* gimple-ssa-store-merging.c (struct store_immediate_info): Add
[official-gcc.git] / gcc / ira.c
blob8c93d3df518e0c2fa7524fa9fd6526c3b164677b
1 /* Integrated Register Allocator (IRA) entry point.
2 Copyright (C) 2006-2017 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* The integrated register allocator (IRA) is a
22 regional register allocator performing graph coloring on a top-down
23 traversal of nested regions. Graph coloring in a region is based
24 on Chaitin-Briggs algorithm. It is called integrated because
25 register coalescing, register live range splitting, and choosing a
26 better hard register are done on-the-fly during coloring. Register
27 coalescing and choosing a cheaper hard register is done by hard
28 register preferencing during hard register assigning. The live
29 range splitting is a byproduct of the regional register allocation.
31 Major IRA notions are:
33 o *Region* is a part of CFG where graph coloring based on
34 Chaitin-Briggs algorithm is done. IRA can work on any set of
35 nested CFG regions forming a tree. Currently the regions are
36 the entire function for the root region and natural loops for
37 the other regions. Therefore data structure representing a
38 region is called loop_tree_node.
40 o *Allocno class* is a register class used for allocation of
41 given allocno. It means that only hard register of given
42 register class can be assigned to given allocno. In reality,
43 even smaller subset of (*profitable*) hard registers can be
44 assigned. In rare cases, the subset can be even smaller
45 because our modification of Chaitin-Briggs algorithm requires
46 that sets of hard registers can be assigned to allocnos forms a
47 forest, i.e. the sets can be ordered in a way where any
48 previous set is not intersected with given set or is a superset
49 of given set.
51 o *Pressure class* is a register class belonging to a set of
52 register classes containing all of the hard-registers available
53 for register allocation. The set of all pressure classes for a
54 target is defined in the corresponding machine-description file
55 according some criteria. Register pressure is calculated only
56 for pressure classes and it affects some IRA decisions as
57 forming allocation regions.
59 o *Allocno* represents the live range of a pseudo-register in a
60 region. Besides the obvious attributes like the corresponding
61 pseudo-register number, allocno class, conflicting allocnos and
62 conflicting hard-registers, there are a few allocno attributes
63 which are important for understanding the allocation algorithm:
65 - *Live ranges*. This is a list of ranges of *program points*
66 where the allocno lives. Program points represent places
67 where a pseudo can be born or become dead (there are
68 approximately two times more program points than the insns)
69 and they are represented by integers starting with 0. The
70 live ranges are used to find conflicts between allocnos.
71 They also play very important role for the transformation of
72 the IRA internal representation of several regions into a one
73 region representation. The later is used during the reload
74 pass work because each allocno represents all of the
75 corresponding pseudo-registers.
77 - *Hard-register costs*. This is a vector of size equal to the
78 number of available hard-registers of the allocno class. The
79 cost of a callee-clobbered hard-register for an allocno is
80 increased by the cost of save/restore code around the calls
81 through the given allocno's life. If the allocno is a move
82 instruction operand and another operand is a hard-register of
83 the allocno class, the cost of the hard-register is decreased
84 by the move cost.
86 When an allocno is assigned, the hard-register with minimal
87 full cost is used. Initially, a hard-register's full cost is
88 the corresponding value from the hard-register's cost vector.
89 If the allocno is connected by a *copy* (see below) to
90 another allocno which has just received a hard-register, the
91 cost of the hard-register is decreased. Before choosing a
92 hard-register for an allocno, the allocno's current costs of
93 the hard-registers are modified by the conflict hard-register
94 costs of all of the conflicting allocnos which are not
95 assigned yet.
97 - *Conflict hard-register costs*. This is a vector of the same
98 size as the hard-register costs vector. To permit an
99 unassigned allocno to get a better hard-register, IRA uses
100 this vector to calculate the final full cost of the
101 available hard-registers. Conflict hard-register costs of an
102 unassigned allocno are also changed with a change of the
103 hard-register cost of the allocno when a copy involving the
104 allocno is processed as described above. This is done to
105 show other unassigned allocnos that a given allocno prefers
106 some hard-registers in order to remove the move instruction
107 corresponding to the copy.
109 o *Cap*. If a pseudo-register does not live in a region but
110 lives in a nested region, IRA creates a special allocno called
111 a cap in the outer region. A region cap is also created for a
112 subregion cap.
114 o *Copy*. Allocnos can be connected by copies. Copies are used
115 to modify hard-register costs for allocnos during coloring.
116 Such modifications reflects a preference to use the same
117 hard-register for the allocnos connected by copies. Usually
118 copies are created for move insns (in this case it results in
119 register coalescing). But IRA also creates copies for operands
120 of an insn which should be assigned to the same hard-register
121 due to constraints in the machine description (it usually
122 results in removing a move generated in reload to satisfy
123 the constraints) and copies referring to the allocno which is
124 the output operand of an instruction and the allocno which is
125 an input operand dying in the instruction (creation of such
126 copies results in less register shuffling). IRA *does not*
127 create copies between the same register allocnos from different
128 regions because we use another technique for propagating
129 hard-register preference on the borders of regions.
131 Allocnos (including caps) for the upper region in the region tree
132 *accumulate* information important for coloring from allocnos with
133 the same pseudo-register from nested regions. This includes
134 hard-register and memory costs, conflicts with hard-registers,
135 allocno conflicts, allocno copies and more. *Thus, attributes for
136 allocnos in a region have the same values as if the region had no
137 subregions*. It means that attributes for allocnos in the
138 outermost region corresponding to the function have the same values
139 as though the allocation used only one region which is the entire
140 function. It also means that we can look at IRA work as if the
141 first IRA did allocation for all function then it improved the
142 allocation for loops then their subloops and so on.
144 IRA major passes are:
146 o Building IRA internal representation which consists of the
147 following subpasses:
149 * First, IRA builds regions and creates allocnos (file
150 ira-build.c) and initializes most of their attributes.
152 * Then IRA finds an allocno class for each allocno and
153 calculates its initial (non-accumulated) cost of memory and
154 each hard-register of its allocno class (file ira-cost.c).
156 * IRA creates live ranges of each allocno, calculates register
157 pressure for each pressure class in each region, sets up
158 conflict hard registers for each allocno and info about calls
159 the allocno lives through (file ira-lives.c).
161 * IRA removes low register pressure loops from the regions
162 mostly to speed IRA up (file ira-build.c).
164 * IRA propagates accumulated allocno info from lower region
165 allocnos to corresponding upper region allocnos (file
166 ira-build.c).
168 * IRA creates all caps (file ira-build.c).
170 * Having live-ranges of allocnos and their classes, IRA creates
171 conflicting allocnos for each allocno. Conflicting allocnos
172 are stored as a bit vector or array of pointers to the
173 conflicting allocnos whatever is more profitable (file
174 ira-conflicts.c). At this point IRA creates allocno copies.
176 o Coloring. Now IRA has all necessary info to start graph coloring
177 process. It is done in each region on top-down traverse of the
178 region tree (file ira-color.c). There are following subpasses:
180 * Finding profitable hard registers of corresponding allocno
181 class for each allocno. For example, only callee-saved hard
182 registers are frequently profitable for allocnos living
183 through colors. If the profitable hard register set of
184 allocno does not form a tree based on subset relation, we use
185 some approximation to form the tree. This approximation is
186 used to figure out trivial colorability of allocnos. The
187 approximation is a pretty rare case.
189 * Putting allocnos onto the coloring stack. IRA uses Briggs
190 optimistic coloring which is a major improvement over
191 Chaitin's coloring. Therefore IRA does not spill allocnos at
192 this point. There is some freedom in the order of putting
193 allocnos on the stack which can affect the final result of
194 the allocation. IRA uses some heuristics to improve the
195 order. The major one is to form *threads* from colorable
196 allocnos and push them on the stack by threads. Thread is a
197 set of non-conflicting colorable allocnos connected by
198 copies. The thread contains allocnos from the colorable
199 bucket or colorable allocnos already pushed onto the coloring
200 stack. Pushing thread allocnos one after another onto the
201 stack increases chances of removing copies when the allocnos
202 get the same hard reg.
204 We also use a modification of Chaitin-Briggs algorithm which
205 works for intersected register classes of allocnos. To
206 figure out trivial colorability of allocnos, the mentioned
207 above tree of hard register sets is used. To get an idea how
208 the algorithm works in i386 example, let us consider an
209 allocno to which any general hard register can be assigned.
210 If the allocno conflicts with eight allocnos to which only
211 EAX register can be assigned, given allocno is still
212 trivially colorable because all conflicting allocnos might be
213 assigned only to EAX and all other general hard registers are
214 still free.
216 To get an idea of the used trivial colorability criterion, it
217 is also useful to read article "Graph-Coloring Register
218 Allocation for Irregular Architectures" by Michael D. Smith
219 and Glen Holloway. Major difference between the article
220 approach and approach used in IRA is that Smith's approach
221 takes register classes only from machine description and IRA
222 calculate register classes from intermediate code too
223 (e.g. an explicit usage of hard registers in RTL code for
224 parameter passing can result in creation of additional
225 register classes which contain or exclude the hard
226 registers). That makes IRA approach useful for improving
227 coloring even for architectures with regular register files
228 and in fact some benchmarking shows the improvement for
229 regular class architectures is even bigger than for irregular
230 ones. Another difference is that Smith's approach chooses
231 intersection of classes of all insn operands in which a given
232 pseudo occurs. IRA can use bigger classes if it is still
233 more profitable than memory usage.
235 * Popping the allocnos from the stack and assigning them hard
236 registers. If IRA can not assign a hard register to an
237 allocno and the allocno is coalesced, IRA undoes the
238 coalescing and puts the uncoalesced allocnos onto the stack in
239 the hope that some such allocnos will get a hard register
240 separately. If IRA fails to assign hard register or memory
241 is more profitable for it, IRA spills the allocno. IRA
242 assigns the allocno the hard-register with minimal full
243 allocation cost which reflects the cost of usage of the
244 hard-register for the allocno and cost of usage of the
245 hard-register for allocnos conflicting with given allocno.
247 * Chaitin-Briggs coloring assigns as many pseudos as possible
248 to hard registers. After coloring we try to improve
249 allocation with cost point of view. We improve the
250 allocation by spilling some allocnos and assigning the freed
251 hard registers to other allocnos if it decreases the overall
252 allocation cost.
254 * After allocno assigning in the region, IRA modifies the hard
255 register and memory costs for the corresponding allocnos in
256 the subregions to reflect the cost of possible loads, stores,
257 or moves on the border of the region and its subregions.
258 When default regional allocation algorithm is used
259 (-fira-algorithm=mixed), IRA just propagates the assignment
260 for allocnos if the register pressure in the region for the
261 corresponding pressure class is less than number of available
262 hard registers for given pressure class.
264 o Spill/restore code moving. When IRA performs an allocation
265 by traversing regions in top-down order, it does not know what
266 happens below in the region tree. Therefore, sometimes IRA
267 misses opportunities to perform a better allocation. A simple
268 optimization tries to improve allocation in a region having
269 subregions and containing in another region. If the
270 corresponding allocnos in the subregion are spilled, it spills
271 the region allocno if it is profitable. The optimization
272 implements a simple iterative algorithm performing profitable
273 transformations while they are still possible. It is fast in
274 practice, so there is no real need for a better time complexity
275 algorithm.
277 o Code change. After coloring, two allocnos representing the
278 same pseudo-register outside and inside a region respectively
279 may be assigned to different locations (hard-registers or
280 memory). In this case IRA creates and uses a new
281 pseudo-register inside the region and adds code to move allocno
282 values on the region's borders. This is done during top-down
283 traversal of the regions (file ira-emit.c). In some
284 complicated cases IRA can create a new allocno to move allocno
285 values (e.g. when a swap of values stored in two hard-registers
286 is needed). At this stage, the new allocno is marked as
287 spilled. IRA still creates the pseudo-register and the moves
288 on the region borders even when both allocnos were assigned to
289 the same hard-register. If the reload pass spills a
290 pseudo-register for some reason, the effect will be smaller
291 because another allocno will still be in the hard-register. In
292 most cases, this is better then spilling both allocnos. If
293 reload does not change the allocation for the two
294 pseudo-registers, the trivial move will be removed by
295 post-reload optimizations. IRA does not generate moves for
296 allocnos assigned to the same hard register when the default
297 regional allocation algorithm is used and the register pressure
298 in the region for the corresponding pressure class is less than
299 number of available hard registers for given pressure class.
300 IRA also does some optimizations to remove redundant stores and
301 to reduce code duplication on the region borders.
303 o Flattening internal representation. After changing code, IRA
304 transforms its internal representation for several regions into
305 one region representation (file ira-build.c). This process is
306 called IR flattening. Such process is more complicated than IR
307 rebuilding would be, but is much faster.
309 o After IR flattening, IRA tries to assign hard registers to all
310 spilled allocnos. This is implemented by a simple and fast
311 priority coloring algorithm (see function
312 ira_reassign_conflict_allocnos::ira-color.c). Here new allocnos
313 created during the code change pass can be assigned to hard
314 registers.
316 o At the end IRA calls the reload pass. The reload pass
317 communicates with IRA through several functions in file
318 ira-color.c to improve its decisions in
320 * sharing stack slots for the spilled pseudos based on IRA info
321 about pseudo-register conflicts.
323 * reassigning hard-registers to all spilled pseudos at the end
324 of each reload iteration.
326 * choosing a better hard-register to spill based on IRA info
327 about pseudo-register live ranges and the register pressure
328 in places where the pseudo-register lives.
330 IRA uses a lot of data representing the target processors. These
331 data are initialized in file ira.c.
333 If function has no loops (or the loops are ignored when
334 -fira-algorithm=CB is used), we have classic Chaitin-Briggs
335 coloring (only instead of separate pass of coalescing, we use hard
336 register preferencing). In such case, IRA works much faster
337 because many things are not made (like IR flattening, the
338 spill/restore optimization, and the code change).
340 Literature is worth to read for better understanding the code:
342 o Preston Briggs, Keith D. Cooper, Linda Torczon. Improvements to
343 Graph Coloring Register Allocation.
345 o David Callahan, Brian Koblenz. Register allocation via
346 hierarchical graph coloring.
348 o Keith Cooper, Anshuman Dasgupta, Jason Eckhardt. Revisiting Graph
349 Coloring Register Allocation: A Study of the Chaitin-Briggs and
350 Callahan-Koblenz Algorithms.
352 o Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Global
353 Register Allocation Based on Graph Fusion.
355 o Michael D. Smith and Glenn Holloway. Graph-Coloring Register
356 Allocation for Irregular Architectures
358 o Vladimir Makarov. The Integrated Register Allocator for GCC.
360 o Vladimir Makarov. The top-down register allocator for irregular
361 register file architectures.
366 #include "config.h"
367 #include "system.h"
368 #include "coretypes.h"
369 #include "backend.h"
370 #include "target.h"
371 #include "rtl.h"
372 #include "tree.h"
373 #include "df.h"
374 #include "memmodel.h"
375 #include "tm_p.h"
376 #include "insn-config.h"
377 #include "regs.h"
378 #include "ira.h"
379 #include "ira-int.h"
380 #include "diagnostic-core.h"
381 #include "cfgrtl.h"
382 #include "cfgbuild.h"
383 #include "cfgcleanup.h"
384 #include "expr.h"
385 #include "tree-pass.h"
386 #include "output.h"
387 #include "reload.h"
388 #include "cfgloop.h"
389 #include "lra.h"
390 #include "dce.h"
391 #include "dbgcnt.h"
392 #include "rtl-iter.h"
393 #include "shrink-wrap.h"
394 #include "print-rtl.h"
396 struct target_ira default_target_ira;
397 struct target_ira_int default_target_ira_int;
398 #if SWITCHABLE_TARGET
399 struct target_ira *this_target_ira = &default_target_ira;
400 struct target_ira_int *this_target_ira_int = &default_target_ira_int;
401 #endif
403 /* A modified value of flag `-fira-verbose' used internally. */
404 int internal_flag_ira_verbose;
406 /* Dump file of the allocator if it is not NULL. */
407 FILE *ira_dump_file;
409 /* The number of elements in the following array. */
410 int ira_spilled_reg_stack_slots_num;
412 /* The following array contains info about spilled pseudo-registers
413 stack slots used in current function so far. */
414 struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
416 /* Correspondingly overall cost of the allocation, overall cost before
417 reload, cost of the allocnos assigned to hard-registers, cost of
418 the allocnos assigned to memory, cost of loads, stores and register
419 move insns generated for pseudo-register live range splitting (see
420 ira-emit.c). */
421 int64_t ira_overall_cost, overall_cost_before;
422 int64_t ira_reg_cost, ira_mem_cost;
423 int64_t ira_load_cost, ira_store_cost, ira_shuffle_cost;
424 int ira_move_loops_num, ira_additional_jumps_num;
426 /* All registers that can be eliminated. */
428 HARD_REG_SET eliminable_regset;
430 /* Value of max_reg_num () before IRA work start. This value helps
431 us to recognize a situation when new pseudos were created during
432 IRA work. */
433 static int max_regno_before_ira;
435 /* Temporary hard reg set used for a different calculation. */
436 static HARD_REG_SET temp_hard_regset;
438 #define last_mode_for_init_move_cost \
439 (this_target_ira_int->x_last_mode_for_init_move_cost)
442 /* The function sets up the map IRA_REG_MODE_HARD_REGSET. */
443 static void
444 setup_reg_mode_hard_regset (void)
446 int i, m, hard_regno;
448 for (m = 0; m < NUM_MACHINE_MODES; m++)
449 for (hard_regno = 0; hard_regno < FIRST_PSEUDO_REGISTER; hard_regno++)
451 CLEAR_HARD_REG_SET (ira_reg_mode_hard_regset[hard_regno][m]);
452 for (i = hard_regno_nregs (hard_regno, (machine_mode) m) - 1;
453 i >= 0; i--)
454 if (hard_regno + i < FIRST_PSEUDO_REGISTER)
455 SET_HARD_REG_BIT (ira_reg_mode_hard_regset[hard_regno][m],
456 hard_regno + i);
461 #define no_unit_alloc_regs \
462 (this_target_ira_int->x_no_unit_alloc_regs)
464 /* The function sets up the three arrays declared above. */
465 static void
466 setup_class_hard_regs (void)
468 int cl, i, hard_regno, n;
469 HARD_REG_SET processed_hard_reg_set;
471 ira_assert (SHRT_MAX >= FIRST_PSEUDO_REGISTER);
472 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
474 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
475 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
476 CLEAR_HARD_REG_SET (processed_hard_reg_set);
477 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
479 ira_non_ordered_class_hard_regs[cl][i] = -1;
480 ira_class_hard_reg_index[cl][i] = -1;
482 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
484 #ifdef REG_ALLOC_ORDER
485 hard_regno = reg_alloc_order[i];
486 #else
487 hard_regno = i;
488 #endif
489 if (TEST_HARD_REG_BIT (processed_hard_reg_set, hard_regno))
490 continue;
491 SET_HARD_REG_BIT (processed_hard_reg_set, hard_regno);
492 if (! TEST_HARD_REG_BIT (temp_hard_regset, hard_regno))
493 ira_class_hard_reg_index[cl][hard_regno] = -1;
494 else
496 ira_class_hard_reg_index[cl][hard_regno] = n;
497 ira_class_hard_regs[cl][n++] = hard_regno;
500 ira_class_hard_regs_num[cl] = n;
501 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
502 if (TEST_HARD_REG_BIT (temp_hard_regset, i))
503 ira_non_ordered_class_hard_regs[cl][n++] = i;
504 ira_assert (ira_class_hard_regs_num[cl] == n);
508 /* Set up global variables defining info about hard registers for the
509 allocation. These depend on USE_HARD_FRAME_P whose TRUE value means
510 that we can use the hard frame pointer for the allocation. */
511 static void
512 setup_alloc_regs (bool use_hard_frame_p)
514 #ifdef ADJUST_REG_ALLOC_ORDER
515 ADJUST_REG_ALLOC_ORDER;
516 #endif
517 COPY_HARD_REG_SET (no_unit_alloc_regs, fixed_nonglobal_reg_set);
518 if (! use_hard_frame_p)
519 SET_HARD_REG_BIT (no_unit_alloc_regs, HARD_FRAME_POINTER_REGNUM);
520 setup_class_hard_regs ();
525 #define alloc_reg_class_subclasses \
526 (this_target_ira_int->x_alloc_reg_class_subclasses)
528 /* Initialize the table of subclasses of each reg class. */
529 static void
530 setup_reg_subclasses (void)
532 int i, j;
533 HARD_REG_SET temp_hard_regset2;
535 for (i = 0; i < N_REG_CLASSES; i++)
536 for (j = 0; j < N_REG_CLASSES; j++)
537 alloc_reg_class_subclasses[i][j] = LIM_REG_CLASSES;
539 for (i = 0; i < N_REG_CLASSES; i++)
541 if (i == (int) NO_REGS)
542 continue;
544 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
545 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
546 if (hard_reg_set_empty_p (temp_hard_regset))
547 continue;
548 for (j = 0; j < N_REG_CLASSES; j++)
549 if (i != j)
551 enum reg_class *p;
553 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[j]);
554 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
555 if (! hard_reg_set_subset_p (temp_hard_regset,
556 temp_hard_regset2))
557 continue;
558 p = &alloc_reg_class_subclasses[j][0];
559 while (*p != LIM_REG_CLASSES) p++;
560 *p = (enum reg_class) i;
567 /* Set up IRA_MEMORY_MOVE_COST and IRA_MAX_MEMORY_MOVE_COST. */
568 static void
569 setup_class_subset_and_memory_move_costs (void)
571 int cl, cl2, mode, cost;
572 HARD_REG_SET temp_hard_regset2;
574 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
575 ira_memory_move_cost[mode][NO_REGS][0]
576 = ira_memory_move_cost[mode][NO_REGS][1] = SHRT_MAX;
577 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
579 if (cl != (int) NO_REGS)
580 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
582 ira_max_memory_move_cost[mode][cl][0]
583 = ira_memory_move_cost[mode][cl][0]
584 = memory_move_cost ((machine_mode) mode,
585 (reg_class_t) cl, false);
586 ira_max_memory_move_cost[mode][cl][1]
587 = ira_memory_move_cost[mode][cl][1]
588 = memory_move_cost ((machine_mode) mode,
589 (reg_class_t) cl, true);
590 /* Costs for NO_REGS are used in cost calculation on the
591 1st pass when the preferred register classes are not
592 known yet. In this case we take the best scenario. */
593 if (ira_memory_move_cost[mode][NO_REGS][0]
594 > ira_memory_move_cost[mode][cl][0])
595 ira_max_memory_move_cost[mode][NO_REGS][0]
596 = ira_memory_move_cost[mode][NO_REGS][0]
597 = ira_memory_move_cost[mode][cl][0];
598 if (ira_memory_move_cost[mode][NO_REGS][1]
599 > ira_memory_move_cost[mode][cl][1])
600 ira_max_memory_move_cost[mode][NO_REGS][1]
601 = ira_memory_move_cost[mode][NO_REGS][1]
602 = ira_memory_move_cost[mode][cl][1];
605 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
606 for (cl2 = (int) N_REG_CLASSES - 1; cl2 >= 0; cl2--)
608 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
609 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
610 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
611 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
612 ira_class_subset_p[cl][cl2]
613 = hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2);
614 if (! hard_reg_set_empty_p (temp_hard_regset2)
615 && hard_reg_set_subset_p (reg_class_contents[cl2],
616 reg_class_contents[cl]))
617 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
619 cost = ira_memory_move_cost[mode][cl2][0];
620 if (cost > ira_max_memory_move_cost[mode][cl][0])
621 ira_max_memory_move_cost[mode][cl][0] = cost;
622 cost = ira_memory_move_cost[mode][cl2][1];
623 if (cost > ira_max_memory_move_cost[mode][cl][1])
624 ira_max_memory_move_cost[mode][cl][1] = cost;
627 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
628 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
630 ira_memory_move_cost[mode][cl][0]
631 = ira_max_memory_move_cost[mode][cl][0];
632 ira_memory_move_cost[mode][cl][1]
633 = ira_max_memory_move_cost[mode][cl][1];
635 setup_reg_subclasses ();
640 /* Define the following macro if allocation through malloc if
641 preferable. */
642 #define IRA_NO_OBSTACK
644 #ifndef IRA_NO_OBSTACK
645 /* Obstack used for storing all dynamic data (except bitmaps) of the
646 IRA. */
647 static struct obstack ira_obstack;
648 #endif
650 /* Obstack used for storing all bitmaps of the IRA. */
651 static struct bitmap_obstack ira_bitmap_obstack;
653 /* Allocate memory of size LEN for IRA data. */
654 void *
655 ira_allocate (size_t len)
657 void *res;
659 #ifndef IRA_NO_OBSTACK
660 res = obstack_alloc (&ira_obstack, len);
661 #else
662 res = xmalloc (len);
663 #endif
664 return res;
667 /* Free memory ADDR allocated for IRA data. */
668 void
669 ira_free (void *addr ATTRIBUTE_UNUSED)
671 #ifndef IRA_NO_OBSTACK
672 /* do nothing */
673 #else
674 free (addr);
675 #endif
679 /* Allocate and returns bitmap for IRA. */
680 bitmap
681 ira_allocate_bitmap (void)
683 return BITMAP_ALLOC (&ira_bitmap_obstack);
686 /* Free bitmap B allocated for IRA. */
687 void
688 ira_free_bitmap (bitmap b ATTRIBUTE_UNUSED)
690 /* do nothing */
695 /* Output information about allocation of all allocnos (except for
696 caps) into file F. */
697 void
698 ira_print_disposition (FILE *f)
700 int i, n, max_regno;
701 ira_allocno_t a;
702 basic_block bb;
704 fprintf (f, "Disposition:");
705 max_regno = max_reg_num ();
706 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
707 for (a = ira_regno_allocno_map[i];
708 a != NULL;
709 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
711 if (n % 4 == 0)
712 fprintf (f, "\n");
713 n++;
714 fprintf (f, " %4d:r%-4d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
715 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
716 fprintf (f, "b%-3d", bb->index);
717 else
718 fprintf (f, "l%-3d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
719 if (ALLOCNO_HARD_REGNO (a) >= 0)
720 fprintf (f, " %3d", ALLOCNO_HARD_REGNO (a));
721 else
722 fprintf (f, " mem");
724 fprintf (f, "\n");
727 /* Outputs information about allocation of all allocnos into
728 stderr. */
729 void
730 ira_debug_disposition (void)
732 ira_print_disposition (stderr);
737 /* Set up ira_stack_reg_pressure_class which is the biggest pressure
738 register class containing stack registers or NO_REGS if there are
739 no stack registers. To find this class, we iterate through all
740 register pressure classes and choose the first register pressure
741 class containing all the stack registers and having the biggest
742 size. */
743 static void
744 setup_stack_reg_pressure_class (void)
746 ira_stack_reg_pressure_class = NO_REGS;
747 #ifdef STACK_REGS
749 int i, best, size;
750 enum reg_class cl;
751 HARD_REG_SET temp_hard_regset2;
753 CLEAR_HARD_REG_SET (temp_hard_regset);
754 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
755 SET_HARD_REG_BIT (temp_hard_regset, i);
756 best = 0;
757 for (i = 0; i < ira_pressure_classes_num; i++)
759 cl = ira_pressure_classes[i];
760 COPY_HARD_REG_SET (temp_hard_regset2, temp_hard_regset);
761 AND_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
762 size = hard_reg_set_size (temp_hard_regset2);
763 if (best < size)
765 best = size;
766 ira_stack_reg_pressure_class = cl;
770 #endif
773 /* Find pressure classes which are register classes for which we
774 calculate register pressure in IRA, register pressure sensitive
775 insn scheduling, and register pressure sensitive loop invariant
776 motion.
