* gimplify.c (find_single_pointer_decl_1): New static function.
[official-gcc.git] / gcc / ada / sem_ch3.adb
blobadefc6a4b599b77e518bd602ed0be7e3b3cfd772
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2005 Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
20 -- Boston, MA 02110-1301, USA. --
21 -- --
22 -- GNAT was originally developed by the GNAT team at New York University. --
23 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 -- --
25 ------------------------------------------------------------------------------
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Elists; use Elists;
30 with Einfo; use Einfo;
31 with Errout; use Errout;
32 with Eval_Fat; use Eval_Fat;
33 with Exp_Ch3; use Exp_Ch3;
34 with Exp_Dist; use Exp_Dist;
35 with Exp_Tss; use Exp_Tss;
36 with Exp_Util; use Exp_Util;
37 with Freeze; use Freeze;
38 with Itypes; use Itypes;
39 with Layout; use Layout;
40 with Lib; use Lib;
41 with Lib.Xref; use Lib.Xref;
42 with Namet; use Namet;
43 with Nmake; use Nmake;
44 with Opt; use Opt;
45 with Restrict; use Restrict;
46 with Rident; use Rident;
47 with Rtsfind; use Rtsfind;
48 with Sem; use Sem;
49 with Sem_Case; use Sem_Case;
50 with Sem_Cat; use Sem_Cat;
51 with Sem_Ch6; use Sem_Ch6;
52 with Sem_Ch7; use Sem_Ch7;
53 with Sem_Ch8; use Sem_Ch8;
54 with Sem_Ch13; use Sem_Ch13;
55 with Sem_Disp; use Sem_Disp;
56 with Sem_Dist; use Sem_Dist;
57 with Sem_Elim; use Sem_Elim;
58 with Sem_Eval; use Sem_Eval;
59 with Sem_Mech; use Sem_Mech;
60 with Sem_Res; use Sem_Res;
61 with Sem_Smem; use Sem_Smem;
62 with Sem_Type; use Sem_Type;
63 with Sem_Util; use Sem_Util;
64 with Sem_Warn; use Sem_Warn;
65 with Stand; use Stand;
66 with Sinfo; use Sinfo;
67 with Snames; use Snames;
68 with Tbuild; use Tbuild;
69 with Ttypes; use Ttypes;
70 with Uintp; use Uintp;
71 with Urealp; use Urealp;
73 package body Sem_Ch3 is
75 -----------------------
76 -- Local Subprograms --
77 -----------------------
79 procedure Add_Interface_Tag_Components
80 (N : Node_Id; Typ : Entity_Id);
81 -- Ada 2005 (AI-251): Add the tag components corresponding to all the
82 -- abstract interface types implemented by a record type or a derived
83 -- record type.
85 procedure Build_Derived_Type
86 (N : Node_Id;
87 Parent_Type : Entity_Id;
88 Derived_Type : Entity_Id;
89 Is_Completion : Boolean;
90 Derive_Subps : Boolean := True);
91 -- Create and decorate a Derived_Type given the Parent_Type entity. N is
92 -- the N_Full_Type_Declaration node containing the derived type definition.
93 -- Parent_Type is the entity for the parent type in the derived type
94 -- definition and Derived_Type the actual derived type. Is_Completion must
95 -- be set to False if Derived_Type is the N_Defining_Identifier node in N
96 -- (ie Derived_Type = Defining_Identifier (N)). In this case N is not the
97 -- completion of a private type declaration. If Is_Completion is set to
98 -- True, N is the completion of a private type declaration and Derived_Type
99 -- is different from the defining identifier inside N (i.e. Derived_Type /=
100 -- Defining_Identifier (N)). Derive_Subps indicates whether the parent
101 -- subprograms should be derived. The only case where this parameter is
102 -- False is when Build_Derived_Type is recursively called to process an
103 -- implicit derived full type for a type derived from a private type (in
104 -- that case the subprograms must only be derived for the private view of
105 -- the type).
107 -- ??? These flags need a bit of re-examination and re-documentation:
108 -- ??? are they both necessary (both seem related to the recursion)?
110 procedure Build_Derived_Access_Type
111 (N : Node_Id;
112 Parent_Type : Entity_Id;
113 Derived_Type : Entity_Id);
114 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
115 -- create an implicit base if the parent type is constrained or if the
116 -- subtype indication has a constraint.
118 procedure Build_Derived_Array_Type
119 (N : Node_Id;
120 Parent_Type : Entity_Id;
121 Derived_Type : Entity_Id);
122 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
123 -- create an implicit base if the parent type is constrained or if the
124 -- subtype indication has a constraint.
126 procedure Build_Derived_Concurrent_Type
127 (N : Node_Id;
128 Parent_Type : Entity_Id;
129 Derived_Type : Entity_Id);
130 -- Subsidiary procedure to Build_Derived_Type. For a derived task or pro-
131 -- tected type, inherit entries and protected subprograms, check legality
132 -- of discriminant constraints if any.
134 procedure Build_Derived_Enumeration_Type
135 (N : Node_Id;
136 Parent_Type : Entity_Id;
137 Derived_Type : Entity_Id);
138 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
139 -- type, we must create a new list of literals. Types derived from
140 -- Character and Wide_Character are special-cased.
142 procedure Build_Derived_Numeric_Type
143 (N : Node_Id;
144 Parent_Type : Entity_Id;
145 Derived_Type : Entity_Id);
146 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
147 -- an anonymous base type, and propagate constraint to subtype if needed.
149 procedure Build_Derived_Private_Type
150 (N : Node_Id;
151 Parent_Type : Entity_Id;
152 Derived_Type : Entity_Id;
153 Is_Completion : Boolean;
154 Derive_Subps : Boolean := True);
155 -- Subsidiary procedure to Build_Derived_Type. This procedure is complex
156 -- because the parent may or may not have a completion, and the derivation
157 -- may itself be a completion.
159 procedure Build_Derived_Record_Type
160 (N : Node_Id;
161 Parent_Type : Entity_Id;
162 Derived_Type : Entity_Id;
163 Derive_Subps : Boolean := True);
164 -- Subsidiary procedure for Build_Derived_Type and
165 -- Analyze_Private_Extension_Declaration used for tagged and untagged
166 -- record types. All parameters are as in Build_Derived_Type except that
167 -- N, in addition to being an N_Full_Type_Declaration node, can also be an
168 -- N_Private_Extension_Declaration node. See the definition of this routine
169 -- for much more info. Derive_Subps indicates whether subprograms should
170 -- be derived from the parent type. The only case where Derive_Subps is
171 -- False is for an implicit derived full type for a type derived from a
172 -- private type (see Build_Derived_Type).
174 procedure Collect_Interfaces
175 (N : Node_Id;
176 Derived_Type : Entity_Id);
177 -- Ada 2005 (AI-251): Subsidiary procedure to Build_Derived_Record_Type.
178 -- Collect the list of interfaces that are not already implemented by the
179 -- ancestors. This is the list of interfaces for which we must provide
180 -- additional tag components.
182 procedure Complete_Subprograms_Derivation
183 (Partial_View : Entity_Id;
184 Derived_Type : Entity_Id);
185 -- Ada 2005 (AI-251): Used to complete type derivation of private tagged
186 -- types implementing interfaces. In this case some interface primitives
187 -- may have been overriden with the partial-view and, instead of
188 -- re-calculating them, they are included in the list of primitive
189 -- operations of the full-view.
191 function Inherit_Components
192 (N : Node_Id;
193 Parent_Base : Entity_Id;
194 Derived_Base : Entity_Id;
195 Is_Tagged : Boolean;
196 Inherit_Discr : Boolean;
197 Discs : Elist_Id) return Elist_Id;
198 -- Called from Build_Derived_Record_Type to inherit the components of
199 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
200 -- For more information on derived types and component inheritance please
201 -- consult the comment above the body of Build_Derived_Record_Type.
203 -- N is the original derived type declaration
205 -- Is_Tagged is set if we are dealing with tagged types
207 -- If Inherit_Discr is set, Derived_Base inherits its discriminants
208 -- from Parent_Base, otherwise no discriminants are inherited.
210 -- Discs gives the list of constraints that apply to Parent_Base in the
211 -- derived type declaration. If Discs is set to No_Elist, then we have
212 -- the following situation:
214 -- type Parent (D1..Dn : ..) is [tagged] record ...;
215 -- type Derived is new Parent [with ...];
217 -- which gets treated as
219 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
221 -- For untagged types the returned value is an association list. The list
222 -- starts from the association (Parent_Base => Derived_Base), and then it
223 -- contains a sequence of the associations of the form
225 -- (Old_Component => New_Component),
227 -- where Old_Component is the Entity_Id of a component in Parent_Base
228 -- and New_Component is the Entity_Id of the corresponding component
229 -- in Derived_Base. For untagged records, this association list is
230 -- needed when copying the record declaration for the derived base.
231 -- In the tagged case the value returned is irrelevant.
233 procedure Build_Discriminal (Discrim : Entity_Id);
234 -- Create the discriminal corresponding to discriminant Discrim, that is
235 -- the parameter corresponding to Discrim to be used in initialization
236 -- procedures for the type where Discrim is a discriminant. Discriminals
237 -- are not used during semantic analysis, and are not fully defined
238 -- entities until expansion. Thus they are not given a scope until
239 -- initialization procedures are built.
241 function Build_Discriminant_Constraints
242 (T : Entity_Id;
243 Def : Node_Id;
244 Derived_Def : Boolean := False) return Elist_Id;
245 -- Validate discriminant constraints, and return the list of the
246 -- constraints in order of discriminant declarations. T is the
247 -- discriminated unconstrained type. Def is the N_Subtype_Indication node
248 -- where the discriminants constraints for T are specified. Derived_Def is
249 -- True if we are building the discriminant constraints in a derived type
250 -- definition of the form "type D (...) is new T (xxx)". In this case T is
251 -- the parent type and Def is the constraint "(xxx)" on T and this routine
252 -- sets the Corresponding_Discriminant field of the discriminants in the
253 -- derived type D to point to the corresponding discriminants in the parent
254 -- type T.
256 procedure Build_Discriminated_Subtype
257 (T : Entity_Id;
258 Def_Id : Entity_Id;
259 Elist : Elist_Id;
260 Related_Nod : Node_Id;
261 For_Access : Boolean := False);
262 -- Subsidiary procedure to Constrain_Discriminated_Type and to
263 -- Process_Incomplete_Dependents. Given
265 -- T (a possibly discriminated base type)
266 -- Def_Id (a very partially built subtype for T),
268 -- the call completes Def_Id to be the appropriate E_*_Subtype.
270 -- The Elist is the list of discriminant constraints if any (it is set to
271 -- No_Elist if T is not a discriminated type, and to an empty list if
272 -- T has discriminants but there are no discriminant constraints). The
273 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
274 -- The For_Access says whether or not this subtype is really constraining
275 -- an access type. That is its sole purpose is the designated type of an
276 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype
277 -- is built to avoid freezing T when the access subtype is frozen.
279 function Build_Scalar_Bound
280 (Bound : Node_Id;
281 Par_T : Entity_Id;
282 Der_T : Entity_Id) return Node_Id;
283 -- The bounds of a derived scalar type are conversions of the bounds of
284 -- the parent type. Optimize the representation if the bounds are literals.
285 -- Needs a more complete spec--what are the parameters exactly, and what
286 -- exactly is the returned value, and how is Bound affected???
288 procedure Build_Underlying_Full_View
289 (N : Node_Id;
290 Typ : Entity_Id;
291 Par : Entity_Id);
292 -- If the completion of a private type is itself derived from a private
293 -- type, or if the full view of a private subtype is itself private, the
294 -- back-end has no way to compute the actual size of this type. We build
295 -- an internal subtype declaration of the proper parent type to convey
296 -- this information. This extra mechanism is needed because a full
297 -- view cannot itself have a full view (it would get clobbered during
298 -- view exchanges).
300 procedure Check_Access_Discriminant_Requires_Limited
301 (D : Node_Id;
302 Loc : Node_Id);
303 -- Check the restriction that the type to which an access discriminant
304 -- belongs must be a concurrent type or a descendant of a type with
305 -- the reserved word 'limited' in its declaration.
307 procedure Check_Delta_Expression (E : Node_Id);
308 -- Check that the expression represented by E is suitable for use
309 -- as a delta expression, i.e. it is of real type and is static.
311 procedure Check_Digits_Expression (E : Node_Id);
312 -- Check that the expression represented by E is suitable for use as
313 -- a digits expression, i.e. it is of integer type, positive and static.
315 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id);
316 -- Validate the initialization of an object declaration. T is the
317 -- required type, and Exp is the initialization expression.
319 procedure Check_Or_Process_Discriminants
320 (N : Node_Id;
321 T : Entity_Id;
322 Prev : Entity_Id := Empty);
323 -- If T is the full declaration of an incomplete or private type, check
324 -- the conformance of the discriminants, otherwise process them. Prev
325 -- is the entity of the partial declaration, if any.
327 procedure Check_Real_Bound (Bound : Node_Id);
328 -- Check given bound for being of real type and static. If not, post an
329 -- appropriate message, and rewrite the bound with the real literal zero.
331 procedure Constant_Redeclaration
332 (Id : Entity_Id;
333 N : Node_Id;
334 T : out Entity_Id);
335 -- Various checks on legality of full declaration of deferred constant.
336 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
337 -- node. The caller has not yet set any attributes of this entity.
339 procedure Convert_Scalar_Bounds
340 (N : Node_Id;
341 Parent_Type : Entity_Id;
342 Derived_Type : Entity_Id;
343 Loc : Source_Ptr);
344 -- For derived scalar types, convert the bounds in the type definition
345 -- to the derived type, and complete their analysis. Given a constraint
346 -- of the form:
347 -- .. new T range Lo .. Hi;
348 -- Lo and Hi are analyzed and resolved with T'Base, the parent_type.
349 -- The bounds of the derived type (the anonymous base) are copies of
350 -- Lo and Hi. Finally, the bounds of the derived subtype are conversions
351 -- of those bounds to the derived_type, so that their typing is
352 -- consistent.
354 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id);
355 -- Copies attributes from array base type T2 to array base type T1.
356 -- Copies only attributes that apply to base types, but not subtypes.
358 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id);
359 -- Copies attributes from array subtype T2 to array subtype T1. Copies
360 -- attributes that apply to both subtypes and base types.
362 procedure Create_Constrained_Components
363 (Subt : Entity_Id;
364 Decl_Node : Node_Id;
365 Typ : Entity_Id;
366 Constraints : Elist_Id);
367 -- Build the list of entities for a constrained discriminated record
368 -- subtype. If a component depends on a discriminant, replace its subtype
369 -- using the discriminant values in the discriminant constraint.
370 -- Subt is the defining identifier for the subtype whose list of
371 -- constrained entities we will create. Decl_Node is the type declaration
372 -- node where we will attach all the itypes created. Typ is the base
373 -- discriminated type for the subtype Subt. Constraints is the list of
374 -- discriminant constraints for Typ.
376 function Constrain_Component_Type
377 (Comp : Entity_Id;
378 Constrained_Typ : Entity_Id;
379 Related_Node : Node_Id;
380 Typ : Entity_Id;
381 Constraints : Elist_Id) return Entity_Id;
382 -- Given a discriminated base type Typ, a list of discriminant constraint
383 -- Constraints for Typ and a component of Typ, with type Compon_Type,
384 -- create and return the type corresponding to Compon_type where all
385 -- discriminant references are replaced with the corresponding
386 -- constraint. If no discriminant references occur in Compon_Typ then
387 -- return it as is. Constrained_Typ is the final constrained subtype to
388 -- which the constrained Compon_Type belongs. Related_Node is the node
389 -- where we will attach all the itypes created.
391 procedure Constrain_Access
392 (Def_Id : in out Entity_Id;
393 S : Node_Id;
394 Related_Nod : Node_Id);
395 -- Apply a list of constraints to an access type. If Def_Id is empty, it is
396 -- an anonymous type created for a subtype indication. In that case it is
397 -- created in the procedure and attached to Related_Nod.
399 procedure Constrain_Array
400 (Def_Id : in out Entity_Id;
401 SI : Node_Id;
402 Related_Nod : Node_Id;
403 Related_Id : Entity_Id;
404 Suffix : Character);
405 -- Apply a list of index constraints to an unconstrained array type. The
406 -- first parameter is the entity for the resulting subtype. A value of
407 -- Empty for Def_Id indicates that an implicit type must be created, but
408 -- creation is delayed (and must be done by this procedure) because other
409 -- subsidiary implicit types must be created first (which is why Def_Id
410 -- is an in/out parameter). The second parameter is a subtype indication
411 -- node for the constrained array to be created (e.g. something of the
412 -- form string (1 .. 10)). Related_Nod gives the place where this type
413 -- has to be inserted in the tree. The Related_Id and Suffix parameters
414 -- are used to build the associated Implicit type name.
416 procedure Constrain_Concurrent
417 (Def_Id : in out Entity_Id;
418 SI : Node_Id;
419 Related_Nod : Node_Id;
420 Related_Id : Entity_Id;
421 Suffix : Character);
422 -- Apply list of discriminant constraints to an unconstrained concurrent
423 -- type.
425 -- SI is the N_Subtype_Indication node containing the constraint and
426 -- the unconstrained type to constrain.
428 -- Def_Id is the entity for the resulting constrained subtype. A value
429 -- of Empty for Def_Id indicates that an implicit type must be created,
430 -- but creation is delayed (and must be done by this procedure) because
431 -- other subsidiary implicit types must be created first (which is why
432 -- Def_Id is an in/out parameter).
434 -- Related_Nod gives the place where this type has to be inserted
435 -- in the tree
437 -- The last two arguments are used to create its external name if needed.
439 function Constrain_Corresponding_Record
440 (Prot_Subt : Entity_Id;
441 Corr_Rec : Entity_Id;
442 Related_Nod : Node_Id;
443 Related_Id : Entity_Id) return Entity_Id;
444 -- When constraining a protected type or task type with discriminants,
445 -- constrain the corresponding record with the same discriminant values.
447 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id);
448 -- Constrain a decimal fixed point type with a digits constraint and/or a
449 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
451 procedure Constrain_Discriminated_Type
452 (Def_Id : Entity_Id;
453 S : Node_Id;
454 Related_Nod : Node_Id;
455 For_Access : Boolean := False);
456 -- Process discriminant constraints of composite type. Verify that values
457 -- have been provided for all discriminants, that the original type is
458 -- unconstrained, and that the types of the supplied expressions match
459 -- the discriminant types. The first three parameters are like in routine
460 -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
461 -- of For_Access.
463 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id);
464 -- Constrain an enumeration type with a range constraint. This is identical
465 -- to Constrain_Integer, but for the Ekind of the resulting subtype.
467 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id);
468 -- Constrain a floating point type with either a digits constraint
469 -- and/or a range constraint, building a E_Floating_Point_Subtype.
471 procedure Constrain_Index
472 (Index : Node_Id;
473 S : Node_Id;
474 Related_Nod : Node_Id;
475 Related_Id : Entity_Id;
476 Suffix : Character;
477 Suffix_Index : Nat);
478 -- Process an index constraint in a constrained array declaration. The
479 -- constraint can be a subtype name, or a range with or without an
480 -- explicit subtype mark. The index is the corresponding index of the
481 -- unconstrained array. The Related_Id and Suffix parameters are used to
482 -- build the associated Implicit type name.
484 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id);
485 -- Build subtype of a signed or modular integer type
487 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id);
488 -- Constrain an ordinary fixed point type with a range constraint, and
489 -- build an E_Ordinary_Fixed_Point_Subtype entity.
491 procedure Copy_And_Swap (Priv, Full : Entity_Id);
492 -- Copy the Priv entity into the entity of its full declaration
493 -- then swap the two entities in such a manner that the former private
494 -- type is now seen as a full type.
496 procedure Decimal_Fixed_Point_Type_Declaration
497 (T : Entity_Id;
498 Def : Node_Id);
499 -- Create a new decimal fixed point type, and apply the constraint to
500 -- obtain a subtype of this new type.
502 procedure Complete_Private_Subtype
503 (Priv : Entity_Id;
504 Full : Entity_Id;
505 Full_Base : Entity_Id;
506 Related_Nod : Node_Id);
507 -- Complete the implicit full view of a private subtype by setting the
508 -- appropriate semantic fields. If the full view of the parent is a record
509 -- type, build constrained components of subtype.
511 procedure Derive_Interface_Subprograms
512 (Derived_Type : Entity_Id);
513 -- Ada 2005 (AI-251): Subsidiary procedure to Build_Derived_Record_Type.
514 -- Traverse the list of implemented interfaces and derive all their
515 -- subprograms.
517 procedure Derived_Standard_Character
518 (N : Node_Id;
519 Parent_Type : Entity_Id;
520 Derived_Type : Entity_Id);
521 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
522 -- derivations from types Standard.Character and Standard.Wide_Character.
524 procedure Derived_Type_Declaration
525 (T : Entity_Id;
526 N : Node_Id;
527 Is_Completion : Boolean);
528 -- Process a derived type declaration. This routine will invoke
529 -- Build_Derived_Type to process the actual derived type definition.
530 -- Parameters N and Is_Completion have the same meaning as in
531 -- Build_Derived_Type. T is the N_Defining_Identifier for the entity
532 -- defined in the N_Full_Type_Declaration node N, that is T is the derived
533 -- type.
535 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id);
536 -- Insert each literal in symbol table, as an overloadable identifier. Each
537 -- enumeration type is mapped into a sequence of integers, and each literal
538 -- is defined as a constant with integer value. If any of the literals are
539 -- character literals, the type is a character type, which means that
540 -- strings are legal aggregates for arrays of components of the type.
542 function Expand_To_Stored_Constraint
543 (Typ : Entity_Id;
544 Constraint : Elist_Id) return Elist_Id;
545 -- Given a Constraint (i.e. a list of expressions) on the discriminants of
546 -- Typ, expand it into a constraint on the stored discriminants and return
547 -- the new list of expressions constraining the stored discriminants.
549 function Find_Type_Of_Object
550 (Obj_Def : Node_Id;
551 Related_Nod : Node_Id) return Entity_Id;
552 -- Get type entity for object referenced by Obj_Def, attaching the
553 -- implicit types generated to Related_Nod
555 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id);
556 -- Create a new float, and apply the constraint to obtain subtype of it
558 function Has_Range_Constraint (N : Node_Id) return Boolean;
559 -- Given an N_Subtype_Indication node N, return True if a range constraint
560 -- is present, either directly, or as part of a digits or delta constraint.
561 -- In addition, a digits constraint in the decimal case returns True, since
562 -- it establishes a default range if no explicit range is present.
564 function Is_Valid_Constraint_Kind
565 (T_Kind : Type_Kind;
566 Constraint_Kind : Node_Kind) return Boolean;
567 -- Returns True if it is legal to apply the given kind of constraint to the
568 -- given kind of type (index constraint to an array type, for example).
570 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id);
571 -- Create new modular type. Verify that modulus is in bounds and is
572 -- a power of two (implementation restriction).
574 procedure New_Concatenation_Op (Typ : Entity_Id);
575 -- Create an abbreviated declaration for an operator in order to
576 -- materialize concatenation on array types.
578 procedure Ordinary_Fixed_Point_Type_Declaration
579 (T : Entity_Id;
580 Def : Node_Id);
581 -- Create a new ordinary fixed point type, and apply the constraint to
582 -- obtain subtype of it.
584 procedure Prepare_Private_Subtype_Completion
585 (Id : Entity_Id;
586 Related_Nod : Node_Id);
587 -- Id is a subtype of some private type. Creates the full declaration
588 -- associated with Id whenever possible, i.e. when the full declaration
589 -- of the base type is already known. Records each subtype into
590 -- Private_Dependents of the base type.
592 procedure Process_Incomplete_Dependents
593 (N : Node_Id;
594 Full_T : Entity_Id;
595 Inc_T : Entity_Id);
596 -- Process all entities that depend on an incomplete type. There include
597 -- subtypes, subprogram types that mention the incomplete type in their
598 -- profiles, and subprogram with access parameters that designate the
599 -- incomplete type.
601 -- Inc_T is the defining identifier of an incomplete type declaration, its
602 -- Ekind is E_Incomplete_Type.
604 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
606 -- Full_T is N's defining identifier.
608 -- Subtypes of incomplete types with discriminants are completed when the
609 -- parent type is. This is simpler than private subtypes, because they can
610 -- only appear in the same scope, and there is no need to exchange views.
611 -- Similarly, access_to_subprogram types may have a parameter or a return
612 -- type that is an incomplete type, and that must be replaced with the
613 -- full type.
615 -- If the full type is tagged, subprogram with access parameters that
616 -- designated the incomplete may be primitive operations of the full type,
617 -- and have to be processed accordingly.
619 procedure Process_Real_Range_Specification (Def : Node_Id);
620 -- Given the type definition for a real type, this procedure processes
621 -- and checks the real range specification of this type definition if
622 -- one is present. If errors are found, error messages are posted, and
623 -- the Real_Range_Specification of Def is reset to Empty.
625 procedure Record_Type_Declaration
626 (T : Entity_Id;
627 N : Node_Id;
628 Prev : Entity_Id);
629 -- Process a record type declaration (for both untagged and tagged
630 -- records). Parameters T and N are exactly like in procedure
631 -- Derived_Type_Declaration, except that no flag Is_Completion is needed
632 -- for this routine. If this is the completion of an incomplete type
633 -- declaration, Prev is the entity of the incomplete declaration, used for
634 -- cross-referencing. Otherwise Prev = T.
636 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id);
637 -- This routine is used to process the actual record type definition
638 -- (both for untagged and tagged records). Def is a record type
639 -- definition node. This procedure analyzes the components in this
640 -- record type definition. Prev_T is the entity for the enclosing record
641 -- type. It is provided so that its Has_Task flag can be set if any of
642 -- the component have Has_Task set. If the declaration is the completion
643 -- of an incomplete type declaration, Prev_T is the original incomplete
644 -- type, whose full view is the record type.
646 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id);
647 -- Subsidiary to Build_Derived_Record_Type. For untagged records, we
648 -- build a copy of the declaration tree of the parent, and we create
649 -- independently the list of components for the derived type. Semantic
650 -- information uses the component entities, but record representation
651 -- clauses are validated on the declaration tree. This procedure replaces
652 -- discriminants and components in the declaration with those that have
653 -- been created by Inherit_Components.
655 procedure Set_Fixed_Range
656 (E : Entity_Id;
657 Loc : Source_Ptr;
658 Lo : Ureal;
659 Hi : Ureal);
660 -- Build a range node with the given bounds and set it as the Scalar_Range
661 -- of the given fixed-point type entity. Loc is the source location used
662 -- for the constructed range. See body for further details.
664 procedure Set_Scalar_Range_For_Subtype
665 (Def_Id : Entity_Id;
666 R : Node_Id;
667 Subt : Entity_Id);
668 -- This routine is used to set the scalar range field for a subtype
669 -- given Def_Id, the entity for the subtype, and R, the range expression
670 -- for the scalar range. Subt provides the parent subtype to be used
671 -- to analyze, resolve, and check the given range.
673 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id);
674 -- Create a new signed integer entity, and apply the constraint to obtain
675 -- the required first named subtype of this type.
677 procedure Set_Stored_Constraint_From_Discriminant_Constraint
678 (E : Entity_Id);
679 -- E is some record type. This routine computes E's Stored_Constraint
680 -- from its Discriminant_Constraint.
682 -----------------------
683 -- Access_Definition --
684 -----------------------
686 function Access_Definition
687 (Related_Nod : Node_Id;
688 N : Node_Id) return Entity_Id
690 Anon_Type : constant Entity_Id :=
691 Create_Itype (E_Anonymous_Access_Type, Related_Nod,
692 Scope_Id => Scope (Current_Scope));
693 Desig_Type : Entity_Id;
695 begin
696 if Is_Entry (Current_Scope)
697 and then Is_Task_Type (Etype (Scope (Current_Scope)))
698 then
699 Error_Msg_N ("task entries cannot have access parameters", N);
700 end if;
702 -- Ada 2005: for an object declaration or function with an anonymous
703 -- access result, the corresponding anonymous type is declared in the
704 -- current scope. For access formals, access components, and access
705 -- discriminants, the scope is that of the enclosing declaration,
706 -- as set above. This special-case handling of resetting the scope
707 -- is awkward, and it might be better to pass in the required scope
708 -- as a parameter. ???
710 if Nkind (Related_Nod) = N_Object_Declaration then
711 Set_Scope (Anon_Type, Current_Scope);
713 -- For the anonymous function result case, retrieve the scope of
714 -- the function specification's associated entity rather than using
715 -- the current scope. The current scope will be the function itself
716 -- if the formal part is currently being analyzed, but will be the
717 -- parent scope in the case of a parameterless function, and we
718 -- always want to use the function's parent scope.
720 elsif Nkind (Related_Nod) = N_Function_Specification
721 and then Nkind (Parent (N)) /= N_Parameter_Specification
722 then
723 Set_Scope (Anon_Type, Scope (Defining_Unit_Name (Related_Nod)));
724 end if;
726 if All_Present (N)
727 and then Ada_Version >= Ada_05
728 then
729 Error_Msg_N ("ALL is not permitted for anonymous access types", N);
730 end if;
732 -- Ada 2005 (AI-254): In case of anonymous access to subprograms
733 -- call the corresponding semantic routine
735 if Present (Access_To_Subprogram_Definition (N)) then
736 Access_Subprogram_Declaration
737 (T_Name => Anon_Type,
738 T_Def => Access_To_Subprogram_Definition (N));
740 if Ekind (Anon_Type) = E_Access_Protected_Subprogram_Type then
741 Set_Ekind
742 (Anon_Type, E_Anonymous_Access_Protected_Subprogram_Type);
743 else
744 Set_Ekind
745 (Anon_Type, E_Anonymous_Access_Subprogram_Type);
746 end if;
748 return Anon_Type;
749 end if;
751 Find_Type (Subtype_Mark (N));
752 Desig_Type := Entity (Subtype_Mark (N));
754 Set_Directly_Designated_Type
755 (Anon_Type, Desig_Type);
756 Set_Etype (Anon_Type, Anon_Type);
757 Init_Size_Align (Anon_Type);
758 Set_Depends_On_Private (Anon_Type, Has_Private_Component (Anon_Type));
760 -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
761 -- from Ada 95 semantics. In Ada 2005, anonymous access must specify
762 -- if the null value is allowed. In Ada 95 the null value is never
763 -- allowed.
765 if Ada_Version >= Ada_05 then
766 Set_Can_Never_Be_Null (Anon_Type, Null_Exclusion_Present (N));
767 else
768 Set_Can_Never_Be_Null (Anon_Type, True);
769 end if;
771 -- The anonymous access type is as public as the discriminated type or
772 -- subprogram that defines it. It is imported (for back-end purposes)
773 -- if the designated type is.
775 Set_Is_Public (Anon_Type, Is_Public (Scope (Anon_Type)));
777 -- Ada 2005 (AI-50217): Propagate the attribute that indicates that the
778 -- designated type comes from the limited view (for back-end purposes).
780 Set_From_With_Type (Anon_Type, From_With_Type (Desig_Type));
782 -- Ada 2005 (AI-231): Propagate the access-constant attribute
784 Set_Is_Access_Constant (Anon_Type, Constant_Present (N));
786 -- The context is either a subprogram declaration, object declaration,
787 -- or an access discriminant, in a private or a full type declaration.
788 -- In the case of a subprogram, if the designated type is incomplete,
789 -- the operation will be a primitive operation of the full type, to be
790 -- updated subsequently. If the type is imported through a limited_with
791 -- clause, the subprogram is not a primitive operation of the type
792 -- (which is declared elsewhere in some other scope).
794 if Ekind (Desig_Type) = E_Incomplete_Type
795 and then not From_With_Type (Desig_Type)
796 and then Is_Overloadable (Current_Scope)
797 then
798 Append_Elmt (Current_Scope, Private_Dependents (Desig_Type));
799 Set_Has_Delayed_Freeze (Current_Scope);
800 end if;
802 return Anon_Type;
803 end Access_Definition;
805 -----------------------------------
806 -- Access_Subprogram_Declaration --
807 -----------------------------------
809 procedure Access_Subprogram_Declaration
810 (T_Name : Entity_Id;
811 T_Def : Node_Id)
813 Formals : constant List_Id := Parameter_Specifications (T_Def);
814 Formal : Entity_Id;
815 D_Ityp : Node_Id;
817 Desig_Type : constant Entity_Id :=
818 Create_Itype (E_Subprogram_Type, Parent (T_Def));
820 begin
821 -- Associate the Itype node with the inner full-type declaration
822 -- or subprogram spec. This is required to handle nested anonymous
823 -- declarations. For example:
825 -- procedure P
826 -- (X : access procedure
827 -- (Y : access procedure
828 -- (Z : access T)))
830 D_Ityp := Associated_Node_For_Itype (Desig_Type);
831 while Nkind (D_Ityp) /= N_Full_Type_Declaration
832 and then Nkind (D_Ityp) /= N_Procedure_Specification
833 and then Nkind (D_Ityp) /= N_Function_Specification
834 and then Nkind (D_Ityp) /= N_Object_Declaration
835 and then Nkind (D_Ityp) /= N_Object_Renaming_Declaration
836 and then Nkind (D_Ityp) /= N_Formal_Type_Declaration
837 loop
838 D_Ityp := Parent (D_Ityp);
839 pragma Assert (D_Ityp /= Empty);
840 end loop;
842 Set_Associated_Node_For_Itype (Desig_Type, D_Ityp);
844 if Nkind (D_Ityp) = N_Procedure_Specification
845 or else Nkind (D_Ityp) = N_Function_Specification
846 then
847 Set_Scope (Desig_Type, Scope (Defining_Unit_Name (D_Ityp)));
849 elsif Nkind (D_Ityp) = N_Full_Type_Declaration
850 or else Nkind (D_Ityp) = N_Object_Declaration
851 or else Nkind (D_Ityp) = N_Object_Renaming_Declaration
852 or else Nkind (D_Ityp) = N_Formal_Type_Declaration
853 then
854 Set_Scope (Desig_Type, Scope (Defining_Identifier (D_Ityp)));
855 end if;
857 if Nkind (T_Def) = N_Access_Function_Definition then
858 if Nkind (Result_Definition (T_Def)) = N_Access_Definition then
859 Set_Etype
860 (Desig_Type,
861 Access_Definition (T_Def, Result_Definition (T_Def)));
862 else
863 Analyze (Result_Definition (T_Def));
864 Set_Etype (Desig_Type, Entity (Result_Definition (T_Def)));
865 end if;
867 if not (Is_Type (Etype (Desig_Type))) then
868 Error_Msg_N
869 ("expect type in function specification",
870 Result_Definition (T_Def));
871 end if;
873 else
874 Set_Etype (Desig_Type, Standard_Void_Type);
875 end if;
877 if Present (Formals) then
878 New_Scope (Desig_Type);
879 Process_Formals (Formals, Parent (T_Def));
881 -- A bit of a kludge here, End_Scope requires that the parent
882 -- pointer be set to something reasonable, but Itypes don't have
883 -- parent pointers. So we set it and then unset it ??? If and when
884 -- Itypes have proper parent pointers to their declarations, this
885 -- kludge can be removed.
887 Set_Parent (Desig_Type, T_Name);
888 End_Scope;
889 Set_Parent (Desig_Type, Empty);
890 end if;
892 -- The return type and/or any parameter type may be incomplete. Mark
893 -- the subprogram_type as depending on the incomplete type, so that
894 -- it can be updated when the full type declaration is seen.
896 if Present (Formals) then
897 Formal := First_Formal (Desig_Type);
898 while Present (Formal) loop
899 if Ekind (Formal) /= E_In_Parameter
900 and then Nkind (T_Def) = N_Access_Function_Definition
901 then
902 Error_Msg_N ("functions can only have IN parameters", Formal);
903 end if;
905 if Ekind (Etype (Formal)) = E_Incomplete_Type then
906 Append_Elmt (Desig_Type, Private_Dependents (Etype (Formal)));
907 Set_Has_Delayed_Freeze (Desig_Type);
908 end if;
910 Next_Formal (Formal);
911 end loop;
912 end if;
914 if Ekind (Etype (Desig_Type)) = E_Incomplete_Type
915 and then not Has_Delayed_Freeze (Desig_Type)
916 then
917 Append_Elmt (Desig_Type, Private_Dependents (Etype (Desig_Type)));
918 Set_Has_Delayed_Freeze (Desig_Type);
919 end if;
921 Check_Delayed_Subprogram (Desig_Type);
923 if Protected_Present (T_Def) then
924 Set_Ekind (T_Name, E_Access_Protected_Subprogram_Type);
925 Set_Convention (Desig_Type, Convention_Protected);
926 else
927 Set_Ekind (T_Name, E_Access_Subprogram_Type);
928 end if;
930 Set_Etype (T_Name, T_Name);
931 Init_Size_Align (T_Name);
932 Set_Directly_Designated_Type (T_Name, Desig_Type);
934 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
936 Set_Can_Never_Be_Null (T_Name, Null_Exclusion_Present (T_Def));
938 Check_Restriction (No_Access_Subprograms, T_Def);
939 end Access_Subprogram_Declaration;
941 ----------------------------
942 -- Access_Type_Declaration --
943 ----------------------------
945 procedure Access_Type_Declaration (T : Entity_Id; Def : Node_Id) is
946 S : constant Node_Id := Subtype_Indication (Def);
947 P : constant Node_Id := Parent (Def);
949 Desig : Entity_Id;
950 -- Designated type
952 begin
953 -- Check for permissible use of incomplete type
955 if Nkind (S) /= N_Subtype_Indication then
956 Analyze (S);
958 if Ekind (Root_Type (Entity (S))) = E_Incomplete_Type then
959 Set_Directly_Designated_Type (T, Entity (S));
960 else
961 Set_Directly_Designated_Type (T,
962 Process_Subtype (S, P, T, 'P'));
963 end if;
965 else
966 Set_Directly_Designated_Type (T,
967 Process_Subtype (S, P, T, 'P'));
968 end if;
970 if All_Present (Def) or Constant_Present (Def) then
971 Set_Ekind (T, E_General_Access_Type);
972 else
973 Set_Ekind (T, E_Access_Type);
974 end if;
976 if Base_Type (Designated_Type (T)) = T then
977 Error_Msg_N ("access type cannot designate itself", S);
979 -- In Ada 2005, the type may have a limited view through some unit
980 -- in its own context, allowing the following circularity that cannot
981 -- be detected earlier
983 elsif Is_Class_Wide_Type (Designated_Type (T))
984 and then Etype (Designated_Type (T)) = T
985 then
986 Error_Msg_N
987 ("access type cannot designate its own classwide type", S);
988 end if;
990 Set_Etype (T, T);
992 -- If the type has appeared already in a with_type clause, it is
993 -- frozen and the pointer size is already set. Else, initialize.
995 if not From_With_Type (T) then
996 Init_Size_Align (T);
997 end if;
999 Set_Is_Access_Constant (T, Constant_Present (Def));
1001 Desig := Designated_Type (T);
1003 -- If designated type is an imported tagged type, indicate that the
1004 -- access type is also imported, and therefore restricted in its use.
1005 -- The access type may already be imported, so keep setting otherwise.
1007 -- Ada 2005 (AI-50217): If the non-limited view of the designated type
1008 -- is available, use it as the designated type of the access type, so
1009 -- that the back-end gets a usable entity.
1011 declare
1012 N_Desig : Entity_Id;
1014 begin
1015 if From_With_Type (Desig)
1016 and then Ekind (Desig) /= E_Access_Type
1017 then
1018 Set_From_With_Type (T);
1020 if Ekind (Desig) = E_Incomplete_Type then
1021 N_Desig := Non_Limited_View (Desig);
1023 else pragma Assert (Ekind (Desig) = E_Class_Wide_Type);
1024 if From_With_Type (Etype (Desig)) then
1025 N_Desig := Non_Limited_View (Etype (Desig));
1026 else
1027 N_Desig := Etype (Desig);
1028 end if;
1029 end if;
1031 pragma Assert (Present (N_Desig));
1032 Set_Directly_Designated_Type (T, N_Desig);
1033 end if;
1034 end;
1036 -- Note that Has_Task is always false, since the access type itself
1037 -- is not a task type. See Einfo for more description on this point.
1038 -- Exactly the same consideration applies to Has_Controlled_Component.
1040 Set_Has_Task (T, False);
1041 Set_Has_Controlled_Component (T, False);
1043 -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant
1044 -- attributes
1046 Set_Can_Never_Be_Null (T, Null_Exclusion_Present (Def));
1047 Set_Is_Access_Constant (T, Constant_Present (Def));
1048 end Access_Type_Declaration;
1050 ----------------------------------
1051 -- Add_Interface_Tag_Components --
1052 ----------------------------------
1054 procedure Add_Interface_Tag_Components
1055 (N : Node_Id;
1056 Typ : Entity_Id)
1058 Loc : constant Source_Ptr := Sloc (N);
1059 Elmt : Elmt_Id;
1060 Ext : Node_Id;
1061 L : List_Id;
1062 Last_Tag : Node_Id;
1063 Comp : Node_Id;
1065 procedure Add_Tag (Iface : Entity_Id);
1066 -- Comment required ???
1068 -------------
1069 -- Add_Tag --
1070 -------------
1072 procedure Add_Tag (Iface : Entity_Id) is
1073 Def : Node_Id;
1074 Tag : Entity_Id;
1075 Decl : Node_Id;
1077 begin
1078 pragma Assert (Is_Tagged_Type (Iface)
1079 and then Is_Interface (Iface));
1081 Def :=
1082 Make_Component_Definition (Loc,
1083 Aliased_Present => True,
1084 Subtype_Indication =>
1085 New_Occurrence_Of (RTE (RE_Interface_Tag), Loc));
1087 Tag := Make_Defining_Identifier (Loc, New_Internal_Name ('V'));
1089 Decl :=
1090 Make_Component_Declaration (Loc,
1091 Defining_Identifier => Tag,
1092 Component_Definition => Def);
1094 Analyze_Component_Declaration (Decl);
1096 Set_Analyzed (Decl);
1097 Set_Ekind (Tag, E_Component);
1098 Set_Is_Limited_Record (Tag);
1099 Set_Is_Tag (Tag);
1100 Init_Component_Location (Tag);
1102 pragma Assert (Is_Frozen (Iface));
1104 Set_DT_Entry_Count (Tag,
1105 DT_Entry_Count (First_Entity (Iface)));
1107 if not Present (Last_Tag) then
1108 Prepend (Decl, L);
1109 else
1110 Insert_After (Last_Tag, Decl);
1111 end if;
1113 Last_Tag := Decl;
1114 end Add_Tag;
1116 -- Start of processing for Add_Interface_Tag_Components
1118 begin
1119 if Ekind (Typ) /= E_Record_Type
1120 or else not Present (Abstract_Interfaces (Typ))
1121 or else Is_Empty_Elmt_List (Abstract_Interfaces (Typ))
1122 then
1123 return;
1124 end if;
1126 if Present (Abstract_Interfaces (Typ)) then
1128 -- Find the current last tag
1130 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1131 Ext := Record_Extension_Part (Type_Definition (N));
1132 else
1133 pragma Assert (Nkind (Type_Definition (N)) = N_Record_Definition);
1134 Ext := Type_Definition (N);
1135 end if;
1137 Last_Tag := Empty;
1139 if not (Present (Component_List (Ext))) then
1140 Set_Null_Present (Ext, False);
1141 L := New_List;
1142 Set_Component_List (Ext,
1143 Make_Component_List (Loc,
1144 Component_Items => L,
1145 Null_Present => False));
1146 else
1147 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1148 L := Component_Items
1149 (Component_List
1150 (Record_Extension_Part
1151 (Type_Definition (N))));
1152 else
1153 L := Component_Items
1154 (Component_List
1155 (Type_Definition (N)));
1156 end if;
1158 -- Find the last tag component
1160 Comp := First (L);
1161 while Present (Comp) loop
1162 if Is_Tag (Defining_Identifier (Comp)) then
1163 Last_Tag := Comp;
1164 end if;
1166 Next (Comp);
1167 end loop;
1168 end if;
1170 -- At this point L references the list of components and Last_Tag
1171 -- references the current last tag (if any). Now we add the tag
1172 -- corresponding with all the interfaces that are not implemented
1173 -- by the parent.
1175 pragma Assert (Present
1176 (First_Elmt (Abstract_Interfaces (Typ))));
1178 Elmt := First_Elmt (Abstract_Interfaces (Typ));
1179 while Present (Elmt) loop
1180 Add_Tag (Node (Elmt));
1181 Next_Elmt (Elmt);
1182 end loop;
1183 end if;
1184 end Add_Interface_Tag_Components;
1186 -----------------------------------
1187 -- Analyze_Component_Declaration --
1188 -----------------------------------
1190 procedure Analyze_Component_Declaration (N : Node_Id) is
1191 Id : constant Entity_Id := Defining_Identifier (N);
1192 T : Entity_Id;
1193 P : Entity_Id;
1195 function Contains_POC (Constr : Node_Id) return Boolean;
1196 -- Determines whether a constraint uses the discriminant of a record
1197 -- type thus becoming a per-object constraint (POC).
1199 ------------------
1200 -- Contains_POC --
1201 ------------------
1203 function Contains_POC (Constr : Node_Id) return Boolean is
1204 begin
1205 case Nkind (Constr) is
1206 when N_Attribute_Reference =>
1207 return Attribute_Name (Constr) = Name_Access
1209 Prefix (Constr) = Scope (Entity (Prefix (Constr)));
1211 when N_Discriminant_Association =>
1212 return Denotes_Discriminant (Expression (Constr));
1214 when N_Identifier =>
1215 return Denotes_Discriminant (Constr);
1217 when N_Index_Or_Discriminant_Constraint =>
1218 declare
1219 IDC : Node_Id;
1221 begin
1222 IDC := First (Constraints (Constr));
1223 while Present (IDC) loop
1225 -- One per-object constraint is sufficient
1227 if Contains_POC (IDC) then
1228 return True;
1229 end if;
1231 Next (IDC);
1232 end loop;
1234 return False;
1235 end;
1237 when N_Range =>
1238 return Denotes_Discriminant (Low_Bound (Constr))
1239 or else
1240 Denotes_Discriminant (High_Bound (Constr));
1242 when N_Range_Constraint =>
1243 return Denotes_Discriminant (Range_Expression (Constr));
1245 when others =>
1246 return False;
1248 end case;
1249 end Contains_POC;
1251 -- Start of processing for Analyze_Component_Declaration
1253 begin
1254 Generate_Definition (Id);
1255 Enter_Name (Id);
1257 if Present (Subtype_Indication (Component_Definition (N))) then
1258 T := Find_Type_Of_Object
1259 (Subtype_Indication (Component_Definition (N)), N);
1261 -- Ada 2005 (AI-230): Access Definition case
1263 else
1264 pragma Assert (Present
1265 (Access_Definition (Component_Definition (N))));
1267 T := Access_Definition
1268 (Related_Nod => N,
1269 N => Access_Definition (Component_Definition (N)));
1270 Set_Is_Local_Anonymous_Access (T);
1272 -- Ada 2005 (AI-254)
1274 if Present (Access_To_Subprogram_Definition
1275 (Access_Definition (Component_Definition (N))))
1276 and then Protected_Present (Access_To_Subprogram_Definition
1277 (Access_Definition
1278 (Component_Definition (N))))
1279 then
1280 T := Replace_Anonymous_Access_To_Protected_Subprogram (N, T);
1281 end if;
1282 end if;
1284 -- If the subtype is a constrained subtype of the enclosing record,
1285 -- (which must have a partial view) the back-end does not properly
1286 -- handle the recursion. Rewrite the component declaration with an
1287 -- explicit subtype indication, which is acceptable to Gigi. We can copy
1288 -- the tree directly because side effects have already been removed from
1289 -- discriminant constraints.
1291 if Ekind (T) = E_Access_Subtype
1292 and then Is_Entity_Name (Subtype_Indication (Component_Definition (N)))
1293 and then Comes_From_Source (T)
1294 and then Nkind (Parent (T)) = N_Subtype_Declaration
1295 and then Etype (Directly_Designated_Type (T)) = Current_Scope
1296 then
1297 Rewrite
1298 (Subtype_Indication (Component_Definition (N)),
1299 New_Copy_Tree (Subtype_Indication (Parent (T))));
1300 T := Find_Type_Of_Object
1301 (Subtype_Indication (Component_Definition (N)), N);
1302 end if;
1304 -- If the component declaration includes a default expression, then we
1305 -- check that the component is not of a limited type (RM 3.7(5)),
1306 -- and do the special preanalysis of the expression (see section on
1307 -- "Handling of Default and Per-Object Expressions" in the spec of
1308 -- package Sem).
1310 if Present (Expression (N)) then
1311 Analyze_Per_Use_Expression (Expression (N), T);
1312 Check_Initialization (T, Expression (N));
1313 end if;
1315 -- The parent type may be a private view with unknown discriminants,
1316 -- and thus unconstrained. Regular components must be constrained.
1318 if Is_Indefinite_Subtype (T) and then Chars (Id) /= Name_uParent then
1319 if Is_Class_Wide_Type (T) then
1320 Error_Msg_N
1321 ("class-wide subtype with unknown discriminants" &
1322 " in component declaration",
1323 Subtype_Indication (Component_Definition (N)));
1324 else
1325 Error_Msg_N
1326 ("unconstrained subtype in component declaration",
1327 Subtype_Indication (Component_Definition (N)));
1328 end if;
1330 -- Components cannot be abstract, except for the special case of
1331 -- the _Parent field (case of extending an abstract tagged type)
1333 elsif Is_Abstract (T) and then Chars (Id) /= Name_uParent then
1334 Error_Msg_N ("type of a component cannot be abstract", N);
1335 end if;
1337 Set_Etype (Id, T);
1338 Set_Is_Aliased (Id, Aliased_Present (Component_Definition (N)));
1340 -- The component declaration may have a per-object constraint, set
1341 -- the appropriate flag in the defining identifier of the subtype.
1343 if Present (Subtype_Indication (Component_Definition (N))) then
1344 declare
1345 Sindic : constant Node_Id :=
1346 Subtype_Indication (Component_Definition (N));
1348 begin
1349 if Nkind (Sindic) = N_Subtype_Indication
1350 and then Present (Constraint (Sindic))
1351 and then Contains_POC (Constraint (Sindic))
1352 then
1353 Set_Has_Per_Object_Constraint (Id);
1354 end if;
1355 end;
1356 end if;
1358 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
1359 -- out some static checks.
1361 if Ada_Version >= Ada_05
1362 and then Can_Never_Be_Null (T)
1363 then
1364 Null_Exclusion_Static_Checks (N);
1365 end if;
1367 -- If this component is private (or depends on a private type), flag the
1368 -- record type to indicate that some operations are not available.
1370 P := Private_Component (T);
1372 if Present (P) then
1373 -- Check for circular definitions
1375 if P = Any_Type then
1376 Set_Etype (Id, Any_Type);
1378 -- There is a gap in the visibility of operations only if the
1379 -- component type is not defined in the scope of the record type.
1381 elsif Scope (P) = Scope (Current_Scope) then
1382 null;
1384 elsif Is_Limited_Type (P) then
1385 Set_Is_Limited_Composite (Current_Scope);
1387 else
1388 Set_Is_Private_Composite (Current_Scope);
1389 end if;
1390 end if;
1392 if P /= Any_Type
1393 and then Is_Limited_Type (T)
1394 and then Chars (Id) /= Name_uParent
1395 and then Is_Tagged_Type (Current_Scope)
1396 then
1397 if Is_Derived_Type (Current_Scope)
1398 and then not Is_Limited_Record (Root_Type (Current_Scope))
1399 then
1400 Error_Msg_N
1401 ("extension of nonlimited type cannot have limited components",
1403 Explain_Limited_Type (T, N);
1404 Set_Etype (Id, Any_Type);
1405 Set_Is_Limited_Composite (Current_Scope, False);
1407 elsif not Is_Derived_Type (Current_Scope)
1408 and then not Is_Limited_Record (Current_Scope)
1409 then
1410 Error_Msg_N
1411 ("nonlimited tagged type cannot have limited components", N);
1412 Explain_Limited_Type (T, N);
1413 Set_Etype (Id, Any_Type);
1414 Set_Is_Limited_Composite (Current_Scope, False);
1415 end if;
1416 end if;
1418 Set_Original_Record_Component (Id, Id);
1419 end Analyze_Component_Declaration;
1421 --------------------------
1422 -- Analyze_Declarations --
1423 --------------------------
1425 procedure Analyze_Declarations (L : List_Id) is
1426 D : Node_Id;
1427 Next_Node : Node_Id;
1428 Freeze_From : Entity_Id := Empty;
1430 procedure Adjust_D;
1431 -- Adjust D not to include implicit label declarations, since these
1432 -- have strange Sloc values that result in elaboration check problems.
1433 -- (They have the sloc of the label as found in the source, and that
1434 -- is ahead of the current declarative part).
1436 --------------
1437 -- Adjust_D --
1438 --------------
1440 procedure Adjust_D is
1441 begin
1442 while Present (Prev (D))
1443 and then Nkind (D) = N_Implicit_Label_Declaration
1444 loop
1445 Prev (D);
1446 end loop;
1447 end Adjust_D;
1449 -- Start of processing for Analyze_Declarations
1451 begin
1452 D := First (L);
1453 while Present (D) loop
1455 -- Complete analysis of declaration
1457 Analyze (D);
1458 Next_Node := Next (D);
1460 if No (Freeze_From) then
1461 Freeze_From := First_Entity (Current_Scope);
1462 end if;
1464 -- At the end of a declarative part, freeze remaining entities
1465 -- declared in it. The end of the visible declarations of package
1466 -- specification is not the end of a declarative part if private
1467 -- declarations are present. The end of a package declaration is a
1468 -- freezing point only if it a library package. A task definition or
1469 -- protected type definition is not a freeze point either. Finally,
1470 -- we do not freeze entities in generic scopes, because there is no
1471 -- code generated for them and freeze nodes will be generated for
1472 -- the instance.
1474 -- The end of a package instantiation is not a freeze point, but
1475 -- for now we make it one, because the generic body is inserted
1476 -- (currently) immediately after. Generic instantiations will not
1477 -- be a freeze point once delayed freezing of bodies is implemented.
1478 -- (This is needed in any case for early instantiations ???).
1480 if No (Next_Node) then
1481 if Nkind (Parent (L)) = N_Component_List
1482 or else Nkind (Parent (L)) = N_Task_Definition
1483 or else Nkind (Parent (L)) = N_Protected_Definition
1484 then
1485 null;
1487 elsif Nkind (Parent (L)) /= N_Package_Specification then
1488 if Nkind (Parent (L)) = N_Package_Body then
1489 Freeze_From := First_Entity (Current_Scope);
1490 end if;
1492 Adjust_D;
1493 Freeze_All (Freeze_From, D);
1494 Freeze_From := Last_Entity (Current_Scope);
1496 elsif Scope (Current_Scope) /= Standard_Standard
1497 and then not Is_Child_Unit (Current_Scope)
1498 and then No (Generic_Parent (Parent (L)))
1499 then
1500 null;
1502 elsif L /= Visible_Declarations (Parent (L))
1503 or else No (Private_Declarations (Parent (L)))
1504 or else Is_Empty_List (Private_Declarations (Parent (L)))
1505 then
1506 Adjust_D;
1507 Freeze_All (Freeze_From, D);
1508 Freeze_From := Last_Entity (Current_Scope);
1509 end if;
1511 -- If next node is a body then freeze all types before the body.
1512 -- An exception occurs for expander generated bodies, which can
1513 -- be recognized by their already being analyzed. The expander
1514 -- ensures that all types needed by these bodies have been frozen
1515 -- but it is not necessary to freeze all types (and would be wrong
1516 -- since it would not correspond to an RM defined freeze point).
1518 elsif not Analyzed (Next_Node)
1519 and then (Nkind (Next_Node) = N_Subprogram_Body
1520 or else Nkind (Next_Node) = N_Entry_Body
1521 or else Nkind (Next_Node) = N_Package_Body
1522 or else Nkind (Next_Node) = N_Protected_Body
1523 or else Nkind (Next_Node) = N_Task_Body
1524 or else Nkind (Next_Node) in N_Body_Stub)
1525 then
1526 Adjust_D;
1527 Freeze_All (Freeze_From, D);
1528 Freeze_From := Last_Entity (Current_Scope);
1529 end if;
1531 D := Next_Node;
1532 end loop;
1533 end Analyze_Declarations;
1535 ----------------------------------
1536 -- Analyze_Incomplete_Type_Decl --
1537 ----------------------------------
1539 procedure Analyze_Incomplete_Type_Decl (N : Node_Id) is
1540 F : constant Boolean := Is_Pure (Current_Scope);
1541 T : Entity_Id;
1543 begin
1544 Generate_Definition (Defining_Identifier (N));
1546 -- Process an incomplete declaration. The identifier must not have been
1547 -- declared already in the scope. However, an incomplete declaration may
1548 -- appear in the private part of a package, for a private type that has
1549 -- already been declared.
1551 -- In this case, the discriminants (if any) must match
1553 T := Find_Type_Name (N);
1555 Set_Ekind (T, E_Incomplete_Type);
1556 Init_Size_Align (T);
1557 Set_Is_First_Subtype (T, True);
1558 Set_Etype (T, T);
1560 -- Ada 2005 (AI-326): Minimum decoration to give support to tagged
1561 -- incomplete types.
1563 if Tagged_Present (N) then
1564 Set_Is_Tagged_Type (T);
1565 Make_Class_Wide_Type (T);
1566 Set_Primitive_Operations (T, New_Elmt_List);
1567 end if;
1569 New_Scope (T);
1571 Set_Stored_Constraint (T, No_Elist);
1573 if Present (Discriminant_Specifications (N)) then
1574 Process_Discriminants (N);
1575 end if;
1577 End_Scope;
1579 -- If the type has discriminants, non-trivial subtypes may be be
1580 -- declared before the full view of the type. The full views of those
1581 -- subtypes will be built after the full view of the type.
1583 Set_Private_Dependents (T, New_Elmt_List);
1584 Set_Is_Pure (T, F);
1585 end Analyze_Incomplete_Type_Decl;
1587 -----------------------------
1588 -- Analyze_Itype_Reference --
1589 -----------------------------
1591 -- Nothing to do. This node is placed in the tree only for the benefit of
1592 -- back end processing, and has no effect on the semantic processing.
1594 procedure Analyze_Itype_Reference (N : Node_Id) is
1595 begin
1596 pragma Assert (Is_Itype (Itype (N)));
1597 null;
1598 end Analyze_Itype_Reference;
1600 --------------------------------
1601 -- Analyze_Number_Declaration --
1602 --------------------------------
1604 procedure Analyze_Number_Declaration (N : Node_Id) is
1605 Id : constant Entity_Id := Defining_Identifier (N);
1606 E : constant Node_Id := Expression (N);
1607 T : Entity_Id;
1608 Index : Interp_Index;
1609 It : Interp;
1611 begin
1612 Generate_Definition (Id);
1613 Enter_Name (Id);
1615 -- This is an optimization of a common case of an integer literal
1617 if Nkind (E) = N_Integer_Literal then
1618 Set_Is_Static_Expression (E, True);
1619 Set_Etype (E, Universal_Integer);
1621 Set_Etype (Id, Universal_Integer);
1622 Set_Ekind (Id, E_Named_Integer);
1623 Set_Is_Frozen (Id, True);
1624 return;
1625 end if;
1627 Set_Is_Pure (Id, Is_Pure (Current_Scope));
1629 -- Process expression, replacing error by integer zero, to avoid
1630 -- cascaded errors or aborts further along in the processing
1632 -- Replace Error by integer zero, which seems least likely to
1633 -- cause cascaded errors.
1635 if E = Error then
1636 Rewrite (E, Make_Integer_Literal (Sloc (E), Uint_0));
1637 Set_Error_Posted (E);
1638 end if;
1640 Analyze (E);
1642 -- Verify that the expression is static and numeric. If
1643 -- the expression is overloaded, we apply the preference
1644 -- rule that favors root numeric types.
1646 if not Is_Overloaded (E) then
1647 T := Etype (E);
1649 else
1650 T := Any_Type;
1652 Get_First_Interp (E, Index, It);
1653 while Present (It.Typ) loop
1654 if (Is_Integer_Type (It.Typ)
1655 or else Is_Real_Type (It.Typ))
1656 and then (Scope (Base_Type (It.Typ))) = Standard_Standard
1657 then
1658 if T = Any_Type then
1659 T := It.Typ;
1661 elsif It.Typ = Universal_Real
1662 or else It.Typ = Universal_Integer
1663 then
1664 -- Choose universal interpretation over any other
1666 T := It.Typ;
1667 exit;
1668 end if;
1669 end if;
1671 Get_Next_Interp (Index, It);
1672 end loop;
1673 end if;
1675 if Is_Integer_Type (T) then
1676 Resolve (E, T);
1677 Set_Etype (Id, Universal_Integer);
1678 Set_Ekind (Id, E_Named_Integer);
1680 elsif Is_Real_Type (T) then
1682 -- Because the real value is converted to universal_real, this is a
1683 -- legal context for a universal fixed expression.
1685 if T = Universal_Fixed then
1686 declare
1687 Loc : constant Source_Ptr := Sloc (N);
1688 Conv : constant Node_Id := Make_Type_Conversion (Loc,
1689 Subtype_Mark =>
1690 New_Occurrence_Of (Universal_Real, Loc),
1691 Expression => Relocate_Node (E));
1693 begin
1694 Rewrite (E, Conv);
1695 Analyze (E);
1696 end;
1698 elsif T = Any_Fixed then
1699 Error_Msg_N ("illegal context for mixed mode operation", E);
1701 -- Expression is of the form : universal_fixed * integer. Try to
1702 -- resolve as universal_real.
1704 T := Universal_Real;
1705 Set_Etype (E, T);
1706 end if;
1708 Resolve (E, T);
1709 Set_Etype (Id, Universal_Real);
1710 Set_Ekind (Id, E_Named_Real);
1712 else
1713 Wrong_Type (E, Any_Numeric);
1714 Resolve (E, T);
1716 Set_Etype (Id, T);
1717 Set_Ekind (Id, E_Constant);
1718 Set_Never_Set_In_Source (Id, True);
1719 Set_Is_True_Constant (Id, True);
1720 return;
1721 end if;
1723 if Nkind (E) = N_Integer_Literal
1724 or else Nkind (E) = N_Real_Literal
1725 then
1726 Set_Etype (E, Etype (Id));
1727 end if;
1729 if not Is_OK_Static_Expression (E) then
1730 Flag_Non_Static_Expr
1731 ("non-static expression used in number declaration!", E);
1732 Rewrite (E, Make_Integer_Literal (Sloc (N), 1));
1733 Set_Etype (E, Any_Type);
1734 end if;
1735 end Analyze_Number_Declaration;
1737 --------------------------------
1738 -- Analyze_Object_Declaration --
1739 --------------------------------
1741 procedure Analyze_Object_Declaration (N : Node_Id) is
1742 Loc : constant Source_Ptr := Sloc (N);
1743 Id : constant Entity_Id := Defining_Identifier (N);
1744 T : Entity_Id;
1745 Act_T : Entity_Id;
1747 E : Node_Id := Expression (N);
1748 -- E is set to Expression (N) throughout this routine. When
1749 -- Expression (N) is modified, E is changed accordingly.
1751 Prev_Entity : Entity_Id := Empty;
1753 function Build_Default_Subtype return Entity_Id;
1754 -- If the object is limited or aliased, and if the type is unconstrained
1755 -- and there is no expression, the discriminants cannot be modified and
1756 -- the subtype of the object is constrained by the defaults, so it is
1757 -- worthwhile building the corresponding subtype.
1759 function Count_Tasks (T : Entity_Id) return Uint;
1760 -- This function is called when a library level object of type is
1761 -- declared. It's function is to count the static number of tasks
1762 -- declared within the type (it is only called if Has_Tasks is set for
1763 -- T). As a side effect, if an array of tasks with non-static bounds or
1764 -- a variant record type is encountered, Check_Restrictions is called
1765 -- indicating the count is unknown.
1767 ---------------------------
1768 -- Build_Default_Subtype --
1769 ---------------------------
1771 function Build_Default_Subtype return Entity_Id is
1772 Constraints : constant List_Id := New_List;
1773 Act : Entity_Id;
1774 Decl : Node_Id;
1775 Disc : Entity_Id;
1777 begin
1778 Disc := First_Discriminant (T);
1780 if No (Discriminant_Default_Value (Disc)) then
1781 return T; -- previous error.
