2010-04-06 Tobias Burnus <burnus@net-b.de>
[official-gcc.git] / gcc / tree-vrp.c
blobc84004e6be4f08060ab02443dbbb77db45a04536
1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "ggc.h"
27 #include "flags.h"
28 #include "tree.h"
29 #include "basic-block.h"
30 #include "tree-flow.h"
31 #include "tree-pass.h"
32 #include "tree-dump.h"
33 #include "timevar.h"
34 #include "diagnostic.h"
35 #include "toplev.h"
36 #include "intl.h"
37 #include "cfgloop.h"
38 #include "tree-scalar-evolution.h"
39 #include "tree-ssa-propagate.h"
40 #include "tree-chrec.h"
43 /* Set of SSA names found live during the RPO traversal of the function
44 for still active basic-blocks. */
45 static sbitmap *live;
47 /* Return true if the SSA name NAME is live on the edge E. */
49 static bool
50 live_on_edge (edge e, tree name)
52 return (live[e->dest->index]
53 && TEST_BIT (live[e->dest->index], SSA_NAME_VERSION (name)));
56 /* Local functions. */
57 static int compare_values (tree val1, tree val2);
58 static int compare_values_warnv (tree val1, tree val2, bool *);
59 static void vrp_meet (value_range_t *, value_range_t *);
60 static tree vrp_evaluate_conditional_warnv_with_ops (enum tree_code,
61 tree, tree, bool, bool *,
62 bool *);
64 /* Location information for ASSERT_EXPRs. Each instance of this
65 structure describes an ASSERT_EXPR for an SSA name. Since a single
66 SSA name may have more than one assertion associated with it, these
67 locations are kept in a linked list attached to the corresponding
68 SSA name. */
69 struct assert_locus_d
71 /* Basic block where the assertion would be inserted. */
72 basic_block bb;
74 /* Some assertions need to be inserted on an edge (e.g., assertions
75 generated by COND_EXPRs). In those cases, BB will be NULL. */
76 edge e;
78 /* Pointer to the statement that generated this assertion. */
79 gimple_stmt_iterator si;
81 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
82 enum tree_code comp_code;
84 /* Value being compared against. */
85 tree val;
87 /* Expression to compare. */
88 tree expr;
90 /* Next node in the linked list. */
91 struct assert_locus_d *next;
94 typedef struct assert_locus_d *assert_locus_t;
96 /* If bit I is present, it means that SSA name N_i has a list of
97 assertions that should be inserted in the IL. */
98 static bitmap need_assert_for;
100 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
101 holds a list of ASSERT_LOCUS_T nodes that describe where
102 ASSERT_EXPRs for SSA name N_I should be inserted. */
103 static assert_locus_t *asserts_for;
105 /* Value range array. After propagation, VR_VALUE[I] holds the range
106 of values that SSA name N_I may take. */
107 static value_range_t **vr_value;
109 /* For a PHI node which sets SSA name N_I, VR_COUNTS[I] holds the
110 number of executable edges we saw the last time we visited the
111 node. */
112 static int *vr_phi_edge_counts;
114 typedef struct {
115 gimple stmt;
116 tree vec;
117 } switch_update;
119 static VEC (edge, heap) *to_remove_edges;
120 DEF_VEC_O(switch_update);
121 DEF_VEC_ALLOC_O(switch_update, heap);
122 static VEC (switch_update, heap) *to_update_switch_stmts;
125 /* Return the maximum value for TYPE. */
127 static inline tree
128 vrp_val_max (const_tree type)
130 if (!INTEGRAL_TYPE_P (type))
131 return NULL_TREE;
133 return TYPE_MAX_VALUE (type);
136 /* Return the minimum value for TYPE. */
138 static inline tree
139 vrp_val_min (const_tree type)
141 if (!INTEGRAL_TYPE_P (type))
142 return NULL_TREE;
144 return TYPE_MIN_VALUE (type);
147 /* Return whether VAL is equal to the maximum value of its type. This
148 will be true for a positive overflow infinity. We can't do a
149 simple equality comparison with TYPE_MAX_VALUE because C typedefs