778 To make register pressure calculation easy, we always use
779 non-intersected register pressure classes. A move of hard
780 registers from one register pressure class is not more expensive
781 than load and store of the hard registers. Most likely an allocno
782 class will be a subset of a register pressure class and in many
783 cases a register pressure class. That makes usage of register
784 pressure classes a good approximation to find a high register
785 pressure. */
786 static void
787 setup_pressure_classes (void)
789 int cost, i, n, curr;
790 int cl, cl2;
791 enum reg_class pressure_classes[N_REG_CLASSES];
792 int m;
793 HARD_REG_SET temp_hard_regset2;
794 bool insert_p;
796 if (targetm.compute_pressure_classes)
797 n = targetm.compute_pressure_classes (pressure_classes);
798 else
800 n = 0;
801 for (cl = 0; cl < N_REG_CLASSES; cl++)
803 if (ira_class_hard_regs_num[cl] == 0)
804 continue;
805 if (ira_class_hard_regs_num[cl] != 1
806 /* A register class without subclasses may contain a few
807 hard registers and movement between them is costly
808 (e.g. SPARC FPCC registers). We still should consider it
809 as a candidate for a pressure class. */
810 && alloc_reg_class_subclasses[cl][0] < cl)
812 /* Check that the moves between any hard registers of the
813 current class are not more expensive for a legal mode
814 than load/store of the hard registers of the current
815 class. Such class is a potential candidate to be a
816 register pressure class. */
817 for (m = 0; m < NUM_MACHINE_MODES; m++)
819 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
820 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
821 AND_COMPL_HARD_REG_SET (temp_hard_regset,
822 ira_prohibited_class_mode_regs[cl][m]);
823 if (hard_reg_set_empty_p (temp_hard_regset))
824 continue;
825 ira_init_register_move_cost_if_necessary ((machine_mode) m);
826 cost = ira_register_move_cost[m][cl][cl];
827 if (cost <= ira_max_memory_move_cost[m][cl][1]
828 || cost <= ira_max_memory_move_cost[m][cl][0])
829 break;
831 if (m >= NUM_MACHINE_MODES)
832 continue;
834 curr = 0;
835 insert_p = true;
836 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
837 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
838 /* Remove so far added pressure classes which are subset of the
839 current candidate class. Prefer GENERAL_REGS as a pressure
840 register class to another class containing the same
841 allocatable hard registers. We do this because machine
842 dependent cost hooks might give wrong costs for the latter
843 class but always give the right cost for the former class
844 (GENERAL_REGS). */
845 for (i = 0; i < n; i++)
847 cl2 = pressure_classes[i];
848 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
849 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
850 if (hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2)
851 && (! hard_reg_set_equal_p (temp_hard_regset,
852 temp_hard_regset2)
853 || cl2 == (int) GENERAL_REGS))
855 pressure_classes[curr++] = (enum reg_class) cl2;
856 insert_p = false;
857 continue;
859 if (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset)
860 && (! hard_reg_set_equal_p (temp_hard_regset2,
861 temp_hard_regset)
862 || cl == (int) GENERAL_REGS))
863 continue;
864 if (hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset))
865 insert_p = false;
866 pressure_classes[curr++] = (enum reg_class) cl2;
868 /* If the current candidate is a subset of a so far added
869 pressure class, don't add it to the list of the pressure
870 classes. */
871 if (insert_p)
872 pressure_classes[curr++] = (enum reg_class) cl;
873 n = curr;
876 #ifdef ENABLE_IRA_CHECKING
878 HARD_REG_SET ignore_hard_regs;
880 /* Check pressure classes correctness: here we check that hard
881 registers from all register pressure classes contains all hard
882 registers available for the allocation. */
883 CLEAR_HARD_REG_SET (temp_hard_regset);
884 CLEAR_HARD_REG_SET (temp_hard_regset2);
885 COPY_HARD_REG_SET (ignore_hard_regs, no_unit_alloc_regs);
886 for (cl = 0; cl < LIM_REG_CLASSES; cl++)
888 /* For some targets (like MIPS with MD_REGS), there are some
889 classes with hard registers available for allocation but
890 not able to hold value of any mode. */
891 for (m = 0; m < NUM_MACHINE_MODES; m++)
892 if (contains_reg_of_mode[cl][m])
893 break;
894 if (m >= NUM_MACHINE_MODES)
896 IOR_HARD_REG_SET (ignore_hard_regs, reg_class_contents[cl]);
897 continue;
899 for (i = 0; i < n; i++)
900 if ((int) pressure_classes[i] == cl)
901 break;
902 IOR_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
903 if (i < n)
904 IOR_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
906 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
907 /* Some targets (like SPARC with ICC reg) have allocatable regs
908 for which no reg class is defined. */
909 if (REGNO_REG_CLASS (i) == NO_REGS)
910 SET_HARD_REG_BIT (ignore_hard_regs, i);
911 AND_COMPL_HARD_REG_SET (temp_hard_regset, ignore_hard_regs);
912 AND_COMPL_HARD_REG_SET (temp_hard_regset2, ignore_hard_regs);
913 ira_assert (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset));
915 #endif
916 ira_pressure_classes_num = 0;
917 for (i = 0; i < n; i++)
919 cl = (int) pressure_classes[i];
920 ira_reg_pressure_class_p[cl] = true;
921 ira_pressure_classes[ira_pressure_classes_num++] = (enum reg_class) cl;
923 setup_stack_reg_pressure_class ();
926 /* Set up IRA_UNIFORM_CLASS_P. Uniform class is a register class
927 whose register move cost between any registers of the class is the
928 same as for all its subclasses. We use the data to speed up the
929 2nd pass of calculations of allocno costs. */
930 static void
931 setup_uniform_class_p (void)
933 int i, cl, cl2, m;
935 for (cl = 0; cl < N_REG_CLASSES; cl++)
937 ira_uniform_class_p[cl] = false;
938 if (ira_class_hard_regs_num[cl] == 0)
939 continue;
940 /* We can not use alloc_reg_class_subclasses here because move
941 cost hooks does not take into account that some registers are
942 unavailable for the subtarget. E.g. for i686, INT_SSE_REGS
943 is element of alloc_reg_class_subclasses for GENERAL_REGS
944 because SSE regs are unavailable. */
945 for (i = 0; (cl2 = reg_class_subclasses[cl][i]) != LIM_REG_CLASSES; i++)
947 if (ira_class_hard_regs_num[cl2] == 0)
948 continue;
949 for (m = 0; m < NUM_MACHINE_MODES; m++)
950 if (contains_reg_of_mode[cl][m] && contains_reg_of_mode[cl2][m])
952 ira_init_register_move_cost_if_necessary ((machine_mode) m);
953 if (ira_register_move_cost[m][cl][cl]
954 != ira_register_move_cost[m][cl2][cl2])
955 break;
957 if (m < NUM_MACHINE_MODES)
958 break;
960 if (cl2 == LIM_REG_CLASSES)
961 ira_uniform_class_p[cl] = true;
965 /* Set up IRA_ALLOCNO_CLASSES, IRA_ALLOCNO_CLASSES_NUM,
966 IRA_IMPORTANT_CLASSES, and IRA_IMPORTANT_CLASSES_NUM.
968 Target may have many subtargets and not all target hard registers can
969 be used for allocation, e.g. x86 port in 32-bit mode can not use
970 hard registers introduced in x86-64 like r8-r15). Some classes
971 might have the same allocatable hard registers, e.g. INDEX_REGS
972 and GENERAL_REGS in x86 port in 32-bit mode. To decrease different
973 calculations efforts we introduce allocno classes which contain
974 unique non-empty sets of allocatable hard-registers.
976 Pseudo class cost calculation in ira-costs.c is very expensive.
977 Therefore we are trying to decrease number of classes involved in
978 such calculation. Register classes used in the cost calculation
979 are called important classes. They are allocno classes and other
980 non-empty classes whose allocatable hard register sets are inside
981 of an allocno class hard register set. From the first sight, it
982 looks like that they are just allocno classes. It is not true. In
983 example of x86-port in 32-bit mode, allocno classes will contain
984 GENERAL_REGS but not LEGACY_REGS (because allocatable hard
985 registers are the same for the both classes). The important
986 classes will contain GENERAL_REGS and LEGACY_REGS. It is done
987 because a machine description insn constraint may refers for
988 LEGACY_REGS and code in ira-costs.c is mostly base on investigation
989 of the insn constraints. */
990 static void
991 setup_allocno_and_important_classes (void)
993 int i, j, n, cl;
994 bool set_p;
995 HARD_REG_SET temp_hard_regset2;
996 static enum reg_class classes[LIM_REG_CLASSES + 1];
998 n = 0;
999 /* Collect classes which contain unique sets of allocatable hard
1000 registers. Prefer GENERAL_REGS to other classes containing the
1001 same set of hard registers. */
1002 for (i = 0; i < LIM_REG_CLASSES; i++)
1004 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
1005 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1006 for (j = 0; j < n; j++)
1008 cl = classes[j];
1009 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
1010 AND_COMPL_HARD_REG_SET (temp_hard_regset2,
1011 no_unit_alloc_regs);
1012 if (hard_reg_set_equal_p (temp_hard_regset,
1013 temp_hard_regset2))
1014 break;
1016 if (j >= n || targetm.additional_allocno_class_p (i))
1017 classes[n++] = (enum reg_class) i;
1018 else if (i == GENERAL_REGS)
1019 /* Prefer general regs. For i386 example, it means that
1020 we prefer GENERAL_REGS over INDEX_REGS or LEGACY_REGS
1021 (all of them consists of the same available hard
1022 registers). */
1023 classes[j] = (enum reg_class) i;
1025 classes[n] = LIM_REG_CLASSES;
1027 /* Set up classes which can be used for allocnos as classes
1028 containing non-empty unique sets of allocatable hard
1029 registers. */
1030 ira_allocno_classes_num = 0;
1031 for (i = 0; (cl = classes[i]) != LIM_REG_CLASSES; i++)
1032 if (ira_class_hard_regs_num[cl] > 0)
1033 ira_allocno_classes[ira_allocno_classes_num++] = (enum reg_class) cl;
1034 ira_important_classes_num = 0;
1035 /* Add non-allocno classes containing to non-empty set of
1036 allocatable hard regs. */
1037 for (cl = 0; cl < N_REG_CLASSES; cl++)
1038 if (ira_class_hard_regs_num[cl] > 0)
1040 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1041 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1042 set_p = false;
1043 for (j = 0; j < ira_allocno_classes_num; j++)
1045 COPY_HARD_REG_SET (temp_hard_regset2,
1046 reg_class_contents[ira_allocno_classes[j]]);
1047 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
1048 if ((enum reg_class) cl == ira_allocno_classes[j])
1049 break;
1050 else if (hard_reg_set_subset_p (temp_hard_regset,
1051 temp_hard_regset2))
1052 set_p = true;
1054 if (set_p && j >= ira_allocno_classes_num)
1055 ira_important_classes[ira_important_classes_num++]
1056 = (enum reg_class) cl;
1058 /* Now add allocno classes to the important classes. */
1059 for (j = 0; j < ira_allocno_classes_num; j++)
1060 ira_important_classes[ira_important_classes_num++]
1061 = ira_allocno_classes[j];
1062 for (cl = 0; cl < N_REG_CLASSES; cl++)
1064 ira_reg_allocno_class_p[cl] = false;
1065 ira_reg_pressure_class_p[cl] = false;
1067 for (j = 0; j < ira_allocno_classes_num; j++)
1068 ira_reg_allocno_class_p[ira_allocno_classes[j]] = true;
1069 setup_pressure_classes ();
1070 setup_uniform_class_p ();
1073 /* Setup translation in CLASS_TRANSLATE of all classes into a class
1074 given by array CLASSES of length CLASSES_NUM. The function is used
1075 make translation any reg class to an allocno class or to an
1076 pressure class. This translation is necessary for some
1077 calculations when we can use only allocno or pressure classes and
1078 such translation represents an approximate representation of all
1079 classes.
1081 The translation in case when allocatable hard register set of a
1082 given class is subset of allocatable hard register set of a class
1083 in CLASSES is pretty simple. We use smallest classes from CLASSES
1084 containing a given class. If allocatable hard register set of a
1085 given class is not a subset of any corresponding set of a class
1086 from CLASSES, we use the cheapest (with load/store point of view)
1087 class from CLASSES whose set intersects with given class set. */
1088 static void
1089 setup_class_translate_array (enum reg_class *class_translate,
1090 int classes_num, enum reg_class *classes)
1092 int cl, mode;
1093 enum reg_class aclass, best_class, *cl_ptr;
1094 int i, cost, min_cost, best_cost;
1096 for (cl = 0; cl < N_REG_CLASSES; cl++)
1097 class_translate[cl] = NO_REGS;
1099 for (i = 0; i < classes_num; i++)
1101 aclass = classes[i];
1102 for (cl_ptr = &alloc_reg_class_subclasses[aclass][0];
1103 (cl = *cl_ptr) != LIM_REG_CLASSES;
1104 cl_ptr++)
1105 if (class_translate[cl] == NO_REGS)
1106 class_translate[cl] = aclass;
1107 class_translate[aclass] = aclass;
1109 /* For classes which are not fully covered by one of given classes
1110 (in other words covered by more one given class), use the
1111 cheapest class. */
1112 for (cl = 0; cl < N_REG_CLASSES; cl++)
1114 if (cl == NO_REGS || class_translate[cl] != NO_REGS)
1115 continue;
1116 best_class = NO_REGS;
1117 best_cost = INT_MAX;
1118 for (i = 0; i < classes_num; i++)
1120 aclass = classes[i];
1121 COPY_HARD_REG_SET (temp_hard_regset,
1122 reg_class_contents[aclass]);
1123 AND_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1124 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1125 if (! hard_reg_set_empty_p (temp_hard_regset))
1127 min_cost = INT_MAX;
1128 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1130 cost = (ira_memory_move_cost[mode][aclass][0]
1131 + ira_memory_move_cost[mode][aclass][1]);
1132 if (min_cost > cost)
1133 min_cost = cost;
1135 if (best_class == NO_REGS || best_cost > min_cost)
1137 best_class = aclass;
1138 best_cost = min_cost;
1142 class_translate[cl] = best_class;
1146 /* Set up array IRA_ALLOCNO_CLASS_TRANSLATE and
1147 IRA_PRESSURE_CLASS_TRANSLATE. */
1148 static void
1149 setup_class_translate (void)
1151 setup_class_translate_array (ira_allocno_class_translate,
1152 ira_allocno_classes_num, ira_allocno_classes);
1153 setup_class_translate_array (ira_pressure_class_translate,
1154 ira_pressure_classes_num, ira_pressure_classes);
1157 /* Order numbers of allocno classes in original target allocno class
1158 array, -1 for non-allocno classes. */
1159 static int allocno_class_order[N_REG_CLASSES];
1161 /* The function used to sort the important classes. */
1162 static int
1163 comp_reg_classes_func (const void *v1p, const void *v2p)
1165 enum reg_class cl1 = *(const enum reg_class *) v1p;
1166 enum reg_class cl2 = *(const enum reg_class *) v2p;
1167 enum reg_class tcl1, tcl2;
1168 int diff;
1170 tcl1 = ira_allocno_class_translate[cl1];
1171 tcl2 = ira_allocno_class_translate[cl2];
1172 if (tcl1 != NO_REGS && tcl2 != NO_REGS
1173 && (diff = allocno_class_order[tcl1] - allocno_class_order[tcl2]) != 0)
1174 return diff;
1175 return (int) cl1 - (int) cl2;
1178 /* For correct work of function setup_reg_class_relation we need to
1179 reorder important classes according to the order of their allocno
1180 classes. It places important classes containing the same
1181 allocatable hard register set adjacent to each other and allocno
1182 class with the allocatable hard register set right after the other
1183 important classes with the same set.
