- template or instance, since in practice
1495 -- they tend to be dubious in these cases since
1496 -- they can result from intended parametrization.
1498 if not Inside_A_Generic
1499 and then not In_Instance
1500 then
1501 Error_Msg_N
1502 ("?loop range is null, loop will not execute",
1503 DS);
1504 end if;
1506 -- Since we know the range of the loop is null,
1507 -- set the appropriate flag to suppress any
1508 -- warnings that would otherwise be issued in
1509 -- the body of the loop that will not execute.
1510 -- We do this even in the generic case, since
1511 -- if it is dubious to warn on the null loop
1512 -- itself, it is certainly dubious to warn for
1513 -- conditions that occur inside it!
1515 Set_Is_Null_Loop (Parent (N));
1517 -- The other case for a warning is a reverse loop
1518 -- where the upper bound is the integer literal
1519 -- zero or one, and the lower bound can be positive.
1521 -- For example, we have
1523 -- for J in reverse N .. 1 loop
1525 -- In practice, this is very likely to be a case
1526 -- of reversing the bounds incorrectly in the range.
1528 elsif Reverse_Present (LP)
1529 and then Nkind (H) = N_Integer_Literal
1530 and then (Intval (H) = Uint_0
1531 or else
1532 Intval (H) = Uint_1)
1533 and then Lhi > Hhi
1534 then
1535 Error_Msg_N ("?loop range may be null", DS);
1536 end if;
1537 end;
1538 end if;
1539 end;
1540 end if;
1541 end;
1542 end if;
1543 end Analyze_Iteration_Scheme;
1545 -------------------
1546 -- Analyze_Label --
1547 -------------------
1549 -- Note: the semantic work required for analyzing labels (setting them as
1550 -- reachable) was done in a prepass through the statements in the block,
1551 -- so that forward gotos would be properly handled. See Analyze_Statements
1552 -- for further details. The only processing required here is to deal with
1553 -- optimizations that depend on an assumption of sequential control flow,
1554 -- since of course the occurrence of a label breaks this assumption.
1556 procedure Analyze_Label (N : Node_Id) is
1557 pragma Warnings (Off, N);
1558 begin
1559 Kill_Current_Values;
1560 end Analyze_Label;
1562 --------------------------
1563 -- Analyze_Label_Entity --
1564 --------------------------
1566 procedure Analyze_Label_Entity (E : Entity_Id) is
1567 begin
1568 Set_Ekind (E, E_Label);
1569 Set_Etype (E, Standard_Void_Type);
1570 Set_Enclosing_Scope (E, Current_Scope);
1571 Set_Reachable (E, True);
1572 end Analyze_Label_Entity;
1574 ----------------------------
1575 -- Analyze_Loop_Statement --
1576 ----------------------------
1578 procedure Analyze_Loop_Statement (N : Node_Id) is
1579 Id : constant Node_Id := Identifier (N);
1580 Ent : Entity_Id;
1582 begin
1583 if Present (Id) then
1585 -- Make name visible, e.g. for use in exit statements. Loop
1586 -- labels are always considered to be referenced.
1588 Analyze (Id);
1589 Ent := Entity (Id);
1590 Generate_Reference (Ent, N, ' ');
1591 Generate_Definition (Ent);
1593 -- If we found a label, mark its type. If not, ignore it, since it
1594 -- means we have a conflicting declaration, which would already have
1595 -- been diagnosed at declaration time. Set Label_Construct of the
1596 -- implicit label declaration, which is not created by the parser
1597 -- for generic units.
1599 if Ekind (Ent) = E_Label then
1600 Set_Ekind (Ent, E_Loop);
1602 if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then
1603 Set_Label_Construct (Parent (Ent), N);
1604 end if;
1605 end if;
1607 -- Case of no identifier present
1609 else
1610 Ent := New_Internal_Entity (E_Loop, Current_Scope, Sloc (N), 'L');
1611 Set_Etype (Ent, Standard_Void_Type);
1612 Set_Parent (Ent, N);
1613 end if;
1615 -- Kill current values on entry to loop, since statements in body
1616 -- of loop may have been executed before the loop is entered.
1617 -- Similarly we kill values after the loop, since we do not know
1618 -- that the body of the loop was executed.
1620 Kill_Current_Values;
1621 New_Scope (Ent);
1622 Analyze_Iteration_Scheme (Iteration_Scheme (N));
1623 Analyze_Statements (Statements (N));
1624 Process_End_Label (N, 'e', Ent);
1625 End_Scope;
1626 Kill_Current_Values;
1627 end Analyze_Loop_Statement;
1629 ----------------------------
1630 -- Analyze_Null_Statement --
1631 ----------------------------
1633 -- Note: the semantics of the null statement is implemented by a single
1634 -- null statement, too bad everything isn't as simple as this!