1782 end if;
1784 Act := Make_Defining_Identifier (Loc, New_Internal_Name ('S'));
1785 while Present (Disc) loop
1786 Append (
1787 New_Copy_Tree (
1788 Discriminant_Default_Value (Disc)), Constraints);
1789 Next_Discriminant (Disc);
1790 end loop;
1792 Decl :=
1793 Make_Subtype_Declaration (Loc,
1794 Defining_Identifier => Act,
1795 Subtype_Indication =>
1796 Make_Subtype_Indication (Loc,
1797 Subtype_Mark => New_Occurrence_Of (T, Loc),
1798 Constraint =>
1799 Make_Index_Or_Discriminant_Constraint
1800 (Loc, Constraints)));
1802 Insert_Before (N, Decl);
1803 Analyze (Decl);
1804 return Act;
1805 end Build_Default_Subtype;
1807 -----------------
1808 -- Count_Tasks --
1809 -----------------
1811 function Count_Tasks (T : Entity_Id) return Uint is
1812 C : Entity_Id;
1813 X : Node_Id;
1814 V : Uint;
1816 begin
1817 if Is_Task_Type (T) then
1818 return Uint_1;
1820 elsif Is_Record_Type (T) then
1821 if Has_Discriminants (T) then
1822 Check_Restriction (Max_Tasks, N);
1823 return Uint_0;
1825 else
1826 V := Uint_0;
1827 C := First_Component (T);
1828 while Present (C) loop
1829 V := V + Count_Tasks (Etype (C));
1830 Next_Component (C);
1831 end loop;
1833 return V;
1834 end if;
1836 elsif Is_Array_Type (T) then
1837 X := First_Index (T);
1838 V := Count_Tasks (Component_Type (T));
1839 while Present (X) loop
1840 C := Etype (X);
1842 if not Is_Static_Subtype (C) then
1843 Check_Restriction (Max_Tasks, N);
1844 return Uint_0;
1845 else
1846 V := V * (UI_Max (Uint_0,
1847 Expr_Value (Type_High_Bound (C)) -
1848 Expr_Value (Type_Low_Bound (C)) + Uint_1));
1849 end if;
1851 Next_Index (X);
1852 end loop;
1854 return V;
1856 else
1857 return Uint_0;
1858 end if;
1859 end Count_Tasks;
1861 -- Start of processing for Analyze_Object_Declaration
1863 begin
1864 -- There are three kinds of implicit types generated by an
1865 -- object declaration:
1867 -- 1. Those for generated by the original Object Definition
1869 -- 2. Those generated by the Expression
1871 -- 3. Those used to constrained the Object Definition with the
1872 -- expression constraints when it is unconstrained
1874 -- They must be generated in this order to avoid order of elaboration
1875 -- issues. Thus the first step (after entering the name) is to analyze
1876 -- the object definition.
1878 if Constant_Present (N) then
1879 Prev_Entity := Current_Entity_In_Scope (Id);
1881 -- If homograph is an implicit subprogram, it is overridden by the
1882 -- current declaration.
1884 if Present (Prev_Entity)
1885 and then Is_Overloadable (Prev_Entity)
1886 and then Is_Inherited_Operation (Prev_Entity)
1887 then
1888 Prev_Entity := Empty;
1889 end if;
1890 end if;
1892 if Present (Prev_Entity) then
1893 Constant_Redeclaration (Id, N, T);
1895 Generate_Reference (Prev_Entity, Id, 'c');
1896 Set_Completion_Referenced (Id);
1898 if Error_Posted (N) then
1900 -- Type mismatch or illegal redeclaration, Do not analyze
1901 -- expression to avoid cascaded errors.
1903 T := Find_Type_Of_Object (Object_Definition (N), N);
1904 Set_Etype (Id, T);
1905 Set_Ekind (Id, E_Variable);
1906 return;
1907 end if;
1909 -- In the normal case, enter identifier at the start to catch premature
1910 -- usage in the initialization expression.
1912 else
1913 Generate_Definition (Id);
1914 Enter_Name (Id);
1916 T := Find_Type_Of_Object (Object_Definition (N), N);
1918 if Error_Posted (Id) then
1919 Set_Etype (Id, T);
1920 Set_Ekind (Id, E_Variable);
1921 return;
1922 end if;
1923 end if;
1925 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
1926 -- out some static checks
1928 if Ada_Version >= Ada_05
1929 and then Can_Never_Be_Null (T)
1930 then
1931 -- In case of aggregates we must also take care of the correct
1932 -- initialization of nested aggregates bug this is done at the
1933 -- point of the analysis of the aggregate (see sem_aggr.adb)
1935 if Present (Expression (N))
1936 and then Nkind (Expression (N)) = N_Aggregate
1937 then
1938 null;
1940 else
1941 declare
1942 Save_Typ : constant Entity_Id := Etype (Id);
1943 begin
1944 Set_Etype (Id, T); -- Temp. decoration for static checks
1945 Null_Exclusion_Static_Checks (N);
1946 Set_Etype (Id, Save_Typ);
1947 end;
1948 end if;
1949 end if;
1951 Set_Is_Pure (Id, Is_Pure (Current_Scope));
1953 -- If deferred constant, make sure context is appropriate. We detect
1954 -- a deferred constant as a constant declaration with no expression.
1955 -- A deferred constant can appear in a package body if its completion
1956 -- is by means of an interface pragma.
1958 if Constant_Present (N)
1959 and then No (E)
1960 then
1961 if not Is_Package (Current_Scope) then
1962 Error_Msg_N
1963 ("invalid context for deferred constant declaration ('R'M 7.4)",
1965 Error_Msg_N
1966 ("\declaration requires an initialization expression",
1968 Set_Constant_Present (N, False);
1970 -- In Ada 83, deferred constant must be of private type
1972 elsif not Is_Private_Type (T) then
1973 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
1974 Error_Msg_N
1975 ("(Ada 83) deferred constant must be private type", N);
1976 end if;
1977 end if;
1979 -- If not a deferred constant, then object declaration freezes its type
1981 else
1982 Check_Fully_Declared (T, N);
1983 Freeze_Before (N, T);
1984 end if;
1986 -- If the object was created by a constrained array definition, then
1987 -- set the link in both the anonymous base type and anonymous subtype
1988 -- that are built to represent the array type to point to the object.
1990 if Nkind (Object_Definition (Declaration_Node (Id))) =
1991 N_Constrained_Array_Definition
1992 then
1993 Set_Related_Array_Object (T, Id);
1994 Set_Related_Array_Object (Base_Type (T), Id);
1995 end if;
1997 -- Special checks for protected objects not at library level
1999 if Is_Protected_Type (T)
2000 and then not Is_Library_Level_Entity (Id)
2001 then
2002 Check_Restriction (No_Local_Protected_Objects, Id);
2004 -- Protected objects with interrupt handlers must be at library level
2006 -- Ada 2005: this test is not needed (and the corresponding clause
2007 -- in the RM is removed) because accessibility checks are sufficient
2008 -- to make handlers not at the library level illegal.
2010 if Has_Interrupt_Handler (T)
2011 and then Ada_Version < Ada_05
2012 then
2013 Error_Msg_N
2014 ("interrupt object can only be declared at library level", Id);
2015 end if;
2016 end if;
2018 -- The actual subtype of the object is the nominal subtype, unless
2019 -- the nominal one is unconstrained and obtained from the expression.
2021 Act_T := T;
2023 -- Process initialization expression if present and not in error
2025 if Present (E) and then E /= Error then
2026 Analyze (E);
2028 -- In case of errors detected in the analysis of the expression,
2029 -- decorate it with the expected type to avoid cascade errors
2031 if not Present (Etype (E)) then
2032 Set_Etype (E, T);
2033 end if;
2035 -- If an initialization expression is present, then we set the
2036 -- Is_True_Constant flag. It will be reset if this is a variable
2037 -- and it is indeed modified.
2039 Set_Is_True_Constant (Id, True);
2041 -- If we are analyzing a constant declaration, set its completion
2042 -- flag after analyzing the expression.
2044 if Constant_Present (N) then
2045 Set_Has_Completion (Id);
2046 end if;
2048 if not Assignment_OK (N) then
2049 Check_Initialization (T, E);
2050 end if;
2052 Set_Etype (Id, T); -- may be overridden later on
2053 Resolve (E, T);
2054 Check_Unset_Reference (E);
2056 if Compile_Time_Known_Value (E) then
2057 Set_Current_Value (Id, E);
2058 end if;
2060 -- Check incorrect use of dynamically tagged expressions. Note
2061 -- the use of Is_Tagged_Type (T) which seems redundant but is in
2062 -- fact important to avoid spurious errors due to expanded code
2063 -- for dispatching functions over an anonymous access type
2065 if (Is_Class_Wide_Type (Etype (E)) or else Is_Dynamically_Tagged (E))
2066 and then Is_Tagged_Type (T)
2067 and then not Is_Class_Wide_Type (T)
2068 then
2069 Error_Msg_N ("dynamically tagged expression not allowed!", E);
2070 end if;
2072 Apply_Scalar_Range_Check (E, T);
2073 Apply_Static_Length_Check (E, T);
2074 end if;
2076 -- If the No_Streams restriction is set, check that the type of the
2077 -- object is not, and does not contain, any subtype derived from
2078 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
2079 -- Has_Stream just for efficiency reasons. There is no point in
2080 -- spending time on a Has_Stream check if the restriction is not set.
2082 if Restrictions.Set (No_Streams) then
2083 if Has_Stream (T) then
2084 Check_Restriction (No_Streams, N);
2085 end if;
2086 end if;
2088 -- Abstract type is never permitted for a variable or constant.
2089 -- Note: we inhibit this check for objects that do not come from
2090 -- source because there is at least one case (the expansion of
2091 -- x'class'input where x is abstract) where we legitimately
2092 -- generate an abstract object.
2094 if Is_Abstract (T) and then Comes_From_Source (N) then
2095 Error_Msg_N ("type of object cannot be abstract",
2096 Object_Definition (N));
2098 if Is_CPP_Class (T) then
2099 Error_Msg_NE ("\} may need a cpp_constructor",
2100 Object_Definition (N), T);
2101 end if;
2103 -- Case of unconstrained type
2105 elsif Is_Indefinite_Subtype (T) then
2107 -- Nothing to do in deferred constant case
2109 if Constant_Present (N) and then No (E) then
2110 null;
2112 -- Case of no initialization present
2114 elsif No (E) then
2115 if No_Initialization (N) then
2116 null;
2118 elsif Is_Class_Wide_Type (T) then
2119 Error_Msg_N
2120 ("initialization required in class-wide declaration ", N);
2122 else
2123 Error_Msg_N
2124 ("unconstrained subtype not allowed (need initialization)",
2125 Object_Definition (N));
2126 end if;
2128 -- Case of initialization present but in error. Set initial
2129 -- expression as absent (but do not make above complaints)
2131 elsif E = Error then
2132 Set_Expression (N, Empty);
2133 E := Empty;
2135 -- Case of initialization present
2137 else
2138 -- Not allowed in Ada 83
2140 if not Constant_Present (N) then
2141 if Ada_Version = Ada_83
2142 and then Comes_From_Source (Object_Definition (N))
2143 then
2144 Error_Msg_N
2145 ("(Ada 83) unconstrained variable not allowed",
2146 Object_Definition (N));
2147 end if;
2148 end if;
2150 -- Now we constrain the variable from the initializing expression
2152 -- If the expression is an aggregate, it has been expanded into
2153 -- individual assignments. Retrieve the actual type from the
2154 -- expanded construct.
2156 if Is_Array_Type (T)
2157 and then No_Initialization (N)
2158 and then Nkind (Original_Node (E)) = N_Aggregate
2159 then
2160 Act_T := Etype (E);
2162 else
2163 Expand_Subtype_From_Expr (N, T, Object_Definition (N), E);
2164 Act_T := Find_Type_Of_Object (Object_Definition (N), N);
2165 end if;
2167 Set_Is_Constr_Subt_For_U_Nominal (Act_T);
2169 if Aliased_Present (N) then
2170 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
2171 end if;
2173 Freeze_Before (N, Act_T);
2174 Freeze_Before (N, T);
2175 end if;
2177 elsif Is_Array_Type (T)
2178 and then No_Initialization (N)
2179 and then Nkind (Original_Node (E)) = N_Aggregate
2180 then
2181 if not Is_Entity_Name (Object_Definition (N)) then
2182 Act_T := Etype (E);
2183 Check_Compile_Time_Size (Act_T);
2185 if Aliased_Present (N) then
2186 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
2187 end if;
2188 end if;
2190 -- When the given object definition and the aggregate are specified
2191 -- independently, and their lengths might differ do a length check.
2192 -- This cannot happen if the aggregate is of the form (others =>...)
2194 if not Is_Constrained (T) then
2195 null;
2197 elsif Nkind (E) = N_Raise_Constraint_Error then
2199 -- Aggregate is statically illegal. Place back in declaration
2201 Set_Expression (N, E);
2202 Set_No_Initialization (N, False);
2204 elsif T = Etype (E) then
2205 null;
2207 elsif Nkind (E) = N_Aggregate
2208 and then Present (Component_Associations (E))
2209 and then Present (Choices (First (Component_Associations (E))))
2210 and then Nkind (First
2211 (Choices (First (Component_Associations (E))))) = N_Others_Choice
2212 then
2213 null;
2215 else
2216 Apply_Length_Check (E, T);
2217 end if;
2219 elsif (Is_Limited_Record (T)
2220 or else Is_Concurrent_Type (T))
2221 and then not Is_Constrained (T)
2222 and then Has_Discriminants (T)
2223 then
2224 Act_T := Build_Default_Subtype;
2225 Rewrite (Object_Definition (N), New_Occurrence_Of (Act_T, Loc));
2227 elsif Present (Underlying_Type (T))
2228 and then not Is_Constrained (Underlying_Type (T))
2229 and then Has_Discriminants (Underlying_Type (T))
2230 and then Nkind (E) = N_Function_Call
2231 and then Constant_Present (N)
2232 then
2233 -- The back-end has problems with constants of a discriminated type
2234 -- with defaults, if the initial value is a function call. We
2235 -- generate an intermediate temporary for the result of the call.
2236 -- It is unclear why this should make it acceptable to gcc. ???
2238 Remove_Side_Effects (E);
2239 end if;
2241 if T = Standard_Wide_Character or else T = Standard_Wide_Wide_Character
2242 or else Root_Type (T) = Standard_Wide_String
2243 or else Root_Type (T) = Standard_Wide_Wide_String
2244 then
2245 Check_Restriction (No_Wide_Characters, Object_Definition (N));
2246 end if;
2248 -- Now establish the proper kind and type of the object
2250 if Constant_Present (N) then
2251 Set_Ekind (Id, E_Constant);
2252 Set_Never_Set_In_Source (Id, True);
2253 Set_Is_True_Constant (Id, True);
2255 else
2256 Set_Ekind (Id, E_Variable);
2258 -- A variable is set as shared passive if it appears in a shared
2259 -- passive package, and is at the outer level. This is not done
2260 -- for entities generated during expansion, because those are
2261 -- always manipulated locally.
2263 if Is_Shared_Passive (Current_Scope)
2264 and then Is_Library_Level_Entity (Id)
2265 and then Comes_From_Source (Id)
2266 then
2267 Set_Is_Shared_Passive (Id);
2268 Check_Shared_Var (Id, T, N);
2269 end if;
2271 -- Case of no initializing expression present. If the type is not
2272 -- fully initialized, then we set Never_Set_In_Source, since this
2273 -- is a case of a potentially uninitialized object. Note that we
2274 -- do not consider access variables to be fully initialized for
2275 -- this purpose, since it still seems dubious if someone declares
2277 -- Note that we only do this for source declarations. If the object
2278 -- is declared by a generated declaration, we assume that it is not
2279 -- appropriate to generate warnings in that case.
2281 if No (E) then
2282 if (Is_Access_Type (T)
2283 or else not Is_Fully_Initialized_Type (T))
2284 and then Comes_From_Source (N)
2285 then
2286 Set_Never_Set_In_Source (Id);
2287 end if;
2288 end if;
2289 end if;
2291 Init_Alignment (Id);
2292 Init_Esize (Id);
2294 if Aliased_Present (N) then
2295 Set_Is_Aliased (Id);
2297 if No (E)
2298 and then Is_Record_Type (T)
2299 and then not Is_Constrained (T)
2300 and then Has_Discriminants (T)
2301 then
2302 Set_Actual_Subtype (Id, Build_Default_Subtype);
2303 end if;
2304 end if;
2306 Set_Etype (Id, Act_T);
2308 if Has_Controlled_Component (Etype (Id))
2309 or else Is_Controlled (Etype (Id))
2310 then
2311 if not Is_Library_Level_Entity (Id) then
2312 Check_Restriction (No_Nested_Finalization, N);
2313 else
2314 Validate_Controlled_Object (Id);
2315 end if;
2317 -- Generate a warning when an initialization causes an obvious ABE
2318 -- violation. If the init expression is a simple aggregate there
2319 -- shouldn't be any initialize/adjust call generated. This will be
2320 -- true as soon as aggregates are built in place when possible.
2322 -- ??? at the moment we do not generate warnings for temporaries
2323 -- created for those aggregates although Program_Error might be
2324 -- generated if compiled with -gnato.
2326 if Is_Controlled (Etype (Id))
2327 and then Comes_From_Source (Id)
2328 then
2329 declare
2330 BT : constant Entity_Id := Base_Type (Etype (Id));
2332 Implicit_Call : Entity_Id;
2333 pragma Warnings (Off, Implicit_Call);
2334 -- ??? what is this for (never referenced!)
2336 function Is_Aggr (N : Node_Id) return Boolean;
2337 -- Check that N is an aggregate
2339 -------------
2340 -- Is_Aggr --
2341 -------------
2343 function Is_Aggr (N : Node_Id) return Boolean is
2344 begin
2345 case Nkind (Original_Node (N)) is
2346 when N_Aggregate | N_Extension_Aggregate =>
2347 return True;
2349 when N_Qualified_Expression |
2350 N_Type_Conversion |
2351 N_Unchecked_Type_Conversion =>
2352 return Is_Aggr (Expression (Original_Node (N)));
2354 when others =>
2355 return False;
2356 end case;
2357 end Is_Aggr;
2359 begin
2360 -- If no underlying type, we already are in an error situation.
2361 -- Do not try to add a warning since we do not have access to
2362 -- prim-op list.
2364 if No (Underlying_Type (BT)) then
2365 Implicit_Call := Empty;
2367 -- A generic type does not have usable primitive operators.
2368 -- Initialization calls are built for instances.
2370 elsif Is_Generic_Type (BT) then
2371 Implicit_Call := Empty;
2373 -- If the init expression is not an aggregate, an adjust call
2374 -- will be generated
2376 elsif Present (E) and then not Is_Aggr (E) then
2377 Implicit_Call := Find_Prim_Op (BT, Name_Adjust);
2379 -- If no init expression and we are not in the deferred
2380 -- constant case, an Initialize call will be generated
2382 elsif No (E) and then not Constant_Present (N) then
2383 Implicit_Call := Find_Prim_Op (BT, Name_Initialize);
2385 else
2386 Implicit_Call := Empty;
2387 end if;
2388 end;
2389 end if;
2390 end if;
2392 if Has_Task (Etype (Id)) then
2393 Check_Restriction (No_Tasking, N);
2395 if Is_Library_Level_Entity (Id) then
2396 Check_Restriction (Max_Tasks, N, Count_Tasks (Etype (Id)));
2397 else
2398 Check_Restriction (Max_Tasks, N);
2399 Check_Restriction (No_Task_Hierarchy, N);
2400 Check_Potentially_Blocking_Operation (N);
2401 end if;
2403 -- A rather specialized test. If we see two tasks being declared
2404 -- of the same type in the same object declaration, and the task
2405 -- has an entry with an address clause, we know that program error
2406 -- will be raised at run-time since we can't have two tasks with
2407 -- entries at the same address.
2409 if Is_Task_Type (Etype (Id)) and then More_Ids (N) then
2410 declare
2411 E : Entity_Id;
2413 begin
2414 E := First_Entity (Etype (Id));
2415 while Present (E) loop
2416 if Ekind (E) = E_Entry
2417 and then Present (Get_Attribute_Definition_Clause
2418 (E, Attribute_Address))
2419 then
2420 Error_Msg_N
2421 ("?more than one task with same entry address", N);
2422 Error_Msg_N
2423 ("\?Program_Error will be raised at run time", N);
2424 Insert_Action (N,
2425 Make_Raise_Program_Error (Loc,
2426 Reason => PE_Duplicated_Entry_Address));
2427 exit;
2428 end if;
2430 Next_Entity (E);
2431 end loop;
2432 end;
2433 end if;
2434 end if;
2436 -- Some simple constant-propagation: if the expression is a constant
2437 -- string initialized with a literal, share the literal. This avoids
2438 -- a run-time copy.
2440 if Present (E)
2441 and then Is_Entity_Name (E)
2442 and then Ekind (Entity (E)) = E_Constant
2443 and then Base_Type (Etype (E)) = Standard_String
2444 then
2445 declare
2446 Val : constant Node_Id := Constant_Value (Entity (E));
2447 begin
2448 if Present (Val)
2449 and then Nkind (Val) = N_String_Literal
2450 then
2451 Rewrite (E, New_Copy (Val));
2452 end if;
2453 end;
2454 end if;
2456 -- Another optimization: if the nominal subtype is unconstrained and
2457 -- the expression is a function call that returns an unconstrained
2458 -- type, rewrite the declaration as a renaming of the result of the
2459 -- call. The exceptions below are cases where the copy is expected,
2460 -- either by the back end (Aliased case) or by the semantics, as for
2461 -- initializing controlled types or copying tags for classwide types.
2463 if Present (E)
2464 and then Nkind (E) = N_Explicit_Dereference
2465 and then Nkind (Original_Node (E)) = N_Function_Call
2466 and then not Is_Library_Level_Entity (Id)
2467 and then not Is_Constrained (Underlying_Type (T))
2468 and then not Is_Aliased (Id)
2469 and then not Is_Class_Wide_Type (T)
2470 and then not Is_Controlled (T)
2471 and then not Has_Controlled_Component (Base_Type (T))
2472 and then Expander_Active
2473 then
2474 Rewrite (N,
2475 Make_Object_Renaming_Declaration (Loc,
2476 Defining_Identifier => Id,
2477 Access_Definition => Empty,
2478 Subtype_Mark => New_Occurrence_Of
2479 (Base_Type (Etype (Id)), Loc),
2480 Name => E));
2482 Set_Renamed_Object (Id, E);
2484 -- Force generation of debugging information for the constant and for
2485 -- the renamed function call.
2487 Set_Needs_Debug_Info (Id);
2488 Set_Needs_Debug_Info (Entity (Prefix (E)));
2489 end if;
2491 if Present (Prev_Entity)
2492 and then Is_Frozen (Prev_Entity)
2493 and then not Error_Posted (Id)
2494 then
2495 Error_Msg_N ("full constant declaration appears too late", N);
2496 end if;
2498 Check_Eliminated (Id);
2499 end Analyze_Object_Declaration;
2501 ---------------------------
2502 -- Analyze_Others_Choice --
2503 ---------------------------
2505 -- Nothing to do for the others choice node itself, the semantic analysis
2506 -- of the others choice will occur as part of the processing of the parent
2508 procedure Analyze_Others_Choice (N : Node_Id) is
2509 pragma Warnings (Off, N);
2510 begin
2511 null;
2512 end Analyze_Others_Choice;
2514 --------------------------------
2515 -- Analyze_Per_Use_Expression --
2516 --------------------------------
2518 procedure Analyze_Per_Use_Expression (N : Node_Id; T : Entity_Id) is
2519 Save_In_Default_Expression : constant Boolean := In_Default_Expression;
2520 begin
2521 In_Default_Expression := True;
2522 Pre_Analyze_And_Resolve (N, T);
2523 In_Default_Expression := Save_In_Default_Expression;
2524 end Analyze_Per_Use_Expression;
2526 -------------------------------------------
2527 -- Analyze_Private_Extension_Declaration --
2528 -------------------------------------------
2530 procedure Analyze_Private_Extension_Declaration (N : Node_Id) is
2531 T : constant Entity_Id := Defining_Identifier (N);
2532 Indic : constant Node_Id := Subtype_Indication (N);
2533 Parent_Type : Entity_Id;
2534 Parent_Base : Entity_Id;
2536 begin
2537 -- Ada 2005 (AI-251): Decorate all names in list of ancestor interfaces
2539 if Is_Non_Empty_List (Interface_List (N)) then
2540 declare
2541 Intf : Node_Id;
2542 T : Entity_Id;
2544 begin
2545 Intf := First (Interface_List (N));
2546 while Present (Intf) loop
2547 T := Find_Type_Of_Subtype_Indic (Intf);
2549 if not Is_Interface (T) then
2550 Error_Msg_NE ("(Ada 2005) & must be an interface", Intf, T);
2551 end if;
2553 Next (Intf);
2554 end loop;
2555 end;
2556 end if;
2558 Generate_Definition (T);
2559 Enter_Name (T);
2561 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
2562 Parent_Base := Base_Type (Parent_Type);
2564 if Parent_Type = Any_Type
2565 or else Etype (Parent_Type) = Any_Type
2566 then
2567 Set_Ekind (T, Ekind (Parent_Type));
2568 Set_Etype (T, Any_Type);
2569 return;
2571 elsif not Is_Tagged_Type (Parent_Type) then
2572 Error_Msg_N
2573 ("parent of type extension must be a tagged type ", Indic);
2574 return;
2576 elsif Ekind (Parent_Type) = E_Void
2577 or else Ekind (Parent_Type) = E_Incomplete_Type
2578 then
2579 Error_Msg_N ("premature derivation of incomplete type", Indic);
2580 return;
2581 end if;
2583 -- Perhaps the parent type should be changed to the class-wide type's
2584 -- specific type in this case to prevent cascading errors ???
2586 if Is_Class_Wide_Type (Parent_Type) then
2587 Error_Msg_N
2588 ("parent of type extension must not be a class-wide type", Indic);
2589 return;
2590 end if;
2592 if (not Is_Package (Current_Scope)
2593 and then Nkind (Parent (N)) /= N_Generic_Subprogram_Declaration)
2594 or else In_Private_Part (Current_Scope)
2596 then
2597 Error_Msg_N ("invalid context for private extension", N);
2598 end if;
2600 -- Set common attributes
2602 Set_Is_Pure (T, Is_Pure (Current_Scope));
2603 Set_Scope (T, Current_Scope);
2604 Set_Ekind (T, E_Record_Type_With_Private);
2605 Init_Size_Align (T);
2607 Set_Etype (T, Parent_Base);
2608 Set_Has_Task (T, Has_Task (Parent_Base));
2610 Set_Convention (T, Convention (Parent_Type));
2611 Set_First_Rep_Item (T, First_Rep_Item (Parent_Type));
2612 Set_Is_First_Subtype (T);
2613 Make_Class_Wide_Type (T);
2615 if Unknown_Discriminants_Present (N) then
2616 Set_Discriminant_Constraint (T, No_Elist);
2617 end if;
2619 Build_Derived_Record_Type (N, Parent_Type, T);
2620 end Analyze_Private_Extension_Declaration;
2622 ---------------------------------
2623 -- Analyze_Subtype_Declaration --
2624 ---------------------------------
2626 procedure Analyze_Subtype_Declaration (N : Node_Id) is
2627 Id : constant Entity_Id := Defining_Identifier (N);
2628 T : Entity_Id;
2629 R_Checks : Check_Result;
2631 begin
2632 Generate_Definition (Id);
2633 Set_Is_Pure (Id, Is_Pure (Current_Scope));
2634 Init_Size_Align (Id);
2636 -- The following guard condition on Enter_Name is to handle cases where
2637 -- the defining identifier has already been entered into the scope but
2638 -- the declaration as a whole needs to be analyzed.
2640 -- This case in particular happens for derived enumeration types. The
2641 -- derived enumeration type is processed as an inserted enumeration type
2642 -- declaration followed by a rewritten subtype declaration. The defining
2643 -- identifier, however, is entered into the name scope very early in the
2644 -- processing of the original type declaration and therefore needs to be
2645 -- avoided here, when the created subtype declaration is analyzed. (See
2646 -- Build_Derived_Types)
2648 -- This also happens when the full view of a private type is derived
2649 -- type with constraints. In this case the entity has been introduced
2650 -- in the private declaration.
2652 if Present (Etype (Id))
2653 and then (Is_Private_Type (Etype (Id))
2654 or else Is_Task_Type (Etype (Id))
2655 or else Is_Rewrite_Substitution (N))
2656 then
2657 null;
2659 else
2660 Enter_Name (Id);
2661 end if;
2663 T := Process_Subtype (Subtype_Indication (N), N, Id, 'P');
2665 -- Inherit common attributes
2667 Set_Is_Generic_Type (Id, Is_Generic_Type (Base_Type (T)));
2668 Set_Is_Volatile (Id, Is_Volatile (T));
2669 Set_Treat_As_Volatile (Id, Treat_As_Volatile (T));
2670 Set_Is_Atomic (Id, Is_Atomic (T));
2671 Set_Is_Ada_2005 (Id, Is_Ada_2005 (T));
2673 -- In the case where there is no constraint given in the subtype
2674 -- indication, Process_Subtype just returns the Subtype_Mark, so its
2675 -- semantic attributes must be established here.
2677 if Nkind (Subtype_Indication (N)) /= N_Subtype_Indication then
2678 Set_Etype (Id, Base_Type (T));
2680 case Ekind (T) is
2681 when Array_Kind =>
2682 Set_Ekind (Id, E_Array_Subtype);
2683 Copy_Array_Subtype_Attributes (Id, T);
2685 when Decimal_Fixed_Point_Kind =>
2686 Set_Ekind (Id, E_Decimal_Fixed_Point_Subtype);
2687 Set_Digits_Value (Id, Digits_Value (T));
2688 Set_Delta_Value (Id, Delta_Value (T));
2689 Set_Scale_Value (Id, Scale_Value (T));
2690 Set_Small_Value (Id, Small_Value (T));
2691 Set_Scalar_Range (Id, Scalar_Range (T));
2692 Set_Machine_Radix_10 (Id, Machine_Radix_10 (T));
2693 Set_Is_Constrained (Id, Is_Constrained (T));
2694 Set_RM_Size (Id, RM_Size (T));
2696 when Enumeration_Kind =>
2697 Set_Ekind (Id, E_Enumeration_Subtype);
2698 Set_First_Literal (Id, First_Literal (Base_Type (T)));
2699 Set_Scalar_Range (Id, Scalar_Range (T));
2700 Set_Is_Character_Type (Id, Is_Character_Type (T));
2701 Set_Is_Constrained (Id, Is_Constrained (T));
2702 Set_RM_Size (Id, RM_Size (T));
2704 when Ordinary_Fixed_Point_Kind =>
2705 Set_Ekind (Id, E_Ordinary_Fixed_Point_Subtype);
2706 Set_Scalar_Range (Id, Scalar_Range (T));
2707 Set_Small_Value (Id, Small_Value (T));
2708 Set_Delta_Value (Id, Delta_Value (T));
2709 Set_Is_Constrained (Id, Is_Constrained (T));
2710 Set_RM_Size (Id, RM_Size (T));
2712 when Float_Kind =>
2713 Set_Ekind (Id, E_Floating_Point_Subtype);
2714 Set_Scalar_Range (Id, Scalar_Range (T));
2715 Set_Digits_Value (Id, Digits_Value (T));
2716 Set_Is_Constrained (Id, Is_Constrained (T));
2718 when Signed_Integer_Kind =>
2719 Set_Ekind (Id, E_Signed_Integer_Subtype);
2720 Set_Scalar_Range (Id, Scalar_Range (T));
2721 Set_Is_Constrained (Id, Is_Constrained (T));
2722 Set_RM_Size (Id, RM_Size (T));
2724 when Modular_Integer_Kind =>
2725 Set_Ekind (Id, E_Modular_Integer_Subtype);
2726 Set_Scalar_Range (Id, Scalar_Range (T));
2727 Set_Is_Constrained (Id, Is_Constrained (T));
2728 Set_RM_Size (Id, RM_Size (T));
2730 when Class_Wide_Kind =>
2731 Set_Ekind (Id, E_Class_Wide_Subtype);
2732 Set_First_Entity (Id, First_Entity (T));
2733 Set_Last_Entity (Id, Last_Entity (T));
2734 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
2735 Set_Cloned_Subtype (Id, T);
2736 Set_Is_Tagged_Type (Id, True);
2737 Set_Has_Unknown_Discriminants
2738 (Id, True);
2740 if Ekind (T) = E_Class_Wide_Subtype then
2741 Set_Equivalent_Type (Id, Equivalent_Type (T));
2742 end if;
2744 when E_Record_Type | E_Record_Subtype =>
2745 Set_Ekind (Id, E_Record_Subtype);
2747 if Ekind (T) = E_Record_Subtype
2748 and then Present (Cloned_Subtype (T))
2749 then
2750 Set_Cloned_Subtype (Id, Cloned_Subtype (T));
2751 else
2752 Set_Cloned_Subtype (Id, T);
2753 end if;
2755 Set_First_Entity (Id, First_Entity (T));
2756 Set_Last_Entity (Id, Last_Entity (T));
2757 Set_Has_Discriminants (Id, Has_Discriminants (T));
2758 Set_Is_Constrained (Id, Is_Constrained (T));
2759 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
2760 Set_Has_Unknown_Discriminants
2761 (Id, Has_Unknown_Discriminants (T));
2763 if Has_Discriminants (T) then
2764 Set_Discriminant_Constraint
2765 (Id, Discriminant_Constraint (T));
2766 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
2768 elsif Has_Unknown_Discriminants (Id) then
2769 Set_Discriminant_Constraint (Id, No_Elist);
2770 end if;
2772 if Is_Tagged_Type (T) then
2773 Set_Is_Tagged_Type (Id);
2774 Set_Is_Abstract (Id, Is_Abstract (T));
2775 Set_Primitive_Operations
2776 (Id, Primitive_Operations (T));
2777 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
2778 end if;
2780 when Private_Kind =>
2781 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
2782 Set_Has_Discriminants (Id, Has_Discriminants (T));
2783 Set_Is_Constrained (Id, Is_Constrained (T));
2784 Set_First_Entity (Id, First_Entity (T));
2785 Set_Last_Entity (Id, Last_Entity (T));
2786 Set_Private_Dependents (Id, New_Elmt_List);
2787 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
2788 Set_Has_Unknown_Discriminants
2789 (Id, Has_Unknown_Discriminants (T));
2791 if Is_Tagged_Type (T) then
2792 Set_Is_Tagged_Type (Id);
2793 Set_Is_Abstract (Id, Is_Abstract (T));
2794 Set_Primitive_Operations
2795 (Id, Primitive_Operations (T));
2796 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
2797 end if;
2799 -- In general the attributes of the subtype of a private type
2800 -- are the attributes of the partial view of parent. However,
2801 -- the full view may be a discriminated type, and the subtype
2802 -- must share the discriminant constraint to generate correct
2803 -- calls to initialization procedures.
2805 if Has_Discriminants (T) then
2806 Set_Discriminant_Constraint
2807 (Id, Discriminant_Constraint (T));
2808 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
2810 elsif Present (Full_View (T))
2811 and then Has_Discriminants (Full_View (T))
2812 then
2813 Set_Discriminant_Constraint
2814 (Id, Discriminant_Constraint (Full_View (T)));
2815 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
2817 -- This would seem semantically correct, but apparently
2818 -- confuses the back-end (4412-009). To be explained ???
2820 -- Set_Has_Discriminants (Id);
2821 end if;
2823 Prepare_Private_Subtype_Completion (Id, N);
2825 when Access_Kind =>
2826 Set_Ekind (Id, E_Access_Subtype);
2827 Set_Is_Constrained (Id, Is_Constrained (T));
2828 Set_Is_Access_Constant
2829 (Id, Is_Access_Constant (T));
2830 Set_Directly_Designated_Type
2831 (Id, Designated_Type (T));
2832 Set_Can_Never_Be_Null (Id, Can_Never_Be_Null (T));
2834 -- A Pure library_item must not contain the declaration of a
2835 -- named access type, except within a subprogram, generic
2836 -- subprogram, task unit, or protected unit (RM 10.2.1(16)).
2838 if Comes_From_Source (Id)
2839 and then In_Pure_Unit
2840 and then not In_Subprogram_Task_Protected_Unit
2841 then
2842 Error_Msg_N
2843 ("named access types not allowed in pure unit", N);
2844 end if;
2846 when Concurrent_Kind =>
2847 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
2848 Set_Corresponding_Record_Type (Id,
2849 Corresponding_Record_Type (T));
2850 Set_First_Entity (Id, First_Entity (T));
2851 Set_First_Private_Entity (Id, First_Private_Entity (T));
2852 Set_Has_Discriminants (Id, Has_Discriminants (T));
2853 Set_Is_Constrained (Id, Is_Constrained (T));
2854 Set_Last_Entity (Id, Last_Entity (T));
2856 if Has_Discriminants (T) then
2857 Set_Discriminant_Constraint (Id,
2858 Discriminant_Constraint (T));
2859 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
2860 end if;
2862 -- If the subtype name denotes an incomplete type an error was
2863 -- already reported by Process_Subtype.
2865 when E_Incomplete_Type =>
2866 Set_Etype (Id, Any_Type);
2868 when others =>
2869 raise Program_Error;
2870 end case;
2871 end if;
2873 if Etype (Id) = Any_Type then
2874 return;
2875 end if;
2877 -- Some common processing on all types
2879 Set_Size_Info (Id, T);
2880 Set_First_Rep_Item (Id, First_Rep_Item (T));
2882 T := Etype (Id);
2884 Set_Is_Immediately_Visible (Id, True);
2885 Set_Depends_On_Private (Id, Has_Private_Component (T));
2887 if Present (Generic_Parent_Type (N))
2888 and then
2889 (Nkind
2890 (Parent (Generic_Parent_Type (N))) /= N_Formal_Type_Declaration
2891 or else Nkind
2892 (Formal_Type_Definition (Parent (Generic_Parent_Type (N))))
2893 /= N_Formal_Private_Type_Definition)
2894 then
2895 if Is_Tagged_Type (Id) then
2896 if Is_Class_Wide_Type (Id) then
2897 Derive_Subprograms (Generic_Parent_Type (N), Id, Etype (T));
2898 else
2899 Derive_Subprograms (Generic_Parent_Type (N), Id, T);
2900 end if;
2902 elsif Scope (Etype (Id)) /= Standard_Standard then
2903 Derive_Subprograms (Generic_Parent_Type (N), Id);
2904 end if;
2905 end if;
2907 if Is_Private_Type (T)
2908 and then Present (Full_View (T))
2909 then
2910 Conditional_Delay (Id, Full_View (T));
2912 -- The subtypes of components or subcomponents of protected types
2913 -- do not need freeze nodes, which would otherwise appear in the
2914 -- wrong scope (before the freeze node for the protected type). The
2915 -- proper subtypes are those of the subcomponents of the corresponding
2916 -- record.
2918 elsif Ekind (Scope (Id)) /= E_Protected_Type
2919 and then Present (Scope (Scope (Id))) -- error defense!
2920 and then Ekind (Scope (Scope (Id))) /= E_Protected_Type
2921 then
2922 Conditional_Delay (Id, T);
2923 end if;
2925 -- Check that constraint_error is raised for a scalar subtype
2926 -- indication when the lower or upper bound of a non-null range
2927 -- lies outside the range of the type mark.
2929 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
2930 if Is_Scalar_Type (Etype (Id))
2931 and then Scalar_Range (Id) /=
2932 Scalar_Range (Etype (Subtype_Mark
2933 (Subtype_Indication (N))))
2934 then
2935 Apply_Range_Check
2936 (Scalar_Range (Id),
2937 Etype (Subtype_Mark (Subtype_Indication (N))));
2939 elsif Is_Array_Type (Etype (Id))
2940 and then Present (First_Index (Id))
2941 then
2942 -- This really should be a subprogram that finds the indications
2943 -- to check???
2945 if ((Nkind (First_Index (Id)) = N_Identifier
2946 and then Ekind (Entity (First_Index (Id))) in Scalar_Kind)
2947 or else Nkind (First_Index (Id)) = N_Subtype_Indication)
2948 and then
2949 Nkind (Scalar_Range (Etype (First_Index (Id)))) = N_Range
2950 then
2951 declare
2952 Target_Typ : constant Entity_Id :=
2953 Etype
2954 (First_Index (Etype
2955 (Subtype_Mark (Subtype_Indication (N)))));
2956 begin
2957 R_Checks :=
2958 Range_Check
2959 (Scalar_Range (Etype (First_Index (Id))),
2960 Target_Typ,
2961 Etype (First_Index (Id)),
2962 Defining_Identifier (N));
2964 Insert_Range_Checks
2965 (R_Checks,
2967 Target_Typ,
2968 Sloc (Defining_Identifier (N)));
2969 end;
2970 end if;
2971 end if;
2972 end if;
2974 Check_Eliminated (Id);
2975 end Analyze_Subtype_Declaration;
2977 --------------------------------
2978 -- Analyze_Subtype_Indication --
2979 --------------------------------
2981 procedure Analyze_Subtype_Indication (N : Node_Id) is
2982 T : constant Entity_Id := Subtype_Mark (N);
2983 R : constant Node_Id := Range_Expression (Constraint (N));
2985 begin
2986 Analyze (T);
2988 if R /= Error then
2989 Analyze (R);
2990 Set_Etype (N, Etype (R));
2991 else
2992 Set_Error_Posted (R);
2993 Set_Error_Posted (T);
2994 end if;
2995 end Analyze_Subtype_Indication;
2997 ------------------------------
2998 -- Analyze_Type_Declaration --
2999 ------------------------------
3001 procedure Analyze_Type_Declaration (N : Node_Id) is
3002 Def : constant Node_Id := Type_Definition (N);
3003 Def_Id : constant Entity_Id := Defining_Identifier (N);
3004 T : Entity_Id;
3005 Prev : Entity_Id;
3007 Is_Remote : constant Boolean :=
3008 (Is_Remote_Types (Current_Scope)
3009 or else Is_Remote_Call_Interface (Current_Scope))
3010 and then not (In_Private_Part (Current_Scope)
3011 or else
3012 In_Package_Body (Current_Scope));
3014 begin
3015 Prev := Find_Type_Name (N);
3017 -- The full view, if present, now points to the current type
3019 -- Ada 2005 (AI-50217): If the type was previously decorated when
3020 -- imported through a LIMITED WITH clause, it appears as incomplete
3021 -- but has no full view.
3023 if Ekind (Prev) = E_Incomplete_Type
3024 and then Present (Full_View (Prev))
3025 then
3026 T := Full_View (Prev);
3027 else
3028 T := Prev;
3029 end if;
3031 Set_Is_Pure (T, Is_Pure (Current_Scope));
3033 -- We set the flag Is_First_Subtype here. It is needed to set the
3034 -- corresponding flag for the Implicit class-wide-type created
3035 -- during tagged types processing.
3037 Set_Is_First_Subtype (T, True);
3039 -- Only composite types other than array types are allowed to have
3040 -- discriminants.
3042 case Nkind (Def) is
3044 -- For derived types, the rule will be checked once we've figured
3045 -- out the parent type.
3047 when N_Derived_Type_Definition =>
3048 null;
3050 -- For record types, discriminants are allowed
3052 when N_Record_Definition =>
3053 null;
3055 when others =>
3056 if Present (Discriminant_Specifications (N)) then
3057 Error_Msg_N
3058 ("elementary or array type cannot have discriminants",
3059 Defining_Identifier
3060 (First (Discriminant_Specifications (N))));
3061 end if;
3062 end case;
3064 -- Elaborate the type definition according to kind, and generate
3065 -- subsidiary (implicit) subtypes where needed. We skip this if
3066 -- it was already done (this happens during the reanalysis that
3067 -- follows a call to the high level optimizer).
3069 if not Analyzed (T) then
3070 Set_Analyzed (T);
3072 case Nkind (Def) is
3074 when N_Access_To_Subprogram_Definition =>
3075 Access_Subprogram_Declaration (T, Def);
3077 -- If this is a remote access to subprogram, we must create
3078 -- the equivalent fat pointer type, and related subprograms.
3080 if Is_Remote then
3081 Process_Remote_AST_Declaration (N);
3082 end if;
3084 -- Validate categorization rule against access type declaration
3085 -- usually a violation in Pure unit, Shared_Passive unit.
3087 Validate_Access_Type_Declaration (T, N);
3089 when N_Access_To_Object_Definition =>
3090 Access_Type_Declaration (T, Def);
3092 -- Validate categorization rule against access type declaration
3093 -- usually a violation in Pure unit, Shared_Passive unit.
3095 Validate_Access_Type_Declaration (T, N);
3097 -- If we are in a Remote_Call_Interface package and define
3098 -- a RACW, Read and Write attribute must be added.
3100 if Is_Remote
3101 and then Is_Remote_Access_To_Class_Wide_Type (Def_Id)
3102 then
3103 Add_RACW_Features (Def_Id);
3104 end if;
3106 -- Set no strict aliasing flag if config pragma seen
3108 if Opt.No_Strict_Aliasing then
3109 Set_No_Strict_Aliasing (Base_Type (Def_Id));
3110 end if;
3112 when N_Array_Type_Definition =>
3113 Array_Type_Declaration (T, Def);
3115 when N_Derived_Type_Definition =>
3116 Derived_Type_Declaration (T, N, T /= Def_Id);
3118 when N_Enumeration_Type_Definition =>
3119 Enumeration_Type_Declaration (T, Def);
3121 when N_Floating_Point_Definition =>
3122 Floating_Point_Type_Declaration (T, Def);
3124 when N_Decimal_Fixed_Point_Definition =>
3125 Decimal_Fixed_Point_Type_Declaration (T, Def);
3127 when N_Ordinary_Fixed_Point_Definition =>
3128 Ordinary_Fixed_Point_Type_Declaration (T, Def);
3130 when N_Signed_Integer_Type_Definition =>
3131 Signed_Integer_Type_Declaration (T, Def);
3133 when N_Modular_Type_Definition =>
3134 Modular_Type_Declaration (T, Def);
3136 when N_Record_Definition =>
3137 Record_Type_Declaration (T, N, Prev);
3139 when others =>
3140 raise Program_Error;
3142 end case;
3143 end if;
3145 if Etype (T) = Any_Type then
3146 return;
3147 end if;
3149 -- Some common processing for all types
3151 Set_Depends_On_Private (T, Has_Private_Component (T));
3153 -- Both the declared entity, and its anonymous base type if one
3154 -- was created, need freeze nodes allocated.
3156 declare
3157 B : constant Entity_Id := Base_Type (T);
3159 begin
3160 -- In the case where the base type is different from the first
3161 -- subtype, we pre-allocate a freeze node, and set the proper link
3162 -- to the first subtype. Freeze_Entity will use this preallocated
3163 -- freeze node when it freezes the entity.
3165 if B /= T then
3166 Ensure_Freeze_Node (B);
3167 Set_First_Subtype_Link (Freeze_Node (B), T);
3168 end if;
3170 if not From_With_Type (T) then
3171 Set_Has_Delayed_Freeze (T);
3172 end if;
3173 end;
3175 -- Case of T is the full declaration of some private type which has
3176 -- been swapped in Defining_Identifier (N).
3178 if T /= Def_Id and then Is_Private_Type (Def_Id) then
3179 Process_Full_View (N, T, Def_Id);
3181 -- Record the reference. The form of this is a little strange,
3182 -- since the full declaration has been swapped in. So the first
3183 -- parameter here represents the entity to which a reference is
3184 -- made which is the "real" entity, i.e. the one swapped in,
3185 -- and the second parameter provides the reference location.
3187 Generate_Reference (T, T, 'c');
3188 Set_Completion_Referenced (Def_Id);
3190 -- For completion of incomplete type, process incomplete dependents
3191 -- and always mark the full type as referenced (it is the incomplete
3192 -- type that we get for any real reference).
3194 elsif Ekind (Prev) = E_Incomplete_Type then
3195 Process_Incomplete_Dependents (N, T, Prev);
3196 Generate_Reference (Prev, Def_Id, 'c');
3197 Set_Completion_Referenced (Def_Id);
3199 -- If not private type or incomplete type completion, this is a real
3200 -- definition of a new entity, so record it.
3202 else
3203 Generate_Definition (Def_Id);
3204 end if;
3206 Check_Eliminated (Def_Id);
3207 end Analyze_Type_Declaration;
3209 --------------------------
3210 -- Analyze_Variant_Part --
3211 --------------------------
3213 procedure Analyze_Variant_Part (N : Node_Id) is
3215 procedure Non_Static_Choice_Error (Choice : Node_Id);
3216 -- Error routine invoked by the generic instantiation below when
3217 -- the variant part has a non static choice.
3219 procedure Process_Declarations (Variant : Node_Id);
3220 -- Analyzes all the declarations associated with a Variant.
3221 -- Needed by the generic instantiation below.
3223 package Variant_Choices_Processing is new
3224 Generic_Choices_Processing
3225 (Get_Alternatives => Variants,
3226 Get_Choices => Discrete_Choices,
3227 Process_Empty_Choice => No_OP,
3228 Process_Non_Static_Choice => Non_Static_Choice_Error,
3229 Process_Associated_Node => Process_Declarations);
3230 use Variant_Choices_Processing;
3231 -- Instantiation of the generic choice processing package
3233 -----------------------------
3234 -- Non_Static_Choice_Error --
3235 -----------------------------
3237 procedure Non_Static_Choice_Error (Choice : Node_Id) is
3238 begin
3239 Flag_Non_Static_Expr
3240 ("choice given in variant part is not static!", Choice);
3241 end Non_Static_Choice_Error;
3243 --------------------------
3244 -- Process_Declarations --
3245 --------------------------
3247 procedure Process_Declarations (Variant : Node_Id) is
3248 begin
3249 if not Null_Present (Component_List (Variant)) then
3250 Analyze_Declarations (Component_Items (Component_List (Variant)));
3252 if Present (Variant_Part (Component_List (Variant))) then
3253 Analyze (Variant_Part (Component_List (Variant)));
3254 end if;
3255 end if;
3256 end Process_Declarations;
3258 -- Variables local to Analyze_Case_Statement
3260 Discr_Name : Node_Id;
3261 Discr_Type : Entity_Id;
3263 Case_Table : Choice_Table_Type (1 .. Number_Of_Choices (N));
3264 Last_Choice : Nat;
3265 Dont_Care : Boolean;
3266 Others_Present : Boolean := False;
3268 -- Start of processing for Analyze_Variant_Part
3270 begin
3271 Discr_Name := Name (N);
3272 Analyze (Discr_Name);
3274 if Ekind (Entity (Discr_Name)) /= E_Discriminant then
3275 Error_Msg_N ("invalid discriminant name in variant part", Discr_Name);
3276 end if;
3278 Discr_Type := Etype (Entity (Discr_Name));
3280 if not Is_Discrete_Type (Discr_Type) then
3281 Error_Msg_N
3282 ("discriminant in a variant part must be of a discrete type",
3283 Name (N));
3284 return;
3285 end if;
3287 -- Call the instantiated Analyze_Choices which does the rest of the work
3289 Analyze_Choices
3290 (N, Discr_Type, Case_Table, Last_Choice, Dont_Care, Others_Present);
3291 end Analyze_Variant_Part;
3293 ----------------------------
3294 -- Array_Type_Declaration --
3295 ----------------------------
3297 procedure Array_Type_Declaration (T : in out Entity_Id; Def : Node_Id) is
3298 Component_Def : constant Node_Id := Component_Definition (Def);
3299 Element_Type : Entity_Id;
3300 Implicit_Base : Entity_Id;
3301 Index : Node_Id;
3302 Related_Id : Entity_Id := Empty;
3303 Nb_Index : Nat;
3304 P : constant Node_Id := Parent (Def);
3305 Priv : Entity_Id;
3307 begin
3308 if Nkind (Def) = N_Constrained_Array_Definition then
3309 Index := First (Discrete_Subtype_Definitions (Def));
3310 else
3311 Index := First (Subtype_Marks (Def));
3312 end if;
3314 -- Find proper names for the implicit types which may be public.
3315 -- in case of anonymous arrays we use the name of the first object
3316 -- of that type as prefix.
3318 if No (T) then
3319 Related_Id := Defining_Identifier (P);
3320 else
3321 Related_Id := T;
3322 end if;
3324 Nb_Index := 1;
3325 while Present (Index) loop
3326 Analyze (Index);
3327 Make_Index (Index, P, Related_Id, Nb_Index);
3328 Next_Index (Index);
3329 Nb_Index := Nb_Index + 1;
3330 end loop;
3332 if Present (Subtype_Indication (Component_Def)) then
3333 Element_Type := Process_Subtype (Subtype_Indication (Component_Def),
3334 P, Related_Id, 'C');
3336 -- Ada 2005 (AI-230): Access Definition case
3338 else pragma Assert (Present (Access_Definition (Component_Def)));
3339 Element_Type := Access_Definition
3340 (Related_Nod => Related_Id,
3341 N => Access_Definition (Component_Def));
3342 Set_Is_Local_Anonymous_Access (Element_Type);
3344 -- Ada 2005 (AI-230): In case of components that are anonymous
3345 -- access types the level of accessibility depends on the enclosing
3346 -- type declaration
3348 Set_Scope (Element_Type, Current_Scope); -- Ada 2005 (AI-230)
3350 -- Ada 2005 (AI-254)
3352 declare
3353 CD : constant Node_Id :=
3354 Access_To_Subprogram_Definition
3355 (Access_Definition (Component_Def));
3356 begin
3357 if Present (CD) and then Protected_Present (CD) then
3358 Element_Type :=
3359 Replace_Anonymous_Access_To_Protected_Subprogram
3360 (Def, Element_Type);
3361 end if;
3362 end;
3363 end if;
3365 -- Constrained array case
3367 if No (T) then
3368 T := Create_Itype (E_Void, P, Related_Id, 'T');
3369 end if;
3371 if Nkind (Def) = N_Constrained_Array_Definition then
3373 -- Establish Implicit_Base as unconstrained base type
3375 Implicit_Base := Create_Itype (E_Array_Type, P, Related_Id, 'B');
3377 Init_Size_Align (Implicit_Base);
3378 Set_Etype (Implicit_Base, Implicit_Base);
3379 Set_Scope (Implicit_Base, Current_Scope);
3380 Set_Has_Delayed_Freeze (Implicit_Base);
3382 -- The constrained array type is a subtype of the unconstrained one
3384 Set_Ekind (T, E_Array_Subtype);
3385 Init_Size_Align (T);
3386 Set_Etype (T, Implicit_Base);
3387 Set_Scope (T, Current_Scope);
3388 Set_Is_Constrained (T, True);
3389 Set_First_Index (T, First (Discrete_Subtype_Definitions (Def)));
3390 Set_Has_Delayed_Freeze (T);
3392 -- Complete setup of implicit base type
3394 Set_First_Index (Implicit_Base, First_Index (T));
3395 Set_Component_Type (Implicit_Base, Element_Type);
3396 Set_Has_Task (Implicit_Base, Has_Task (Element_Type));
3397 Set_Component_Size (Implicit_Base, Uint_0);
3398 Set_Has_Controlled_Component
3399 (Implicit_Base, Has_Controlled_Component
3400 (Element_Type)
3401 or else
3402 Is_Controlled (Element_Type));
3403 Set_Finalize_Storage_Only
3404 (Implicit_Base, Finalize_Storage_Only
3405 (Element_Type));
3407 -- Unconstrained array case
3409 else
3410 Set_Ekind (T, E_Array_Type);
3411 Init_Size_Align (T);
3412 Set_Etype (T, T);
3413 Set_Scope (T, Current_Scope);
3414 Set_Component_Size (T, Uint_0);
3415 Set_Is_Constrained (T, False);
3416 Set_First_Index (T, First (Subtype_Marks (Def)));
3417 Set_Has_Delayed_Freeze (T, True);
3418 Set_Has_Task (T, Has_Task (Element_Type));
3419 Set_Has_Controlled_Component (T, Has_Controlled_Component
3420 (Element_Type)
3421 or else
3422 Is_Controlled (Element_Type));
3423 Set_Finalize_Storage_Only (T, Finalize_Storage_Only
3424 (Element_Type));
3425 end if;
3427 Set_Component_Type (Base_Type (T), Element_Type);
3429 if Aliased_Present (Component_Definition (Def)) then
3430 Set_Has_Aliased_Components (Etype (T));
3431 end if;
3433 -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the
3434 -- array type to ensure that objects of this type are initialized.
3436 if Ada_Version >= Ada_05
3437 and then Can_Never_Be_Null (Element_Type)
3438 then
3439 Set_Can_Never_Be_Null (T);
3441 if Null_Exclusion_Present (Component_Definition (Def))
3442 and then Can_Never_Be_Null (Element_Type)
3444 -- No need to check itypes because in their case this check
3445 -- was done at their point of creation
3447 and then not Is_Itype (Element_Type)
3448 then
3449 Error_Msg_N
3450 ("(Ada 2005) already a null-excluding type",
3451 Subtype_Indication (Component_Definition (Def)));
3452 end if;
3453 end if;
3455 Priv := Private_Component (Element_Type);
3457 if Present (Priv) then
3459 -- Check for circular definitions
3461 if Priv = Any_Type then
3462 Set_Component_Type (Etype (T), Any_Type);
3464 -- There is a gap in the visibility of operations on the composite
3465 -- type only if the component type is defined in a different scope.
3467 elsif Scope (Priv) = Current_Scope then
3468 null;
3470 elsif Is_Limited_Type (Priv) then
3471 Set_Is_Limited_Composite (Etype (T));
3472 Set_Is_Limited_Composite (T);
3473 else
3474 Set_Is_Private_Composite (Etype (T));
3475 Set_Is_Private_Composite (T);
3476 end if;
3477 end if;
3479 -- Create a concatenation operator for the new type. Internal
3480 -- array types created for packed entities do not need such, they
3481 -- are compatible with the user-defined type.
3483 if Number_Dimensions (T) = 1
3484 and then not Is_Packed_Array_Type (T)
3485 then
3486 New_Concatenation_Op (T);
3487 end if;
3489 -- In the case of an unconstrained array the parser has already
3490 -- verified that all the indices are unconstrained but we still
3491 -- need to make sure that the element type is constrained.
3493 if Is_Indefinite_Subtype (Element_Type) then
3494 Error_Msg_N
3495 ("unconstrained element type in array declaration",
3496 Subtype_Indication (Component_Def));
3498 elsif Is_Abstract (Element_Type) then
3499 Error_Msg_N
3500 ("the type of a component cannot be abstract",
3501 Subtype_Indication (Component_Def));
3502 end if;
3504 end Array_Type_Declaration;
3506 ------------------------------------------------------
3507 -- Replace_Anonymous_Access_To_Protected_Subprogram --
3508 ------------------------------------------------------
3510 function Replace_Anonymous_Access_To_Protected_Subprogram
3511 (N : Node_Id;
3512 Prev_E : Entity_Id) return Entity_Id
3514 Loc : constant Source_Ptr := Sloc (N);
3516 Curr_Scope : constant Scope_Stack_Entry :=
3517 Scope_Stack.Table (Scope_Stack.Last);
3519 Anon : constant Entity_Id :=
3520 Make_Defining_Identifier (Loc,
3521 Chars => New_Internal_Name ('S'));
3523 Acc : Node_Id;
3524 Comp : Node_Id;
3525 Decl : Node_Id;
3526 P : Node_Id;
3528 begin
3529 Set_Is_Internal (Anon);
3531 case Nkind (N) is
3532 when N_Component_Declaration |
3533 N_Unconstrained_Array_Definition |
3534 N_Constrained_Array_Definition =>
3535 Comp := Component_Definition (N);
3536 Acc := Access_Definition (Component_Definition (N));
3538 when N_Discriminant_Specification =>
3539 Comp := Discriminant_Type (N);
3540 Acc := Discriminant_Type (N);
3542 when N_Parameter_Specification =>
3543 Comp := Parameter_Type (N);
3544 Acc := Parameter_Type (N);
3546 when others =>
3547 raise Program_Error;
3548 end case;
3550 Decl := Make_Full_Type_Declaration (Loc,
3551 Defining_Identifier => Anon,
3552 Type_Definition =>
3553 Copy_Separate_Tree (Access_To_Subprogram_Definition (Acc)));
3555 Mark_Rewrite_Insertion (Decl);
3557 -- Insert the new declaration in the nearest enclosing scope
3559 P := Parent (N);
3560 while Present (P) and then not Has_Declarations (P) loop
3561 P := Parent (P);
3562 end loop;
3564 pragma Assert (Present (P));
3566 if Nkind (P) = N_Package_Specification then
3567 Prepend (Decl, Visible_Declarations (P));
3568 else
3569 Prepend (Decl, Declarations (P));
3570 end if;
3572 -- Replace the anonymous type with an occurrence of the new declaration.
3573 -- In all cases the rewritten node does not have the null-exclusion
3574 -- attribute because (if present) it was already inherited by the
3575 -- anonymous entity (Anon). Thus, in case of components we do not
3576 -- inherit this attribute.
3578 if Nkind (N) = N_Parameter_Specification then
3579 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
3580 Set_Etype (Defining_Identifier (N), Anon);
3581 Set_Null_Exclusion_Present (N, False);
3582 else
3583 Rewrite (Comp,
3584 Make_Component_Definition (Loc,
3585 Subtype_Indication => New_Occurrence_Of (Anon, Loc)));
3586 end if;
3588 Mark_Rewrite_Insertion (Comp);
3590 -- Temporarily remove the current scope from the stack to add the new
3591 -- declarations to the enclosing scope
3593 Scope_Stack.Decrement_Last;
3594 Analyze (Decl);
3595 Scope_Stack.Append (Curr_Scope);
3597 Set_Original_Access_Type (Anon, Prev_E);
3598 return Anon;
3599 end Replace_Anonymous_Access_To_Protected_Subprogram;
3601 -------------------------------
3602 -- Build_Derived_Access_Type --
3603 -------------------------------
3605 procedure Build_Derived_Access_Type
3606 (N : Node_Id;
3607 Parent_Type : Entity_Id;
3608 Derived_Type : Entity_Id)
3610 S : constant Node_Id := Subtype_Indication (Type_Definition (N));
3612 Desig_Type : Entity_Id;
3613 Discr : Entity_Id;
3614 Discr_Con_Elist : Elist_Id;
3615 Discr_Con_El : Elmt_Id;
3616 Subt : Entity_Id;
3618 begin
3619 -- Set the designated type so it is available in case this is
3620 -- an access to a self-referential type, e.g. a standard list
3621 -- type with a next pointer. Will be reset after subtype is built.
3623 Set_Directly_Designated_Type
3624 (Derived_Type, Designated_Type (Parent_Type));
3626 Subt := Process_Subtype (S, N);
3628 if Nkind (S) /= N_Subtype_Indication
3629 and then Subt /= Base_Type (Subt)
3630 then
3631 Set_Ekind (Derived_Type, E_Access_Subtype);
3632 end if;
3634 if Ekind (Derived_Type) = E_Access_Subtype then
3635 declare
3636 Pbase : constant Entity_Id := Base_Type (Parent_Type);
3637 Ibase : constant Entity_Id :=
3638 Create_Itype (Ekind (Pbase), N, Derived_Type, 'B');
3639 Svg_Chars : constant Name_Id := Chars (Ibase);
3640 Svg_Next_E : constant Entity_Id := Next_Entity (Ibase);
3642 begin
3643 Copy_Node (Pbase, Ibase);
3645 Set_Chars (Ibase, Svg_Chars);
3646 Set_Next_Entity (Ibase, Svg_Next_E);
3647 Set_Sloc (Ibase, Sloc (Derived_Type));
3648 Set_Scope (Ibase, Scope (Derived_Type));
3649 Set_Freeze_Node (Ibase, Empty);
3650 Set_Is_Frozen (Ibase, False);
3651 Set_Comes_From_Source (Ibase, False);
3652 Set_Is_First_Subtype (Ibase, False);
3654 Set_Etype (Ibase, Pbase);
3655 Set_Etype (Derived_Type, Ibase);
3656 end;
3657 end if;
3659 Set_Directly_Designated_Type
3660 (Derived_Type, Designated_Type (Subt));
3662 Set_Is_Constrained (Derived_Type, Is_Constrained (Subt));
3663 Set_Is_Access_Constant (Derived_Type, Is_Access_Constant (Parent_Type));
3664 Set_Size_Info (Derived_Type, Parent_Type);
3665 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
3666 Set_Depends_On_Private (Derived_Type,
3667 Has_Private_Component (Derived_Type));
3668 Conditional_Delay (Derived_Type, Subt);
3670 -- Ada 2005 (AI-231). Set the null-exclusion attribute
3672 if Null_Exclusion_Present (Type_Definition (N))
3673 or else Can_Never_Be_Null (Parent_Type)
3674 then
3675 Set_Can_Never_Be_Null (Derived_Type);
3676 end if;
3678 -- Note: we do not copy the Storage_Size_Variable, since
3679 -- we always go to the root type for this information.