1185 In example from comments of function
1186 setup_allocno_and_important_classes, it places LEGACY_REGS and
1187 GENERAL_REGS close to each other and GENERAL_REGS is after
1188 LEGACY_REGS. */
1189 static void
1190 reorder_important_classes (void)
1192 int i;
1194 for (i = 0; i < N_REG_CLASSES; i++)
1195 allocno_class_order[i] = -1;
1196 for (i = 0; i < ira_allocno_classes_num; i++)
1197 allocno_class_order[ira_allocno_classes[i]] = i;
1198 qsort (ira_important_classes, ira_important_classes_num,
1199 sizeof (enum reg_class), comp_reg_classes_func);
1200 for (i = 0; i < ira_important_classes_num; i++)
1201 ira_important_class_nums[ira_important_classes[i]] = i;
1204 /* Set up IRA_REG_CLASS_SUBUNION, IRA_REG_CLASS_SUPERUNION,
1205 IRA_REG_CLASS_SUPER_CLASSES, IRA_REG_CLASSES_INTERSECT, and
1206 IRA_REG_CLASSES_INTERSECT_P. For the meaning of the relations,
1207 please see corresponding comments in ira-int.h. */
1208 static void
1209 setup_reg_class_relations (void)
1211 int i, cl1, cl2, cl3;
1212 HARD_REG_SET intersection_set, union_set, temp_set2;
1213 bool important_class_p[N_REG_CLASSES];
1215 memset (important_class_p, 0, sizeof (important_class_p));
1216 for (i = 0; i < ira_important_classes_num; i++)
1217 important_class_p[ira_important_classes[i]] = true;
1218 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1220 ira_reg_class_super_classes[cl1][0] = LIM_REG_CLASSES;
1221 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1223 ira_reg_classes_intersect_p[cl1][cl2] = false;
1224 ira_reg_class_intersect[cl1][cl2] = NO_REGS;
1225 ira_reg_class_subset[cl1][cl2] = NO_REGS;
1226 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl1]);
1227 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1228 COPY_HARD_REG_SET (temp_set2, reg_class_contents[cl2]);
1229 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1230 if (hard_reg_set_empty_p (temp_hard_regset)
1231 && hard_reg_set_empty_p (temp_set2))
1233 /* The both classes have no allocatable hard registers
1234 -- take all class hard registers into account and use
1235 reg_class_subunion and reg_class_superunion. */
1236 for (i = 0;; i++)
1238 cl3 = reg_class_subclasses[cl1][i];
1239 if (cl3 == LIM_REG_CLASSES)
1240 break;
1241 if (reg_class_subset_p (ira_reg_class_intersect[cl1][cl2],
1242 (enum reg_class) cl3))
1243 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1245 ira_reg_class_subunion[cl1][cl2] = reg_class_subunion[cl1][cl2];
1246 ira_reg_class_superunion[cl1][cl2] = reg_class_superunion[cl1][cl2];
1247 continue;
1249 ira_reg_classes_intersect_p[cl1][cl2]
1250 = hard_reg_set_intersect_p (temp_hard_regset, temp_set2);
1251 if (important_class_p[cl1] && important_class_p[cl2]
1252 && hard_reg_set_subset_p (temp_hard_regset, temp_set2))
1254 /* CL1 and CL2 are important classes and CL1 allocatable
1255 hard register set is inside of CL2 allocatable hard
1256 registers -- make CL1 a superset of CL2. */
1257 enum reg_class *p;
1259 p = &ira_reg_class_super_classes[cl1][0];
1260 while (*p != LIM_REG_CLASSES)
1261 p++;
1262 *p++ = (enum reg_class) cl2;
1263 *p = LIM_REG_CLASSES;
1265 ira_reg_class_subunion[cl1][cl2] = NO_REGS;
1266 ira_reg_class_superunion[cl1][cl2] = NO_REGS;
1267 COPY_HARD_REG_SET (intersection_set, reg_class_contents[cl1]);
1268 AND_HARD_REG_SET (intersection_set, reg_class_contents[cl2]);
1269 AND_COMPL_HARD_REG_SET (intersection_set, no_unit_alloc_regs);
1270 COPY_HARD_REG_SET (union_set, reg_class_contents[cl1]);
1271 IOR_HARD_REG_SET (union_set, reg_class_contents[cl2]);
1272 AND_COMPL_HARD_REG_SET (union_set, no_unit_alloc_regs);
1273 for (cl3 = 0; cl3 < N_REG_CLASSES; cl3++)
1275 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl3]);
1276 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1277 if (hard_reg_set_subset_p (temp_hard_regset, intersection_set))
1279 /* CL3 allocatable hard register set is inside of
1280 intersection of allocatable hard register sets
1281 of CL1 and CL2. */
1282 if (important_class_p[cl3])
1284 COPY_HARD_REG_SET
1285 (temp_set2,
1286 reg_class_contents
1287 [(int) ira_reg_class_intersect[cl1][cl2]]);
1288 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1289 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1290 /* If the allocatable hard register sets are
1291 the same, prefer GENERAL_REGS or the
1292 smallest class for debugging
1293 purposes. */
1294 || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
1295 && (cl3 == GENERAL_REGS
1296 || ((ira_reg_class_intersect[cl1][cl2]
1297 != GENERAL_REGS)
1298 && hard_reg_set_subset_p
1299 (reg_class_contents[cl3],
1300 reg_class_contents
1301 [(int)
1302 ira_reg_class_intersect[cl1][cl2]])))))
1303 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1305 COPY_HARD_REG_SET
1306 (temp_set2,
1307 reg_class_contents[(int) ira_reg_class_subset[cl1][cl2]]);
1308 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1309 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1310 /* Ignore unavailable hard registers and prefer
1311 smallest class for debugging purposes. */
1312 || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
1313 && hard_reg_set_subset_p
1314 (reg_class_contents[cl3],
1315 reg_class_contents
1316 [(int) ira_reg_class_subset[cl1][cl2]])))
1317 ira_reg_class_subset[cl1][cl2] = (enum reg_class) cl3;
1319 if (important_class_p[cl3]
1320 && hard_reg_set_subset_p (temp_hard_regset, union_set))
1322 /* CL3 allocatable hard register set is inside of
1323 union of allocatable hard register sets of CL1
1324 and CL2. */
1325 COPY_HARD_REG_SET
1326 (temp_set2,
1327 reg_class_contents[(int) ira_reg_class_subunion[cl1][cl2]]);
1328 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1329 if (ira_reg_class_subunion[cl1][cl2] == NO_REGS
1330 || (hard_reg_set_subset_p (temp_set2, temp_hard_regset)
1332 && (! hard_reg_set_equal_p (temp_set2,
1333 temp_hard_regset)
1334 || cl3 == GENERAL_REGS
1335 /* If the allocatable hard register sets are the
1336 same, prefer GENERAL_REGS or the smallest
1337 class for debugging purposes. */
1338 || (ira_reg_class_subunion[cl1][cl2] != GENERAL_REGS
1339 && hard_reg_set_subset_p
1340 (reg_class_contents[cl3],
1341 reg_class_contents
1342 [(int) ira_reg_class_subunion[cl1][cl2]])))))
1343 ira_reg_class_subunion[cl1][cl2] = (enum reg_class) cl3;
1345 if (hard_reg_set_subset_p (union_set, temp_hard_regset))
1347 /* CL3 allocatable hard register set contains union
1348 of allocatable hard register sets of CL1 and
1349 CL2. */
1350 COPY_HARD_REG_SET
1351 (temp_set2,
1352 reg_class_contents[(int) ira_reg_class_superunion[cl1][cl2]]);
1353 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1354 if (ira_reg_class_superunion[cl1][cl2] == NO_REGS
1355 || (hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1357 && (! hard_reg_set_equal_p (temp_set2,
1358 temp_hard_regset)
1359 || cl3 == GENERAL_REGS
1360 /* If the allocatable hard register sets are the
1361 same, prefer GENERAL_REGS or the smallest
1362 class for debugging purposes. */
1363 || (ira_reg_class_superunion[cl1][cl2] != GENERAL_REGS
1364 && hard_reg_set_subset_p
1365 (reg_class_contents[cl3],
1366 reg_class_contents
1367 [(int) ira_reg_class_superunion[cl1][cl2]])))))
1368 ira_reg_class_superunion[cl1][cl2] = (enum reg_class) cl3;
1375 /* Output all uniform and important classes into file F. */
1376 static void
1377 print_uniform_and_important_classes (FILE *f)
1379 int i, cl;
1381 fprintf (f, "Uniform classes:\n");
1382 for (cl = 0; cl < N_REG_CLASSES; cl++)
1383 if (ira_uniform_class_p[cl])
1384 fprintf (f, " %s", reg_class_names[cl]);
1385 fprintf (f, "\nImportant classes:\n");
1386 for (i = 0; i < ira_important_classes_num; i++)
1387 fprintf (f, " %s", reg_class_names[ira_important_classes[i]]);
1388 fprintf (f, "\n");
1391 /* Output all possible allocno or pressure classes and their
1392 translation map into file F. */
1393 static void
1394 print_translated_classes (FILE *f, bool pressure_p)
1396 int classes_num = (pressure_p
1397 ? ira_pressure_classes_num : ira_allocno_classes_num);
1398 enum reg_class *classes = (pressure_p
1399 ? ira_pressure_classes : ira_allocno_classes);
1400 enum reg_class *class_translate = (pressure_p
1401 ? ira_pressure_class_translate
1402 : ira_allocno_class_translate);
1403 int i;
1405 fprintf (f, "%s classes:\n", pressure_p ? "Pressure" : "Allocno");
1406 for (i = 0; i < classes_num; i++)
1407 fprintf (f, " %s", reg_class_names[classes[i]]);
1408 fprintf (f, "\nClass translation:\n");
1409 for (i = 0; i < N_REG_CLASSES; i++)
1410 fprintf (f, " %s -> %s\n", reg_class_names[i],
1411 reg_class_names[class_translate[i]]);
1414 /* Output all possible allocno and translation classes and the
1415 translation maps into stderr. */
1416 void
1417 ira_debug_allocno_classes (void)
1419 print_uniform_and_important_classes (stderr);
1420 print_translated_classes (stderr, false);
1421 print_translated_classes (stderr, true);
1424 /* Set up different arrays concerning class subsets, allocno and
1425 important classes. */
1426 static void
1427 find_reg_classes (void)
1429 setup_allocno_and_important_classes ();
1430 setup_class_translate ();
1431 reorder_important_classes ();
1432 setup_reg_class_relations ();
1437 /* Set up the array above. */
1438 static void
1439 setup_hard_regno_aclass (void)
1441 int i;
1443 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1445 #if 1
1446 ira_hard_regno_allocno_class[i]
1447 = (TEST_HARD_REG_BIT (no_unit_alloc_regs, i)
1448 ? NO_REGS
1449 : ira_allocno_class_translate[REGNO_REG_CLASS (i)]);
1450 #else
1451 int j;
1452 enum reg_class cl;
1453 ira_hard_regno_allocno_class[i] = NO_REGS;
1454 for (j = 0; j < ira_allocno_classes_num; j++)
1456 cl = ira_allocno_classes[j];
1457 if (ira_class_hard_reg_index[cl][i] >= 0)
1459 ira_hard_regno_allocno_class[i] = cl;
1460 break;
1463 #endif
1469 /* Form IRA_REG_CLASS_MAX_NREGS and IRA_REG_CLASS_MIN_NREGS maps. */
1470 static void
1471 setup_reg_class_nregs (void)
1473 int i, cl, cl2, m;
1475 for (m = 0; m < MAX_MACHINE_MODE; m++)
1477 for (cl = 0; cl < N_REG_CLASSES; cl++)
1478 ira_reg_class_max_nregs[cl][m]
1479 = ira_reg_class_min_nregs[cl][m]
1480 = targetm.class_max_nregs ((reg_class_t) cl, (machine_mode) m);
1481 for (cl = 0; cl < N_REG_CLASSES; cl++)
1482 for (i = 0;
1483 (cl2 = alloc_reg_class_subclasses[cl][i]) != LIM_REG_CLASSES;
1484 i++)
1485 if (ira_reg_class_min_nregs[cl2][m]
1486 < ira_reg_class_min_nregs[cl][m])
1487 ira_reg_class_min_nregs[cl][m] = ira_reg_class_min_nregs[cl2][m];
1493 /* Set up IRA_PROHIBITED_CLASS_MODE_REGS and IRA_CLASS_SINGLETON.
1494 This function is called once IRA_CLASS_HARD_REGS has been initialized. */
1495 static void
1496 setup_prohibited_class_mode_regs (void)
1498 int j, k, hard_regno, cl, last_hard_regno, count;
1500 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1502 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1503 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1504 for (j = 0; j < NUM_MACHINE_MODES; j++)
1506 count = 0;
1507 last_hard_regno = -1;
1508 CLEAR_HARD_REG_SET (ira_prohibited_class_mode_regs[cl][j]);
1509 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1511 hard_regno = ira_class_hard_regs[cl][k];
1512 if (!targetm.hard_regno_mode_ok (hard_regno, (machine_mode) j))
1513 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1514 hard_regno);
1515 else if (in_hard_reg_set_p (temp_hard_regset,
1516 (machine_mode) j, hard_regno))
1518 last_hard_regno = hard_regno;
1519 count++;
1522 ira_class_singleton[cl][j] = (count == 1 ? last_hard_regno : -1);
1527 /* Clarify IRA_PROHIBITED_CLASS_MODE_REGS by excluding hard registers
1528 spanning from one register pressure class to another one. It is
1529 called after defining the pressure classes. */
1530 static void
1531 clarify_prohibited_class_mode_regs (void)
1533 int j, k, hard_regno, cl, pclass, nregs;
1535 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1536 for (j = 0; j < NUM_MACHINE_MODES; j++)
1538 CLEAR_HARD_REG_SET (ira_useful_class_mode_regs[cl][j]);
1539 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1541 hard_regno = ira_class_hard_regs[cl][k];
1542 if (TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j], hard_regno))
1543 continue;
1544 nregs = hard_regno_nregs (hard_regno, (machine_mode) j);
1545 if (hard_regno + nregs > FIRST_PSEUDO_REGISTER)
1547 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1548 hard_regno);
1549 continue;
1551 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
1552 for (nregs-- ;nregs >= 0; nregs--)
1553 if (((enum reg_class) pclass
1554 != ira_pressure_class_translate[REGNO_REG_CLASS
1555 (hard_regno + nregs)]))
1557 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1558 hard_regno);
1559 break;
1561 if (!TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1562 hard_regno))
1563 add_to_hard_reg_set (&ira_useful_class_mode_regs[cl][j],
1564 (machine_mode) j, hard_regno);
1569 /* Allocate and initialize IRA_REGISTER_MOVE_COST, IRA_MAY_MOVE_IN_COST
1570 and IRA_MAY_MOVE_OUT_COST for MODE. */
1571 void
1572 ira_init_register_move_cost (machine_mode mode)
1574 static unsigned short last_move_cost[N_REG_CLASSES][N_REG_CLASSES];
1575 bool all_match = true;
1576 unsigned int cl1, cl2;
1578 ira_assert (ira_register_move_cost[mode] == NULL
1579 && ira_may_move_in_cost[mode] == NULL
1580 && ira_may_move_out_cost[mode] == NULL);
1581 ira_assert (have_regs_of_mode[mode]);
1582 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1583 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1585 int cost;
1586 if (!contains_reg_of_mode[cl1][mode]
1587 || !contains_reg_of_mode[cl2][mode])
1589 if ((ira_reg_class_max_nregs[cl1][mode]
1590 > ira_class_hard_regs_num[cl1])
1591 || (ira_reg_class_max_nregs[cl2][mode]
1592 > ira_class_hard_regs_num[cl2]))
1593 cost = 65535;
1594 else
1595 cost = (ira_memory_move_cost[mode][cl1][0]
1596 + ira_memory_move_cost[mode][cl2][1]) * 2;
1598 else
1600 cost = register_move_cost (mode, (enum reg_class) cl1,
1601 (enum reg_class) cl2);
1602 ira_assert (cost < 65535);
1604 all_match &= (last_move_cost[cl1][cl2] == cost);
1605 last_move_cost[cl1][cl2] = cost;
1607 if (all_match && last_mode_for_init_move_cost != -1)
1609 ira_register_move_cost[mode]
1610 = ira_register_move_cost[last_mode_for_init_move_cost];
1611 ira_may_move_in_cost[mode]
1612 = ira_may_move_in_cost[last_mode_for_init_move_cost];
1613 ira_may_move_out_cost[mode]
1614 = ira_may_move_out_cost[last_mode_for_init_move_cost];
1615 return;
1617 last_mode_for_init_move_cost = mode;
1618 ira_register_move_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1619 ira_may_move_in_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1620 ira_may_move_out_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1621 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1622 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1624 int cost;
1625 enum reg_class *p1, *p2;
1627 if (last_move_cost[cl1][cl2] == 65535)
1629 ira_register_move_cost[mode][cl1][cl2] = 65535;
1630 ira_may_move_in_cost[mode][cl1][cl2] = 65535;
1631 ira_may_move_out_cost[mode][cl1][cl2] = 65535;
1633 else
1635 cost = last_move_cost[cl1][cl2];
1637 for (p2 = &reg_class_subclasses[cl2][0];
1638 *p2 != LIM_REG_CLASSES; p2++)
1639 if (ira_class_hard_regs_num[*p2] > 0
1640 && (ira_reg_class_max_nregs[*p2][mode]
1641 <= ira_class_hard_regs_num[*p2]))
1642 cost = MAX (cost, ira_register_move_cost[mode][cl1][*p2]);
1644 for (p1 = &reg_class_subclasses[cl1][0];
1645 *p1 != LIM_REG_CLASSES; p1++)
1646 if (ira_class_hard_regs_num[*p1] > 0
1647 && (ira_reg_class_max_nregs[*p1][mode]
1648 <= ira_class_hard_regs_num[*p1]))
1649 cost = MAX (cost, ira_register_move_cost[mode][*p1][cl2]);
1651 ira_assert (cost <= 65535);
1652 ira_register_move_cost[mode][cl1][cl2] = cost;
1654 if (ira_class_subset_p[cl1][cl2])
1655 ira_may_move_in_cost[mode][cl1][cl2] = 0;
1656 else
1657 ira_may_move_in_cost[mode][cl1][cl2] = cost;
1659 if (ira_class_subset_p[cl2][cl1])
1660 ira_may_move_out_cost[mode][cl1][cl2] = 0;
1661 else
1662 ira_may_move_out_cost[mode][cl1][cl2] = cost;
1669 /* This is called once during compiler work. It sets up
1670 different arrays whose values don't depend on the compiled
1671 function. */
1672 void
1673 ira_init_once (void)
1675 ira_init_costs_once ();
1676 lra_init_once ();
1678 ira_use_lra_p = targetm.lra_p ();
1681 /* Free ira_max_register_move_cost, ira_may_move_in_cost and
1682 ira_may_move_out_cost for each mode. */
1683 void
1684 target_ira_int::free_register_move_costs (void)
1686 int mode, i;
1688 /* Reset move_cost and friends, making sure we only free shared
1689 table entries once. */
1690 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1691 if (x_ira_register_move_cost[mode])
1693 for (i = 0;
1694 i < mode && (x_ira_register_move_cost[i]
1695 != x_ira_register_move_cost[mode]);
1696 i++)
1698 if (i == mode)
1700 free (x_ira_register_move_cost[mode]);
1701 free (x_ira_may_move_in_cost[mode]);
1702 free (x_ira_may_move_out_cost[mode]);
1705 memset (x_ira_register_move_cost, 0, sizeof x_ira_register_move_cost);
1706 memset (x_ira_may_move_in_cost, 0, sizeof x_ira_may_move_in_cost);
1707 memset (x_ira_may_move_out_cost, 0, sizeof x_ira_may_move_out_cost);
1708 last_mode_for_init_move_cost = -1;
1711 target_ira_int::~target_ira_int ()
1713 free_ira_costs ();
1714 free_register_move_costs ();
1717 /* This is called every time when register related information is
1718 changed. */
1719 void
1720 ira_init (void)
1722 this_target_ira_int->free_register_move_costs ();
1723 setup_reg_mode_hard_regset ();
1724 setup_alloc_regs (flag_omit_frame_pointer != 0);
1725 setup_class_subset_and_memory_move_costs ();
1726 setup_reg_class_nregs ();
1727 setup_prohibited_class_mode_regs ();
1728 find_reg_classes ();
1729 clarify_prohibited_class_mode_regs ();
1730 setup_hard_regno_aclass ();
1731 ira_init_costs ();
1735 #define ira_prohibited_mode_move_regs_initialized_p \
1736 (this_target_ira_int->x_ira_prohibited_mode_move_regs_initialized_p)
1738 /* Set up IRA_PROHIBITED_MODE_MOVE_REGS. */
1739 static void
1740 setup_prohibited_mode_move_regs (void)
1742 int i, j;
1743 rtx test_reg1, test_reg2, move_pat;
1744 rtx_insn *move_insn;
1746 if (ira_prohibited_mode_move_regs_initialized_p)
1747 return;
1748 ira_prohibited_mode_move_regs_initialized_p = true;
1749 test_reg1 = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
1750 test_reg2 = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 2);
1751 move_pat = gen_rtx_SET (test_reg1, test_reg2);
1752 move_insn = gen_rtx_INSN (VOIDmode, 0, 0, 0, move_pat, 0, -1, 0);
1753 for (i = 0; i < NUM_MACHINE_MODES; i++)
1755 SET_HARD_REG_SET (ira_prohibited_mode_move_regs[i]);
1756 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1758 if (!targetm.hard_regno_mode_ok (j, (machine_mode) i))
1759 continue;
1760 set_mode_and_regno (test_reg1, (machine_mode) i, j);
1761 set_mode_and_regno (test_reg2, (machine_mode) i, j);
1762 INSN_CODE (move_insn) = -1;
1763 recog_memoized (move_insn);
1764 if (INSN_CODE (move_insn) < 0)
1765 continue;
1766 extract_insn (move_insn);
1767 /* We don't know whether the move will be in code that is optimized
1768 for size or speed, so consider all enabled alternatives. */
1769 if (! constrain_operands (1, get_enabled_alternatives (move_insn)))
1770 continue;
1771 CLEAR_HARD_REG_BIT (ira_prohibited_mode_move_regs[i], j);
1778 /* Setup possible alternatives in ALTS for INSN. */
1779 void
1780 ira_setup_alts (rtx_insn *insn, HARD_REG_SET &alts)
1782 /* MAP nalt * nop -> start of constraints for given operand and
1783 alternative. */
1784 static vec<const char *> insn_constraints;
1785 int nop, nalt;
1786 bool curr_swapped;
1787 const char *p;
1788 int commutative = -1;
1790 extract_insn (insn);
1791 alternative_mask preferred = get_preferred_alternatives (insn);
1792 CLEAR_HARD_REG_SET (alts);
1793 insn_constraints.release ();
1794 insn_constraints.safe_grow_cleared (recog_data.n_operands
1795 * recog_data.n_alternatives + 1);
1796 /* Check that the hard reg set is enough for holding all
1797 alternatives. It is hard to imagine the situation when the
1798 assertion is wrong. */
1799 ira_assert (recog_data.n_alternatives
1800 <= (int) MAX (sizeof (HARD_REG_ELT_TYPE) * CHAR_BIT,
1801 FIRST_PSEUDO_REGISTER));
1802 for (curr_swapped = false;; curr_swapped = true)
1804 /* Calculate some data common for all alternatives to speed up the
1805 function. */
1806 for (nop = 0; nop < recog_data.n_operands; nop++)
1808 for (nalt = 0, p = recog_data.constraints[nop];
1809 nalt < recog_data.n_alternatives;
1810 nalt++)
1812 insn_constraints[nop * recog_data.n_alternatives + nalt] = p;
1813 while (*p && *p != ',')
1815 /* We only support one commutative marker, the first
1816 one. We already set commutative above. */
1817 if (*p == '%' && commutative < 0)
1818 commutative = nop;
1819 p++;
1821 if (*p)
1822 p++;
1825 for (nalt = 0; nalt < recog_data.n_alternatives; nalt++)
1827 if (!TEST_BIT (preferred, nalt)
1828 || TEST_HARD_REG_BIT (alts, nalt))
1829 continue;
1831 for (nop = 0; nop < recog_data.n_operands; nop++)
1833 int c, len;
1835 rtx op = recog_data.operand[nop];
1836 p = insn_constraints[nop * recog_data.n_alternatives + nalt];
1837 if (*p == 0 || *p == ',')
1838 continue;
1841 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
1843 case '#':
1844 case ',':
1845 c = '\0';
1846 /* FALLTHRU */
1847 case '\0':
1848 len = 0;
1849 break;
1851 case '%':
1852 /* The commutative modifier is handled above. */
1853 break;
1855 case '0': case '1': case '2': case '3': case '4':
1856 case '5': case '6': case '7': case '8': case '9':
1857 goto op_success;
1858 break;
1860 case 'g':
1861 goto op_success;
1862 break;
1864 default:
1866 enum constraint_num cn = lookup_constraint (p);
1867 switch (get_constraint_type (cn))
1869 case CT_REGISTER:
1870 if (reg_class_for_constraint (cn) != NO_REGS)
1871 goto op_success;
1872 break;
1874 case CT_CONST_INT:
1875 if (CONST_INT_P (op)
1876 && (insn_const_int_ok_for_constraint
1877 (INTVAL (op), cn)))
1878 goto op_success;
1879 break;
1881 case CT_ADDRESS:
1882 case CT_MEMORY:
1883 case CT_SPECIAL_MEMORY:
1884 goto op_success;
1886 case CT_FIXED_FORM:
1887 if (constraint_satisfied_p (op, cn))
1888 goto op_success;
1889 break;
1891 break;
1894 while (p += len, c);
1895 break;
1896 op_success:
1899 if (nop >= recog_data.n_operands)
1900 SET_HARD_REG_BIT (alts, nalt);
1902 if (commutative < 0)
1903 break;
1904 /* Swap forth and back to avoid changing recog_data. */
1905 std::swap (recog_data.operand[commutative],
1906 recog_data.operand[commutative + 1]);
1907 if (curr_swapped)
1908 break;
1912 /* Return the number of the output non-early clobber operand which
1913 should be the same in any case as operand with number OP_NUM (or
1914 negative value if there is no such operand). The function takes
1915 only really possible alternatives into consideration. */
1917 ira_get_dup_out_num (int op_num, HARD_REG_SET &alts)
1919 int curr_alt, c, original, dup;
1920 bool ignore_p, use_commut_op_p;
1921 const char *str;
1923 if (op_num < 0 || recog_data.n_alternatives == 0)
1924 return -1;
1925 /* We should find duplications only for input operands. */
1926 if (recog_data.operand_type[op_num] != OP_IN)
1927 return -1;
1928 str = recog_data.constraints[op_num];
1929 use_commut_op_p = false;
1930 for (;;)
1932 rtx op = recog_data.operand[op_num];
1934 for (curr_alt = 0, ignore_p = !TEST_HARD_REG_BIT (alts, curr_alt),
1935 original = -1;;)
1937 c = *str;
1938 if (c == '\0')
1939 break;
1940 if (c == '#')
1941 ignore_p = true;
1942 else if (c == ',')
1944 curr_alt++;
1945 ignore_p = !TEST_HARD_REG_BIT (alts, curr_alt);
1947 else if (! ignore_p)
1948 switch (c)
1950 case 'g':
1951 goto fail;
1952 default:
1954 enum constraint_num cn = lookup_constraint (str);
1955 enum reg_class cl = reg_class_for_constraint (cn);
1956 if (cl != NO_REGS
1957 && !targetm.class_likely_spilled_p (cl))
1958 goto fail;
1959 if (constraint_satisfied_p (op, cn))
1960 goto fail;
1961 break;
1964 case '0': case '1': case '2': case '3': case '4':
1965 case '5': case '6': case '7': case '8': case '9':
1966 if (original != -1 && original != c)
1967 goto fail;
1968 original = c;
1969 break;
1971 str += CONSTRAINT_LEN (c, str);
1973 if (original == -1)
1974 goto fail;
1975 dup = -1;
1976 for (ignore_p = false, str = recog_data.constraints[original - '0'];
1977 *str != 0;
1978 str++)
1979 if (ignore_p)
1981 if (*str == ',')
1982 ignore_p = false;
1984 else if (*str == '#')
1985 ignore_p = true;
1986 else if (! ignore_p)
1988 if (*str == '=')
1989 dup = original - '0';
1990 /* It is better ignore an alternative with early clobber. */
1991 else if (*str == '&')
1992 goto fail;
1994 if (dup >= 0)
1995 return dup;
1996 fail:
1997 if (use_commut_op_p)
1998 break;
1999 use_commut_op_p = true;
2000 if (recog_data.constraints[op_num][0] == '%')
2001 str = recog_data.constraints[op_num + 1];
2002 else if (op_num > 0 && recog_data.constraints[op_num - 1][0] == '%')
2003 str = recog_data.constraints[op_num - 1];
2004 else
2005 break;
2007 return -1;
2012 /* Search forward to see if the source register of a copy insn dies
2013 before either it or the destination register is modified, but don't
2014 scan past the end of the basic block. If so, we can replace the
2015 source with the destination and let the source die in the copy
2016 insn.