1636 procedure Analyze_Null_Statement (N : Node_Id) is
1637 pragma Warnings (Off, N);
1638 begin
1639 null;
1640 end Analyze_Null_Statement;
1642 ------------------------
1643 -- Analyze_Statements --
1644 ------------------------
1646 procedure Analyze_Statements (L : List_Id) is
1647 S : Node_Id;
1648 Lab : Entity_Id;
1650 begin
1651 -- The labels declared in the statement list are reachable from
1652 -- statements in the list. We do this as a prepass so that any
1653 -- goto statement will be properly flagged if its target is not
1654 -- reachable. This is not required, but is nice behavior!
1656 S := First (L);
1657 while Present (S) loop
1658 if Nkind (S) = N_Label then
1659 Analyze (Identifier (S));
1660 Lab := Entity (Identifier (S));
1662 -- If we found a label mark it as reachable
1664 if Ekind (Lab) = E_Label then
1665 Generate_Definition (Lab);
1666 Set_Reachable (Lab);
1668 if Nkind (Parent (Lab)) = N_Implicit_Label_Declaration then
1669 Set_Label_Construct (Parent (Lab), S);
1670 end if;
1672 -- If we failed to find a label, it means the implicit declaration
1673 -- of the label was hidden. A for-loop parameter can do this to
1674 -- a label with the same name inside the loop, since the implicit
1675 -- label declaration is in the innermost enclosing body or block
1676 -- statement.
1678 else
1679 Error_Msg_Sloc := Sloc (Lab);
1680 Error_Msg_N
1681 ("implicit label declaration for & is hidden#",
1682 Identifier (S));
1683 end if;
1684 end if;
1686 Next (S);
1687 end loop;
1689 -- Perform semantic analysis on all statements
1691 Conditional_Statements_Begin;
1693 S := First (L);
1694 while Present (S) loop
1695 Analyze (S);
1696 Next (S);
1697 end loop;
1699 Conditional_Statements_End;
1701 -- Make labels unreachable. Visibility is not sufficient, because
1702 -- labels in one if-branch for example are not reachable from the
1703 -- other branch, even though their declarations are in the enclosing
1704 -- declarative part.
1706 S := First (L);
1707 while Present (S) loop
1708 if Nkind (S) = N_Label then
1709 Set_Reachable (Entity (Identifier (S)), False);
1710 end if;
1712 Next (S);
1713 end loop;
1714 end Analyze_Statements;
1716 --------------------------------------------
1717 -- Check_Possible_Current_Value_Condition --
1718 --------------------------------------------
1720 procedure Check_Possible_Current_Value_Condition (Cnode : Node_Id) is
1721 Cond : Node_Id;
1723 begin
1724 -- Loop to deal with (ignore for now) any NOT operators present
1726 Cond := Condition (Cnode);
1727 while Nkind (Cond) = N_Op_Not loop
1728 Cond := Right_Opnd (Cond);
1729 end loop;
1731 -- Check possible relational operator
1733 if Nkind (Cond) = N_Op_Eq
1734 or else
1735 Nkind (Cond) = N_Op_Ne
1736 or else
1737 Nkind (Cond) = N_Op_Ge
1738 or else
1739 Nkind (Cond) = N_Op_Le
1740 or else
1741 Nkind (Cond) = N_Op_Gt
1742 or else
1743 Nkind (Cond) = N_Op_Lt
1744 then
1745 if Compile_Time_Known_Value (Right_Opnd (Cond))
1746 and then Nkind (Left_Opnd (Cond)) = N_Identifier
1747 then
1748 declare
1749 Ent : constant Entity_Id := Entity (Left_Opnd (Cond));
1751 begin
1752 if Ekind (Ent) = E_Variable
1753 or else
1754 Ekind (Ent) = E_Constant
1755 or else
1756 Is_Formal (Ent)
1757 or else
1758 Ekind (Ent) = E_Loop_Parameter
1759 then
1760 -- Here we have a case where the Current_Value field
1761 -- may need to be set. We set it if it is not already
1762 -- set to a compile time expression value.
1764 -- Note that this represents a decision that one
1765 -- condition blots out another previous one. That's
1766 -- certainly right if they occur at the same level.
1767 -- If the second one is nested, then the decision is
1768 -- neither right nor wrong (it would be equally OK
1769 -- to leave the outer one in place, or take the new
1770 -- inner one. Really we should record both, but our
1771 -- data structures are not that elaborate.