3681 -- Apply range checks to discriminants for derived record case
3682 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
3684 Desig_Type := Designated_Type (Derived_Type);
3685 if Is_Composite_Type (Desig_Type)
3686 and then (not Is_Array_Type (Desig_Type))
3687 and then Has_Discriminants (Desig_Type)
3688 and then Base_Type (Desig_Type) /= Desig_Type
3689 then
3690 Discr_Con_Elist := Discriminant_Constraint (Desig_Type);
3691 Discr_Con_El := First_Elmt (Discr_Con_Elist);
3693 Discr := First_Discriminant (Base_Type (Desig_Type));
3694 while Present (Discr_Con_El) loop
3695 Apply_Range_Check (Node (Discr_Con_El), Etype (Discr));
3696 Next_Elmt (Discr_Con_El);
3697 Next_Discriminant (Discr);
3698 end loop;
3699 end if;
3700 end Build_Derived_Access_Type;
3702 ------------------------------
3703 -- Build_Derived_Array_Type --
3704 ------------------------------
3706 procedure Build_Derived_Array_Type
3707 (N : Node_Id;
3708 Parent_Type : Entity_Id;
3709 Derived_Type : Entity_Id)
3711 Loc : constant Source_Ptr := Sloc (N);
3712 Tdef : constant Node_Id := Type_Definition (N);
3713 Indic : constant Node_Id := Subtype_Indication (Tdef);
3714 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
3715 Implicit_Base : Entity_Id;
3716 New_Indic : Node_Id;
3718 procedure Make_Implicit_Base;
3719 -- If the parent subtype is constrained, the derived type is a
3720 -- subtype of an implicit base type derived from the parent base.
3722 ------------------------
3723 -- Make_Implicit_Base --
3724 ------------------------
3726 procedure Make_Implicit_Base is
3727 begin
3728 Implicit_Base :=
3729 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
3731 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
3732 Set_Etype (Implicit_Base, Parent_Base);
3734 Copy_Array_Subtype_Attributes (Implicit_Base, Parent_Base);
3735 Copy_Array_Base_Type_Attributes (Implicit_Base, Parent_Base);
3737 Set_Has_Delayed_Freeze (Implicit_Base, True);
3738 end Make_Implicit_Base;
3740 -- Start of processing for Build_Derived_Array_Type
3742 begin
3743 if not Is_Constrained (Parent_Type) then
3744 if Nkind (Indic) /= N_Subtype_Indication then
3745 Set_Ekind (Derived_Type, E_Array_Type);
3747 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
3748 Copy_Array_Base_Type_Attributes (Derived_Type, Parent_Type);
3750 Set_Has_Delayed_Freeze (Derived_Type, True);
3752 else
3753 Make_Implicit_Base;
3754 Set_Etype (Derived_Type, Implicit_Base);
3756 New_Indic :=
3757 Make_Subtype_Declaration (Loc,
3758 Defining_Identifier => Derived_Type,
3759 Subtype_Indication =>
3760 Make_Subtype_Indication (Loc,
3761 Subtype_Mark => New_Reference_To (Implicit_Base, Loc),
3762 Constraint => Constraint (Indic)));
3764 Rewrite (N, New_Indic);
3765 Analyze (N);
3766 end if;
3768 else
3769 if Nkind (Indic) /= N_Subtype_Indication then
3770 Make_Implicit_Base;
3772 Set_Ekind (Derived_Type, Ekind (Parent_Type));
3773 Set_Etype (Derived_Type, Implicit_Base);
3774 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
3776 else
3777 Error_Msg_N ("illegal constraint on constrained type", Indic);
3778 end if;
3779 end if;
3781 -- If parent type is not a derived type itself, and is declared in
3782 -- closed scope (e.g. a subprogram), then we must explicitly introduce
3783 -- the new type's concatenation operator since Derive_Subprograms
3784 -- will not inherit the parent's operator. If the parent type is
3785 -- unconstrained, the operator is of the unconstrained base type.
3787 if Number_Dimensions (Parent_Type) = 1
3788 and then not Is_Limited_Type (Parent_Type)
3789 and then not Is_Derived_Type (Parent_Type)
3790 and then not Is_Package (Scope (Base_Type (Parent_Type)))
3791 then
3792 if not Is_Constrained (Parent_Type)
3793 and then Is_Constrained (Derived_Type)
3794 then
3795 New_Concatenation_Op (Implicit_Base);
3796 else
3797 New_Concatenation_Op (Derived_Type);
3798 end if;
3799 end if;
3800 end Build_Derived_Array_Type;
3802 -----------------------------------
3803 -- Build_Derived_Concurrent_Type --
3804 -----------------------------------
3806 procedure Build_Derived_Concurrent_Type
3807 (N : Node_Id;
3808 Parent_Type : Entity_Id;
3809 Derived_Type : Entity_Id)
3811 D_Constraint : Node_Id;
3812 Disc_Spec : Node_Id;
3813 Old_Disc : Entity_Id;
3814 New_Disc : Entity_Id;
3816 Constraint_Present : constant Boolean :=
3817 Nkind (Subtype_Indication (Type_Definition (N)))
3818 = N_Subtype_Indication;
3820 begin
3821 Set_Stored_Constraint (Derived_Type, No_Elist);
3823 if Is_Task_Type (Parent_Type) then
3824 Set_Storage_Size_Variable (Derived_Type,
3825 Storage_Size_Variable (Parent_Type));
3826 end if;
3828 if Present (Discriminant_Specifications (N)) then
3829 New_Scope (Derived_Type);
3830 Check_Or_Process_Discriminants (N, Derived_Type);
3831 End_Scope;
3833 elsif Constraint_Present then
3835 -- Build constrained subtype and derive from it
3837 declare
3838 Loc : constant Source_Ptr := Sloc (N);
3839 Anon : constant Entity_Id :=
3840 Make_Defining_Identifier (Loc,
3841 New_External_Name (Chars (Derived_Type), 'T'));
3842 Decl : Node_Id;
3844 begin
3845 Decl :=
3846 Make_Subtype_Declaration (Loc,
3847 Defining_Identifier => Anon,
3848 Subtype_Indication =>
3849 New_Copy_Tree (Subtype_Indication (Type_Definition (N))));
3850 Insert_Before (N, Decl);
3851 Rewrite (Subtype_Indication (Type_Definition (N)),
3852 New_Occurrence_Of (Anon, Loc));
3853 Analyze (Decl);
3854 Set_Analyzed (Derived_Type, False);
3855 Analyze (N);
3856 return;
3857 end;
3858 end if;
3860 -- All attributes are inherited from parent. In particular,
3861 -- entries and the corresponding record type are the same.
3862 -- Discriminants may be renamed, and must be treated separately.
3864 Set_Has_Discriminants
3865 (Derived_Type, Has_Discriminants (Parent_Type));
3866 Set_Corresponding_Record_Type
3867 (Derived_Type, Corresponding_Record_Type (Parent_Type));
3869 if Constraint_Present then
3870 if not Has_Discriminants (Parent_Type) then
3871 Error_Msg_N ("untagged parent must have discriminants", N);
3873 elsif Present (Discriminant_Specifications (N)) then
3875 -- Verify that new discriminants are used to constrain old ones
3877 D_Constraint :=
3878 First
3879 (Constraints
3880 (Constraint (Subtype_Indication (Type_Definition (N)))));
3882 Old_Disc := First_Discriminant (Parent_Type);
3883 New_Disc := First_Discriminant (Derived_Type);
3884 Disc_Spec := First (Discriminant_Specifications (N));
3885 while Present (Old_Disc) and then Present (Disc_Spec) loop
3886 if Nkind (Discriminant_Type (Disc_Spec)) /=
3887 N_Access_Definition
3888 then
3889 Analyze (Discriminant_Type (Disc_Spec));
3891 if not Subtypes_Statically_Compatible (
3892 Etype (Discriminant_Type (Disc_Spec)),
3893 Etype (Old_Disc))
3894 then
3895 Error_Msg_N
3896 ("not statically compatible with parent discriminant",
3897 Discriminant_Type (Disc_Spec));
3898 end if;
3899 end if;
3901 if Nkind (D_Constraint) = N_Identifier
3902 and then Chars (D_Constraint) /=
3903 Chars (Defining_Identifier (Disc_Spec))
3904 then
3905 Error_Msg_N ("new discriminants must constrain old ones",
3906 D_Constraint);
3907 else
3908 Set_Corresponding_Discriminant (New_Disc, Old_Disc);
3909 end if;
3911 Next_Discriminant (Old_Disc);
3912 Next_Discriminant (New_Disc);
3913 Next (Disc_Spec);
3914 end loop;
3916 if Present (Old_Disc) or else Present (Disc_Spec) then
3917 Error_Msg_N ("discriminant mismatch in derivation", N);
3918 end if;
3920 end if;
3922 elsif Present (Discriminant_Specifications (N)) then
3923 Error_Msg_N
3924 ("missing discriminant constraint in untagged derivation",
3926 end if;
3928 if Present (Discriminant_Specifications (N)) then
3929 Old_Disc := First_Discriminant (Parent_Type);
3930 while Present (Old_Disc) loop
3932 if No (Next_Entity (Old_Disc))
3933 or else Ekind (Next_Entity (Old_Disc)) /= E_Discriminant
3934 then
3935 Set_Next_Entity (Last_Entity (Derived_Type),
3936 Next_Entity (Old_Disc));
3937 exit;
3938 end if;
3940 Next_Discriminant (Old_Disc);
3941 end loop;
3943 else
3944 Set_First_Entity (Derived_Type, First_Entity (Parent_Type));
3945 if Has_Discriminants (Parent_Type) then
3946 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
3947 Set_Discriminant_Constraint (
3948 Derived_Type, Discriminant_Constraint (Parent_Type));
3949 end if;
3950 end if;
3952 Set_Last_Entity (Derived_Type, Last_Entity (Parent_Type));
3954 Set_Has_Completion (Derived_Type);
3955 end Build_Derived_Concurrent_Type;
3957 ------------------------------------
3958 -- Build_Derived_Enumeration_Type --
3959 ------------------------------------
3961 procedure Build_Derived_Enumeration_Type
3962 (N : Node_Id;
3963 Parent_Type : Entity_Id;
3964 Derived_Type : Entity_Id)
3966 Loc : constant Source_Ptr := Sloc (N);
3967 Def : constant Node_Id := Type_Definition (N);
3968 Indic : constant Node_Id := Subtype_Indication (Def);
3969 Implicit_Base : Entity_Id;
3970 Literal : Entity_Id;
3971 New_Lit : Entity_Id;
3972 Literals_List : List_Id;
3973 Type_Decl : Node_Id;
3974 Hi, Lo : Node_Id;
3975 Rang_Expr : Node_Id;
3977 begin
3978 -- Since types Standard.Character and Standard.Wide_Character do
3979 -- not have explicit literals lists we need to process types derived
3980 -- from them specially. This is handled by Derived_Standard_Character.
3981 -- If the parent type is a generic type, there are no literals either,
3982 -- and we construct the same skeletal representation as for the generic
3983 -- parent type.
3985 if Root_Type (Parent_Type) = Standard_Character
3986 or else Root_Type (Parent_Type) = Standard_Wide_Character
3987 or else Root_Type (Parent_Type) = Standard_Wide_Wide_Character
3988 then
3989 Derived_Standard_Character (N, Parent_Type, Derived_Type);
3991 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
3992 declare
3993 Lo : Node_Id;
3994 Hi : Node_Id;
3996 begin
3997 Lo :=
3998 Make_Attribute_Reference (Loc,
3999 Attribute_Name => Name_First,
4000 Prefix => New_Reference_To (Derived_Type, Loc));
4001 Set_Etype (Lo, Derived_Type);
4003 Hi :=
4004 Make_Attribute_Reference (Loc,
4005 Attribute_Name => Name_Last,
4006 Prefix => New_Reference_To (Derived_Type, Loc));
4007 Set_Etype (Hi, Derived_Type);
4009 Set_Scalar_Range (Derived_Type,
4010 Make_Range (Loc,
4011 Low_Bound => Lo,
4012 High_Bound => Hi));
4013 end;
4015 else
4016 -- If a constraint is present, analyze the bounds to catch
4017 -- premature usage of the derived literals.
4019 if Nkind (Indic) = N_Subtype_Indication
4020 and then Nkind (Range_Expression (Constraint (Indic))) = N_Range
4021 then
4022 Analyze (Low_Bound (Range_Expression (Constraint (Indic))));
4023 Analyze (High_Bound (Range_Expression (Constraint (Indic))));
4024 end if;
4026 -- Introduce an implicit base type for the derived type even
4027 -- if there is no constraint attached to it, since this seems
4028 -- closer to the Ada semantics. Build a full type declaration
4029 -- tree for the derived type using the implicit base type as
4030 -- the defining identifier. The build a subtype declaration
4031 -- tree which applies the constraint (if any) have it replace
4032 -- the derived type declaration.
4034 Literal := First_Literal (Parent_Type);
4035 Literals_List := New_List;
4036 while Present (Literal)
4037 and then Ekind (Literal) = E_Enumeration_Literal
4038 loop
4039 -- Literals of the derived type have the same representation as
4040 -- those of the parent type, but this representation can be
4041 -- overridden by an explicit representation clause. Indicate
4042 -- that there is no explicit representation given yet. These
4043 -- derived literals are implicit operations of the new type,
4044 -- and can be overridden by explicit ones.
4046 if Nkind (Literal) = N_Defining_Character_Literal then
4047 New_Lit :=
4048 Make_Defining_Character_Literal (Loc, Chars (Literal));
4049 else
4050 New_Lit := Make_Defining_Identifier (Loc, Chars (Literal));
4051 end if;
4053 Set_Ekind (New_Lit, E_Enumeration_Literal);
4054 Set_Enumeration_Pos (New_Lit, Enumeration_Pos (Literal));
4055 Set_Enumeration_Rep (New_Lit, Enumeration_Rep (Literal));
4056 Set_Enumeration_Rep_Expr (New_Lit, Empty);
4057 Set_Alias (New_Lit, Literal);
4058 Set_Is_Known_Valid (New_Lit, True);
4060 Append (New_Lit, Literals_List);
4061 Next_Literal (Literal);
4062 end loop;
4064 Implicit_Base :=
4065 Make_Defining_Identifier (Sloc (Derived_Type),
4066 New_External_Name (Chars (Derived_Type), 'B'));
4068 -- Indicate the proper nature of the derived type. This must
4069 -- be done before analysis of the literals, to recognize cases
4070 -- when a literal may be hidden by a previous explicit function
4071 -- definition (cf. c83031a).
4073 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
4074 Set_Etype (Derived_Type, Implicit_Base);
4076 Type_Decl :=
4077 Make_Full_Type_Declaration (Loc,
4078 Defining_Identifier => Implicit_Base,
4079 Discriminant_Specifications => No_List,
4080 Type_Definition =>
4081 Make_Enumeration_Type_Definition (Loc, Literals_List));
4083 Mark_Rewrite_Insertion (Type_Decl);
4084 Insert_Before (N, Type_Decl);
4085 Analyze (Type_Decl);
4087 -- After the implicit base is analyzed its Etype needs to be changed
4088 -- to reflect the fact that it is derived from the parent type which
4089 -- was ignored during analysis. We also set the size at this point.
4091 Set_Etype (Implicit_Base, Parent_Type);
4093 Set_Size_Info (Implicit_Base, Parent_Type);
4094 Set_RM_Size (Implicit_Base, RM_Size (Parent_Type));
4095 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Type));
4097 Set_Has_Non_Standard_Rep
4098 (Implicit_Base, Has_Non_Standard_Rep
4099 (Parent_Type));
4100 Set_Has_Delayed_Freeze (Implicit_Base);
4102 -- Process the subtype indication including a validation check
4103 -- on the constraint, if any. If a constraint is given, its bounds
4104 -- must be implicitly converted to the new type.
4106 if Nkind (Indic) = N_Subtype_Indication then
4107 declare
4108 R : constant Node_Id :=
4109 Range_Expression (Constraint (Indic));
4111 begin
4112 if Nkind (R) = N_Range then
4113 Hi := Build_Scalar_Bound
4114 (High_Bound (R), Parent_Type, Implicit_Base);
4115 Lo := Build_Scalar_Bound
4116 (Low_Bound (R), Parent_Type, Implicit_Base);
4118 else
4119 -- Constraint is a Range attribute. Replace with the
4120 -- explicit mention of the bounds of the prefix, which must
4121 -- be a subtype.
4123 Analyze (Prefix (R));
4124 Hi :=
4125 Convert_To (Implicit_Base,
4126 Make_Attribute_Reference (Loc,
4127 Attribute_Name => Name_Last,
4128 Prefix =>
4129 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
4131 Lo :=
4132 Convert_To (Implicit_Base,
4133 Make_Attribute_Reference (Loc,
4134 Attribute_Name => Name_First,
4135 Prefix =>
4136 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
4137 end if;
4138 end;
4140 else
4141 Hi :=
4142 Build_Scalar_Bound
4143 (Type_High_Bound (Parent_Type),
4144 Parent_Type, Implicit_Base);
4145 Lo :=
4146 Build_Scalar_Bound
4147 (Type_Low_Bound (Parent_Type),
4148 Parent_Type, Implicit_Base);
4149 end if;
4151 Rang_Expr :=
4152 Make_Range (Loc,
4153 Low_Bound => Lo,
4154 High_Bound => Hi);
4156 -- If we constructed a default range for the case where no range
4157 -- was given, then the expressions in the range must not freeze
4158 -- since they do not correspond to expressions in the source.
4160 if Nkind (Indic) /= N_Subtype_Indication then
4161 Set_Must_Not_Freeze (Lo);
4162 Set_Must_Not_Freeze (Hi);
4163 Set_Must_Not_Freeze (Rang_Expr);
4164 end if;
4166 Rewrite (N,
4167 Make_Subtype_Declaration (Loc,
4168 Defining_Identifier => Derived_Type,
4169 Subtype_Indication =>
4170 Make_Subtype_Indication (Loc,
4171 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
4172 Constraint =>
4173 Make_Range_Constraint (Loc,
4174 Range_Expression => Rang_Expr))));
4176 Analyze (N);
4178 -- If pragma Discard_Names applies on the first subtype of the
4179 -- parent type, then it must be applied on this subtype as well.
4181 if Einfo.Discard_Names (First_Subtype (Parent_Type)) then
4182 Set_Discard_Names (Derived_Type);
4183 end if;
4185 -- Apply a range check. Since this range expression doesn't have an
4186 -- Etype, we have to specifically pass the Source_Typ parameter. Is
4187 -- this right???
4189 if Nkind (Indic) = N_Subtype_Indication then
4190 Apply_Range_Check (Range_Expression (Constraint (Indic)),
4191 Parent_Type,
4192 Source_Typ => Entity (Subtype_Mark (Indic)));
4193 end if;
4194 end if;
4195 end Build_Derived_Enumeration_Type;
4197 --------------------------------
4198 -- Build_Derived_Numeric_Type --
4199 --------------------------------
4201 procedure Build_Derived_Numeric_Type
4202 (N : Node_Id;
4203 Parent_Type : Entity_Id;
4204 Derived_Type : Entity_Id)
4206 Loc : constant Source_Ptr := Sloc (N);
4207 Tdef : constant Node_Id := Type_Definition (N);
4208 Indic : constant Node_Id := Subtype_Indication (Tdef);
4209 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
4210 No_Constraint : constant Boolean := Nkind (Indic) /=
4211 N_Subtype_Indication;
4212 Implicit_Base : Entity_Id;
4214 Lo : Node_Id;
4215 Hi : Node_Id;
4217 begin
4218 -- Process the subtype indication including a validation check on
4219 -- the constraint if any.
4221 Discard_Node (Process_Subtype (Indic, N));
4223 -- Introduce an implicit base type for the derived type even if there
4224 -- is no constraint attached to it, since this seems closer to the Ada
4225 -- semantics.
4227 Implicit_Base :=
4228 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
4230 Set_Etype (Implicit_Base, Parent_Base);
4231 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
4232 Set_Size_Info (Implicit_Base, Parent_Base);
4233 Set_RM_Size (Implicit_Base, RM_Size (Parent_Base));
4234 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Base));
4235 Set_Parent (Implicit_Base, Parent (Derived_Type));
4237 if Is_Discrete_Or_Fixed_Point_Type (Parent_Base) then
4238 Set_RM_Size (Implicit_Base, RM_Size (Parent_Base));
4239 end if;
4241 Set_Has_Delayed_Freeze (Implicit_Base);
4243 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
4244 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
4246 Set_Scalar_Range (Implicit_Base,
4247 Make_Range (Loc,
4248 Low_Bound => Lo,
4249 High_Bound => Hi));
4251 if Has_Infinities (Parent_Base) then
4252 Set_Includes_Infinities (Scalar_Range (Implicit_Base));
4253 end if;
4255 -- The Derived_Type, which is the entity of the declaration, is a
4256 -- subtype of the implicit base. Its Ekind is a subtype, even in the
4257 -- absence of an explicit constraint.
4259 Set_Etype (Derived_Type, Implicit_Base);
4261 -- If we did not have a constraint, then the Ekind is set from the
4262 -- parent type (otherwise Process_Subtype has set the bounds)
4264 if No_Constraint then
4265 Set_Ekind (Derived_Type, Subtype_Kind (Ekind (Parent_Type)));
4266 end if;
4268 -- If we did not have a range constraint, then set the range from the
4269 -- parent type. Otherwise, the call to Process_Subtype has set the
4270 -- bounds.
4272 if No_Constraint
4273 or else not Has_Range_Constraint (Indic)
4274 then
4275 Set_Scalar_Range (Derived_Type,
4276 Make_Range (Loc,
4277 Low_Bound => New_Copy_Tree (Type_Low_Bound (Parent_Type)),
4278 High_Bound => New_Copy_Tree (Type_High_Bound (Parent_Type))));
4279 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
4281 if Has_Infinities (Parent_Type) then
4282 Set_Includes_Infinities (Scalar_Range (Derived_Type));
4283 end if;
4284 end if;
4286 -- Set remaining type-specific fields, depending on numeric type
4288 if Is_Modular_Integer_Type (Parent_Type) then
4289 Set_Modulus (Implicit_Base, Modulus (Parent_Base));
4291 Set_Non_Binary_Modulus
4292 (Implicit_Base, Non_Binary_Modulus (Parent_Base));
4294 elsif Is_Floating_Point_Type (Parent_Type) then
4296 -- Digits of base type is always copied from the digits value of
4297 -- the parent base type, but the digits of the derived type will
4298 -- already have been set if there was a constraint present.
4300 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
4301 Set_Vax_Float (Implicit_Base, Vax_Float (Parent_Base));
4303 if No_Constraint then
4304 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Type));
4305 end if;
4307 elsif Is_Fixed_Point_Type (Parent_Type) then
4309 -- Small of base type and derived type are always copied from the
4310 -- parent base type, since smalls never change. The delta of the
4311 -- base type is also copied from the parent base type. However the
4312 -- delta of the derived type will have been set already if a
4313 -- constraint was present.
4315 Set_Small_Value (Derived_Type, Small_Value (Parent_Base));
4316 Set_Small_Value (Implicit_Base, Small_Value (Parent_Base));
4317 Set_Delta_Value (Implicit_Base, Delta_Value (Parent_Base));
4319 if No_Constraint then
4320 Set_Delta_Value (Derived_Type, Delta_Value (Parent_Type));
4321 end if;
4323 -- The scale and machine radix in the decimal case are always
4324 -- copied from the parent base type.
4326 if Is_Decimal_Fixed_Point_Type (Parent_Type) then
4327 Set_Scale_Value (Derived_Type, Scale_Value (Parent_Base));
4328 Set_Scale_Value (Implicit_Base, Scale_Value (Parent_Base));
4330 Set_Machine_Radix_10
4331 (Derived_Type, Machine_Radix_10 (Parent_Base));
4332 Set_Machine_Radix_10
4333 (Implicit_Base, Machine_Radix_10 (Parent_Base));
4335 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
4337 if No_Constraint then
4338 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Base));
4340 else
4341 -- the analysis of the subtype_indication sets the
4342 -- digits value of the derived type.
4344 null;
4345 end if;
4346 end if;
4347 end if;
4349 -- The type of the bounds is that of the parent type, and they
4350 -- must be converted to the derived type.
4352 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
4354 -- The implicit_base should be frozen when the derived type is frozen,
4355 -- but note that it is used in the conversions of the bounds. For fixed
4356 -- types we delay the determination of the bounds until the proper
4357 -- freezing point. For other numeric types this is rejected by GCC, for
4358 -- reasons that are currently unclear (???), so we choose to freeze the
4359 -- implicit base now. In the case of integers and floating point types
4360 -- this is harmless because subsequent representation clauses cannot
4361 -- affect anything, but it is still baffling that we cannot use the
4362 -- same mechanism for all derived numeric types.
4364 if Is_Fixed_Point_Type (Parent_Type) then
4365 Conditional_Delay (Implicit_Base, Parent_Type);
4366 else
4367 Freeze_Before (N, Implicit_Base);
4368 end if;
4369 end Build_Derived_Numeric_Type;
4371 --------------------------------
4372 -- Build_Derived_Private_Type --
4373 --------------------------------
4375 procedure Build_Derived_Private_Type
4376 (N : Node_Id;
4377 Parent_Type : Entity_Id;
4378 Derived_Type : Entity_Id;
4379 Is_Completion : Boolean;
4380 Derive_Subps : Boolean := True)
4382 Der_Base : Entity_Id;
4383 Discr : Entity_Id;
4384 Full_Decl : Node_Id := Empty;
4385 Full_Der : Entity_Id;
4386 Full_P : Entity_Id;
4387 Last_Discr : Entity_Id;
4388 Par_Scope : constant Entity_Id := Scope (Base_Type (Parent_Type));
4389 Swapped : Boolean := False;
4391 procedure Copy_And_Build;
4392 -- Copy derived type declaration, replace parent with its full view,
4393 -- and analyze new declaration.
4395 --------------------
4396 -- Copy_And_Build --
4397 --------------------
4399 procedure Copy_And_Build is
4400 Full_N : Node_Id;
4402 begin
4403 if Ekind (Parent_Type) in Record_Kind
4404 or else
4405 (Ekind (Parent_Type) in Enumeration_Kind
4406 and then Root_Type (Parent_Type) /= Standard_Character
4407 and then Root_Type (Parent_Type) /= Standard_Wide_Character
4408 and then Root_Type (Parent_Type) /= Standard_Wide_Wide_Character
4409 and then not Is_Generic_Type (Root_Type (Parent_Type)))
4410 then
4411 Full_N := New_Copy_Tree (N);
4412 Insert_After (N, Full_N);
4413 Build_Derived_Type (
4414 Full_N, Parent_Type, Full_Der, True, Derive_Subps => False);
4416 else
4417 Build_Derived_Type (
4418 N, Parent_Type, Full_Der, True, Derive_Subps => False);
4419 end if;
4420 end Copy_And_Build;
4422 -- Start of processing for Build_Derived_Private_Type
4424 begin
4425 if Is_Tagged_Type (Parent_Type) then
4426 Build_Derived_Record_Type
4427 (N, Parent_Type, Derived_Type, Derive_Subps);
4428 return;
4430 elsif Has_Discriminants (Parent_Type) then
4431 if Present (Full_View (Parent_Type)) then
4432 if not Is_Completion then
4434 -- Copy declaration for subsequent analysis, to provide a
4435 -- completion for what is a private declaration. Indicate that
4436 -- the full type is internally generated.
4438 Full_Decl := New_Copy_Tree (N);
4439 Full_Der := New_Copy (Derived_Type);
4440 Set_Comes_From_Source (Full_Decl, False);
4442 Insert_After (N, Full_Decl);
4444 else
4445 -- If this is a completion, the full view being built is
4446 -- itself private. We build a subtype of the parent with
4447 -- the same constraints as this full view, to convey to the
4448 -- back end the constrained components and the size of this
4449 -- subtype. If the parent is constrained, its full view can
4450 -- serve as the underlying full view of the derived type.
4452 if No (Discriminant_Specifications (N)) then
4453 if Nkind (Subtype_Indication (Type_Definition (N))) =
4454 N_Subtype_Indication
4455 then
4456 Build_Underlying_Full_View (N, Derived_Type, Parent_Type);
4458 elsif Is_Constrained (Full_View (Parent_Type)) then
4459 Set_Underlying_Full_View (Derived_Type,
4460 Full_View (Parent_Type));
4461 end if;
4463 else
4464 -- If there are new discriminants, the parent subtype is
4465 -- constrained by them, but it is not clear how to build
4466 -- the underlying_full_view in this case ???
4468 null;
4469 end if;
4470 end if;
4471 end if;
4473 -- Build partial view of derived type from partial view of parent
4475 Build_Derived_Record_Type
4476 (N, Parent_Type, Derived_Type, Derive_Subps);
4478 if Present (Full_View (Parent_Type))
4479 and then not Is_Completion
4480 then
4481 if not In_Open_Scopes (Par_Scope)
4482 or else not In_Same_Source_Unit (N, Parent_Type)
4483 then
4484 -- Swap partial and full views temporarily
4486 Install_Private_Declarations (Par_Scope);
4487 Install_Visible_Declarations (Par_Scope);
4488 Swapped := True;
4489 end if;
4491 -- Build full view of derived type from full view of parent which
4492 -- is now installed. Subprograms have been derived on the partial
4493 -- view, the completion does not derive them anew.
4495 if not Is_Tagged_Type (Parent_Type) then
4496 Build_Derived_Record_Type
4497 (Full_Decl, Parent_Type, Full_Der, False);
4499 else
4500 -- If full view of parent is tagged, the completion
4501 -- inherits the proper primitive operations.
4503 Set_Defining_Identifier (Full_Decl, Full_Der);
4504 Build_Derived_Record_Type
4505 (Full_Decl, Parent_Type, Full_Der, Derive_Subps);
4506 Set_Analyzed (Full_Decl);
4507 end if;
4509 if Swapped then
4510 Uninstall_Declarations (Par_Scope);
4512 if In_Open_Scopes (Par_Scope) then
4513 Install_Visible_Declarations (Par_Scope);
4514 end if;
4515 end if;
4517 Der_Base := Base_Type (Derived_Type);
4518 Set_Full_View (Derived_Type, Full_Der);
4519 Set_Full_View (Der_Base, Base_Type (Full_Der));
4521 -- Copy the discriminant list from full view to the partial views
4522 -- (base type and its subtype). Gigi requires that the partial
4523 -- and full views have the same discriminants.
4525 -- Note that since the partial view is pointing to discriminants
4526 -- in the full view, their scope will be that of the full view.
4527 -- This might cause some front end problems and need
4528 -- adjustment???
4530 Discr := First_Discriminant (Base_Type (Full_Der));
4531 Set_First_Entity (Der_Base, Discr);
4533 loop
4534 Last_Discr := Discr;
4535 Next_Discriminant (Discr);
4536 exit when No (Discr);
4537 end loop;
4539 Set_Last_Entity (Der_Base, Last_Discr);
4541 Set_First_Entity (Derived_Type, First_Entity (Der_Base));
4542 Set_Last_Entity (Derived_Type, Last_Entity (Der_Base));
4543 Set_Stored_Constraint (Full_Der, Stored_Constraint (Derived_Type));
4545 else
4546 -- If this is a completion, the derived type stays private
4547 -- and there is no need to create a further full view, except
4548 -- in the unusual case when the derivation is nested within a
4549 -- child unit, see below.
4551 null;
4552 end if;
4554 elsif Present (Full_View (Parent_Type))
4555 and then Has_Discriminants (Full_View (Parent_Type))
4556 then
4557 if Has_Unknown_Discriminants (Parent_Type)
4558 and then Nkind (Subtype_Indication (Type_Definition (N)))
4559 = N_Subtype_Indication
4560 then
4561 Error_Msg_N
4562 ("cannot constrain type with unknown discriminants",
4563 Subtype_Indication (Type_Definition (N)));
4564 return;
4565 end if;
4567 -- If full view of parent is a record type, Build full view as
4568 -- a derivation from the parent's full view. Partial view remains
4569 -- private. For code generation and linking, the full view must
4570 -- have the same public status as the partial one. This full view
4571 -- is only needed if the parent type is in an enclosing scope, so
4572 -- that the full view may actually become visible, e.g. in a child
4573 -- unit. This is both more efficient, and avoids order of freezing
4574 -- problems with the added entities.
4576 if not Is_Private_Type (Full_View (Parent_Type))
4577 and then (In_Open_Scopes (Scope (Parent_Type)))
4578 then
4579 Full_Der := Make_Defining_Identifier (Sloc (Derived_Type),
4580 Chars (Derived_Type));
4581 Set_Is_Itype (Full_Der);
4582 Set_Has_Private_Declaration (Full_Der);
4583 Set_Has_Private_Declaration (Derived_Type);
4584 Set_Associated_Node_For_Itype (Full_Der, N);
4585 Set_Parent (Full_Der, Parent (Derived_Type));
4586 Set_Full_View (Derived_Type, Full_Der);
4587 Set_Is_Public (Full_Der, Is_Public (Derived_Type));
4588 Full_P := Full_View (Parent_Type);
4589 Exchange_Declarations (Parent_Type);
4590 Copy_And_Build;
4591 Exchange_Declarations (Full_P);
4593 else
4594 Build_Derived_Record_Type
4595 (N, Full_View (Parent_Type), Derived_Type,
4596 Derive_Subps => False);
4597 end if;
4599 -- In any case, the primitive operations are inherited from
4600 -- the parent type, not from the internal full view.
4602 Set_Etype (Base_Type (Derived_Type), Base_Type (Parent_Type));
4604 if Derive_Subps then
4605 Derive_Subprograms (Parent_Type, Derived_Type);
4606 end if;
4608 else
4609 -- Untagged type, No discriminants on either view
4611 if Nkind (Subtype_Indication (Type_Definition (N))) =
4612 N_Subtype_Indication
4613 then
4614 Error_Msg_N
4615 ("illegal constraint on type without discriminants", N);
4616 end if;
4618 if Present (Discriminant_Specifications (N))
4619 and then Present (Full_View (Parent_Type))
4620 and then not Is_Tagged_Type (Full_View (Parent_Type))
4621 then
4622 Error_Msg_N
4623 ("cannot add discriminants to untagged type", N);
4624 end if;
4626 Set_Stored_Constraint (Derived_Type, No_Elist);
4627 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
4628 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
4629 Set_Has_Controlled_Component
4630 (Derived_Type, Has_Controlled_Component
4631 (Parent_Type));
4633 -- Direct controlled types do not inherit Finalize_Storage_Only flag
4635 if not Is_Controlled (Parent_Type) then
4636 Set_Finalize_Storage_Only
4637 (Base_Type (Derived_Type), Finalize_Storage_Only (Parent_Type));
4638 end if;
4640 -- Construct the implicit full view by deriving from full view of
4641 -- the parent type. In order to get proper visibility, we install
4642 -- the parent scope and its declarations.
4644 -- ??? if the parent is untagged private and its completion is
4645 -- tagged, this mechanism will not work because we cannot derive
4646 -- from the tagged full view unless we have an extension
4648 if Present (Full_View (Parent_Type))
4649 and then not Is_Tagged_Type (Full_View (Parent_Type))
4650 and then not Is_Completion
4651 then
4652 Full_Der :=
4653 Make_Defining_Identifier (Sloc (Derived_Type),
4654 Chars => Chars (Derived_Type));
4655 Set_Is_Itype (Full_Der);
4656 Set_Has_Private_Declaration (Full_Der);
4657 Set_Has_Private_Declaration (Derived_Type);
4658 Set_Associated_Node_For_Itype (Full_Der, N);
4659 Set_Parent (Full_Der, Parent (Derived_Type));
4660 Set_Full_View (Derived_Type, Full_Der);
4662 if not In_Open_Scopes (Par_Scope) then
4663 Install_Private_Declarations (Par_Scope);
4664 Install_Visible_Declarations (Par_Scope);
4665 Copy_And_Build;
4666 Uninstall_Declarations (Par_Scope);
4668 -- If parent scope is open and in another unit, and parent has a
4669 -- completion, then the derivation is taking place in the visible
4670 -- part of a child unit. In that case retrieve the full view of
4671 -- the parent momentarily.
4673 elsif not In_Same_Source_Unit (N, Parent_Type) then
4674 Full_P := Full_View (Parent_Type);
4675 Exchange_Declarations (Parent_Type);
4676 Copy_And_Build;
4677 Exchange_Declarations (Full_P);
4679 -- Otherwise it is a local derivation
4681 else
4682 Copy_And_Build;
4683 end if;
4685 Set_Scope (Full_Der, Current_Scope);
4686 Set_Is_First_Subtype (Full_Der,
4687 Is_First_Subtype (Derived_Type));
4688 Set_Has_Size_Clause (Full_Der, False);
4689 Set_Has_Alignment_Clause (Full_Der, False);
4690 Set_Next_Entity (Full_Der, Empty);
4691 Set_Has_Delayed_Freeze (Full_Der);
4692 Set_Is_Frozen (Full_Der, False);
4693 Set_Freeze_Node (Full_Der, Empty);
4694 Set_Depends_On_Private (Full_Der,
4695 Has_Private_Component (Full_Der));
4696 Set_Public_Status (Full_Der);
4697 end if;
4698 end if;
4700 Set_Has_Unknown_Discriminants (Derived_Type,
4701 Has_Unknown_Discriminants (Parent_Type));
4703 if Is_Private_Type (Derived_Type) then
4704 Set_Private_Dependents (Derived_Type, New_Elmt_List);
4705 end if;
4707 if Is_Private_Type (Parent_Type)
4708 and then Base_Type (Parent_Type) = Parent_Type
4709 and then In_Open_Scopes (Scope (Parent_Type))
4710 then
4711 Append_Elmt (Derived_Type, Private_Dependents (Parent_Type));
4713 if Is_Child_Unit (Scope (Current_Scope))
4714 and then Is_Completion
4715 and then In_Private_Part (Current_Scope)
4716 and then Scope (Parent_Type) /= Current_Scope
4717 then
4718 -- This is the unusual case where a type completed by a private
4719 -- derivation occurs within a package nested in a child unit,
4720 -- and the parent is declared in an ancestor. In this case, the
4721 -- full view of the parent type will become visible in the body
4722 -- of the enclosing child, and only then will the current type
4723 -- be possibly non-private. We build a underlying full view that
4724 -- will be installed when the enclosing child body is compiled.
4726 declare
4727 IR : constant Node_Id := Make_Itype_Reference (Sloc (N));
4729 begin
4730 Full_Der :=
4731 Make_Defining_Identifier (Sloc (Derived_Type),
4732 Chars (Derived_Type));
4733 Set_Is_Itype (Full_Der);
4734 Set_Itype (IR, Full_Der);
4735 Insert_After (N, IR);
4737 -- The full view will be used to swap entities on entry/exit
4738 -- to the body, and must appear in the entity list for the
4739 -- package.
4741 Append_Entity (Full_Der, Scope (Derived_Type));
4742 Set_Has_Private_Declaration (Full_Der);
4743 Set_Has_Private_Declaration (Derived_Type);
4744 Set_Associated_Node_For_Itype (Full_Der, N);
4745 Set_Parent (Full_Der, Parent (Derived_Type));
4746 Full_P := Full_View (Parent_Type);
4747 Exchange_Declarations (Parent_Type);
4748 Copy_And_Build;
4749 Exchange_Declarations (Full_P);
4750 Set_Underlying_Full_View (Derived_Type, Full_Der);
4751 end;
4752 end if;
4753 end if;
4754 end Build_Derived_Private_Type;
4756 -------------------------------
4757 -- Build_Derived_Record_Type --
4758 -------------------------------
4760 -- 1. INTRODUCTION
4762 -- Ideally we would like to use the same model of type derivation for
4763 -- tagged and untagged record types. Unfortunately this is not quite
4764 -- possible because the semantics of representation clauses is different
4765 -- for tagged and untagged records under inheritance. Consider the
4766 -- following:
4768 -- type R (...) is [tagged] record ... end record;
4769 -- type T (...) is new R (...) [with ...];
4771 -- The representation clauses of T can specify a completely different
4772 -- record layout from R's. Hence the same component can be placed in
4773 -- two very different positions in objects of type T and R. If R and T
4774 -- are tagged types, representation clauses for T can only specify the
4775 -- layout of non inherited components, thus components that are common
4776 -- in R and T have the same position in objects of type R and T.
4778 -- This has two implications. The first is that the entire tree for R's
4779 -- declaration needs to be copied for T in the untagged case, so that T
4780 -- can be viewed as a record type of its own with its own representation
4781 -- clauses. The second implication is the way we handle discriminants.
4782 -- Specifically, in the untagged case we need a way to communicate to Gigi
4783 -- what are the real discriminants in the record, while for the semantics
4784 -- we need to consider those introduced by the user to rename the
4785 -- discriminants in the parent type. This is handled by introducing the
4786 -- notion of stored discriminants. See below for more.
4788 -- Fortunately the way regular components are inherited can be handled in
4789 -- the same way in tagged and untagged types.
4791 -- To complicate things a bit more the private view of a private extension
4792 -- cannot be handled in the same way as the full view (for one thing the
4793 -- semantic rules are somewhat different). We will explain what differs
4794 -- below.
4796 -- 2. DISCRIMINANTS UNDER INHERITANCE
4798 -- The semantic rules governing the discriminants of derived types are
4799 -- quite subtle.
4801 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
4802 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
4804 -- If parent type has discriminants, then the discriminants that are
4805 -- declared in the derived type are [3.4 (11)]:
4807 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
4808 -- there is one;
4810 -- o Otherwise, each discriminant of the parent type (implicitly declared
4811 -- in the same order with the same specifications). In this case, the
4812 -- discriminants are said to be "inherited", or if unknown in the parent
4813 -- are also unknown in the derived type.
4815 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
4817 -- o The parent subtype shall be constrained;
4819 -- o If the parent type is not a tagged type, then each discriminant of
4820 -- the derived type shall be used in the constraint defining a parent
4821 -- subtype [Implementation note: this ensures that the new discriminant
4822 -- can share storage with an existing discriminant.].
4824 -- For the derived type each discriminant of the parent type is either
4825 -- inherited, constrained to equal some new discriminant of the derived
4826 -- type, or constrained to the value of an expression.
4828 -- When inherited or constrained to equal some new discriminant, the
4829 -- parent discriminant and the discriminant of the derived type are said
4830 -- to "correspond".
4832 -- If a discriminant of the parent type is constrained to a specific value
4833 -- in the derived type definition, then the discriminant is said to be
4834 -- "specified" by that derived type definition.
4836 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
4838 -- We have spoken about stored discriminants in point 1 (introduction)
4839 -- above. There are two sort of stored discriminants: implicit and
4840 -- explicit. As long as the derived type inherits the same discriminants as
4841 -- the root record type, stored discriminants are the same as regular
4842 -- discriminants, and are said to be implicit. However, if any discriminant
4843 -- in the root type was renamed in the derived type, then the derived
4844 -- type will contain explicit stored discriminants. Explicit stored
4845 -- discriminants are discriminants in addition to the semantically visible
4846 -- discriminants defined for the derived type. Stored discriminants are
4847 -- used by Gigi to figure out what are the physical discriminants in
4848 -- objects of the derived type (see precise definition in einfo.ads).
4849 -- As an example, consider the following:
4851 -- type R (D1, D2, D3 : Int) is record ... end record;
4852 -- type T1 is new R;
4853 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
4854 -- type T3 is new T2;
4855 -- type T4 (Y : Int) is new T3 (Y, 99);
4857 -- The following table summarizes the discriminants and stored
4858 -- discriminants in R and T1 through T4.
4860 -- Type Discrim Stored Discrim Comment
4861 -- R (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in R
4862 -- T1 (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in T1
4863 -- T2 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T2
4864 -- T3 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T3
4865 -- T4 (Y) (D1, D2, D3) Girder discrims EXPLICIT in T4
4867 -- Field Corresponding_Discriminant (abbreviated CD below) allows us to
4868 -- find the corresponding discriminant in the parent type, while
4869 -- Original_Record_Component (abbreviated ORC below), the actual physical
4870 -- component that is renamed. Finally the field Is_Completely_Hidden
4871 -- (abbreviated ICH below) is set for all explicit stored discriminants
4872 -- (see einfo.ads for more info). For the above example this gives:
4874 -- Discrim CD ORC ICH
4875 -- ^^^^^^^ ^^ ^^^ ^^^
4876 -- D1 in R empty itself no
4877 -- D2 in R empty itself no
4878 -- D3 in R empty itself no
4880 -- D1 in T1 D1 in R itself no
4881 -- D2 in T1 D2 in R itself no
4882 -- D3 in T1 D3 in R itself no
4884 -- X1 in T2 D3 in T1 D3 in T2 no
4885 -- X2 in T2 D1 in T1 D1 in T2 no
4886 -- D1 in T2 empty itself yes
4887 -- D2 in T2 empty itself yes
4888 -- D3 in T2 empty itself yes
4890 -- X1 in T3 X1 in T2 D3 in T3 no
4891 -- X2 in T3 X2 in T2 D1 in T3 no
4892 -- D1 in T3 empty itself yes
4893 -- D2 in T3 empty itself yes
4894 -- D3 in T3 empty itself yes
4896 -- Y in T4 X1 in T3 D3 in T3 no
4897 -- D1 in T3 empty itself yes
4898 -- D2 in T3 empty itself yes
4899 -- D3 in T3 empty itself yes
4901 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
4903 -- Type derivation for tagged types is fairly straightforward. if no
4904 -- discriminants are specified by the derived type, these are inherited
4905 -- from the parent. No explicit stored discriminants are ever necessary.
4906 -- The only manipulation that is done to the tree is that of adding a
4907 -- _parent field with parent type and constrained to the same constraint
4908 -- specified for the parent in the derived type definition. For instance:
4910 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
4911 -- type T1 is new R with null record;
4912 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
4914 -- are changed into:
4916 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
4917 -- _parent : R (D1, D2, D3);
4918 -- end record;
4920 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
4921 -- _parent : T1 (X2, 88, X1);
4922 -- end record;
4924 -- The discriminants actually present in R, T1 and T2 as well as their CD,
4925 -- ORC and ICH fields are:
4927 -- Discrim CD ORC ICH
4928 -- ^^^^^^^ ^^ ^^^ ^^^
4929 -- D1 in R empty itself no
4930 -- D2 in R empty itself no
4931 -- D3 in R empty itself no
4933 -- D1 in T1 D1 in R D1 in R no
4934 -- D2 in T1 D2 in R D2 in R no
4935 -- D3 in T1 D3 in R D3 in R no
4937 -- X1 in T2 D3 in T1 D3 in R no
4938 -- X2 in T2 D1 in T1 D1 in R no
4940 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS
4942 -- Regardless of whether we dealing with a tagged or untagged type
4943 -- we will transform all derived type declarations of the form
4945 -- type T is new R (...) [with ...];
4946 -- or
4947 -- subtype S is R (...);
4948 -- type T is new S [with ...];
4949 -- into
4950 -- type BT is new R [with ...];
4951 -- subtype T is BT (...);
4953 -- That is, the base derived type is constrained only if it has no
4954 -- discriminants. The reason for doing this is that GNAT's semantic model
4955 -- assumes that a base type with discriminants is unconstrained.
4957 -- Note that, strictly speaking, the above transformation is not always
4958 -- correct. Consider for instance the following excerpt from ACVC b34011a:
4960 -- procedure B34011A is
4961 -- type REC (D : integer := 0) is record
4962 -- I : Integer;
4963 -- end record;
4965 -- package P is
4966 -- type T6 is new Rec;
4967 -- function F return T6;
4968 -- end P;
4970 -- use P;
4971 -- package Q6 is
4972 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
4973 -- end Q6;
4975 -- The definition of Q6.U is illegal. However transforming Q6.U into
4977 -- type BaseU is new T6;
4978 -- subtype U is BaseU (Q6.F.I)
4980 -- turns U into a legal subtype, which is incorrect. To avoid this problem
4981 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
4982 -- the transformation described above.
4984 -- There is another instance where the above transformation is incorrect.
4985 -- Consider:
4987 -- package Pack is
4988 -- type Base (D : Integer) is tagged null record;
4989 -- procedure P (X : Base);
4991 -- type Der is new Base (2) with null record;
4992 -- procedure P (X : Der);
4993 -- end Pack;
4995 -- Then the above transformation turns this into
4997 -- type Der_Base is new Base with null record;
4998 -- -- procedure P (X : Base) is implicitly inherited here
4999 -- -- as procedure P (X : Der_Base).
5001 -- subtype Der is Der_Base (2);
5002 -- procedure P (X : Der);
5003 -- -- The overriding of P (X : Der_Base) is illegal since we
5004 -- -- have a parameter conformance problem.
5006 -- To get around this problem, after having semantically processed Der_Base
5007 -- and the rewritten subtype declaration for Der, we copy Der_Base field
5008 -- Discriminant_Constraint from Der so that when parameter conformance is
5009 -- checked when P is overridden, no semantic errors are flagged.
5011 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS
5013 -- Regardless of whether we are dealing with a tagged or untagged type
5014 -- we will transform all derived type declarations of the form
5016 -- type R (D1, .., Dn : ...) is [tagged] record ...;
5017 -- type T is new R [with ...];
5018 -- into
5019 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
5021 -- The reason for such transformation is that it allows us to implement a
5022 -- very clean form of component inheritance as explained below.
5024 -- Note that this transformation is not achieved by direct tree rewriting
5025 -- and manipulation, but rather by redoing the semantic actions that the
5026 -- above transformation will entail. This is done directly in routine
5027 -- Inherit_Components.
5029 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE
5031 -- In both tagged and untagged derived types, regular non discriminant
5032 -- components are inherited in the derived type from the parent type. In
5033 -- the absence of discriminants component, inheritance is straightforward
5034 -- as components can simply be copied from the parent.
5036 -- If the parent has discriminants, inheriting components constrained with
5037 -- these discriminants requires caution. Consider the following example:
5039 -- type R (D1, D2 : Positive) is [tagged] record
5040 -- S : String (D1 .. D2);
5041 -- end record;
5043 -- type T1 is new R [with null record];
5044 -- type T2 (X : positive) is new R (1, X) [with null record];
5046 -- As explained in 6. above, T1 is rewritten as
5047 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
5048 -- which makes the treatment for T1 and T2 identical.
5050 -- What we want when inheriting S, is that references to D1 and D2 in R are
5051 -- replaced with references to their correct constraints, ie D1 and D2 in
5052 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
5053 -- with either discriminant references in the derived type or expressions.
5054 -- This replacement is achieved as follows: before inheriting R's
5055 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
5056 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
5057 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
5058 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
5059 -- by String (1 .. X).
5061 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
5063 -- We explain here the rules governing private type extensions relevant to
5064 -- type derivation. These rules are explained on the following example:
5066 -- type D [(...)] is new A [(...)] with private; <-- partial view
5067 -- type D [(...)] is new P [(...)] with null record; <-- full view
5069 -- Type A is called the ancestor subtype of the private extension.
5070 -- Type P is the parent type of the full view of the private extension. It
5071 -- must be A or a type derived from A.
5073 -- The rules concerning the discriminants of private type extensions are
5074 -- [7.3(10-13)]:
5076 -- o If a private extension inherits known discriminants from the ancestor
5077 -- subtype, then the full view shall also inherit its discriminants from
5078 -- the ancestor subtype and the parent subtype of the full view shall be
5079 -- constrained if and only if the ancestor subtype is constrained.
5081 -- o If a partial view has unknown discriminants, then the full view may
5082 -- define a definite or an indefinite subtype, with or without
5083 -- discriminants.
5085 -- o If a partial view has neither known nor unknown discriminants, then
5086 -- the full view shall define a definite subtype.
5088 -- o If the ancestor subtype of a private extension has constrained
5089 -- discriminants, then the parent subtype of the full view shall impose a
5090 -- statically matching constraint on those discriminants.
5092 -- This means that only the following forms of private extensions are
5093 -- allowed:
5095 -- type D is new A with private; <-- partial view
5096 -- type D is new P with null record; <-- full view
5098 -- If A has no discriminants than P has no discriminants, otherwise P must
5099 -- inherit A's discriminants.
5101 -- type D is new A (...) with private; <-- partial view
5102 -- type D is new P (:::) with null record; <-- full view
5104 -- P must inherit A's discriminants and (...) and (:::) must statically
5105 -- match.
5107 -- subtype A is R (...);
5108 -- type D is new A with private; <-- partial view
5109 -- type D is new P with null record; <-- full view
5111 -- P must have inherited R's discriminants and must be derived from A or
5112 -- any of its subtypes.
5114 -- type D (..) is new A with private; <-- partial view
5115 -- type D (..) is new P [(:::)] with null record; <-- full view
5117 -- No specific constraints on P's discriminants or constraint (:::).
5118 -- Note that A can be unconstrained, but the parent subtype P must either
5119 -- be constrained or (:::) must be present.
5121 -- type D (..) is new A [(...)] with private; <-- partial view
5122 -- type D (..) is new P [(:::)] with null record; <-- full view
5124 -- P's constraints on A's discriminants must statically match those
5125 -- imposed by (...).
5127 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
5129 -- The full view of a private extension is handled exactly as described
5130 -- above. The model chose for the private view of a private extension is
5131 -- the same for what concerns discriminants (ie they receive the same
5132 -- treatment as in the tagged case). However, the private view of the
5133 -- private extension always inherits the components of the parent base,
5134 -- without replacing any discriminant reference. Strictly speaking this is
5135 -- incorrect. However, Gigi never uses this view to generate code so this
5136 -- is a purely semantic issue. In theory, a set of transformations similar
5137 -- to those given in 5. and 6. above could be applied to private views of
5138 -- private extensions to have the same model of component inheritance as
5139 -- for non private extensions. However, this is not done because it would
5140 -- further complicate private type processing. Semantically speaking, this
5141 -- leaves us in an uncomfortable situation. As an example consider:
5143 -- package Pack is
5144 -- type R (D : integer) is tagged record
5145 -- S : String (1 .. D);
5146 -- end record;
5147 -- procedure P (X : R);
5148 -- type T is new R (1) with private;
5149 -- private
5150 -- type T is new R (1) with null record;
5151 -- end;
5153 -- This is transformed into:
5155 -- package Pack is
5156 -- type R (D : integer) is tagged record
5157 -- S : String (1 .. D);
5158 -- end record;
5159 -- procedure P (X : R);
5160 -- type T is new R (1) with private;
5161 -- private
5162 -- type BaseT is new R with null record;
5163 -- subtype T is BaseT (1);
5164 -- end;
5166 -- (strictly speaking the above is incorrect Ada)
5168 -- From the semantic standpoint the private view of private extension T
5169 -- should be flagged as constrained since one can clearly have
5171 -- Obj : T;
5173 -- in a unit withing Pack. However, when deriving subprograms for the
5174 -- private view of private extension T, T must be seen as unconstrained
5175 -- since T has discriminants (this is a constraint of the current
5176 -- subprogram derivation model). Thus, when processing the private view of
5177 -- a private extension such as T, we first mark T as unconstrained, we
5178 -- process it, we perform program derivation and just before returning from
5179 -- Build_Derived_Record_Type we mark T as constrained.
5181 -- ??? Are there are other uncomfortable cases that we will have to
5182 -- deal with.
5184 -- 10. RECORD_TYPE_WITH_PRIVATE complications
5186 -- Types that are derived from a visible record type and have a private
5187 -- extension present other peculiarities. They behave mostly like private
5188 -- types, but if they have primitive operations defined, these will not
5189 -- have the proper signatures for further inheritance, because other
5190 -- primitive operations will use the implicit base that we define for
5191 -- private derivations below. This affect subprogram inheritance (see
5192 -- Derive_Subprograms for details). We also derive the implicit base from
5193 -- the base type of the full view, so that the implicit base is a record
5194 -- type and not another private type, This avoids infinite loops.
5196 procedure Build_Derived_Record_Type
5197 (N : Node_Id;
5198 Parent_Type : Entity_Id;
5199 Derived_Type : Entity_Id;
5200 Derive_Subps : Boolean := True)
5202 Loc : constant Source_Ptr := Sloc (N);
5203 Parent_Base : Entity_Id;
5204 Type_Def : Node_Id;
5205 Indic : Node_Id;
5206 Discrim : Entity_Id;
5207 Last_Discrim : Entity_Id;
5208 Constrs : Elist_Id;
5210 Discs : Elist_Id := New_Elmt_List;
5211 -- An empty Discs list means that there were no constraints in the
5212 -- subtype indication or that there was an error processing it.
5214 Assoc_List : Elist_Id;
5215 New_Discrs : Elist_Id;
5216 New_Base : Entity_Id;
5217 New_Decl : Node_Id;
5218 New_Indic : Node_Id;
5220 Is_Tagged : constant Boolean := Is_Tagged_Type (Parent_Type);
5221 Discriminant_Specs : constant Boolean :=
5222 Present (Discriminant_Specifications (N));
5223 Private_Extension : constant Boolean :=
5224 (Nkind (N) = N_Private_Extension_Declaration);
5226 Constraint_Present : Boolean;
5227 Has_Interfaces : Boolean := False;
5228 Inherit_Discrims : Boolean := False;
5229 Last_Inherited_Prim_Op : Elmt_Id;
5230 Tagged_Partial_View : Entity_Id;
5231 Save_Etype : Entity_Id;
5232 Save_Discr_Constr : Elist_Id;
5233 Save_Next_Entity : Entity_Id;
5235 begin
5236 if Ekind (Parent_Type) = E_Record_Type_With_Private
5237 and then Present (Full_View (Parent_Type))
5238 and then Has_Discriminants (Parent_Type)
5239 then
5240 Parent_Base := Base_Type (Full_View (Parent_Type));
5241 else
5242 Parent_Base := Base_Type (Parent_Type);
5243 end if;
5245 -- Before we start the previously documented transformations, here is
5246 -- a little fix for size and alignment of tagged types. Normally when
5247 -- we derive type D from type P, we copy the size and alignment of P
5248 -- as the default for D, and in the absence of explicit representation
5249 -- clauses for D, the size and alignment are indeed the same as the
5250 -- parent.
5252 -- But this is wrong for tagged types, since fields may be added,
5253 -- and the default size may need to be larger, and the default
5254 -- alignment may need to be larger.
5256 -- We therefore reset the size and alignment fields in the tagged
5257 -- case. Note that the size and alignment will in any case be at
5258 -- least as large as the parent type (since the derived type has
5259 -- a copy of the parent type in the _parent field)
5261 if Is_Tagged then
5262 Init_Size_Align (Derived_Type);
5263 end if;
5265 -- STEP 0a: figure out what kind of derived type declaration we have
5267 if Private_Extension then
5268 Type_Def := N;
5269 Set_Ekind (Derived_Type, E_Record_Type_With_Private);
5271 else
5272 Type_Def := Type_Definition (N);
5274 -- Ekind (Parent_Base) in not necessarily E_Record_Type since
5275 -- Parent_Base can be a private type or private extension. However,
5276 -- for tagged types with an extension the newly added fields are
5277 -- visible and hence the Derived_Type is always an E_Record_Type.
5278 -- (except that the parent may have its own private fields).
5279 -- For untagged types we preserve the Ekind of the Parent_Base.
5281 if Present (Record_Extension_Part (Type_Def)) then
5282 Set_Ekind (Derived_Type, E_Record_Type);
5283 else
5284 Set_Ekind (Derived_Type, Ekind (Parent_Base));
5285 end if;
5286 end if;
5288 -- Indic can either be an N_Identifier if the subtype indication
5289 -- contains no constraint or an N_Subtype_Indication if the subtype
5290 -- indication has a constraint.
5292 Indic := Subtype_Indication (Type_Def);
5293 Constraint_Present := (Nkind (Indic) = N_Subtype_Indication);
5295 -- Check that the type has visible discriminants. The type may be
5296 -- a private type with unknown discriminants whose full view has
5297 -- discriminants which are invisible.
5299 if Constraint_Present then
5300 if not Has_Discriminants (Parent_Base)
5301 or else
5302 (Has_Unknown_Discriminants (Parent_Base)
5303 and then Is_Private_Type (Parent_Base))
5304 then
5305 Error_Msg_N
5306 ("invalid constraint: type has no discriminant",
5307 Constraint (Indic));
5309 Constraint_Present := False;
5310 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
5312 elsif Is_Constrained (Parent_Type) then
5313 Error_Msg_N
5314 ("invalid constraint: parent type is already constrained",
5315 Constraint (Indic));
5317 Constraint_Present := False;
5318 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
5319 end if;
5320 end if;
5322 -- STEP 0b: If needed, apply transformation given in point 5. above
5324 if not Private_Extension
5325 and then Has_Discriminants (Parent_Type)
5326 and then not Discriminant_Specs
5327 and then (Is_Constrained (Parent_Type) or else Constraint_Present)
5328 then
5329 -- First, we must analyze the constraint (see comment in point 5.)
5331 if Constraint_Present then
5332 New_Discrs := Build_Discriminant_Constraints (Parent_Type, Indic);
5334 if Has_Discriminants (Derived_Type)
5335 and then Has_Private_Declaration (Derived_Type)
5336 and then Present (Discriminant_Constraint (Derived_Type))
5337 then
5338 -- Verify that constraints of the full view conform to those
5339 -- given in partial view.
5341 declare
5342 C1, C2 : Elmt_Id;
5344 begin
5345 C1 := First_Elmt (New_Discrs);
5346 C2 := First_Elmt (Discriminant_Constraint (Derived_Type));
5347 while Present (C1) and then Present (C2) loop
5348 if not
5349 Fully_Conformant_Expressions (Node (C1), Node (C2))
5350 then
5351 Error_Msg_N (
5352 "constraint not conformant to previous declaration",
5353 Node (C1));
5354 end if;
5356 Next_Elmt (C1);
5357 Next_Elmt (C2);
5358 end loop;
5359 end;
5360 end if;
5361 end if;
5363 -- Insert and analyze the declaration for the unconstrained base type
5365 New_Base := Create_Itype (Ekind (Derived_Type), N, Derived_Type, 'B');
5367 New_Decl :=
5368 Make_Full_Type_Declaration (Loc,
5369 Defining_Identifier => New_Base,
5370 Type_Definition =>
5371 Make_Derived_Type_Definition (Loc,
5372 Abstract_Present => Abstract_Present (Type_Def),
5373 Subtype_Indication =>
5374 New_Occurrence_Of (Parent_Base, Loc),
5375 Record_Extension_Part =>
5376 Relocate_Node (Record_Extension_Part (Type_Def))));
5378 Set_Parent (New_Decl, Parent (N));
5379 Mark_Rewrite_Insertion (New_Decl);
5380 Insert_Before (N, New_Decl);
5382 -- Note that this call passes False for the Derive_Subps parameter
5383 -- because subprogram derivation is deferred until after creating
5384 -- the subtype (see below).
5386 Build_Derived_Type
5387 (New_Decl, Parent_Base, New_Base,
5388 Is_Completion => True, Derive_Subps => False);
5390 -- ??? This needs re-examination to determine whether the
5391 -- above call can simply be replaced by a call to Analyze.
5393 Set_Analyzed (New_Decl);
5395 -- Insert and analyze the declaration for the constrained subtype
5397 if Constraint_Present then
5398 New_Indic :=
5399 Make_Subtype_Indication (Loc,
5400 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
5401 Constraint => Relocate_Node (Constraint (Indic)));
5403 else
5404 declare
5405 Constr_List : constant List_Id := New_List;
5406 C : Elmt_Id;
5407 Expr : Node_Id;
5409 begin
5410 C := First_Elmt (Discriminant_Constraint (Parent_Type));
5411 while Present (C) loop
5412 Expr := Node (C);
5414 -- It is safe here to call New_Copy_Tree since
5415 -- Force_Evaluation was called on each constraint in
5416 -- Build_Discriminant_Constraints.
5418 Append (New_Copy_Tree (Expr), To => Constr_List);
5420 Next_Elmt (C);
5421 end loop;
5423 New_Indic :=
5424 Make_Subtype_Indication (Loc,
5425 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
5426 Constraint =>
5427 Make_Index_Or_Discriminant_Constraint (Loc, Constr_List));
5428 end;
5429 end if;
5431 Rewrite (N,
5432 Make_Subtype_Declaration (Loc,
5433 Defining_Identifier => Derived_Type,
5434 Subtype_Indication => New_Indic));
5436 Analyze (N);
5438 -- Derivation of subprograms must be delayed until the full subtype
5439 -- has been established to ensure proper overriding of subprograms
5440 -- inherited by full types. If the derivations occurred as part of
5441 -- the call to Build_Derived_Type above, then the check for type
5442 -- conformance would fail because earlier primitive subprograms
5443 -- could still refer to the full type prior the change to the new
5444 -- subtype and hence would not match the new base type created here.