2018 This will reduce the number of registers live in that range and may
2019 enable the destination and the source coalescing, thus often saving
2020 one register in addition to a register-register copy. */
2022 static void
2023 decrease_live_ranges_number (void)
2025 basic_block bb;
2026 rtx_insn *insn;
2027 rtx set, src, dest, dest_death, note;
2028 rtx_insn *p, *q;
2029 int sregno, dregno;
2031 if (! flag_expensive_optimizations)
2032 return;
2034 if (ira_dump_file)
2035 fprintf (ira_dump_file, "Starting decreasing number of live ranges...\n");
2037 FOR_EACH_BB_FN (bb, cfun)
2038 FOR_BB_INSNS (bb, insn)
2040 set = single_set (insn);
2041 if (! set)
2042 continue;
2043 src = SET_SRC (set);
2044 dest = SET_DEST (set);
2045 if (! REG_P (src) || ! REG_P (dest)
2046 || find_reg_note (insn, REG_DEAD, src))
2047 continue;
2048 sregno = REGNO (src);
2049 dregno = REGNO (dest);
2051 /* We don't want to mess with hard regs if register classes
2052 are small. */
2053 if (sregno == dregno
2054 || (targetm.small_register_classes_for_mode_p (GET_MODE (src))
2055 && (sregno < FIRST_PSEUDO_REGISTER
2056 || dregno < FIRST_PSEUDO_REGISTER))
2057 /* We don't see all updates to SP if they are in an
2058 auto-inc memory reference, so we must disallow this
2059 optimization on them. */
2060 || sregno == STACK_POINTER_REGNUM
2061 || dregno == STACK_POINTER_REGNUM)
2062 continue;
2064 dest_death = NULL_RTX;
2066 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
2068 if (! INSN_P (p))
2069 continue;
2070 if (BLOCK_FOR_INSN (p) != bb)
2071 break;
2073 if (reg_set_p (src, p) || reg_set_p (dest, p)
2074 /* If SRC is an asm-declared register, it must not be
2075 replaced in any asm. Unfortunately, the REG_EXPR
2076 tree for the asm variable may be absent in the SRC
2077 rtx, so we can't check the actual register
2078 declaration easily (the asm operand will have it,
2079 though). To avoid complicating the test for a rare
2080 case, we just don't perform register replacement
2081 for a hard reg mentioned in an asm. */
2082 || (sregno < FIRST_PSEUDO_REGISTER
2083 && asm_noperands (PATTERN (p)) >= 0
2084 && reg_overlap_mentioned_p (src, PATTERN (p)))
2085 /* Don't change hard registers used by a call. */
2086 || (CALL_P (p) && sregno < FIRST_PSEUDO_REGISTER
2087 && find_reg_fusage (p, USE, src))
2088 /* Don't change a USE of a register. */
2089 || (GET_CODE (PATTERN (p)) == USE
2090 && reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
2091 break;
2093 /* See if all of SRC dies in P. This test is slightly
2094 more conservative than it needs to be. */
2095 if ((note = find_regno_note (p, REG_DEAD, sregno))
2096 && GET_MODE (XEXP (note, 0)) == GET_MODE (src))
2098 int failed = 0;
2100 /* We can do the optimization. Scan forward from INSN
2101 again, replacing regs as we go. Set FAILED if a
2102 replacement can't be done. In that case, we can't
2103 move the death note for SRC. This should be
2104 rare. */
2106 /* Set to stop at next insn. */
2107 for (q = next_real_insn (insn);
2108 q != next_real_insn (p);
2109 q = next_real_insn (q))
2111 if (reg_overlap_mentioned_p (src, PATTERN (q)))
2113 /* If SRC is a hard register, we might miss
2114 some overlapping registers with
2115 validate_replace_rtx, so we would have to
2116 undo it. We can't if DEST is present in
2117 the insn, so fail in that combination of
2118 cases. */
2119 if (sregno < FIRST_PSEUDO_REGISTER
2120 && reg_mentioned_p (dest, PATTERN (q)))
2121 failed = 1;
2123 /* Attempt to replace all uses. */
2124 else if (!validate_replace_rtx (src, dest, q))
2125 failed = 1;
2127 /* If this succeeded, but some part of the
2128 register is still present, undo the
2129 replacement. */
2130 else if (sregno < FIRST_PSEUDO_REGISTER
2131 && reg_overlap_mentioned_p (src, PATTERN (q)))
2133 validate_replace_rtx (dest, src, q);
2134 failed = 1;
2138 /* If DEST dies here, remove the death note and
2139 save it for later. Make sure ALL of DEST dies
2140 here; again, this is overly conservative. */
2141 if (! dest_death
2142 && (dest_death = find_regno_note (q, REG_DEAD, dregno)))
2144 if (GET_MODE (XEXP (dest_death, 0)) == GET_MODE (dest))
2145 remove_note (q, dest_death);
2146 else
2148 failed = 1;
2149 dest_death = 0;
2154 if (! failed)
2156 /* Move death note of SRC from P to INSN. */
2157 remove_note (p, note);
2158 XEXP (note, 1) = REG_NOTES (insn);
2159 REG_NOTES (insn) = note;
2162 /* DEST is also dead if INSN has a REG_UNUSED note for
2163 DEST. */
2164 if (! dest_death
2165 && (dest_death
2166 = find_regno_note (insn, REG_UNUSED, dregno)))
2168 PUT_REG_NOTE_KIND (dest_death, REG_DEAD);
2169 remove_note (insn, dest_death);
2172 /* Put death note of DEST on P if we saw it die. */
2173 if (dest_death)
2175 XEXP (dest_death, 1) = REG_NOTES (p);
2176 REG_NOTES (p) = dest_death;
2178 break;
2181 /* If SRC is a hard register which is set or killed in
2182 some other way, we can't do this optimization. */
2183 else if (sregno < FIRST_PSEUDO_REGISTER && dead_or_set_p (p, src))
2184 break;
2191 /* Return nonzero if REGNO is a particularly bad choice for reloading X. */
2192 static bool
2193 ira_bad_reload_regno_1 (int regno, rtx x)
2195 int x_regno, n, i;
2196 ira_allocno_t a;
2197 enum reg_class pref;
2199 /* We only deal with pseudo regs. */
2200 if (! x || GET_CODE (x) != REG)
2201 return false;
2203 x_regno = REGNO (x);
2204 if (x_regno < FIRST_PSEUDO_REGISTER)
2205 return false;
2207 /* If the pseudo prefers REGNO explicitly, then do not consider
2208 REGNO a bad spill choice. */
2209 pref = reg_preferred_class (x_regno);
2210 if (reg_class_size[pref] == 1)
2211 return !TEST_HARD_REG_BIT (reg_class_contents[pref], regno);
2213 /* If the pseudo conflicts with REGNO, then we consider REGNO a
2214 poor choice for a reload regno. */
2215 a = ira_regno_allocno_map[x_regno];
2216 n = ALLOCNO_NUM_OBJECTS (a);
2217 for (i = 0; i < n; i++)
2219 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2220 if (TEST_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno))
2221 return true;
2223 return false;
2226 /* Return nonzero if REGNO is a particularly bad choice for reloading
2227 IN or OUT. */
2228 bool
2229 ira_bad_reload_regno (int regno, rtx in, rtx out)
2231 return (ira_bad_reload_regno_1 (regno, in)
2232 || ira_bad_reload_regno_1 (regno, out));
2235 /* Add register clobbers from asm statements. */
2236 static void
2237 compute_regs_asm_clobbered (void)
2239 basic_block bb;
2241 FOR_EACH_BB_FN (bb, cfun)
2243 rtx_insn *insn;
2244 FOR_BB_INSNS_REVERSE (bb, insn)
2246 df_ref def;
2248 if (NONDEBUG_INSN_P (insn) && asm_noperands (PATTERN (insn)) >= 0)
2249 FOR_EACH_INSN_DEF (def, insn)
2251 unsigned int dregno = DF_REF_REGNO (def);
2252 if (HARD_REGISTER_NUM_P (dregno))
2253 add_to_hard_reg_set (&crtl->asm_clobbers,
2254 GET_MODE (DF_REF_REAL_REG (def)),
2255 dregno);
2262 /* Set up ELIMINABLE_REGSET, IRA_NO_ALLOC_REGS, and
2263 REGS_EVER_LIVE. */
2264 void
2265 ira_setup_eliminable_regset (void)
2267 int i;
2268 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
2270 /* Setup is_leaf as frame_pointer_required may use it. This function
2271 is called by sched_init before ira if scheduling is enabled. */
2272 crtl->is_leaf = leaf_function_p ();
2274 /* FIXME: If EXIT_IGNORE_STACK is set, we will not save and restore
2275 sp for alloca. So we can't eliminate the frame pointer in that
2276 case. At some point, we should improve this by emitting the
2277 sp-adjusting insns for this case. */
2278 frame_pointer_needed
2279 = (! flag_omit_frame_pointer
2280 || (cfun->calls_alloca && EXIT_IGNORE_STACK)
2281 /* We need the frame pointer to catch stack overflow exceptions if
2282 the stack pointer is moving (as for the alloca case just above). */
2283 || (STACK_CHECK_MOVING_SP
2284 && flag_stack_check
2285 && flag_exceptions
2286 && cfun->can_throw_non_call_exceptions)
2287 || crtl->accesses_prior_frames
2288 || (SUPPORTS_STACK_ALIGNMENT && crtl->stack_realign_needed)
2289 /* We need a frame pointer for all Cilk Plus functions that use
2290 Cilk keywords. */
2291 || (flag_cilkplus && cfun->is_cilk_function)
2292 || targetm.frame_pointer_required ());
2294 /* The chance that FRAME_POINTER_NEEDED is changed from inspecting
2295 RTL is very small. So if we use frame pointer for RA and RTL
2296 actually prevents this, we will spill pseudos assigned to the
2297 frame pointer in LRA. */
2299 if (frame_pointer_needed)
2300 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
2302 COPY_HARD_REG_SET (ira_no_alloc_regs, no_unit_alloc_regs);
2303 CLEAR_HARD_REG_SET (eliminable_regset);
2305 compute_regs_asm_clobbered ();
2307 /* Build the regset of all eliminable registers and show we can't
2308 use those that we already know won't be eliminated. */
2309 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
2311 bool cannot_elim
2312 = (! targetm.can_eliminate (eliminables[i].from, eliminables[i].to)
2313 || (eliminables[i].to == STACK_POINTER_REGNUM && frame_pointer_needed));
2315 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, eliminables[i].from))
2317 SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);
2319 if (cannot_elim)
2320 SET_HARD_REG_BIT (ira_no_alloc_regs, eliminables[i].from);
2322 else if (cannot_elim)
2323 error ("%s cannot be used in asm here",
2324 reg_names[eliminables[i].from]);
2325 else
2326 df_set_regs_ever_live (eliminables[i].from, true);
2328 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
2330 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
2332 SET_HARD_REG_BIT (eliminable_regset, HARD_FRAME_POINTER_REGNUM);
2333 if (frame_pointer_needed)
2334 SET_HARD_REG_BIT (ira_no_alloc_regs, HARD_FRAME_POINTER_REGNUM);
2336 else if (frame_pointer_needed)
2337 error ("%s cannot be used in asm here",
2338 reg_names[HARD_FRAME_POINTER_REGNUM]);
2339 else
2340 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
2346 /* Vector of substitutions of register numbers,
2347 used to map pseudo regs into hardware regs.
2348 This is set up as a result of register allocation.
2349 Element N is the hard reg assigned to pseudo reg N,
2350 or is -1 if no hard reg was assigned.
2351 If N is a hard reg number, element N is N. */
2352 short *reg_renumber;
2354 /* Set up REG_RENUMBER and CALLER_SAVE_NEEDED (used by reload) from
2355 the allocation found by IRA. */
2356 static void
2357 setup_reg_renumber (void)
2359 int regno, hard_regno;
2360 ira_allocno_t a;
2361 ira_allocno_iterator ai;
2363 caller_save_needed = 0;
2364 FOR_EACH_ALLOCNO (a, ai)
2366 if (ira_use_lra_p && ALLOCNO_CAP_MEMBER (a) != NULL)
2367 continue;
2368 /* There are no caps at this point. */
2369 ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
2370 if (! ALLOCNO_ASSIGNED_P (a))
2371 /* It can happen if A is not referenced but partially anticipated
2372 somewhere in a region. */
2373 ALLOCNO_ASSIGNED_P (a) = true;
2374 ira_free_allocno_updated_costs (a);
2375 hard_regno = ALLOCNO_HARD_REGNO (a);
2376 regno = ALLOCNO_REGNO (a);
2377 reg_renumber[regno] = (hard_regno < 0 ? -1 : hard_regno);
2378 if (hard_regno >= 0)
2380 int i, nwords;
2381 enum reg_class pclass;
2382 ira_object_t obj;
2384 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
2385 nwords = ALLOCNO_NUM_OBJECTS (a);
2386 for (i = 0; i < nwords; i++)
2388 obj = ALLOCNO_OBJECT (a, i);
2389 IOR_COMPL_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
2390 reg_class_contents[pclass]);
2392 if (ALLOCNO_CALLS_CROSSED_NUM (a) != 0
2393 && ira_hard_reg_set_intersection_p (hard_regno, ALLOCNO_MODE (a),
2394 call_used_reg_set))
2396 ira_assert (!optimize || flag_caller_saves
2397 || (ALLOCNO_CALLS_CROSSED_NUM (a)
2398 == ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a))
2399 || regno >= ira_reg_equiv_len
2400 || ira_equiv_no_lvalue_p (regno));
2401 caller_save_needed = 1;
2407 /* Set up allocno assignment flags for further allocation
2408 improvements. */
2409 static void
2410 setup_allocno_assignment_flags (void)
2412 int hard_regno;
2413 ira_allocno_t a;
2414 ira_allocno_iterator ai;
2416 FOR_EACH_ALLOCNO (a, ai)
2418 if (! ALLOCNO_ASSIGNED_P (a))
2419 /* It can happen if A is not referenced but partially anticipated
2420 somewhere in a region. */
2421 ira_free_allocno_updated_costs (a);
2422 hard_regno = ALLOCNO_HARD_REGNO (a);
2423 /* Don't assign hard registers to allocnos which are destination
2424 of removed store at the end of loop. It has no sense to keep
2425 the same value in different hard registers. It is also
2426 impossible to assign hard registers correctly to such
2427 allocnos because the cost info and info about intersected
2428 calls are incorrect for them. */
2429 ALLOCNO_ASSIGNED_P (a) = (hard_regno >= 0
2430 || ALLOCNO_EMIT_DATA (a)->mem_optimized_dest_p
2431 || (ALLOCNO_MEMORY_COST (a)
2432 - ALLOCNO_CLASS_COST (a)) < 0);
2433 ira_assert
2434 (hard_regno < 0
2435 || ira_hard_reg_in_set_p (hard_regno, ALLOCNO_MODE (a),
2436 reg_class_contents[ALLOCNO_CLASS (a)]));
2440 /* Evaluate overall allocation cost and the costs for using hard
2441 registers and memory for allocnos. */
2442 static void
2443 calculate_allocation_cost (void)
2445 int hard_regno, cost;
2446 ira_allocno_t a;
2447 ira_allocno_iterator ai;
2449 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
2450 FOR_EACH_ALLOCNO (a, ai)
2452 hard_regno = ALLOCNO_HARD_REGNO (a);
2453 ira_assert (hard_regno < 0
2454 || (ira_hard_reg_in_set_p
2455 (hard_regno, ALLOCNO_MODE (a),
2456 reg_class_contents[ALLOCNO_CLASS (a)])));
2457 if (hard_regno < 0)
2459 cost = ALLOCNO_MEMORY_COST (a);
2460 ira_mem_cost += cost;
2462 else if (ALLOCNO_HARD_REG_COSTS (a) != NULL)
2464 cost = (ALLOCNO_HARD_REG_COSTS (a)
2465 [ira_class_hard_reg_index
2466 [ALLOCNO_CLASS (a)][hard_regno]]);
2467 ira_reg_cost += cost;
2469 else
2471 cost = ALLOCNO_CLASS_COST (a);
2472 ira_reg_cost += cost;
2474 ira_overall_cost += cost;
2477 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
2479 fprintf (ira_dump_file,
2480 "+++Costs: overall %" PRId64
2481 ", reg %" PRId64
2482 ", mem %" PRId64
2483 ", ld %" PRId64
2484 ", st %" PRId64
2485 ", move %" PRId64,
2486 ira_overall_cost, ira_reg_cost, ira_mem_cost,
2487 ira_load_cost, ira_store_cost, ira_shuffle_cost);
2488 fprintf (ira_dump_file, "\n+++ move loops %d, new jumps %d\n",
2489 ira_move_loops_num, ira_additional_jumps_num);
2494 #ifdef ENABLE_IRA_CHECKING
2495 /* Check the correctness of the allocation. We do need this because
2496 of complicated code to transform more one region internal
2497 representation into one region representation. */
2498 static void
2499 check_allocation (void)
2501 ira_allocno_t a;
2502 int hard_regno, nregs, conflict_nregs;
2503 ira_allocno_iterator ai;
2505 FOR_EACH_ALLOCNO (a, ai)
2507 int n = ALLOCNO_NUM_OBJECTS (a);
2508 int i;
2510 if (ALLOCNO_CAP_MEMBER (a) != NULL
2511 || (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0)
2512 continue;
2513 nregs = hard_regno_nregs (hard_regno, ALLOCNO_MODE (a));
2514 if (nregs == 1)
2515 /* We allocated a single hard register. */
2516 n = 1;
2517 else if (n > 1)
2518 /* We allocated multiple hard registers, and we will test
2519 conflicts in a granularity of single hard regs. */
2520 nregs = 1;
2522 for (i = 0; i < n; i++)
2524 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2525 ira_object_t conflict_obj;
2526 ira_object_conflict_iterator oci;
2527 int this_regno = hard_regno;
2528 if (n > 1)
2530 if (REG_WORDS_BIG_ENDIAN)
2531 this_regno += n - i - 1;
2532 else
2533 this_regno += i;
2535 FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
2537 ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
2538 int conflict_hard_regno = ALLOCNO_HARD_REGNO (conflict_a);
2539 if (conflict_hard_regno < 0)
2540 continue;
2542 conflict_nregs = hard_regno_nregs (conflict_hard_regno,
2543 ALLOCNO_MODE (conflict_a));
2545 if (ALLOCNO_NUM_OBJECTS (conflict_a) > 1
2546 && conflict_nregs == ALLOCNO_NUM_OBJECTS (conflict_a))
2548 if (REG_WORDS_BIG_ENDIAN)
2549 conflict_hard_regno += (ALLOCNO_NUM_OBJECTS (conflict_a)
2550 - OBJECT_SUBWORD (conflict_obj) - 1);
2551 else
2552 conflict_hard_regno += OBJECT_SUBWORD (conflict_obj);
2553 conflict_nregs = 1;
2556 if ((conflict_hard_regno <= this_regno
2557 && this_regno < conflict_hard_regno + conflict_nregs)
2558 || (this_regno <= conflict_hard_regno
2559 && conflict_hard_regno < this_regno + nregs))
2561 fprintf (stderr, "bad allocation for %d and %d\n",
2562 ALLOCNO_REGNO (a), ALLOCNO_REGNO (conflict_a));
2563 gcc_unreachable ();
2569 #endif
2571 /* Allocate REG_EQUIV_INIT. Set up it from IRA_REG_EQUIV which should
2572 be already calculated. */
2573 static void
2574 setup_reg_equiv_init (void)
2576 int i;
2577 int max_regno = max_reg_num ();
2579 for (i = 0; i < max_regno; i++)
2580 reg_equiv_init (i) = ira_reg_equiv[i].init_insns;
2583 /* Update equiv regno from movement of FROM_REGNO to TO_REGNO. INSNS
2584 are insns which were generated for such movement. It is assumed
2585 that FROM_REGNO and TO_REGNO always have the same value at the
2586 point of any move containing such registers. This function is used
2587 to update equiv info for register shuffles on the region borders
2588 and for caller save/restore insns. */
2589 void
2590 ira_update_equiv_info_by_shuffle_insn (int to_regno, int from_regno, rtx_insn *insns)
2592 rtx_insn *insn;
2593 rtx x, note;
2595 if (! ira_reg_equiv[from_regno].defined_p
2596 && (! ira_reg_equiv[to_regno].defined_p
2597 || ((x = ira_reg_equiv[to_regno].memory) != NULL_RTX
2598 && ! MEM_READONLY_P (x))))
2599 return;
2600 insn = insns;
2601 if (NEXT_INSN (insn) != NULL_RTX)
2603 if (! ira_reg_equiv[to_regno].defined_p)
2605 ira_assert (ira_reg_equiv[to_regno].init_insns == NULL_RTX);
2606 return;
2608 ira_reg_equiv[to_regno].defined_p = false;
2609 ira_reg_equiv[to_regno].memory
2610 = ira_reg_equiv[to_regno].constant
2611 = ira_reg_equiv[to_regno].invariant
2612 = ira_reg_equiv[to_regno].init_insns = NULL;
2613 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2614 fprintf (ira_dump_file,
2615 " Invalidating equiv info for reg %d\n", to_regno);
2616 return;
2618 /* It is possible that FROM_REGNO still has no equivalence because
2619 in shuffles to_regno<-from_regno and from_regno<-to_regno the 2nd
2620 insn was not processed yet. */
2621 if (ira_reg_equiv[from_regno].defined_p)
2623 ira_reg_equiv[to_regno].defined_p = true;
2624 if ((x = ira_reg_equiv[from_regno].memory) != NULL_RTX)
2626 ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX
2627 && ira_reg_equiv[from_regno].constant == NULL_RTX);
2628 ira_assert (ira_reg_equiv[to_regno].memory == NULL_RTX
2629 || rtx_equal_p (ira_reg_equiv[to_regno].memory, x));
2630 ira_reg_equiv[to_regno].memory = x;
2631 if (! MEM_READONLY_P (x))
2632 /* We don't add the insn to insn init list because memory
2633 equivalence is just to say what memory is better to use
2634 when the pseudo is spilled. */
2635 return;
2637 else if ((x = ira_reg_equiv[from_regno].constant) != NULL_RTX)
2639 ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX);
2640 ira_assert (ira_reg_equiv[to_regno].constant == NULL_RTX
2641 || rtx_equal_p (ira_reg_equiv[to_regno].constant, x));
2642 ira_reg_equiv[to_regno].constant = x;
2644 else
2646 x = ira_reg_equiv[from_regno].invariant;
2647 ira_assert (x != NULL_RTX);
2648 ira_assert (ira_reg_equiv[to_regno].invariant == NULL_RTX
2649 || rtx_equal_p (ira_reg_equiv[to_regno].invariant, x));
2650 ira_reg_equiv[to_regno].invariant = x;
2652 if (find_reg_note (insn, REG_EQUIV, x) == NULL_RTX)
2654 note = set_unique_reg_note (insn, REG_EQUIV, copy_rtx (x));
2655 gcc_assert (note != NULL_RTX);
2656 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2658 fprintf (ira_dump_file,
2659 " Adding equiv note to insn %u for reg %d ",
2660 INSN_UID (insn), to_regno);
2661 dump_value_slim (ira_dump_file, x, 1);
2662 fprintf (ira_dump_file, "\n");
2666 ira_reg_equiv[to_regno].init_insns
2667 = gen_rtx_INSN_LIST (VOIDmode, insn,
2668 ira_reg_equiv[to_regno].init_insns);
2669 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2670 fprintf (ira_dump_file,
2671 " Adding equiv init move insn %u to reg %d\n",
2672 INSN_UID (insn), to_regno);
2675 /* Fix values of array REG_EQUIV_INIT after live range splitting done
2676 by IRA. */
2677 static void
2678 fix_reg_equiv_init (void)
2680 int max_regno = max_reg_num ();
2681 int i, new_regno, max;
2682 rtx set;
2683 rtx_insn_list *x, *next, *prev;
2684 rtx_insn *insn;
2686 if (max_regno_before_ira < max_regno)
2688 max = vec_safe_length (reg_equivs);
2689 grow_reg_equivs ();
2690 for (i = FIRST_PSEUDO_REGISTER; i < max; i++)
2691 for (prev = NULL, x = reg_equiv_init (i);
2692 x != NULL_RTX;
2693 x = next)
2695 next = x->next ();
2696 insn = x->insn ();
2697 set = single_set (insn);
2698 ira_assert (set != NULL_RTX
2699 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))));
2700 if (REG_P (SET_DEST (set))
2701 && ((int) REGNO (SET_DEST (set)) == i
2702 || (int) ORIGINAL_REGNO (SET_DEST (set)) == i))
2703 new_regno = REGNO (SET_DEST (set));
2704 else if (REG_P (SET_SRC (set))
2705 && ((int) REGNO (SET_SRC (set)) == i
2706 || (int) ORIGINAL_REGNO (SET_SRC (set)) == i))
2707 new_regno = REGNO (SET_SRC (set));
2708 else
2709 gcc_unreachable ();
2710 if (new_regno == i)
2711 prev = x;
2712 else
2714 /* Remove the wrong list element. */
2715 if (prev == NULL_RTX)
2716 reg_equiv_init (i) = next;
2717 else
2718 XEXP (prev, 1) = next;
2719 XEXP (x, 1) = reg_equiv_init (new_regno);
2720 reg_equiv_init (new_regno) = x;
2726 #ifdef ENABLE_IRA_CHECKING
2727 /* Print redundant memory-memory copies. */
2728 static void
2729 print_redundant_copies (void)
2731 int hard_regno;
2732 ira_allocno_t a;
2733 ira_copy_t cp, next_cp;
2734 ira_allocno_iterator ai;
2736 FOR_EACH_ALLOCNO (a, ai)
2738 if (ALLOCNO_CAP_MEMBER (a) != NULL)
2739 /* It is a cap. */
2740 continue;
2741 hard_regno = ALLOCNO_HARD_REGNO (a);
2742 if (hard_regno >= 0)
2743 continue;
2744 for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
2745 if (cp->first == a)
2746 next_cp = cp->next_first_allocno_copy;
2747 else
2749 next_cp = cp->next_second_allocno_copy;
2750 if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL
2751 && cp->insn != NULL_RTX
2752 && ALLOCNO_HARD_REGNO (cp->first) == hard_regno)
2753 fprintf (ira_dump_file,
2754 " Redundant move from %d(freq %d):%d\n",
2755 INSN_UID (cp->insn), cp->freq, hard_regno);
2759 #endif
2761 /* Setup preferred and alternative classes for new pseudo-registers
2762 created by IRA starting with START. */
2763 static void
2764 setup_preferred_alternate_classes_for_new_pseudos (int start)
2766 int i, old_regno;
2767 int max_regno = max_reg_num ();
2769 for (i = start; i < max_regno; i++)
2771 old_regno = ORIGINAL_REGNO (regno_reg_rtx[i]);
2772 ira_assert (i != old_regno);
2773 setup_reg_classes (i, reg_preferred_class (old_regno),
2774 reg_alternate_class (old_regno),
2775 reg_allocno_class (old_regno));
2776 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
2777 fprintf (ira_dump_file,
2778 " New r%d: setting preferred %s, alternative %s\n",
2779 i, reg_class_names[reg_preferred_class (old_regno)],
2780 reg_class_names[reg_alternate_class (old_regno)]);
2785 /* The number of entries allocated in reg_info. */
2786 static int allocated_reg_info_size;
2788 /* Regional allocation can create new pseudo-registers. This function
2789 expands some arrays for pseudo-registers. */
2790 static void
2791 expand_reg_info (void)
2793 int i;
2794 int size = max_reg_num ();
2796 resize_reg_info ();
2797 for (i = allocated_reg_info_size; i < size; i++)
2798 setup_reg_classes (i, GENERAL_REGS, ALL_REGS, GENERAL_REGS);
2799 setup_preferred_alternate_classes_for_new_pseudos (allocated_reg_info_size);
2800 allocated_reg_info_size = size;
2803 /* Return TRUE if there is too high register pressure in the function.