150 and Ada subtypes can produce types whose TYPE_MAX_VALUE is not ==
151 to the integer constant with the same value in the type. */
153 static inline bool
154 vrp_val_is_max (const_tree val)
156 tree type_max = vrp_val_max (TREE_TYPE (val));
157 return (val == type_max
158 || (type_max != NULL_TREE
159 && operand_equal_p (val, type_max, 0)));
162 /* Return whether VAL is equal to the minimum value of its type. This
163 will be true for a negative overflow infinity. */
165 static inline bool
166 vrp_val_is_min (const_tree val)
168 tree type_min = vrp_val_min (TREE_TYPE (val));
169 return (val == type_min
170 || (type_min != NULL_TREE
171 && operand_equal_p (val, type_min, 0)));
175 /* Return whether TYPE should use an overflow infinity distinct from
176 TYPE_{MIN,MAX}_VALUE. We use an overflow infinity value to
177 represent a signed overflow during VRP computations. An infinity
178 is distinct from a half-range, which will go from some number to
179 TYPE_{MIN,MAX}_VALUE. */
181 static inline bool
182 needs_overflow_infinity (const_tree type)
184 return INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type);
187 /* Return whether TYPE can support our overflow infinity
188 representation: we use the TREE_OVERFLOW flag, which only exists
189 for constants. If TYPE doesn't support this, we don't optimize
190 cases which would require signed overflow--we drop them to
191 VARYING. */
193 static inline bool
194 supports_overflow_infinity (const_tree type)
196 tree min = vrp_val_min (type), max = vrp_val_max (type);
197 #ifdef ENABLE_CHECKING
198 gcc_assert (needs_overflow_infinity (type));
199 #endif
200 return (min != NULL_TREE
201 && CONSTANT_CLASS_P (min)
202 && max != NULL_TREE
203 && CONSTANT_CLASS_P (max));
206 /* VAL is the maximum or minimum value of a type. Return a
207 corresponding overflow infinity. */
209 static inline tree
210 make_overflow_infinity (tree val)
212 #ifdef ENABLE_CHECKING
213 gcc_assert (val != NULL_TREE && CONSTANT_CLASS_P (val));
214 #endif
215 val = copy_node (val);
216 TREE_OVERFLOW (val) = 1;
217 return val;
220 /* Return a negative overflow infinity for TYPE. */
222 static inline tree
223 negative_overflow_infinity (tree type)
225 #ifdef ENABLE_CHECKING
226 gcc_assert (supports_overflow_infinity (type));
227 #endif
228 return make_overflow_infinity (vrp_val_min (type));
231 /* Return a positive overflow infinity for TYPE. */
233 static inline tree
234 positive_overflow_infinity (tree type)
236 #ifdef ENABLE_CHECKING
237 gcc_assert (supports_overflow_infinity (type));
238 #endif
239 return make_overflow_infinity (vrp_val_max (type));
242 /* Return whether VAL is a negative overflow infinity. */
244 static inline bool
245 is_negative_overflow_infinity (const_tree val)
247 return (needs_overflow_infinity (TREE_TYPE (val))
248 && CONSTANT_CLASS_P (val)
249 && TREE_OVERFLOW (val)
250 && vrp_val_is_min (val));
253 /* Return whether VAL is a positive overflow infinity. */
255 static inline bool
256 is_positive_overflow_infinity (const_tree val)
258 return (needs_overflow_infinity (TREE_TYPE (val))
259 && CONSTANT_CLASS_P (val)
260 && TREE_OVERFLOW (val)
261 && vrp_val_is_max (val));
264 /* Return whether VAL is a positive or negative overflow infinity. */
266 static inline bool
267 is_overflow_infinity (const_tree val)
269 return (needs_overflow_infinity (TREE_TYPE (val))
270 && CONSTANT_CLASS_P (val)
271 && TREE_OVERFLOW (val)
272 && (vrp_val_is_min (val) || vrp_val_is_max (val)));
275 /* Return whether STMT has a constant rhs that is_overflow_infinity. */
277 static inline bool
278 stmt_overflow_infinity (gimple stmt)
280 if (is_gimple_assign (stmt)
281 && get_gimple_rhs_class (gimple_assign_rhs_code (stmt)) ==