5446 Derive_Subprograms (Parent_Type, Derived_Type);
5448 -- For tagged types the Discriminant_Constraint of the new base itype
5449 -- is inherited from the first subtype so that no subtype conformance
5450 -- problem arise when the first subtype overrides primitive
5451 -- operations inherited by the implicit base type.
5453 if Is_Tagged then
5454 Set_Discriminant_Constraint
5455 (New_Base, Discriminant_Constraint (Derived_Type));
5456 end if;
5458 return;
5459 end if;
5461 -- If we get here Derived_Type will have no discriminants or it will be
5462 -- a discriminated unconstrained base type.
5464 -- STEP 1a: perform preliminary actions/checks for derived tagged types
5466 if Is_Tagged then
5468 -- The parent type is frozen for non-private extensions (RM 13.14(7))
5470 if not Private_Extension then
5471 Freeze_Before (N, Parent_Type);
5472 end if;
5474 -- In Ada 2005 (AI-344), the restriction that a derived tagged type
5475 -- cannot be declared at a deeper level than its parent type is
5476 -- removed. The check on derivation within a generic body is also
5477 -- relaxed, but there's a restriction that a derived tagged type
5478 -- cannot be declared in a generic body if it's derived directly
5479 -- or indirectly from a formal type of that generic.
5481 if Ada_Version >= Ada_05 then
5482 if Present (Enclosing_Generic_Body (Derived_Type)) then
5483 declare
5484 Ancestor_Type : Entity_Id;
5486 begin
5487 -- Check to see if any ancestor of the derived type is a
5488 -- formal type.
5490 Ancestor_Type := Parent_Type;
5491 while not Is_Generic_Type (Ancestor_Type)
5492 and then Etype (Ancestor_Type) /= Ancestor_Type
5493 loop
5494 Ancestor_Type := Etype (Ancestor_Type);
5495 end loop;
5497 -- If the derived type does have a formal type as an
5498 -- ancestor, then it's an error if the derived type is
5499 -- declared within the body of the generic unit that
5500 -- declares the formal type in its generic formal part. It's
5501 -- sufficient to check whether the ancestor type is declared
5502 -- inside the same generic body as the derived type (such as
5503 -- within a nested generic spec), in which case the
5504 -- derivation is legal. If the formal type is declared
5505 -- outside of that generic body, then it's guaranteed that
5506 -- the derived type is declared within the generic body of
5507 -- the generic unit declaring the formal type.
5509 if Is_Generic_Type (Ancestor_Type)
5510 and then Enclosing_Generic_Body (Ancestor_Type) /=
5511 Enclosing_Generic_Body (Derived_Type)
5512 then
5513 Error_Msg_NE
5514 ("parent type of& must not be descendant of formal type"
5515 & " of an enclosing generic body",
5516 Indic, Derived_Type);
5517 end if;
5518 end;
5519 end if;
5521 elsif Type_Access_Level (Derived_Type) /=
5522 Type_Access_Level (Parent_Type)
5523 and then not Is_Generic_Type (Derived_Type)
5524 then
5525 if Is_Controlled (Parent_Type) then
5526 Error_Msg_N
5527 ("controlled type must be declared at the library level",
5528 Indic);
5529 else
5530 Error_Msg_N
5531 ("type extension at deeper accessibility level than parent",
5532 Indic);
5533 end if;
5535 else
5536 declare
5537 GB : constant Node_Id := Enclosing_Generic_Body (Derived_Type);
5539 begin
5540 if Present (GB)
5541 and then GB /= Enclosing_Generic_Body (Parent_Base)
5542 then
5543 Error_Msg_NE
5544 ("parent type of& must not be outside generic body"
5545 & " ('R'M 3.9.1(4))",
5546 Indic, Derived_Type);
5547 end if;
5548 end;
5549 end if;
5550 end if;
5552 -- Ada 2005 (AI-251)
5554 if Ada_Version = Ada_05
5555 and then Is_Tagged
5556 then
5558 -- "The declaration of a specific descendant of an interface type
5559 -- freezes the interface type" (RM 13.14).
5561 declare
5562 Iface : Node_Id;
5563 begin
5564 if Is_Non_Empty_List (Interface_List (Type_Def)) then
5565 Iface := First (Interface_List (Type_Def));
5566 while Present (Iface) loop
5567 Freeze_Before (N, Etype (Iface));
5568 Next (Iface);
5569 end loop;
5570 end if;
5571 end;
5572 end if;
5574 -- STEP 1b : preliminary cleanup of the full view of private types
5576 -- If the type is already marked as having discriminants, then it's the
5577 -- completion of a private type or private extension and we need to
5578 -- retain the discriminants from the partial view if the current
5579 -- declaration has Discriminant_Specifications so that we can verify
5580 -- conformance. However, we must remove any existing components that
5581 -- were inherited from the parent (and attached in Copy_And_Swap)
5582 -- because the full type inherits all appropriate components anyway, and
5583 -- we do not want the partial view's components interfering.
5585 if Has_Discriminants (Derived_Type) and then Discriminant_Specs then
5586 Discrim := First_Discriminant (Derived_Type);
5587 loop
5588 Last_Discrim := Discrim;
5589 Next_Discriminant (Discrim);
5590 exit when No (Discrim);
5591 end loop;
5593 Set_Last_Entity (Derived_Type, Last_Discrim);
5595 -- In all other cases wipe out the list of inherited components (even
5596 -- inherited discriminants), it will be properly rebuilt here.
5598 else
5599 Set_First_Entity (Derived_Type, Empty);
5600 Set_Last_Entity (Derived_Type, Empty);
5601 end if;
5603 -- STEP 1c: Initialize some flags for the Derived_Type
5605 -- The following flags must be initialized here so that
5606 -- Process_Discriminants can check that discriminants of tagged types
5607 -- do not have a default initial value and that access discriminants
5608 -- are only specified for limited records. For completeness, these
5609 -- flags are also initialized along with all the other flags below.
5611 Set_Is_Tagged_Type (Derived_Type, Is_Tagged);
5612 Set_Is_Limited_Record (Derived_Type, Is_Limited_Record (Parent_Type));
5614 -- STEP 2a: process discriminants of derived type if any
5616 New_Scope (Derived_Type);
5618 if Discriminant_Specs then
5619 Set_Has_Unknown_Discriminants (Derived_Type, False);
5621 -- The following call initializes fields Has_Discriminants and
5622 -- Discriminant_Constraint, unless we are processing the completion
5623 -- of a private type declaration.
5625 Check_Or_Process_Discriminants (N, Derived_Type);
5627 -- For non-tagged types the constraint on the Parent_Type must be
5628 -- present and is used to rename the discriminants.
5630 if not Is_Tagged and then not Has_Discriminants (Parent_Type) then
5631 Error_Msg_N ("untagged parent must have discriminants", Indic);
5633 elsif not Is_Tagged and then not Constraint_Present then
5634 Error_Msg_N
5635 ("discriminant constraint needed for derived untagged records",
5636 Indic);
5638 -- Otherwise the parent subtype must be constrained unless we have a
5639 -- private extension.
5641 elsif not Constraint_Present
5642 and then not Private_Extension
5643 and then not Is_Constrained (Parent_Type)
5644 then
5645 Error_Msg_N
5646 ("unconstrained type not allowed in this context", Indic);
5648 elsif Constraint_Present then
5649 -- The following call sets the field Corresponding_Discriminant
5650 -- for the discriminants in the Derived_Type.
5652 Discs := Build_Discriminant_Constraints (Parent_Type, Indic, True);
5654 -- For untagged types all new discriminants must rename
5655 -- discriminants in the parent. For private extensions new
5656 -- discriminants cannot rename old ones (implied by [7.3(13)]).
5658 Discrim := First_Discriminant (Derived_Type);
5659 while Present (Discrim) loop
5660 if not Is_Tagged
5661 and then not Present (Corresponding_Discriminant (Discrim))
5662 then
5663 Error_Msg_N
5664 ("new discriminants must constrain old ones", Discrim);
5666 elsif Private_Extension
5667 and then Present (Corresponding_Discriminant (Discrim))
5668 then
5669 Error_Msg_N
5670 ("only static constraints allowed for parent"
5671 & " discriminants in the partial view", Indic);
5672 exit;
5673 end if;
5675 -- If a new discriminant is used in the constraint, then its
5676 -- subtype must be statically compatible with the parent
5677 -- discriminant's subtype (3.7(15)).
5679 if Present (Corresponding_Discriminant (Discrim))
5680 and then
5681 not Subtypes_Statically_Compatible
5682 (Etype (Discrim),
5683 Etype (Corresponding_Discriminant (Discrim)))
5684 then
5685 Error_Msg_N
5686 ("subtype must be compatible with parent discriminant",
5687 Discrim);
5688 end if;
5690 Next_Discriminant (Discrim);
5691 end loop;
5693 -- Check whether the constraints of the full view statically
5694 -- match those imposed by the parent subtype [7.3(13)].
5696 if Present (Stored_Constraint (Derived_Type)) then
5697 declare
5698 C1, C2 : Elmt_Id;
5700 begin
5701 C1 := First_Elmt (Discs);
5702 C2 := First_Elmt (Stored_Constraint (Derived_Type));
5703 while Present (C1) and then Present (C2) loop
5704 if not
5705 Fully_Conformant_Expressions (Node (C1), Node (C2))
5706 then
5707 Error_Msg_N (
5708 "not conformant with previous declaration",
5709 Node (C1));
5710 end if;
5712 Next_Elmt (C1);
5713 Next_Elmt (C2);
5714 end loop;
5715 end;
5716 end if;
5717 end if;
5719 -- STEP 2b: No new discriminants, inherit discriminants if any
5721 else
5722 if Private_Extension then
5723 Set_Has_Unknown_Discriminants
5724 (Derived_Type,
5725 Has_Unknown_Discriminants (Parent_Type)
5726 or else Unknown_Discriminants_Present (N));
5728 -- The partial view of the parent may have unknown discriminants,
5729 -- but if the full view has discriminants and the parent type is
5730 -- in scope they must be inherited.
5732 elsif Has_Unknown_Discriminants (Parent_Type)
5733 and then
5734 (not Has_Discriminants (Parent_Type)
5735 or else not In_Open_Scopes (Scope (Parent_Type)))
5736 then
5737 Set_Has_Unknown_Discriminants (Derived_Type);
5738 end if;
5740 if not Has_Unknown_Discriminants (Derived_Type)
5741 and then not Has_Unknown_Discriminants (Parent_Base)
5742 and then Has_Discriminants (Parent_Type)
5743 then
5744 Inherit_Discrims := True;
5745 Set_Has_Discriminants
5746 (Derived_Type, True);
5747 Set_Discriminant_Constraint
5748 (Derived_Type, Discriminant_Constraint (Parent_Base));
5749 end if;
5751 -- The following test is true for private types (remember
5752 -- transformation 5. is not applied to those) and in an error
5753 -- situation.
5755 if Constraint_Present then
5756 Discs := Build_Discriminant_Constraints (Parent_Type, Indic);
5757 end if;
5759 -- For now mark a new derived type as constrained only if it has no
5760 -- discriminants. At the end of Build_Derived_Record_Type we properly
5761 -- set this flag in the case of private extensions. See comments in
5762 -- point 9. just before body of Build_Derived_Record_Type.
5764 Set_Is_Constrained
5765 (Derived_Type,
5766 not (Inherit_Discrims
5767 or else Has_Unknown_Discriminants (Derived_Type)));
5768 end if;
5770 -- STEP 3: initialize fields of derived type
5772 Set_Is_Tagged_Type (Derived_Type, Is_Tagged);
5773 Set_Stored_Constraint (Derived_Type, No_Elist);
5775 -- Ada 2005 (AI-251): Private type-declarations can implement interfaces
5776 -- but cannot be interfaces
5778 if not Private_Extension
5779 and then Ekind (Derived_Type) /= E_Private_Type
5780 and then Ekind (Derived_Type) /= E_Limited_Private_Type
5781 then
5782 Set_Is_Interface (Derived_Type, Interface_Present (Type_Def));
5783 Set_Abstract_Interfaces (Derived_Type, No_Elist);
5784 end if;
5786 -- Fields inherited from the Parent_Type
5788 Set_Discard_Names
5789 (Derived_Type, Einfo.Discard_Names (Parent_Type));
5790 Set_Has_Specified_Layout
5791 (Derived_Type, Has_Specified_Layout (Parent_Type));
5792 Set_Is_Limited_Composite
5793 (Derived_Type, Is_Limited_Composite (Parent_Type));
5794 Set_Is_Limited_Record
5795 (Derived_Type, Is_Limited_Record (Parent_Type));
5796 Set_Is_Private_Composite
5797 (Derived_Type, Is_Private_Composite (Parent_Type));
5799 -- Fields inherited from the Parent_Base
5801 Set_Has_Controlled_Component
5802 (Derived_Type, Has_Controlled_Component (Parent_Base));
5803 Set_Has_Non_Standard_Rep
5804 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
5805 Set_Has_Primitive_Operations
5806 (Derived_Type, Has_Primitive_Operations (Parent_Base));
5808 -- Direct controlled types do not inherit Finalize_Storage_Only flag
5810 if not Is_Controlled (Parent_Type) then
5811 Set_Finalize_Storage_Only
5812 (Derived_Type, Finalize_Storage_Only (Parent_Type));
5813 end if;
5815 -- Set fields for private derived types
5817 if Is_Private_Type (Derived_Type) then
5818 Set_Depends_On_Private (Derived_Type, True);
5819 Set_Private_Dependents (Derived_Type, New_Elmt_List);
5821 -- Inherit fields from non private record types. If this is the
5822 -- completion of a derivation from a private type, the parent itself
5823 -- is private, and the attributes come from its full view, which must
5824 -- be present.
5826 else
5827 if Is_Private_Type (Parent_Base)
5828 and then not Is_Record_Type (Parent_Base)
5829 then
5830 Set_Component_Alignment
5831 (Derived_Type, Component_Alignment (Full_View (Parent_Base)));
5832 Set_C_Pass_By_Copy
5833 (Derived_Type, C_Pass_By_Copy (Full_View (Parent_Base)));
5834 else
5835 Set_Component_Alignment
5836 (Derived_Type, Component_Alignment (Parent_Base));
5838 Set_C_Pass_By_Copy
5839 (Derived_Type, C_Pass_By_Copy (Parent_Base));
5840 end if;
5841 end if;
5843 -- Set fields for tagged types
5845 if Is_Tagged then
5846 Set_Primitive_Operations (Derived_Type, New_Elmt_List);
5848 -- All tagged types defined in Ada.Finalization are controlled
5850 if Chars (Scope (Derived_Type)) = Name_Finalization
5851 and then Chars (Scope (Scope (Derived_Type))) = Name_Ada
5852 and then Scope (Scope (Scope (Derived_Type))) = Standard_Standard
5853 then
5854 Set_Is_Controlled (Derived_Type);
5855 else
5856 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Base));
5857 end if;
5859 Make_Class_Wide_Type (Derived_Type);
5860 Set_Is_Abstract (Derived_Type, Abstract_Present (Type_Def));
5862 if Has_Discriminants (Derived_Type)
5863 and then Constraint_Present
5864 then
5865 Set_Stored_Constraint
5866 (Derived_Type, Expand_To_Stored_Constraint (Parent_Base, Discs));
5867 end if;
5869 -- Ada 2005 (AI-251): Look for the partial view of tagged types
5870 -- declared in the private part. This will be used 1) to check that
5871 -- the set of interfaces in both views is equal, and 2) to complete
5872 -- the derivation of subprograms covering interfaces.
5874 Tagged_Partial_View := Empty;
5876 if Has_Private_Declaration (Derived_Type) then
5877 Tagged_Partial_View := Next_Entity (Derived_Type);
5878 loop
5879 exit when Has_Private_Declaration (Tagged_Partial_View)
5880 and then Full_View (Tagged_Partial_View) = Derived_Type;
5882 Next_Entity (Tagged_Partial_View);
5883 end loop;
5884 end if;
5886 -- Ada 2005 (AI-251): Collect the whole list of implemented
5887 -- interfaces.
5889 if Ada_Version >= Ada_05 then
5890 Set_Abstract_Interfaces (Derived_Type, New_Elmt_List);
5892 if Nkind (N) = N_Private_Extension_Declaration then
5893 Collect_Interfaces (N, Derived_Type);
5894 else
5895 Collect_Interfaces (Type_Definition (N), Derived_Type);
5896 end if;
5898 -- Check that the full view and the partial view agree
5899 -- in the set of implemented interfaces
5901 if Has_Private_Declaration (Derived_Type)
5902 and then Present (Abstract_Interfaces (Derived_Type))
5903 and then not Is_Empty_Elmt_List
5904 (Abstract_Interfaces (Derived_Type))
5905 then
5906 declare
5907 N_Partial : constant Node_Id := Parent (Tagged_Partial_View);
5908 N_Full : constant Node_Id := Parent (Derived_Type);
5910 Iface_Partial : Entity_Id;
5911 Iface_Full : Entity_Id;
5912 Num_Ifaces_Partial : Natural := 0;
5913 Num_Ifaces_Full : Natural := 0;
5914 Same_Interfaces : Boolean := True;
5916 begin
5917 if Nkind (N_Partial) /= N_Private_Extension_Declaration then
5918 Error_Msg_N
5919 ("(Ada 2005) interfaces only allowed in private"
5920 & " extension declarations", N_Partial);
5921 end if;
5923 -- Count the interfaces implemented by the partial view
5925 if Nkind (N_Partial) = N_Private_Extension_Declaration
5926 and then not Is_Empty_List (Interface_List (N_Partial))
5927 then
5928 Iface_Partial := First (Interface_List (N_Partial));
5929 while Present (Iface_Partial) loop
5930 Num_Ifaces_Partial := Num_Ifaces_Partial + 1;
5931 Next (Iface_Partial);
5932 end loop;
5933 end if;
5935 -- Take into account the case in which the partial
5936 -- view is a directly derived from an interface
5938 if Is_Interface (Etype
5939 (Defining_Identifier (N_Partial)))
5940 then
5941 Num_Ifaces_Partial := Num_Ifaces_Partial + 1;
5942 end if;
5944 -- Count the interfaces implemented by the full view
5946 if not Is_Empty_List (Interface_List
5947 (Type_Definition (N_Full)))
5948 then
5949 Iface_Full := First (Interface_List
5950 (Type_Definition (N_Full)));
5951 while Present (Iface_Full) loop
5952 Num_Ifaces_Full := Num_Ifaces_Full + 1;
5953 Next (Iface_Full);
5954 end loop;
5955 end if;
5957 -- Take into account the case in which the full
5958 -- view is a directly derived from an interface
5960 if Is_Interface (Etype
5961 (Defining_Identifier (N_Full)))
5962 then
5963 Num_Ifaces_Full := Num_Ifaces_Full + 1;
5964 end if;
5966 if Num_Ifaces_Full > 0
5967 and then Num_Ifaces_Full = Num_Ifaces_Partial
5968 then
5969 -- Check that the full-view and the private-view have
5970 -- the same list of interfaces.
5972 Iface_Full := First (Interface_List
5973 (Type_Definition (N_Full)));
5974 while Present (Iface_Full) loop
5975 Iface_Partial := First (Interface_List (N_Partial));
5976 while Present (Iface_Partial)
5977 and then Etype (Iface_Partial) /= Etype (Iface_Full)
5978 loop
5979 Next (Iface_Partial);
5980 end loop;
5982 -- If not found we check if the partial view is a
5983 -- direct derivation of the interface.
5985 if not Present (Iface_Partial)
5986 and then
5987 Etype (Tagged_Partial_View) /= Etype (Iface_Full)
5988 then
5989 Same_Interfaces := False;
5990 exit;
5991 end if;
5993 Next (Iface_Full);
5994 end loop;
5995 end if;
5997 if Num_Ifaces_Partial /= Num_Ifaces_Full
5998 or else not Same_Interfaces
5999 then
6000 Error_Msg_N
6001 ("(Ada 2005) full declaration and private declaration"
6002 & " must have the same list of interfaces",
6003 Derived_Type);
6004 end if;
6005 end;
6006 end if;
6007 end if;
6009 else
6010 Set_Is_Packed (Derived_Type, Is_Packed (Parent_Base));
6011 Set_Has_Non_Standard_Rep
6012 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
6013 end if;
6015 -- STEP 4: Inherit components from the parent base and constrain them.
6016 -- Apply the second transformation described in point 6. above.
6018 if (not Is_Empty_Elmt_List (Discs) or else Inherit_Discrims)
6019 or else not Has_Discriminants (Parent_Type)
6020 or else not Is_Constrained (Parent_Type)
6021 then
6022 Constrs := Discs;
6023 else
6024 Constrs := Discriminant_Constraint (Parent_Type);
6025 end if;
6027 Assoc_List := Inherit_Components (N,
6028 Parent_Base, Derived_Type, Is_Tagged, Inherit_Discrims, Constrs);
6030 -- STEP 5a: Copy the parent record declaration for untagged types
6032 if not Is_Tagged then
6034 -- Discriminant_Constraint (Derived_Type) has been properly
6035 -- constructed. Save it and temporarily set it to Empty because we
6036 -- do not want the call to New_Copy_Tree below to mess this list.
6038 if Has_Discriminants (Derived_Type) then
6039 Save_Discr_Constr := Discriminant_Constraint (Derived_Type);
6040 Set_Discriminant_Constraint (Derived_Type, No_Elist);
6041 else
6042 Save_Discr_Constr := No_Elist;
6043 end if;
6045 -- Save the Etype field of Derived_Type. It is correctly set now,
6046 -- but the call to New_Copy tree may remap it to point to itself,
6047 -- which is not what we want. Ditto for the Next_Entity field.
6049 Save_Etype := Etype (Derived_Type);
6050 Save_Next_Entity := Next_Entity (Derived_Type);
6052 -- Assoc_List maps all stored discriminants in the Parent_Base to
6053 -- stored discriminants in the Derived_Type. It is fundamental that
6054 -- no types or itypes with discriminants other than the stored
6055 -- discriminants appear in the entities declared inside
6056 -- Derived_Type, since the back end cannot deal with it.
6058 New_Decl :=
6059 New_Copy_Tree
6060 (Parent (Parent_Base), Map => Assoc_List, New_Sloc => Loc);
6062 -- Restore the fields saved prior to the New_Copy_Tree call
6063 -- and compute the stored constraint.
6065 Set_Etype (Derived_Type, Save_Etype);
6066 Set_Next_Entity (Derived_Type, Save_Next_Entity);
6068 if Has_Discriminants (Derived_Type) then
6069 Set_Discriminant_Constraint
6070 (Derived_Type, Save_Discr_Constr);
6071 Set_Stored_Constraint
6072 (Derived_Type, Expand_To_Stored_Constraint (Parent_Type, Discs));
6073 Replace_Components (Derived_Type, New_Decl);
6074 end if;
6076 -- Insert the new derived type declaration
6078 Rewrite (N, New_Decl);
6080 -- STEP 5b: Complete the processing for record extensions in generics
6082 -- There is no completion for record extensions declared in the
6083 -- parameter part of a generic, so we need to complete processing for
6084 -- these generic record extensions here. The Record_Type_Definition call
6085 -- will change the Ekind of the components from E_Void to E_Component.
6087 elsif Private_Extension and then Is_Generic_Type (Derived_Type) then
6088 Record_Type_Definition (Empty, Derived_Type);
6090 -- STEP 5c: Process the record extension for non private tagged types
6092 elsif not Private_Extension then
6094 -- Add the _parent field in the derived type
6096 Expand_Record_Extension (Derived_Type, Type_Def);
6098 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
6099 -- implemented interfaces if we are in expansion mode
6101 if Expander_Active then
6102 Add_Interface_Tag_Components (N, Derived_Type);
6103 end if;
6105 -- Analyze the record extension
6107 Record_Type_Definition
6108 (Record_Extension_Part (Type_Def), Derived_Type);
6109 end if;
6111 End_Scope;
6113 if Etype (Derived_Type) = Any_Type then
6114 return;
6115 end if;
6117 -- Set delayed freeze and then derive subprograms, we need to do
6118 -- this in this order so that derived subprograms inherit the
6119 -- derived freeze if necessary.
6121 Set_Has_Delayed_Freeze (Derived_Type);
6123 if Derive_Subps then
6125 -- Ada 2005 (AI-251): Check if this tagged type implements abstract
6126 -- interfaces
6128 Has_Interfaces := False;
6130 if Is_Tagged_Type (Derived_Type) then
6131 declare
6132 E : Entity_Id;
6134 begin
6135 E := Derived_Type;
6136 loop
6137 if Is_Interface (E)
6138 or else (Present (Abstract_Interfaces (E))
6139 and then
6140 not Is_Empty_Elmt_List (Abstract_Interfaces (E)))
6141 then
6142 Has_Interfaces := True;
6143 exit;
6144 end if;
6146 exit when Etype (E) = E
6148 -- Protect the frontend against wrong source
6150 or else Etype (E) = Derived_Type;
6152 E := Etype (E);
6153 end loop;
6154 end;
6155 end if;
6157 -- Ada 2005 (AI-251): Keep separate the management of tagged types
6158 -- implementing interfaces
6160 if not Is_Tagged_Type (Derived_Type)
6161 or else not Has_Interfaces
6162 then
6163 Derive_Subprograms (Parent_Type, Derived_Type);
6165 else
6166 -- Ada 2005 (AI-251): Complete the decoration of tagged private
6167 -- types that implement interfaces
6169 if Present (Tagged_Partial_View) then
6170 Derive_Subprograms
6171 (Parent_Type, Derived_Type, Predefined_Prims_Only => True);
6173 Complete_Subprograms_Derivation
6174 (Partial_View => Tagged_Partial_View,
6175 Derived_Type => Derived_Type);
6177 -- Ada 2005 (AI-251): Derive the interface subprograms of all the
6178 -- implemented interfaces and check if some of the subprograms
6179 -- inherited from the ancestor cover some interface subprogram.
6181 else
6182 Derive_Subprograms (Parent_Type, Derived_Type);
6184 declare
6185 Subp_Elmt : Elmt_Id;
6186 First_Iface_Elmt : Elmt_Id;
6187 Iface_Subp_Elmt : Elmt_Id;
6188 Subp : Entity_Id;
6189 Iface_Subp : Entity_Id;
6190 Is_Interface_Subp : Boolean;
6192 begin
6193 -- Ada 2005 (AI-251): Remember the entity corresponding to
6194 -- the last inherited primitive operation. This is required
6195 -- to check if some of the inherited subprograms covers some
6196 -- of the new interfaces.
6198 Last_Inherited_Prim_Op := No_Elmt;
6200 Subp_Elmt :=
6201 First_Elmt (Primitive_Operations (Derived_Type));
6202 while Present (Subp_Elmt) loop
6203 Last_Inherited_Prim_Op := Subp_Elmt;
6204 Next_Elmt (Subp_Elmt);
6205 end loop;
6207 -- Ada 2005 (AI-251): Derive subprograms in abstract
6208 -- interfaces.
6210 Derive_Interface_Subprograms (Derived_Type);
6212 -- Ada 2005 (AI-251): Check if some of the inherited
6213 -- subprograms cover some of the new interfaces.
6215 if Present (Last_Inherited_Prim_Op) then
6216 First_Iface_Elmt := Next_Elmt (Last_Inherited_Prim_Op);
6217 Iface_Subp_Elmt := First_Iface_Elmt;
6218 while Present (Iface_Subp_Elmt) loop
6219 Subp_Elmt := First_Elmt (Primitive_Operations
6220 (Derived_Type));
6221 while Subp_Elmt /= First_Iface_Elmt loop
6222 Subp := Node (Subp_Elmt);
6223 Iface_Subp := Node (Iface_Subp_Elmt);
6225 Is_Interface_Subp :=
6226 Present (Alias (Subp))
6227 and then Present (DTC_Entity (Alias (Subp)))
6228 and then Is_Interface (Scope
6229 (DTC_Entity
6230 (Alias (Subp))));
6232 if Chars (Subp) = Chars (Iface_Subp)
6233 and then not Is_Interface_Subp
6234 and then not Is_Abstract (Subp)
6235 and then Type_Conformant (Iface_Subp, Subp)
6236 then
6237 Check_Dispatching_Operation
6238 (Subp => Subp,
6239 Old_Subp => Iface_Subp);
6241 -- Traverse the list of aliased subprograms
6243 declare
6244 E : Entity_Id;
6246 begin
6247 E := Alias (Subp);
6248 while Present (Alias (E)) loop
6249 E := Alias (E);
6250 end loop;
6252 Set_Alias (Subp, E);
6253 end;
6255 Set_Has_Delayed_Freeze (Subp);
6256 exit;
6257 end if;
6259 Next_Elmt (Subp_Elmt);
6260 end loop;
6262 Next_Elmt (Iface_Subp_Elmt);
6263 end loop;
6264 end if;
6265 end;
6266 end if;
6267 end if;
6268 end if;
6270 -- If we have a private extension which defines a constrained derived
6271 -- type mark as constrained here after we have derived subprograms. See
6272 -- comment on point 9. just above the body of Build_Derived_Record_Type.
6274 if Private_Extension and then Inherit_Discrims then
6275 if Constraint_Present and then not Is_Empty_Elmt_List (Discs) then
6276 Set_Is_Constrained (Derived_Type, True);
6277 Set_Discriminant_Constraint (Derived_Type, Discs);
6279 elsif Is_Constrained (Parent_Type) then
6280 Set_Is_Constrained
6281 (Derived_Type, True);
6282 Set_Discriminant_Constraint
6283 (Derived_Type, Discriminant_Constraint (Parent_Type));
6284 end if;
6285 end if;
6287 -- Update the class_wide type, which shares the now-completed
6288 -- entity list with its specific type.
6290 if Is_Tagged then
6291 Set_First_Entity
6292 (Class_Wide_Type (Derived_Type), First_Entity (Derived_Type));
6293 Set_Last_Entity
6294 (Class_Wide_Type (Derived_Type), Last_Entity (Derived_Type));
6295 end if;
6297 end Build_Derived_Record_Type;
6299 ------------------------
6300 -- Build_Derived_Type --
6301 ------------------------
6303 procedure Build_Derived_Type
6304 (N : Node_Id;
6305 Parent_Type : Entity_Id;
6306 Derived_Type : Entity_Id;
6307 Is_Completion : Boolean;
6308 Derive_Subps : Boolean := True)
6310 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
6312 begin
6313 -- Set common attributes
6315 Set_Scope (Derived_Type, Current_Scope);
6317 Set_Ekind (Derived_Type, Ekind (Parent_Base));
6318 Set_Etype (Derived_Type, Parent_Base);
6319 Set_Has_Task (Derived_Type, Has_Task (Parent_Base));
6321 Set_Size_Info (Derived_Type, Parent_Type);
6322 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
6323 Set_Convention (Derived_Type, Convention (Parent_Type));
6324 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
6326 -- The derived type inherits the representation clauses of the parent.
6327 -- However, for a private type that is completed by a derivation, there
6328 -- may be operation attributes that have been specified already (stream
6329 -- attributes and External_Tag) and those must be provided. Finally,
6330 -- if the partial view is a private extension, the representation items
6331 -- of the parent have been inherited already, and should not be chained
6332 -- twice to the derived type.
6334 if Is_Tagged_Type (Parent_Type)
6335 and then Present (First_Rep_Item (Derived_Type))
6336 then
6337 -- The existing items are either operational items or items inherited
6338 -- from a private extension declaration.
6340 declare
6341 Rep : Node_Id;
6342 Found : Boolean := False;
6344 begin
6345 Rep := First_Rep_Item (Derived_Type);
6346 while Present (Rep) loop
6347 if Rep = First_Rep_Item (Parent_Type) then
6348 Found := True;
6349 exit;
6350 else
6351 Rep := Next_Rep_Item (Rep);
6352 end if;
6353 end loop;
6355 if not Found then
6356 Set_Next_Rep_Item
6357 (First_Rep_Item (Derived_Type), First_Rep_Item (Parent_Type));
6358 end if;
6359 end;
6361 else
6362 Set_First_Rep_Item (Derived_Type, First_Rep_Item (Parent_Type));
6363 end if;
6365 case Ekind (Parent_Type) is
6366 when Numeric_Kind =>
6367 Build_Derived_Numeric_Type (N, Parent_Type, Derived_Type);
6369 when Array_Kind =>
6370 Build_Derived_Array_Type (N, Parent_Type, Derived_Type);
6372 when E_Record_Type
6373 | E_Record_Subtype
6374 | Class_Wide_Kind =>
6375 Build_Derived_Record_Type
6376 (N, Parent_Type, Derived_Type, Derive_Subps);
6377 return;
6379 when Enumeration_Kind =>
6380 Build_Derived_Enumeration_Type (N, Parent_Type, Derived_Type);
6382 when Access_Kind =>
6383 Build_Derived_Access_Type (N, Parent_Type, Derived_Type);
6385 when Incomplete_Or_Private_Kind =>
6386 Build_Derived_Private_Type
6387 (N, Parent_Type, Derived_Type, Is_Completion, Derive_Subps);
6389 -- For discriminated types, the derivation includes deriving
6390 -- primitive operations. For others it is done below.
6392 if Is_Tagged_Type (Parent_Type)
6393 or else Has_Discriminants (Parent_Type)
6394 or else (Present (Full_View (Parent_Type))
6395 and then Has_Discriminants (Full_View (Parent_Type)))
6396 then
6397 return;
6398 end if;
6400 when Concurrent_Kind =>
6401 Build_Derived_Concurrent_Type (N, Parent_Type, Derived_Type);
6403 when others =>
6404 raise Program_Error;
6405 end case;
6407 if Etype (Derived_Type) = Any_Type then
6408 return;
6409 end if;
6411 -- Set delayed freeze and then derive subprograms, we need to do this
6412 -- in this order so that derived subprograms inherit the derived freeze
6413 -- if necessary.
6415 Set_Has_Delayed_Freeze (Derived_Type);
6416 if Derive_Subps then
6417 Derive_Subprograms (Parent_Type, Derived_Type);
6418 end if;
6420 Set_Has_Primitive_Operations
6421 (Base_Type (Derived_Type), Has_Primitive_Operations (Parent_Type));
6422 end Build_Derived_Type;
6424 -----------------------
6425 -- Build_Discriminal --
6426 -----------------------
6428 procedure Build_Discriminal (Discrim : Entity_Id) is
6429 D_Minal : Entity_Id;
6430 CR_Disc : Entity_Id;
6432 begin
6433 -- A discriminal has the same name as the discriminant
6435 D_Minal :=
6436 Make_Defining_Identifier (Sloc (Discrim),
6437 Chars => Chars (Discrim));
6439 Set_Ekind (D_Minal, E_In_Parameter);
6440 Set_Mechanism (D_Minal, Default_Mechanism);
6441 Set_Etype (D_Minal, Etype (Discrim));
6443 Set_Discriminal (Discrim, D_Minal);
6444 Set_Discriminal_Link (D_Minal, Discrim);
6446 -- For task types, build at once the discriminants of the corresponding
6447 -- record, which are needed if discriminants are used in entry defaults
6448 -- and in family bounds.
6450 if Is_Concurrent_Type (Current_Scope)
6451 or else Is_Limited_Type (Current_Scope)
6452 then
6453 CR_Disc := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
6455 Set_Ekind (CR_Disc, E_In_Parameter);
6456 Set_Mechanism (CR_Disc, Default_Mechanism);
6457 Set_Etype (CR_Disc, Etype (Discrim));
6458 Set_CR_Discriminant (Discrim, CR_Disc);
6459 end if;
6460 end Build_Discriminal;
6462 ------------------------------------
6463 -- Build_Discriminant_Constraints --
6464 ------------------------------------
6466 function Build_Discriminant_Constraints
6467 (T : Entity_Id;
6468 Def : Node_Id;
6469 Derived_Def : Boolean := False) return Elist_Id
6471 C : constant Node_Id := Constraint (Def);
6472 Nb_Discr : constant Nat := Number_Discriminants (T);
6474 Discr_Expr : array (1 .. Nb_Discr) of Node_Id := (others => Empty);
6475 -- Saves the expression corresponding to a given discriminant in T
6477 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat;
6478 -- Return the Position number within array Discr_Expr of a discriminant
6479 -- D within the discriminant list of the discriminated type T.
6481 ------------------
6482 -- Pos_Of_Discr --
6483 ------------------
6485 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat is
6486 Disc : Entity_Id;
6488 begin
6489 Disc := First_Discriminant (T);
6490 for J in Discr_Expr'Range loop
6491 if Disc = D then
6492 return J;
6493 end if;
6495 Next_Discriminant (Disc);
6496 end loop;
6498 -- Note: Since this function is called on discriminants that are
6499 -- known to belong to the discriminated type, falling through the
6500 -- loop with no match signals an internal compiler error.
6502 raise Program_Error;
6503 end Pos_Of_Discr;
6505 -- Declarations local to Build_Discriminant_Constraints
6507 Discr : Entity_Id;
6508 E : Entity_Id;
6509 Elist : constant Elist_Id := New_Elmt_List;
6511 Constr : Node_Id;
6512 Expr : Node_Id;
6513 Id : Node_Id;
6514 Position : Nat;
6515 Found : Boolean;
6517 Discrim_Present : Boolean := False;
6519 -- Start of processing for Build_Discriminant_Constraints
6521 begin
6522 -- The following loop will process positional associations only.
6523 -- For a positional association, the (single) discriminant is
6524 -- implicitly specified by position, in textual order (RM 3.7.2).
6526 Discr := First_Discriminant (T);
6527 Constr := First (Constraints (C));
6529 for D in Discr_Expr'Range loop
6530 exit when Nkind (Constr) = N_Discriminant_Association;
6532 if No (Constr) then
6533 Error_Msg_N ("too few discriminants given in constraint", C);
6534 return New_Elmt_List;
6536 elsif Nkind (Constr) = N_Range
6537 or else (Nkind (Constr) = N_Attribute_Reference
6538 and then
6539 Attribute_Name (Constr) = Name_Range)
6540 then
6541 Error_Msg_N
6542 ("a range is not a valid discriminant constraint", Constr);
6543 Discr_Expr (D) := Error;
6545 else
6546 Analyze_And_Resolve (Constr, Base_Type (Etype (Discr)));
6547 Discr_Expr (D) := Constr;
6548 end if;
6550 Next_Discriminant (Discr);
6551 Next (Constr);
6552 end loop;
6554 if No (Discr) and then Present (Constr) then
6555 Error_Msg_N ("too many discriminants given in constraint", Constr);
6556 return New_Elmt_List;
6557 end if;
6559 -- Named associations can be given in any order, but if both positional
6560 -- and named associations are used in the same discriminant constraint,
6561 -- then positional associations must occur first, at their normal
6562 -- position. Hence once a named association is used, the rest of the
6563 -- discriminant constraint must use only named associations.
6565 while Present (Constr) loop
6567 -- Positional association forbidden after a named association
6569 if Nkind (Constr) /= N_Discriminant_Association then
6570 Error_Msg_N ("positional association follows named one", Constr);
6571 return New_Elmt_List;
6573 -- Otherwise it is a named association
6575 else
6576 -- E records the type of the discriminants in the named
6577 -- association. All the discriminants specified in the same name
6578 -- association must have the same type.
6580 E := Empty;
6582 -- Search the list of discriminants in T to see if the simple name
6583 -- given in the constraint matches any of them.
6585 Id := First (Selector_Names (Constr));
6586 while Present (Id) loop
6587 Found := False;
6589 -- If Original_Discriminant is present, we are processing a
6590 -- generic instantiation and this is an instance node. We need
6591 -- to find the name of the corresponding discriminant in the
6592 -- actual record type T and not the name of the discriminant in
6593 -- the generic formal. Example:
6595 -- generic
6596 -- type G (D : int) is private;
6597 -- package P is
6598 -- subtype W is G (D => 1);
6599 -- end package;
6600 -- type Rec (X : int) is record ... end record;
6601 -- package Q is new P (G => Rec);
6603 -- At the point of the instantiation, formal type G is Rec
6604 -- and therefore when reanalyzing "subtype W is G (D => 1);"
6605 -- which really looks like "subtype W is Rec (D => 1);" at
6606 -- the point of instantiation, we want to find the discriminant
6607 -- that corresponds to D in Rec, ie X.
6609 if Present (Original_Discriminant (Id)) then
6610 Discr := Find_Corresponding_Discriminant (Id, T);
6611 Found := True;
6613 else
6614 Discr := First_Discriminant (T);
6615 while Present (Discr) loop
6616 if Chars (Discr) = Chars (Id) then
6617 Found := True;
6618 exit;
6619 end if;
6621 Next_Discriminant (Discr);
6622 end loop;
6624 if not Found then
6625 Error_Msg_N ("& does not match any discriminant", Id);
6626 return New_Elmt_List;
6628 -- The following is only useful for the benefit of generic
6629 -- instances but it does not interfere with other
6630 -- processing for the non-generic case so we do it in all
6631 -- cases (for generics this statement is executed when
6632 -- processing the generic definition, see comment at the
6633 -- beginning of this if statement).
6635 else
6636 Set_Original_Discriminant (Id, Discr);
6637 end if;
6638 end if;
6640 Position := Pos_Of_Discr (T, Discr);
6642 if Present (Discr_Expr (Position)) then
6643 Error_Msg_N ("duplicate constraint for discriminant&", Id);
6645 else
6646 -- Each discriminant specified in the same named association
6647 -- must be associated with a separate copy of the
6648 -- corresponding expression.
6650 if Present (Next (Id)) then
6651 Expr := New_Copy_Tree (Expression (Constr));
6652 Set_Parent (Expr, Parent (Expression (Constr)));
6653 else
6654 Expr := Expression (Constr);
6655 end if;
6657 Discr_Expr (Position) := Expr;
6658 Analyze_And_Resolve (Expr, Base_Type (Etype (Discr)));
6659 end if;
6661 -- A discriminant association with more than one discriminant
6662 -- name is only allowed if the named discriminants are all of
6663 -- the same type (RM 3.7.1(8)).
6665 if E = Empty then
6666 E := Base_Type (Etype (Discr));
6668 elsif Base_Type (Etype (Discr)) /= E then
6669 Error_Msg_N
6670 ("all discriminants in an association " &
6671 "must have the same type", Id);
6672 end if;
6674 Next (Id);
6675 end loop;
6676 end if;
6678 Next (Constr);
6679 end loop;
6681 -- A discriminant constraint must provide exactly one value for each
6682 -- discriminant of the type (RM 3.7.1(8)).
6684 for J in Discr_Expr'Range loop
6685 if No (Discr_Expr (J)) then
6686 Error_Msg_N ("too few discriminants given in constraint", C);
6687 return New_Elmt_List;
6688 end if;
6689 end loop;
6691 -- Determine if there are discriminant expressions in the constraint
6693 for J in Discr_Expr'Range loop
6694 if Denotes_Discriminant (Discr_Expr (J), Check_Protected => True) then
6695 Discrim_Present := True;
6696 end if;
6697 end loop;
6699 -- Build an element list consisting of the expressions given in the
6700 -- discriminant constraint and apply the appropriate checks. The list
6701 -- is constructed after resolving any named discriminant associations
6702 -- and therefore the expressions appear in the textual order of the
6703 -- discriminants.
6705 Discr := First_Discriminant (T);
6706 for J in Discr_Expr'Range loop
6707 if Discr_Expr (J) /= Error then
6709 Append_Elmt (Discr_Expr (J), Elist);
6711 -- If any of the discriminant constraints is given by a
6712 -- discriminant and we are in a derived type declaration we
6713 -- have a discriminant renaming. Establish link between new
6714 -- and old discriminant.
6716 if Denotes_Discriminant (Discr_Expr (J)) then
6717 if Derived_Def then
6718 Set_Corresponding_Discriminant
6719 (Entity (Discr_Expr (J)), Discr);
6720 end if;
6722 -- Force the evaluation of non-discriminant expressions.
6723 -- If we have found a discriminant in the constraint 3.4(26)
6724 -- and 3.8(18) demand that no range checks are performed are
6725 -- after evaluation. If the constraint is for a component
6726 -- definition that has a per-object constraint, expressions are
6727 -- evaluated but not checked either. In all other cases perform
6728 -- a range check.
6730 else
6731 if Discrim_Present then
6732 null;
6734 elsif Nkind (Parent (Parent (Def))) = N_Component_Declaration
6735 and then
6736 Has_Per_Object_Constraint
6737 (Defining_Identifier (Parent (Parent (Def))))
6738 then
6739 null;
6741 elsif Is_Access_Type (Etype (Discr)) then
6742 Apply_Constraint_Check (Discr_Expr (J), Etype (Discr));
6744 else
6745 Apply_Range_Check (Discr_Expr (J), Etype (Discr));
6746 end if;
6748 Force_Evaluation (Discr_Expr (J));
6749 end if;
6751 -- Check that the designated type of an access discriminant's
6752 -- expression is not a class-wide type unless the discriminant's
6753 -- designated type is also class-wide.
6755 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type
6756 and then not Is_Class_Wide_Type
6757 (Designated_Type (Etype (Discr)))
6758 and then Etype (Discr_Expr (J)) /= Any_Type
6759 and then Is_Class_Wide_Type
6760 (Designated_Type (Etype (Discr_Expr (J))))
6761 then
6762 Wrong_Type (Discr_Expr (J), Etype (Discr));
6763 end if;
6764 end if;
6766 Next_Discriminant (Discr);
6767 end loop;
6769 return Elist;
6770 end Build_Discriminant_Constraints;
6772 ---------------------------------
6773 -- Build_Discriminated_Subtype --
6774 ---------------------------------
6776 procedure Build_Discriminated_Subtype
6777 (T : Entity_Id;
6778 Def_Id : Entity_Id;
6779 Elist : Elist_Id;
6780 Related_Nod : Node_Id;
6781 For_Access : Boolean := False)
6783 Has_Discrs : constant Boolean := Has_Discriminants (T);
6784 Constrained : constant Boolean
6785 := (Has_Discrs
6786 and then not Is_Empty_Elmt_List (Elist)
6787 and then not Is_Class_Wide_Type (T))
6788 or else Is_Constrained (T);
6790 begin
6791 if Ekind (T) = E_Record_Type then
6792 if For_Access then
6793 Set_Ekind (Def_Id, E_Private_Subtype);
6794 Set_Is_For_Access_Subtype (Def_Id, True);
6795 else
6796 Set_Ekind (Def_Id, E_Record_Subtype);
6797 end if;
6799 elsif Ekind (T) = E_Task_Type then
6800 Set_Ekind (Def_Id, E_Task_Subtype);
6802 elsif Ekind (T) = E_Protected_Type then
6803 Set_Ekind (Def_Id, E_Protected_Subtype);
6805 elsif Is_Private_Type (T) then
6806 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
6808 elsif Is_Class_Wide_Type (T) then
6809 Set_Ekind (Def_Id, E_Class_Wide_Subtype);
6811 else
6812 -- Incomplete type. attach subtype to list of dependents, to be
6813 -- completed with full view of parent type, unless is it the
6814 -- designated subtype of a record component within an init_proc.
6815 -- This last case arises for a component of an access type whose
6816 -- designated type is incomplete (e.g. a Taft Amendment type).
6817 -- The designated subtype is within an inner scope, and needs no
6818 -- elaboration, because only the access type is needed in the
6819 -- initialization procedure.
6821 Set_Ekind (Def_Id, Ekind (T));
6823 if For_Access and then Within_Init_Proc then
6824 null;
6825 else
6826 Append_Elmt (Def_Id, Private_Dependents (T));
6827 end if;
6828 end if;
6830 Set_Etype (Def_Id, T);
6831 Init_Size_Align (Def_Id);
6832 Set_Has_Discriminants (Def_Id, Has_Discrs);
6833 Set_Is_Constrained (Def_Id, Constrained);
6835 Set_First_Entity (Def_Id, First_Entity (T));
6836 Set_Last_Entity (Def_Id, Last_Entity (T));
6837 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
6839 if Is_Tagged_Type (T) then
6840 Set_Is_Tagged_Type (Def_Id);
6841 Make_Class_Wide_Type (Def_Id);
6842 end if;
6844 Set_Stored_Constraint (Def_Id, No_Elist);
6846 if Has_Discrs then
6847 Set_Discriminant_Constraint (Def_Id, Elist);
6848 Set_Stored_Constraint_From_Discriminant_Constraint (Def_Id);
6849 end if;
6851 if Is_Tagged_Type (T) then
6852 Set_Primitive_Operations (Def_Id, Primitive_Operations (T));
6853 Set_Is_Abstract (Def_Id, Is_Abstract (T));
6854 end if;
6856 -- Subtypes introduced by component declarations do not need to be
6857 -- marked as delayed, and do not get freeze nodes, because the semantics
6858 -- verifies that the parents of the subtypes are frozen before the
6859 -- enclosing record is frozen.
6861 if not Is_Type (Scope (Def_Id)) then
6862 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
6864 if Is_Private_Type (T)
6865 and then Present (Full_View (T))
6866 then
6867 Conditional_Delay (Def_Id, Full_View (T));
6868 else
6869 Conditional_Delay (Def_Id, T);
6870 end if;
6871 end if;
6873 if Is_Record_Type (T) then
6874 Set_Is_Limited_Record (Def_Id, Is_Limited_Record (T));
6876 if Has_Discrs
6877 and then not Is_Empty_Elmt_List (Elist)
6878 and then not For_Access
6879 then
6880 Create_Constrained_Components (Def_Id, Related_Nod, T, Elist);
6881 elsif not For_Access then
6882 Set_Cloned_Subtype (Def_Id, T);
6883 end if;
6884 end if;
6886 end Build_Discriminated_Subtype;
6888 ------------------------
6889 -- Build_Scalar_Bound --
6890 ------------------------
6892 function Build_Scalar_Bound
6893 (Bound : Node_Id;
6894 Par_T : Entity_Id;
6895 Der_T : Entity_Id) return Node_Id
6897 New_Bound : Entity_Id;
6899 begin
6900 -- Note: not clear why this is needed, how can the original bound
6901 -- be unanalyzed at this point? and if it is, what business do we
6902 -- have messing around with it? and why is the base type of the
6903 -- parent type the right type for the resolution. It probably is
6904 -- not! It is OK for the new bound we are creating, but not for
6905 -- the old one??? Still if it never happens, no problem!
6907 Analyze_And_Resolve (Bound, Base_Type (Par_T));
6909 if Nkind (Bound) = N_Integer_Literal
6910 or else Nkind (Bound) = N_Real_Literal
6911 then
6912 New_Bound := New_Copy (Bound);
6913 Set_Etype (New_Bound, Der_T);
6914 Set_Analyzed (New_Bound);
6916 elsif Is_Entity_Name (Bound) then
6917 New_Bound := OK_Convert_To (Der_T, New_Copy (Bound));
6919 -- The following is almost certainly wrong. What business do we have
6920 -- relocating a node (Bound) that is presumably still attached to
6921 -- the tree elsewhere???
6923 else
6924 New_Bound := OK_Convert_To (Der_T, Relocate_Node (Bound));
6925 end if;
6927 Set_Etype (New_Bound, Der_T);
6928 return New_Bound;
6929 end Build_Scalar_Bound;
6931 --------------------------------
6932 -- Build_Underlying_Full_View --
6933 --------------------------------
6935 procedure Build_Underlying_Full_View
6936 (N : Node_Id;
6937 Typ : Entity_Id;
6938 Par : Entity_Id)
6940 Loc : constant Source_Ptr := Sloc (N);
6941 Subt : constant Entity_Id :=
6942 Make_Defining_Identifier
6943 (Loc, New_External_Name (Chars (Typ), 'S'));
6945 Constr : Node_Id;
6946 Indic : Node_Id;
6947 C : Node_Id;
6948 Id : Node_Id;
6950 procedure Set_Discriminant_Name (Id : Node_Id);
6951 -- If the derived type has discriminants, they may rename discriminants
6952 -- of the parent. When building the full view of the parent, we need to
6953 -- recover the names of the original discriminants if the constraint is
6954 -- given by named associations.
6956 ---------------------------
6957 -- Set_Discriminant_Name --
6958 ---------------------------
6960 procedure Set_Discriminant_Name (Id : Node_Id) is
6961 Disc : Entity_Id;
6963 begin
6964 Set_Original_Discriminant (Id, Empty);
6966 if Has_Discriminants (Typ) then
6967 Disc := First_Discriminant (Typ);
6968 while Present (Disc) loop
6969 if Chars (Disc) = Chars (Id)
6970 and then Present (Corresponding_Discriminant (Disc))
6971 then
6972 Set_Chars (Id, Chars (Corresponding_Discriminant (Disc)));
6973 end if;
6974 Next_Discriminant (Disc);
6975 end loop;
6976 end if;
6977 end Set_Discriminant_Name;
6979 -- Start of processing for Build_Underlying_Full_View
6981 begin
6982 if Nkind (N) = N_Full_Type_Declaration then
6983 Constr := Constraint (Subtype_Indication (Type_Definition (N)));
6985 elsif Nkind (N) = N_Subtype_Declaration then
6986 Constr := New_Copy_Tree (Constraint (Subtype_Indication (N)));
6988 elsif Nkind (N) = N_Component_Declaration then
6989 Constr :=
6990 New_Copy_Tree
6991 (Constraint (Subtype_Indication (Component_Definition (N))));
6993 else
6994 raise Program_Error;
6995 end if;
6997 C := First (Constraints (Constr));
6998 while Present (C) loop
6999 if Nkind (C) = N_Discriminant_Association then
7000 Id := First (Selector_Names (C));
7001 while Present (Id) loop
7002 Set_Discriminant_Name (Id);
7003 Next (Id);
7004 end loop;
7005 end if;
7007 Next (C);
7008 end loop;
7010 Indic :=
7011 Make_Subtype_Declaration (Loc,
7012 Defining_Identifier => Subt,
7013 Subtype_Indication =>
7014 Make_Subtype_Indication (Loc,
7015 Subtype_Mark => New_Reference_To (Par, Loc),
7016 Constraint => New_Copy_Tree (Constr)));
7018 -- If this is a component subtype for an outer itype, it is not
7019 -- a list member, so simply set the parent link for analysis: if
7020 -- the enclosing type does not need to be in a declarative list,
7021 -- neither do the components.
7023 if Is_List_Member (N)
7024 and then Nkind (N) /= N_Component_Declaration
7025 then
7026 Insert_Before (N, Indic);
7027 else
7028 Set_Parent (Indic, Parent (N));
7029 end if;
7031 Analyze (Indic);
7032 Set_Underlying_Full_View (Typ, Full_View (Subt));
7033 end Build_Underlying_Full_View;
7035 -------------------------------
7036 -- Check_Abstract_Overriding --
7037 -------------------------------
7039 procedure Check_Abstract_Overriding (T : Entity_Id) is
7040 Op_List : Elist_Id;
7041 Elmt : Elmt_Id;
7042 Subp : Entity_Id;
7043 Type_Def : Node_Id;
7045 begin
7046 Op_List := Primitive_Operations (T);
7048 -- Loop to check primitive operations
7050 Elmt := First_Elmt (Op_List);
7051 while Present (Elmt) loop
7052 Subp := Node (Elmt);
7054 -- Special exception, do not complain about failure to override the
7055 -- stream routines _Input and _Output, as well as the primitive
7056 -- operations used in dispatching selects since we always provide
7057 -- automatic overridings for these subprograms.
7059 if Is_Abstract (Subp)
7060 and then not Is_TSS (Subp, TSS_Stream_Input)
7061 and then not Is_TSS (Subp, TSS_Stream_Output)
7062 and then not Is_Abstract (T)
7063 and then Chars (Subp) /= Name_uDisp_Asynchronous_Select
7064 and then Chars (Subp) /= Name_uDisp_Conditional_Select
7065 and then Chars (Subp) /= Name_uDisp_Get_Prim_Op_Kind
7066 and then Chars (Subp) /= Name_uDisp_Timed_Select
7067 then
7068 if Present (Alias (Subp)) then
7070 -- Only perform the check for a derived subprogram when
7071 -- the type has an explicit record extension. This avoids
7072 -- incorrectly flagging abstract subprograms for the case
7073 -- of a type without an extension derived from a formal type
7074 -- with a tagged actual (can occur within a private part).
7076 Type_Def := Type_Definition (Parent (T));
7077 if Nkind (Type_Def) = N_Derived_Type_Definition
7078 and then Present (Record_Extension_Part (Type_Def))
7079 then
7080 Error_Msg_NE
7081 ("type must be declared abstract or & overridden",
7082 T, Subp);
7084 -- Traverse the whole chain of aliased subprograms to
7085 -- complete the error notification. This is useful for
7086 -- traceability of the chain of entities when the subprogram
7087 -- corresponds with interface subprogram (that may be
7088 -- defined in another package)
7090 if Ada_Version >= Ada_05
7091 and then Present (Alias (Subp))
7092 then
7093 declare
7094 E : Entity_Id;
7096 begin
7097 E := Subp;
7098 while Present (Alias (E)) loop
7099 Error_Msg_Sloc := Sloc (E);
7100 Error_Msg_NE ("\& has been inherited #", T, Subp);
7101 E := Alias (E);
7102 end loop;
7104 Error_Msg_Sloc := Sloc (E);
7105 Error_Msg_NE
7106 ("\& has been inherited from subprogram #", T, Subp);
7107 end;
7108 end if;
7110 -- Ada 2005 (AI-345): Protected or task type implementing
7111 -- abstract interfaces.
7113 elsif Is_Concurrent_Record_Type (T)
7114 and then Present (Abstract_Interfaces (T))
7115 then
7116 Error_Msg_NE
7117 ("interface subprogram & must be overridden",
7118 T, Subp);
7119 end if;
7120 else
7121 Error_Msg_NE
7122 ("abstract subprogram not allowed for type&",
7123 Subp, T);
7124 Error_Msg_NE
7125 ("nonabstract type has abstract subprogram&",
7126 T, Subp);
7127 end if;
7128 end if;
7130 Next_Elmt (Elmt);
7131 end loop;
7132 end Check_Abstract_Overriding;
7134 ------------------------------------------------
7135 -- Check_Access_Discriminant_Requires_Limited --
7136 ------------------------------------------------
7138 procedure Check_Access_Discriminant_Requires_Limited
7139 (D : Node_Id;
7140 Loc : Node_Id)
7142 begin
7143 -- A discriminant_specification for an access discriminant shall appear
7144 -- only in the declaration for a task or protected type, or for a type
7145 -- with the reserved word 'limited' in its definition or in one of its
7146 -- ancestors. (RM 3.7(10))
7148 if Nkind (Discriminant_Type (D)) = N_Access_Definition
7149 and then not Is_Concurrent_Type (Current_Scope)
7150 and then not Is_Concurrent_Record_Type (Current_Scope)
7151 and then not Is_Limited_Record (Current_Scope)
7152 and then Ekind (Current_Scope) /= E_Limited_Private_Type
7153 then
7154 Error_Msg_N
7155 ("access discriminants allowed only for limited types", Loc);
7156 end if;
7157 end Check_Access_Discriminant_Requires_Limited;
7159 -----------------------------------
7160 -- Check_Aliased_Component_Types --
7161 -----------------------------------
7163 procedure Check_Aliased_Component_Types (T : Entity_Id) is
7164 C : Entity_Id;
7166 begin
7167 -- ??? Also need to check components of record extensions, but not
7168 -- components of protected types (which are always limited).
7170 -- Ada 2005: AI-363 relaxes this rule, to allow heap objects of such
7171 -- types to be unconstrained. This is safe because it is illegal to
7172 -- create access subtypes to such types with explicit discriminant
7173 -- constraints.
7175 if not Is_Limited_Type (T) then
7176 if Ekind (T) = E_Record_Type then
7177 C := First_Component (T);
7178 while Present (C) loop
7179 if Is_Aliased (C)
7180 and then Has_Discriminants (Etype (C))
7181 and then not Is_Constrained (Etype (C))
7182 and then not In_Instance
7183 and then Ada_Version < Ada_05
7184 then
7185 Error_Msg_N
7186 ("aliased component must be constrained ('R'M 3.6(11))",
7188 end if;
7190 Next_Component (C);
7191 end loop;
7193 elsif Ekind (T) = E_Array_Type then
7194 if Has_Aliased_Components (T)
7195 and then Has_Discriminants (Component_Type (T))
7196 and then not Is_Constrained (Component_Type (T))
7197 and then not In_Instance
7198 then
7199 Error_Msg_N
7200 ("aliased component type must be constrained ('R'M 3.6(11))",
7202 end if;
7203 end if;
7204 end if;
7205 end Check_Aliased_Component_Types;
7207 ----------------------
7208 -- Check_Completion --
7209 ----------------------
7211 procedure Check_Completion (Body_Id : Node_Id := Empty) is
7212 E : Entity_Id;
7214 procedure Post_Error;
7215 -- Post error message for lack of completion for entity E
7217 ----------------
7218 -- Post_Error --
7219 ----------------
7221 procedure Post_Error is
7222 begin
7223 if not Comes_From_Source (E) then
7225 if Ekind (E) = E_Task_Type
7226 or else Ekind (E) = E_Protected_Type
7227 then
7228 -- It may be an anonymous protected type created for a
7229 -- single variable. Post error on variable, if present.
7231 declare
7232 Var : Entity_Id;
7234 begin
7235 Var := First_Entity (Current_Scope);
7236 while Present (Var) loop
7237 exit when Etype (Var) = E
7238 and then Comes_From_Source (Var);
7240 Next_Entity (Var);
7241 end loop;
7243 if Present (Var) then
7244 E := Var;
7245 end if;
7246 end;
7247 end if;
7248 end if;
7250 -- If a generated entity has no completion, then either previous
7251 -- semantic errors have disabled the expansion phase, or else we had
7252 -- missing subunits, or else we are compiling without expan- sion,
7253 -- or else something is very wrong.
7255 if not Comes_From_Source (E) then
7256 pragma Assert
7257 (Serious_Errors_Detected > 0
7258 or else Configurable_Run_Time_Violations > 0
7259 or else Subunits_Missing
7260 or else not Expander_Active);
7261 return;
7263 -- Here for source entity
7265 else
7266 -- Here if no body to post the error message, so we post the error
7267 -- on the declaration that has no completion. This is not really
7268 -- the right place to post it, think about this later ???
7270 if No (Body_Id) then
7271 if Is_Type (E) then
7272 Error_Msg_NE
7273 ("missing full declaration for }", Parent (E), E);
7274 else
7275 Error_Msg_NE
7276 ("missing body for &", Parent (E), E);
7277 end if;
7279 -- Package body has no completion for a declaration that appears
7280 -- in the corresponding spec. Post error on the body, with a
7281 -- reference to the non-completed declaration.
7283 else
7284 Error_Msg_Sloc := Sloc (E);
7286 if Is_Type (E) then
7287 Error_Msg_NE
7288 ("missing full declaration for }!", Body_Id, E);
7290 elsif Is_Overloadable (E)
7291 and then Current_Entity_In_Scope (E) /= E
7292 then
7293 -- It may be that the completion is mistyped and appears
7294 -- as a distinct overloading of the entity.
7296 declare
7297 Candidate : constant Entity_Id :=
7298 Current_Entity_In_Scope (E);
7299 Decl : constant Node_Id :=
7300 Unit_Declaration_Node (Candidate);
7302 begin
7303 if Is_Overloadable (Candidate)
7304 and then Ekind (Candidate) = Ekind (E)
7305 and then Nkind (Decl) = N_Subprogram_Body
7306 and then Acts_As_Spec (Decl)
7307 then
7308 Check_Type_Conformant (Candidate, E);
7310 else
7311 Error_Msg_NE ("missing body for & declared#!",
7312 Body_Id, E);
7313 end if;
7314 end;
7315 else
7316 Error_Msg_NE ("missing body for & declared#!",
7317 Body_Id, E);
7318 end if;
7319 end if;
7320 end if;
7321 end Post_Error;
7323 -- Start processing for Check_Completion
7325 begin
7326 E := First_Entity (Current_Scope);
7327 while Present (E) loop
7328 if Is_Intrinsic_Subprogram (E) then
7329 null;
7331 -- The following situation requires special handling: a child
7332 -- unit that appears in the context clause of the body of its
7333 -- parent:
7335 -- procedure Parent.Child (...);
7337 -- with Parent.Child;
7338 -- package body Parent is
7340 -- Here Parent.Child appears as a local entity, but should not
7341 -- be flagged as requiring completion, because it is a
7342 -- compilation unit.