2804 It is used to decide when stack slot sharing is worth to do. */
2805 static bool
2806 too_high_register_pressure_p (void)
2808 int i;
2809 enum reg_class pclass;
2811 for (i = 0; i < ira_pressure_classes_num; i++)
2813 pclass = ira_pressure_classes[i];
2814 if (ira_loop_tree_root->reg_pressure[pclass] > 10000)
2815 return true;
2817 return false;
2822 /* Indicate that hard register number FROM was eliminated and replaced with
2823 an offset from hard register number TO. The status of hard registers live
2824 at the start of a basic block is updated by replacing a use of FROM with
2825 a use of TO. */
2827 void
2828 mark_elimination (int from, int to)
2830 basic_block bb;
2831 bitmap r;
2833 FOR_EACH_BB_FN (bb, cfun)
2835 r = DF_LR_IN (bb);
2836 if (bitmap_bit_p (r, from))
2838 bitmap_clear_bit (r, from);
2839 bitmap_set_bit (r, to);
2841 if (! df_live)
2842 continue;
2843 r = DF_LIVE_IN (bb);
2844 if (bitmap_bit_p (r, from))
2846 bitmap_clear_bit (r, from);
2847 bitmap_set_bit (r, to);
2854 /* The length of the following array. */
2855 int ira_reg_equiv_len;
2857 /* Info about equiv. info for each register. */
2858 struct ira_reg_equiv_s *ira_reg_equiv;
2860 /* Expand ira_reg_equiv if necessary. */
2861 void
2862 ira_expand_reg_equiv (void)
2864 int old = ira_reg_equiv_len;
2866 if (ira_reg_equiv_len > max_reg_num ())
2867 return;
2868 ira_reg_equiv_len = max_reg_num () * 3 / 2 + 1;
2869 ira_reg_equiv
2870 = (struct ira_reg_equiv_s *) xrealloc (ira_reg_equiv,
2871 ira_reg_equiv_len
2872 * sizeof (struct ira_reg_equiv_s));
2873 gcc_assert (old < ira_reg_equiv_len);
2874 memset (ira_reg_equiv + old, 0,
2875 sizeof (struct ira_reg_equiv_s) * (ira_reg_equiv_len - old));
2878 static void
2879 init_reg_equiv (void)
2881 ira_reg_equiv_len = 0;
2882 ira_reg_equiv = NULL;
2883 ira_expand_reg_equiv ();
2886 static void
2887 finish_reg_equiv (void)
2889 free (ira_reg_equiv);
2894 struct equivalence
2896 /* Set when a REG_EQUIV note is found or created. Use to
2897 keep track of what memory accesses might be created later,
2898 e.g. by reload. */
2899 rtx replacement;
2900 rtx *src_p;
2902 /* The list of each instruction which initializes this register.
2904 NULL indicates we know nothing about this register's equivalence
2905 properties.
2907 An INSN_LIST with a NULL insn indicates this pseudo is already
2908 known to not have a valid equivalence. */
2909 rtx_insn_list *init_insns;
2911 /* Loop depth is used to recognize equivalences which appear
2912 to be present within the same loop (or in an inner loop). */
2913 short loop_depth;
2914 /* Nonzero if this had a preexisting REG_EQUIV note. */
2915 unsigned char is_arg_equivalence : 1;
2916 /* Set when an attempt should be made to replace a register
2917 with the associated src_p entry. */
2918 unsigned char replace : 1;
2919 /* Set if this register has no known equivalence. */
2920 unsigned char no_equiv : 1;
2921 /* Set if this register is mentioned in a paradoxical subreg. */
2922 unsigned char pdx_subregs : 1;
2925 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
2926 structure for that register. */
2927 static struct equivalence *reg_equiv;
2929 /* Used for communication between the following two functions. */
2930 struct equiv_mem_data
2932 /* A MEM that we wish to ensure remains unchanged. */
2933 rtx equiv_mem;
2935 /* Set true if EQUIV_MEM is modified. */
2936 bool equiv_mem_modified;
2939 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
2940 Called via note_stores. */
2941 static void
2942 validate_equiv_mem_from_store (rtx dest, const_rtx set ATTRIBUTE_UNUSED,
2943 void *data)
2945 struct equiv_mem_data *info = (struct equiv_mem_data *) data;
2947 if ((REG_P (dest)
2948 && reg_overlap_mentioned_p (dest, info->equiv_mem))
2949 || (MEM_P (dest)
2950 && anti_dependence (info->equiv_mem, dest)))
2951 info->equiv_mem_modified = true;
2954 enum valid_equiv { valid_none, valid_combine, valid_reload };
2956 /* Verify that no store between START and the death of REG invalidates
2957 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
2958 by storing into an overlapping memory location, or with a non-const
2959 CALL_INSN.
2961 Return VALID_RELOAD if MEMREF remains valid for both reload and
2962 combine_and_move insns, VALID_COMBINE if only valid for
2963 combine_and_move_insns, and VALID_NONE otherwise. */
2964 static enum valid_equiv
2965 validate_equiv_mem (rtx_insn *start, rtx reg, rtx memref)
2967 rtx_insn *insn;
2968 rtx note;
2969 struct equiv_mem_data info = { memref, false };
2970 enum valid_equiv ret = valid_reload;
2972 /* If the memory reference has side effects or is volatile, it isn't a
2973 valid equivalence. */
2974 if (side_effects_p (memref))
2975 return valid_none;
2977 for (insn = start; insn; insn = NEXT_INSN (insn))
2979 if (!INSN_P (insn))
2980 continue;
2982 if (find_reg_note (insn, REG_DEAD, reg))
2983 return ret;
2985 if (CALL_P (insn))
2987 /* We can combine a reg def from one insn into a reg use in
2988 another over a call if the memory is readonly or the call
2989 const/pure. However, we can't set reg_equiv notes up for
2990 reload over any call. The problem is the equivalent form
2991 may reference a pseudo which gets assigned a call
2992 clobbered hard reg. When we later replace REG with its
2993 equivalent form, the value in the call-clobbered reg has
2994 been changed and all hell breaks loose. */
2995 ret = valid_combine;
2996 if (!MEM_READONLY_P (memref)
2997 && !RTL_CONST_OR_PURE_CALL_P (insn))
2998 return valid_none;
3001 note_stores (PATTERN (insn), validate_equiv_mem_from_store, &info);
3002 if (info.equiv_mem_modified)
3003 return valid_none;
3005 /* If a register mentioned in MEMREF is modified via an
3006 auto-increment, we lose the equivalence. Do the same if one
3007 dies; although we could extend the life, it doesn't seem worth
3008 the trouble. */
3010 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3011 if ((REG_NOTE_KIND (note) == REG_INC
3012 || REG_NOTE_KIND (note) == REG_DEAD)
3013 && REG_P (XEXP (note, 0))
3014 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
3015 return valid_none;
3018 return valid_none;
3021 /* Returns zero if X is known to be invariant. */
3022 static int
3023 equiv_init_varies_p (rtx x)
3025 RTX_CODE code = GET_CODE (x);
3026 int i;
3027 const char *fmt;
3029 switch (code)
3031 case MEM:
3032 return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
3034 case CONST:
3035 CASE_CONST_ANY:
3036 case SYMBOL_REF:
3037 case LABEL_REF:
3038 return 0;
3040 case REG:
3041 return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
3043 case ASM_OPERANDS:
3044 if (MEM_VOLATILE_P (x))
3045 return 1;
3047 /* Fall through. */
3049 default:
3050 break;
3053 fmt = GET_RTX_FORMAT (code);
3054 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3055 if (fmt[i] == 'e')
3057 if (equiv_init_varies_p (XEXP (x, i)))
3058 return 1;
3060 else if (fmt[i] == 'E')
3062 int j;
3063 for (j = 0; j < XVECLEN (x, i); j++)
3064 if (equiv_init_varies_p (XVECEXP (x, i, j)))
3065 return 1;
3068 return 0;
3071 /* Returns nonzero if X (used to initialize register REGNO) is movable.
3072 X is only movable if the registers it uses have equivalent initializations
3073 which appear to be within the same loop (or in an inner loop) and movable
3074 or if they are not candidates for local_alloc and don't vary. */
3075 static int
3076 equiv_init_movable_p (rtx x, int regno)
3078 int i, j;
3079 const char *fmt;
3080 enum rtx_code code = GET_CODE (x);
3082 switch (code)
3084 case SET:
3085 return equiv_init_movable_p (SET_SRC (x), regno);
3087 case CC0:
3088 case CLOBBER:
3089 return 0;
3091 case PRE_INC:
3092 case PRE_DEC:
3093 case POST_INC:
3094 case POST_DEC:
3095 case PRE_MODIFY:
3096 case POST_MODIFY:
3097 return 0;
3099 case REG:
3100 return ((reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
3101 && reg_equiv[REGNO (x)].replace)
3102 || (REG_BASIC_BLOCK (REGNO (x)) < NUM_FIXED_BLOCKS
3103 && ! rtx_varies_p (x, 0)));
3105 case UNSPEC_VOLATILE:
3106 return 0;
3108 case ASM_OPERANDS:
3109 if (MEM_VOLATILE_P (x))
3110 return 0;
3112 /* Fall through. */
3114 default:
3115 break;
3118 fmt = GET_RTX_FORMAT (code);
3119 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3120 switch (fmt[i])
3122 case 'e':
3123 if (! equiv_init_movable_p (XEXP (x, i), regno))
3124 return 0;
3125 break;
3126 case 'E':
3127 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3128 if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
3129 return 0;
3130 break;
3133 return 1;
3136 /* TRUE if X references a memory location that would be affected by a store
3137 to MEMREF. */
3138 static int
3139 memref_referenced_p (rtx memref, rtx x)
3141 int i, j;
3142 const char *fmt;
3143 enum rtx_code code = GET_CODE (x);
3145 switch (code)
3147 case CONST:
3148 case LABEL_REF:
3149 case SYMBOL_REF:
3150 CASE_CONST_ANY:
3151 case PC:
3152 case CC0:
3153 case HIGH:
3154 case LO_SUM:
3155 return 0;
3157 case REG:
3158 return (reg_equiv[REGNO (x)].replacement
3159 && memref_referenced_p (memref,
3160 reg_equiv[REGNO (x)].replacement));
3162 case MEM:
3163 if (true_dependence (memref, VOIDmode, x))
3164 return 1;
3165 break;
3167 case SET:
3168 /* If we are setting a MEM, it doesn't count (its address does), but any
3169 other SET_DEST that has a MEM in it is referencing the MEM. */
3170 if (MEM_P (SET_DEST (x)))
3172 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
3173 return 1;
3175 else if (memref_referenced_p (memref, SET_DEST (x)))
3176 return 1;
3178 return memref_referenced_p (memref, SET_SRC (x));
3180 default:
3181 break;
3184 fmt = GET_RTX_FORMAT (code);
3185 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3186 switch (fmt[i])
3188 case 'e':
3189 if (memref_referenced_p (memref, XEXP (x, i)))
3190 return 1;
3191 break;
3192 case 'E':
3193 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3194 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
3195 return 1;
3196 break;
3199 return 0;
3202 /* TRUE if some insn in the range (START, END] references a memory location
3203 that would be affected by a store to MEMREF.
3205 Callers should not call this routine if START is after END in the
3206 RTL chain. */
3208 static int
3209 memref_used_between_p (rtx memref, rtx_insn *start, rtx_insn *end)
3211 rtx_insn *insn;
3213 for (insn = NEXT_INSN (start);
3214 insn && insn != NEXT_INSN (end);
3215 insn = NEXT_INSN (insn))
3217 if (!NONDEBUG_INSN_P (insn))
3218 continue;
3220 if (memref_referenced_p (memref, PATTERN (insn)))
3221 return 1;
3223 /* Nonconst functions may access memory. */
3224 if (CALL_P (insn) && (! RTL_CONST_CALL_P (insn)))
3225 return 1;
3228 gcc_assert (insn == NEXT_INSN (end));
3229 return 0;
3232 /* Mark REG as having no known equivalence.
3233 Some instructions might have been processed before and furnished
3234 with REG_EQUIV notes for this register; these notes will have to be
3235 removed.
3236 STORE is the piece of RTL that does the non-constant / conflicting
3237 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
3238 but needs to be there because this function is called from note_stores. */
3239 static void
3240 no_equiv (rtx reg, const_rtx store ATTRIBUTE_UNUSED,
3241 void *data ATTRIBUTE_UNUSED)
3243 int regno;
3244 rtx_insn_list *list;
3246 if (!REG_P (reg))
3247 return;
3248 regno = REGNO (reg);
3249 reg_equiv[regno].no_equiv = 1;
3250 list = reg_equiv[regno].init_insns;
3251 if (list && list->insn () == NULL)
3252 return;
3253 reg_equiv[regno].init_insns = gen_rtx_INSN_LIST (VOIDmode, NULL_RTX, NULL);
3254 reg_equiv[regno].replacement = NULL_RTX;
3255 /* This doesn't matter for equivalences made for argument registers, we
3256 should keep their initialization insns. */
3257 if (reg_equiv[regno].is_arg_equivalence)
3258 return;
3259 ira_reg_equiv[regno].defined_p = false;
3260 ira_reg_equiv[regno].init_insns = NULL;
3261 for (; list; list = list->next ())
3263 rtx_insn *insn = list->insn ();
3264 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
3268 /* Check whether the SUBREG is a paradoxical subreg and set the result
3269 in PDX_SUBREGS. */
3271 static void
3272 set_paradoxical_subreg (rtx_insn *insn)
3274 subrtx_iterator::array_type array;
3275 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
3277 const_rtx subreg = *iter;
3278 if (GET_CODE (subreg) == SUBREG)
3280 const_rtx reg = SUBREG_REG (subreg);
3281 if (REG_P (reg) && paradoxical_subreg_p (subreg))
3282 reg_equiv[REGNO (reg)].pdx_subregs = true;
3287 /* In DEBUG_INSN location adjust REGs from CLEARED_REGS bitmap to the
3288 equivalent replacement. */
3290 static rtx
3291 adjust_cleared_regs (rtx loc, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
3293 if (REG_P (loc))
3295 bitmap cleared_regs = (bitmap) data;
3296 if (bitmap_bit_p (cleared_regs, REGNO (loc)))
3297 return simplify_replace_fn_rtx (copy_rtx (*reg_equiv[REGNO (loc)].src_p),
3298 NULL_RTX, adjust_cleared_regs, data);
3300 return NULL_RTX;
3303 /* Given register REGNO is set only once, return true if the defining
3304 insn dominates all uses. */
3306 static bool
3307 def_dominates_uses (int regno)
3309 df_ref def = DF_REG_DEF_CHAIN (regno);
3311 struct df_insn_info *def_info = DF_REF_INSN_INFO (def);
3312 /* If this is an artificial def (eh handler regs, hard frame pointer
3313 for non-local goto, regs defined on function entry) then def_info
3314 is NULL and the reg is always live before any use. We might
3315 reasonably return true in that case, but since the only call
3316 of this function is currently here in ira.c when we are looking
3317 at a defining insn we can't have an artificial def as that would
3318 bump DF_REG_DEF_COUNT. */
3319 gcc_assert (DF_REG_DEF_COUNT (regno) == 1 && def_info != NULL);
3321 rtx_insn *def_insn = DF_REF_INSN (def);
3322 basic_block def_bb = BLOCK_FOR_INSN (def_insn);
3324 for (df_ref use = DF_REG_USE_CHAIN (regno);
3325 use;
3326 use = DF_REF_NEXT_REG (use))
3328 struct df_insn_info *use_info = DF_REF_INSN_INFO (use);
3329 /* Only check real uses, not artificial ones. */
3330 if (use_info)
3332 rtx_insn *use_insn = DF_REF_INSN (use);
3333 if (!DEBUG_INSN_P (use_insn))
3335 basic_block use_bb = BLOCK_FOR_INSN (use_insn);
3336 if (use_bb != def_bb
3337 ? !dominated_by_p (CDI_DOMINATORS, use_bb, def_bb)
3338 : DF_INSN_INFO_LUID (use_info) < DF_INSN_INFO_LUID (def_info))
3339 return false;
3343 return true;
3346 /* Find registers that are equivalent to a single value throughout the
3347 compilation (either because they can be referenced in memory or are
3348 set once from a single constant). Lower their priority for a
3349 register.
3351 If such a register is only referenced once, try substituting its
3352 value into the using insn. If it succeeds, we can eliminate the
3353 register completely.
3355 Initialize init_insns in ira_reg_equiv array. */
3356 static void
3357 update_equiv_regs (void)
3359 rtx_insn *insn;
3360 basic_block bb;
3362 /* Scan insns and set pdx_subregs if the reg is used in a
3363 paradoxical subreg. Don't set such reg equivalent to a mem,
3364 because lra will not substitute such equiv memory in order to
3365 prevent access beyond allocated memory for paradoxical memory subreg. */
3366 FOR_EACH_BB_FN (bb, cfun)
3367 FOR_BB_INSNS (bb, insn)
3368 if (NONDEBUG_INSN_P (insn))
3369 set_paradoxical_subreg (insn);
3371 /* Scan the insns and find which registers have equivalences. Do this
3372 in a separate scan of the insns because (due to -fcse-follow-jumps)
3373 a register can be set below its use. */
3374 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
3375 FOR_EACH_BB_FN (bb, cfun)
3377 int loop_depth = bb_loop_depth (bb);
3379 for (insn = BB_HEAD (bb);
3380 insn != NEXT_INSN (BB_END (bb));
3381 insn = NEXT_INSN (insn))
3383 rtx note;
3384 rtx set;
3385 rtx dest, src;
3386 int regno;
3388 if (! INSN_P (insn))
3389 continue;
3391 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3392 if (REG_NOTE_KIND (note) == REG_INC)
3393 no_equiv (XEXP (note, 0), note, NULL);
3395 set = single_set (insn);
3397 /* If this insn contains more (or less) than a single SET,
3398 only mark all destinations as having no known equivalence. */
3399 if (set == NULL_RTX
3400 || side_effects_p (SET_SRC (set)))
3402 note_stores (PATTERN (insn), no_equiv, NULL);
3403 continue;
3405 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
3407 int i;
3409 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
3411 rtx part = XVECEXP (PATTERN (insn), 0, i);
3412 if (part != set)
3413 note_stores (part, no_equiv, NULL);
3417 dest = SET_DEST (set);
3418 src = SET_SRC (set);
3420 /* See if this is setting up the equivalence between an argument
3421 register and its stack slot. */
3422 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3423 if (note)
3425 gcc_assert (REG_P (dest));
3426 regno = REGNO (dest);
3428 /* Note that we don't want to clear init_insns in
3429 ira_reg_equiv even if there are multiple sets of this
3430 register. */
3431 reg_equiv[regno].is_arg_equivalence = 1;
3433 /* The insn result can have equivalence memory although
3434 the equivalence is not set up by the insn. We add
3435 this insn to init insns as it is a flag for now that
3436 regno has an equivalence. We will remove the insn
3437 from init insn list later. */
3438 if (rtx_equal_p (src, XEXP (note, 0)) || MEM_P (XEXP (note, 0)))
3439 ira_reg_equiv[regno].init_insns
3440 = gen_rtx_INSN_LIST (VOIDmode, insn,
3441 ira_reg_equiv[regno].init_insns);
3443 /* Continue normally in case this is a candidate for
3444 replacements. */
3447 if (!optimize)
3448 continue;
3450 /* We only handle the case of a pseudo register being set
3451 once, or always to the same value. */
3452 /* ??? The mn10200 port breaks if we add equivalences for
3453 values that need an ADDRESS_REGS register and set them equivalent
3454 to a MEM of a pseudo. The actual problem is in the over-conservative
3455 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
3456 calculate_needs, but we traditionally work around this problem
3457 here by rejecting equivalences when the destination is in a register
3458 that's likely spilled. This is fragile, of course, since the
3459 preferred class of a pseudo depends on all instructions that set
3460 or use it. */
3462 if (!REG_P (dest)
3463 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
3464 || (reg_equiv[regno].init_insns
3465 && reg_equiv[regno].init_insns->insn () == NULL)
3466 || (targetm.class_likely_spilled_p (reg_preferred_class (regno))
3467 && MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence))
3469 /* This might be setting a SUBREG of a pseudo, a pseudo that is
3470 also set somewhere else to a constant. */
3471 note_stores (set, no_equiv, NULL);
3472 continue;
3475 /* Don't set reg mentioned in a paradoxical subreg
3476 equivalent to a mem. */
3477 if (MEM_P (src) && reg_equiv[regno].pdx_subregs)
3479 note_stores (set, no_equiv, NULL);
3480 continue;
3483 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3485 /* cse sometimes generates function invariants, but doesn't put a
3486 REG_EQUAL note on the insn. Since this note would be redundant,
3487 there's no point creating it earlier than here. */
3488 if (! note && ! rtx_varies_p (src, 0))
3489 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
3491 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
3492 since it represents a function call. */
3493 if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
3494 note = NULL_RTX;
3496 if (DF_REG_DEF_COUNT (regno) != 1)
3498 bool equal_p = true;
3499 rtx_insn_list *list;
3501 /* If we have already processed this pseudo and determined it
3502 can not have an equivalence, then honor that decision. */
3503 if (reg_equiv[regno].no_equiv)
3504 continue;
3506 if (! note
3507 || rtx_varies_p (XEXP (note, 0), 0)
3508 || (reg_equiv[regno].replacement
3509 && ! rtx_equal_p (XEXP (note, 0),
3510 reg_equiv[regno].replacement)))
3512 no_equiv (dest, set, NULL);
3513 continue;
3516 list = reg_equiv[regno].init_insns;
3517 for (; list; list = list->next ())
3519 rtx note_tmp;
3520 rtx_insn *insn_tmp;
3522 insn_tmp = list->insn ();
3523 note_tmp = find_reg_note (insn_tmp, REG_EQUAL, NULL_RTX);
3524 gcc_assert (note_tmp);
3525 if (! rtx_equal_p (XEXP (note, 0), XEXP (note_tmp, 0)))
3527 equal_p = false;
3528 break;
3532 if (! equal_p)
3534 no_equiv (dest, set, NULL);
3535 continue;
3539 /* Record this insn as initializing this register. */
3540 reg_equiv[regno].init_insns
3541 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
3543 /* If this register is known to be equal to a constant, record that
3544 it is always equivalent to the constant.