1773 if Nkind (Current_Value (Ent)) not in N_Subexpr then
1774 Set_Current_Value (Ent, Cnode);
1775 end if;
1776 end if;
1777 end;
1778 end if;
1779 end if;
1780 end Check_Possible_Current_Value_Condition;
1782 ----------------------------
1783 -- Check_Unreachable_Code --
1784 ----------------------------
1786 procedure Check_Unreachable_Code (N : Node_Id) is
1787 Error_Loc : Source_Ptr;
1788 P : Node_Id;
1790 begin
1791 if Is_List_Member (N)
1792 and then Comes_From_Source (N)
1793 then
1794 declare
1795 Nxt : Node_Id;
1797 begin
1798 Nxt := Original_Node (Next (N));
1800 -- If a label follows us, then we never have dead code, since
1801 -- someone could branch to the label, so we just ignore it.
1803 if Nkind (Nxt) = N_Label then
1804 return;
1806 -- Otherwise see if we have a real statement following us
1808 elsif Present (Nxt)
1809 and then Comes_From_Source (Nxt)
1810 and then Is_Statement (Nxt)
1811 then
1812 -- Special very annoying exception. If we have a return that
1813 -- follows a raise, then we allow it without a warning, since
1814 -- the Ada RM annoyingly requires a useless return here!
1816 if Nkind (Original_Node (N)) /= N_Raise_Statement
1817 or else Nkind (Nxt) /= N_Return_Statement
1818 then
1819 -- The rather strange shenanigans with the warning message
1820 -- here reflects the fact that Kill_Dead_Code is very good
1821 -- at removing warnings in deleted code, and this is one
1822 -- warning we would prefer NOT to have removed :-)
1824 Error_Loc := Sloc (Nxt);
1826 -- If we have unreachable code, analyze and remove the
1827 -- unreachable code, since it is useless and we don't
1828 -- want to generate junk warnings.
1830 -- We skip this step if we are not in code generation mode.
1831 -- This is the one case where we remove dead code in the
1832 -- semantics as opposed to the expander, and we do not want
1833 -- to remove code if we are not in code generation mode,
1834 -- since this messes up the ASIS trees.
1836 -- Note that one might react by moving the whole circuit to
1837 -- exp_ch5, but then we lose the warning in -gnatc mode.
1839 if Operating_Mode = Generate_Code then
1840 loop
1841 Nxt := Next (N);
1843 -- Quit deleting when we have nothing more to delete
1844 -- or if we hit a label (since someone could transfer
1845 -- control to a label, so we should not delete it).
1847 exit when No (Nxt) or else Nkind (Nxt) = N_Label;
1849 -- Statement/declaration is to be deleted
1851 Analyze (Nxt);
1852 Remove (Nxt);
1853 Kill_Dead_Code (Nxt);
1854 end loop;
1855 end if;
1857 -- Now issue the warning
1859 Error_Msg ("?unreachable code", Error_Loc);
1860 end if;
1862 -- If the unconditional transfer of control instruction is
1863 -- the last statement of a sequence, then see if our parent
1864 -- is one of the constructs for which we count unblocked exits,
1865 -- and if so, adjust the count.
1867 else
1868 P := Parent (N);
1870 -- Statements in THEN part or ELSE part of IF statement
1872 if Nkind (P) = N_If_Statement then
1873 null;
1875 -- Statements in ELSIF part of an IF statement
1877 elsif Nkind (P) = N_Elsif_Part then
1878 P := Parent (P);
1879 pragma Assert (Nkind (P) = N_If_Statement);
1881 -- Statements in CASE statement alternative
1883 elsif Nkind (P) = N_Case_Statement_Alternative then
1884 P := Parent (P);
1885 pragma Assert (Nkind (P) = N_Case_Statement);
1887 -- Statements in body of block
1889 elsif Nkind (P) = N_Handled_Sequence_Of_Statements
1890 and then Nkind (Parent (P)) = N_Block_Statement
1891 then
1892 null;
1894 -- Statements in exception handler in a block
1896 elsif Nkind (P) = N_Exception_Handler
1897 and then Nkind (Parent (P)) = N_Handled_Sequence_Of_Statements
1898 and then Nkind (Parent (Parent (P))) = N_Block_Statement
1899 then
1900 null;
1902 -- None of these cases, so return
1904 else
1905 return;
1906 end if;
1908 -- This was one of the cases we are looking for (i.e. the
1909 -- parent construct was IF, CASE or block) so decrement count.
1911 Unblocked_Exit_Count := Unblocked_Exit_Count - 1;
1912 end if;
1913 end;
1914 end if;
1915 end Check_Unreachable_Code;
1917 end Sem_Ch5;