7344 elsif Ekind (E) = E_Function
7345 or else Ekind (E) = E_Procedure
7346 or else Ekind (E) = E_Generic_Function
7347 or else Ekind (E) = E_Generic_Procedure
7348 then
7349 if not Has_Completion (E)
7350 and then not Is_Abstract (E)
7351 and then Nkind (Parent (Unit_Declaration_Node (E))) /=
7352 N_Compilation_Unit
7353 and then Chars (E) /= Name_uSize
7354 then
7355 Post_Error;
7356 end if;
7358 elsif Is_Entry (E) then
7359 if not Has_Completion (E) and then
7360 (Ekind (Scope (E)) = E_Protected_Object
7361 or else Ekind (Scope (E)) = E_Protected_Type)
7362 then
7363 Post_Error;
7364 end if;
7366 elsif Is_Package (E) then
7367 if Unit_Requires_Body (E) then
7368 if not Has_Completion (E)
7369 and then Nkind (Parent (Unit_Declaration_Node (E))) /=
7370 N_Compilation_Unit
7371 then
7372 Post_Error;
7373 end if;
7375 elsif not Is_Child_Unit (E) then
7376 May_Need_Implicit_Body (E);
7377 end if;
7379 elsif Ekind (E) = E_Incomplete_Type
7380 and then No (Underlying_Type (E))
7381 then
7382 Post_Error;
7384 elsif (Ekind (E) = E_Task_Type or else
7385 Ekind (E) = E_Protected_Type)
7386 and then not Has_Completion (E)
7387 then
7388 Post_Error;
7390 -- A single task declared in the current scope is a constant, verify
7391 -- that the body of its anonymous type is in the same scope. If the
7392 -- task is defined elsewhere, this may be a renaming declaration for
7393 -- which no completion is needed.
7395 elsif Ekind (E) = E_Constant
7396 and then Ekind (Etype (E)) = E_Task_Type
7397 and then not Has_Completion (Etype (E))
7398 and then Scope (Etype (E)) = Current_Scope
7399 then
7400 Post_Error;
7402 elsif Ekind (E) = E_Protected_Object
7403 and then not Has_Completion (Etype (E))
7404 then
7405 Post_Error;
7407 elsif Ekind (E) = E_Record_Type then
7408 if Is_Tagged_Type (E) then
7409 Check_Abstract_Overriding (E);
7410 end if;
7412 Check_Aliased_Component_Types (E);
7414 elsif Ekind (E) = E_Array_Type then
7415 Check_Aliased_Component_Types (E);
7417 end if;
7419 Next_Entity (E);
7420 end loop;
7421 end Check_Completion;
7423 ----------------------------
7424 -- Check_Delta_Expression --
7425 ----------------------------
7427 procedure Check_Delta_Expression (E : Node_Id) is
7428 begin
7429 if not (Is_Real_Type (Etype (E))) then
7430 Wrong_Type (E, Any_Real);
7432 elsif not Is_OK_Static_Expression (E) then
7433 Flag_Non_Static_Expr
7434 ("non-static expression used for delta value!", E);
7436 elsif not UR_Is_Positive (Expr_Value_R (E)) then
7437 Error_Msg_N ("delta expression must be positive", E);
7439 else
7440 return;
7441 end if;
7443 -- If any of above errors occurred, then replace the incorrect
7444 -- expression by the real 0.1, which should prevent further errors.
7446 Rewrite (E,
7447 Make_Real_Literal (Sloc (E), Ureal_Tenth));
7448 Analyze_And_Resolve (E, Standard_Float);
7449 end Check_Delta_Expression;
7451 -----------------------------
7452 -- Check_Digits_Expression --
7453 -----------------------------
7455 procedure Check_Digits_Expression (E : Node_Id) is
7456 begin
7457 if not (Is_Integer_Type (Etype (E))) then
7458 Wrong_Type (E, Any_Integer);
7460 elsif not Is_OK_Static_Expression (E) then
7461 Flag_Non_Static_Expr
7462 ("non-static expression used for digits value!", E);
7464 elsif Expr_Value (E) <= 0 then
7465 Error_Msg_N ("digits value must be greater than zero", E);
7467 else
7468 return;
7469 end if;
7471 -- If any of above errors occurred, then replace the incorrect
7472 -- expression by the integer 1, which should prevent further errors.
7474 Rewrite (E, Make_Integer_Literal (Sloc (E), 1));
7475 Analyze_And_Resolve (E, Standard_Integer);
7477 end Check_Digits_Expression;
7479 --------------------------
7480 -- Check_Initialization --
7481 --------------------------
7483 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id) is
7484 begin
7485 if (Is_Limited_Type (T)
7486 or else Is_Limited_Composite (T))
7487 and then not In_Instance
7488 and then not In_Inlined_Body
7489 then
7490 -- Ada 2005 (AI-287): Relax the strictness of the front-end in
7491 -- case of limited aggregates and extension aggregates.
7493 if Ada_Version >= Ada_05
7494 and then (Nkind (Exp) = N_Aggregate
7495 or else Nkind (Exp) = N_Extension_Aggregate)
7496 then
7497 null;
7498 else
7499 Error_Msg_N
7500 ("cannot initialize entities of limited type", Exp);
7501 Explain_Limited_Type (T, Exp);
7502 end if;
7503 end if;
7504 end Check_Initialization;
7506 ------------------------------------
7507 -- Check_Or_Process_Discriminants --
7508 ------------------------------------
7510 -- If an incomplete or private type declaration was already given for the
7511 -- type, the discriminants may have already been processed if they were
7512 -- present on the incomplete declaration. In this case a full conformance
7513 -- check is performed otherwise just process them.
7515 procedure Check_Or_Process_Discriminants
7516 (N : Node_Id;
7517 T : Entity_Id;
7518 Prev : Entity_Id := Empty)
7520 begin
7521 if Has_Discriminants (T) then
7523 -- Make the discriminants visible to component declarations
7525 declare
7526 D : Entity_Id;
7527 Prev : Entity_Id;
7529 begin
7530 D := First_Discriminant (T);
7531 while Present (D) loop
7532 Prev := Current_Entity (D);
7533 Set_Current_Entity (D);
7534 Set_Is_Immediately_Visible (D);
7535 Set_Homonym (D, Prev);
7537 -- Ada 2005 (AI-230): Access discriminant allowed in
7538 -- non-limited record types.
7540 if Ada_Version < Ada_05 then
7542 -- This restriction gets applied to the full type here. It
7543 -- has already been applied earlier to the partial view.
7545 Check_Access_Discriminant_Requires_Limited (Parent (D), N);
7546 end if;
7548 Next_Discriminant (D);
7549 end loop;
7550 end;
7552 elsif Present (Discriminant_Specifications (N)) then
7553 Process_Discriminants (N, Prev);
7554 end if;
7555 end Check_Or_Process_Discriminants;
7557 ----------------------
7558 -- Check_Real_Bound --
7559 ----------------------
7561 procedure Check_Real_Bound (Bound : Node_Id) is
7562 begin
7563 if not Is_Real_Type (Etype (Bound)) then
7564 Error_Msg_N
7565 ("bound in real type definition must be of real type", Bound);
7567 elsif not Is_OK_Static_Expression (Bound) then
7568 Flag_Non_Static_Expr
7569 ("non-static expression used for real type bound!", Bound);
7571 else
7572 return;
7573 end if;
7575 Rewrite
7576 (Bound, Make_Real_Literal (Sloc (Bound), Ureal_0));
7577 Analyze (Bound);
7578 Resolve (Bound, Standard_Float);
7579 end Check_Real_Bound;
7581 ------------------------
7582 -- Collect_Interfaces --
7583 ------------------------
7585 procedure Collect_Interfaces (N : Node_Id; Derived_Type : Entity_Id) is
7586 Intf : Node_Id;
7588 procedure Add_Interface (Iface : Entity_Id);
7589 -- Add one interface
7591 -------------------
7592 -- Add_Interface --
7593 -------------------
7595 procedure Add_Interface (Iface : Entity_Id) is
7596 Elmt : Elmt_Id;
7598 begin
7599 Elmt := First_Elmt (Abstract_Interfaces (Derived_Type));
7600 while Present (Elmt) and then Node (Elmt) /= Iface loop
7601 Next_Elmt (Elmt);
7602 end loop;
7604 if not Present (Elmt) then
7605 Append_Elmt (Node => Iface,
7606 To => Abstract_Interfaces (Derived_Type));
7607 end if;
7608 end Add_Interface;
7610 -- Start of processing for Add_Interface
7612 begin
7613 pragma Assert (False
7614 or else Nkind (N) = N_Derived_Type_Definition
7615 or else Nkind (N) = N_Record_Definition
7616 or else Nkind (N) = N_Private_Extension_Declaration);
7618 -- Traverse the graph of ancestor interfaces
7620 if Is_Non_Empty_List (Interface_List (N)) then
7621 Intf := First (Interface_List (N));
7622 while Present (Intf) loop
7624 -- Protect against wrong uses. For example:
7625 -- type I is interface;
7626 -- type O is tagged null record;
7627 -- type Wrong is new I and O with null record; -- ERROR
7629 if Is_Interface (Etype (Intf)) then
7631 -- Do not add the interface when the derived type already
7632 -- implements this interface
7634 if not Interface_Present_In_Ancestor (Derived_Type,
7635 Etype (Intf))
7636 then
7637 Collect_Interfaces
7638 (Type_Definition (Parent (Etype (Intf))),
7639 Derived_Type);
7640 Add_Interface (Etype (Intf));
7641 end if;
7642 end if;
7644 Next (Intf);
7645 end loop;
7646 end if;
7647 end Collect_Interfaces;
7649 ------------------------------
7650 -- Complete_Private_Subtype --
7651 ------------------------------
7653 procedure Complete_Private_Subtype
7654 (Priv : Entity_Id;
7655 Full : Entity_Id;
7656 Full_Base : Entity_Id;
7657 Related_Nod : Node_Id)
7659 Save_Next_Entity : Entity_Id;
7660 Save_Homonym : Entity_Id;
7662 begin
7663 -- Set semantic attributes for (implicit) private subtype completion.
7664 -- If the full type has no discriminants, then it is a copy of the full
7665 -- view of the base. Otherwise, it is a subtype of the base with a
7666 -- possible discriminant constraint. Save and restore the original
7667 -- Next_Entity field of full to ensure that the calls to Copy_Node
7668 -- do not corrupt the entity chain.
7670 -- Note that the type of the full view is the same entity as the type of
7671 -- the partial view. In this fashion, the subtype has access to the
7672 -- correct view of the parent.
7674 Save_Next_Entity := Next_Entity (Full);
7675 Save_Homonym := Homonym (Priv);
7677 case Ekind (Full_Base) is
7678 when E_Record_Type |
7679 E_Record_Subtype |
7680 Class_Wide_Kind |
7681 Private_Kind |
7682 Task_Kind |
7683 Protected_Kind =>
7684 Copy_Node (Priv, Full);
7686 Set_Has_Discriminants (Full, Has_Discriminants (Full_Base));
7687 Set_First_Entity (Full, First_Entity (Full_Base));
7688 Set_Last_Entity (Full, Last_Entity (Full_Base));
7690 when others =>
7691 Copy_Node (Full_Base, Full);
7692 Set_Chars (Full, Chars (Priv));
7693 Conditional_Delay (Full, Priv);
7694 Set_Sloc (Full, Sloc (Priv));
7695 end case;
7697 Set_Next_Entity (Full, Save_Next_Entity);
7698 Set_Homonym (Full, Save_Homonym);
7699 Set_Associated_Node_For_Itype (Full, Related_Nod);
7701 -- Set common attributes for all subtypes
7703 Set_Ekind (Full, Subtype_Kind (Ekind (Full_Base)));
7705 -- The Etype of the full view is inconsistent. Gigi needs to see the
7706 -- structural full view, which is what the current scheme gives:
7707 -- the Etype of the full view is the etype of the full base. However,
7708 -- if the full base is a derived type, the full view then looks like
7709 -- a subtype of the parent, not a subtype of the full base. If instead
7710 -- we write:
7712 -- Set_Etype (Full, Full_Base);
7714 -- then we get inconsistencies in the front-end (confusion between
7715 -- views). Several outstanding bugs are related to this ???
7717 Set_Is_First_Subtype (Full, False);
7718 Set_Scope (Full, Scope (Priv));
7719 Set_Size_Info (Full, Full_Base);
7720 Set_RM_Size (Full, RM_Size (Full_Base));
7721 Set_Is_Itype (Full);
7723 -- A subtype of a private-type-without-discriminants, whose full-view
7724 -- has discriminants with default expressions, is not constrained!
7726 if not Has_Discriminants (Priv) then
7727 Set_Is_Constrained (Full, Is_Constrained (Full_Base));
7729 if Has_Discriminants (Full_Base) then
7730 Set_Discriminant_Constraint
7731 (Full, Discriminant_Constraint (Full_Base));
7733 -- The partial view may have been indefinite, the full view
7734 -- might not be.
7736 Set_Has_Unknown_Discriminants
7737 (Full, Has_Unknown_Discriminants (Full_Base));
7738 end if;
7739 end if;
7741 Set_First_Rep_Item (Full, First_Rep_Item (Full_Base));
7742 Set_Depends_On_Private (Full, Has_Private_Component (Full));
7744 -- Freeze the private subtype entity if its parent is delayed, and not
7745 -- already frozen. We skip this processing if the type is an anonymous
7746 -- subtype of a record component, or is the corresponding record of a
7747 -- protected type, since ???
7749 if not Is_Type (Scope (Full)) then
7750 Set_Has_Delayed_Freeze (Full,
7751 Has_Delayed_Freeze (Full_Base)
7752 and then (not Is_Frozen (Full_Base)));
7753 end if;
7755 Set_Freeze_Node (Full, Empty);
7756 Set_Is_Frozen (Full, False);
7757 Set_Full_View (Priv, Full);
7759 if Has_Discriminants (Full) then
7760 Set_Stored_Constraint_From_Discriminant_Constraint (Full);
7761 Set_Stored_Constraint (Priv, Stored_Constraint (Full));
7763 if Has_Unknown_Discriminants (Full) then
7764 Set_Discriminant_Constraint (Full, No_Elist);
7765 end if;
7766 end if;
7768 if Ekind (Full_Base) = E_Record_Type
7769 and then Has_Discriminants (Full_Base)
7770 and then Has_Discriminants (Priv) -- might not, if errors
7771 and then not Has_Unknown_Discriminants (Priv)
7772 and then not Is_Empty_Elmt_List (Discriminant_Constraint (Priv))
7773 then
7774 Create_Constrained_Components
7775 (Full, Related_Nod, Full_Base, Discriminant_Constraint (Priv));
7777 -- If the full base is itself derived from private, build a congruent
7778 -- subtype of its underlying type, for use by the back end. For a
7779 -- constrained record component, the declaration cannot be placed on
7780 -- the component list, but it must nevertheless be built an analyzed, to
7781 -- supply enough information for Gigi to compute the size of component.
7783 elsif Ekind (Full_Base) in Private_Kind
7784 and then Is_Derived_Type (Full_Base)
7785 and then Has_Discriminants (Full_Base)
7786 and then (Ekind (Current_Scope) /= E_Record_Subtype)
7787 then
7788 if not Is_Itype (Priv)
7789 and then
7790 Nkind (Subtype_Indication (Parent (Priv))) = N_Subtype_Indication
7791 then
7792 Build_Underlying_Full_View
7793 (Parent (Priv), Full, Etype (Full_Base));
7795 elsif Nkind (Related_Nod) = N_Component_Declaration then
7796 Build_Underlying_Full_View (Related_Nod, Full, Etype (Full_Base));
7797 end if;
7799 elsif Is_Record_Type (Full_Base) then
7801 -- Show Full is simply a renaming of Full_Base
7803 Set_Cloned_Subtype (Full, Full_Base);
7804 end if;
7806 -- It is unsafe to share to bounds of a scalar type, because the Itype
7807 -- is elaborated on demand, and if a bound is non-static then different
7808 -- orders of elaboration in different units will lead to different
7809 -- external symbols.
7811 if Is_Scalar_Type (Full_Base) then
7812 Set_Scalar_Range (Full,
7813 Make_Range (Sloc (Related_Nod),
7814 Low_Bound =>
7815 Duplicate_Subexpr_No_Checks (Type_Low_Bound (Full_Base)),
7816 High_Bound =>
7817 Duplicate_Subexpr_No_Checks (Type_High_Bound (Full_Base))));
7819 -- This completion inherits the bounds of the full parent, but if
7820 -- the parent is an unconstrained floating point type, so is the
7821 -- completion.
7823 if Is_Floating_Point_Type (Full_Base) then
7824 Set_Includes_Infinities
7825 (Scalar_Range (Full), Has_Infinities (Full_Base));
7826 end if;
7827 end if;
7829 -- ??? It seems that a lot of fields are missing that should be copied
7830 -- from Full_Base to Full. Here are some that are introduced in a
7831 -- non-disruptive way but a cleanup is necessary.
7833 if Is_Tagged_Type (Full_Base) then
7834 Set_Is_Tagged_Type (Full);
7835 Set_Primitive_Operations (Full, Primitive_Operations (Full_Base));
7836 Set_Class_Wide_Type (Full, Class_Wide_Type (Full_Base));
7838 -- If this is a subtype of a protected or task type, constrain its
7839 -- corresponding record, unless this is a subtype without constraints,
7840 -- i.e. a simple renaming as with an actual subtype in an instance.
7842 elsif Is_Concurrent_Type (Full_Base) then
7843 if Has_Discriminants (Full)
7844 and then Present (Corresponding_Record_Type (Full_Base))
7845 and then
7846 not Is_Empty_Elmt_List (Discriminant_Constraint (Full))
7847 then
7848 Set_Corresponding_Record_Type (Full,
7849 Constrain_Corresponding_Record
7850 (Full, Corresponding_Record_Type (Full_Base),
7851 Related_Nod, Full_Base));
7853 else
7854 Set_Corresponding_Record_Type (Full,
7855 Corresponding_Record_Type (Full_Base));
7856 end if;
7857 end if;
7858 end Complete_Private_Subtype;
7860 -------------------------------------
7861 -- Complete_Subprograms_Derivation --
7862 -------------------------------------
7864 procedure Complete_Subprograms_Derivation
7865 (Partial_View : Entity_Id;
7866 Derived_Type : Entity_Id)
7868 Result : constant Elist_Id := New_Elmt_List;
7869 Elmt_P : Elmt_Id;
7870 Elmt_D : Elmt_Id;
7871 Found : Boolean;
7872 Prim_Op : Entity_Id;
7873 E : Entity_Id;
7875 begin
7876 if Is_Tagged_Type (Partial_View) then
7877 Elmt_P := First_Elmt (Primitive_Operations (Partial_View));
7878 else
7879 Elmt_P := No_Elmt;
7880 end if;
7882 -- Inherit primitives declared with the partial-view
7884 while Present (Elmt_P) loop
7885 Prim_Op := Node (Elmt_P);
7886 Found := False;
7887 Elmt_D := First_Elmt (Primitive_Operations (Derived_Type));
7888 while Present (Elmt_D) loop
7889 if Node (Elmt_D) = Prim_Op then
7890 Found := True;
7891 exit;
7892 end if;
7894 Next_Elmt (Elmt_D);
7895 end loop;
7897 if not Found then
7898 Append_Elmt (Prim_Op, Result);
7900 -- Search for entries associated with abstract interfaces that
7901 -- have been covered by this primitive
7903 Elmt_D := First_Elmt (Primitive_Operations (Derived_Type));
7904 while Present (Elmt_D) loop
7905 E := Node (Elmt_D);
7907 if Chars (E) = Chars (Prim_Op)
7908 and then Is_Abstract (E)
7909 and then Present (Alias (E))
7910 and then Present (DTC_Entity (Alias (E)))
7911 and then Is_Interface (Scope (DTC_Entity (Alias (E))))
7912 then
7913 Remove_Elmt (Primitive_Operations (Derived_Type), Elmt_D);
7914 end if;
7916 Next_Elmt (Elmt_D);
7917 end loop;
7918 end if;
7920 Next_Elmt (Elmt_P);
7921 end loop;
7923 -- Append the entities of the full-view to the list of primitives
7924 -- of derived_type.
7926 Elmt_D := First_Elmt (Result);
7927 while Present (Elmt_D) loop
7928 Append_Elmt (Node (Elmt_D), Primitive_Operations (Derived_Type));
7929 Next_Elmt (Elmt_D);
7930 end loop;
7931 end Complete_Subprograms_Derivation;
7933 ----------------------------
7934 -- Constant_Redeclaration --
7935 ----------------------------
7937 procedure Constant_Redeclaration
7938 (Id : Entity_Id;
7939 N : Node_Id;
7940 T : out Entity_Id)
7942 Prev : constant Entity_Id := Current_Entity_In_Scope (Id);
7943 Obj_Def : constant Node_Id := Object_Definition (N);
7944 New_T : Entity_Id;
7946 procedure Check_Recursive_Declaration (Typ : Entity_Id);
7947 -- If deferred constant is an access type initialized with an allocator,
7948 -- check whether there is an illegal recursion in the definition,
7949 -- through a default value of some record subcomponent. This is normally
7950 -- detected when generating init procs, but requires this additional
7951 -- mechanism when expansion is disabled.
7953 ---------------------------------
7954 -- Check_Recursive_Declaration --
7955 ---------------------------------
7957 procedure Check_Recursive_Declaration (Typ : Entity_Id) is
7958 Comp : Entity_Id;
7960 begin
7961 if Is_Record_Type (Typ) then
7962 Comp := First_Component (Typ);
7963 while Present (Comp) loop
7964 if Comes_From_Source (Comp) then
7965 if Present (Expression (Parent (Comp)))
7966 and then Is_Entity_Name (Expression (Parent (Comp)))
7967 and then Entity (Expression (Parent (Comp))) = Prev
7968 then
7969 Error_Msg_Sloc := Sloc (Parent (Comp));
7970 Error_Msg_NE
7971 ("illegal circularity with declaration for&#",
7972 N, Comp);
7973 return;
7975 elsif Is_Record_Type (Etype (Comp)) then
7976 Check_Recursive_Declaration (Etype (Comp));
7977 end if;
7978 end if;
7980 Next_Component (Comp);
7981 end loop;
7982 end if;
7983 end Check_Recursive_Declaration;
7985 -- Start of processing for Constant_Redeclaration
7987 begin
7988 if Nkind (Parent (Prev)) = N_Object_Declaration then
7989 if Nkind (Object_Definition
7990 (Parent (Prev))) = N_Subtype_Indication
7991 then
7992 -- Find type of new declaration. The constraints of the two
7993 -- views must match statically, but there is no point in
7994 -- creating an itype for the full view.
7996 if Nkind (Obj_Def) = N_Subtype_Indication then
7997 Find_Type (Subtype_Mark (Obj_Def));
7998 New_T := Entity (Subtype_Mark (Obj_Def));
8000 else
8001 Find_Type (Obj_Def);
8002 New_T := Entity (Obj_Def);
8003 end if;
8005 T := Etype (Prev);
8007 else
8008 -- The full view may impose a constraint, even if the partial
8009 -- view does not, so construct the subtype.
8011 New_T := Find_Type_Of_Object (Obj_Def, N);
8012 T := New_T;
8013 end if;
8015 else
8016 -- Current declaration is illegal, diagnosed below in Enter_Name
8018 T := Empty;
8019 New_T := Any_Type;
8020 end if;
8022 -- If previous full declaration exists, or if a homograph is present,
8023 -- let Enter_Name handle it, either with an error, or with the removal
8024 -- of an overridden implicit subprogram.
8026 if Ekind (Prev) /= E_Constant
8027 or else Present (Expression (Parent (Prev)))
8028 or else Present (Full_View (Prev))
8029 then
8030 Enter_Name (Id);
8032 -- Verify that types of both declarations match, or else that both types
8033 -- are anonymous access types whose designated subtypes statically match
8034 -- (as allowed in Ada 2005 by AI-385).
8036 elsif Base_Type (Etype (Prev)) /= Base_Type (New_T)
8037 and then
8038 (Ekind (Etype (Prev)) /= E_Anonymous_Access_Type
8039 or else Ekind (Etype (New_T)) /= E_Anonymous_Access_Type
8040 or else not Subtypes_Statically_Match
8041 (Designated_Type (Etype (Prev)),
8042 Designated_Type (Etype (New_T))))
8043 then
8044 Error_Msg_Sloc := Sloc (Prev);
8045 Error_Msg_N ("type does not match declaration#", N);
8046 Set_Full_View (Prev, Id);
8047 Set_Etype (Id, Any_Type);
8049 -- If so, process the full constant declaration
8051 else
8052 Set_Full_View (Prev, Id);
8053 Set_Is_Public (Id, Is_Public (Prev));
8054 Set_Is_Internal (Id);
8055 Append_Entity (Id, Current_Scope);
8057 -- Check ALIASED present if present before (RM 7.4(7))
8059 if Is_Aliased (Prev)
8060 and then not Aliased_Present (N)
8061 then
8062 Error_Msg_Sloc := Sloc (Prev);
8063 Error_Msg_N ("ALIASED required (see declaration#)", N);
8064 end if;
8066 -- Check that placement is in private part and that the incomplete
8067 -- declaration appeared in the visible part.
8069 if Ekind (Current_Scope) = E_Package
8070 and then not In_Private_Part (Current_Scope)
8071 then
8072 Error_Msg_Sloc := Sloc (Prev);
8073 Error_Msg_N ("full constant for declaration#"
8074 & " must be in private part", N);
8076 elsif Ekind (Current_Scope) = E_Package
8077 and then List_Containing (Parent (Prev))
8078 /= Visible_Declarations
8079 (Specification (Unit_Declaration_Node (Current_Scope)))
8080 then
8081 Error_Msg_N
8082 ("deferred constant must be declared in visible part",
8083 Parent (Prev));
8084 end if;
8086 if Is_Access_Type (T)
8087 and then Nkind (Expression (N)) = N_Allocator
8088 then
8089 Check_Recursive_Declaration (Designated_Type (T));
8090 end if;
8091 end if;
8092 end Constant_Redeclaration;
8094 ----------------------
8095 -- Constrain_Access --
8096 ----------------------
8098 procedure Constrain_Access
8099 (Def_Id : in out Entity_Id;
8100 S : Node_Id;
8101 Related_Nod : Node_Id)
8103 T : constant Entity_Id := Entity (Subtype_Mark (S));
8104 Desig_Type : constant Entity_Id := Designated_Type (T);
8105 Desig_Subtype : Entity_Id := Create_Itype (E_Void, Related_Nod);
8106 Constraint_OK : Boolean := True;
8108 function Has_Defaulted_Discriminants (Typ : Entity_Id) return Boolean;
8109 -- Simple predicate to test for defaulted discriminants
8110 -- Shouldn't this be in sem_util???
8112 ---------------------------------
8113 -- Has_Defaulted_Discriminants --
8114 ---------------------------------
8116 function Has_Defaulted_Discriminants (Typ : Entity_Id) return Boolean is
8117 begin
8118 return Has_Discriminants (Typ)
8119 and then Present (First_Discriminant (Typ))
8120 and then Present
8121 (Discriminant_Default_Value (First_Discriminant (Typ)));
8122 end Has_Defaulted_Discriminants;
8124 -- Start of processing for Constrain_Access
8126 begin
8127 if Is_Array_Type (Desig_Type) then
8128 Constrain_Array (Desig_Subtype, S, Related_Nod, Def_Id, 'P');
8130 elsif (Is_Record_Type (Desig_Type)
8131 or else Is_Incomplete_Or_Private_Type (Desig_Type))
8132 and then not Is_Constrained (Desig_Type)
8133 then
8134 -- ??? The following code is a temporary kludge to ignore a
8135 -- discriminant constraint on access type if it is constraining
8136 -- the current record. Avoid creating the implicit subtype of the
8137 -- record we are currently compiling since right now, we cannot
8138 -- handle these. For now, just return the access type itself.
8140 if Desig_Type = Current_Scope
8141 and then No (Def_Id)
8142 then
8143 Set_Ekind (Desig_Subtype, E_Record_Subtype);
8144 Def_Id := Entity (Subtype_Mark (S));
8146 -- This call added to ensure that the constraint is analyzed
8147 -- (needed for a B test). Note that we still return early from
8148 -- this procedure to avoid recursive processing. ???
8150 Constrain_Discriminated_Type
8151 (Desig_Subtype, S, Related_Nod, For_Access => True);
8152 return;
8153 end if;
8155 if Ekind (T) = E_General_Access_Type
8156 and then Has_Private_Declaration (Desig_Type)
8157 and then In_Open_Scopes (Scope (Desig_Type))
8158 then
8159 -- Enforce rule that the constraint is illegal if there is
8160 -- an unconstrained view of the designated type. This means
8161 -- that the partial view (either a private type declaration or
8162 -- a derivation from a private type) has no discriminants.
8163 -- (Defect Report 8652/0008, Technical Corrigendum 1, checked
8164 -- by ACATS B371001).
8165 -- Rule updated for Ada 2005: the private type is said to have
8166 -- a constrained partial view, given that objects of the type
8167 -- can be declared.
8169 declare
8170 Pack : constant Node_Id :=
8171 Unit_Declaration_Node (Scope (Desig_Type));
8172 Decls : List_Id;
8173 Decl : Node_Id;
8175 begin
8176 if Nkind (Pack) = N_Package_Declaration then
8177 Decls := Visible_Declarations (Specification (Pack));
8178 Decl := First (Decls);
8179 while Present (Decl) loop
8180 if (Nkind (Decl) = N_Private_Type_Declaration
8181 and then
8182 Chars (Defining_Identifier (Decl)) =
8183 Chars (Desig_Type))
8185 or else
8186 (Nkind (Decl) = N_Full_Type_Declaration
8187 and then
8188 Chars (Defining_Identifier (Decl)) =
8189 Chars (Desig_Type)
8190 and then Is_Derived_Type (Desig_Type)
8191 and then
8192 Has_Private_Declaration (Etype (Desig_Type)))
8193 then
8194 if No (Discriminant_Specifications (Decl)) then
8195 Error_Msg_N
8196 ("cannot constrain general access type if " &
8197 "designated type has constrained partial view",
8199 end if;
8201 exit;
8202 end if;
8204 Next (Decl);
8205 end loop;
8206 end if;
8207 end;
8208 end if;
8210 Constrain_Discriminated_Type (Desig_Subtype, S, Related_Nod,
8211 For_Access => True);
8213 elsif (Is_Task_Type (Desig_Type)
8214 or else Is_Protected_Type (Desig_Type))
8215 and then not Is_Constrained (Desig_Type)
8216 then
8217 Constrain_Concurrent
8218 (Desig_Subtype, S, Related_Nod, Desig_Type, ' ');
8220 else
8221 Error_Msg_N ("invalid constraint on access type", S);
8222 Desig_Subtype := Desig_Type; -- Ignore invalid constraint.
8223 Constraint_OK := False;
8224 end if;
8226 if No (Def_Id) then
8227 Def_Id := Create_Itype (E_Access_Subtype, Related_Nod);
8228 else
8229 Set_Ekind (Def_Id, E_Access_Subtype);
8230 end if;
8232 if Constraint_OK then
8233 Set_Etype (Def_Id, Base_Type (T));
8235 if Is_Private_Type (Desig_Type) then
8236 Prepare_Private_Subtype_Completion (Desig_Subtype, Related_Nod);
8237 end if;
8238 else
8239 Set_Etype (Def_Id, Any_Type);
8240 end if;
8242 Set_Size_Info (Def_Id, T);
8243 Set_Is_Constrained (Def_Id, Constraint_OK);
8244 Set_Directly_Designated_Type (Def_Id, Desig_Subtype);
8245 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
8246 Set_Is_Access_Constant (Def_Id, Is_Access_Constant (T));
8248 Conditional_Delay (Def_Id, T);
8250 -- AI-363 : Subtypes of general access types whose designated types have
8251 -- default discriminants are disallowed. In instances, the rule has to
8252 -- be checked against the actual, of which T is the subtype. In a
8253 -- generic body, the rule is checked assuming that the actual type has
8254 -- defaulted discriminants.
8256 if Ada_Version >= Ada_05 then
8257 if Ekind (Base_Type (T)) = E_General_Access_Type
8258 and then Has_Defaulted_Discriminants (Desig_Type)
8259 then
8260 Error_Msg_N
8261 ("access subype of general access type not allowed", S);
8262 Error_Msg_N ("\ when discriminants have defaults", S);
8264 elsif Is_Access_Type (T)
8265 and then Is_Generic_Type (Desig_Type)
8266 and then Has_Discriminants (Desig_Type)
8267 and then In_Package_Body (Current_Scope)
8268 then
8269 Error_Msg_N ("access subtype not allowed in generic body", S);
8270 Error_Msg_N
8271 ("\ wben designated type is a discriminated formal", S);
8272 end if;
8273 end if;
8274 end Constrain_Access;
8276 ---------------------
8277 -- Constrain_Array --
8278 ---------------------
8280 procedure Constrain_Array
8281 (Def_Id : in out Entity_Id;
8282 SI : Node_Id;
8283 Related_Nod : Node_Id;
8284 Related_Id : Entity_Id;
8285 Suffix : Character)
8287 C : constant Node_Id := Constraint (SI);
8288 Number_Of_Constraints : Nat := 0;
8289 Index : Node_Id;
8290 S, T : Entity_Id;
8291 Constraint_OK : Boolean := True;
8293 begin
8294 T := Entity (Subtype_Mark (SI));
8296 if Ekind (T) in Access_Kind then
8297 T := Designated_Type (T);
8298 end if;
8300 -- If an index constraint follows a subtype mark in a subtype indication
8301 -- then the type or subtype denoted by the subtype mark must not already
8302 -- impose an index constraint. The subtype mark must denote either an
8303 -- unconstrained array type or an access type whose designated type
8304 -- is such an array type... (RM 3.6.1)
8306 if Is_Constrained (T) then
8307 Error_Msg_N
8308 ("array type is already constrained", Subtype_Mark (SI));
8309 Constraint_OK := False;
8311 else
8312 S := First (Constraints (C));
8313 while Present (S) loop
8314 Number_Of_Constraints := Number_Of_Constraints + 1;
8315 Next (S);
8316 end loop;
8318 -- In either case, the index constraint must provide a discrete
8319 -- range for each index of the array type and the type of each
8320 -- discrete range must be the same as that of the corresponding
8321 -- index. (RM 3.6.1)
8323 if Number_Of_Constraints /= Number_Dimensions (T) then
8324 Error_Msg_NE ("incorrect number of index constraints for }", C, T);
8325 Constraint_OK := False;
8327 else
8328 S := First (Constraints (C));
8329 Index := First_Index (T);
8330 Analyze (Index);
8332 -- Apply constraints to each index type
8334 for J in 1 .. Number_Of_Constraints loop
8335 Constrain_Index (Index, S, Related_Nod, Related_Id, Suffix, J);
8336 Next (Index);
8337 Next (S);
8338 end loop;
8340 end if;
8341 end if;
8343 if No (Def_Id) then
8344 Def_Id :=
8345 Create_Itype (E_Array_Subtype, Related_Nod, Related_Id, Suffix);
8346 Set_Parent (Def_Id, Related_Nod);
8348 else
8349 Set_Ekind (Def_Id, E_Array_Subtype);
8350 end if;
8352 Set_Size_Info (Def_Id, (T));
8353 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
8354 Set_Etype (Def_Id, Base_Type (T));
8356 if Constraint_OK then
8357 Set_First_Index (Def_Id, First (Constraints (C)));
8358 else
8359 Set_First_Index (Def_Id, First_Index (T));
8360 end if;
8362 Set_Is_Constrained (Def_Id, True);
8363 Set_Is_Aliased (Def_Id, Is_Aliased (T));
8364 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
8366 Set_Is_Private_Composite (Def_Id, Is_Private_Composite (T));
8367 Set_Is_Limited_Composite (Def_Id, Is_Limited_Composite (T));
8369 -- Build a freeze node if parent still needs one. Also, make sure
8370 -- that the Depends_On_Private status is set (explanation ???)
8371 -- and also that a conditional delay is set.
8373 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
8374 Conditional_Delay (Def_Id, T);
8376 end Constrain_Array;
8378 ------------------------------
8379 -- Constrain_Component_Type --
8380 ------------------------------
8382 function Constrain_Component_Type
8383 (Comp : Entity_Id;
8384 Constrained_Typ : Entity_Id;
8385 Related_Node : Node_Id;
8386 Typ : Entity_Id;
8387 Constraints : Elist_Id) return Entity_Id
8389 Loc : constant Source_Ptr := Sloc (Constrained_Typ);
8390 Compon_Type : constant Entity_Id := Etype (Comp);
8392 function Build_Constrained_Array_Type
8393 (Old_Type : Entity_Id) return Entity_Id;
8394 -- If Old_Type is an array type, one of whose indices is constrained
8395 -- by a discriminant, build an Itype whose constraint replaces the
8396 -- discriminant with its value in the constraint.
8398 function Build_Constrained_Discriminated_Type
8399 (Old_Type : Entity_Id) return Entity_Id;
8400 -- Ditto for record components
8402 function Build_Constrained_Access_Type
8403 (Old_Type : Entity_Id) return Entity_Id;
8404 -- Ditto for access types. Makes use of previous two functions, to
8405 -- constrain designated type.
8407 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id;
8408 -- T is an array or discriminated type, C is a list of constraints
8409 -- that apply to T. This routine builds the constrained subtype.
8411 function Is_Discriminant (Expr : Node_Id) return Boolean;
8412 -- Returns True if Expr is a discriminant
8414 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id;
8415 -- Find the value of discriminant Discrim in Constraint
8417 -----------------------------------
8418 -- Build_Constrained_Access_Type --
8419 -----------------------------------
8421 function Build_Constrained_Access_Type
8422 (Old_Type : Entity_Id) return Entity_Id
8424 Desig_Type : constant Entity_Id := Designated_Type (Old_Type);
8425 Itype : Entity_Id;
8426 Desig_Subtype : Entity_Id;
8427 Scop : Entity_Id;
8429 begin
8430 -- if the original access type was not embedded in the enclosing
8431 -- type definition, there is no need to produce a new access
8432 -- subtype. In fact every access type with an explicit constraint
8433 -- generates an itype whose scope is the enclosing record.
8435 if not Is_Type (Scope (Old_Type)) then
8436 return Old_Type;
8438 elsif Is_Array_Type (Desig_Type) then
8439 Desig_Subtype := Build_Constrained_Array_Type (Desig_Type);
8441 elsif Has_Discriminants (Desig_Type) then
8443 -- This may be an access type to an enclosing record type for
8444 -- which we are constructing the constrained components. Return
8445 -- the enclosing record subtype. This is not always correct,
8446 -- but avoids infinite recursion. ???
8448 Desig_Subtype := Any_Type;
8450 for J in reverse 0 .. Scope_Stack.Last loop
8451 Scop := Scope_Stack.Table (J).Entity;
8453 if Is_Type (Scop)
8454 and then Base_Type (Scop) = Base_Type (Desig_Type)
8455 then
8456 Desig_Subtype := Scop;
8457 end if;
8459 exit when not Is_Type (Scop);
8460 end loop;
8462 if Desig_Subtype = Any_Type then
8463 Desig_Subtype :=
8464 Build_Constrained_Discriminated_Type (Desig_Type);
8465 end if;
8467 else
8468 return Old_Type;
8469 end if;
8471 if Desig_Subtype /= Desig_Type then
8473 -- The Related_Node better be here or else we won't be able
8474 -- to attach new itypes to a node in the tree.
8476 pragma Assert (Present (Related_Node));
8478 Itype := Create_Itype (E_Access_Subtype, Related_Node);
8480 Set_Etype (Itype, Base_Type (Old_Type));
8481 Set_Size_Info (Itype, (Old_Type));
8482 Set_Directly_Designated_Type (Itype, Desig_Subtype);
8483 Set_Depends_On_Private (Itype, Has_Private_Component
8484 (Old_Type));
8485 Set_Is_Access_Constant (Itype, Is_Access_Constant
8486 (Old_Type));
8488 -- The new itype needs freezing when it depends on a not frozen
8489 -- type and the enclosing subtype needs freezing.
8491 if Has_Delayed_Freeze (Constrained_Typ)
8492 and then not Is_Frozen (Constrained_Typ)
8493 then
8494 Conditional_Delay (Itype, Base_Type (Old_Type));
8495 end if;
8497 return Itype;
8499 else
8500 return Old_Type;
8501 end if;
8502 end Build_Constrained_Access_Type;
8504 ----------------------------------
8505 -- Build_Constrained_Array_Type --
8506 ----------------------------------
8508 function Build_Constrained_Array_Type
8509 (Old_Type : Entity_Id) return Entity_Id
8511 Lo_Expr : Node_Id;
8512 Hi_Expr : Node_Id;
8513 Old_Index : Node_Id;
8514 Range_Node : Node_Id;
8515 Constr_List : List_Id;
8517 Need_To_Create_Itype : Boolean := False;
8519 begin
8520 Old_Index := First_Index (Old_Type);
8521 while Present (Old_Index) loop
8522 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
8524 if Is_Discriminant (Lo_Expr)
8525 or else Is_Discriminant (Hi_Expr)
8526 then
8527 Need_To_Create_Itype := True;
8528 end if;
8530 Next_Index (Old_Index);
8531 end loop;
8533 if Need_To_Create_Itype then
8534 Constr_List := New_List;
8536 Old_Index := First_Index (Old_Type);
8537 while Present (Old_Index) loop
8538 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
8540 if Is_Discriminant (Lo_Expr) then
8541 Lo_Expr := Get_Discr_Value (Lo_Expr);
8542 end if;
8544 if Is_Discriminant (Hi_Expr) then
8545 Hi_Expr := Get_Discr_Value (Hi_Expr);
8546 end if;
8548 Range_Node :=
8549 Make_Range
8550 (Loc, New_Copy_Tree (Lo_Expr), New_Copy_Tree (Hi_Expr));
8552 Append (Range_Node, To => Constr_List);
8554 Next_Index (Old_Index);
8555 end loop;
8557 return Build_Subtype (Old_Type, Constr_List);
8559 else
8560 return Old_Type;
8561 end if;
8562 end Build_Constrained_Array_Type;
8564 ------------------------------------------
8565 -- Build_Constrained_Discriminated_Type --
8566 ------------------------------------------
8568 function Build_Constrained_Discriminated_Type
8569 (Old_Type : Entity_Id) return Entity_Id
8571 Expr : Node_Id;
8572 Constr_List : List_Id;
8573 Old_Constraint : Elmt_Id;
8575 Need_To_Create_Itype : Boolean := False;
8577 begin
8578 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
8579 while Present (Old_Constraint) loop
8580 Expr := Node (Old_Constraint);
8582 if Is_Discriminant (Expr) then
8583 Need_To_Create_Itype := True;
8584 end if;
8586 Next_Elmt (Old_Constraint);
8587 end loop;
8589 if Need_To_Create_Itype then
8590 Constr_List := New_List;
8592 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
8593 while Present (Old_Constraint) loop
8594 Expr := Node (Old_Constraint);
8596 if Is_Discriminant (Expr) then
8597 Expr := Get_Discr_Value (Expr);
8598 end if;
8600 Append (New_Copy_Tree (Expr), To => Constr_List);
8602 Next_Elmt (Old_Constraint);
8603 end loop;
8605 return Build_Subtype (Old_Type, Constr_List);
8607 else
8608 return Old_Type;
8609 end if;
8610 end Build_Constrained_Discriminated_Type;
8612 -------------------
8613 -- Build_Subtype --
8614 -------------------
8616 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id is
8617 Indic : Node_Id;
8618 Subtyp_Decl : Node_Id;
8619 Def_Id : Entity_Id;
8620 Btyp : Entity_Id := Base_Type (T);
8622 begin
8623 -- The Related_Node better be here or else we won't be able to
8624 -- attach new itypes to a node in the tree.
8626 pragma Assert (Present (Related_Node));
8628 -- If the view of the component's type is incomplete or private
8629 -- with unknown discriminants, then the constraint must be applied
8630 -- to the full type.
8632 if Has_Unknown_Discriminants (Btyp)
8633 and then Present (Underlying_Type (Btyp))
8634 then
8635 Btyp := Underlying_Type (Btyp);
8636 end if;
8638 Indic :=
8639 Make_Subtype_Indication (Loc,
8640 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
8641 Constraint => Make_Index_Or_Discriminant_Constraint (Loc, C));
8643 Def_Id := Create_Itype (Ekind (T), Related_Node);
8645 Subtyp_Decl :=
8646 Make_Subtype_Declaration (Loc,
8647 Defining_Identifier => Def_Id,
8648 Subtype_Indication => Indic);
8650 Set_Parent (Subtyp_Decl, Parent (Related_Node));
8652 -- Itypes must be analyzed with checks off (see package Itypes)
8654 Analyze (Subtyp_Decl, Suppress => All_Checks);
8656 return Def_Id;
8657 end Build_Subtype;
8659 ---------------------
8660 -- Get_Discr_Value --
8661 ---------------------
8663 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id is
8664 D : Entity_Id;
8665 E : Elmt_Id;
8666 G : Elmt_Id;
8668 begin
8669 -- The discriminant may be declared for the type, in which case we
8670 -- find it by iterating over the list of discriminants. If the
8671 -- discriminant is inherited from a parent type, it appears as the
8672 -- corresponding discriminant of the current type. This will be the
8673 -- case when constraining an inherited component whose constraint is
8674 -- given by a discriminant of the parent.
8676 D := First_Discriminant (Typ);
8677 E := First_Elmt (Constraints);
8678 while Present (D) loop
8679 if D = Entity (Discrim)
8680 or else Corresponding_Discriminant (D) = Entity (Discrim)
8681 then
8682 return Node (E);
8683 end if;
8685 Next_Discriminant (D);
8686 Next_Elmt (E);
8687 end loop;
8689 -- The corresponding_Discriminant mechanism is incomplete, because
8690 -- the correspondence between new and old discriminants is not one
8691 -- to one: one new discriminant can constrain several old ones. In
8692 -- that case, scan sequentially the stored_constraint, the list of
8693 -- discriminants of the parents, and the constraints.
8695 if Is_Derived_Type (Typ)
8696 and then Present (Stored_Constraint (Typ))
8697 and then Scope (Entity (Discrim)) = Etype (Typ)
8698 then
8699 D := First_Discriminant (Etype (Typ));
8700 E := First_Elmt (Constraints);
8701 G := First_Elmt (Stored_Constraint (Typ));
8702 while Present (D) loop
8703 if D = Entity (Discrim) then
8704 return Node (E);
8705 end if;
8707 Next_Discriminant (D);
8708 Next_Elmt (E);
8709 Next_Elmt (G);
8710 end loop;
8711 end if;
8713 -- Something is wrong if we did not find the value
8715 raise Program_Error;
8716 end Get_Discr_Value;
8718 ---------------------
8719 -- Is_Discriminant --
8720 ---------------------
8722 function Is_Discriminant (Expr : Node_Id) return Boolean is
8723 Discrim_Scope : Entity_Id;
8725 begin
8726 if Denotes_Discriminant (Expr) then
8727 Discrim_Scope := Scope (Entity (Expr));
8729 -- Either we have a reference to one of Typ's discriminants,
8731 pragma Assert (Discrim_Scope = Typ
8733 -- or to the discriminants of the parent type, in the case
8734 -- of a derivation of a tagged type with variants.
8736 or else Discrim_Scope = Etype (Typ)
8737 or else Full_View (Discrim_Scope) = Etype (Typ)
8739 -- or same as above for the case where the discriminants
8740 -- were declared in Typ's private view.
8742 or else (Is_Private_Type (Discrim_Scope)
8743 and then Chars (Discrim_Scope) = Chars (Typ))
8745 -- or else we are deriving from the full view and the
8746 -- discriminant is declared in the private entity.
8748 or else (Is_Private_Type (Typ)
8749 and then Chars (Discrim_Scope) = Chars (Typ))
8751 -- or we have a class-wide type, in which case make sure the
8752 -- discriminant found belongs to the root type.
8754 or else (Is_Class_Wide_Type (Typ)
8755 and then Etype (Typ) = Discrim_Scope));
8757 return True;
8758 end if;
8760 -- In all other cases we have something wrong
8762 return False;
8763 end Is_Discriminant;
8765 -- Start of processing for Constrain_Component_Type
8767 begin
8768 if Nkind (Parent (Comp)) = N_Component_Declaration
8769 and then Comes_From_Source (Parent (Comp))
8770 and then Comes_From_Source
8771 (Subtype_Indication (Component_Definition (Parent (Comp))))
8772 and then
8773 Is_Entity_Name
8774 (Subtype_Indication (Component_Definition (Parent (Comp))))
8775 then
8776 return Compon_Type;
8778 elsif Is_Array_Type (Compon_Type) then
8779 return Build_Constrained_Array_Type (Compon_Type);
8781 elsif Has_Discriminants (Compon_Type) then
8782 return Build_Constrained_Discriminated_Type (Compon_Type);
8784 elsif Is_Access_Type (Compon_Type) then
8785 return Build_Constrained_Access_Type (Compon_Type);
8787 else
8788 return Compon_Type;
8789 end if;
8790 end Constrain_Component_Type;
8792 --------------------------
8793 -- Constrain_Concurrent --
8794 --------------------------
8796 -- For concurrent types, the associated record value type carries the same
8797 -- discriminants, so when we constrain a concurrent type, we must constrain
8798 -- the value type as well.
8800 procedure Constrain_Concurrent
8801 (Def_Id : in out Entity_Id;
8802 SI : Node_Id;
8803 Related_Nod : Node_Id;
8804 Related_Id : Entity_Id;
8805 Suffix : Character)
8807 T_Ent : Entity_Id := Entity (Subtype_Mark (SI));
8808 T_Val : Entity_Id;
8810 begin
8811 if Ekind (T_Ent) in Access_Kind then
8812 T_Ent := Designated_Type (T_Ent);
8813 end if;
8815 T_Val := Corresponding_Record_Type (T_Ent);
8817 if Present (T_Val) then
8819 if No (Def_Id) then
8820 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
8821 end if;
8823 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
8825 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
8826 Set_Corresponding_Record_Type (Def_Id,
8827 Constrain_Corresponding_Record
8828 (Def_Id, T_Val, Related_Nod, Related_Id));
8830 else
8831 -- If there is no associated record, expansion is disabled and this
8832 -- is a generic context. Create a subtype in any case, so that
8833 -- semantic analysis can proceed.
8835 if No (Def_Id) then
8836 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
8837 end if;
8839 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
8840 end if;
8841 end Constrain_Concurrent;
8843 ------------------------------------
8844 -- Constrain_Corresponding_Record --
8845 ------------------------------------
8847 function Constrain_Corresponding_Record
8848 (Prot_Subt : Entity_Id;
8849 Corr_Rec : Entity_Id;
8850 Related_Nod : Node_Id;
8851 Related_Id : Entity_Id) return Entity_Id
8853 T_Sub : constant Entity_Id :=
8854 Create_Itype (E_Record_Subtype, Related_Nod, Related_Id, 'V');
8856 begin
8857 Set_Etype (T_Sub, Corr_Rec);
8858 Init_Size_Align (T_Sub);
8859 Set_Has_Discriminants (T_Sub, Has_Discriminants (Prot_Subt));
8860 Set_Is_Constrained (T_Sub, True);
8861 Set_First_Entity (T_Sub, First_Entity (Corr_Rec));
8862 Set_Last_Entity (T_Sub, Last_Entity (Corr_Rec));
8864 Conditional_Delay (T_Sub, Corr_Rec);
8866 if Has_Discriminants (Prot_Subt) then -- False only if errors.
8867 Set_Discriminant_Constraint
8868 (T_Sub, Discriminant_Constraint (Prot_Subt));
8869 Set_Stored_Constraint_From_Discriminant_Constraint (T_Sub);
8870 Create_Constrained_Components
8871 (T_Sub, Related_Nod, Corr_Rec, Discriminant_Constraint (T_Sub));
8872 end if;
8874 Set_Depends_On_Private (T_Sub, Has_Private_Component (T_Sub));
8876 return T_Sub;
8877 end Constrain_Corresponding_Record;
8879 -----------------------
8880 -- Constrain_Decimal --
8881 -----------------------
8883 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id) is
8884 T : constant Entity_Id := Entity (Subtype_Mark (S));
8885 C : constant Node_Id := Constraint (S);
8886 Loc : constant Source_Ptr := Sloc (C);
8887 Range_Expr : Node_Id;
8888 Digits_Expr : Node_Id;
8889 Digits_Val : Uint;
8890 Bound_Val : Ureal;
8892 begin
8893 Set_Ekind (Def_Id, E_Decimal_Fixed_Point_Subtype);
8895 if Nkind (C) = N_Range_Constraint then
8896 Range_Expr := Range_Expression (C);
8897 Digits_Val := Digits_Value (T);
8899 else
8900 pragma Assert (Nkind (C) = N_Digits_Constraint);
8901 Digits_Expr := Digits_Expression (C);
8902 Analyze_And_Resolve (Digits_Expr, Any_Integer);
8904 Check_Digits_Expression (Digits_Expr);
8905 Digits_Val := Expr_Value (Digits_Expr);
8907 if Digits_Val > Digits_Value (T) then
8908 Error_Msg_N
8909 ("digits expression is incompatible with subtype", C);
8910 Digits_Val := Digits_Value (T);
8911 end if;
8913 if Present (Range_Constraint (C)) then
8914 Range_Expr := Range_Expression (Range_Constraint (C));
8915 else
8916 Range_Expr := Empty;
8917 end if;
8918 end if;
8920 Set_Etype (Def_Id, Base_Type (T));
8921 Set_Size_Info (Def_Id, (T));
8922 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
8923 Set_Delta_Value (Def_Id, Delta_Value (T));
8924 Set_Scale_Value (Def_Id, Scale_Value (T));
8925 Set_Small_Value (Def_Id, Small_Value (T));
8926 Set_Machine_Radix_10 (Def_Id, Machine_Radix_10 (T));
8927 Set_Digits_Value (Def_Id, Digits_Val);
8929 -- Manufacture range from given digits value if no range present
8931 if No (Range_Expr) then
8932 Bound_Val := (Ureal_10 ** Digits_Val - Ureal_1) * Small_Value (T);
8933 Range_Expr :=
8934 Make_Range (Loc,
8935 Low_Bound =>
8936 Convert_To (T, Make_Real_Literal (Loc, (-Bound_Val))),
8937 High_Bound =>
8938 Convert_To (T, Make_Real_Literal (Loc, Bound_Val)));
8939 end if;
8941 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expr, T);
8942 Set_Discrete_RM_Size (Def_Id);
8944 -- Unconditionally delay the freeze, since we cannot set size
8945 -- information in all cases correctly until the freeze point.
8947 Set_Has_Delayed_Freeze (Def_Id);
8948 end Constrain_Decimal;
8950 ----------------------------------
8951 -- Constrain_Discriminated_Type --
8952 ----------------------------------
8954 procedure Constrain_Discriminated_Type
8955 (Def_Id : Entity_Id;
8956 S : Node_Id;
8957 Related_Nod : Node_Id;
8958 For_Access : Boolean := False)
8960 E : constant Entity_Id := Entity (Subtype_Mark (S));
8961 T : Entity_Id;
8962 C : Node_Id;
8963 Elist : Elist_Id := New_Elmt_List;
8965 procedure Fixup_Bad_Constraint;
8966 -- This is called after finding a bad constraint, and after having
8967 -- posted an appropriate error message. The mission is to leave the
8968 -- entity T in as reasonable state as possible!
8970 --------------------------
8971 -- Fixup_Bad_Constraint --
8972 --------------------------
8974 procedure Fixup_Bad_Constraint is
8975 begin
8976 -- Set a reasonable Ekind for the entity. For an incomplete type,
8977 -- we can't do much, but for other types, we can set the proper
8978 -- corresponding subtype kind.
8980 if Ekind (T) = E_Incomplete_Type then
8981 Set_Ekind (Def_Id, Ekind (T));
8982 else
8983 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
8984 end if;
8986 Set_Etype (Def_Id, Any_Type);
8987 Set_Error_Posted (Def_Id);
8988 end Fixup_Bad_Constraint;
8990 -- Start of processing for Constrain_Discriminated_Type
8992 begin
8993 C := Constraint (S);
8995 -- A discriminant constraint is only allowed in a subtype indication,
8996 -- after a subtype mark. This subtype mark must denote either a type
8997 -- with discriminants, or an access type whose designated type is a
8998 -- type with discriminants. A discriminant constraint specifies the
8999 -- values of these discriminants (RM 3.7.2(5)).
9001 T := Base_Type (Entity (Subtype_Mark (S)));
9003 if Ekind (T) in Access_Kind then
9004 T := Designated_Type (T);
9005 end if;
9007 -- Check that the type has visible discriminants. The type may be
9008 -- a private type with unknown discriminants whose full view has
9009 -- discriminants which are invisible.
9011 if not Has_Discriminants (T)
9012 or else
9013 (Has_Unknown_Discriminants (T)
9014 and then Is_Private_Type (T))
9015 then
9016 Error_Msg_N ("invalid constraint: type has no discriminant", C);
9017 Fixup_Bad_Constraint;
9018 return;
9020 elsif Is_Constrained (E)
9021 or else (Ekind (E) = E_Class_Wide_Subtype
9022 and then Present (Discriminant_Constraint (E)))
9023 then
9024 Error_Msg_N ("type is already constrained", Subtype_Mark (S));
9025 Fixup_Bad_Constraint;
9026 return;
9027 end if;
9029 -- T may be an unconstrained subtype (e.g. a generic actual).
9030 -- Constraint applies to the base type.
9032 T := Base_Type (T);
9034 Elist := Build_Discriminant_Constraints (T, S);
9036 -- If the list returned was empty we had an error in building the
9037 -- discriminant constraint. We have also already signalled an error
9038 -- in the incomplete type case
9040 if Is_Empty_Elmt_List (Elist) then
9041 Fixup_Bad_Constraint;
9042 return;
9043 end if;
9045 Build_Discriminated_Subtype (T, Def_Id, Elist, Related_Nod, For_Access);
9046 end Constrain_Discriminated_Type;
9048 ---------------------------
9049 -- Constrain_Enumeration --
9050 ---------------------------
9052 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id) is
9053 T : constant Entity_Id := Entity (Subtype_Mark (S));
9054 C : constant Node_Id := Constraint (S);
9056 begin
9057 Set_Ekind (Def_Id, E_Enumeration_Subtype);
9059 Set_First_Literal (Def_Id, First_Literal (Base_Type (T)));
9061 Set_Etype (Def_Id, Base_Type (T));
9062 Set_Size_Info (Def_Id, (T));
9063 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
9064 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
9066 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
9068 Set_Discrete_RM_Size (Def_Id);
9069 end Constrain_Enumeration;
9071 ----------------------
9072 -- Constrain_Float --
9073 ----------------------
9075 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id) is
9076 T : constant Entity_Id := Entity (Subtype_Mark (S));
9077 C : Node_Id;
9078 D : Node_Id;
9079 Rais : Node_Id;
9081 begin
9082 Set_Ekind (Def_Id, E_Floating_Point_Subtype);
9084 Set_Etype (Def_Id, Base_Type (T));
9085 Set_Size_Info (Def_Id, (T));
9086 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
9088 -- Process the constraint
9090 C := Constraint (S);
9092 -- Digits constraint present
9094 if Nkind (C) = N_Digits_Constraint then
9095 Check_Restriction (No_Obsolescent_Features, C);
9097 if Warn_On_Obsolescent_Feature then
9098 Error_Msg_N
9099 ("subtype digits constraint is an " &
9100 "obsolescent feature ('R'M 'J.3(8))?", C);
9101 end if;
9103 D := Digits_Expression (C);
9104 Analyze_And_Resolve (D, Any_Integer);
9105 Check_Digits_Expression (D);
9106 Set_Digits_Value (Def_Id, Expr_Value (D));
9108 -- Check that digits value is in range. Obviously we can do this
9109 -- at compile time, but it is strictly a runtime check, and of
9110 -- course there is an ACVC test that checks this!
9112 if Digits_Value (Def_Id) > Digits_Value (T) then
9113 Error_Msg_Uint_1 := Digits_Value (T);
9114 Error_Msg_N ("?digits value is too large, maximum is ^", D);
9115 Rais :=
9116 Make_Raise_Constraint_Error (Sloc (D),
9117 Reason => CE_Range_Check_Failed);
9118 Insert_Action (Declaration_Node (Def_Id), Rais);
9119 end if;
9121 C := Range_Constraint (C);
9123 -- No digits constraint present
9125 else
9126 Set_Digits_Value (Def_Id, Digits_Value (T));
9127 end if;
9129 -- Range constraint present
9131 if Nkind (C) = N_Range_Constraint then
9132 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
9134 -- No range constraint present
9136 else
9137 pragma Assert (No (C));
9138 Set_Scalar_Range (Def_Id, Scalar_Range (T));
9139 end if;
9141 Set_Is_Constrained (Def_Id);
9142 end Constrain_Float;
9144 ---------------------
9145 -- Constrain_Index --
9146 ---------------------
9148 procedure Constrain_Index
9149 (Index : Node_Id;
9150 S : Node_Id;
9151 Related_Nod : Node_Id;
9152 Related_Id : Entity_Id;
9153 Suffix : Character;
9154 Suffix_Index : Nat)
9156 Def_Id : Entity_Id;
9157 R : Node_Id := Empty;
9158 T : constant Entity_Id := Etype (Index);
9160 begin
9161 if Nkind (S) = N_Range
9162 or else
9163 (Nkind (S) = N_Attribute_Reference
9164 and then Attribute_Name (S) = Name_Range)
9165 then
9166 -- A Range attribute will transformed into N_Range by Resolve
9168 Analyze (S);
9169 Set_Etype (S, T);
9170 R := S;
9172 Process_Range_Expr_In_Decl (R, T, Empty_List);
9174 if not Error_Posted (S)
9175 and then
9176 (Nkind (S) /= N_Range
9177 or else not Covers (T, (Etype (Low_Bound (S))))
9178 or else not Covers (T, (Etype (High_Bound (S)))))
9179 then
9180 if Base_Type (T) /= Any_Type
9181 and then Etype (Low_Bound (S)) /= Any_Type
9182 and then Etype (High_Bound (S)) /= Any_Type
9183 then
9184 Error_Msg_N ("range expected", S);
9185 end if;
9186 end if;
9188 elsif Nkind (S) = N_Subtype_Indication then
9190 -- The parser has verified that this is a discrete indication
9192 Resolve_Discrete_Subtype_Indication (S, T);
9193 R := Range_Expression (Constraint (S));
9195 elsif Nkind (S) = N_Discriminant_Association then
9197 -- Syntactically valid in subtype indication
9199 Error_Msg_N ("invalid index constraint", S);
9200 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
9201 return;
9203 -- Subtype_Mark case, no anonymous subtypes to construct
9205 else
9206 Analyze (S);
9208 if Is_Entity_Name (S) then
9209 if not Is_Type (Entity (S)) then
9210 Error_Msg_N ("expect subtype mark for index constraint", S);
9212 elsif Base_Type (Entity (S)) /= Base_Type (T) then
9213 Wrong_Type (S, Base_Type (T));
9214 end if;
9216 return;
9218 else
9219 Error_Msg_N ("invalid index constraint", S);
9220 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
9221 return;
9222 end if;
9223 end if;
9225 Def_Id :=
9226 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix, Suffix_Index);
9228 Set_Etype (Def_Id, Base_Type (T));
9230 if Is_Modular_Integer_Type (T) then
9231 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
9233 elsif Is_Integer_Type (T) then
9234 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
9236 else
9237 Set_Ekind (Def_Id, E_Enumeration_Subtype);
9238 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
9239 end if;
9241 Set_Size_Info (Def_Id, (T));
9242 Set_RM_Size (Def_Id, RM_Size (T));
9243 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
9245 Set_Scalar_Range (Def_Id, R);
9247 Set_Etype (S, Def_Id);
9248 Set_Discrete_RM_Size (Def_Id);
9249 end Constrain_Index;
9251 -----------------------
9252 -- Constrain_Integer --
9253 -----------------------
9255 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id) is
9256 T : constant Entity_Id := Entity (Subtype_Mark (S));
9257 C : constant Node_Id := Constraint (S);
9259 begin
9260 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
9262 if Is_Modular_Integer_Type (T) then
9263 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
9264 else
9265 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
9266 end if;
9268 Set_Etype (Def_Id, Base_Type (T));
9269 Set_Size_Info (Def_Id, (T));
9270 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
9271 Set_Discrete_RM_Size (Def_Id);
9272 end Constrain_Integer;
9274 ------------------------------
9275 -- Constrain_Ordinary_Fixed --
9276 ------------------------------
9278 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id) is
9279 T : constant Entity_Id := Entity (Subtype_Mark (S));
9280 C : Node_Id;
9281 D : Node_Id;
9282 Rais : Node_Id;
9284 begin
9285 Set_Ekind (Def_Id, E_Ordinary_Fixed_Point_Subtype);
9286 Set_Etype (Def_Id, Base_Type (T));
9287 Set_Size_Info (Def_Id, (T));
9288 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
9289 Set_Small_Value (Def_Id, Small_Value (T));
9291 -- Process the constraint
9293 C := Constraint (S);
9295 -- Delta constraint present
9297 if Nkind (C) = N_Delta_Constraint then
9298 Check_Restriction (No_Obsolescent_Features, C);
9300 if Warn_On_Obsolescent_Feature then
9301 Error_Msg_S
9302 ("subtype delta constraint is an " &
9303 "obsolescent feature ('R'M 'J.3(7))?");
9304 end if;
9306 D := Delta_Expression (C);
9307 Analyze_And_Resolve (D, Any_Real);
9308 Check_Delta_Expression (D);
9309 Set_Delta_Value (Def_Id, Expr_Value_R (D));
9311 -- Check that delta value is in range. Obviously we can do this
9312 -- at compile time, but it is strictly a runtime check, and of
9313 -- course there is an ACVC test that checks this!