3545 Note that it is possible to have a register use before
3546 the def in loops (see gcc.c-torture/execute/pr79286.c)
3547 where the reg is undefined on first use. If the def insn
3548 won't trap we can use it as an equivalence, effectively
3549 choosing the "undefined" value for the reg to be the
3550 same as the value set by the def. */
3551 if (DF_REG_DEF_COUNT (regno) == 1
3552 && note
3553 && !rtx_varies_p (XEXP (note, 0), 0)
3554 && (!may_trap_or_fault_p (XEXP (note, 0))
3555 || def_dominates_uses (regno)))
3557 rtx note_value = XEXP (note, 0);
3558 remove_note (insn, note);
3559 set_unique_reg_note (insn, REG_EQUIV, note_value);
3562 /* If this insn introduces a "constant" register, decrease the priority
3563 of that register. Record this insn if the register is only used once
3564 more and the equivalence value is the same as our source.
3566 The latter condition is checked for two reasons: First, it is an
3567 indication that it may be more efficient to actually emit the insn
3568 as written (if no registers are available, reload will substitute
3569 the equivalence). Secondly, it avoids problems with any registers
3570 dying in this insn whose death notes would be missed.
3572 If we don't have a REG_EQUIV note, see if this insn is loading
3573 a register used only in one basic block from a MEM. If so, and the
3574 MEM remains unchanged for the life of the register, add a REG_EQUIV
3575 note. */
3576 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3578 rtx replacement = NULL_RTX;
3579 if (note)
3580 replacement = XEXP (note, 0);
3581 else if (REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3582 && MEM_P (SET_SRC (set)))
3584 enum valid_equiv validity;
3585 validity = validate_equiv_mem (insn, dest, SET_SRC (set));
3586 if (validity != valid_none)
3588 replacement = copy_rtx (SET_SRC (set));
3589 if (validity == valid_reload)
3590 note = set_unique_reg_note (insn, REG_EQUIV, replacement);
3594 /* If we haven't done so, record for reload that this is an
3595 equivalencing insn. */
3596 if (note && !reg_equiv[regno].is_arg_equivalence)
3597 ira_reg_equiv[regno].init_insns
3598 = gen_rtx_INSN_LIST (VOIDmode, insn,
3599 ira_reg_equiv[regno].init_insns);
3601 if (replacement)
3603 reg_equiv[regno].replacement = replacement;
3604 reg_equiv[regno].src_p = &SET_SRC (set);
3605 reg_equiv[regno].loop_depth = (short) loop_depth;
3607 /* Don't mess with things live during setjmp. */
3608 if (optimize && !bitmap_bit_p (setjmp_crosses, regno))
3610 /* If the register is referenced exactly twice, meaning it is
3611 set once and used once, indicate that the reference may be
3612 replaced by the equivalence we computed above. Do this
3613 even if the register is only used in one block so that
3614 dependencies can be handled where the last register is
3615 used in a different block (i.e. HIGH / LO_SUM sequences)
3616 and to reduce the number of registers alive across
3617 calls. */
3619 if (REG_N_REFS (regno) == 2
3620 && (rtx_equal_p (replacement, src)
3621 || ! equiv_init_varies_p (src))
3622 && NONJUMP_INSN_P (insn)
3623 && equiv_init_movable_p (PATTERN (insn), regno))
3624 reg_equiv[regno].replace = 1;
3631 /* For insns that set a MEM to the contents of a REG that is only used
3632 in a single basic block, see if the register is always equivalent
3633 to that memory location and if moving the store from INSN to the
3634 insn that sets REG is safe. If so, put a REG_EQUIV note on the
3635 initializing insn. */
3636 static void
3637 add_store_equivs (void)
3639 auto_bitmap seen_insns;
3641 for (rtx_insn *insn = get_insns (); insn; insn = NEXT_INSN (insn))
3643 rtx set, src, dest;
3644 unsigned regno;
3645 rtx_insn *init_insn;
3647 bitmap_set_bit (seen_insns, INSN_UID (insn));
3649 if (! INSN_P (insn))
3650 continue;
3652 set = single_set (insn);
3653 if (! set)
3654 continue;
3656 dest = SET_DEST (set);
3657 src = SET_SRC (set);
3659 /* Don't add a REG_EQUIV note if the insn already has one. The existing
3660 REG_EQUIV is likely more useful than the one we are adding. */
3661 if (MEM_P (dest) && REG_P (src)
3662 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
3663 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3664 && DF_REG_DEF_COUNT (regno) == 1
3665 && ! reg_equiv[regno].pdx_subregs
3666 && reg_equiv[regno].init_insns != NULL
3667 && (init_insn = reg_equiv[regno].init_insns->insn ()) != 0
3668 && bitmap_bit_p (seen_insns, INSN_UID (init_insn))
3669 && ! find_reg_note (init_insn, REG_EQUIV, NULL_RTX)
3670 && validate_equiv_mem (init_insn, src, dest) == valid_reload
3671 && ! memref_used_between_p (dest, init_insn, insn)
3672 /* Attaching a REG_EQUIV note will fail if INIT_INSN has
3673 multiple sets. */
3674 && set_unique_reg_note (init_insn, REG_EQUIV, copy_rtx (dest)))
3676 /* This insn makes the equivalence, not the one initializing
3677 the register. */
3678 ira_reg_equiv[regno].init_insns
3679 = gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
3680 df_notes_rescan (init_insn);
3681 if (dump_file)
3682 fprintf (dump_file,
3683 "Adding REG_EQUIV to insn %d for source of insn %d\n",
3684 INSN_UID (init_insn),
3685 INSN_UID (insn));
3690 /* Scan all regs killed in an insn to see if any of them are registers
3691 only used that once. If so, see if we can replace the reference
3692 with the equivalent form. If we can, delete the initializing
3693 reference and this register will go away. If we can't replace the
3694 reference, and the initializing reference is within the same loop
3695 (or in an inner loop), then move the register initialization just
3696 before the use, so that they are in the same basic block. */
3697 static void
3698 combine_and_move_insns (void)
3700 auto_bitmap cleared_regs;
3701 int max = max_reg_num ();
3703 for (int regno = FIRST_PSEUDO_REGISTER; regno < max; regno++)
3705 if (!reg_equiv[regno].replace)
3706 continue;
3708 rtx_insn *use_insn = 0;
3709 for (df_ref use = DF_REG_USE_CHAIN (regno);
3710 use;
3711 use = DF_REF_NEXT_REG (use))
3712 if (DF_REF_INSN_INFO (use))
3714 if (DEBUG_INSN_P (DF_REF_INSN (use)))
3715 continue;
3716 gcc_assert (!use_insn);
3717 use_insn = DF_REF_INSN (use);
3719 gcc_assert (use_insn);
3721 /* Don't substitute into jumps. indirect_jump_optimize does
3722 this for anything we are prepared to handle. */
3723 if (JUMP_P (use_insn))
3724 continue;
3726 /* Also don't substitute into a conditional trap insn -- it can become
3727 an unconditional trap, and that is a flow control insn. */
3728 if (GET_CODE (PATTERN (use_insn)) == TRAP_IF)
3729 continue;
3731 df_ref def = DF_REG_DEF_CHAIN (regno);
3732 gcc_assert (DF_REG_DEF_COUNT (regno) == 1 && DF_REF_INSN_INFO (def));
3733 rtx_insn *def_insn = DF_REF_INSN (def);
3735 /* We may not move instructions that can throw, since that
3736 changes basic block boundaries and we are not prepared to
3737 adjust the CFG to match. */
3738 if (can_throw_internal (def_insn))
3739 continue;
3741 basic_block use_bb = BLOCK_FOR_INSN (use_insn);
3742 basic_block def_bb = BLOCK_FOR_INSN (def_insn);
3743 if (bb_loop_depth (use_bb) > bb_loop_depth (def_bb))
3744 continue;
3746 if (asm_noperands (PATTERN (def_insn)) < 0
3747 && validate_replace_rtx (regno_reg_rtx[regno],
3748 *reg_equiv[regno].src_p, use_insn))
3750 rtx link;
3751 /* Append the REG_DEAD notes from def_insn. */
3752 for (rtx *p = &REG_NOTES (def_insn); (link = *p) != 0; )
3754 if (REG_NOTE_KIND (XEXP (link, 0)) == REG_DEAD)
3756 *p = XEXP (link, 1);
3757 XEXP (link, 1) = REG_NOTES (use_insn);
3758 REG_NOTES (use_insn) = link;
3760 else
3761 p = &XEXP (link, 1);
3764 remove_death (regno, use_insn);
3765 SET_REG_N_REFS (regno, 0);
3766 REG_FREQ (regno) = 0;
3767 df_ref use;
3768 FOR_EACH_INSN_USE (use, def_insn)
3770 unsigned int use_regno = DF_REF_REGNO (use);
3771 if (!HARD_REGISTER_NUM_P (use_regno))
3772 reg_equiv[use_regno].replace = 0;
3775 delete_insn (def_insn);
3777 reg_equiv[regno].init_insns = NULL;
3778 ira_reg_equiv[regno].init_insns = NULL;
3779 bitmap_set_bit (cleared_regs, regno);
3782 /* Move the initialization of the register to just before
3783 USE_INSN. Update the flow information. */
3784 else if (prev_nondebug_insn (use_insn) != def_insn)
3786 rtx_insn *new_insn;
3788 new_insn = emit_insn_before (PATTERN (def_insn), use_insn);
3789 REG_NOTES (new_insn) = REG_NOTES (def_insn);
3790 REG_NOTES (def_insn) = 0;
3791 /* Rescan it to process the notes. */
3792 df_insn_rescan (new_insn);
3794 /* Make sure this insn is recognized before reload begins,
3795 otherwise eliminate_regs_in_insn will die. */
3796 INSN_CODE (new_insn) = INSN_CODE (def_insn);
3798 delete_insn (def_insn);
3800 XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
3802 REG_BASIC_BLOCK (regno) = use_bb->index;
3803 REG_N_CALLS_CROSSED (regno) = 0;
3805 if (use_insn == BB_HEAD (use_bb))
3806 BB_HEAD (use_bb) = new_insn;
3808 /* We know regno dies in use_insn, but inside a loop
3809 REG_DEAD notes might be missing when def_insn was in
3810 another basic block. However, when we move def_insn into
3811 this bb we'll definitely get a REG_DEAD note and reload
3812 will see the death. It's possible that update_equiv_regs
3813 set up an equivalence referencing regno for a reg set by
3814 use_insn, when regno was seen as non-local. Now that
3815 regno is local to this block, and dies, such an
3816 equivalence is invalid. */
3817 if (find_reg_note (use_insn, REG_EQUIV, regno_reg_rtx[regno]))
3819 rtx set = single_set (use_insn);
3820 if (set && REG_P (SET_DEST (set)))
3821 no_equiv (SET_DEST (set), set, NULL);
3824 ira_reg_equiv[regno].init_insns
3825 = gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX);
3826 bitmap_set_bit (cleared_regs, regno);
3830 if (!bitmap_empty_p (cleared_regs))
3832 basic_block bb;
3834 FOR_EACH_BB_FN (bb, cfun)
3836 bitmap_and_compl_into (DF_LR_IN (bb), cleared_regs);
3837 bitmap_and_compl_into (DF_LR_OUT (bb), cleared_regs);
3838 if (!df_live)
3839 continue;
3840 bitmap_and_compl_into (DF_LIVE_IN (bb), cleared_regs);
3841 bitmap_and_compl_into (DF_LIVE_OUT (bb), cleared_regs);
3844 /* Last pass - adjust debug insns referencing cleared regs. */
3845 if (MAY_HAVE_DEBUG_INSNS)
3846 for (rtx_insn *insn = get_insns (); insn; insn = NEXT_INSN (insn))
3847 if (DEBUG_INSN_P (insn))
3849 rtx old_loc = INSN_VAR_LOCATION_LOC (insn);
3850 INSN_VAR_LOCATION_LOC (insn)
3851 = simplify_replace_fn_rtx (old_loc, NULL_RTX,
3852 adjust_cleared_regs,
3853 (void *) cleared_regs);
3854 if (old_loc != INSN_VAR_LOCATION_LOC (insn))
3855 df_insn_rescan (insn);
3860 /* A pass over indirect jumps, converting simple cases to direct jumps.
3861 Combine does this optimization too, but only within a basic block. */
3862 static void
3863 indirect_jump_optimize (void)
3865 basic_block bb;
3866 bool rebuild_p = false;
3868 FOR_EACH_BB_REVERSE_FN (bb, cfun)
3870 rtx_insn *insn = BB_END (bb);
3871 if (!JUMP_P (insn)
3872 || find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
3873 continue;
3875 rtx x = pc_set (insn);
3876 if (!x || !REG_P (SET_SRC (x)))
3877 continue;
3879 int regno = REGNO (SET_SRC (x));
3880 if (DF_REG_DEF_COUNT (regno) == 1)
3882 df_ref def = DF_REG_DEF_CHAIN (regno);
3883 if (!DF_REF_IS_ARTIFICIAL (def))
3885 rtx_insn *def_insn = DF_REF_INSN (def);
3886 rtx lab = NULL_RTX;
3887 rtx set = single_set (def_insn);
3888 if (set && GET_CODE (SET_SRC (set)) == LABEL_REF)
3889 lab = SET_SRC (set);
3890 else
3892 rtx eqnote = find_reg_note (def_insn, REG_EQUAL, NULL_RTX);
3893 if (eqnote && GET_CODE (XEXP (eqnote, 0)) == LABEL_REF)
3894 lab = XEXP (eqnote, 0);
3896 if (lab && validate_replace_rtx (SET_SRC (x), lab, insn))
3897 rebuild_p = true;
3902 if (rebuild_p)
3904 timevar_push (TV_JUMP);
3905 rebuild_jump_labels (get_insns ());
3906 if (purge_all_dead_edges ())
3907 delete_unreachable_blocks ();
3908 timevar_pop (TV_JUMP);
3912 /* Set up fields memory, constant, and invariant from init_insns in
3913 the structures of array ira_reg_equiv. */
3914 static void
3915 setup_reg_equiv (void)
3917 int i;
3918 rtx_insn_list *elem, *prev_elem, *next_elem;
3919 rtx_insn *insn;
3920 rtx set, x;
3922 for (i = FIRST_PSEUDO_REGISTER; i < ira_reg_equiv_len; i++)
3923 for (prev_elem = NULL, elem = ira_reg_equiv[i].init_insns;
3924 elem;
3925 prev_elem = elem, elem = next_elem)
3927 next_elem = elem->next ();
3928 insn = elem->insn ();
3929 set = single_set (insn);
3931 /* Init insns can set up equivalence when the reg is a destination or
3932 a source (in this case the destination is memory). */
3933 if (set != 0 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))))
3935 if ((x = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL)
3937 x = XEXP (x, 0);
3938 if (REG_P (SET_DEST (set))
3939 && REGNO (SET_DEST (set)) == (unsigned int) i
3940 && ! rtx_equal_p (SET_SRC (set), x) && MEM_P (x))
3942 /* This insn reporting the equivalence but
3943 actually not setting it. Remove it from the
3944 list. */
3945 if (prev_elem == NULL)
3946 ira_reg_equiv[i].init_insns = next_elem;
3947 else
3948 XEXP (prev_elem, 1) = next_elem;
3949 elem = prev_elem;
3952 else if (REG_P (SET_DEST (set))
3953 && REGNO (SET_DEST (set)) == (unsigned int) i)
3954 x = SET_SRC (set);
3955 else
3957 gcc_assert (REG_P (SET_SRC (set))
3958 && REGNO (SET_SRC (set)) == (unsigned int) i);
3959 x = SET_DEST (set);
3961 if (! function_invariant_p (x)
3962 || ! flag_pic
3963 /* A function invariant is often CONSTANT_P but may
3964 include a register. We promise to only pass
3965 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P. */
3966 || (CONSTANT_P (x) && LEGITIMATE_PIC_OPERAND_P (x)))
3968 /* It can happen that a REG_EQUIV note contains a MEM
3969 that is not a legitimate memory operand. As later
3970 stages of reload assume that all addresses found in
3971 the lra_regno_equiv_* arrays were originally
3972 legitimate, we ignore such REG_EQUIV notes. */
3973 if (memory_operand (x, VOIDmode))
3975 ira_reg_equiv[i].defined_p = true;
3976 ira_reg_equiv[i].memory = x;
3977 continue;
3979 else if (function_invariant_p (x))
3981 machine_mode mode;
3983 mode = GET_MODE (SET_DEST (set));
3984 if (GET_CODE (x) == PLUS
3985 || x == frame_pointer_rtx || x == arg_pointer_rtx)
3986 /* This is PLUS of frame pointer and a constant,
3987 or fp, or argp. */
3988 ira_reg_equiv[i].invariant = x;
3989 else if (targetm.legitimate_constant_p (mode, x))
3990 ira_reg_equiv[i].constant = x;
3991 else
3993 ira_reg_equiv[i].memory = force_const_mem (mode, x);
3994 if (ira_reg_equiv[i].memory == NULL_RTX)
3996 ira_reg_equiv[i].defined_p = false;
3997 ira_reg_equiv[i].init_insns = NULL;
3998 break;
4001 ira_reg_equiv[i].defined_p = true;
4002 continue;
4006 ira_reg_equiv[i].defined_p = false;
4007 ira_reg_equiv[i].init_insns = NULL;
4008 break;
4014 /* Print chain C to FILE. */
4015 static void
4016 print_insn_chain (FILE *file, struct insn_chain *c)
4018 fprintf (file, "insn=%d, ", INSN_UID (c->insn));
4019 bitmap_print (file, &c->live_throughout, "live_throughout: ", ", ");
4020 bitmap_print (file, &c->dead_or_set, "dead_or_set: ", "\n");
4024 /* Print all reload_insn_chains to FILE. */
4025 static void
4026 print_insn_chains (FILE *file)
4028 struct insn_chain *c;
4029 for (c = reload_insn_chain; c ; c = c->next)
4030 print_insn_chain (file, c);
4033 /* Return true if pseudo REGNO should be added to set live_throughout
4034 or dead_or_set of the insn chains for reload consideration. */
4035 static bool
4036 pseudo_for_reload_consideration_p (int regno)
4038 /* Consider spilled pseudos too for IRA because they still have a
4039 chance to get hard-registers in the reload when IRA is used. */
4040 return (reg_renumber[regno] >= 0 || ira_conflicts_p);
4043 /* Init LIVE_SUBREGS[ALLOCNUM] and LIVE_SUBREGS_USED[ALLOCNUM] using
4044 REG to the number of nregs, and INIT_VALUE to get the
4045 initialization. ALLOCNUM need not be the regno of REG. */
4046 static void
4047 init_live_subregs (bool init_value, sbitmap *live_subregs,
4048 bitmap live_subregs_used, int allocnum, rtx reg)
4050 unsigned int regno = REGNO (SUBREG_REG (reg));
4051 int size = GET_MODE_SIZE (GET_MODE (regno_reg_rtx[regno]));
4053 gcc_assert (size > 0);
4055 /* Been there, done that. */
4056 if (bitmap_bit_p (live_subregs_used, allocnum))
4057 return;
4059 /* Create a new one. */
4060 if (live_subregs[allocnum] == NULL)
4061 live_subregs[allocnum] = sbitmap_alloc (size);
4063 /* If the entire reg was live before blasting into subregs, we need
4064 to init all of the subregs to ones else init to 0. */
4065 if (init_value)
4066 bitmap_ones (live_subregs[allocnum]);
4067 else
4068 bitmap_clear (live_subregs[allocnum]);
4070 bitmap_set_bit (live_subregs_used, allocnum);
4073 /* Walk the insns of the current function and build reload_insn_chain,
4074 and record register life information. */
4075 static void
4076 build_insn_chain (void)
4078 unsigned int i;
4079 struct insn_chain **p = &reload_insn_chain;
4080 basic_block bb;
4081 struct insn_chain *c = NULL;
4082 struct insn_chain *next = NULL;
4083 auto_bitmap live_relevant_regs;
4084 auto_bitmap elim_regset;
4085 /* live_subregs is a vector used to keep accurate information about
4086 which hardregs are live in multiword pseudos. live_subregs and
4087 live_subregs_used are indexed by pseudo number. The live_subreg
4088 entry for a particular pseudo is only used if the corresponding
4089 element is non zero in live_subregs_used. The sbitmap size of
4090 live_subreg[allocno] is number of bytes that the pseudo can
4091 occupy. */
4092 sbitmap *live_subregs = XCNEWVEC (sbitmap, max_regno);
4093 auto_bitmap live_subregs_used;
4095 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4096 if (TEST_HARD_REG_BIT (eliminable_regset, i))
4097 bitmap_set_bit (elim_regset, i);
4098 FOR_EACH_BB_REVERSE_FN (bb, cfun)
4100 bitmap_iterator bi;
4101 rtx_insn *insn;
4103 CLEAR_REG_SET (live_relevant_regs);
4104 bitmap_clear (live_subregs_used);
4106 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb), 0, i, bi)
4108 if (i >= FIRST_PSEUDO_REGISTER)
4109 break;
4110 bitmap_set_bit (live_relevant_regs, i);
4113 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb),
4114 FIRST_PSEUDO_REGISTER, i, bi)
4116 if (pseudo_for_reload_consideration_p (i))
4117 bitmap_set_bit (live_relevant_regs, i);
4120 FOR_BB_INSNS_REVERSE (bb, insn)
4122 if (!NOTE_P (insn) && !BARRIER_P (insn))
4124 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4125 df_ref def, use;
4127 c = new_insn_chain ();
4128 c->next = next;
4129 next = c;
4130 *p = c;
4131 p = &c->prev;
4133 c->insn = insn;
4134 c->block = bb->index;
4136 if (NONDEBUG_INSN_P (insn))
4137 FOR_EACH_INSN_INFO_DEF (def, insn_info)
4139 unsigned int regno = DF_REF_REGNO (def);
4141 /* Ignore may clobbers because these are generated
4142 from calls. However, every other kind of def is
4143 added to dead_or_set. */
4144 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
4146 if (regno < FIRST_PSEUDO_REGISTER)
4148 if (!fixed_regs[regno])
4149 bitmap_set_bit (&c->dead_or_set, regno);
4151 else if (pseudo_for_reload_consideration_p (regno))
4152 bitmap_set_bit (&c->dead_or_set, regno);
4155 if ((regno < FIRST_PSEUDO_REGISTER
4156 || reg_renumber[regno] >= 0
4157 || ira_conflicts_p)
4158 && (!DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)))
4160 rtx reg = DF_REF_REG (def);
4162 /* We can model subregs, but not if they are
4163 wrapped in ZERO_EXTRACTS. */
4164 if (GET_CODE (reg) == SUBREG
4165 && !DF_REF_FLAGS_IS_SET (def, DF_REF_ZERO_EXTRACT))
4167 unsigned int start = SUBREG_BYTE (reg);
4168 unsigned int last = start
4169 + GET_MODE_SIZE (GET_MODE (reg));
4171 init_live_subregs
4172 (bitmap_bit_p (live_relevant_regs, regno),
4173 live_subregs, live_subregs_used, regno, reg);
4175 if (!DF_REF_FLAGS_IS_SET
4176 (def, DF_REF_STRICT_LOW_PART))
4178 /* Expand the range to cover entire words.