282 GIMPLE_SINGLE_RHS)
283 return is_overflow_infinity (gimple_assign_rhs1 (stmt));
284 return false;
287 /* If VAL is now an overflow infinity, return VAL. Otherwise, return
288 the same value with TREE_OVERFLOW clear. This can be used to avoid
289 confusing a regular value with an overflow value. */
291 static inline tree
292 avoid_overflow_infinity (tree val)
294 if (!is_overflow_infinity (val))
295 return val;
297 if (vrp_val_is_max (val))
298 return vrp_val_max (TREE_TYPE (val));
299 else
301 #ifdef ENABLE_CHECKING
302 gcc_assert (vrp_val_is_min (val));
303 #endif
304 return vrp_val_min (TREE_TYPE (val));
309 /* Return true if ARG is marked with the nonnull attribute in the
310 current function signature. */
312 static bool
313 nonnull_arg_p (const_tree arg)
315 tree t, attrs, fntype;
316 unsigned HOST_WIDE_INT arg_num;
318 gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
320 /* The static chain decl is always non null. */
321 if (arg == cfun->static_chain_decl)
322 return true;
324 fntype = TREE_TYPE (current_function_decl);
325 attrs = lookup_attribute ("nonnull", TYPE_ATTRIBUTES (fntype));
327 /* If "nonnull" wasn't specified, we know nothing about the argument. */
328 if (attrs == NULL_TREE)
329 return false;
331 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
332 if (TREE_VALUE (attrs) == NULL_TREE)
333 return true;
335 /* Get the position number for ARG in the function signature. */
336 for (arg_num = 1, t = DECL_ARGUMENTS (current_function_decl);
338 t = TREE_CHAIN (t), arg_num++)
340 if (t == arg)
341 break;
344 gcc_assert (t == arg);
346 /* Now see if ARG_NUM is mentioned in the nonnull list. */
347 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
349 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
350 return true;
353 return false;
357 /* Set value range VR to VR_VARYING. */
359 static inline void
360 set_value_range_to_varying (value_range_t *vr)
362 vr->type = VR_VARYING;
363 vr->min = vr->max = NULL_TREE;
364 if (vr->equiv)
365 bitmap_clear (vr->equiv);
369 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
371 static void
372 set_value_range (value_range_t *vr, enum value_range_type t, tree min,
373 tree max, bitmap equiv)
375 #if defined ENABLE_CHECKING
376 /* Check the validity of the range. */
377 if (t == VR_RANGE || t == VR_ANTI_RANGE)
379 int cmp;
381 gcc_assert (min && max);
383 if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
384 gcc_assert (!vrp_val_is_min (min) || !vrp_val_is_max (max));
386 cmp = compare_values (min, max);
387 gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
389 if (needs_overflow_infinity (TREE_TYPE (min)))
390 gcc_assert (!is_overflow_infinity (min)
391 || !is_overflow_infinity (max));
394 if (t == VR_UNDEFINED || t == VR_VARYING)
395 gcc_assert (min == NULL_TREE && max == NULL_TREE);
397 if (t == VR_UNDEFINED || t == VR_VARYING)
398 gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
399 #endif
401 vr->type = t;
402 vr->min = min;
403 vr->max = max;
405 /* Since updating the equivalence set involves deep copying the
406 bitmaps, only do it if absolutely necessary. */
407 if (vr->equiv == NULL
408 && equiv != NULL)
409 vr->equiv = BITMAP_ALLOC (NULL);
411 if (equiv != vr->equiv)
413 if (equiv && !bitmap_empty_p (equiv))
414 bitmap_copy (vr->equiv, equiv);
415 else
416 bitmap_clear (vr->equiv);
421 /* Set value range VR to the canonical form of {T, MIN, MAX, EQUIV}.
422 This means adjusting T, MIN and MAX representing the case of a
423 wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
424 as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges.
425 In corner cases where MAX+1 or MIN-1 wraps this will fall back
426 to varying.