9315 if Delta_Value (Def_Id) < Delta_Value (T) then
9316 Error_Msg_N ("?delta value is too small", D);
9317 Rais :=
9318 Make_Raise_Constraint_Error (Sloc (D),
9319 Reason => CE_Range_Check_Failed);
9320 Insert_Action (Declaration_Node (Def_Id), Rais);
9321 end if;
9323 C := Range_Constraint (C);
9325 -- No delta constraint present
9327 else
9328 Set_Delta_Value (Def_Id, Delta_Value (T));
9329 end if;
9331 -- Range constraint present
9333 if Nkind (C) = N_Range_Constraint then
9334 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
9336 -- No range constraint present
9338 else
9339 pragma Assert (No (C));
9340 Set_Scalar_Range (Def_Id, Scalar_Range (T));
9342 end if;
9344 Set_Discrete_RM_Size (Def_Id);
9346 -- Unconditionally delay the freeze, since we cannot set size
9347 -- information in all cases correctly until the freeze point.
9349 Set_Has_Delayed_Freeze (Def_Id);
9350 end Constrain_Ordinary_Fixed;
9352 ---------------------------
9353 -- Convert_Scalar_Bounds --
9354 ---------------------------
9356 procedure Convert_Scalar_Bounds
9357 (N : Node_Id;
9358 Parent_Type : Entity_Id;
9359 Derived_Type : Entity_Id;
9360 Loc : Source_Ptr)
9362 Implicit_Base : constant Entity_Id := Base_Type (Derived_Type);
9364 Lo : Node_Id;
9365 Hi : Node_Id;
9366 Rng : Node_Id;
9368 begin
9369 Lo := Build_Scalar_Bound
9370 (Type_Low_Bound (Derived_Type),
9371 Parent_Type, Implicit_Base);
9373 Hi := Build_Scalar_Bound
9374 (Type_High_Bound (Derived_Type),
9375 Parent_Type, Implicit_Base);
9377 Rng :=
9378 Make_Range (Loc,
9379 Low_Bound => Lo,
9380 High_Bound => Hi);
9382 Set_Includes_Infinities (Rng, Has_Infinities (Derived_Type));
9384 Set_Parent (Rng, N);
9385 Set_Scalar_Range (Derived_Type, Rng);
9387 -- Analyze the bounds
9389 Analyze_And_Resolve (Lo, Implicit_Base);
9390 Analyze_And_Resolve (Hi, Implicit_Base);
9392 -- Analyze the range itself, except that we do not analyze it if
9393 -- the bounds are real literals, and we have a fixed-point type.
9394 -- The reason for this is that we delay setting the bounds in this
9395 -- case till we know the final Small and Size values (see circuit
9396 -- in Freeze.Freeze_Fixed_Point_Type for further details).
9398 if Is_Fixed_Point_Type (Parent_Type)
9399 and then Nkind (Lo) = N_Real_Literal
9400 and then Nkind (Hi) = N_Real_Literal
9401 then
9402 return;
9404 -- Here we do the analysis of the range
9406 -- Note: we do this manually, since if we do a normal Analyze and
9407 -- Resolve call, there are problems with the conversions used for
9408 -- the derived type range.
9410 else
9411 Set_Etype (Rng, Implicit_Base);
9412 Set_Analyzed (Rng, True);
9413 end if;
9414 end Convert_Scalar_Bounds;
9416 -------------------
9417 -- Copy_And_Swap --
9418 -------------------
9420 procedure Copy_And_Swap (Priv, Full : Entity_Id) is
9421 begin
9422 -- Initialize new full declaration entity by copying the pertinent
9423 -- fields of the corresponding private declaration entity.
9425 -- We temporarily set Ekind to a value appropriate for a type to
9426 -- avoid assert failures in Einfo from checking for setting type
9427 -- attributes on something that is not a type. Ekind (Priv) is an
9428 -- appropriate choice, since it allowed the attributes to be set
9429 -- in the first place. This Ekind value will be modified later.
9431 Set_Ekind (Full, Ekind (Priv));
9433 -- Also set Etype temporarily to Any_Type, again, in the absence
9434 -- of errors, it will be properly reset, and if there are errors,
9435 -- then we want a value of Any_Type to remain.
9437 Set_Etype (Full, Any_Type);
9439 -- Now start copying attributes
9441 Set_Has_Discriminants (Full, Has_Discriminants (Priv));
9443 if Has_Discriminants (Full) then
9444 Set_Discriminant_Constraint (Full, Discriminant_Constraint (Priv));
9445 Set_Stored_Constraint (Full, Stored_Constraint (Priv));
9446 end if;
9448 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
9449 Set_Homonym (Full, Homonym (Priv));
9450 Set_Is_Immediately_Visible (Full, Is_Immediately_Visible (Priv));
9451 Set_Is_Public (Full, Is_Public (Priv));
9452 Set_Is_Pure (Full, Is_Pure (Priv));
9453 Set_Is_Tagged_Type (Full, Is_Tagged_Type (Priv));
9455 Conditional_Delay (Full, Priv);
9457 if Is_Tagged_Type (Full) then
9458 Set_Primitive_Operations (Full, Primitive_Operations (Priv));
9460 if Priv = Base_Type (Priv) then
9461 Set_Class_Wide_Type (Full, Class_Wide_Type (Priv));
9462 end if;
9463 end if;
9465 Set_Is_Volatile (Full, Is_Volatile (Priv));
9466 Set_Treat_As_Volatile (Full, Treat_As_Volatile (Priv));
9467 Set_Scope (Full, Scope (Priv));
9468 Set_Next_Entity (Full, Next_Entity (Priv));
9469 Set_First_Entity (Full, First_Entity (Priv));
9470 Set_Last_Entity (Full, Last_Entity (Priv));
9472 -- If access types have been recorded for later handling, keep them in
9473 -- the full view so that they get handled when the full view freeze
9474 -- node is expanded.
9476 if Present (Freeze_Node (Priv))
9477 and then Present (Access_Types_To_Process (Freeze_Node (Priv)))
9478 then
9479 Ensure_Freeze_Node (Full);
9480 Set_Access_Types_To_Process
9481 (Freeze_Node (Full),
9482 Access_Types_To_Process (Freeze_Node (Priv)));
9483 end if;
9485 -- Swap the two entities. Now Privat is the full type entity and
9486 -- Full is the private one. They will be swapped back at the end
9487 -- of the private part. This swapping ensures that the entity that
9488 -- is visible in the private part is the full declaration.
9490 Exchange_Entities (Priv, Full);
9491 Append_Entity (Full, Scope (Full));
9492 end Copy_And_Swap;
9494 -------------------------------------
9495 -- Copy_Array_Base_Type_Attributes --
9496 -------------------------------------
9498 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id) is
9499 begin
9500 Set_Component_Alignment (T1, Component_Alignment (T2));
9501 Set_Component_Type (T1, Component_Type (T2));
9502 Set_Component_Size (T1, Component_Size (T2));
9503 Set_Has_Controlled_Component (T1, Has_Controlled_Component (T2));
9504 Set_Finalize_Storage_Only (T1, Finalize_Storage_Only (T2));
9505 Set_Has_Non_Standard_Rep (T1, Has_Non_Standard_Rep (T2));
9506 Set_Has_Task (T1, Has_Task (T2));
9507 Set_Is_Packed (T1, Is_Packed (T2));
9508 Set_Has_Aliased_Components (T1, Has_Aliased_Components (T2));
9509 Set_Has_Atomic_Components (T1, Has_Atomic_Components (T2));
9510 Set_Has_Volatile_Components (T1, Has_Volatile_Components (T2));
9511 end Copy_Array_Base_Type_Attributes;
9513 -----------------------------------
9514 -- Copy_Array_Subtype_Attributes --
9515 -----------------------------------
9517 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id) is
9518 begin
9519 Set_Size_Info (T1, T2);
9521 Set_First_Index (T1, First_Index (T2));
9522 Set_Is_Aliased (T1, Is_Aliased (T2));
9523 Set_Is_Atomic (T1, Is_Atomic (T2));
9524 Set_Is_Volatile (T1, Is_Volatile (T2));
9525 Set_Treat_As_Volatile (T1, Treat_As_Volatile (T2));
9526 Set_Is_Constrained (T1, Is_Constrained (T2));
9527 Set_Depends_On_Private (T1, Has_Private_Component (T2));
9528 Set_First_Rep_Item (T1, First_Rep_Item (T2));
9529 Set_Convention (T1, Convention (T2));
9530 Set_Is_Limited_Composite (T1, Is_Limited_Composite (T2));
9531 Set_Is_Private_Composite (T1, Is_Private_Composite (T2));
9532 end Copy_Array_Subtype_Attributes;
9534 -----------------------------------
9535 -- Create_Constrained_Components --
9536 -----------------------------------
9538 procedure Create_Constrained_Components
9539 (Subt : Entity_Id;
9540 Decl_Node : Node_Id;
9541 Typ : Entity_Id;
9542 Constraints : Elist_Id)
9544 Loc : constant Source_Ptr := Sloc (Subt);
9545 Comp_List : constant Elist_Id := New_Elmt_List;
9546 Parent_Type : constant Entity_Id := Etype (Typ);
9547 Assoc_List : constant List_Id := New_List;
9548 Discr_Val : Elmt_Id;
9549 Errors : Boolean;
9550 New_C : Entity_Id;
9551 Old_C : Entity_Id;
9552 Is_Static : Boolean := True;
9554 procedure Collect_Fixed_Components (Typ : Entity_Id);
9555 -- Collect parent type components that do not appear in a variant part
9557 procedure Create_All_Components;
9558 -- Iterate over Comp_List to create the components of the subtype
9560 function Create_Component (Old_Compon : Entity_Id) return Entity_Id;
9561 -- Creates a new component from Old_Compon, copying all the fields from
9562 -- it, including its Etype, inserts the new component in the Subt entity
9563 -- chain and returns the new component.
9565 function Is_Variant_Record (T : Entity_Id) return Boolean;
9566 -- If true, and discriminants are static, collect only components from
9567 -- variants selected by discriminant values.
9569 ------------------------------
9570 -- Collect_Fixed_Components --
9571 ------------------------------
9573 procedure Collect_Fixed_Components (Typ : Entity_Id) is
9574 begin
9575 -- Build association list for discriminants, and find components of the
9576 -- variant part selected by the values of the discriminants.
9578 Old_C := First_Discriminant (Typ);
9579 Discr_Val := First_Elmt (Constraints);
9580 while Present (Old_C) loop
9581 Append_To (Assoc_List,
9582 Make_Component_Association (Loc,
9583 Choices => New_List (New_Occurrence_Of (Old_C, Loc)),
9584 Expression => New_Copy (Node (Discr_Val))));
9586 Next_Elmt (Discr_Val);
9587 Next_Discriminant (Old_C);
9588 end loop;
9590 -- The tag, and the possible parent and controller components
9591 -- are unconditionally in the subtype.
9593 if Is_Tagged_Type (Typ)
9594 or else Has_Controlled_Component (Typ)
9595 then
9596 Old_C := First_Component (Typ);
9597 while Present (Old_C) loop
9598 if Chars ((Old_C)) = Name_uTag
9599 or else Chars ((Old_C)) = Name_uParent
9600 or else Chars ((Old_C)) = Name_uController
9601 then
9602 Append_Elmt (Old_C, Comp_List);
9603 end if;
9605 Next_Component (Old_C);
9606 end loop;
9607 end if;
9608 end Collect_Fixed_Components;
9610 ---------------------------
9611 -- Create_All_Components --
9612 ---------------------------
9614 procedure Create_All_Components is
9615 Comp : Elmt_Id;
9617 begin
9618 Comp := First_Elmt (Comp_List);
9619 while Present (Comp) loop
9620 Old_C := Node (Comp);
9621 New_C := Create_Component (Old_C);
9623 Set_Etype
9624 (New_C,
9625 Constrain_Component_Type
9626 (Old_C, Subt, Decl_Node, Typ, Constraints));
9627 Set_Is_Public (New_C, Is_Public (Subt));
9629 Next_Elmt (Comp);
9630 end loop;
9631 end Create_All_Components;
9633 ----------------------
9634 -- Create_Component --
9635 ----------------------
9637 function Create_Component (Old_Compon : Entity_Id) return Entity_Id is
9638 New_Compon : constant Entity_Id := New_Copy (Old_Compon);
9640 begin
9641 -- Set the parent so we have a proper link for freezing etc. This
9642 -- is not a real parent pointer, since of course our parent does
9643 -- not own up to us and reference us, we are an illegitimate
9644 -- child of the original parent!
9646 Set_Parent (New_Compon, Parent (Old_Compon));
9648 -- We do not want this node marked as Comes_From_Source, since
9649 -- otherwise it would get first class status and a separate
9650 -- cross-reference line would be generated. Illegitimate
9651 -- children do not rate such recognition.
9653 Set_Comes_From_Source (New_Compon, False);
9655 -- But it is a real entity, and a birth certificate must be
9656 -- properly registered by entering it into the entity list.
9658 Enter_Name (New_Compon);
9659 return New_Compon;
9660 end Create_Component;
9662 -----------------------
9663 -- Is_Variant_Record --
9664 -----------------------
9666 function Is_Variant_Record (T : Entity_Id) return Boolean is
9667 begin
9668 return Nkind (Parent (T)) = N_Full_Type_Declaration
9669 and then Nkind (Type_Definition (Parent (T))) = N_Record_Definition
9670 and then Present (Component_List (Type_Definition (Parent (T))))
9671 and then Present (
9672 Variant_Part (Component_List (Type_Definition (Parent (T)))));
9673 end Is_Variant_Record;
9675 -- Start of processing for Create_Constrained_Components
9677 begin
9678 pragma Assert (Subt /= Base_Type (Subt));
9679 pragma Assert (Typ = Base_Type (Typ));
9681 Set_First_Entity (Subt, Empty);
9682 Set_Last_Entity (Subt, Empty);
9684 -- Check whether constraint is fully static, in which case we can
9685 -- optimize the list of components.
9687 Discr_Val := First_Elmt (Constraints);
9688 while Present (Discr_Val) loop
9689 if not Is_OK_Static_Expression (Node (Discr_Val)) then
9690 Is_Static := False;
9691 exit;
9692 end if;
9694 Next_Elmt (Discr_Val);
9695 end loop;
9697 New_Scope (Subt);
9699 -- Inherit the discriminants of the parent type
9701 Old_C := First_Discriminant (Typ);
9702 while Present (Old_C) loop
9703 New_C := Create_Component (Old_C);
9704 Set_Is_Public (New_C, Is_Public (Subt));
9705 Next_Discriminant (Old_C);
9706 end loop;
9708 if Is_Static
9709 and then Is_Variant_Record (Typ)
9710 then
9711 Collect_Fixed_Components (Typ);
9713 Gather_Components (
9714 Typ,
9715 Component_List (Type_Definition (Parent (Typ))),
9716 Governed_By => Assoc_List,
9717 Into => Comp_List,
9718 Report_Errors => Errors);
9719 pragma Assert (not Errors);
9721 Create_All_Components;
9723 -- If the subtype declaration is created for a tagged type derivation
9724 -- with constraints, we retrieve the record definition of the parent
9725 -- type to select the components of the proper variant.
9727 elsif Is_Static
9728 and then Is_Tagged_Type (Typ)
9729 and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
9730 and then
9731 Nkind (Type_Definition (Parent (Typ))) = N_Derived_Type_Definition
9732 and then Is_Variant_Record (Parent_Type)
9733 then
9734 Collect_Fixed_Components (Typ);
9736 Gather_Components (
9737 Typ,
9738 Component_List (Type_Definition (Parent (Parent_Type))),
9739 Governed_By => Assoc_List,
9740 Into => Comp_List,
9741 Report_Errors => Errors);
9742 pragma Assert (not Errors);
9744 -- If the tagged derivation has a type extension, collect all the
9745 -- new components therein.
9747 if Present
9748 (Record_Extension_Part (Type_Definition (Parent (Typ))))
9749 then
9750 Old_C := First_Component (Typ);
9751 while Present (Old_C) loop
9752 if Original_Record_Component (Old_C) = Old_C
9753 and then Chars (Old_C) /= Name_uTag
9754 and then Chars (Old_C) /= Name_uParent
9755 and then Chars (Old_C) /= Name_uController
9756 then
9757 Append_Elmt (Old_C, Comp_List);
9758 end if;
9760 Next_Component (Old_C);
9761 end loop;
9762 end if;
9764 Create_All_Components;
9766 else
9767 -- If discriminants are not static, or if this is a multi-level type
9768 -- extension, we have to include all components of the parent type.
9770 Old_C := First_Component (Typ);
9771 while Present (Old_C) loop
9772 New_C := Create_Component (Old_C);
9774 Set_Etype
9775 (New_C,
9776 Constrain_Component_Type
9777 (Old_C, Subt, Decl_Node, Typ, Constraints));
9778 Set_Is_Public (New_C, Is_Public (Subt));
9780 Next_Component (Old_C);
9781 end loop;
9782 end if;
9784 End_Scope;
9785 end Create_Constrained_Components;
9787 ------------------------------------------
9788 -- Decimal_Fixed_Point_Type_Declaration --
9789 ------------------------------------------
9791 procedure Decimal_Fixed_Point_Type_Declaration
9792 (T : Entity_Id;
9793 Def : Node_Id)
9795 Loc : constant Source_Ptr := Sloc (Def);
9796 Digs_Expr : constant Node_Id := Digits_Expression (Def);
9797 Delta_Expr : constant Node_Id := Delta_Expression (Def);
9798 Implicit_Base : Entity_Id;
9799 Digs_Val : Uint;
9800 Delta_Val : Ureal;
9801 Scale_Val : Uint;
9802 Bound_Val : Ureal;
9804 -- Start of processing for Decimal_Fixed_Point_Type_Declaration
9806 begin
9807 Check_Restriction (No_Fixed_Point, Def);
9809 -- Create implicit base type
9811 Implicit_Base :=
9812 Create_Itype (E_Decimal_Fixed_Point_Type, Parent (Def), T, 'B');
9813 Set_Etype (Implicit_Base, Implicit_Base);
9815 -- Analyze and process delta expression
9817 Analyze_And_Resolve (Delta_Expr, Universal_Real);
9819 Check_Delta_Expression (Delta_Expr);
9820 Delta_Val := Expr_Value_R (Delta_Expr);
9822 -- Check delta is power of 10, and determine scale value from it
9824 declare
9825 Val : Ureal;
9827 begin
9828 Scale_Val := Uint_0;
9829 Val := Delta_Val;
9831 if Val < Ureal_1 then
9832 while Val < Ureal_1 loop
9833 Val := Val * Ureal_10;
9834 Scale_Val := Scale_Val + 1;
9835 end loop;
9837 if Scale_Val > 18 then
9838 Error_Msg_N ("scale exceeds maximum value of 18", Def);
9839 Scale_Val := UI_From_Int (+18);
9840 end if;
9842 else
9843 while Val > Ureal_1 loop
9844 Val := Val / Ureal_10;
9845 Scale_Val := Scale_Val - 1;
9846 end loop;
9848 if Scale_Val < -18 then
9849 Error_Msg_N ("scale is less than minimum value of -18", Def);
9850 Scale_Val := UI_From_Int (-18);
9851 end if;
9852 end if;
9854 if Val /= Ureal_1 then
9855 Error_Msg_N ("delta expression must be a power of 10", Def);
9856 Delta_Val := Ureal_10 ** (-Scale_Val);
9857 end if;
9858 end;
9860 -- Set delta, scale and small (small = delta for decimal type)
9862 Set_Delta_Value (Implicit_Base, Delta_Val);
9863 Set_Scale_Value (Implicit_Base, Scale_Val);
9864 Set_Small_Value (Implicit_Base, Delta_Val);
9866 -- Analyze and process digits expression
9868 Analyze_And_Resolve (Digs_Expr, Any_Integer);
9869 Check_Digits_Expression (Digs_Expr);
9870 Digs_Val := Expr_Value (Digs_Expr);
9872 if Digs_Val > 18 then
9873 Digs_Val := UI_From_Int (+18);
9874 Error_Msg_N ("digits value out of range, maximum is 18", Digs_Expr);
9875 end if;
9877 Set_Digits_Value (Implicit_Base, Digs_Val);
9878 Bound_Val := UR_From_Uint (10 ** Digs_Val - 1) * Delta_Val;
9880 -- Set range of base type from digits value for now. This will be
9881 -- expanded to represent the true underlying base range by Freeze.
9883 Set_Fixed_Range (Implicit_Base, Loc, -Bound_Val, Bound_Val);
9885 -- Set size to zero for now, size will be set at freeze time. We have
9886 -- to do this for ordinary fixed-point, because the size depends on
9887 -- the specified small, and we might as well do the same for decimal
9888 -- fixed-point.
9890 Init_Size_Align (Implicit_Base);
9892 -- If there are bounds given in the declaration use them as the
9893 -- bounds of the first named subtype.
9895 if Present (Real_Range_Specification (Def)) then
9896 declare
9897 RRS : constant Node_Id := Real_Range_Specification (Def);
9898 Low : constant Node_Id := Low_Bound (RRS);
9899 High : constant Node_Id := High_Bound (RRS);
9900 Low_Val : Ureal;
9901 High_Val : Ureal;
9903 begin
9904 Analyze_And_Resolve (Low, Any_Real);
9905 Analyze_And_Resolve (High, Any_Real);
9906 Check_Real_Bound (Low);
9907 Check_Real_Bound (High);
9908 Low_Val := Expr_Value_R (Low);
9909 High_Val := Expr_Value_R (High);
9911 if Low_Val < (-Bound_Val) then
9912 Error_Msg_N
9913 ("range low bound too small for digits value", Low);
9914 Low_Val := -Bound_Val;
9915 end if;
9917 if High_Val > Bound_Val then
9918 Error_Msg_N
9919 ("range high bound too large for digits value", High);
9920 High_Val := Bound_Val;
9921 end if;
9923 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
9924 end;
9926 -- If no explicit range, use range that corresponds to given
9927 -- digits value. This will end up as the final range for the
9928 -- first subtype.
9930 else
9931 Set_Fixed_Range (T, Loc, -Bound_Val, Bound_Val);
9932 end if;
9934 -- Complete entity for first subtype
9936 Set_Ekind (T, E_Decimal_Fixed_Point_Subtype);
9937 Set_Etype (T, Implicit_Base);
9938 Set_Size_Info (T, Implicit_Base);
9939 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
9940 Set_Digits_Value (T, Digs_Val);
9941 Set_Delta_Value (T, Delta_Val);
9942 Set_Small_Value (T, Delta_Val);
9943 Set_Scale_Value (T, Scale_Val);
9944 Set_Is_Constrained (T);
9945 end Decimal_Fixed_Point_Type_Declaration;
9947 ---------------------------------
9948 -- Derive_Interface_Subprogram --
9949 ---------------------------------
9951 procedure Derive_Interface_Subprograms (Derived_Type : Entity_Id) is
9953 procedure Do_Derivation (T : Entity_Id);
9954 -- This inner subprograms is used to climb to the ancestors.
9955 -- It is needed to add the derivations to the Derived_Type.
9957 procedure Do_Derivation (T : Entity_Id) is
9958 Etyp : constant Entity_Id := Etype (T);
9959 AI : Elmt_Id;
9961 begin
9962 if Etyp /= T
9963 and then Is_Interface (Etyp)
9964 then
9965 Do_Derivation (Etyp);
9966 end if;
9968 if Present (Abstract_Interfaces (T))
9969 and then not Is_Empty_Elmt_List (Abstract_Interfaces (T))
9970 then
9971 AI := First_Elmt (Abstract_Interfaces (T));
9972 while Present (AI) loop
9973 Derive_Subprograms
9974 (Parent_Type => Node (AI),
9975 Derived_Type => Derived_Type,
9976 No_Predefined_Prims => True);
9978 Next_Elmt (AI);
9979 end loop;
9980 end if;
9981 end Do_Derivation;
9983 begin
9984 Do_Derivation (Derived_Type);
9986 -- At this point the list of primitive operations of Derived_Type
9987 -- contains the entities corresponding to all the subprograms of all the
9988 -- implemented interfaces. If N interfaces have subprograms with the
9989 -- same profile we have N entities in this list because each one must be
9990 -- allocated in its corresponding virtual table.
9992 -- Its alias attribute references its original interface subprogram.
9993 -- When overridden, the alias attribute is later saved in the
9994 -- Abstract_Interface_Alias attribute.
9996 end Derive_Interface_Subprograms;
9998 -----------------------
9999 -- Derive_Subprogram --
10000 -----------------------
10002 procedure Derive_Subprogram
10003 (New_Subp : in out Entity_Id;
10004 Parent_Subp : Entity_Id;
10005 Derived_Type : Entity_Id;
10006 Parent_Type : Entity_Id;
10007 Actual_Subp : Entity_Id := Empty)
10009 Formal : Entity_Id;
10010 New_Formal : Entity_Id;
10011 Visible_Subp : Entity_Id := Parent_Subp;
10013 function Is_Private_Overriding return Boolean;
10014 -- If Subp is a private overriding of a visible operation, the in-
10015 -- herited operation derives from the overridden op (even though
10016 -- its body is the overriding one) and the inherited operation is
10017 -- visible now. See sem_disp to see the details of the handling of
10018 -- the overridden subprogram, which is removed from the list of
10019 -- primitive operations of the type. The overridden subprogram is
10020 -- saved locally in Visible_Subp, and used to diagnose abstract
10021 -- operations that need overriding in the derived type.
10023 procedure Replace_Type (Id, New_Id : Entity_Id);
10024 -- When the type is an anonymous access type, create a new access type
10025 -- designating the derived type.
10027 procedure Set_Derived_Name;
10028 -- This procedure sets the appropriate Chars name for New_Subp. This
10029 -- is normally just a copy of the parent name. An exception arises for
10030 -- type support subprograms, where the name is changed to reflect the
10031 -- name of the derived type, e.g. if type foo is derived from type bar,
10032 -- then a procedure barDA is derived with a name fooDA.
10034 ---------------------------
10035 -- Is_Private_Overriding --
10036 ---------------------------
10038 function Is_Private_Overriding return Boolean is
10039 Prev : Entity_Id;
10041 begin
10042 -- The visible operation that is overridden is a homonym of the
10043 -- parent subprogram. We scan the homonym chain to find the one
10044 -- whose alias is the subprogram we are deriving.
10046 Prev := Current_Entity (Parent_Subp);
10047 while Present (Prev) loop
10048 if Is_Dispatching_Operation (Parent_Subp)
10049 and then Present (Prev)
10050 and then Ekind (Prev) = Ekind (Parent_Subp)
10051 and then Alias (Prev) = Parent_Subp
10052 and then Scope (Parent_Subp) = Scope (Prev)
10053 and then
10054 (not Is_Hidden (Prev)
10055 or else
10057 -- Ada 2005 (AI-251): Entities associated with overridden
10058 -- interface subprograms are always marked as hidden; in
10059 -- this case the field abstract_interface_alias references
10060 -- the original entity (cf. override_dispatching_operation).
10062 (Atree.Present (Abstract_Interface_Alias (Prev))
10063 and then not Is_Hidden (Abstract_Interface_Alias (Prev))))
10064 then
10065 Visible_Subp := Prev;
10066 return True;
10067 end if;
10069 Prev := Homonym (Prev);
10070 end loop;
10072 return False;
10073 end Is_Private_Overriding;
10075 ------------------
10076 -- Replace_Type --
10077 ------------------
10079 procedure Replace_Type (Id, New_Id : Entity_Id) is
10080 Acc_Type : Entity_Id;
10081 IR : Node_Id;
10082 Par : constant Node_Id := Parent (Derived_Type);
10084 begin
10085 -- When the type is an anonymous access type, create a new access
10086 -- type designating the derived type. This itype must be elaborated
10087 -- at the point of the derivation, not on subsequent calls that may
10088 -- be out of the proper scope for Gigi, so we insert a reference to
10089 -- it after the derivation.
10091 if Ekind (Etype (Id)) = E_Anonymous_Access_Type then
10092 declare
10093 Desig_Typ : Entity_Id := Designated_Type (Etype (Id));
10095 begin
10096 if Ekind (Desig_Typ) = E_Record_Type_With_Private
10097 and then Present (Full_View (Desig_Typ))
10098 and then not Is_Private_Type (Parent_Type)
10099 then
10100 Desig_Typ := Full_View (Desig_Typ);
10101 end if;
10103 if Base_Type (Desig_Typ) = Base_Type (Parent_Type) then
10104 Acc_Type := New_Copy (Etype (Id));
10105 Set_Etype (Acc_Type, Acc_Type);
10106 Set_Scope (Acc_Type, New_Subp);
10108 -- Compute size of anonymous access type
10110 if Is_Array_Type (Desig_Typ)
10111 and then not Is_Constrained (Desig_Typ)
10112 then
10113 Init_Size (Acc_Type, 2 * System_Address_Size);
10114 else
10115 Init_Size (Acc_Type, System_Address_Size);
10116 end if;
10118 Init_Alignment (Acc_Type);
10119 Set_Directly_Designated_Type (Acc_Type, Derived_Type);
10121 Set_Etype (New_Id, Acc_Type);
10122 Set_Scope (New_Id, New_Subp);
10124 -- Create a reference to it
10126 IR := Make_Itype_Reference (Sloc (Parent (Derived_Type)));
10127 Set_Itype (IR, Acc_Type);
10128 Insert_After (Parent (Derived_Type), IR);
10130 else
10131 Set_Etype (New_Id, Etype (Id));
10132 end if;
10133 end;
10135 elsif Base_Type (Etype (Id)) = Base_Type (Parent_Type)
10136 or else
10137 (Ekind (Etype (Id)) = E_Record_Type_With_Private
10138 and then Present (Full_View (Etype (Id)))
10139 and then
10140 Base_Type (Full_View (Etype (Id))) = Base_Type (Parent_Type))
10141 then
10142 -- Constraint checks on formals are generated during expansion,
10143 -- based on the signature of the original subprogram. The bounds
10144 -- of the derived type are not relevant, and thus we can use
10145 -- the base type for the formals. However, the return type may be
10146 -- used in a context that requires that the proper static bounds
10147 -- be used (a case statement, for example) and for those cases
10148 -- we must use the derived type (first subtype), not its base.
10150 -- If the derived_type_definition has no constraints, we know that
10151 -- the derived type has the same constraints as the first subtype
10152 -- of the parent, and we can also use it rather than its base,
10153 -- which can lead to more efficient code.
10155 if Etype (Id) = Parent_Type then
10156 if Is_Scalar_Type (Parent_Type)
10157 and then
10158 Subtypes_Statically_Compatible (Parent_Type, Derived_Type)
10159 then
10160 Set_Etype (New_Id, Derived_Type);
10162 elsif Nkind (Par) = N_Full_Type_Declaration
10163 and then
10164 Nkind (Type_Definition (Par)) = N_Derived_Type_Definition
10165 and then
10166 Is_Entity_Name
10167 (Subtype_Indication (Type_Definition (Par)))
10168 then
10169 Set_Etype (New_Id, Derived_Type);
10171 else
10172 Set_Etype (New_Id, Base_Type (Derived_Type));
10173 end if;
10175 else
10176 Set_Etype (New_Id, Base_Type (Derived_Type));
10177 end if;
10179 else
10180 Set_Etype (New_Id, Etype (Id));
10181 end if;
10182 end Replace_Type;
10184 ----------------------
10185 -- Set_Derived_Name --
10186 ----------------------
10188 procedure Set_Derived_Name is
10189 Nm : constant TSS_Name_Type := Get_TSS_Name (Parent_Subp);
10190 begin
10191 if Nm = TSS_Null then
10192 Set_Chars (New_Subp, Chars (Parent_Subp));
10193 else
10194 Set_Chars (New_Subp, Make_TSS_Name (Base_Type (Derived_Type), Nm));
10195 end if;
10196 end Set_Derived_Name;
10198 -- Start of processing for Derive_Subprogram
10200 begin
10201 New_Subp :=
10202 New_Entity (Nkind (Parent_Subp), Sloc (Derived_Type));
10203 Set_Ekind (New_Subp, Ekind (Parent_Subp));
10205 -- Check whether the inherited subprogram is a private operation that
10206 -- should be inherited but not yet made visible. Such subprograms can
10207 -- become visible at a later point (e.g., the private part of a public
10208 -- child unit) via Declare_Inherited_Private_Subprograms. If the
10209 -- following predicate is true, then this is not such a private
10210 -- operation and the subprogram simply inherits the name of the parent
10211 -- subprogram. Note the special check for the names of controlled
10212 -- operations, which are currently exempted from being inherited with
10213 -- a hidden name because they must be findable for generation of
10214 -- implicit run-time calls.
10216 if not Is_Hidden (Parent_Subp)
10217 or else Is_Internal (Parent_Subp)
10218 or else Is_Private_Overriding
10219 or else Is_Internal_Name (Chars (Parent_Subp))
10220 or else Chars (Parent_Subp) = Name_Initialize
10221 or else Chars (Parent_Subp) = Name_Adjust
10222 or else Chars (Parent_Subp) = Name_Finalize
10223 then
10224 Set_Derived_Name;
10226 -- If parent is hidden, this can be a regular derivation if the
10227 -- parent is immediately visible in a non-instantiating context,
10228 -- or if we are in the private part of an instance. This test
10229 -- should still be refined ???
10231 -- The test for In_Instance_Not_Visible avoids inheriting the derived
10232 -- operation as a non-visible operation in cases where the parent
10233 -- subprogram might not be visible now, but was visible within the
10234 -- original generic, so it would be wrong to make the inherited
10235 -- subprogram non-visible now. (Not clear if this test is fully
10236 -- correct; are there any cases where we should declare the inherited
10237 -- operation as not visible to avoid it being overridden, e.g., when
10238 -- the parent type is a generic actual with private primitives ???)
10240 -- (they should be treated the same as other private inherited
10241 -- subprograms, but it's not clear how to do this cleanly). ???
10243 elsif (In_Open_Scopes (Scope (Base_Type (Parent_Type)))
10244 and then Is_Immediately_Visible (Parent_Subp)
10245 and then not In_Instance)
10246 or else In_Instance_Not_Visible
10247 then
10248 Set_Derived_Name;
10250 -- The type is inheriting a private operation, so enter
10251 -- it with a special name so it can't be overridden.
10253 else
10254 Set_Chars (New_Subp, New_External_Name (Chars (Parent_Subp), 'P'));
10255 end if;
10257 Set_Parent (New_Subp, Parent (Derived_Type));
10258 Replace_Type (Parent_Subp, New_Subp);
10259 Conditional_Delay (New_Subp, Parent_Subp);
10261 Formal := First_Formal (Parent_Subp);
10262 while Present (Formal) loop
10263 New_Formal := New_Copy (Formal);
10265 -- Normally we do not go copying parents, but in the case of
10266 -- formals, we need to link up to the declaration (which is the
10267 -- parameter specification), and it is fine to link up to the
10268 -- original formal's parameter specification in this case.
10270 Set_Parent (New_Formal, Parent (Formal));
10272 Append_Entity (New_Formal, New_Subp);
10274 Replace_Type (Formal, New_Formal);
10275 Next_Formal (Formal);
10276 end loop;
10278 -- If this derivation corresponds to a tagged generic actual, then
10279 -- primitive operations rename those of the actual. Otherwise the
10280 -- primitive operations rename those of the parent type, If the
10281 -- parent renames an intrinsic operator, so does the new subprogram.
10282 -- We except concatenation, which is always properly typed, and does
10283 -- not get expanded as other intrinsic operations.
10285 if No (Actual_Subp) then
10286 if Is_Intrinsic_Subprogram (Parent_Subp) then
10287 Set_Is_Intrinsic_Subprogram (New_Subp);
10289 if Present (Alias (Parent_Subp))
10290 and then Chars (Parent_Subp) /= Name_Op_Concat
10291 then
10292 Set_Alias (New_Subp, Alias (Parent_Subp));
10293 else
10294 Set_Alias (New_Subp, Parent_Subp);
10295 end if;
10297 else
10298 Set_Alias (New_Subp, Parent_Subp);
10299 end if;
10301 else
10302 Set_Alias (New_Subp, Actual_Subp);
10303 end if;
10305 -- Derived subprograms of a tagged type must inherit the convention
10306 -- of the parent subprogram (a requirement of AI-117). Derived
10307 -- subprograms of untagged types simply get convention Ada by default.
10309 if Is_Tagged_Type (Derived_Type) then
10310 Set_Convention (New_Subp, Convention (Parent_Subp));
10311 end if;
10313 Set_Is_Imported (New_Subp, Is_Imported (Parent_Subp));
10314 Set_Is_Exported (New_Subp, Is_Exported (Parent_Subp));
10316 if Ekind (Parent_Subp) = E_Procedure then
10317 Set_Is_Valued_Procedure
10318 (New_Subp, Is_Valued_Procedure (Parent_Subp));
10319 end if;
10321 -- A derived function with a controlling result is abstract. If the
10322 -- Derived_Type is a nonabstract formal generic derived type, then
10323 -- inherited operations are not abstract: the required check is done at
10324 -- instantiation time. If the derivation is for a generic actual, the
10325 -- function is not abstract unless the actual is.
10327 if Is_Generic_Type (Derived_Type)
10328 and then not Is_Abstract (Derived_Type)
10329 then
10330 null;
10332 elsif Is_Abstract (Alias (New_Subp))
10333 or else (Is_Tagged_Type (Derived_Type)
10334 and then Etype (New_Subp) = Derived_Type
10335 and then No (Actual_Subp))
10336 then
10337 Set_Is_Abstract (New_Subp);
10339 -- Finally, if the parent type is abstract we must verify that all
10340 -- inherited operations are either non-abstract or overridden, or
10341 -- that the derived type itself is abstract (this check is performed
10342 -- at the end of a package declaration, in Check_Abstract_Overriding).
10343 -- A private overriding in the parent type will not be visible in the
10344 -- derivation if we are not in an inner package or in a child unit of
10345 -- the parent type, in which case the abstractness of the inherited
10346 -- operation is carried to the new subprogram.
10348 elsif Is_Abstract (Parent_Type)
10349 and then not In_Open_Scopes (Scope (Parent_Type))
10350 and then Is_Private_Overriding
10351 and then Is_Abstract (Visible_Subp)
10352 then
10353 Set_Alias (New_Subp, Visible_Subp);
10354 Set_Is_Abstract (New_Subp);
10355 end if;
10357 New_Overloaded_Entity (New_Subp, Derived_Type);
10359 -- Check for case of a derived subprogram for the instantiation of a
10360 -- formal derived tagged type, if so mark the subprogram as dispatching
10361 -- and inherit the dispatching attributes of the parent subprogram. The
10362 -- derived subprogram is effectively renaming of the actual subprogram,
10363 -- so it needs to have the same attributes as the actual.
10365 if Present (Actual_Subp)
10366 and then Is_Dispatching_Operation (Parent_Subp)
10367 then
10368 Set_Is_Dispatching_Operation (New_Subp);
10369 if Present (DTC_Entity (Parent_Subp)) then
10370 Set_DTC_Entity (New_Subp, DTC_Entity (Parent_Subp));
10371 Set_DT_Position (New_Subp, DT_Position (Parent_Subp));
10372 end if;
10373 end if;
10375 -- Indicate that a derived subprogram does not require a body and that
10376 -- it does not require processing of default expressions.
10378 Set_Has_Completion (New_Subp);
10379 Set_Default_Expressions_Processed (New_Subp);
10381 if Ekind (New_Subp) = E_Function then
10382 Set_Mechanism (New_Subp, Mechanism (Parent_Subp));
10383 end if;
10384 end Derive_Subprogram;
10386 ------------------------
10387 -- Derive_Subprograms --
10388 ------------------------
10390 procedure Derive_Subprograms
10391 (Parent_Type : Entity_Id;
10392 Derived_Type : Entity_Id;
10393 Generic_Actual : Entity_Id := Empty;
10394 No_Predefined_Prims : Boolean := False;
10395 Predefined_Prims_Only : Boolean := False)
10397 Op_List : constant Elist_Id :=
10398 Collect_Primitive_Operations (Parent_Type);
10399 Act_List : Elist_Id;
10400 Act_Elmt : Elmt_Id;
10401 Elmt : Elmt_Id;
10402 Is_Predef : Boolean;
10403 Subp : Entity_Id;
10404 New_Subp : Entity_Id := Empty;
10405 Parent_Base : Entity_Id;
10407 begin
10408 if Ekind (Parent_Type) = E_Record_Type_With_Private
10409 and then Has_Discriminants (Parent_Type)
10410 and then Present (Full_View (Parent_Type))
10411 then
10412 Parent_Base := Full_View (Parent_Type);
10413 else
10414 Parent_Base := Parent_Type;
10415 end if;
10417 if Present (Generic_Actual) then
10418 Act_List := Collect_Primitive_Operations (Generic_Actual);
10419 Act_Elmt := First_Elmt (Act_List);
10420 else
10421 Act_Elmt := No_Elmt;
10422 end if;
10424 -- Literals are derived earlier in the process of building the derived
10425 -- type, and are skipped here.
10427 Elmt := First_Elmt (Op_List);
10428 while Present (Elmt) loop
10429 Subp := Node (Elmt);
10431 if Ekind (Subp) /= E_Enumeration_Literal then
10432 Is_Predef :=
10433 Is_Dispatching_Operation (Subp)
10434 and then Is_Predefined_Dispatching_Operation (Subp);
10436 if No_Predefined_Prims and then Is_Predef then
10437 null;
10439 elsif Predefined_Prims_Only and then not Is_Predef then
10440 null;
10442 elsif No (Generic_Actual) then
10443 Derive_Subprogram
10444 (New_Subp, Subp, Derived_Type, Parent_Base);
10446 else
10447 Derive_Subprogram (New_Subp, Subp,
10448 Derived_Type, Parent_Base, Node (Act_Elmt));
10449 Next_Elmt (Act_Elmt);
10450 end if;
10451 end if;
10453 Next_Elmt (Elmt);
10454 end loop;
10455 end Derive_Subprograms;
10457 --------------------------------
10458 -- Derived_Standard_Character --
10459 --------------------------------
10461 procedure Derived_Standard_Character
10462 (N : Node_Id;
10463 Parent_Type : Entity_Id;
10464 Derived_Type : Entity_Id)
10466 Loc : constant Source_Ptr := Sloc (N);
10467 Def : constant Node_Id := Type_Definition (N);
10468 Indic : constant Node_Id := Subtype_Indication (Def);
10469 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
10470 Implicit_Base : constant Entity_Id :=
10471 Create_Itype
10472 (E_Enumeration_Type, N, Derived_Type, 'B');
10474 Lo : Node_Id;
10475 Hi : Node_Id;
10477 begin
10478 Discard_Node (Process_Subtype (Indic, N));
10480 Set_Etype (Implicit_Base, Parent_Base);
10481 Set_Size_Info (Implicit_Base, Root_Type (Parent_Type));
10482 Set_RM_Size (Implicit_Base, RM_Size (Root_Type (Parent_Type)));
10484 Set_Is_Character_Type (Implicit_Base, True);
10485 Set_Has_Delayed_Freeze (Implicit_Base);
10487 -- The bounds of the implicit base are the bounds of the parent base.
10488 -- Note that their type is the parent base.
10490 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
10491 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
10493 Set_Scalar_Range (Implicit_Base,
10494 Make_Range (Loc,
10495 Low_Bound => Lo,
10496 High_Bound => Hi));
10498 Conditional_Delay (Derived_Type, Parent_Type);
10500 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
10501 Set_Etype (Derived_Type, Implicit_Base);
10502 Set_Size_Info (Derived_Type, Parent_Type);
10504 if Unknown_RM_Size (Derived_Type) then
10505 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
10506 end if;
10508 Set_Is_Character_Type (Derived_Type, True);
10510 if Nkind (Indic) /= N_Subtype_Indication then
10512 -- If no explicit constraint, the bounds are those
10513 -- of the parent type.
10515 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Type));
10516 Hi := New_Copy_Tree (Type_High_Bound (Parent_Type));
10517 Set_Scalar_Range (Derived_Type, Make_Range (Loc, Lo, Hi));
10518 end if;
10520 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
10522 -- Because the implicit base is used in the conversion of the bounds,
10523 -- we have to freeze it now. This is similar to what is done for
10524 -- numeric types, and it equally suspicious, but otherwise a non-
10525 -- static bound will have a reference to an unfrozen type, which is
10526 -- rejected by Gigi (???).
10528 Freeze_Before (N, Implicit_Base);
10529 end Derived_Standard_Character;
10531 ------------------------------
10532 -- Derived_Type_Declaration --
10533 ------------------------------
10535 procedure Derived_Type_Declaration
10536 (T : Entity_Id;
10537 N : Node_Id;
10538 Is_Completion : Boolean)
10540 Def : constant Node_Id := Type_Definition (N);
10541 Iface_Def : Node_Id;
10542 Indic : constant Node_Id := Subtype_Indication (Def);
10543 Extension : constant Node_Id := Record_Extension_Part (Def);
10544 Parent_Type : Entity_Id;
10545 Parent_Scope : Entity_Id;
10546 Taggd : Boolean;
10548 function Comes_From_Generic (Typ : Entity_Id) return Boolean;
10549 -- Check whether the parent type is a generic formal, or derives
10550 -- directly or indirectly from one.
10552 ------------------------
10553 -- Comes_From_Generic --
10554 ------------------------
10556 function Comes_From_Generic (Typ : Entity_Id) return Boolean is
10557 begin
10558 if Is_Generic_Type (Typ) then
10559 return True;
10561 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
10562 return True;
10564 elsif Is_Private_Type (Typ)
10565 and then Present (Full_View (Typ))
10566 and then Is_Generic_Type (Root_Type (Full_View (Typ)))
10567 then
10568 return True;
10570 elsif Is_Generic_Actual_Type (Typ) then
10571 return True;
10573 else
10574 return False;
10575 end if;
10576 end Comes_From_Generic;
10578 -- Start of processing for Derived_Type_Declaration
10580 begin
10581 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
10583 -- Ada 2005 (AI-251): In case of interface derivation check that the
10584 -- parent is also an interface.
10586 if Interface_Present (Def) then
10587 if not Is_Interface (Parent_Type) then
10588 Error_Msg_NE ("(Ada 2005) & must be an interface",
10589 Indic, Parent_Type);
10591 else
10592 Iface_Def := Type_Definition (Parent (Parent_Type));
10594 -- Ada 2005 (AI-251): Limited interfaces can only inherit from
10595 -- other limited interfaces.
10597 if Limited_Present (Def) then
10598 if Limited_Present (Iface_Def) then
10599 null;
10601 elsif Protected_Present (Iface_Def) then
10602 Error_Msg_N ("(Ada 2005) limited interface cannot" &
10603 " inherit from protected interface", Indic);
10605 elsif Synchronized_Present (Iface_Def) then
10606 Error_Msg_N ("(Ada 2005) limited interface cannot" &
10607 " inherit from synchronized interface", Indic);
10609 elsif Task_Present (Iface_Def) then
10610 Error_Msg_N ("(Ada 2005) limited interface cannot" &
10611 " inherit from task interface", Indic);
10613 else
10614 Error_Msg_N ("(Ada 2005) limited interface cannot" &
10615 " inherit from non-limited interface", Indic);
10616 end if;
10618 -- Ada 2005 (AI-345): Non-limited interfaces can only inherit
10619 -- from non-limited or limited interfaces.
10621 elsif not Protected_Present (Def)
10622 and then not Synchronized_Present (Def)
10623 and then not Task_Present (Def)
10624 then
10625 if Limited_Present (Iface_Def) then
10626 null;
10628 elsif Protected_Present (Iface_Def) then
10629 Error_Msg_N ("(Ada 2005) non-limited interface cannot" &
10630 " inherit from protected interface", Indic);
10632 elsif Synchronized_Present (Iface_Def) then
10633 Error_Msg_N ("(Ada 2005) non-limited interface cannot" &
10634 " inherit from synchronized interface", Indic);
10636 elsif Task_Present (Iface_Def) then
10637 Error_Msg_N ("(Ada 2005) non-limited interface cannot" &
10638 " inherit from task interface", Indic);
10640 else
10641 null;
10642 end if;
10643 end if;
10644 end if;
10645 end if;
10647 -- Ada 2005 (AI-251): Decorate all the names in the list of ancestor
10648 -- interfaces
10650 if Is_Tagged_Type (Parent_Type)
10651 and then Is_Non_Empty_List (Interface_List (Def))
10652 then
10653 declare
10654 Intf : Node_Id;
10655 T : Entity_Id;
10657 begin
10658 Intf := First (Interface_List (Def));
10659 while Present (Intf) loop
10660 T := Find_Type_Of_Subtype_Indic (Intf);
10662 if not Is_Interface (T) then
10663 Error_Msg_NE ("(Ada 2005) & must be an interface", Intf, T);
10664 end if;
10666 Next (Intf);
10667 end loop;
10668 end;
10669 end if;
10671 if Parent_Type = Any_Type
10672 or else Etype (Parent_Type) = Any_Type
10673 or else (Is_Class_Wide_Type (Parent_Type)
10674 and then Etype (Parent_Type) = T)
10675 then
10676 -- If Parent_Type is undefined or illegal, make new type into a
10677 -- subtype of Any_Type, and set a few attributes to prevent cascaded
10678 -- errors. If this is a self-definition, emit error now.
10680 if T = Parent_Type
10681 or else T = Etype (Parent_Type)
10682 then
10683 Error_Msg_N ("type cannot be used in its own definition", Indic);
10684 end if;
10686 Set_Ekind (T, Ekind (Parent_Type));
10687 Set_Etype (T, Any_Type);
10688 Set_Scalar_Range (T, Scalar_Range (Any_Type));
10690 if Is_Tagged_Type (T) then
10691 Set_Primitive_Operations (T, New_Elmt_List);
10692 end if;
10694 return;
10695 end if;
10697 -- Only composite types other than array types are allowed to have
10698 -- discriminants.
10700 if Present (Discriminant_Specifications (N))
10701 and then (Is_Elementary_Type (Parent_Type)
10702 or else Is_Array_Type (Parent_Type))
10703 and then not Error_Posted (N)
10704 then
10705 Error_Msg_N
10706 ("elementary or array type cannot have discriminants",
10707 Defining_Identifier (First (Discriminant_Specifications (N))));
10708 Set_Has_Discriminants (T, False);
10709 end if;
10711 -- In Ada 83, a derived type defined in a package specification cannot
10712 -- be used for further derivation until the end of its visible part.
10713 -- Note that derivation in the private part of the package is allowed.
10715 if Ada_Version = Ada_83
10716 and then Is_Derived_Type (Parent_Type)
10717 and then In_Visible_Part (Scope (Parent_Type))
10718 then
10719 if Ada_Version = Ada_83 and then Comes_From_Source (Indic) then
10720 Error_Msg_N
10721 ("(Ada 83): premature use of type for derivation", Indic);
10722 end if;
10723 end if;
10725 -- Check for early use of incomplete or private type
10727 if Ekind (Parent_Type) = E_Void
10728 or else Ekind (Parent_Type) = E_Incomplete_Type
10729 then
10730 Error_Msg_N ("premature derivation of incomplete type", Indic);
10731 return;
10733 elsif (Is_Incomplete_Or_Private_Type (Parent_Type)
10734 and then not Comes_From_Generic (Parent_Type))
10735 or else Has_Private_Component (Parent_Type)
10736 then
10737 -- The ancestor type of a formal type can be incomplete, in which
10738 -- case only the operations of the partial view are available in
10739 -- the generic. Subsequent checks may be required when the full
10740 -- view is analyzed, to verify that derivation from a tagged type
10741 -- has an extension.
10743 if Nkind (Original_Node (N)) = N_Formal_Type_Declaration then
10744 null;
10746 elsif No (Underlying_Type (Parent_Type))
10747 or else Has_Private_Component (Parent_Type)
10748 then
10749 Error_Msg_N
10750 ("premature derivation of derived or private type", Indic);
10752 -- Flag the type itself as being in error, this prevents some
10753 -- nasty problems with subsequent uses of the malformed type.
10755 Set_Error_Posted (T);
10757 -- Check that within the immediate scope of an untagged partial
10758 -- view it's illegal to derive from the partial view if the
10759 -- full view is tagged. (7.3(7))
10761 -- We verify that the Parent_Type is a partial view by checking
10762 -- that it is not a Full_Type_Declaration (i.e. a private type or
10763 -- private extension declaration), to distinguish a partial view
10764 -- from a derivation from a private type which also appears as
10765 -- E_Private_Type.
10767 elsif Present (Full_View (Parent_Type))
10768 and then Nkind (Parent (Parent_Type)) /= N_Full_Type_Declaration
10769 and then not Is_Tagged_Type (Parent_Type)
10770 and then Is_Tagged_Type (Full_View (Parent_Type))
10771 then
10772 Parent_Scope := Scope (T);
10773 while Present (Parent_Scope)
10774 and then Parent_Scope /= Standard_Standard
10775 loop
10776 if Parent_Scope = Scope (Parent_Type) then
10777 Error_Msg_N
10778 ("premature derivation from type with tagged full view",
10779 Indic);
10780 end if;
10782 Parent_Scope := Scope (Parent_Scope);
10783 end loop;
10784 end if;
10785 end if;
10787 -- Check that form of derivation is appropriate
10789 Taggd := Is_Tagged_Type (Parent_Type);
10791 -- Perhaps the parent type should be changed to the class-wide type's
10792 -- specific type in this case to prevent cascading errors ???
10794 if Present (Extension) and then Is_Class_Wide_Type (Parent_Type) then
10795 Error_Msg_N ("parent type must not be a class-wide type", Indic);
10796 return;
10797 end if;
10799 if Present (Extension) and then not Taggd then
10800 Error_Msg_N
10801 ("type derived from untagged type cannot have extension", Indic);
10803 elsif No (Extension) and then Taggd then
10805 -- If this declaration is within a private part (or body) of a
10806 -- generic instantiation then the derivation is allowed (the parent
10807 -- type can only appear tagged in this case if it's a generic actual
10808 -- type, since it would otherwise have been rejected in the analysis
10809 -- of the generic template).
10811 if not Is_Generic_Actual_Type (Parent_Type)
10812 or else In_Visible_Part (Scope (Parent_Type))
10813 then
10814 Error_Msg_N
10815 ("type derived from tagged type must have extension", Indic);
10816 end if;
10817 end if;
10819 Build_Derived_Type (N, Parent_Type, T, Is_Completion);
10820 end Derived_Type_Declaration;
10822 ----------------------------------
10823 -- Enumeration_Type_Declaration --
10824 ----------------------------------
10826 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id) is
10827 Ev : Uint;
10828 L : Node_Id;
10829 R_Node : Node_Id;
10830 B_Node : Node_Id;
10832 begin
10833 -- Create identifier node representing lower bound
10835 B_Node := New_Node (N_Identifier, Sloc (Def));
10836 L := First (Literals (Def));
10837 Set_Chars (B_Node, Chars (L));
10838 Set_Entity (B_Node, L);
10839 Set_Etype (B_Node, T);
10840 Set_Is_Static_Expression (B_Node, True);
10842 R_Node := New_Node (N_Range, Sloc (Def));
10843 Set_Low_Bound (R_Node, B_Node);
10845 Set_Ekind (T, E_Enumeration_Type);
10846 Set_First_Literal (T, L);
10847 Set_Etype (T, T);
10848 Set_Is_Constrained (T);
10850 Ev := Uint_0;
10852 -- Loop through literals of enumeration type setting pos and rep values
10853 -- except that if the Ekind is already set, then it means that the
10854 -- literal was already constructed (case of a derived type declaration
10855 -- and we should not disturb the Pos and Rep values.
10857 while Present (L) loop
10858 if Ekind (L) /= E_Enumeration_Literal then
10859 Set_Ekind (L, E_Enumeration_Literal);
10860 Set_Enumeration_Pos (L, Ev);
10861 Set_Enumeration_Rep (L, Ev);
10862 Set_Is_Known_Valid (L, True);
10863 end if;
10865 Set_Etype (L, T);
10866 New_Overloaded_Entity (L);
10867 Generate_Definition (L);
10868 Set_Convention (L, Convention_Intrinsic);
10870 if Nkind (L) = N_Defining_Character_Literal then
10871 Set_Is_Character_Type (T, True);
10872 end if;
10874 Ev := Ev + 1;
10875 Next (L);
10876 end loop;
10878 -- Now create a node representing upper bound
10880 B_Node := New_Node (N_Identifier, Sloc (Def));
10881 Set_Chars (B_Node, Chars (Last (Literals (Def))));
10882 Set_Entity (B_Node, Last (Literals (Def)));
10883 Set_Etype (B_Node, T);
10884 Set_Is_Static_Expression (B_Node, True);
10886 Set_High_Bound (R_Node, B_Node);
10887 Set_Scalar_Range (T, R_Node);
10888 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
10889 Set_Enum_Esize (T);
10891 -- Set Discard_Names if configuration pragma set, or if there is
10892 -- a parameterless pragma in the current declarative region
10894 if Global_Discard_Names
10895 or else Discard_Names (Scope (T))
10896 then
10897 Set_Discard_Names (T);
10898 end if;
10900 -- Process end label if there is one
10902 if Present (Def) then
10903 Process_End_Label (Def, 'e', T);
10904 end if;
10905 end Enumeration_Type_Declaration;
10907 ---------------------------------
10908 -- Expand_To_Stored_Constraint --
10909 ---------------------------------
10911 function Expand_To_Stored_Constraint
10912 (Typ : Entity_Id;
10913 Constraint : Elist_Id) return Elist_Id
10915 Explicitly_Discriminated_Type : Entity_Id;
10916 Expansion : Elist_Id;
10917 Discriminant : Entity_Id;
10919 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id;
10920 -- Find the nearest type that actually specifies discriminants
10922 ---------------------------------
10923 -- Type_With_Explicit_Discrims --
10924 ---------------------------------
10926 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id is
10927 Typ : constant E := Base_Type (Id);
10929 begin
10930 if Ekind (Typ) in Incomplete_Or_Private_Kind then
10931 if Present (Full_View (Typ)) then
10932 return Type_With_Explicit_Discrims (Full_View (Typ));
10933 end if;
10935 else
10936 if Has_Discriminants (Typ) then
10937 return Typ;
10938 end if;
10939 end if;
10941 if Etype (Typ) = Typ then
10942 return Empty;
10943 elsif Has_Discriminants (Typ) then
10944 return Typ;
10945 else
10946 return Type_With_Explicit_Discrims (Etype (Typ));
10947 end if;
10949 end Type_With_Explicit_Discrims;
10951 -- Start of processing for Expand_To_Stored_Constraint
10953 begin
10954 if No (Constraint)
10955 or else Is_Empty_Elmt_List (Constraint)
10956 then
10957 return No_Elist;
10958 end if;
10960 Explicitly_Discriminated_Type := Type_With_Explicit_Discrims (Typ);
10962 if No (Explicitly_Discriminated_Type) then
10963 return No_Elist;
10964 end if;
10966 Expansion := New_Elmt_List;
10968 Discriminant :=
10969 First_Stored_Discriminant (Explicitly_Discriminated_Type);
10970 while Present (Discriminant) loop
10971 Append_Elmt (
10972 Get_Discriminant_Value (
10973 Discriminant, Explicitly_Discriminated_Type, Constraint),
10974 Expansion);
10975 Next_Stored_Discriminant (Discriminant);
10976 end loop;
10978 return Expansion;
10979 end Expand_To_Stored_Constraint;
10981 --------------------
10982 -- Find_Type_Name --
10983 --------------------
10985 function Find_Type_Name (N : Node_Id) return Entity_Id is
10986 Id : constant Entity_Id := Defining_Identifier (N);
10987 Prev : Entity_Id;
10988 New_Id : Entity_Id;
10989 Prev_Par : Node_Id;
10991 begin
10992 -- Find incomplete declaration, if one was given
10994 Prev := Current_Entity_In_Scope (Id);
10996 if Present (Prev) then
10998 -- Previous declaration exists. Error if not incomplete/private case
10999 -- except if previous declaration is implicit, etc. Enter_Name will
11000 -- emit error if appropriate.
11002 Prev_Par := Parent (Prev);
11004 if not Is_Incomplete_Or_Private_Type (Prev) then
11005 Enter_Name (Id);
11006 New_Id := Id;
11008 elsif Nkind (N) /= N_Full_Type_Declaration
11009 and then Nkind (N) /= N_Task_Type_Declaration
11010 and then Nkind (N) /= N_Protected_Type_Declaration
11011 then
11012 -- Completion must be a full type declarations (RM 7.3(4))
11014 Error_Msg_Sloc := Sloc (Prev);
11015 Error_Msg_NE ("invalid completion of }", Id, Prev);
11017 -- Set scope of Id to avoid cascaded errors. Entity is never
11018 -- examined again, except when saving globals in generics.
11020 Set_Scope (Id, Current_Scope);
11021 New_Id := Id;
11023 -- Case of full declaration of incomplete type
11025 elsif Ekind (Prev) = E_Incomplete_Type then
11027 -- Indicate that the incomplete declaration has a matching full
11028 -- declaration. The defining occurrence of the incomplete
11029 -- declaration remains the visible one, and the procedure
11030 -- Get_Full_View dereferences it whenever the type is used.
11032 if Present (Full_View (Prev)) then
11033 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
11034 end if;
11036 Set_Full_View (Prev, Id);
11037 Append_Entity (Id, Current_Scope);
11038 Set_Is_Public (Id, Is_Public (Prev));
11039 Set_Is_Internal (Id);
11040 New_Id := Prev;
11042 -- Case of full declaration of private type
11044 else
11045 if Nkind (Parent (Prev)) /= N_Private_Extension_Declaration then
11046 if Etype (Prev) /= Prev then
11048 -- Prev is a private subtype or a derived type, and needs
11049 -- no completion.
11051 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
11052 New_Id := Id;
11054 elsif Ekind (Prev) = E_Private_Type
11055 and then
11056 (Nkind (N) = N_Task_Type_Declaration
11057 or else Nkind (N) = N_Protected_Type_Declaration)
11058 then
11059 Error_Msg_N
11060 ("completion of nonlimited type cannot be limited", N);
11061 end if;
11063 -- Ada 2005 (AI-251): Private extension declaration of a
11064 -- task type. This case arises with tasks implementing interfaces
11066 elsif Nkind (N) = N_Task_Type_Declaration
11067 or else Nkind (N) = N_Protected_Type_Declaration
11068 then
11069 null;
11071 elsif Nkind (N) /= N_Full_Type_Declaration
11072 or else Nkind (Type_Definition (N)) /= N_Derived_Type_Definition
11073 then
11074 Error_Msg_N
11075 ("full view of private extension must be an extension", N);
11077 elsif not (Abstract_Present (Parent (Prev)))
11078 and then Abstract_Present (Type_Definition (N))
11079 then
11080 Error_Msg_N
11081 ("full view of non-abstract extension cannot be abstract", N);
11082 end if;
11084 if not In_Private_Part (Current_Scope) then
11085 Error_Msg_N
11086 ("declaration of full view must appear in private part", N);
11087 end if;
11089 Copy_And_Swap (Prev, Id);
11090 Set_Has_Private_Declaration (Prev);
11091 Set_Has_Private_Declaration (Id);
11093 -- If no error, propagate freeze_node from private to full view.
11094 -- It may have been generated for an early operational item.
11096 if Present (Freeze_Node (Id))
11097 and then Serious_Errors_Detected = 0
11098 and then No (Full_View (Id))
11099 then
11100 Set_Freeze_Node (Prev, Freeze_Node (Id));
11101 Set_Freeze_Node (Id, Empty);
11102 Set_First_Rep_Item (Prev, First_Rep_Item (Id));
11103 end if;
11105 Set_Full_View (Id, Prev);
11106 New_Id := Prev;
11107 end if;
11109 -- Verify that full declaration conforms to incomplete one
11111 if Is_Incomplete_Or_Private_Type (Prev)
11112 and then Present (Discriminant_Specifications (Prev_Par))
11113 then
11114 if Present (Discriminant_Specifications (N)) then
11115 if Ekind (Prev) = E_Incomplete_Type then
11116 Check_Discriminant_Conformance (N, Prev, Prev);
11117 else
11118 Check_Discriminant_Conformance (N, Prev, Id);
11119 end if;
11121 else
11122 Error_Msg_N
11123 ("missing discriminants in full type declaration", N);
11125 -- To avoid cascaded errors on subsequent use, share the
11126 -- discriminants of the partial view.