4179 Bytes added here are "don't care". */
4180 start
4181 = start / UNITS_PER_WORD * UNITS_PER_WORD;
4182 last = ((last + UNITS_PER_WORD - 1)
4183 / UNITS_PER_WORD * UNITS_PER_WORD);
4186 /* Ignore the paradoxical bits. */
4187 if (last > SBITMAP_SIZE (live_subregs[regno]))
4188 last = SBITMAP_SIZE (live_subregs[regno]);
4190 while (start < last)
4192 bitmap_clear_bit (live_subregs[regno], start);
4193 start++;
4196 if (bitmap_empty_p (live_subregs[regno]))
4198 bitmap_clear_bit (live_subregs_used, regno);
4199 bitmap_clear_bit (live_relevant_regs, regno);
4201 else
4202 /* Set live_relevant_regs here because
4203 that bit has to be true to get us to
4204 look at the live_subregs fields. */
4205 bitmap_set_bit (live_relevant_regs, regno);
4207 else
4209 /* DF_REF_PARTIAL is generated for
4210 subregs, STRICT_LOW_PART, and
4211 ZERO_EXTRACT. We handle the subreg
4212 case above so here we have to keep from
4213 modeling the def as a killing def. */
4214 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL))
4216 bitmap_clear_bit (live_subregs_used, regno);
4217 bitmap_clear_bit (live_relevant_regs, regno);
4223 bitmap_and_compl_into (live_relevant_regs, elim_regset);
4224 bitmap_copy (&c->live_throughout, live_relevant_regs);
4226 if (NONDEBUG_INSN_P (insn))
4227 FOR_EACH_INSN_INFO_USE (use, insn_info)
4229 unsigned int regno = DF_REF_REGNO (use);
4230 rtx reg = DF_REF_REG (use);
4232 /* DF_REF_READ_WRITE on a use means that this use
4233 is fabricated from a def that is a partial set
4234 to a multiword reg. Here, we only model the
4235 subreg case that is not wrapped in ZERO_EXTRACT
4236 precisely so we do not need to look at the
4237 fabricated use. */
4238 if (DF_REF_FLAGS_IS_SET (use, DF_REF_READ_WRITE)
4239 && !DF_REF_FLAGS_IS_SET (use, DF_REF_ZERO_EXTRACT)
4240 && DF_REF_FLAGS_IS_SET (use, DF_REF_SUBREG))
4241 continue;
4243 /* Add the last use of each var to dead_or_set. */
4244 if (!bitmap_bit_p (live_relevant_regs, regno))
4246 if (regno < FIRST_PSEUDO_REGISTER)
4248 if (!fixed_regs[regno])
4249 bitmap_set_bit (&c->dead_or_set, regno);
4251 else if (pseudo_for_reload_consideration_p (regno))
4252 bitmap_set_bit (&c->dead_or_set, regno);
4255 if (regno < FIRST_PSEUDO_REGISTER
4256 || pseudo_for_reload_consideration_p (regno))
4258 if (GET_CODE (reg) == SUBREG
4259 && !DF_REF_FLAGS_IS_SET (use,
4260 DF_REF_SIGN_EXTRACT
4261 | DF_REF_ZERO_EXTRACT))
4263 unsigned int start = SUBREG_BYTE (reg);
4264 unsigned int last = start
4265 + GET_MODE_SIZE (GET_MODE (reg));
4267 init_live_subregs
4268 (bitmap_bit_p (live_relevant_regs, regno),
4269 live_subregs, live_subregs_used, regno, reg);
4271 /* Ignore the paradoxical bits. */
4272 if (last > SBITMAP_SIZE (live_subregs[regno]))
4273 last = SBITMAP_SIZE (live_subregs[regno]);
4275 while (start < last)
4277 bitmap_set_bit (live_subregs[regno], start);
4278 start++;
4281 else
4282 /* Resetting the live_subregs_used is
4283 effectively saying do not use the subregs
4284 because we are reading the whole
4285 pseudo. */
4286 bitmap_clear_bit (live_subregs_used, regno);
4287 bitmap_set_bit (live_relevant_regs, regno);
4293 /* FIXME!! The following code is a disaster. Reload needs to see the
4294 labels and jump tables that are just hanging out in between
4295 the basic blocks. See pr33676. */
4296 insn = BB_HEAD (bb);
4298 /* Skip over the barriers and cruft. */
4299 while (insn && (BARRIER_P (insn) || NOTE_P (insn)
4300 || BLOCK_FOR_INSN (insn) == bb))
4301 insn = PREV_INSN (insn);
4303 /* While we add anything except barriers and notes, the focus is
4304 to get the labels and jump tables into the
4305 reload_insn_chain. */
4306 while (insn)
4308 if (!NOTE_P (insn) && !BARRIER_P (insn))
4310 if (BLOCK_FOR_INSN (insn))
4311 break;
4313 c = new_insn_chain ();
4314 c->next = next;
4315 next = c;
4316 *p = c;
4317 p = &c->prev;
4319 /* The block makes no sense here, but it is what the old
4320 code did. */
4321 c->block = bb->index;
4322 c->insn = insn;
4323 bitmap_copy (&c->live_throughout, live_relevant_regs);
4325 insn = PREV_INSN (insn);
4329 reload_insn_chain = c;
4330 *p = NULL;
4332 for (i = 0; i < (unsigned int) max_regno; i++)
4333 if (live_subregs[i] != NULL)
4334 sbitmap_free (live_subregs[i]);
4335 free (live_subregs);
4337 if (dump_file)
4338 print_insn_chains (dump_file);
4341 /* Examine the rtx found in *LOC, which is read or written to as determined
4342 by TYPE. Return false if we find a reason why an insn containing this
4343 rtx should not be moved (such as accesses to non-constant memory), true
4344 otherwise. */
4345 static bool
4346 rtx_moveable_p (rtx *loc, enum op_type type)
4348 const char *fmt;
4349 rtx x = *loc;
4350 enum rtx_code code = GET_CODE (x);
4351 int i, j;
4353 code = GET_CODE (x);
4354 switch (code)
4356 case CONST:
4357 CASE_CONST_ANY:
4358 case SYMBOL_REF:
4359 case LABEL_REF:
4360 return true;
4362 case PC:
4363 return type == OP_IN;
4365 case CC0:
4366 return false;
4368 case REG:
4369 if (x == frame_pointer_rtx)
4370 return true;
4371 if (HARD_REGISTER_P (x))
4372 return false;
4374 return true;
4376 case MEM:
4377 if (type == OP_IN && MEM_READONLY_P (x))
4378 return rtx_moveable_p (&XEXP (x, 0), OP_IN);
4379 return false;
4381 case SET:
4382 return (rtx_moveable_p (&SET_SRC (x), OP_IN)
4383 && rtx_moveable_p (&SET_DEST (x), OP_OUT));
4385 case STRICT_LOW_PART:
4386 return rtx_moveable_p (&XEXP (x, 0), OP_OUT);
4388 case ZERO_EXTRACT:
4389 case SIGN_EXTRACT:
4390 return (rtx_moveable_p (&XEXP (x, 0), type)
4391 && rtx_moveable_p (&XEXP (x, 1), OP_IN)
4392 && rtx_moveable_p (&XEXP (x, 2), OP_IN));
4394 case CLOBBER:
4395 return rtx_moveable_p (&SET_DEST (x), OP_OUT);
4397 case UNSPEC_VOLATILE:
4398 /* It is a bad idea to consider insns with such rtl
4399 as moveable ones. The insn scheduler also considers them as barrier
4400 for a reason. */
4401 return false;
4403 case ASM_OPERANDS:
4404 /* The same is true for volatile asm: it has unknown side effects, it
4405 cannot be moved at will. */
4406 if (MEM_VOLATILE_P (x))
4407 return false;
4409 default:
4410 break;
4413 fmt = GET_RTX_FORMAT (code);
4414 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4416 if (fmt[i] == 'e')
4418 if (!rtx_moveable_p (&XEXP (x, i), type))
4419 return false;
4421 else if (fmt[i] == 'E')
4422 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4424 if (!rtx_moveable_p (&XVECEXP (x, i, j), type))
4425 return false;
4428 return true;
4431 /* A wrapper around dominated_by_p, which uses the information in UID_LUID
4432 to give dominance relationships between two insns I1 and I2. */
4433 static bool
4434 insn_dominated_by_p (rtx i1, rtx i2, int *uid_luid)
4436 basic_block bb1 = BLOCK_FOR_INSN (i1);
4437 basic_block bb2 = BLOCK_FOR_INSN (i2);
4439 if (bb1 == bb2)
4440 return uid_luid[INSN_UID (i2)] < uid_luid[INSN_UID (i1)];
4441 return dominated_by_p (CDI_DOMINATORS, bb1, bb2);
4444 /* Record the range of register numbers added by find_moveable_pseudos. */
4445 int first_moveable_pseudo, last_moveable_pseudo;
4447 /* These two vectors hold data for every register added by
4448 find_movable_pseudos, with index 0 holding data for the
4449 first_moveable_pseudo. */
4450 /* The original home register. */
4451 static vec<rtx> pseudo_replaced_reg;
4453 /* Look for instances where we have an instruction that is known to increase
4454 register pressure, and whose result is not used immediately. If it is
4455 possible to move the instruction downwards to just before its first use,
4456 split its lifetime into two ranges. We create a new pseudo to compute the
4457 value, and emit a move instruction just before the first use. If, after
4458 register allocation, the new pseudo remains unallocated, the function
4459 move_unallocated_pseudos then deletes the move instruction and places
4460 the computation just before the first use.
4462 Such a move is safe and profitable if all the input registers remain live
4463 and unchanged between the original computation and its first use. In such
4464 a situation, the computation is known to increase register pressure, and
4465 moving it is known to at least not worsen it.
4467 We restrict moves to only those cases where a register remains unallocated,
4468 in order to avoid interfering too much with the instruction schedule. As
4469 an exception, we may move insns which only modify their input register
4470 (typically induction variables), as this increases the freedom for our
4471 intended transformation, and does not limit the second instruction
4472 scheduler pass. */
4474 static void
4475 find_moveable_pseudos (void)
4477 unsigned i;
4478 int max_regs = max_reg_num ();
4479 int max_uid = get_max_uid ();
4480 basic_block bb;
4481 int *uid_luid = XNEWVEC (int, max_uid);
4482 rtx_insn **closest_uses = XNEWVEC (rtx_insn *, max_regs);
4483 /* A set of registers which are live but not modified throughout a block. */
4484 bitmap_head *bb_transp_live = XNEWVEC (bitmap_head,
4485 last_basic_block_for_fn (cfun));
4486 /* A set of registers which only exist in a given basic block. */
4487 bitmap_head *bb_local = XNEWVEC (bitmap_head,
4488 last_basic_block_for_fn (cfun));
4489 /* A set of registers which are set once, in an instruction that can be
4490 moved freely downwards, but are otherwise transparent to a block. */
4491 bitmap_head *bb_moveable_reg_sets = XNEWVEC (bitmap_head,
4492 last_basic_block_for_fn (cfun));
4493 auto_bitmap live, used, set, interesting, unusable_as_input;
4494 bitmap_iterator bi;
4496 first_moveable_pseudo = max_regs;
4497 pseudo_replaced_reg.release ();
4498 pseudo_replaced_reg.safe_grow_cleared (max_regs);
4500 df_analyze ();
4501 calculate_dominance_info (CDI_DOMINATORS);
4503 i = 0;
4504 FOR_EACH_BB_FN (bb, cfun)
4506 rtx_insn *insn;
4507 bitmap transp = bb_transp_live + bb->index;
4508 bitmap moveable = bb_moveable_reg_sets + bb->index;
4509 bitmap local = bb_local + bb->index;
4511 bitmap_initialize (local, 0);
4512 bitmap_initialize (transp, 0);
4513 bitmap_initialize (moveable, 0);
4514 bitmap_copy (live, df_get_live_out (bb));
4515 bitmap_and_into (live, df_get_live_in (bb));
4516 bitmap_copy (transp, live);
4517 bitmap_clear (moveable);
4518 bitmap_clear (live);
4519 bitmap_clear (used);
4520 bitmap_clear (set);
4521 FOR_BB_INSNS (bb, insn)
4522 if (NONDEBUG_INSN_P (insn))
4524 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4525 df_ref def, use;
4527 uid_luid[INSN_UID (insn)] = i++;
4529 def = df_single_def (insn_info);
4530 use = df_single_use (insn_info);
4531 if (use
4532 && def
4533 && DF_REF_REGNO (use) == DF_REF_REGNO (def)
4534 && !bitmap_bit_p (set, DF_REF_REGNO (use))
4535 && rtx_moveable_p (&PATTERN (insn), OP_IN))
4537 unsigned regno = DF_REF_REGNO (use);
4538 bitmap_set_bit (moveable, regno);
4539 bitmap_set_bit (set, regno);
4540 bitmap_set_bit (used, regno);
4541 bitmap_clear_bit (transp, regno);
4542 continue;
4544 FOR_EACH_INSN_INFO_USE (use, insn_info)
4546 unsigned regno = DF_REF_REGNO (use);
4547 bitmap_set_bit (used, regno);
4548 if (bitmap_clear_bit (moveable, regno))
4549 bitmap_clear_bit (transp, regno);
4552 FOR_EACH_INSN_INFO_DEF (def, insn_info)
4554 unsigned regno = DF_REF_REGNO (def);
4555 bitmap_set_bit (set, regno);
4556 bitmap_clear_bit (transp, regno);
4557 bitmap_clear_bit (moveable, regno);
4562 FOR_EACH_BB_FN (bb, cfun)
4564 bitmap local = bb_local + bb->index;
4565 rtx_insn *insn;
4567 FOR_BB_INSNS (bb, insn)
4568 if (NONDEBUG_INSN_P (insn))
4570 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4571 rtx_insn *def_insn;
4572 rtx closest_use, note;
4573 df_ref def, use;
4574 unsigned regno;
4575 bool all_dominated, all_local;
4576 machine_mode mode;
4578 def = df_single_def (insn_info);
4579 /* There must be exactly one def in this insn. */
4580 if (!def || !single_set (insn))
4581 continue;
4582 /* This must be the only definition of the reg. We also limit
4583 which modes we deal with so that we can assume we can generate
4584 move instructions. */
4585 regno = DF_REF_REGNO (def);
4586 mode = GET_MODE (DF_REF_REG (def));
4587 if (DF_REG_DEF_COUNT (regno) != 1
4588 || !DF_REF_INSN_INFO (def)
4589 || HARD_REGISTER_NUM_P (regno)
4590 || DF_REG_EQ_USE_COUNT (regno) > 0
4591 || (!INTEGRAL_MODE_P (mode) && !FLOAT_MODE_P (mode)))
4592 continue;
4593 def_insn = DF_REF_INSN (def);
4595 for (note = REG_NOTES (def_insn); note; note = XEXP (note, 1))
4596 if (REG_NOTE_KIND (note) == REG_EQUIV && MEM_P (XEXP (note, 0)))
4597 break;
4599 if (note)
4601 if (dump_file)
4602 fprintf (dump_file, "Ignoring reg %d, has equiv memory\n",
4603 regno);
4604 bitmap_set_bit (unusable_as_input, regno);
4605 continue;
4608 use = DF_REG_USE_CHAIN (regno);
4609 all_dominated = true;
4610 all_local = true;
4611 closest_use = NULL_RTX;
4612 for (; use; use = DF_REF_NEXT_REG (use))
4614 rtx_insn *insn;
4615 if (!DF_REF_INSN_INFO (use))
4617 all_dominated = false;
4618 all_local = false;
4619 break;
4621 insn = DF_REF_INSN (use);
4622 if (DEBUG_INSN_P (insn))
4623 continue;
4624 if (BLOCK_FOR_INSN (insn) != BLOCK_FOR_INSN (def_insn))
4625 all_local = false;
4626 if (!insn_dominated_by_p (insn, def_insn, uid_luid))
4627 all_dominated = false;
4628 if (closest_use != insn && closest_use != const0_rtx)
4630 if (closest_use == NULL_RTX)
4631 closest_use = insn;
4632 else if (insn_dominated_by_p (closest_use, insn, uid_luid))
4633 closest_use = insn;
4634 else if (!insn_dominated_by_p (insn, closest_use, uid_luid))
4635 closest_use = const0_rtx;
4638 if (!all_dominated)
4640 if (dump_file)
4641 fprintf (dump_file, "Reg %d not all uses dominated by set\n",
4642 regno);
4643 continue;
4645 if (all_local)
4646 bitmap_set_bit (local, regno);
4647 if (closest_use == const0_rtx || closest_use == NULL
4648 || next_nonnote_nondebug_insn (def_insn) == closest_use)
4650 if (dump_file)
4651 fprintf (dump_file, "Reg %d uninteresting%s\n", regno,
4652 closest_use == const0_rtx || closest_use == NULL
4653 ? " (no unique first use)" : "");
4654 continue;
4656 if (HAVE_cc0 && reg_referenced_p (cc0_rtx, PATTERN (closest_use)))
4658 if (dump_file)
4659 fprintf (dump_file, "Reg %d: closest user uses cc0\n",
4660 regno);
4661 continue;
4664 bitmap_set_bit (interesting, regno);
4665 /* If we get here, we know closest_use is a non-NULL insn
4666 (as opposed to const_0_rtx). */
4667 closest_uses[regno] = as_a <rtx_insn *> (closest_use);
4669 if (dump_file && (all_local || all_dominated))
4671 fprintf (dump_file, "Reg %u:", regno);
4672 if (all_local)
4673 fprintf (dump_file, " local to bb %d", bb->index);
4674 if (all_dominated)
4675 fprintf (dump_file, " def dominates all uses");
4676 if (closest_use != const0_rtx)
4677 fprintf (dump_file, " has unique first use");
4678 fputs ("\n", dump_file);
4683 EXECUTE_IF_SET_IN_BITMAP (interesting, 0, i, bi)
4685 df_ref def = DF_REG_DEF_CHAIN (i);
4686 rtx_insn *def_insn = DF_REF_INSN (def);
4687 basic_block def_block = BLOCK_FOR_INSN (def_insn);
4688 bitmap def_bb_local = bb_local + def_block->index;
4689 bitmap def_bb_moveable = bb_moveable_reg_sets + def_block->index;
4690 bitmap def_bb_transp = bb_transp_live + def_block->index;
4691 bool local_to_bb_p = bitmap_bit_p (def_bb_local, i);
4692 rtx_insn *use_insn = closest_uses[i];
4693 df_ref use;
4694 bool all_ok = true;
4695 bool all_transp = true;
4697 if (!REG_P (DF_REF_REG (def)))
4698 continue;
4700 if (!local_to_bb_p)
4702 if (dump_file)
4703 fprintf (dump_file, "Reg %u not local to one basic block\n",
4705 continue;
4707 if (reg_equiv_init (i) != NULL_RTX)
4709 if (dump_file)
4710 fprintf (dump_file, "Ignoring reg %u with equiv init insn\n",
4712 continue;
4714 if (!rtx_moveable_p (&PATTERN (def_insn), OP_IN))
4716 if (dump_file)
4717 fprintf (dump_file, "Found def insn %d for %d to be not moveable\n",
4718 INSN_UID (def_insn), i);
4719 continue;
4721 if (dump_file)
4722 fprintf (dump_file, "Examining insn %d, def for %d\n",
4723 INSN_UID (def_insn), i);
4724 FOR_EACH_INSN_USE (use, def_insn)
4726 unsigned regno = DF_REF_REGNO (use);
4727 if (bitmap_bit_p (unusable_as_input, regno))
4729 all_ok = false;
4730 if (dump_file)
4731 fprintf (dump_file, " found unusable input reg %u.\n", regno);
4732 break;
4734 if (!bitmap_bit_p (def_bb_transp, regno))
4736 if (bitmap_bit_p (def_bb_moveable, regno)
4737 && !control_flow_insn_p (use_insn)
4738 && (!HAVE_cc0 || !sets_cc0_p (use_insn)))
4740 if (modified_between_p (DF_REF_REG (use), def_insn, use_insn))
4742 rtx_insn *x = NEXT_INSN (def_insn);
4743 while (!modified_in_p (DF_REF_REG (use), x))
4745 gcc_assert (x != use_insn);
4746 x = NEXT_INSN (x);
4748 if (dump_file)
4749 fprintf (dump_file, " input reg %u modified but insn %d moveable\n",
4750 regno, INSN_UID (x));
4751 emit_insn_after (PATTERN (x), use_insn);
4752 set_insn_deleted (x);
4754 else
4756 if (dump_file)
4757 fprintf (dump_file, " input reg %u modified between def and use\n",
4758 regno);
4759 all_transp = false;
4762 else
4763 all_transp = false;
4766 if (!all_ok)
4767 continue;
4768 if (!dbg_cnt (ira_move))
4769 break;
4770 if (dump_file)
4771 fprintf (dump_file, " all ok%s\n", all_transp ? " and transp" : "");
4773 if (all_transp)
4775 rtx def_reg = DF_REF_REG (def);
4776 rtx newreg = ira_create_new_reg (def_reg);
4777 if (validate_change (def_insn, DF_REF_REAL_LOC (def), newreg, 0))
4779 unsigned nregno = REGNO (newreg);
4780 emit_insn_before (gen_move_insn (def_reg, newreg), use_insn);
4781 nregno -= max_regs;
4782 pseudo_replaced_reg[nregno] = def_reg;
4787 FOR_EACH_BB_FN (bb, cfun)
4789 bitmap_clear (bb_local + bb->index);
4790 bitmap_clear (bb_transp_live + bb->index);
4791 bitmap_clear (bb_moveable_reg_sets + bb->index);
4793 free (uid_luid);
4794 free (closest_uses);
4795 free (bb_local);
4796 free (bb_transp_live);
4797 free (bb_moveable_reg_sets);
4799 last_moveable_pseudo = max_reg_num ();
4801 fix_reg_equiv_init ();
4802 expand_reg_info ();
4803 regstat_free_n_sets_and_refs ();
4804 regstat_free_ri ();
4805 regstat_init_n_sets_and_refs ();
4806 regstat_compute_ri ();
4807 free_dominance_info (CDI_DOMINATORS);
4810 /* If SET pattern SET is an assignment from a hard register to a pseudo which
4811 is live at CALL_DOM (if non-NULL, otherwise this check is omitted), return
4812 the destination. Otherwise return NULL. */
4814 static rtx
4815 interesting_dest_for_shprep_1 (rtx set, basic_block call_dom)
4817 rtx src = SET_SRC (set);
4818 rtx dest = SET_DEST (set);
4819 if (!REG_P (src) || !HARD_REGISTER_P (src)
4820 || !REG_P (dest) || HARD_REGISTER_P (dest)
4821 || (call_dom && !bitmap_bit_p (df_get_live_in (call_dom), REGNO (dest))))
4822 return NULL;
4823 return dest;
4826 /* If insn is interesting for parameter range-splitting shrink-wrapping
4827 preparation, i.e. it is a single set from a hard register to a pseudo, which
4828 is live at CALL_DOM (if non-NULL, otherwise this check is omitted), or a
4829 parallel statement with only one such statement, return the destination.