427 This routine exists to ease canonicalization in the case where we
428 extract ranges from var + CST op limit. */
430 static void
431 set_and_canonicalize_value_range (value_range_t *vr, enum value_range_type t,
432 tree min, tree max, bitmap equiv)
434 /* Nothing to canonicalize for symbolic or unknown or varying ranges. */
435 if ((t != VR_RANGE
436 && t != VR_ANTI_RANGE)
437 || TREE_CODE (min) != INTEGER_CST
438 || TREE_CODE (max) != INTEGER_CST)
440 set_value_range (vr, t, min, max, equiv);
441 return;
444 /* Wrong order for min and max, to swap them and the VR type we need
445 to adjust them. */
446 if (tree_int_cst_lt (max, min))
448 tree one = build_int_cst (TREE_TYPE (min), 1);
449 tree tmp = int_const_binop (PLUS_EXPR, max, one, 0);
450 max = int_const_binop (MINUS_EXPR, min, one, 0);
451 min = tmp;
453 /* There's one corner case, if we had [C+1, C] before we now have
454 that again. But this represents an empty value range, so drop
455 to varying in this case. */
456 if (tree_int_cst_lt (max, min))
458 set_value_range_to_varying (vr);
459 return;
462 t = t == VR_RANGE ? VR_ANTI_RANGE : VR_RANGE;
465 /* Anti-ranges that can be represented as ranges should be so. */
466 if (t == VR_ANTI_RANGE)
468 bool is_min = vrp_val_is_min (min);
469 bool is_max = vrp_val_is_max (max);
471 if (is_min && is_max)
473 /* We cannot deal with empty ranges, drop to varying. */
474 set_value_range_to_varying (vr);
475 return;
477 else if (is_min
478 /* As a special exception preserve non-null ranges. */
479 && !(TYPE_UNSIGNED (TREE_TYPE (min))
480 && integer_zerop (max)))
482 tree one = build_int_cst (TREE_TYPE (max), 1);
483 min = int_const_binop (PLUS_EXPR, max, one, 0);
484 max = vrp_val_max (TREE_TYPE (max));
485 t = VR_RANGE;
487 else if (is_max)
489 tree one = build_int_cst (TREE_TYPE (min), 1);
490 max = int_const_binop (MINUS_EXPR, min, one, 0);
491 min = vrp_val_min (TREE_TYPE (min));
492 t = VR_RANGE;
496 set_value_range (vr, t, min, max, equiv);
499 /* Copy value range FROM into value range TO. */
501 static inline void
502 copy_value_range (value_range_t *to, value_range_t *from)
504 set_value_range (to, from->type, from->min, from->max, from->equiv);
507 /* Set value range VR to a single value. This function is only called
508 with values we get from statements, and exists to clear the
509 TREE_OVERFLOW flag so that we don't think we have an overflow
510 infinity when we shouldn't. */
512 static inline void
513 set_value_range_to_value (value_range_t *vr, tree val, bitmap equiv)
515 gcc_assert (is_gimple_min_invariant (val));
516 val = avoid_overflow_infinity (val);
517 set_value_range (vr, VR_RANGE, val, val, equiv);
520 /* Set value range VR to a non-negative range of type TYPE.
521 OVERFLOW_INFINITY indicates whether to use an overflow infinity
522 rather than TYPE_MAX_VALUE; this should be true if we determine
523 that the range is nonnegative based on the assumption that signed
524 overflow does not occur. */
526 static inline void
527 set_value_range_to_nonnegative (value_range_t *vr, tree type,
528 bool overflow_infinity)
530 tree zero;
532 if (overflow_infinity && !supports_overflow_infinity (type))
534 set_value_range_to_varying (vr);
535 return;
538 zero = build_int_cst (type, 0);
539 set_value_range (vr, VR_RANGE, zero,
540 (overflow_infinity
541 ? positive_overflow_infinity (type)
542 : TYPE_MAX_VALUE (type)),
543 vr->equiv);
546 /* Set value range VR to a non-NULL range of type TYPE. */
548 static inline void
549 set_value_range_to_nonnull (value_range_t *vr, tree type)
551 tree zero = build_int_cst (type, 0);
552 set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
556 /* Set value range VR to a NULL range of type TYPE. */
558 static inline void
559 set_value_range_to_null (value_range_t *vr, tree type)
561 set_value_range_to_value (vr, build_int_cst (type, 0), vr->equiv);
565 /* Set value range VR to a range of a truthvalue of type TYPE. */
567 static inline void
568 set_value_range_to_truthvalue (value_range_t *vr, tree type)
570 if (TYPE_PRECISION (type) == 1)
571 set_value_range_to_varying (vr);
572 else
573 set_value_range (vr, VR_RANGE,
574 build_int_cst (type, 0), build_int_cst (type, 1),
575 vr->equiv);
579 /* Set value range VR to VR_UNDEFINED. */
581 static inline void
582 set_value_range_to_undefined (value_range_t *vr)
584 vr->type = VR_UNDEFINED;
585 vr->min = vr->max = NULL_TREE;
586 if (vr->equiv)
587 bitmap_clear (vr->equiv);
591 /* If abs (min) < abs (max), set VR to [-max, max], if
592 abs (min) >= abs (max), set VR to [-min, min]. */
594 static void
595 abs_extent_range (value_range_t *vr, tree min, tree max)
597 int cmp;
599 gcc_assert (TREE_CODE (min) == INTEGER_CST);
600 gcc_assert (TREE_CODE (max) == INTEGER_CST);
601 gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (min)));
602 gcc_assert (!TYPE_UNSIGNED (TREE_TYPE (min)));
603 min = fold_unary (ABS_EXPR, TREE_TYPE (min), min);
604 max = fold_unary (ABS_EXPR, TREE_TYPE (max), max);
605 if (TREE_OVERFLOW (min) || TREE_OVERFLOW (max))
607 set_value_range_to_varying (vr);
608 return;
610 cmp = compare_values (min, max);
611 if (cmp == -1)
612 min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), max);
613 else if (cmp == 0 || cmp == 1)
615 max = min;
616 min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), min);
618 else
620 set_value_range_to_varying (vr);
621 return;
623 set_and_canonicalize_value_range (vr, VR_RANGE, min, max, NULL);
627 /* Return value range information for VAR.