11128 Set_Discriminant_Specifications (N,
11129 Discriminant_Specifications (Prev_Par));
11130 end if;
11131 end if;
11133 -- A prior untagged private type can have an associated class-wide
11134 -- type due to use of the class attribute, and in this case also the
11135 -- full type is required to be tagged.
11137 if Is_Type (Prev)
11138 and then (Is_Tagged_Type (Prev)
11139 or else Present (Class_Wide_Type (Prev)))
11140 and then (Nkind (N) /= N_Task_Type_Declaration
11141 and then Nkind (N) /= N_Protected_Type_Declaration)
11142 then
11143 -- The full declaration is either a tagged record or an
11144 -- extension otherwise this is an error
11146 if Nkind (Type_Definition (N)) = N_Record_Definition then
11147 if not Tagged_Present (Type_Definition (N)) then
11148 Error_Msg_NE
11149 ("full declaration of } must be tagged", Prev, Id);
11150 Set_Is_Tagged_Type (Id);
11151 Set_Primitive_Operations (Id, New_Elmt_List);
11152 end if;
11154 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
11155 if No (Record_Extension_Part (Type_Definition (N))) then
11156 Error_Msg_NE (
11157 "full declaration of } must be a record extension",
11158 Prev, Id);
11159 Set_Is_Tagged_Type (Id);
11160 Set_Primitive_Operations (Id, New_Elmt_List);
11161 end if;
11163 else
11164 Error_Msg_NE
11165 ("full declaration of } must be a tagged type", Prev, Id);
11167 end if;
11168 end if;
11170 return New_Id;
11172 else
11173 -- New type declaration
11175 Enter_Name (Id);
11176 return Id;
11177 end if;
11178 end Find_Type_Name;
11180 -------------------------
11181 -- Find_Type_Of_Object --
11182 -------------------------
11184 function Find_Type_Of_Object
11185 (Obj_Def : Node_Id;
11186 Related_Nod : Node_Id) return Entity_Id
11188 Def_Kind : constant Node_Kind := Nkind (Obj_Def);
11189 P : Node_Id := Parent (Obj_Def);
11190 T : Entity_Id;
11191 Nam : Name_Id;
11193 begin
11194 -- If the parent is a component_definition node we climb to the
11195 -- component_declaration node
11197 if Nkind (P) = N_Component_Definition then
11198 P := Parent (P);
11199 end if;
11201 -- Case of an anonymous array subtype
11203 if Def_Kind = N_Constrained_Array_Definition
11204 or else Def_Kind = N_Unconstrained_Array_Definition
11205 then
11206 T := Empty;
11207 Array_Type_Declaration (T, Obj_Def);
11209 -- Create an explicit subtype whenever possible
11211 elsif Nkind (P) /= N_Component_Declaration
11212 and then Def_Kind = N_Subtype_Indication
11213 then
11214 -- Base name of subtype on object name, which will be unique in
11215 -- the current scope.
11217 -- If this is a duplicate declaration, return base type, to avoid
11218 -- generating duplicate anonymous types.
11220 if Error_Posted (P) then
11221 Analyze (Subtype_Mark (Obj_Def));
11222 return Entity (Subtype_Mark (Obj_Def));
11223 end if;
11225 Nam :=
11226 New_External_Name
11227 (Chars (Defining_Identifier (Related_Nod)), 'S', 0, 'T');
11229 T := Make_Defining_Identifier (Sloc (P), Nam);
11231 Insert_Action (Obj_Def,
11232 Make_Subtype_Declaration (Sloc (P),
11233 Defining_Identifier => T,
11234 Subtype_Indication => Relocate_Node (Obj_Def)));
11236 -- This subtype may need freezing, and this will not be done
11237 -- automatically if the object declaration is not in declarative
11238 -- part. Since this is an object declaration, the type cannot always
11239 -- be frozen here. Deferred constants do not freeze their type
11240 -- (which often enough will be private).
11242 if Nkind (P) = N_Object_Declaration
11243 and then Constant_Present (P)
11244 and then No (Expression (P))
11245 then
11246 null;
11247 else
11248 Insert_Actions (Obj_Def, Freeze_Entity (T, Sloc (P)));
11249 end if;
11251 -- Ada 2005 AI-406: the object definition in an object declaration
11252 -- can be an access definition.
11254 elsif Def_Kind = N_Access_Definition then
11255 T := Access_Definition (Related_Nod, Obj_Def);
11256 Set_Is_Local_Anonymous_Access (T);
11258 -- comment here, what cases ???
11260 else
11261 T := Process_Subtype (Obj_Def, Related_Nod);
11262 end if;
11264 return T;
11265 end Find_Type_Of_Object;
11267 --------------------------------
11268 -- Find_Type_Of_Subtype_Indic --
11269 --------------------------------
11271 function Find_Type_Of_Subtype_Indic (S : Node_Id) return Entity_Id is
11272 Typ : Entity_Id;
11274 begin
11275 -- Case of subtype mark with a constraint
11277 if Nkind (S) = N_Subtype_Indication then
11278 Find_Type (Subtype_Mark (S));
11279 Typ := Entity (Subtype_Mark (S));
11281 if not
11282 Is_Valid_Constraint_Kind (Ekind (Typ), Nkind (Constraint (S)))
11283 then
11284 Error_Msg_N
11285 ("incorrect constraint for this kind of type", Constraint (S));
11286 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
11287 end if;
11289 -- Otherwise we have a subtype mark without a constraint
11291 elsif Error_Posted (S) then
11292 Rewrite (S, New_Occurrence_Of (Any_Id, Sloc (S)));
11293 return Any_Type;
11295 else
11296 Find_Type (S);
11297 Typ := Entity (S);
11298 end if;
11300 if Typ = Standard_Wide_Character
11301 or else Typ = Standard_Wide_Wide_Character
11302 or else Typ = Standard_Wide_String
11303 or else Typ = Standard_Wide_Wide_String
11304 then
11305 Check_Restriction (No_Wide_Characters, S);
11306 end if;
11308 return Typ;
11309 end Find_Type_Of_Subtype_Indic;
11311 -------------------------------------
11312 -- Floating_Point_Type_Declaration --
11313 -------------------------------------
11315 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id) is
11316 Digs : constant Node_Id := Digits_Expression (Def);
11317 Digs_Val : Uint;
11318 Base_Typ : Entity_Id;
11319 Implicit_Base : Entity_Id;
11320 Bound : Node_Id;
11322 function Can_Derive_From (E : Entity_Id) return Boolean;
11323 -- Find if given digits value allows derivation from specified type
11325 ---------------------
11326 -- Can_Derive_From --
11327 ---------------------
11329 function Can_Derive_From (E : Entity_Id) return Boolean is
11330 Spec : constant Entity_Id := Real_Range_Specification (Def);
11332 begin
11333 if Digs_Val > Digits_Value (E) then
11334 return False;
11335 end if;
11337 if Present (Spec) then
11338 if Expr_Value_R (Type_Low_Bound (E)) >
11339 Expr_Value_R (Low_Bound (Spec))
11340 then
11341 return False;
11342 end if;
11344 if Expr_Value_R (Type_High_Bound (E)) <
11345 Expr_Value_R (High_Bound (Spec))
11346 then
11347 return False;
11348 end if;
11349 end if;
11351 return True;
11352 end Can_Derive_From;
11354 -- Start of processing for Floating_Point_Type_Declaration
11356 begin
11357 Check_Restriction (No_Floating_Point, Def);
11359 -- Create an implicit base type
11361 Implicit_Base :=
11362 Create_Itype (E_Floating_Point_Type, Parent (Def), T, 'B');
11364 -- Analyze and verify digits value
11366 Analyze_And_Resolve (Digs, Any_Integer);
11367 Check_Digits_Expression (Digs);
11368 Digs_Val := Expr_Value (Digs);
11370 -- Process possible range spec and find correct type to derive from
11372 Process_Real_Range_Specification (Def);
11374 if Can_Derive_From (Standard_Short_Float) then
11375 Base_Typ := Standard_Short_Float;
11376 elsif Can_Derive_From (Standard_Float) then
11377 Base_Typ := Standard_Float;
11378 elsif Can_Derive_From (Standard_Long_Float) then
11379 Base_Typ := Standard_Long_Float;
11380 elsif Can_Derive_From (Standard_Long_Long_Float) then
11381 Base_Typ := Standard_Long_Long_Float;
11383 -- If we can't derive from any existing type, use long_long_float
11384 -- and give appropriate message explaining the problem.
11386 else
11387 Base_Typ := Standard_Long_Long_Float;
11389 if Digs_Val >= Digits_Value (Standard_Long_Long_Float) then
11390 Error_Msg_Uint_1 := Digits_Value (Standard_Long_Long_Float);
11391 Error_Msg_N ("digits value out of range, maximum is ^", Digs);
11393 else
11394 Error_Msg_N
11395 ("range too large for any predefined type",
11396 Real_Range_Specification (Def));
11397 end if;
11398 end if;
11400 -- If there are bounds given in the declaration use them as the bounds
11401 -- of the type, otherwise use the bounds of the predefined base type
11402 -- that was chosen based on the Digits value.
11404 if Present (Real_Range_Specification (Def)) then
11405 Set_Scalar_Range (T, Real_Range_Specification (Def));
11406 Set_Is_Constrained (T);
11408 -- The bounds of this range must be converted to machine numbers
11409 -- in accordance with RM 4.9(38).
11411 Bound := Type_Low_Bound (T);
11413 if Nkind (Bound) = N_Real_Literal then
11414 Set_Realval
11415 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
11416 Set_Is_Machine_Number (Bound);
11417 end if;
11419 Bound := Type_High_Bound (T);
11421 if Nkind (Bound) = N_Real_Literal then
11422 Set_Realval
11423 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
11424 Set_Is_Machine_Number (Bound);
11425 end if;
11427 else
11428 Set_Scalar_Range (T, Scalar_Range (Base_Typ));
11429 end if;
11431 -- Complete definition of implicit base and declared first subtype
11433 Set_Etype (Implicit_Base, Base_Typ);
11435 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
11436 Set_Size_Info (Implicit_Base, (Base_Typ));
11437 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
11438 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
11439 Set_Digits_Value (Implicit_Base, Digits_Value (Base_Typ));
11440 Set_Vax_Float (Implicit_Base, Vax_Float (Base_Typ));
11442 Set_Ekind (T, E_Floating_Point_Subtype);
11443 Set_Etype (T, Implicit_Base);
11445 Set_Size_Info (T, (Implicit_Base));
11446 Set_RM_Size (T, RM_Size (Implicit_Base));
11447 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
11448 Set_Digits_Value (T, Digs_Val);
11449 end Floating_Point_Type_Declaration;
11451 ----------------------------
11452 -- Get_Discriminant_Value --
11453 ----------------------------
11455 -- This is the situation:
11457 -- There is a non-derived type
11459 -- type T0 (Dx, Dy, Dz...)
11461 -- There are zero or more levels of derivation, with each derivation
11462 -- either purely inheriting the discriminants, or defining its own.
11464 -- type Ti is new Ti-1
11465 -- or
11466 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
11467 -- or
11468 -- subtype Ti is ...
11470 -- The subtype issue is avoided by the use of Original_Record_Component,
11471 -- and the fact that derived subtypes also derive the constraints.
11473 -- This chain leads back from
11475 -- Typ_For_Constraint
11477 -- Typ_For_Constraint has discriminants, and the value for each
11478 -- discriminant is given by its corresponding Elmt of Constraints.
11480 -- Discriminant is some discriminant in this hierarchy
11482 -- We need to return its value
11484 -- We do this by recursively searching each level, and looking for
11485 -- Discriminant. Once we get to the bottom, we start backing up
11486 -- returning the value for it which may in turn be a discriminant
11487 -- further up, so on the backup we continue the substitution.
11489 function Get_Discriminant_Value
11490 (Discriminant : Entity_Id;
11491 Typ_For_Constraint : Entity_Id;
11492 Constraint : Elist_Id) return Node_Id
11494 function Search_Derivation_Levels
11495 (Ti : Entity_Id;
11496 Discrim_Values : Elist_Id;
11497 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id;
11498 -- This is the routine that performs the recursive search of levels
11499 -- as described above.
11501 ------------------------------
11502 -- Search_Derivation_Levels --
11503 ------------------------------
11505 function Search_Derivation_Levels
11506 (Ti : Entity_Id;
11507 Discrim_Values : Elist_Id;
11508 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id
11510 Assoc : Elmt_Id;
11511 Disc : Entity_Id;
11512 Result : Node_Or_Entity_Id;
11513 Result_Entity : Node_Id;
11515 begin
11516 -- If inappropriate type, return Error, this happens only in
11517 -- cascaded error situations, and we want to avoid a blow up.
11519 if not Is_Composite_Type (Ti) or else Is_Array_Type (Ti) then
11520 return Error;
11521 end if;
11523 -- Look deeper if possible. Use Stored_Constraints only for
11524 -- untagged types. For tagged types use the given constraint.
11525 -- This asymmetry needs explanation???
11527 if not Stored_Discrim_Values
11528 and then Present (Stored_Constraint (Ti))
11529 and then not Is_Tagged_Type (Ti)
11530 then
11531 Result :=
11532 Search_Derivation_Levels (Ti, Stored_Constraint (Ti), True);
11533 else
11534 declare
11535 Td : constant Entity_Id := Etype (Ti);
11537 begin
11538 if Td = Ti then
11539 Result := Discriminant;
11541 else
11542 if Present (Stored_Constraint (Ti)) then
11543 Result :=
11544 Search_Derivation_Levels
11545 (Td, Stored_Constraint (Ti), True);
11546 else
11547 Result :=
11548 Search_Derivation_Levels
11549 (Td, Discrim_Values, Stored_Discrim_Values);
11550 end if;
11551 end if;
11552 end;
11553 end if;
11555 -- Extra underlying places to search, if not found above. For
11556 -- concurrent types, the relevant discriminant appears in the
11557 -- corresponding record. For a type derived from a private type
11558 -- without discriminant, the full view inherits the discriminants
11559 -- of the full view of the parent.
11561 if Result = Discriminant then
11562 if Is_Concurrent_Type (Ti)
11563 and then Present (Corresponding_Record_Type (Ti))
11564 then
11565 Result :=
11566 Search_Derivation_Levels (
11567 Corresponding_Record_Type (Ti),
11568 Discrim_Values,
11569 Stored_Discrim_Values);
11571 elsif Is_Private_Type (Ti)
11572 and then not Has_Discriminants (Ti)
11573 and then Present (Full_View (Ti))
11574 and then Etype (Full_View (Ti)) /= Ti
11575 then
11576 Result :=
11577 Search_Derivation_Levels (
11578 Full_View (Ti),
11579 Discrim_Values,
11580 Stored_Discrim_Values);
11581 end if;
11582 end if;
11584 -- If Result is not a (reference to a) discriminant, return it,
11585 -- otherwise set Result_Entity to the discriminant.
11587 if Nkind (Result) = N_Defining_Identifier then
11588 pragma Assert (Result = Discriminant);
11589 Result_Entity := Result;
11591 else
11592 if not Denotes_Discriminant (Result) then
11593 return Result;
11594 end if;
11596 Result_Entity := Entity (Result);
11597 end if;
11599 -- See if this level of derivation actually has discriminants
11600 -- because tagged derivations can add them, hence the lower
11601 -- levels need not have any.
11603 if not Has_Discriminants (Ti) then
11604 return Result;
11605 end if;
11607 -- Scan Ti's discriminants for Result_Entity,
11608 -- and return its corresponding value, if any.
11610 Result_Entity := Original_Record_Component (Result_Entity);
11612 Assoc := First_Elmt (Discrim_Values);
11614 if Stored_Discrim_Values then
11615 Disc := First_Stored_Discriminant (Ti);
11616 else
11617 Disc := First_Discriminant (Ti);
11618 end if;
11620 while Present (Disc) loop
11621 pragma Assert (Present (Assoc));
11623 if Original_Record_Component (Disc) = Result_Entity then
11624 return Node (Assoc);
11625 end if;
11627 Next_Elmt (Assoc);
11629 if Stored_Discrim_Values then
11630 Next_Stored_Discriminant (Disc);
11631 else
11632 Next_Discriminant (Disc);
11633 end if;
11634 end loop;
11636 -- Could not find it
11638 return Result;
11639 end Search_Derivation_Levels;
11641 Result : Node_Or_Entity_Id;
11643 -- Start of processing for Get_Discriminant_Value
11645 begin
11646 -- ??? This routine is a gigantic mess and will be deleted. For the
11647 -- time being just test for the trivial case before calling recurse.
11649 if Base_Type (Scope (Discriminant)) = Base_Type (Typ_For_Constraint) then
11650 declare
11651 D : Entity_Id;
11652 E : Elmt_Id;
11654 begin
11655 D := First_Discriminant (Typ_For_Constraint);
11656 E := First_Elmt (Constraint);
11657 while Present (D) loop
11658 if Chars (D) = Chars (Discriminant) then
11659 return Node (E);
11660 end if;
11662 Next_Discriminant (D);
11663 Next_Elmt (E);
11664 end loop;
11665 end;
11666 end if;
11668 Result := Search_Derivation_Levels
11669 (Typ_For_Constraint, Constraint, False);
11671 -- ??? hack to disappear when this routine is gone
11673 if Nkind (Result) = N_Defining_Identifier then
11674 declare
11675 D : Entity_Id;
11676 E : Elmt_Id;
11678 begin
11679 D := First_Discriminant (Typ_For_Constraint);
11680 E := First_Elmt (Constraint);
11681 while Present (D) loop
11682 if Corresponding_Discriminant (D) = Discriminant then
11683 return Node (E);
11684 end if;
11686 Next_Discriminant (D);
11687 Next_Elmt (E);
11688 end loop;
11689 end;
11690 end if;
11692 pragma Assert (Nkind (Result) /= N_Defining_Identifier);
11693 return Result;
11694 end Get_Discriminant_Value;
11696 --------------------------
11697 -- Has_Range_Constraint --
11698 --------------------------
11700 function Has_Range_Constraint (N : Node_Id) return Boolean is
11701 C : constant Node_Id := Constraint (N);
11703 begin
11704 if Nkind (C) = N_Range_Constraint then
11705 return True;
11707 elsif Nkind (C) = N_Digits_Constraint then
11708 return
11709 Is_Decimal_Fixed_Point_Type (Entity (Subtype_Mark (N)))
11710 or else
11711 Present (Range_Constraint (C));
11713 elsif Nkind (C) = N_Delta_Constraint then
11714 return Present (Range_Constraint (C));
11716 else
11717 return False;
11718 end if;
11719 end Has_Range_Constraint;
11721 ------------------------
11722 -- Inherit_Components --
11723 ------------------------
11725 function Inherit_Components
11726 (N : Node_Id;
11727 Parent_Base : Entity_Id;
11728 Derived_Base : Entity_Id;
11729 Is_Tagged : Boolean;
11730 Inherit_Discr : Boolean;
11731 Discs : Elist_Id) return Elist_Id
11733 Assoc_List : constant Elist_Id := New_Elmt_List;
11735 procedure Inherit_Component
11736 (Old_C : Entity_Id;
11737 Plain_Discrim : Boolean := False;
11738 Stored_Discrim : Boolean := False);
11739 -- Inherits component Old_C from Parent_Base to the Derived_Base. If
11740 -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
11741 -- True, Old_C is a stored discriminant. If they are both false then
11742 -- Old_C is a regular component.
11744 -----------------------
11745 -- Inherit_Component --
11746 -----------------------
11748 procedure Inherit_Component
11749 (Old_C : Entity_Id;
11750 Plain_Discrim : Boolean := False;
11751 Stored_Discrim : Boolean := False)
11753 New_C : constant Entity_Id := New_Copy (Old_C);
11755 Discrim : Entity_Id;
11756 Corr_Discrim : Entity_Id;
11758 begin
11759 pragma Assert (not Is_Tagged or else not Stored_Discrim);
11761 Set_Parent (New_C, Parent (Old_C));
11763 -- Regular discriminants and components must be inserted
11764 -- in the scope of the Derived_Base. Do it here.
11766 if not Stored_Discrim then
11767 Enter_Name (New_C);
11768 end if;
11770 -- For tagged types the Original_Record_Component must point to
11771 -- whatever this field was pointing to in the parent type. This has
11772 -- already been achieved by the call to New_Copy above.
11774 if not Is_Tagged then
11775 Set_Original_Record_Component (New_C, New_C);
11776 end if;
11778 -- If we have inherited a component then see if its Etype contains
11779 -- references to Parent_Base discriminants. In this case, replace
11780 -- these references with the constraints given in Discs. We do not
11781 -- do this for the partial view of private types because this is
11782 -- not needed (only the components of the full view will be used
11783 -- for code generation) and cause problem. We also avoid this
11784 -- transformation in some error situations.
11786 if Ekind (New_C) = E_Component then
11787 if (Is_Private_Type (Derived_Base)
11788 and then not Is_Generic_Type (Derived_Base))
11789 or else (Is_Empty_Elmt_List (Discs)
11790 and then not Expander_Active)
11791 then
11792 Set_Etype (New_C, Etype (Old_C));
11793 else
11794 Set_Etype
11795 (New_C,
11796 Constrain_Component_Type
11797 (Old_C, Derived_Base, N, Parent_Base, Discs));
11798 end if;
11799 end if;
11801 -- In derived tagged types it is illegal to reference a non
11802 -- discriminant component in the parent type. To catch this, mark
11803 -- these components with an Ekind of E_Void. This will be reset in
11804 -- Record_Type_Definition after processing the record extension of
11805 -- the derived type.
11807 if Is_Tagged and then Ekind (New_C) = E_Component then
11808 Set_Ekind (New_C, E_Void);
11809 end if;
11811 if Plain_Discrim then
11812 Set_Corresponding_Discriminant (New_C, Old_C);
11813 Build_Discriminal (New_C);
11815 -- If we are explicitly inheriting a stored discriminant it will be
11816 -- completely hidden.
11818 elsif Stored_Discrim then
11819 Set_Corresponding_Discriminant (New_C, Empty);
11820 Set_Discriminal (New_C, Empty);
11821 Set_Is_Completely_Hidden (New_C);
11823 -- Set the Original_Record_Component of each discriminant in the
11824 -- derived base to point to the corresponding stored that we just
11825 -- created.
11827 Discrim := First_Discriminant (Derived_Base);
11828 while Present (Discrim) loop
11829 Corr_Discrim := Corresponding_Discriminant (Discrim);
11831 -- Corr_Discrim could be missing in an error situation
11833 if Present (Corr_Discrim)
11834 and then Original_Record_Component (Corr_Discrim) = Old_C
11835 then
11836 Set_Original_Record_Component (Discrim, New_C);
11837 end if;
11839 Next_Discriminant (Discrim);
11840 end loop;
11842 Append_Entity (New_C, Derived_Base);
11843 end if;
11845 if not Is_Tagged then
11846 Append_Elmt (Old_C, Assoc_List);
11847 Append_Elmt (New_C, Assoc_List);
11848 end if;
11849 end Inherit_Component;
11851 -- Variables local to Inherit_Component
11853 Loc : constant Source_Ptr := Sloc (N);
11855 Parent_Discrim : Entity_Id;
11856 Stored_Discrim : Entity_Id;
11857 D : Entity_Id;
11858 Component : Entity_Id;
11860 -- Start of processing for Inherit_Components
11862 begin
11863 if not Is_Tagged then
11864 Append_Elmt (Parent_Base, Assoc_List);
11865 Append_Elmt (Derived_Base, Assoc_List);
11866 end if;
11868 -- Inherit parent discriminants if needed
11870 if Inherit_Discr then
11871 Parent_Discrim := First_Discriminant (Parent_Base);
11872 while Present (Parent_Discrim) loop
11873 Inherit_Component (Parent_Discrim, Plain_Discrim => True);
11874 Next_Discriminant (Parent_Discrim);
11875 end loop;
11876 end if;
11878 -- Create explicit stored discrims for untagged types when necessary
11880 if not Has_Unknown_Discriminants (Derived_Base)
11881 and then Has_Discriminants (Parent_Base)
11882 and then not Is_Tagged
11883 and then
11884 (not Inherit_Discr
11885 or else First_Discriminant (Parent_Base) /=
11886 First_Stored_Discriminant (Parent_Base))
11887 then
11888 Stored_Discrim := First_Stored_Discriminant (Parent_Base);
11889 while Present (Stored_Discrim) loop
11890 Inherit_Component (Stored_Discrim, Stored_Discrim => True);
11891 Next_Stored_Discriminant (Stored_Discrim);
11892 end loop;
11893 end if;
11895 -- See if we can apply the second transformation for derived types, as
11896 -- explained in point 6. in the comments above Build_Derived_Record_Type
11897 -- This is achieved by appending Derived_Base discriminants into Discs,
11898 -- which has the side effect of returning a non empty Discs list to the
11899 -- caller of Inherit_Components, which is what we want. This must be
11900 -- done for private derived types if there are explicit stored
11901 -- discriminants, to ensure that we can retrieve the values of the
11902 -- constraints provided in the ancestors.
11904 if Inherit_Discr
11905 and then Is_Empty_Elmt_List (Discs)
11906 and then Present (First_Discriminant (Derived_Base))
11907 and then
11908 (not Is_Private_Type (Derived_Base)
11909 or else Is_Completely_Hidden
11910 (First_Stored_Discriminant (Derived_Base))
11911 or else Is_Generic_Type (Derived_Base))
11912 then
11913 D := First_Discriminant (Derived_Base);
11914 while Present (D) loop
11915 Append_Elmt (New_Reference_To (D, Loc), Discs);
11916 Next_Discriminant (D);
11917 end loop;
11918 end if;
11920 -- Finally, inherit non-discriminant components unless they are not
11921 -- visible because defined or inherited from the full view of the
11922 -- parent. Don't inherit the _parent field of the parent type.
11924 Component := First_Entity (Parent_Base);
11925 while Present (Component) loop
11927 -- Ada 2005 (AI-251): Do not inherit tags corresponding with the
11928 -- interfaces of the parent
11930 if Ekind (Component) = E_Component
11931 and then Is_Tag (Component)
11932 and then Etype (Component) = RTE (RE_Interface_Tag)
11933 then
11934 null;
11936 elsif Ekind (Component) /= E_Component
11937 or else Chars (Component) = Name_uParent
11938 then
11939 null;
11941 -- If the derived type is within the parent type's declarative
11942 -- region, then the components can still be inherited even though
11943 -- they aren't visible at this point. This can occur for cases
11944 -- such as within public child units where the components must
11945 -- become visible upon entering the child unit's private part.
11947 elsif not Is_Visible_Component (Component)
11948 and then not In_Open_Scopes (Scope (Parent_Base))
11949 then
11950 null;
11952 elsif Ekind (Derived_Base) = E_Private_Type
11953 or else Ekind (Derived_Base) = E_Limited_Private_Type
11954 then
11955 null;
11957 else
11958 Inherit_Component (Component);
11959 end if;
11961 Next_Entity (Component);
11962 end loop;
11964 -- For tagged derived types, inherited discriminants cannot be used in
11965 -- component declarations of the record extension part. To achieve this
11966 -- we mark the inherited discriminants as not visible.
11968 if Is_Tagged and then Inherit_Discr then
11969 D := First_Discriminant (Derived_Base);
11970 while Present (D) loop
11971 Set_Is_Immediately_Visible (D, False);
11972 Next_Discriminant (D);
11973 end loop;
11974 end if;
11976 return Assoc_List;
11977 end Inherit_Components;
11979 ------------------------------
11980 -- Is_Valid_Constraint_Kind --
11981 ------------------------------
11983 function Is_Valid_Constraint_Kind
11984 (T_Kind : Type_Kind;
11985 Constraint_Kind : Node_Kind) return Boolean
11987 begin
11988 case T_Kind is
11989 when Enumeration_Kind |
11990 Integer_Kind =>
11991 return Constraint_Kind = N_Range_Constraint;
11993 when Decimal_Fixed_Point_Kind =>
11994 return
11995 Constraint_Kind = N_Digits_Constraint
11996 or else
11997 Constraint_Kind = N_Range_Constraint;
11999 when Ordinary_Fixed_Point_Kind =>
12000 return
12001 Constraint_Kind = N_Delta_Constraint
12002 or else
12003 Constraint_Kind = N_Range_Constraint;
12005 when Float_Kind =>
12006 return
12007 Constraint_Kind = N_Digits_Constraint
12008 or else
12009 Constraint_Kind = N_Range_Constraint;
12011 when Access_Kind |
12012 Array_Kind |
12013 E_Record_Type |
12014 E_Record_Subtype |
12015 Class_Wide_Kind |
12016 E_Incomplete_Type |
12017 Private_Kind |
12018 Concurrent_Kind =>
12019 return Constraint_Kind = N_Index_Or_Discriminant_Constraint;
12021 when others =>
12022 return True; -- Error will be detected later
12023 end case;
12024 end Is_Valid_Constraint_Kind;
12026 --------------------------
12027 -- Is_Visible_Component --
12028 --------------------------
12030 function Is_Visible_Component (C : Entity_Id) return Boolean is
12031 Original_Comp : Entity_Id := Empty;
12032 Original_Scope : Entity_Id;
12033 Type_Scope : Entity_Id;
12035 function Is_Local_Type (Typ : Entity_Id) return Boolean;
12036 -- Check whether parent type of inherited component is declared locally,
12037 -- possibly within a nested package or instance. The current scope is
12038 -- the derived record itself.
12040 -------------------
12041 -- Is_Local_Type --
12042 -------------------
12044 function Is_Local_Type (Typ : Entity_Id) return Boolean is
12045 Scop : Entity_Id;
12047 begin
12048 Scop := Scope (Typ);
12049 while Present (Scop)
12050 and then Scop /= Standard_Standard
12051 loop
12052 if Scop = Scope (Current_Scope) then
12053 return True;
12054 end if;
12056 Scop := Scope (Scop);
12057 end loop;
12059 return False;
12060 end Is_Local_Type;
12062 -- Start of processing for Is_Visible_Component
12064 begin
12065 if Ekind (C) = E_Component
12066 or else Ekind (C) = E_Discriminant
12067 then
12068 Original_Comp := Original_Record_Component (C);
12069 end if;
12071 if No (Original_Comp) then
12073 -- Premature usage, or previous error
12075 return False;
12077 else
12078 Original_Scope := Scope (Original_Comp);
12079 Type_Scope := Scope (Base_Type (Scope (C)));
12080 end if;
12082 -- This test only concerns tagged types
12084 if not Is_Tagged_Type (Original_Scope) then
12085 return True;
12087 -- If it is _Parent or _Tag, there is no visibility issue
12089 elsif not Comes_From_Source (Original_Comp) then
12090 return True;
12092 -- If we are in the body of an instantiation, the component is visible
12093 -- even when the parent type (possibly defined in an enclosing unit or
12094 -- in a parent unit) might not.
12096 elsif In_Instance_Body then
12097 return True;
12099 -- Discriminants are always visible
12101 elsif Ekind (Original_Comp) = E_Discriminant
12102 and then not Has_Unknown_Discriminants (Original_Scope)
12103 then
12104 return True;
12106 -- If the component has been declared in an ancestor which is currently
12107 -- a private type, then it is not visible. The same applies if the
12108 -- component's containing type is not in an open scope and the original
12109 -- component's enclosing type is a visible full type of a private type
12110 -- (which can occur in cases where an attempt is being made to reference
12111 -- a component in a sibling package that is inherited from a visible
12112 -- component of a type in an ancestor package; the component in the
12113 -- sibling package should not be visible even though the component it
12114 -- inherited from is visible). This does not apply however in the case
12115 -- where the scope of the type is a private child unit, or when the
12116 -- parent comes from a local package in which the ancestor is currently
12117 -- visible. The latter suppression of visibility is needed for cases
12118 -- that are tested in B730006.
12120 elsif Is_Private_Type (Original_Scope)
12121 or else
12122 (not Is_Private_Descendant (Type_Scope)
12123 and then not In_Open_Scopes (Type_Scope)
12124 and then Has_Private_Declaration (Original_Scope))
12125 then
12126 -- If the type derives from an entity in a formal package, there
12127 -- are no additional visible components.
12129 if Nkind (Original_Node (Unit_Declaration_Node (Type_Scope))) =
12130 N_Formal_Package_Declaration
12131 then
12132 return False;
12134 -- if we are not in the private part of the current package, there
12135 -- are no additional visible components.
12137 elsif Ekind (Scope (Current_Scope)) = E_Package
12138 and then not In_Private_Part (Scope (Current_Scope))
12139 then
12140 return False;
12141 else
12142 return
12143 Is_Child_Unit (Cunit_Entity (Current_Sem_Unit))
12144 and then Is_Local_Type (Type_Scope);
12145 end if;
12147 -- There is another weird way in which a component may be invisible
12148 -- when the private and the full view are not derived from the same
12149 -- ancestor. Here is an example :
12151 -- type A1 is tagged record F1 : integer; end record;
12152 -- type A2 is new A1 with record F2 : integer; end record;
12153 -- type T is new A1 with private;
12154 -- private
12155 -- type T is new A2 with null record;
12157 -- In this case, the full view of T inherits F1 and F2 but the private
12158 -- view inherits only F1
12160 else
12161 declare
12162 Ancestor : Entity_Id := Scope (C);
12164 begin
12165 loop
12166 if Ancestor = Original_Scope then
12167 return True;
12168 elsif Ancestor = Etype (Ancestor) then
12169 return False;
12170 end if;
12172 Ancestor := Etype (Ancestor);
12173 end loop;
12175 return True;
12176 end;
12177 end if;
12178 end Is_Visible_Component;
12180 --------------------------
12181 -- Make_Class_Wide_Type --
12182 --------------------------
12184 procedure Make_Class_Wide_Type (T : Entity_Id) is
12185 CW_Type : Entity_Id;
12186 CW_Name : Name_Id;
12187 Next_E : Entity_Id;
12189 begin
12190 -- The class wide type can have been defined by the partial view in
12191 -- which case everything is already done
12193 if Present (Class_Wide_Type (T)) then
12194 return;
12195 end if;
12197 CW_Type :=
12198 New_External_Entity (E_Void, Scope (T), Sloc (T), T, 'C', 0, 'T');
12200 -- Inherit root type characteristics
12202 CW_Name := Chars (CW_Type);
12203 Next_E := Next_Entity (CW_Type);
12204 Copy_Node (T, CW_Type);
12205 Set_Comes_From_Source (CW_Type, False);
12206 Set_Chars (CW_Type, CW_Name);
12207 Set_Parent (CW_Type, Parent (T));
12208 Set_Next_Entity (CW_Type, Next_E);
12209 Set_Has_Delayed_Freeze (CW_Type);
12211 -- Customize the class-wide type: It has no prim. op., it cannot be
12212 -- abstract and its Etype points back to the specific root type.
12214 Set_Ekind (CW_Type, E_Class_Wide_Type);
12215 Set_Is_Tagged_Type (CW_Type, True);
12216 Set_Primitive_Operations (CW_Type, New_Elmt_List);
12217 Set_Is_Abstract (CW_Type, False);
12218 Set_Is_Constrained (CW_Type, False);
12219 Set_Is_First_Subtype (CW_Type, Is_First_Subtype (T));
12220 Init_Size_Align (CW_Type);
12222 if Ekind (T) = E_Class_Wide_Subtype then
12223 Set_Etype (CW_Type, Etype (Base_Type (T)));
12224 else
12225 Set_Etype (CW_Type, T);
12226 end if;
12228 -- If this is the class_wide type of a constrained subtype, it does
12229 -- not have discriminants.
12231 Set_Has_Discriminants (CW_Type,
12232 Has_Discriminants (T) and then not Is_Constrained (T));
12234 Set_Has_Unknown_Discriminants (CW_Type, True);
12235 Set_Class_Wide_Type (T, CW_Type);
12236 Set_Equivalent_Type (CW_Type, Empty);
12238 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
12240 Set_Class_Wide_Type (CW_Type, CW_Type);
12241 end Make_Class_Wide_Type;
12243 ----------------
12244 -- Make_Index --
12245 ----------------
12247 procedure Make_Index
12248 (I : Node_Id;
12249 Related_Nod : Node_Id;
12250 Related_Id : Entity_Id := Empty;
12251 Suffix_Index : Nat := 1)
12253 R : Node_Id;
12254 T : Entity_Id;
12255 Def_Id : Entity_Id := Empty;
12256 Found : Boolean := False;
12258 begin
12259 -- For a discrete range used in a constrained array definition and
12260 -- defined by a range, an implicit conversion to the predefined type
12261 -- INTEGER is assumed if each bound is either a numeric literal, a named
12262 -- number, or an attribute, and the type of both bounds (prior to the
12263 -- implicit conversion) is the type universal_integer. Otherwise, both
12264 -- bounds must be of the same discrete type, other than universal
12265 -- integer; this type must be determinable independently of the
12266 -- context, but using the fact that the type must be discrete and that
12267 -- both bounds must have the same type.
12269 -- Character literals also have a universal type in the absence of
12270 -- of additional context, and are resolved to Standard_Character.
12272 if Nkind (I) = N_Range then
12274 -- The index is given by a range constraint. The bounds are known
12275 -- to be of a consistent type.
12277 if not Is_Overloaded (I) then
12278 T := Etype (I);
12280 -- If the bounds are universal, choose the specific predefined
12281 -- type.
12283 if T = Universal_Integer then
12284 T := Standard_Integer;
12286 elsif T = Any_Character then
12288 if Ada_Version >= Ada_95 then
12289 Error_Msg_N
12290 ("ambiguous character literals (could be Wide_Character)",
12292 end if;
12294 T := Standard_Character;
12295 end if;
12297 else
12298 T := Any_Type;
12300 declare
12301 Ind : Interp_Index;
12302 It : Interp;
12304 begin
12305 Get_First_Interp (I, Ind, It);
12306 while Present (It.Typ) loop
12307 if Is_Discrete_Type (It.Typ) then
12309 if Found
12310 and then not Covers (It.Typ, T)
12311 and then not Covers (T, It.Typ)
12312 then
12313 Error_Msg_N ("ambiguous bounds in discrete range", I);
12314 exit;
12315 else
12316 T := It.Typ;
12317 Found := True;
12318 end if;
12319 end if;
12321 Get_Next_Interp (Ind, It);
12322 end loop;
12324 if T = Any_Type then
12325 Error_Msg_N ("discrete type required for range", I);
12326 Set_Etype (I, Any_Type);
12327 return;
12329 elsif T = Universal_Integer then
12330 T := Standard_Integer;
12331 end if;
12332 end;
12333 end if;
12335 if not Is_Discrete_Type (T) then
12336 Error_Msg_N ("discrete type required for range", I);
12337 Set_Etype (I, Any_Type);
12338 return;
12339 end if;
12341 if Nkind (Low_Bound (I)) = N_Attribute_Reference
12342 and then Attribute_Name (Low_Bound (I)) = Name_First
12343 and then Is_Entity_Name (Prefix (Low_Bound (I)))
12344 and then Is_Type (Entity (Prefix (Low_Bound (I))))
12345 and then Is_Discrete_Type (Entity (Prefix (Low_Bound (I))))
12346 then
12347 -- The type of the index will be the type of the prefix, as long
12348 -- as the upper bound is 'Last of the same type.
12350 Def_Id := Entity (Prefix (Low_Bound (I)));
12352 if Nkind (High_Bound (I)) /= N_Attribute_Reference
12353 or else Attribute_Name (High_Bound (I)) /= Name_Last
12354 or else not Is_Entity_Name (Prefix (High_Bound (I)))
12355 or else Entity (Prefix (High_Bound (I))) /= Def_Id
12356 then
12357 Def_Id := Empty;
12358 end if;
12359 end if;
12361 R := I;
12362 Process_Range_Expr_In_Decl (R, T);
12364 elsif Nkind (I) = N_Subtype_Indication then
12366 -- The index is given by a subtype with a range constraint
12368 T := Base_Type (Entity (Subtype_Mark (I)));
12370 if not Is_Discrete_Type (T) then
12371 Error_Msg_N ("discrete type required for range", I);
12372 Set_Etype (I, Any_Type);
12373 return;
12374 end if;
12376 R := Range_Expression (Constraint (I));
12378 Resolve (R, T);
12379 Process_Range_Expr_In_Decl (R, Entity (Subtype_Mark (I)));
12381 elsif Nkind (I) = N_Attribute_Reference then
12383 -- The parser guarantees that the attribute is a RANGE attribute
12385 -- If the node denotes the range of a type mark, that is also the
12386 -- resulting type, and we do no need to create an Itype for it.
12388 if Is_Entity_Name (Prefix (I))
12389 and then Comes_From_Source (I)
12390 and then Is_Type (Entity (Prefix (I)))
12391 and then Is_Discrete_Type (Entity (Prefix (I)))
12392 then
12393 Def_Id := Entity (Prefix (I));
12394 end if;
12396 Analyze_And_Resolve (I);
12397 T := Etype (I);
12398 R := I;
12400 -- If none of the above, must be a subtype. We convert this to a
12401 -- range attribute reference because in the case of declared first
12402 -- named subtypes, the types in the range reference can be different
12403 -- from the type of the entity. A range attribute normalizes the
12404 -- reference and obtains the correct types for the bounds.
12406 -- This transformation is in the nature of an expansion, is only
12407 -- done if expansion is active. In particular, it is not done on
12408 -- formal generic types, because we need to retain the name of the
12409 -- original index for instantiation purposes.
12411 else
12412 if not Is_Entity_Name (I) or else not Is_Type (Entity (I)) then
12413 Error_Msg_N ("invalid subtype mark in discrete range ", I);
12414 Set_Etype (I, Any_Integer);
12415 return;
12417 else
12418 -- The type mark may be that of an incomplete type. It is only
12419 -- now that we can get the full view, previous analysis does
12420 -- not look specifically for a type mark.
12422 Set_Entity (I, Get_Full_View (Entity (I)));
12423 Set_Etype (I, Entity (I));
12424 Def_Id := Entity (I);
12426 if not Is_Discrete_Type (Def_Id) then
12427 Error_Msg_N ("discrete type required for index", I);
12428 Set_Etype (I, Any_Type);
12429 return;
12430 end if;
12431 end if;
12433 if Expander_Active then
12434 Rewrite (I,
12435 Make_Attribute_Reference (Sloc (I),
12436 Attribute_Name => Name_Range,
12437 Prefix => Relocate_Node (I)));
12439 -- The original was a subtype mark that does not freeze. This
12440 -- means that the rewritten version must not freeze either.
12442 Set_Must_Not_Freeze (I);
12443 Set_Must_Not_Freeze (Prefix (I));
12445 -- Is order critical??? if so, document why, if not
12446 -- use Analyze_And_Resolve
12448 Analyze (I);
12449 T := Etype (I);
12450 Resolve (I);
12451 R := I;
12453 -- If expander is inactive, type is legal, nothing else to construct
12455 else
12456 return;
12457 end if;
12458 end if;
12460 if not Is_Discrete_Type (T) then
12461 Error_Msg_N ("discrete type required for range", I);
12462 Set_Etype (I, Any_Type);
12463 return;
12465 elsif T = Any_Type then
12466 Set_Etype (I, Any_Type);
12467 return;
12468 end if;
12470 -- We will now create the appropriate Itype to describe the range, but
12471 -- first a check. If we originally had a subtype, then we just label
12472 -- the range with this subtype. Not only is there no need to construct
12473 -- a new subtype, but it is wrong to do so for two reasons:
12475 -- 1. A legality concern, if we have a subtype, it must not freeze,
12476 -- and the Itype would cause freezing incorrectly
12478 -- 2. An efficiency concern, if we created an Itype, it would not be
12479 -- recognized as the same type for the purposes of eliminating
12480 -- checks in some circumstances.
12482 -- We signal this case by setting the subtype entity in Def_Id
12484 if No (Def_Id) then
12485 Def_Id :=
12486 Create_Itype (E_Void, Related_Nod, Related_Id, 'D', Suffix_Index);
12487 Set_Etype (Def_Id, Base_Type (T));
12489 if Is_Signed_Integer_Type (T) then
12490 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
12492 elsif Is_Modular_Integer_Type (T) then
12493 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
12495 else
12496 Set_Ekind (Def_Id, E_Enumeration_Subtype);
12497 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
12498 Set_First_Literal (Def_Id, First_Literal (T));
12499 end if;
12501 Set_Size_Info (Def_Id, (T));
12502 Set_RM_Size (Def_Id, RM_Size (T));
12503 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12505 Set_Scalar_Range (Def_Id, R);
12506 Conditional_Delay (Def_Id, T);
12508 -- In the subtype indication case, if the immediate parent of the
12509 -- new subtype is non-static, then the subtype we create is non-
12510 -- static, even if its bounds are static.
12512 if Nkind (I) = N_Subtype_Indication
12513 and then not Is_Static_Subtype (Entity (Subtype_Mark (I)))
12514 then
12515 Set_Is_Non_Static_Subtype (Def_Id);
12516 end if;
12517 end if;
12519 -- Final step is to label the index with this constructed type
12521 Set_Etype (I, Def_Id);
12522 end Make_Index;
12524 ------------------------------
12525 -- Modular_Type_Declaration --
12526 ------------------------------
12528 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id) is
12529 Mod_Expr : constant Node_Id := Expression (Def);
12530 M_Val : Uint;
12532 procedure Set_Modular_Size (Bits : Int);
12533 -- Sets RM_Size to Bits, and Esize to normal word size above this
12535 ----------------------
12536 -- Set_Modular_Size --
12537 ----------------------
12539 procedure Set_Modular_Size (Bits : Int) is
12540 begin
12541 Set_RM_Size (T, UI_From_Int (Bits));
12543 if Bits <= 8 then
12544 Init_Esize (T, 8);
12546 elsif Bits <= 16 then
12547 Init_Esize (T, 16);
12549 elsif Bits <= 32 then
12550 Init_Esize (T, 32);
12552 else
12553 Init_Esize (T, System_Max_Binary_Modulus_Power);
12554 end if;
12555 end Set_Modular_Size;
12557 -- Start of processing for Modular_Type_Declaration
12559 begin
12560 Analyze_And_Resolve (Mod_Expr, Any_Integer);
12561 Set_Etype (T, T);
12562 Set_Ekind (T, E_Modular_Integer_Type);
12563 Init_Alignment (T);
12564 Set_Is_Constrained (T);
12566 if not Is_OK_Static_Expression (Mod_Expr) then
12567 Flag_Non_Static_Expr
12568 ("non-static expression used for modular type bound!", Mod_Expr);
12569 M_Val := 2 ** System_Max_Binary_Modulus_Power;
12570 else
12571 M_Val := Expr_Value (Mod_Expr);
12572 end if;
12574 if M_Val < 1 then
12575 Error_Msg_N ("modulus value must be positive", Mod_Expr);
12576 M_Val := 2 ** System_Max_Binary_Modulus_Power;
12577 end if;
12579 Set_Modulus (T, M_Val);
12581 -- Create bounds for the modular type based on the modulus given in
12582 -- the type declaration and then analyze and resolve those bounds.
12584 Set_Scalar_Range (T,
12585 Make_Range (Sloc (Mod_Expr),
12586 Low_Bound =>
12587 Make_Integer_Literal (Sloc (Mod_Expr), 0),
12588 High_Bound =>
12589 Make_Integer_Literal (Sloc (Mod_Expr), M_Val - 1)));
12591 -- Properly analyze the literals for the range. We do this manually
12592 -- because we can't go calling Resolve, since we are resolving these
12593 -- bounds with the type, and this type is certainly not complete yet!
12595 Set_Etype (Low_Bound (Scalar_Range (T)), T);
12596 Set_Etype (High_Bound (Scalar_Range (T)), T);
12597 Set_Is_Static_Expression (Low_Bound (Scalar_Range (T)));
12598 Set_Is_Static_Expression (High_Bound (Scalar_Range (T)));
12600 -- Loop through powers of two to find number of bits required
12602 for Bits in Int range 0 .. System_Max_Binary_Modulus_Power loop
12604 -- Binary case
12606 if M_Val = 2 ** Bits then
12607 Set_Modular_Size (Bits);
12608 return;
12610 -- Non-binary case
12612 elsif M_Val < 2 ** Bits then
12613 Set_Non_Binary_Modulus (T);
12615 if Bits > System_Max_Nonbinary_Modulus_Power then
12616 Error_Msg_Uint_1 :=
12617 UI_From_Int (System_Max_Nonbinary_Modulus_Power);
12618 Error_Msg_N
12619 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr);
12620 Set_Modular_Size (System_Max_Binary_Modulus_Power);
12621 return;
12623 else
12624 -- In the non-binary case, set size as per RM 13.3(55)
12626 Set_Modular_Size (Bits);
12627 return;
12628 end if;
12629 end if;
12631 end loop;
12633 -- If we fall through, then the size exceed System.Max_Binary_Modulus
12634 -- so we just signal an error and set the maximum size.
12636 Error_Msg_Uint_1 := UI_From_Int (System_Max_Binary_Modulus_Power);
12637 Error_Msg_N ("modulus exceeds limit (2 '*'*^)", Mod_Expr);
12639 Set_Modular_Size (System_Max_Binary_Modulus_Power);
12640 Init_Alignment (T);
12642 end Modular_Type_Declaration;
12644 --------------------------
12645 -- New_Concatenation_Op --
12646 --------------------------
12648 procedure New_Concatenation_Op (Typ : Entity_Id) is
12649 Loc : constant Source_Ptr := Sloc (Typ);
12650 Op : Entity_Id;
12652 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id;
12653 -- Create abbreviated declaration for the formal of a predefined
12654 -- Operator 'Op' of type 'Typ'
12656 --------------------
12657 -- Make_Op_Formal --
12658 --------------------
12660 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id is
12661 Formal : Entity_Id;
12662 begin
12663 Formal := New_Internal_Entity (E_In_Parameter, Op, Loc, 'P');
12664 Set_Etype (Formal, Typ);
12665 Set_Mechanism (Formal, Default_Mechanism);
12666 return Formal;
12667 end Make_Op_Formal;
12669 -- Start of processing for New_Concatenation_Op
12671 begin
12672 Op := Make_Defining_Operator_Symbol (Loc, Name_Op_Concat);
12674 Set_Ekind (Op, E_Operator);
12675 Set_Scope (Op, Current_Scope);
12676 Set_Etype (Op, Typ);
12677 Set_Homonym (Op, Get_Name_Entity_Id (Name_Op_Concat));
12678 Set_Is_Immediately_Visible (Op);
12679 Set_Is_Intrinsic_Subprogram (Op);
12680 Set_Has_Completion (Op);
12681 Append_Entity (Op, Current_Scope);
12683 Set_Name_Entity_Id (Name_Op_Concat, Op);
12685 Append_Entity (Make_Op_Formal (Typ, Op), Op);
12686 Append_Entity (Make_Op_Formal (Typ, Op), Op);
12687 end New_Concatenation_Op;
12689 -------------------------------------------
12690 -- Ordinary_Fixed_Point_Type_Declaration --
12691 -------------------------------------------
12693 procedure Ordinary_Fixed_Point_Type_Declaration
12694 (T : Entity_Id;
12695 Def : Node_Id)
12697 Loc : constant Source_Ptr := Sloc (Def);
12698 Delta_Expr : constant Node_Id := Delta_Expression (Def);
12699 RRS : constant Node_Id := Real_Range_Specification (Def);
12700 Implicit_Base : Entity_Id;
12701 Delta_Val : Ureal;
12702 Small_Val : Ureal;
12703 Low_Val : Ureal;
12704 High_Val : Ureal;
12706 begin
12707 Check_Restriction (No_Fixed_Point, Def);
12709 -- Create implicit base type
12711 Implicit_Base :=
12712 Create_Itype (E_Ordinary_Fixed_Point_Type, Parent (Def), T, 'B');
12713 Set_Etype (Implicit_Base, Implicit_Base);
12715 -- Analyze and process delta expression
12717 Analyze_And_Resolve (Delta_Expr, Any_Real);
12719 Check_Delta_Expression (Delta_Expr);
12720 Delta_Val := Expr_Value_R (Delta_Expr);
12722 Set_Delta_Value (Implicit_Base, Delta_Val);
12724 -- Compute default small from given delta, which is the largest power
12725 -- of two that does not exceed the given delta value.
12727 declare
12728 Tmp : Ureal;
12729 Scale : Int;
12731 begin
12732 Tmp := Ureal_1;
12733 Scale := 0;
12735 if Delta_Val < Ureal_1 then
12736 while Delta_Val < Tmp loop
12737 Tmp := Tmp / Ureal_2;
12738 Scale := Scale + 1;
12739 end loop;
12741 else
12742 loop
12743 Tmp := Tmp * Ureal_2;
12744 exit when Tmp > Delta_Val;
12745 Scale := Scale - 1;
12746 end loop;
12747 end if;
12749 Small_Val := UR_From_Components (Uint_1, UI_From_Int (Scale), 2);
12750 end;
12752 Set_Small_Value (Implicit_Base, Small_Val);
12754 -- If no range was given, set a dummy range
12756 if RRS <= Empty_Or_Error then
12757 Low_Val := -Small_Val;
12758 High_Val := Small_Val;
12760 -- Otherwise analyze and process given range
12762 else
12763 declare
12764 Low : constant Node_Id := Low_Bound (RRS);
12765 High : constant Node_Id := High_Bound (RRS);
12767 begin
12768 Analyze_And_Resolve (Low, Any_Real);
12769 Analyze_And_Resolve (High, Any_Real);
12770 Check_Real_Bound (Low);
12771 Check_Real_Bound (High);
12773 -- Obtain and set the range
12775 Low_Val := Expr_Value_R (Low);
12776 High_Val := Expr_Value_R (High);
12778 if Low_Val > High_Val then
12779 Error_Msg_NE ("?fixed point type& has null range", Def, T);
12780 end if;
12781 end;
12782 end if;
12784 -- The range for both the implicit base and the declared first subtype
12785 -- cannot be set yet, so we use the special routine Set_Fixed_Range to
12786 -- set a temporary range in place. Note that the bounds of the base
12787 -- type will be widened to be symmetrical and to fill the available
12788 -- bits when the type is frozen.
12790 -- We could do this with all discrete types, and probably should, but
12791 -- we absolutely have to do it for fixed-point, since the end-points
12792 -- of the range and the size are determined by the small value, which
12793 -- could be reset before the freeze point.
12795 Set_Fixed_Range (Implicit_Base, Loc, Low_Val, High_Val);
12796 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
12798 Init_Size_Align (Implicit_Base);
12800 -- Complete definition of first subtype
12802 Set_Ekind (T, E_Ordinary_Fixed_Point_Subtype);
12803 Set_Etype (T, Implicit_Base);
12804 Init_Size_Align (T);
12805 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
12806 Set_Small_Value (T, Small_Val);
12807 Set_Delta_Value (T, Delta_Val);
12808 Set_Is_Constrained (T);
12810 end Ordinary_Fixed_Point_Type_Declaration;
12812 ----------------------------------------
12813 -- Prepare_Private_Subtype_Completion --
12814 ----------------------------------------
12816 procedure Prepare_Private_Subtype_Completion
12817 (Id : Entity_Id;
12818 Related_Nod : Node_Id)
12820 Id_B : constant Entity_Id := Base_Type (Id);
12821 Full_B : constant Entity_Id := Full_View (Id_B);
12822 Full : Entity_Id;
12824 begin
12825 if Present (Full_B) then
12827 -- The Base_Type is already completed, we can complete the subtype
12828 -- now. We have to create a new entity with the same name, Thus we
12829 -- can't use Create_Itype.
12831 -- This is messy, should be fixed ???
12833 Full := Make_Defining_Identifier (Sloc (Id), Chars (Id));
12834 Set_Is_Itype (Full);
12835 Set_Associated_Node_For_Itype (Full, Related_Nod);
12836 Complete_Private_Subtype (Id, Full, Full_B, Related_Nod);
12837 end if;
12839 -- The parent subtype may be private, but the base might not, in some
12840 -- nested instances. In that case, the subtype does not need to be
12841 -- exchanged. It would still be nice to make private subtypes and their
12842 -- bases consistent at all times ???
12844 if Is_Private_Type (Id_B) then
12845 Append_Elmt (Id, Private_Dependents (Id_B));
12846 end if;
12848 end Prepare_Private_Subtype_Completion;
12850 ---------------------------
12851 -- Process_Discriminants --
12852 ---------------------------
12854 procedure Process_Discriminants
12855 (N : Node_Id;
12856 Prev : Entity_Id := Empty)
12858 Elist : constant Elist_Id := New_Elmt_List;
12859 Id : Node_Id;
12860 Discr : Node_Id;
12861 Discr_Number : Uint;
12862 Discr_Type : Entity_Id;
12863 Default_Present : Boolean := False;
12864 Default_Not_Present : Boolean := False;
12866 begin
12867 -- A composite type other than an array type can have discriminants.
12868 -- Discriminants of non-limited types must have a discrete type.
12869 -- On entry, the current scope is the composite type.
12871 -- The discriminants are initially entered into the scope of the type
12872 -- via Enter_Name with the default Ekind of E_Void to prevent premature
12873 -- use, as explained at the end of this procedure.
12875 Discr := First (Discriminant_Specifications (N));
12876 while Present (Discr) loop
12877 Enter_Name (Defining_Identifier (Discr));
12879 -- For navigation purposes we add a reference to the discriminant
12880 -- in the entity for the type. If the current declaration is a
12881 -- completion, place references on the partial view. Otherwise the
12882 -- type is the current scope.
12884 if Present (Prev) then
12886 -- The references go on the partial view, if present. If the
12887 -- partial view has discriminants, the references have been
12888 -- generated already.
12890 if not Has_Discriminants (Prev) then
12891 Generate_Reference (Prev, Defining_Identifier (Discr), 'd');
12892 end if;
12893 else
12894 Generate_Reference
12895 (Current_Scope, Defining_Identifier (Discr), 'd');
12896 end if;
12898 if Nkind (Discriminant_Type (Discr)) = N_Access_Definition then
12899 Discr_Type := Access_Definition (N, Discriminant_Type (Discr));
12901 -- Ada 2005 (AI-230): Access discriminants are now allowed for
12902 -- nonlimited types, and are treated like other components of
12903 -- anonymous access types in terms of accessibility.
12905 if not Is_Concurrent_Type (Current_Scope)
12906 and then not Is_Concurrent_Record_Type (Current_Scope)
12907 and then not Is_Limited_Record (Current_Scope)
12908 and then Ekind (Current_Scope) /= E_Limited_Private_Type
12909 then
12910 Set_Is_Local_Anonymous_Access (Discr_Type);
12911 end if;
12913 -- Ada 2005 (AI-254)
12915 if Present (Access_To_Subprogram_Definition
12916 (Discriminant_Type (Discr)))
12917 and then Protected_Present (Access_To_Subprogram_Definition
12918 (Discriminant_Type (Discr)))
12919 then
12920 Discr_Type :=
12921 Replace_Anonymous_Access_To_Protected_Subprogram
12922 (Discr, Discr_Type);
12923 end if;
12925 else
12926 Find_Type (Discriminant_Type (Discr));
12927 Discr_Type := Etype (Discriminant_Type (Discr));
12929 if Error_Posted (Discriminant_Type (Discr)) then
12930 Discr_Type := Any_Type;
12931 end if;
12932 end if;
12934 if Is_Access_Type (Discr_Type) then
12936 -- Ada 2005 (AI-230): Access discriminant allowed in non-limited
12937 -- record types
12939 if Ada_Version < Ada_05 then
12940 Check_Access_Discriminant_Requires_Limited
12941 (Discr, Discriminant_Type (Discr));
12942 end if;
12944 if Ada_Version = Ada_83 and then Comes_From_Source (Discr) then
12945 Error_Msg_N
12946 ("(Ada 83) access discriminant not allowed", Discr);
12947 end if;
12949 elsif not Is_Discrete_Type (Discr_Type) then
12950 Error_Msg_N ("discriminants must have a discrete or access type",
12951 Discriminant_Type (Discr));
12952 end if;
12954 Set_Etype (Defining_Identifier (Discr), Discr_Type);
12956 -- If a discriminant specification includes the assignment compound
12957 -- delimiter followed by an expression, the expression is the default
12958 -- expression of the discriminant; the default expression must be of
12959 -- the type of the discriminant. (RM 3.7.1) Since this expression is
12960 -- a default expression, we do the special preanalysis, since this
12961 -- expression does not freeze (see "Handling of Default and Per-
12962 -- Object Expressions" in spec of package Sem).
12964 if Present (Expression (Discr)) then
12965 Analyze_Per_Use_Expression (Expression (Discr), Discr_Type);
12967 if Nkind (N) = N_Formal_Type_Declaration then
12968 Error_Msg_N
12969 ("discriminant defaults not allowed for formal type",
12970 Expression (Discr));
12972 -- Tagged types cannot have defaulted discriminants, but a
12973 -- non-tagged private type with defaulted discriminants
12974 -- can have a tagged completion.
12976 elsif Is_Tagged_Type (Current_Scope)
12977 and then Comes_From_Source (N)
12978 then
12979 Error_Msg_N
12980 ("discriminants of tagged type cannot have defaults",
12981 Expression (Discr));
12983 else
12984 Default_Present := True;
12985 Append_Elmt (Expression (Discr), Elist);
12987 -- Tag the defining identifiers for the discriminants with
12988 -- their corresponding default expressions from the tree.
12990 Set_Discriminant_Default_Value
12991 (Defining_Identifier (Discr), Expression (Discr));
12992 end if;
12994 else
12995 Default_Not_Present := True;
12996 end if;
12998 -- Ada 2005 (AI-231): Create an Itype that is a duplicate of
12999 -- Discr_Type but with the null-exclusion attribute
13001 if Ada_Version >= Ada_05 then
13003 -- Ada 2005 (AI-231): Static checks
13005 if Can_Never_Be_Null (Discr_Type) then
13006 Null_Exclusion_Static_Checks (Discr);
13008 elsif Is_Access_Type (Discr_Type)
13009 and then Null_Exclusion_Present (Discr)
13011 -- No need to check itypes because in their case this check
13012 -- was done at their point of creation
13014 and then not Is_Itype (Discr_Type)
13015 then
13016 if Can_Never_Be_Null (Discr_Type) then
13017 Error_Msg_N
13018 ("(Ada 2005) already a null-excluding type", Discr);
13019 end if;
13021 Set_Etype (Defining_Identifier (Discr),
13022 Create_Null_Excluding_Itype
13023 (T => Discr_Type,
13024 Related_Nod => Discr));
13025 end if;
13027 end if;
13029 Next (Discr);
13030 end loop;
13032 -- An element list consisting of the default expressions of the
13033 -- discriminants is constructed in the above loop and used to set
13034 -- the Discriminant_Constraint attribute for the type. If an object
13035 -- is declared of this (record or task) type without any explicit
13036 -- discriminant constraint given, this element list will form the
13037 -- actual parameters for the corresponding initialization procedure
13038 -- for the type.
13040 Set_Discriminant_Constraint (Current_Scope, Elist);
13041 Set_Stored_Constraint (Current_Scope, No_Elist);
13043 -- Default expressions must be provided either for all or for none
13044 -- of the discriminants of a discriminant part. (RM 3.7.1)
13046 if Default_Present and then Default_Not_Present then
13047 Error_Msg_N
13048 ("incomplete specification of defaults for discriminants", N);
13049 end if;
13051 -- The use of the name of a discriminant is not allowed in default
13052 -- expressions of a discriminant part if the specification of the
13053 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
13055 -- To detect this, the discriminant names are entered initially with an
13056 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
13057 -- attempt to use a void entity (for example in an expression that is
13058 -- type-checked) produces the error message: premature usage. Now after
13059 -- completing the semantic analysis of the discriminant part, we can set
13060 -- the Ekind of all the discriminants appropriately.
13062 Discr := First (Discriminant_Specifications (N));
13063 Discr_Number := Uint_1;
13064 while Present (Discr) loop
13065 Id := Defining_Identifier (Discr);
13066 Set_Ekind (Id, E_Discriminant);
13067 Init_Component_Location (Id);
13068 Init_Esize (Id);
13069 Set_Discriminant_Number (Id, Discr_Number);
13071 -- Make sure this is always set, even in illegal programs
13073 Set_Corresponding_Discriminant (Id, Empty);
13075 -- Initialize the Original_Record_Component to the entity itself.
13076 -- Inherit_Components will propagate the right value to
13077 -- discriminants in derived record types.