4830 Otherwise return NULL. */
4832 static rtx
4833 interesting_dest_for_shprep (rtx_insn *insn, basic_block call_dom)
4835 if (!INSN_P (insn))
4836 return NULL;
4837 rtx pat = PATTERN (insn);
4838 if (GET_CODE (pat) == SET)
4839 return interesting_dest_for_shprep_1 (pat, call_dom);
4841 if (GET_CODE (pat) != PARALLEL)
4842 return NULL;
4843 rtx ret = NULL;
4844 for (int i = 0; i < XVECLEN (pat, 0); i++)
4846 rtx sub = XVECEXP (pat, 0, i);
4847 if (GET_CODE (sub) == USE || GET_CODE (sub) == CLOBBER)
4848 continue;
4849 if (GET_CODE (sub) != SET
4850 || side_effects_p (sub))
4851 return NULL;
4852 rtx dest = interesting_dest_for_shprep_1 (sub, call_dom);
4853 if (dest && ret)
4854 return NULL;
4855 if (dest)
4856 ret = dest;
4858 return ret;
4861 /* Split live ranges of pseudos that are loaded from hard registers in the
4862 first BB in a BB that dominates all non-sibling call if such a BB can be
4863 found and is not in a loop. Return true if the function has made any
4864 changes. */
4866 static bool
4867 split_live_ranges_for_shrink_wrap (void)
4869 basic_block bb, call_dom = NULL;
4870 basic_block first = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
4871 rtx_insn *insn, *last_interesting_insn = NULL;
4872 auto_bitmap need_new, reachable;
4873 vec<basic_block> queue;
4875 if (!SHRINK_WRAPPING_ENABLED)
4876 return false;
4878 queue.create (n_basic_blocks_for_fn (cfun));
4880 FOR_EACH_BB_FN (bb, cfun)
4881 FOR_BB_INSNS (bb, insn)
4882 if (CALL_P (insn) && !SIBLING_CALL_P (insn))
4884 if (bb == first)
4886 queue.release ();
4887 return false;
4890 bitmap_set_bit (need_new, bb->index);
4891 bitmap_set_bit (reachable, bb->index);
4892 queue.quick_push (bb);
4893 break;
4896 if (queue.is_empty ())
4898 queue.release ();
4899 return false;
4902 while (!queue.is_empty ())
4904 edge e;
4905 edge_iterator ei;
4907 bb = queue.pop ();
4908 FOR_EACH_EDGE (e, ei, bb->succs)
4909 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
4910 && bitmap_set_bit (reachable, e->dest->index))
4911 queue.quick_push (e->dest);
4913 queue.release ();
4915 FOR_BB_INSNS (first, insn)
4917 rtx dest = interesting_dest_for_shprep (insn, NULL);
4918 if (!dest)
4919 continue;
4921 if (DF_REG_DEF_COUNT (REGNO (dest)) > 1)
4922 return false;
4924 for (df_ref use = DF_REG_USE_CHAIN (REGNO(dest));
4925 use;
4926 use = DF_REF_NEXT_REG (use))
4928 int ubbi = DF_REF_BB (use)->index;
4929 if (bitmap_bit_p (reachable, ubbi))
4930 bitmap_set_bit (need_new, ubbi);
4932 last_interesting_insn = insn;
4935 if (!last_interesting_insn)
4936 return false;
4938 call_dom = nearest_common_dominator_for_set (CDI_DOMINATORS, need_new);
4939 if (call_dom == first)
4940 return false;
4942 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
4943 while (bb_loop_depth (call_dom) > 0)
4944 call_dom = get_immediate_dominator (CDI_DOMINATORS, call_dom);
4945 loop_optimizer_finalize ();
4947 if (call_dom == first)
4948 return false;
4950 calculate_dominance_info (CDI_POST_DOMINATORS);
4951 if (dominated_by_p (CDI_POST_DOMINATORS, first, call_dom))
4953 free_dominance_info (CDI_POST_DOMINATORS);
4954 return false;
4956 free_dominance_info (CDI_POST_DOMINATORS);
4958 if (dump_file)
4959 fprintf (dump_file, "Will split live ranges of parameters at BB %i\n",
4960 call_dom->index);
4962 bool ret = false;
4963 FOR_BB_INSNS (first, insn)
4965 rtx dest = interesting_dest_for_shprep (insn, call_dom);
4966 if (!dest || dest == pic_offset_table_rtx)
4967 continue;
4969 bool need_newreg = false;
4970 df_ref use, next;
4971 for (use = DF_REG_USE_CHAIN (REGNO (dest)); use; use = next)
4973 rtx_insn *uin = DF_REF_INSN (use);
4974 next = DF_REF_NEXT_REG (use);
4976 if (DEBUG_INSN_P (uin))
4977 continue;
4979 basic_block ubb = BLOCK_FOR_INSN (uin);
4980 if (ubb == call_dom
4981 || dominated_by_p (CDI_DOMINATORS, ubb, call_dom))
4983 need_newreg = true;
4984 break;
4988 if (need_newreg)
4990 rtx newreg = ira_create_new_reg (dest);
4992 for (use = DF_REG_USE_CHAIN (REGNO (dest)); use; use = next)
4994 rtx_insn *uin = DF_REF_INSN (use);
4995 next = DF_REF_NEXT_REG (use);
4997 basic_block ubb = BLOCK_FOR_INSN (uin);
4998 if (ubb == call_dom
4999 || dominated_by_p (CDI_DOMINATORS, ubb, call_dom))
5000 validate_change (uin, DF_REF_REAL_LOC (use), newreg, true);
5003 rtx_insn *new_move = gen_move_insn (newreg, dest);
5004 emit_insn_after (new_move, bb_note (call_dom));
5005 if (dump_file)
5007 fprintf (dump_file, "Split live-range of register ");
5008 print_rtl_single (dump_file, dest);
5010 ret = true;
5013 if (insn == last_interesting_insn)
5014 break;
5016 apply_change_group ();
5017 return ret;
5020 /* Perform the second half of the transformation started in
5021 find_moveable_pseudos. We look for instances where the newly introduced
5022 pseudo remains unallocated, and remove it by moving the definition to
5023 just before its use, replacing the move instruction generated by
5024 find_moveable_pseudos. */
5025 static void
5026 move_unallocated_pseudos (void)
5028 int i;
5029 for (i = first_moveable_pseudo; i < last_moveable_pseudo; i++)
5030 if (reg_renumber[i] < 0)
5032 int idx = i - first_moveable_pseudo;
5033 rtx other_reg = pseudo_replaced_reg[idx];
5034 rtx_insn *def_insn = DF_REF_INSN (DF_REG_DEF_CHAIN (i));
5035 /* The use must follow all definitions of OTHER_REG, so we can
5036 insert the new definition immediately after any of them. */
5037 df_ref other_def = DF_REG_DEF_CHAIN (REGNO (other_reg));
5038 rtx_insn *move_insn = DF_REF_INSN (other_def);
5039 rtx_insn *newinsn = emit_insn_after (PATTERN (def_insn), move_insn);
5040 rtx set;
5041 int success;
5043 if (dump_file)
5044 fprintf (dump_file, "moving def of %d (insn %d now) ",
5045 REGNO (other_reg), INSN_UID (def_insn));
5047 delete_insn (move_insn);
5048 while ((other_def = DF_REG_DEF_CHAIN (REGNO (other_reg))))
5049 delete_insn (DF_REF_INSN (other_def));
5050 delete_insn (def_insn);
5052 set = single_set (newinsn);
5053 success = validate_change (newinsn, &SET_DEST (set), other_reg, 0);
5054 gcc_assert (success);
5055 if (dump_file)
5056 fprintf (dump_file, " %d) rather than keep unallocated replacement %d\n",
5057 INSN_UID (newinsn), i);
5058 SET_REG_N_REFS (i, 0);
5062 /* If the backend knows where to allocate pseudos for hard
5063 register initial values, register these allocations now. */
5064 static void
5065 allocate_initial_values (void)
5067 if (targetm.allocate_initial_value)
5069 rtx hreg, preg, x;
5070 int i, regno;
5072 for (i = 0; HARD_REGISTER_NUM_P (i); i++)
5074 if (! initial_value_entry (i, &hreg, &preg))
5075 break;
5077 x = targetm.allocate_initial_value (hreg);
5078 regno = REGNO (preg);
5079 if (x && REG_N_SETS (regno) <= 1)
5081 if (MEM_P (x))
5082 reg_equiv_memory_loc (regno) = x;
5083 else
5085 basic_block bb;
5086 int new_regno;
5088 gcc_assert (REG_P (x));
5089 new_regno = REGNO (x);
5090 reg_renumber[regno] = new_regno;
5091 /* Poke the regno right into regno_reg_rtx so that even
5092 fixed regs are accepted. */
5093 SET_REGNO (preg, new_regno);
5094 /* Update global register liveness information. */
5095 FOR_EACH_BB_FN (bb, cfun)
5097 if (REGNO_REG_SET_P (df_get_live_in (bb), regno))
5098 SET_REGNO_REG_SET (df_get_live_in (bb), new_regno);
5099 if (REGNO_REG_SET_P (df_get_live_out (bb), regno))
5100 SET_REGNO_REG_SET (df_get_live_out (bb), new_regno);
5106 gcc_checking_assert (! initial_value_entry (FIRST_PSEUDO_REGISTER,
5107 &hreg, &preg));
5112 /* True when we use LRA instead of reload pass for the current
5113 function. */
5114 bool ira_use_lra_p;
5116 /* True if we have allocno conflicts. It is false for non-optimized
5117 mode or when the conflict table is too big. */
5118 bool ira_conflicts_p;
5120 /* Saved between IRA and reload. */
5121 static int saved_flag_ira_share_spill_slots;
5123 /* This is the main entry of IRA. */
5124 static void
5125 ira (FILE *f)
5127 bool loops_p;
5128 int ira_max_point_before_emit;
5129 bool saved_flag_caller_saves = flag_caller_saves;
5130 enum ira_region saved_flag_ira_region = flag_ira_region;
5132 clear_bb_flags ();
5134 /* Determine if the current function is a leaf before running IRA
5135 since this can impact optimizations done by the prologue and
5136 epilogue thus changing register elimination offsets.
5137 Other target callbacks may use crtl->is_leaf too, including
5138 SHRINK_WRAPPING_ENABLED, so initialize as early as possible. */
5139 crtl->is_leaf = leaf_function_p ();
5141 /* Perform target specific PIC register initialization. */
5142 targetm.init_pic_reg ();
5144 ira_conflicts_p = optimize > 0;
5146 /* If there are too many pseudos and/or basic blocks (e.g. 10K
5147 pseudos and 10K blocks or 100K pseudos and 1K blocks), we will
5148 use simplified and faster algorithms in LRA. */
5149 lra_simple_p
5150 = (ira_use_lra_p
5151 && max_reg_num () >= (1 << 26) / last_basic_block_for_fn (cfun));
5152 if (lra_simple_p)
5154 /* It permits to skip live range splitting in LRA. */
5155 flag_caller_saves = false;
5156 /* There is no sense to do regional allocation when we use
5157 simplified LRA. */
5158 flag_ira_region = IRA_REGION_ONE;
5159 ira_conflicts_p = false;
5162 #ifndef IRA_NO_OBSTACK
5163 gcc_obstack_init (&ira_obstack);
5164 #endif
5165 bitmap_obstack_initialize (&ira_bitmap_obstack);
5167 /* LRA uses its own infrastructure to handle caller save registers. */
5168 if (flag_caller_saves && !ira_use_lra_p)
5169 init_caller_save ();
5171 if (flag_ira_verbose < 10)
5173 internal_flag_ira_verbose = flag_ira_verbose;
5174 ira_dump_file = f;
5176 else
5178 internal_flag_ira_verbose = flag_ira_verbose - 10;
5179 ira_dump_file = stderr;
5182 setup_prohibited_mode_move_regs ();
5183 decrease_live_ranges_number ();
5184 df_note_add_problem ();
5186 /* DF_LIVE can't be used in the register allocator, too many other
5187 parts of the compiler depend on using the "classic" liveness
5188 interpretation of the DF_LR problem. See PR38711.
5189 Remove the problem, so that we don't spend time updating it in
5190 any of the df_analyze() calls during IRA/LRA. */
5191 if (optimize > 1)
5192 df_remove_problem (df_live);
5193 gcc_checking_assert (df_live == NULL);
5195 if (flag_checking)
5196 df->changeable_flags |= DF_VERIFY_SCHEDULED;
5198 df_analyze ();
5200 init_reg_equiv ();
5201 if (ira_conflicts_p)
5203 calculate_dominance_info (CDI_DOMINATORS);
5205 if (split_live_ranges_for_shrink_wrap ())
5206 df_analyze ();
5208 free_dominance_info (CDI_DOMINATORS);
5211 df_clear_flags (DF_NO_INSN_RESCAN);
5213 indirect_jump_optimize ();
5214 if (delete_trivially_dead_insns (get_insns (), max_reg_num ()))
5215 df_analyze ();
5217 regstat_init_n_sets_and_refs ();
5218 regstat_compute_ri ();
5220 /* If we are not optimizing, then this is the only place before
5221 register allocation where dataflow is done. And that is needed
5222 to generate these warnings. */
5223 if (warn_clobbered)
5224 generate_setjmp_warnings ();
5226 if (resize_reg_info () && flag_ira_loop_pressure)
5227 ira_set_pseudo_classes (true, ira_dump_file);
5229 init_alias_analysis ();
5230 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
5231 reg_equiv = XCNEWVEC (struct equivalence, max_reg_num ());
5232 update_equiv_regs ();
5234 /* Don't move insns if live range shrinkage or register
5235 pressure-sensitive scheduling were done because it will not
5236 improve allocation but likely worsen insn scheduling. */
5237 if (optimize
5238 && !flag_live_range_shrinkage
5239 && !(flag_sched_pressure && flag_schedule_insns))
5240 combine_and_move_insns ();
5242 /* Gather additional equivalences with memory. */
5243 if (optimize)
5244 add_store_equivs ();
5246 loop_optimizer_finalize ();
5247 free_dominance_info (CDI_DOMINATORS);
5248 end_alias_analysis ();
5249 free (reg_equiv);
5251 setup_reg_equiv ();
5252 grow_reg_equivs ();
5253 setup_reg_equiv_init ();
5255 allocated_reg_info_size = max_reg_num ();
5257 /* It is not worth to do such improvement when we use a simple
5258 allocation because of -O0 usage or because the function is too
5259 big. */
5260 if (ira_conflicts_p)
5261 find_moveable_pseudos ();
5263 max_regno_before_ira = max_reg_num ();
5264 ira_setup_eliminable_regset ();
5266 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
5267 ira_load_cost = ira_store_cost = ira_shuffle_cost = 0;
5268 ira_move_loops_num = ira_additional_jumps_num = 0;
5270 ira_assert (current_loops == NULL);
5271 if (flag_ira_region == IRA_REGION_ALL || flag_ira_region == IRA_REGION_MIXED)
5272 loop_optimizer_init (AVOID_CFG_MODIFICATIONS | LOOPS_HAVE_RECORDED_EXITS);
5274 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5275 fprintf (ira_dump_file, "Building IRA IR\n");
5276 loops_p = ira_build ();
5278 ira_assert (ira_conflicts_p || !loops_p);
5280 saved_flag_ira_share_spill_slots = flag_ira_share_spill_slots;
5281 if (too_high_register_pressure_p () || cfun->calls_setjmp)
5282 /* It is just wasting compiler's time to pack spilled pseudos into
5283 stack slots in this case -- prohibit it. We also do this if
5284 there is setjmp call because a variable not modified between
5285 setjmp and longjmp the compiler is required to preserve its
5286 value and sharing slots does not guarantee it. */
5287 flag_ira_share_spill_slots = FALSE;
5289 ira_color ();
5291 ira_max_point_before_emit = ira_max_point;
5293 ira_initiate_emit_data ();
5295 ira_emit (loops_p);
5297 max_regno = max_reg_num ();
5298 if (ira_conflicts_p)
5300 if (! loops_p)
5302 if (! ira_use_lra_p)
5303 ira_initiate_assign ();
5305 else
5307 expand_reg_info ();
5309 if (ira_use_lra_p)
5311 ira_allocno_t a;
5312 ira_allocno_iterator ai;
5314 FOR_EACH_ALLOCNO (a, ai)
5316 int old_regno = ALLOCNO_REGNO (a);
5317 int new_regno = REGNO (ALLOCNO_EMIT_DATA (a)->reg);
5319 ALLOCNO_REGNO (a) = new_regno;
5321 if (old_regno != new_regno)
5322 setup_reg_classes (new_regno, reg_preferred_class (old_regno),
5323 reg_alternate_class (old_regno),
5324 reg_allocno_class (old_regno));
5327 else
5329 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5330 fprintf (ira_dump_file, "Flattening IR\n");
5331 ira_flattening (max_regno_before_ira, ira_max_point_before_emit);
5333 /* New insns were generated: add notes and recalculate live
5334 info. */
5335 df_analyze ();
5337 /* ??? Rebuild the loop tree, but why? Does the loop tree
5338 change if new insns were generated? Can that be handled
5339 by updating the loop tree incrementally? */
5340 loop_optimizer_finalize ();
5341 free_dominance_info (CDI_DOMINATORS);
5342 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
5343 | LOOPS_HAVE_RECORDED_EXITS);
5345 if (! ira_use_lra_p)
5347 setup_allocno_assignment_flags ();
5348 ira_initiate_assign ();
5349 ira_reassign_conflict_allocnos (max_regno);
5354 ira_finish_emit_data ();
5356 setup_reg_renumber ();
5358 calculate_allocation_cost ();
5360 #ifdef ENABLE_IRA_CHECKING
5361 if (ira_conflicts_p && ! ira_use_lra_p)
5362 /* Opposite to reload pass, LRA does not use any conflict info
5363 from IRA. We don't rebuild conflict info for LRA (through
5364 ira_flattening call) and can not use the check here. We could
5365 rebuild this info for LRA in the check mode but there is a risk
5366 that code generated with the check and without it will be a bit
5367 different. Calling ira_flattening in any mode would be a
5368 wasting CPU time. So do not check the allocation for LRA. */
5369 check_allocation ();
5370 #endif
5372 if (max_regno != max_regno_before_ira)
5374 regstat_free_n_sets_and_refs ();
5375 regstat_free_ri ();
5376 regstat_init_n_sets_and_refs ();
5377 regstat_compute_ri ();
5380 overall_cost_before = ira_overall_cost;
5381 if (! ira_conflicts_p)
5382 grow_reg_equivs ();
5383 else
5385 fix_reg_equiv_init ();
5387 #ifdef ENABLE_IRA_CHECKING
5388 print_redundant_copies ();
5389 #endif
5390 if (! ira_use_lra_p)
5392 ira_spilled_reg_stack_slots_num = 0;
5393 ira_spilled_reg_stack_slots
5394 = ((struct ira_spilled_reg_stack_slot *)
5395 ira_allocate (max_regno
5396 * sizeof (struct ira_spilled_reg_stack_slot)));
5397 memset (ira_spilled_reg_stack_slots, 0,
5398 max_regno * sizeof (struct ira_spilled_reg_stack_slot));
5401 allocate_initial_values ();
5403 /* See comment for find_moveable_pseudos call. */
5404 if (ira_conflicts_p)
5405 move_unallocated_pseudos ();
5407 /* Restore original values. */
5408 if (lra_simple_p)
5410 flag_caller_saves = saved_flag_caller_saves;
5411 flag_ira_region = saved_flag_ira_region;
5415 static void
5416 do_reload (void)
5418 basic_block bb;
5419 bool need_dce;
5420 unsigned pic_offset_table_regno = INVALID_REGNUM;
5422 if (flag_ira_verbose < 10)
5423 ira_dump_file = dump_file;
5425 /* If pic_offset_table_rtx is a pseudo register, then keep it so
5426 after reload to avoid possible wrong usages of hard reg assigned
5427 to it. */
5428 if (pic_offset_table_rtx
5429 && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
5430 pic_offset_table_regno = REGNO (pic_offset_table_rtx);
5432 timevar_push (TV_RELOAD);
5433 if (ira_use_lra_p)
5435 if (current_loops != NULL)
5437 loop_optimizer_finalize ();
5438 free_dominance_info (CDI_DOMINATORS);
5440 FOR_ALL_BB_FN (bb, cfun)
5441 bb->loop_father = NULL;
5442 current_loops = NULL;
5444 ira_destroy ();
5446 lra (ira_dump_file);
5447 /* ???!!! Move it before lra () when we use ira_reg_equiv in
5448 LRA. */
5449 vec_free (reg_equivs);
5450 reg_equivs = NULL;
5451 need_dce = false;
5453 else
5455 df_set_flags (DF_NO_INSN_RESCAN);
5456 build_insn_chain ();
5458 need_dce = reload (get_insns (), ira_conflicts_p);
5461 timevar_pop (TV_RELOAD);
5463 timevar_push (TV_IRA);
5465 if (ira_conflicts_p && ! ira_use_lra_p)
5467 ira_free (ira_spilled_reg_stack_slots);
5468 ira_finish_assign ();
5471 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL
5472 && overall_cost_before != ira_overall_cost)
5473 fprintf (ira_dump_file, "+++Overall after reload %" PRId64 "\n",
5474 ira_overall_cost);
5476 flag_ira_share_spill_slots = saved_flag_ira_share_spill_slots;
5478 if (! ira_use_lra_p)
5480 ira_destroy ();
5481 if (current_loops != NULL)
5483 loop_optimizer_finalize ();
5484 free_dominance_info (CDI_DOMINATORS);
5486 FOR_ALL_BB_FN (bb, cfun)
5487 bb->loop_father = NULL;
5488 current_loops = NULL;
5490 regstat_free_ri ();
5491 regstat_free_n_sets_and_refs ();
5494 if (optimize)
5495 cleanup_cfg (CLEANUP_EXPENSIVE);
5497 finish_reg_equiv ();
5499 bitmap_obstack_release (&ira_bitmap_obstack);
5500 #ifndef IRA_NO_OBSTACK
5501 obstack_free (&ira_obstack, NULL);
5502 #endif
5504 /* The code after the reload has changed so much that at this point
5505 we might as well just rescan everything. Note that
5506 df_rescan_all_insns is not going to help here because it does not
5507 touch the artificial uses and defs. */
5508 df_finish_pass (true);
5509 df_scan_alloc (NULL);
5510 df_scan_blocks ();
5512 if (optimize > 1)
5514 df_live_add_problem ();
5515 df_live_set_all_dirty ();
5518 if (optimize)
5519 df_analyze ();
5521 if (need_dce && optimize)
5522 run_fast_dce ();
5524 /* Diagnose uses of the hard frame pointer when it is used as a global
5525 register. Often we can get away with letting the user appropriate
5526 the frame pointer, but we should let them know when code generation
5527 makes that impossible. */
5528 if (global_regs[HARD_FRAME_POINTER_REGNUM] && frame_pointer_needed)
5530 tree decl = global_regs_decl[HARD_FRAME_POINTER_REGNUM];
5531 error_at (DECL_SOURCE_LOCATION (current_function_decl),
5532 "frame pointer required, but reserved");
5533 inform (DECL_SOURCE_LOCATION (decl), "for %qD", decl);
5536 /* If we are doing generic stack checking, give a warning if this
5537 function's frame size is larger than we expect. */
5538 if (flag_stack_check == GENERIC_STACK_CHECK)
5540 HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
5542 for (int i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5543 if (df_regs_ever_live_p (i) && !fixed_regs[i] && call_used_regs[i])
5544 size += UNITS_PER_WORD;
5546 if (size > STACK_CHECK_MAX_FRAME_SIZE)
5547 warning (0, "frame size too large for reliable stack checking");
5550 if (pic_offset_table_regno != INVALID_REGNUM)
5551 pic_offset_table_rtx = gen_rtx_REG (Pmode, pic_offset_table_regno);
5553 timevar_pop (TV_IRA);
5556 /* Run the integrated register allocator. */
5558 namespace {
5560 const pass_data pass_data_ira =
5562 RTL_PASS, /* type */
5563 "ira", /* name */
5564 OPTGROUP_NONE, /* optinfo_flags */
5565 TV_IRA, /* tv_id */
5566 0, /* properties_required */
5567 0, /* properties_provided */
5568 0, /* properties_destroyed */
5569 0, /* todo_flags_start */
5570 TODO_do_not_ggc_collect, /* todo_flags_finish */
5573 class pass_ira : public rtl_opt_pass
5575 public:
5576 pass_ira (gcc::context *ctxt)
5577 : rtl_opt_pass (pass_data_ira, ctxt)
5580 /* opt_pass methods: */
5581 virtual bool gate (function *)
5583 return !targetm.no_register_allocation;
5585 virtual unsigned int execute (function *)
5587 ira (dump_file);
5588 return 0;
5591 }; // class pass_ira
5593 } // anon namespace
5595 rtl_opt_pass *
5596 make_pass_ira (gcc::context *ctxt)
5598 return new pass_ira (ctxt);
5601 namespace {
5603 const pass_data pass_data_reload =
5605 RTL_PASS, /* type */
5606 "reload", /* name */
5607 OPTGROUP_NONE, /* optinfo_flags */
5608 TV_RELOAD, /* tv_id */
5609 0, /* properties_required */
5610 0, /* properties_provided */
5611 0, /* properties_destroyed */
5612 0, /* todo_flags_start */
5613 0, /* todo_flags_finish */
5616 class pass_reload : public rtl_opt_pass
5618 public:
5619 pass_reload (gcc::context *ctxt)
5620 : rtl_opt_pass (pass_data_reload, ctxt)
5623 /* opt_pass methods: */
5624 virtual bool gate (function *)
5626 return !targetm.no_register_allocation;
5628 virtual unsigned int execute (function *)
5630 do_reload ();
5631 return 0;
5634 }; // class pass_reload
5636 } // anon namespace
5638 rtl_opt_pass *
5639 make_pass_reload (gcc::context *ctxt)
5641 return new pass_reload (ctxt);