13079 Set_Original_Record_Component (Id, Id);
13081 -- Create the discriminal for the discriminant
13083 Build_Discriminal (Id);
13085 Next (Discr);
13086 Discr_Number := Discr_Number + 1;
13087 end loop;
13089 Set_Has_Discriminants (Current_Scope);
13090 end Process_Discriminants;
13092 -----------------------
13093 -- Process_Full_View --
13094 -----------------------
13096 procedure Process_Full_View (N : Node_Id; Full_T, Priv_T : Entity_Id) is
13097 Priv_Parent : Entity_Id;
13098 Full_Parent : Entity_Id;
13099 Full_Indic : Node_Id;
13101 function Find_Interface_In_Descendant
13102 (Typ : Entity_Id) return Entity_Id;
13103 -- Find an implemented interface in the derivation chain of Typ
13105 ----------------------------------
13106 -- Find_Interface_In_Descendant --
13107 ----------------------------------
13109 function Find_Interface_In_Descendant
13110 (Typ : Entity_Id) return Entity_Id
13112 T : Entity_Id;
13114 begin
13115 T := Typ;
13116 while T /= Etype (T) loop
13117 if Is_Interface (Etype (T)) then
13118 return Etype (T);
13119 end if;
13121 T := Etype (T);
13123 -- Protect us against erroneous code that has a large
13124 -- chain of circularity dependencies
13126 exit when T = Typ;
13127 end loop;
13129 return Empty;
13130 end Find_Interface_In_Descendant;
13132 -- Start of processing for Process_Full_View
13134 begin
13135 -- First some sanity checks that must be done after semantic
13136 -- decoration of the full view and thus cannot be placed with other
13137 -- similar checks in Find_Type_Name
13139 if not Is_Limited_Type (Priv_T)
13140 and then (Is_Limited_Type (Full_T)
13141 or else Is_Limited_Composite (Full_T))
13142 then
13143 Error_Msg_N
13144 ("completion of nonlimited type cannot be limited", Full_T);
13145 Explain_Limited_Type (Full_T, Full_T);
13147 elsif Is_Abstract (Full_T) and then not Is_Abstract (Priv_T) then
13148 Error_Msg_N
13149 ("completion of nonabstract type cannot be abstract", Full_T);
13151 elsif Is_Tagged_Type (Priv_T)
13152 and then Is_Limited_Type (Priv_T)
13153 and then not Is_Limited_Type (Full_T)
13154 then
13155 -- GNAT allow its own definition of Limited_Controlled to disobey
13156 -- this rule in order in ease the implementation. The next test is
13157 -- safe because Root_Controlled is defined in a private system child
13159 if Etype (Full_T) = Full_View (RTE (RE_Root_Controlled)) then
13160 Set_Is_Limited_Composite (Full_T);
13161 else
13162 Error_Msg_N
13163 ("completion of limited tagged type must be limited", Full_T);
13164 end if;
13166 elsif Is_Generic_Type (Priv_T) then
13167 Error_Msg_N ("generic type cannot have a completion", Full_T);
13168 end if;
13170 -- Ada 2005 (AI-396): A full view shall be a descendant of an
13171 -- interface type if and only if the corresponding partial view
13172 -- (if any) is also a descendant of the interface type, or if
13173 -- the partial view is untagged.
13175 if Ada_Version >= Ada_05
13176 and then Is_Tagged_Type (Full_T)
13177 then
13178 declare
13179 Iface : Entity_Id;
13180 Iface_Def : Node_Id;
13182 begin
13183 Iface := Find_Interface_In_Descendant (Full_T);
13185 if Present (Iface) then
13186 Iface_Def := Type_Definition (Parent (Iface));
13187 end if;
13189 -- The full view derives from an interface descendant, but the
13190 -- partial view does not share the same tagged type.
13192 if Present (Iface)
13193 and then Is_Tagged_Type (Priv_T)
13194 and then Etype (Full_T) /= Etype (Priv_T)
13195 then
13196 Error_Msg_N ("(Ada 2005) tagged partial view cannot be " &
13197 "completed by a type that implements an " &
13198 "interface", Priv_T);
13199 end if;
13201 -- The full view derives from a limited, protected,
13202 -- synchronized or task interface descendant, but the
13203 -- partial view is not labeled as limited.
13205 if Present (Iface)
13206 and then (Limited_Present (Iface_Def)
13207 or Protected_Present (Iface_Def)
13208 or Synchronized_Present (Iface_Def)
13209 or Task_Present (Iface_Def))
13210 and then not Limited_Present (Parent (Priv_T))
13211 then
13212 Error_Msg_N ("(Ada 2005) non-limited private type cannot be " &
13213 "completed by a limited type", Priv_T);
13214 end if;
13215 end;
13216 end if;
13218 if Is_Tagged_Type (Priv_T)
13219 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
13220 and then Is_Derived_Type (Full_T)
13221 then
13222 Priv_Parent := Etype (Priv_T);
13224 -- The full view of a private extension may have been transformed
13225 -- into an unconstrained derived type declaration and a subtype
13226 -- declaration (see build_derived_record_type for details).
13228 if Nkind (N) = N_Subtype_Declaration then
13229 Full_Indic := Subtype_Indication (N);
13230 Full_Parent := Etype (Base_Type (Full_T));
13231 else
13232 Full_Indic := Subtype_Indication (Type_Definition (N));
13233 Full_Parent := Etype (Full_T);
13234 end if;
13236 -- Check that the parent type of the full type is a descendant of
13237 -- the ancestor subtype given in the private extension. If either
13238 -- entity has an Etype equal to Any_Type then we had some previous
13239 -- error situation [7.3(8)].
13241 if Priv_Parent = Any_Type or else Full_Parent = Any_Type then
13242 return;
13244 elsif not Is_Ancestor (Base_Type (Priv_Parent), Full_Parent) then
13246 -- Ada 2005 (AI-251): No error needed if the immediate
13247 -- ancestor of the partial view is an interface
13249 -- Example:
13251 -- type PT1 is new I1 with private;
13252 -- private
13253 -- type PT1 is new T and I1 with null record;
13255 if Is_Interface (Base_Type (Priv_Parent)) then
13256 null;
13258 else
13259 Error_Msg_N
13260 ("parent of full type must descend from parent"
13261 & " of private extension", Full_Indic);
13262 end if;
13264 -- Check the rules of 7.3(10): if the private extension inherits
13265 -- known discriminants, then the full type must also inherit those
13266 -- discriminants from the same (ancestor) type, and the parent
13267 -- subtype of the full type must be constrained if and only if
13268 -- the ancestor subtype of the private extension is constrained.
13270 elsif not Present (Discriminant_Specifications (Parent (Priv_T)))
13271 and then not Has_Unknown_Discriminants (Priv_T)
13272 and then Has_Discriminants (Base_Type (Priv_Parent))
13273 then
13274 declare
13275 Priv_Indic : constant Node_Id :=
13276 Subtype_Indication (Parent (Priv_T));
13278 Priv_Constr : constant Boolean :=
13279 Is_Constrained (Priv_Parent)
13280 or else
13281 Nkind (Priv_Indic) = N_Subtype_Indication
13282 or else Is_Constrained (Entity (Priv_Indic));
13284 Full_Constr : constant Boolean :=
13285 Is_Constrained (Full_Parent)
13286 or else
13287 Nkind (Full_Indic) = N_Subtype_Indication
13288 or else Is_Constrained (Entity (Full_Indic));
13290 Priv_Discr : Entity_Id;
13291 Full_Discr : Entity_Id;
13293 begin
13294 Priv_Discr := First_Discriminant (Priv_Parent);
13295 Full_Discr := First_Discriminant (Full_Parent);
13296 while Present (Priv_Discr) and then Present (Full_Discr) loop
13297 if Original_Record_Component (Priv_Discr) =
13298 Original_Record_Component (Full_Discr)
13299 or else
13300 Corresponding_Discriminant (Priv_Discr) =
13301 Corresponding_Discriminant (Full_Discr)
13302 then
13303 null;
13304 else
13305 exit;
13306 end if;
13308 Next_Discriminant (Priv_Discr);
13309 Next_Discriminant (Full_Discr);
13310 end loop;
13312 if Present (Priv_Discr) or else Present (Full_Discr) then
13313 Error_Msg_N
13314 ("full view must inherit discriminants of the parent type"
13315 & " used in the private extension", Full_Indic);
13317 elsif Priv_Constr and then not Full_Constr then
13318 Error_Msg_N
13319 ("parent subtype of full type must be constrained",
13320 Full_Indic);
13322 elsif Full_Constr and then not Priv_Constr then
13323 Error_Msg_N
13324 ("parent subtype of full type must be unconstrained",
13325 Full_Indic);
13326 end if;
13327 end;
13329 -- Check the rules of 7.3(12): if a partial view has neither known
13330 -- or unknown discriminants, then the full type declaration shall
13331 -- define a definite subtype.
13333 elsif not Has_Unknown_Discriminants (Priv_T)
13334 and then not Has_Discriminants (Priv_T)
13335 and then not Is_Constrained (Full_T)
13336 then
13337 Error_Msg_N
13338 ("full view must define a constrained type if partial view"
13339 & " has no discriminants", Full_T);
13340 end if;
13342 -- ??????? Do we implement the following properly ?????
13343 -- If the ancestor subtype of a private extension has constrained
13344 -- discriminants, then the parent subtype of the full view shall
13345 -- impose a statically matching constraint on those discriminants
13346 -- [7.3(13)].
13348 else
13349 -- For untagged types, verify that a type without discriminants
13350 -- is not completed with an unconstrained type.
13352 if not Is_Indefinite_Subtype (Priv_T)
13353 and then Is_Indefinite_Subtype (Full_T)
13354 then
13355 Error_Msg_N ("full view of type must be definite subtype", Full_T);
13356 end if;
13357 end if;
13359 -- Ada 2005 AI-363: if the full view has discriminants with
13360 -- defaults, it is illegal to declare constrained access subtypes
13361 -- whose designated type is the current type. This allows objects
13362 -- of the type that are declared in the heap to be unconstrained.
13364 if not Has_Unknown_Discriminants (Priv_T)
13365 and then not Has_Discriminants (Priv_T)
13366 and then Has_Discriminants (Full_T)
13367 and then
13368 Present
13369 (Discriminant_Default_Value (First_Discriminant (Full_T)))
13370 then
13371 Set_Has_Constrained_Partial_View (Full_T);
13372 Set_Has_Constrained_Partial_View (Priv_T);
13373 end if;
13375 -- Create a full declaration for all its subtypes recorded in
13376 -- Private_Dependents and swap them similarly to the base type. These
13377 -- are subtypes that have been define before the full declaration of
13378 -- the private type. We also swap the entry in Private_Dependents list
13379 -- so we can properly restore the private view on exit from the scope.
13381 declare
13382 Priv_Elmt : Elmt_Id;
13383 Priv : Entity_Id;
13384 Full : Entity_Id;
13386 begin
13387 Priv_Elmt := First_Elmt (Private_Dependents (Priv_T));
13388 while Present (Priv_Elmt) loop
13389 Priv := Node (Priv_Elmt);
13391 if Ekind (Priv) = E_Private_Subtype
13392 or else Ekind (Priv) = E_Limited_Private_Subtype
13393 or else Ekind (Priv) = E_Record_Subtype_With_Private
13394 then
13395 Full := Make_Defining_Identifier (Sloc (Priv), Chars (Priv));
13396 Set_Is_Itype (Full);
13397 Set_Parent (Full, Parent (Priv));
13398 Set_Associated_Node_For_Itype (Full, N);
13400 -- Now we need to complete the private subtype, but since the
13401 -- base type has already been swapped, we must also swap the
13402 -- subtypes (and thus, reverse the arguments in the call to
13403 -- Complete_Private_Subtype).
13405 Copy_And_Swap (Priv, Full);
13406 Complete_Private_Subtype (Full, Priv, Full_T, N);
13407 Replace_Elmt (Priv_Elmt, Full);
13408 end if;
13410 Next_Elmt (Priv_Elmt);
13411 end loop;
13412 end;
13414 -- If the private view was tagged, copy the new Primitive
13415 -- operations from the private view to the full view.
13417 if Is_Tagged_Type (Full_T) then
13418 declare
13419 Priv_List : Elist_Id;
13420 Full_List : constant Elist_Id := Primitive_Operations (Full_T);
13421 P1, P2 : Elmt_Id;
13422 Prim : Entity_Id;
13423 D_Type : Entity_Id;
13425 begin
13426 if Is_Tagged_Type (Priv_T) then
13427 Priv_List := Primitive_Operations (Priv_T);
13429 P1 := First_Elmt (Priv_List);
13430 while Present (P1) loop
13431 Prim := Node (P1);
13433 -- Transfer explicit primitives, not those inherited from
13434 -- parent of partial view, which will be re-inherited on
13435 -- the full view.
13437 if Comes_From_Source (Prim) then
13438 P2 := First_Elmt (Full_List);
13439 while Present (P2) and then Node (P2) /= Prim loop
13440 Next_Elmt (P2);
13441 end loop;
13443 -- If not found, that is a new one
13445 if No (P2) then
13446 Append_Elmt (Prim, Full_List);
13447 end if;
13448 end if;
13450 Next_Elmt (P1);
13451 end loop;
13453 else
13454 -- In this case the partial view is untagged, so here we
13455 -- locate all of the earlier primitives that need to be
13456 -- treated as dispatching (those that appear between the two
13457 -- views). Note that these additional operations must all be
13458 -- new operations (any earlier operations that override
13459 -- inherited operations of the full view will already have
13460 -- been inserted in the primitives list and marked as
13461 -- dispatching by Check_Operation_From_Private_View. Note that
13462 -- implicit "/=" operators are excluded from being added to
13463 -- the primitives list since they shouldn't be treated as
13464 -- dispatching (tagged "/=" is handled specially).
13466 Prim := Next_Entity (Full_T);
13467 while Present (Prim) and then Prim /= Priv_T loop
13468 if Ekind (Prim) = E_Procedure
13469 or else
13470 Ekind (Prim) = E_Function
13471 then
13473 D_Type := Find_Dispatching_Type (Prim);
13475 if D_Type = Full_T
13476 and then (Chars (Prim) /= Name_Op_Ne
13477 or else Comes_From_Source (Prim))
13478 then
13479 Check_Controlling_Formals (Full_T, Prim);
13481 if not Is_Dispatching_Operation (Prim) then
13482 Append_Elmt (Prim, Full_List);
13483 Set_Is_Dispatching_Operation (Prim, True);
13484 Set_DT_Position (Prim, No_Uint);
13485 end if;
13487 elsif Is_Dispatching_Operation (Prim)
13488 and then D_Type /= Full_T
13489 then
13491 -- Verify that it is not otherwise controlled by
13492 -- a formal or a return value of type T.
13494 Check_Controlling_Formals (D_Type, Prim);
13495 end if;
13496 end if;
13498 Next_Entity (Prim);
13499 end loop;
13500 end if;
13502 -- For the tagged case, the two views can share the same
13503 -- Primitive Operation list and the same class wide type.
13504 -- Update attributes of the class-wide type which depend on
13505 -- the full declaration.
13507 if Is_Tagged_Type (Priv_T) then
13508 Set_Primitive_Operations (Priv_T, Full_List);
13509 Set_Class_Wide_Type
13510 (Base_Type (Full_T), Class_Wide_Type (Priv_T));
13512 -- Any other attributes should be propagated to C_W ???
13514 Set_Has_Task (Class_Wide_Type (Priv_T), Has_Task (Full_T));
13516 end if;
13517 end;
13518 end if;
13519 end Process_Full_View;
13521 -----------------------------------
13522 -- Process_Incomplete_Dependents --
13523 -----------------------------------
13525 procedure Process_Incomplete_Dependents
13526 (N : Node_Id;
13527 Full_T : Entity_Id;
13528 Inc_T : Entity_Id)
13530 Inc_Elmt : Elmt_Id;
13531 Priv_Dep : Entity_Id;
13532 New_Subt : Entity_Id;
13534 Disc_Constraint : Elist_Id;
13536 begin
13537 if No (Private_Dependents (Inc_T)) then
13538 return;
13539 end if;
13541 -- Itypes that may be generated by the completion of an incomplete
13542 -- subtype are not used by the back-end and not attached to the tree.
13543 -- They are created only for constraint-checking purposes.
13545 Inc_Elmt := First_Elmt (Private_Dependents (Inc_T));
13546 while Present (Inc_Elmt) loop
13547 Priv_Dep := Node (Inc_Elmt);
13549 if Ekind (Priv_Dep) = E_Subprogram_Type then
13551 -- An Access_To_Subprogram type may have a return type or a
13552 -- parameter type that is incomplete. Replace with the full view.
13554 if Etype (Priv_Dep) = Inc_T then
13555 Set_Etype (Priv_Dep, Full_T);
13556 end if;
13558 declare
13559 Formal : Entity_Id;
13561 begin
13562 Formal := First_Formal (Priv_Dep);
13563 while Present (Formal) loop
13564 if Etype (Formal) = Inc_T then
13565 Set_Etype (Formal, Full_T);
13566 end if;
13568 Next_Formal (Formal);
13569 end loop;
13570 end;
13572 elsif Is_Overloadable (Priv_Dep) then
13574 -- A protected operation is never dispatching: only its
13575 -- wrapper operation (which has convention Ada) is.
13577 if Is_Tagged_Type (Full_T)
13578 and then Convention (Priv_Dep) /= Convention_Protected
13579 then
13581 -- Subprogram has an access parameter whose designated type
13582 -- was incomplete. Reexamine declaration now, because it may
13583 -- be a primitive operation of the full type.
13585 Check_Operation_From_Incomplete_Type (Priv_Dep, Inc_T);
13586 Set_Is_Dispatching_Operation (Priv_Dep);
13587 Check_Controlling_Formals (Full_T, Priv_Dep);
13588 end if;
13590 elsif Ekind (Priv_Dep) = E_Subprogram_Body then
13592 -- Can happen during processing of a body before the completion
13593 -- of a TA type. Ignore, because spec is also on dependent list.
13595 return;
13597 -- Dependent is a subtype
13599 else
13600 -- We build a new subtype indication using the full view of the
13601 -- incomplete parent. The discriminant constraints have been
13602 -- elaborated already at the point of the subtype declaration.
13604 New_Subt := Create_Itype (E_Void, N);
13606 if Has_Discriminants (Full_T) then
13607 Disc_Constraint := Discriminant_Constraint (Priv_Dep);
13608 else
13609 Disc_Constraint := No_Elist;
13610 end if;
13612 Build_Discriminated_Subtype (Full_T, New_Subt, Disc_Constraint, N);
13613 Set_Full_View (Priv_Dep, New_Subt);
13614 end if;
13616 Next_Elmt (Inc_Elmt);
13617 end loop;
13618 end Process_Incomplete_Dependents;
13620 --------------------------------
13621 -- Process_Range_Expr_In_Decl --
13622 --------------------------------
13624 procedure Process_Range_Expr_In_Decl
13625 (R : Node_Id;
13626 T : Entity_Id;
13627 Check_List : List_Id := Empty_List;
13628 R_Check_Off : Boolean := False)
13630 Lo, Hi : Node_Id;
13631 R_Checks : Check_Result;
13632 Type_Decl : Node_Id;
13633 Def_Id : Entity_Id;
13635 begin
13636 Analyze_And_Resolve (R, Base_Type (T));
13638 if Nkind (R) = N_Range then
13639 Lo := Low_Bound (R);
13640 Hi := High_Bound (R);
13642 -- If there were errors in the declaration, try and patch up some
13643 -- common mistakes in the bounds. The cases handled are literals
13644 -- which are Integer where the expected type is Real and vice versa.
13645 -- These corrections allow the compilation process to proceed further
13646 -- along since some basic assumptions of the format of the bounds
13647 -- are guaranteed.
13649 if Etype (R) = Any_Type then
13651 if Nkind (Lo) = N_Integer_Literal and then Is_Real_Type (T) then
13652 Rewrite (Lo,
13653 Make_Real_Literal (Sloc (Lo), UR_From_Uint (Intval (Lo))));
13655 elsif Nkind (Hi) = N_Integer_Literal and then Is_Real_Type (T) then
13656 Rewrite (Hi,
13657 Make_Real_Literal (Sloc (Hi), UR_From_Uint (Intval (Hi))));
13659 elsif Nkind (Lo) = N_Real_Literal and then Is_Integer_Type (T) then
13660 Rewrite (Lo,
13661 Make_Integer_Literal (Sloc (Lo), UR_To_Uint (Realval (Lo))));
13663 elsif Nkind (Hi) = N_Real_Literal and then Is_Integer_Type (T) then
13664 Rewrite (Hi,
13665 Make_Integer_Literal (Sloc (Hi), UR_To_Uint (Realval (Hi))));
13666 end if;
13668 Set_Etype (Lo, T);
13669 Set_Etype (Hi, T);
13670 end if;
13672 -- If the bounds of the range have been mistakenly given as string
13673 -- literals (perhaps in place of character literals), then an error
13674 -- has already been reported, but we rewrite the string literal as a
13675 -- bound of the range's type to avoid blowups in later processing
13676 -- that looks at static values.
13678 if Nkind (Lo) = N_String_Literal then
13679 Rewrite (Lo,
13680 Make_Attribute_Reference (Sloc (Lo),
13681 Attribute_Name => Name_First,
13682 Prefix => New_Reference_To (T, Sloc (Lo))));
13683 Analyze_And_Resolve (Lo);
13684 end if;
13686 if Nkind (Hi) = N_String_Literal then
13687 Rewrite (Hi,
13688 Make_Attribute_Reference (Sloc (Hi),
13689 Attribute_Name => Name_First,
13690 Prefix => New_Reference_To (T, Sloc (Hi))));
13691 Analyze_And_Resolve (Hi);
13692 end if;
13694 -- If bounds aren't scalar at this point then exit, avoiding
13695 -- problems with further processing of the range in this procedure.
13697 if not Is_Scalar_Type (Etype (Lo)) then
13698 return;
13699 end if;
13701 -- Resolve (actually Sem_Eval) has checked that the bounds are in
13702 -- then range of the base type. Here we check whether the bounds
13703 -- are in the range of the subtype itself. Note that if the bounds
13704 -- represent the null range the Constraint_Error exception should
13705 -- not be raised.
13707 -- ??? The following code should be cleaned up as follows
13709 -- 1. The Is_Null_Range (Lo, Hi) test should disappear since it
13710 -- is done in the call to Range_Check (R, T); below
13712 -- 2. The use of R_Check_Off should be investigated and possibly
13713 -- removed, this would clean up things a bit.
13715 if Is_Null_Range (Lo, Hi) then
13716 null;
13718 else
13719 -- Capture values of bounds and generate temporaries for them
13720 -- if needed, before applying checks, since checks may cause
13721 -- duplication of the expression without forcing evaluation.
13723 if Expander_Active then
13724 Force_Evaluation (Lo);
13725 Force_Evaluation (Hi);
13726 end if;
13728 -- We use a flag here instead of suppressing checks on the
13729 -- type because the type we check against isn't necessarily
13730 -- the place where we put the check.
13732 if not R_Check_Off then
13733 R_Checks := Range_Check (R, T);
13735 -- Look up tree to find an appropriate insertion point.
13736 -- This seems really junk code, and very brittle, couldn't
13737 -- we just use an insert actions call of some kind ???
13739 Type_Decl := Parent (R);
13740 while Present (Type_Decl) and then not
13741 (Nkind (Type_Decl) = N_Full_Type_Declaration
13742 or else
13743 Nkind (Type_Decl) = N_Subtype_Declaration
13744 or else
13745 Nkind (Type_Decl) = N_Loop_Statement
13746 or else
13747 Nkind (Type_Decl) = N_Task_Type_Declaration
13748 or else
13749 Nkind (Type_Decl) = N_Single_Task_Declaration
13750 or else
13751 Nkind (Type_Decl) = N_Protected_Type_Declaration
13752 or else
13753 Nkind (Type_Decl) = N_Single_Protected_Declaration)
13754 loop
13755 Type_Decl := Parent (Type_Decl);
13756 end loop;
13758 -- Why would Type_Decl not be present??? Without this test,
13759 -- short regression tests fail.
13761 if Present (Type_Decl) then
13763 -- Case of loop statement (more comments ???)
13765 if Nkind (Type_Decl) = N_Loop_Statement then
13766 declare
13767 Indic : Node_Id;
13769 begin
13770 Indic := Parent (R);
13771 while Present (Indic) and then not
13772 (Nkind (Indic) = N_Subtype_Indication)
13773 loop
13774 Indic := Parent (Indic);
13775 end loop;
13777 if Present (Indic) then
13778 Def_Id := Etype (Subtype_Mark (Indic));
13780 Insert_Range_Checks
13781 (R_Checks,
13782 Type_Decl,
13783 Def_Id,
13784 Sloc (Type_Decl),
13786 Do_Before => True);
13787 end if;
13788 end;
13790 -- All other cases (more comments ???)
13792 else
13793 Def_Id := Defining_Identifier (Type_Decl);
13795 if (Ekind (Def_Id) = E_Record_Type
13796 and then Depends_On_Discriminant (R))
13797 or else
13798 (Ekind (Def_Id) = E_Protected_Type
13799 and then Has_Discriminants (Def_Id))
13800 then
13801 Append_Range_Checks
13802 (R_Checks, Check_List, Def_Id, Sloc (Type_Decl), R);
13804 else
13805 Insert_Range_Checks
13806 (R_Checks, Type_Decl, Def_Id, Sloc (Type_Decl), R);
13808 end if;
13809 end if;
13810 end if;
13811 end if;
13812 end if;
13814 elsif Expander_Active then
13815 Get_Index_Bounds (R, Lo, Hi);
13816 Force_Evaluation (Lo);
13817 Force_Evaluation (Hi);
13818 end if;
13819 end Process_Range_Expr_In_Decl;
13821 --------------------------------------
13822 -- Process_Real_Range_Specification --
13823 --------------------------------------
13825 procedure Process_Real_Range_Specification (Def : Node_Id) is
13826 Spec : constant Node_Id := Real_Range_Specification (Def);
13827 Lo : Node_Id;
13828 Hi : Node_Id;
13829 Err : Boolean := False;
13831 procedure Analyze_Bound (N : Node_Id);
13832 -- Analyze and check one bound
13834 -------------------
13835 -- Analyze_Bound --
13836 -------------------
13838 procedure Analyze_Bound (N : Node_Id) is
13839 begin
13840 Analyze_And_Resolve (N, Any_Real);
13842 if not Is_OK_Static_Expression (N) then
13843 Flag_Non_Static_Expr
13844 ("bound in real type definition is not static!", N);
13845 Err := True;
13846 end if;
13847 end Analyze_Bound;
13849 -- Start of processing for Process_Real_Range_Specification
13851 begin
13852 if Present (Spec) then
13853 Lo := Low_Bound (Spec);
13854 Hi := High_Bound (Spec);
13855 Analyze_Bound (Lo);
13856 Analyze_Bound (Hi);
13858 -- If error, clear away junk range specification
13860 if Err then
13861 Set_Real_Range_Specification (Def, Empty);
13862 end if;
13863 end if;
13864 end Process_Real_Range_Specification;
13866 ---------------------
13867 -- Process_Subtype --
13868 ---------------------
13870 function Process_Subtype
13871 (S : Node_Id;
13872 Related_Nod : Node_Id;
13873 Related_Id : Entity_Id := Empty;
13874 Suffix : Character := ' ') return Entity_Id
13876 P : Node_Id;
13877 Def_Id : Entity_Id;
13878 Error_Node : Node_Id;
13879 Full_View_Id : Entity_Id;
13880 Subtype_Mark_Id : Entity_Id;
13882 May_Have_Null_Exclusion : Boolean;
13884 procedure Check_Incomplete (T : Entity_Id);
13885 -- Called to verify that an incomplete type is not used prematurely
13887 ----------------------
13888 -- Check_Incomplete --
13889 ----------------------
13891 procedure Check_Incomplete (T : Entity_Id) is
13892 begin
13893 if Ekind (Root_Type (Entity (T))) = E_Incomplete_Type then
13894 Error_Msg_N ("invalid use of type before its full declaration", T);
13895 end if;
13896 end Check_Incomplete;
13898 -- Start of processing for Process_Subtype
13900 begin
13901 -- Case of no constraints present
13903 if Nkind (S) /= N_Subtype_Indication then
13905 Find_Type (S);
13906 Check_Incomplete (S);
13907 P := Parent (S);
13909 -- Ada 2005 (AI-231): Static check
13911 if Ada_Version >= Ada_05
13912 and then Present (P)
13913 and then Null_Exclusion_Present (P)
13914 and then Nkind (P) /= N_Access_To_Object_Definition
13915 and then not Is_Access_Type (Entity (S))
13916 then
13917 Error_Msg_N
13918 ("(Ada 2005) the null-exclusion part requires an access type",
13920 end if;
13922 May_Have_Null_Exclusion :=
13923 Nkind (P) = N_Access_Definition
13924 or else Nkind (P) = N_Access_Function_Definition
13925 or else Nkind (P) = N_Access_Procedure_Definition
13926 or else Nkind (P) = N_Access_To_Object_Definition
13927 or else Nkind (P) = N_Allocator
13928 or else Nkind (P) = N_Component_Definition
13929 or else Nkind (P) = N_Derived_Type_Definition
13930 or else Nkind (P) = N_Discriminant_Specification
13931 or else Nkind (P) = N_Object_Declaration
13932 or else Nkind (P) = N_Parameter_Specification
13933 or else Nkind (P) = N_Subtype_Declaration;
13935 -- Create an Itype that is a duplicate of Entity (S) but with the
13936 -- null-exclusion attribute
13938 if May_Have_Null_Exclusion
13939 and then Is_Access_Type (Entity (S))
13940 and then Null_Exclusion_Present (P)
13942 -- No need to check the case of an access to object definition.
13943 -- It is correct to define double not-null pointers.
13944 -- Example:
13945 -- type Not_Null_Int_Ptr is not null access Integer;
13946 -- type Acc is not null access Not_Null_Int_Ptr;
13948 and then Nkind (P) /= N_Access_To_Object_Definition
13949 then
13950 if Can_Never_Be_Null (Entity (S)) then
13951 case Nkind (Related_Nod) is
13952 when N_Full_Type_Declaration =>
13953 if Nkind (Type_Definition (Related_Nod))
13954 in N_Array_Type_Definition
13955 then
13956 Error_Node :=
13957 Subtype_Indication
13958 (Component_Definition
13959 (Type_Definition (Related_Nod)));
13960 else
13961 Error_Node :=
13962 Subtype_Indication (Type_Definition (Related_Nod));
13963 end if;
13965 when N_Subtype_Declaration =>
13966 Error_Node := Subtype_Indication (Related_Nod);
13968 when N_Object_Declaration =>
13969 Error_Node := Object_Definition (Related_Nod);
13971 when N_Component_Declaration =>
13972 Error_Node :=
13973 Subtype_Indication (Component_Definition (Related_Nod));
13975 when others =>
13976 pragma Assert (False);
13977 Error_Node := Related_Nod;
13978 end case;
13980 Error_Msg_N
13981 ("(Ada 2005) already a null-excluding type", Error_Node);
13982 end if;
13984 Set_Etype (S,
13985 Create_Null_Excluding_Itype
13986 (T => Entity (S),
13987 Related_Nod => P));
13988 Set_Entity (S, Etype (S));
13989 end if;
13991 return Entity (S);
13993 -- Case of constraint present, so that we have an N_Subtype_Indication
13994 -- node (this node is created only if constraints are present).
13996 else
13998 Find_Type (Subtype_Mark (S));
14000 if Nkind (Parent (S)) /= N_Access_To_Object_Definition
14001 and then not
14002 (Nkind (Parent (S)) = N_Subtype_Declaration
14003 and then
14004 Is_Itype (Defining_Identifier (Parent (S))))
14005 then
14006 Check_Incomplete (Subtype_Mark (S));
14007 end if;
14009 P := Parent (S);
14010 Subtype_Mark_Id := Entity (Subtype_Mark (S));
14012 -- Explicit subtype declaration case
14014 if Nkind (P) = N_Subtype_Declaration then
14015 Def_Id := Defining_Identifier (P);
14017 -- Explicit derived type definition case
14019 elsif Nkind (P) = N_Derived_Type_Definition then
14020 Def_Id := Defining_Identifier (Parent (P));
14022 -- Implicit case, the Def_Id must be created as an implicit type.
14023 -- The one exception arises in the case of concurrent types, array
14024 -- and access types, where other subsidiary implicit types may be
14025 -- created and must appear before the main implicit type. In these
14026 -- cases we leave Def_Id set to Empty as a signal that Create_Itype
14027 -- has not yet been called to create Def_Id.
14029 else
14030 if Is_Array_Type (Subtype_Mark_Id)
14031 or else Is_Concurrent_Type (Subtype_Mark_Id)
14032 or else Is_Access_Type (Subtype_Mark_Id)
14033 then
14034 Def_Id := Empty;
14036 -- For the other cases, we create a new unattached Itype,
14037 -- and set the indication to ensure it gets attached later.
14039 else
14040 Def_Id :=
14041 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
14042 end if;
14043 end if;
14045 -- If the kind of constraint is invalid for this kind of type,
14046 -- then give an error, and then pretend no constraint was given.
14048 if not Is_Valid_Constraint_Kind
14049 (Ekind (Subtype_Mark_Id), Nkind (Constraint (S)))
14050 then
14051 Error_Msg_N
14052 ("incorrect constraint for this kind of type", Constraint (S));
14054 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
14056 -- Set Ekind of orphan itype, to prevent cascaded errors
14058 if Present (Def_Id) then
14059 Set_Ekind (Def_Id, Ekind (Any_Type));
14060 end if;
14062 -- Make recursive call, having got rid of the bogus constraint
14064 return Process_Subtype (S, Related_Nod, Related_Id, Suffix);
14065 end if;
14067 -- Remaining processing depends on type
14069 case Ekind (Subtype_Mark_Id) is
14070 when Access_Kind =>
14071 Constrain_Access (Def_Id, S, Related_Nod);
14073 when Array_Kind =>
14074 Constrain_Array (Def_Id, S, Related_Nod, Related_Id, Suffix);
14076 when Decimal_Fixed_Point_Kind =>
14077 Constrain_Decimal (Def_Id, S);
14079 when Enumeration_Kind =>
14080 Constrain_Enumeration (Def_Id, S);
14082 when Ordinary_Fixed_Point_Kind =>
14083 Constrain_Ordinary_Fixed (Def_Id, S);
14085 when Float_Kind =>
14086 Constrain_Float (Def_Id, S);
14088 when Integer_Kind =>
14089 Constrain_Integer (Def_Id, S);
14091 when E_Record_Type |
14092 E_Record_Subtype |
14093 Class_Wide_Kind |
14094 E_Incomplete_Type =>
14095 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
14097 when Private_Kind =>
14098 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
14099 Set_Private_Dependents (Def_Id, New_Elmt_List);
14101 -- In case of an invalid constraint prevent further processing
14102 -- since the type constructed is missing expected fields.
14104 if Etype (Def_Id) = Any_Type then
14105 return Def_Id;
14106 end if;
14108 -- If the full view is that of a task with discriminants,
14109 -- we must constrain both the concurrent type and its
14110 -- corresponding record type. Otherwise we will just propagate
14111 -- the constraint to the full view, if available.
14113 if Present (Full_View (Subtype_Mark_Id))
14114 and then Has_Discriminants (Subtype_Mark_Id)
14115 and then Is_Concurrent_Type (Full_View (Subtype_Mark_Id))
14116 then
14117 Full_View_Id :=
14118 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
14120 Set_Entity (Subtype_Mark (S), Full_View (Subtype_Mark_Id));
14121 Constrain_Concurrent (Full_View_Id, S,
14122 Related_Nod, Related_Id, Suffix);
14123 Set_Entity (Subtype_Mark (S), Subtype_Mark_Id);
14124 Set_Full_View (Def_Id, Full_View_Id);
14126 else
14127 Prepare_Private_Subtype_Completion (Def_Id, Related_Nod);
14128 end if;
14130 when Concurrent_Kind =>
14131 Constrain_Concurrent (Def_Id, S,
14132 Related_Nod, Related_Id, Suffix);
14134 when others =>
14135 Error_Msg_N ("invalid subtype mark in subtype indication", S);
14136 end case;
14138 -- Size and Convention are always inherited from the base type
14140 Set_Size_Info (Def_Id, (Subtype_Mark_Id));
14141 Set_Convention (Def_Id, Convention (Subtype_Mark_Id));
14143 return Def_Id;
14144 end if;
14145 end Process_Subtype;
14147 -----------------------------
14148 -- Record_Type_Declaration --
14149 -----------------------------
14151 procedure Record_Type_Declaration
14152 (T : Entity_Id;
14153 N : Node_Id;
14154 Prev : Entity_Id)
14156 Loc : constant Source_Ptr := Sloc (N);
14157 Def : constant Node_Id := Type_Definition (N);
14158 Inc_T : Entity_Id := Empty;
14160 Is_Tagged : Boolean;
14161 Tag_Comp : Entity_Id;
14163 procedure Check_Anonymous_Access_Types (Comp_List : Node_Id);
14164 -- Ada 2005 AI-382: an access component in a record declaration can
14165 -- refer to the enclosing record, in which case it denotes the type
14166 -- itself, and not the current instance of the type. We create an
14167 -- anonymous access type for the component, and flag it as an access
14168 -- to a component, so that accessibility checks are properly performed
14169 -- on it. The declaration of the access type is placed ahead of that
14170 -- of the record, to prevent circular order-of-elaboration issues in
14171 -- Gigi. We create an incomplete type for the record declaration, which
14172 -- is the designated type of the anonymous access.
14174 procedure Make_Incomplete_Type_Declaration;
14175 -- If the record type contains components that include an access to the
14176 -- current record, create an incomplete type declaration for the record,
14177 -- to be used as the designated type of the anonymous access. This is
14178 -- done only once, and only if there is no previous partial view of the
14179 -- type.
14181 ----------------------------------
14182 -- Check_Anonymous_Access_Types --
14183 ----------------------------------
14185 procedure Check_Anonymous_Access_Types (Comp_List : Node_Id) is
14186 Anon_Access : Entity_Id;
14187 Acc_Def : Node_Id;
14188 Comp : Node_Id;
14189 Decl : Node_Id;
14190 Type_Def : Node_Id;
14192 function Mentions_T (Acc_Def : Node_Id) return Boolean;
14193 -- Check whether an access definition includes a reference to
14194 -- the enclosing record type. The reference can be a subtype
14195 -- mark in the access definition itself, or a 'Class attribute
14196 -- reference, or recursively a reference appearing in a parameter
14197 -- type in an access_to_subprogram definition.
14199 ----------------
14200 -- Mentions_T --
14201 ----------------
14203 function Mentions_T (Acc_Def : Node_Id) return Boolean is
14204 Subt : Node_Id;
14206 begin
14207 if No (Access_To_Subprogram_Definition (Acc_Def)) then
14208 Subt := Subtype_Mark (Acc_Def);
14210 if Nkind (Subt) = N_Identifier then
14211 return Chars (Subt) = Chars (T);
14212 elsif Nkind (Subt) = N_Attribute_Reference
14213 and then Attribute_Name (Subt) = Name_Class
14214 then
14215 return (Chars (Prefix (Subt))) = Chars (T);
14216 else
14217 return False;
14218 end if;
14220 else
14221 -- Component is an access_to_subprogram: examine its formals
14223 declare
14224 Param_Spec : Node_Id;
14226 begin
14227 Param_Spec :=
14228 First
14229 (Parameter_Specifications
14230 (Access_To_Subprogram_Definition (Acc_Def)));
14231 while Present (Param_Spec) loop
14232 if Nkind (Parameter_Type (Param_Spec))
14233 = N_Access_Definition
14234 and then Mentions_T (Parameter_Type (Param_Spec))
14235 then
14236 return True;
14237 end if;
14239 Next (Param_Spec);
14240 end loop;
14242 return False;
14243 end;
14244 end if;
14245 end Mentions_T;
14247 -- Start of processing for Check_Anonymous_Access_Types
14249 begin
14250 if No (Comp_List) then
14251 return;
14252 end if;
14254 Comp := First (Component_Items (Comp_List));
14255 while Present (Comp) loop
14256 if Nkind (Comp) = N_Component_Declaration
14257 and then
14258 Present (Access_Definition (Component_Definition (Comp)))
14259 and then
14260 Mentions_T (Access_Definition (Component_Definition (Comp)))
14261 then
14262 Acc_Def :=
14263 Access_To_Subprogram_Definition
14264 (Access_Definition (Component_Definition (Comp)));
14266 Make_Incomplete_Type_Declaration;
14267 Anon_Access :=
14268 Make_Defining_Identifier (Loc,
14269 Chars => New_Internal_Name ('S'));
14271 -- Create a declaration for the anonymous access type: either
14272 -- an access_to_object or an access_to_subprogram.
14274 if Present (Acc_Def) then
14275 if Nkind (Acc_Def) = N_Access_Function_Definition then
14276 Type_Def :=
14277 Make_Access_Function_Definition (Loc,
14278 Parameter_Specifications =>
14279 Parameter_Specifications (Acc_Def),
14280 Result_Definition => Result_Definition (Acc_Def));
14281 else
14282 Type_Def :=
14283 Make_Access_Procedure_Definition (Loc,
14284 Parameter_Specifications =>
14285 Parameter_Specifications (Acc_Def));
14286 end if;
14288 else
14289 Type_Def :=
14290 Make_Access_To_Object_Definition (Loc,
14291 Subtype_Indication =>
14292 Relocate_Node
14293 (Subtype_Mark
14294 (Access_Definition
14295 (Component_Definition (Comp)))));
14296 end if;
14298 Decl := Make_Full_Type_Declaration (Loc,
14299 Defining_Identifier => Anon_Access,
14300 Type_Definition => Type_Def);
14302 Insert_Before (N, Decl);
14303 Analyze (Decl);
14305 Set_Access_Definition (Component_Definition (Comp), Empty);
14306 Set_Subtype_Indication (Component_Definition (Comp),
14307 New_Occurrence_Of (Anon_Access, Loc));
14308 Set_Ekind (Anon_Access, E_Anonymous_Access_Type);
14309 Set_Is_Local_Anonymous_Access (Anon_Access);
14310 end if;
14312 Next (Comp);
14313 end loop;
14315 if Present (Variant_Part (Comp_List)) then
14316 declare
14317 V : Node_Id;
14318 begin
14319 V := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
14320 while Present (V) loop
14321 Check_Anonymous_Access_Types (Component_List (V));
14322 Next_Non_Pragma (V);
14323 end loop;
14324 end;
14325 end if;
14326 end Check_Anonymous_Access_Types;
14328 --------------------------------------
14329 -- Make_Incomplete_Type_Declaration --
14330 --------------------------------------
14332 procedure Make_Incomplete_Type_Declaration is
14333 Decl : Node_Id;
14334 H : Entity_Id;
14336 begin
14337 -- If there is a previous partial view, no need to create a new one
14339 if Prev /= T then
14340 return;
14342 elsif No (Inc_T) then
14343 Inc_T := Make_Defining_Identifier (Loc, Chars (T));
14344 Decl := Make_Incomplete_Type_Declaration (Loc, Inc_T);
14346 -- Type has already been inserted into the current scope.
14347 -- Remove it, and add incomplete declaration for type, so
14348 -- that subsequent anonymous access types can use it.
14350 H := Current_Entity (T);
14352 if H = T then
14353 Set_Name_Entity_Id (Chars (T), Empty);
14354 else
14355 while Present (H)
14356 and then Homonym (H) /= T
14357 loop
14358 H := Homonym (T);
14359 end loop;
14361 Set_Homonym (H, Homonym (T));
14362 end if;
14364 Insert_Before (N, Decl);
14365 Analyze (Decl);
14366 Set_Full_View (Inc_T, T);
14368 if Tagged_Present (Def) then
14369 Make_Class_Wide_Type (Inc_T);
14370 Set_Class_Wide_Type (T, Class_Wide_Type (Inc_T));
14371 end if;
14372 end if;
14373 end Make_Incomplete_Type_Declaration;
14375 -- Start of processing for Record_Type_Declaration
14377 begin
14378 -- These flags must be initialized before calling Process_Discriminants
14379 -- because this routine makes use of them.
14381 Set_Ekind (T, E_Record_Type);
14382 Set_Etype (T, T);
14383 Init_Size_Align (T);
14384 Set_Abstract_Interfaces (T, No_Elist);
14385 Set_Stored_Constraint (T, No_Elist);
14387 -- Normal case
14389 if Ada_Version < Ada_05
14390 or else not Interface_Present (Def)
14391 then
14392 -- The flag Is_Tagged_Type might have already been set by
14393 -- Find_Type_Name if it detected an error for declaration T. This
14394 -- arises in the case of private tagged types where the full view
14395 -- omits the word tagged.
14397 Is_Tagged :=
14398 Tagged_Present (Def)
14399 or else (Serious_Errors_Detected > 0 and then Is_Tagged_Type (T));
14401 Set_Is_Tagged_Type (T, Is_Tagged);
14402 Set_Is_Limited_Record (T, Limited_Present (Def));
14404 -- Type is abstract if full declaration carries keyword, or if
14405 -- previous partial view did.
14407 Set_Is_Abstract (T, Is_Abstract (T)
14408 or else Abstract_Present (Def));
14410 else
14411 Is_Tagged := True;
14412 Set_Is_Tagged_Type (T);
14414 Set_Is_Limited_Record (T, Limited_Present (Def)
14415 or else Task_Present (Def)
14416 or else Protected_Present (Def));
14418 -- Type is abstract if full declaration carries keyword, or if
14419 -- previous partial view did.
14421 Set_Is_Abstract (T);
14422 Set_Is_Interface (T);
14423 end if;
14425 -- First pass: if there are self-referential access components,
14426 -- create the required anonymous access type declarations, and if
14427 -- need be an incomplete type declaration for T itself.
14429 Check_Anonymous_Access_Types (Component_List (Def));
14431 -- Ada 2005 (AI-251): Complete the initialization of attributes
14432 -- associated with abstract interfaces and decorate the names in the
14433 -- list of ancestor interfaces (if any).
14435 if Ada_Version >= Ada_05
14436 and then Present (Interface_List (Def))
14437 then
14438 declare
14439 Iface : Node_Id;
14440 Iface_Def : Node_Id;
14441 Iface_Typ : Entity_Id;
14442 begin
14443 Iface := First (Interface_List (Def));
14444 while Present (Iface) loop
14445 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
14446 Iface_Def := Type_Definition (Parent (Iface_Typ));
14448 if not Is_Interface (Iface_Typ) then
14449 Error_Msg_NE ("(Ada 2005) & must be an interface",
14450 Iface, Iface_Typ);
14452 else
14453 -- "The declaration of a specific descendant of an
14454 -- interface type freezes the interface type" RM 13.14
14456 Freeze_Before (N, Iface_Typ);
14458 -- Ada 2005 (AI-345): Protected interfaces can only
14459 -- inherit from limited, synchronized or protected
14460 -- interfaces.
14462 if Protected_Present (Def) then
14463 if Limited_Present (Iface_Def)
14464 or else Synchronized_Present (Iface_Def)
14465 or else Protected_Present (Iface_Def)
14466 then
14467 null;
14469 elsif Task_Present (Iface_Def) then
14470 Error_Msg_N ("(Ada 2005) protected interface cannot"
14471 & " inherit from task interface", Iface);
14473 else
14474 Error_Msg_N ("(Ada 2005) protected interface cannot"
14475 & " inherit from non-limited interface", Iface);
14476 end if;
14478 -- Ada 2005 (AI-345): Synchronized interfaces can only
14479 -- inherit from limited and synchronized.
14481 elsif Synchronized_Present (Def) then
14482 if Limited_Present (Iface_Def)
14483 or else Synchronized_Present (Iface_Def)
14484 then
14485 null;
14487 elsif Protected_Present (Iface_Def) then
14488 Error_Msg_N ("(Ada 2005) synchronized interface " &
14489 "cannot inherit from protected interface", Iface);
14491 elsif Task_Present (Iface_Def) then
14492 Error_Msg_N ("(Ada 2005) synchronized interface " &
14493 "cannot inherit from task interface", Iface);
14495 else
14496 Error_Msg_N ("(Ada 2005) synchronized interface " &
14497 "cannot inherit from non-limited interface",
14498 Iface);
14499 end if;
14501 -- Ada 2005 (AI-345): Task interfaces can only inherit
14502 -- from limited, synchronized or task interfaces.
14504 elsif Task_Present (Def) then
14505 if Limited_Present (Iface_Def)
14506 or else Synchronized_Present (Iface_Def)
14507 or else Task_Present (Iface_Def)
14508 then
14509 null;
14511 elsif Protected_Present (Iface_Def) then
14512 Error_Msg_N ("(Ada 2005) task interface cannot" &
14513 " inherit from protected interface", Iface);
14515 else
14516 Error_Msg_N ("(Ada 2005) task interface cannot" &
14517 " inherit from non-limited interface", Iface);
14518 end if;
14519 end if;
14520 end if;
14522 Next (Iface);
14523 end loop;
14525 Set_Abstract_Interfaces (T, New_Elmt_List);
14526 Collect_Interfaces (Type_Definition (N), T);
14527 end;
14528 end if;
14530 -- Records constitute a scope for the component declarations within.
14531 -- The scope is created prior to the processing of these declarations.
14532 -- Discriminants are processed first, so that they are visible when
14533 -- processing the other components. The Ekind of the record type itself
14534 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
14536 -- Enter record scope
14538 New_Scope (T);
14540 -- If an incomplete or private type declaration was already given for
14541 -- the type, then this scope already exists, and the discriminants have
14542 -- been declared within. We must verify that the full declaration
14543 -- matches the incomplete one.
14545 Check_Or_Process_Discriminants (N, T, Prev);
14547 Set_Is_Constrained (T, not Has_Discriminants (T));
14548 Set_Has_Delayed_Freeze (T, True);
14550 -- For tagged types add a manually analyzed component corresponding
14551 -- to the component _tag, the corresponding piece of tree will be
14552 -- expanded as part of the freezing actions if it is not a CPP_Class.
14554 if Is_Tagged then
14556 -- Do not add the tag unless we are in expansion mode
14558 if Expander_Active then
14559 Tag_Comp := Make_Defining_Identifier (Sloc (Def), Name_uTag);
14560 Enter_Name (Tag_Comp);
14562 Set_Is_Tag (Tag_Comp);
14563 Set_Is_Aliased (Tag_Comp);
14564 Set_Ekind (Tag_Comp, E_Component);
14565 Set_Etype (Tag_Comp, RTE (RE_Tag));
14566 Set_DT_Entry_Count (Tag_Comp, No_Uint);
14567 Set_Original_Record_Component (Tag_Comp, Tag_Comp);
14568 Init_Component_Location (Tag_Comp);
14570 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
14571 -- implemented interfaces
14573 Add_Interface_Tag_Components (N, T);
14574 end if;
14576 Make_Class_Wide_Type (T);
14577 Set_Primitive_Operations (T, New_Elmt_List);
14578 end if;
14580 -- We must suppress range checks when processing the components
14581 -- of a record in the presence of discriminants, since we don't
14582 -- want spurious checks to be generated during their analysis, but
14583 -- must reset the Suppress_Range_Checks flags after having processed
14584 -- the record definition.
14586 if Has_Discriminants (T) and then not Range_Checks_Suppressed (T) then
14587 Set_Kill_Range_Checks (T, True);
14588 Record_Type_Definition (Def, Prev);
14589 Set_Kill_Range_Checks (T, False);
14590 else
14591 Record_Type_Definition (Def, Prev);
14592 end if;
14594 -- Exit from record scope
14596 End_Scope;
14598 if Expander_Active
14599 and then Is_Tagged
14600 and then not Is_Empty_List (Interface_List (Def))
14601 then
14602 -- Ada 2005 (AI-251): Derive the interface subprograms of all the
14603 -- implemented interfaces and check if some of the subprograms
14604 -- inherited from the ancestor cover some interface subprogram.
14606 Derive_Interface_Subprograms (T);
14607 end if;
14608 end Record_Type_Declaration;
14610 ----------------------------
14611 -- Record_Type_Definition --
14612 ----------------------------
14614 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id) is
14615 Component : Entity_Id;
14616 Ctrl_Components : Boolean := False;
14617 Final_Storage_Only : Boolean;
14618 T : Entity_Id;
14620 begin
14621 if Ekind (Prev_T) = E_Incomplete_Type then
14622 T := Full_View (Prev_T);
14623 else
14624 T := Prev_T;
14625 end if;
14627 Final_Storage_Only := not Is_Controlled (T);
14629 -- If the component list of a record type is defined by the reserved
14630 -- word null and there is no discriminant part, then the record type has
14631 -- no components and all records of the type are null records (RM 3.7)
14632 -- This procedure is also called to process the extension part of a
14633 -- record extension, in which case the current scope may have inherited
14634 -- components.
14636 if No (Def)
14637 or else No (Component_List (Def))
14638 or else Null_Present (Component_List (Def))
14639 then
14640 null;
14642 else
14643 Analyze_Declarations (Component_Items (Component_List (Def)));
14645 if Present (Variant_Part (Component_List (Def))) then
14646 Analyze (Variant_Part (Component_List (Def)));
14647 end if;
14648 end if;
14650 -- After completing the semantic analysis of the record definition,
14651 -- record components, both new and inherited, are accessible. Set
14652 -- their kind accordingly.
14654 Component := First_Entity (Current_Scope);
14655 while Present (Component) loop
14656 if Ekind (Component) = E_Void then
14657 Set_Ekind (Component, E_Component);
14658 Init_Component_Location (Component);
14659 end if;
14661 if Has_Task (Etype (Component)) then
14662 Set_Has_Task (T);
14663 end if;
14665 if Ekind (Component) /= E_Component then
14666 null;
14668 elsif Has_Controlled_Component (Etype (Component))
14669 or else (Chars (Component) /= Name_uParent
14670 and then Is_Controlled (Etype (Component)))
14671 then
14672 Set_Has_Controlled_Component (T, True);
14673 Final_Storage_Only := Final_Storage_Only
14674 and then Finalize_Storage_Only (Etype (Component));
14675 Ctrl_Components := True;
14676 end if;
14678 Next_Entity (Component);
14679 end loop;
14681 -- A type is Finalize_Storage_Only only if all its controlled
14682 -- components are so.
14684 if Ctrl_Components then
14685 Set_Finalize_Storage_Only (T, Final_Storage_Only);
14686 end if;
14688 -- Place reference to end record on the proper entity, which may
14689 -- be a partial view.
14691 if Present (Def) then
14692 Process_End_Label (Def, 'e', Prev_T);
14693 end if;
14694 end Record_Type_Definition;
14696 ------------------------
14697 -- Replace_Components --
14698 ------------------------
14700 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id) is
14701 function Process (N : Node_Id) return Traverse_Result;
14703 -------------
14704 -- Process --
14705 -------------
14707 function Process (N : Node_Id) return Traverse_Result is
14708 Comp : Entity_Id;
14710 begin
14711 if Nkind (N) = N_Discriminant_Specification then
14712 Comp := First_Discriminant (Typ);
14713 while Present (Comp) loop
14714 if Chars (Comp) = Chars (Defining_Identifier (N)) then
14715 Set_Defining_Identifier (N, Comp);
14716 exit;
14717 end if;
14719 Next_Discriminant (Comp);
14720 end loop;
14722 elsif Nkind (N) = N_Component_Declaration then
14723 Comp := First_Component (Typ);
14724 while Present (Comp) loop
14725 if Chars (Comp) = Chars (Defining_Identifier (N)) then
14726 Set_Defining_Identifier (N, Comp);
14727 exit;
14728 end if;
14730 Next_Component (Comp);
14731 end loop;
14732 end if;
14734 return OK;
14735 end Process;
14737 procedure Replace is new Traverse_Proc (Process);
14739 -- Start of processing for Replace_Components
14741 begin
14742 Replace (Decl);
14743 end Replace_Components;
14745 -------------------------------
14746 -- Set_Completion_Referenced --
14747 -------------------------------
14749 procedure Set_Completion_Referenced (E : Entity_Id) is
14750 begin
14751 -- If in main unit, mark entity that is a completion as referenced,
14752 -- warnings go on the partial view when needed.
14754 if In_Extended_Main_Source_Unit (E) then
14755 Set_Referenced (E);
14756 end if;
14757 end Set_Completion_Referenced;
14759 ---------------------
14760 -- Set_Fixed_Range --
14761 ---------------------
14763 -- The range for fixed-point types is complicated by the fact that we
14764 -- do not know the exact end points at the time of the declaration. This
14765 -- is true for three reasons:
14767 -- A size clause may affect the fudging of the end-points
14768 -- A small clause may affect the values of the end-points
14769 -- We try to include the end-points if it does not affect the size
14771 -- This means that the actual end-points must be established at the point
14772 -- when the type is frozen. Meanwhile, we first narrow the range as
14773 -- permitted (so that it will fit if necessary in a small specified size),
14774 -- and then build a range subtree with these narrowed bounds.
14776 -- Set_Fixed_Range constructs the range from real literal values, and sets
14777 -- the range as the Scalar_Range of the given fixed-point type entity.
14779 -- The parent of this range is set to point to the entity so that it is
14780 -- properly hooked into the tree (unlike normal Scalar_Range entries for
14781 -- other scalar types, which are just pointers to the range in the
14782 -- original tree, this would otherwise be an orphan).
14784 -- The tree is left unanalyzed. When the type is frozen, the processing
14785 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
14786 -- analyzed, and uses this as an indication that it should complete
14787 -- work on the range (it will know the final small and size values).
14789 procedure Set_Fixed_Range
14790 (E : Entity_Id;
14791 Loc : Source_Ptr;
14792 Lo : Ureal;
14793 Hi : Ureal)
14795 S : constant Node_Id :=
14796 Make_Range (Loc,
14797 Low_Bound => Make_Real_Literal (Loc, Lo),
14798 High_Bound => Make_Real_Literal (Loc, Hi));
14800 begin
14801 Set_Scalar_Range (E, S);
14802 Set_Parent (S, E);
14803 end Set_Fixed_Range;
14805 ----------------------------------
14806 -- Set_Scalar_Range_For_Subtype --
14807 ----------------------------------
14809 procedure Set_Scalar_Range_For_Subtype
14810 (Def_Id : Entity_Id;
14811 R : Node_Id;
14812 Subt : Entity_Id)
14814 Kind : constant Entity_Kind := Ekind (Def_Id);
14816 begin
14817 Set_Scalar_Range (Def_Id, R);
14819 -- We need to link the range into the tree before resolving it so
14820 -- that types that are referenced, including importantly the subtype
14821 -- itself, are properly frozen (Freeze_Expression requires that the
14822 -- expression be properly linked into the tree). Of course if it is
14823 -- already linked in, then we do not disturb the current link.
14825 if No (Parent (R)) then
14826 Set_Parent (R, Def_Id);
14827 end if;
14829 -- Reset the kind of the subtype during analysis of the range, to
14830 -- catch possible premature use in the bounds themselves.
14832 Set_Ekind (Def_Id, E_Void);
14833 Process_Range_Expr_In_Decl (R, Subt);
14834 Set_Ekind (Def_Id, Kind);
14836 end Set_Scalar_Range_For_Subtype;
14838 --------------------------------------------------------
14839 -- Set_Stored_Constraint_From_Discriminant_Constraint --
14840 --------------------------------------------------------
14842 procedure Set_Stored_Constraint_From_Discriminant_Constraint
14843 (E : Entity_Id)
14845 begin
14846 -- Make sure set if encountered during Expand_To_Stored_Constraint
14848 Set_Stored_Constraint (E, No_Elist);
14850 -- Give it the right value
14852 if Is_Constrained (E) and then Has_Discriminants (E) then
14853 Set_Stored_Constraint (E,
14854 Expand_To_Stored_Constraint (E, Discriminant_Constraint (E)));
14855 end if;
14856 end Set_Stored_Constraint_From_Discriminant_Constraint;
14858 -------------------------------------
14859 -- Signed_Integer_Type_Declaration --
14860 -------------------------------------
14862 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id) is
14863 Implicit_Base : Entity_Id;
14864 Base_Typ : Entity_Id;
14865 Lo_Val : Uint;
14866 Hi_Val : Uint;
14867 Errs : Boolean := False;
14868 Lo : Node_Id;
14869 Hi : Node_Id;
14871 function Can_Derive_From (E : Entity_Id) return Boolean;
14872 -- Determine whether given bounds allow derivation from specified type
14874 procedure Check_Bound (Expr : Node_Id);
14875 -- Check bound to make sure it is integral and static. If not, post
14876 -- appropriate error message and set Errs flag
14878 ---------------------
14879 -- Can_Derive_From --
14880 ---------------------
14882 -- Note we check both bounds against both end values, to deal with
14883 -- strange types like ones with a range of 0 .. -12341234.
14885 function Can_Derive_From (E : Entity_Id) return Boolean is
14886 Lo : constant Uint := Expr_Value (Type_Low_Bound (E));
14887 Hi : constant Uint := Expr_Value (Type_High_Bound (E));
14888 begin
14889 return Lo <= Lo_Val and then Lo_Val <= Hi
14890 and then
14891 Lo <= Hi_Val and then Hi_Val <= Hi;
14892 end Can_Derive_From;
14894 -----------------
14895 -- Check_Bound --
14896 -----------------
14898 procedure Check_Bound (Expr : Node_Id) is
14899 begin
14900 -- If a range constraint is used as an integer type definition, each
14901 -- bound of the range must be defined by a static expression of some
14902 -- integer type, but the two bounds need not have the same integer
14903 -- type (Negative bounds are allowed.) (RM 3.5.4)
14905 if not Is_Integer_Type (Etype (Expr)) then
14906 Error_Msg_N
14907 ("integer type definition bounds must be of integer type", Expr);
14908 Errs := True;
14910 elsif not Is_OK_Static_Expression (Expr) then
14911 Flag_Non_Static_Expr
14912 ("non-static expression used for integer type bound!", Expr);
14913 Errs := True;
14915 -- The bounds are folded into literals, and we set their type to be
14916 -- universal, to avoid typing difficulties: we cannot set the type
14917 -- of the literal to the new type, because this would be a forward
14918 -- reference for the back end, and if the original type is user-
14919 -- defined this can lead to spurious semantic errors (e.g. 2928-003).
14921 else
14922 if Is_Entity_Name (Expr) then
14923 Fold_Uint (Expr, Expr_Value (Expr), True);
14924 end if;
14926 Set_Etype (Expr, Universal_Integer);
14927 end if;
14928 end Check_Bound;
14930 -- Start of processing for Signed_Integer_Type_Declaration
14932 begin
14933 -- Create an anonymous base type
14935 Implicit_Base :=
14936 Create_Itype (E_Signed_Integer_Type, Parent (Def), T, 'B');
14938 -- Analyze and check the bounds, they can be of any integer type
14940 Lo := Low_Bound (Def);
14941 Hi := High_Bound (Def);
14943 -- Arbitrarily use Integer as the type if either bound had an error
14945 if Hi = Error or else Lo = Error then
14946 Base_Typ := Any_Integer;
14947 Set_Error_Posted (T, True);
14949 -- Here both bounds are OK expressions
14951 else
14952 Analyze_And_Resolve (Lo, Any_Integer);
14953 Analyze_And_Resolve (Hi, Any_Integer);
14955 Check_Bound (Lo);
14956 Check_Bound (Hi);
14958 if Errs then
14959 Hi := Type_High_Bound (Standard_Long_Long_Integer);
14960 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
14961 end if;
14963 -- Find type to derive from
14965 Lo_Val := Expr_Value (Lo);
14966 Hi_Val := Expr_Value (Hi);
14968 if Can_Derive_From (Standard_Short_Short_Integer) then
14969 Base_Typ := Base_Type (Standard_Short_Short_Integer);
14971 elsif Can_Derive_From (Standard_Short_Integer) then
14972 Base_Typ := Base_Type (Standard_Short_Integer);
14974 elsif Can_Derive_From (Standard_Integer) then
14975 Base_Typ := Base_Type (Standard_Integer);
14977 elsif Can_Derive_From (Standard_Long_Integer) then
14978 Base_Typ := Base_Type (Standard_Long_Integer);
14980 elsif Can_Derive_From (Standard_Long_Long_Integer) then
14981 Base_Typ := Base_Type (Standard_Long_Long_Integer);
14983 else
14984 Base_Typ := Base_Type (Standard_Long_Long_Integer);
14985 Error_Msg_N ("integer type definition bounds out of range", Def);
14986 Hi := Type_High_Bound (Standard_Long_Long_Integer);
14987 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
14988 end if;
14989 end if;
14991 -- Complete both implicit base and declared first subtype entities
14993 Set_Etype (Implicit_Base, Base_Typ);
14994 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
14995 Set_Size_Info (Implicit_Base, (Base_Typ));
14996 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
14997 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
14999 Set_Ekind (T, E_Signed_Integer_Subtype);
15000 Set_Etype (T, Implicit_Base);
15002 Set_Size_Info (T, (Implicit_Base));
15003 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
15004 Set_Scalar_Range (T, Def);
15005 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
15006 Set_Is_Constrained (T);
15007 end Signed_Integer_Type_Declaration;
15009 end Sem_Ch3;