629 If we have no values ranges recorded (ie, VRP is not running), then
630 return NULL. Otherwise create an empty range if none existed for VAR. */
632 static value_range_t *
633 get_value_range (const_tree var)
635 value_range_t *vr;
636 tree sym;
637 unsigned ver = SSA_NAME_VERSION (var);
639 /* If we have no recorded ranges, then return NULL. */
640 if (! vr_value)
641 return NULL;
643 vr = vr_value[ver];
644 if (vr)
645 return vr;
647 /* Create a default value range. */
648 vr_value[ver] = vr = XCNEW (value_range_t);
650 /* Defer allocating the equivalence set. */
651 vr->equiv = NULL;
653 /* If VAR is a default definition, the variable can take any value
654 in VAR's type. */
655 sym = SSA_NAME_VAR (var);
656 if (SSA_NAME_IS_DEFAULT_DEF (var))
658 /* Try to use the "nonnull" attribute to create ~[0, 0]
659 anti-ranges for pointers. Note that this is only valid with
660 default definitions of PARM_DECLs. */
661 if (TREE_CODE (sym) == PARM_DECL
662 && POINTER_TYPE_P (TREE_TYPE (sym))
663 && nonnull_arg_p (sym))
664 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
665 else
666 set_value_range_to_varying (vr);
669 return vr;
672 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
674 static inline bool
675 vrp_operand_equal_p (const_tree val1, const_tree val2)
677 if (val1 == val2)
678 return true;
679 if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
680 return false;
681 if (is_overflow_infinity (val1))
682 return is_overflow_infinity (val2);
683 return true;
686 /* Return true, if the bitmaps B1 and B2 are equal. */
688 static inline bool
689 vrp_bitmap_equal_p (const_bitmap b1, const_bitmap b2)
691 return (b1 == b2
692 || (b1 && b2
693 && bitmap_equal_p (b1, b2)));
696 /* Update the value range and equivalence set for variable VAR to
697 NEW_VR. Return true if NEW_VR is different from VAR's previous
698 value.
700 NOTE: This function assumes that NEW_VR is a temporary value range
701 object created for the sole purpose of updating VAR's range. The
702 storage used by the equivalence set from NEW_VR will be freed by
703 this function. Do not call update_value_range when NEW_VR
704 is the range object associated with another SSA name. */
706 static inline bool
707 update_value_range (const_tree var, value_range_t *new_vr)
709 value_range_t *old_vr;
710 bool is_new;
712 /* Update the value range, if necessary. */
713 old_vr = get_value_range (var);
714 is_new = old_vr->type != new_vr->type
715 || !vrp_operand_equal_p (old_vr->min, new_vr->min)
716 || !vrp_operand_equal_p (old_vr->max, new_vr->max)
717 || !vrp_bitmap_equal_p (old_vr->equiv, new_vr->equiv);
719 if (is_new)
720 set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
721 new_vr->equiv);
723 BITMAP_FREE (new_vr->equiv);
725 return is_new;
729 /* Add VAR and VAR's equivalence set to EQUIV. This is the central
730 point where equivalence processing can be turned on/off. */
732 static void
733 add_equivalence (bitmap *equiv, const_tree var)
735 unsigned ver = SSA_NAME_VERSION (var);
736 value_range_t *vr = vr_value[ver];
738 if (*equiv == NULL)
739 *equiv = BITMAP_ALLOC (NULL);
740 bitmap_set_bit (*equiv, ver);
741 if (vr && vr->equiv)
742 bitmap_ior_into (*equiv, vr->equiv);
746 /* Return true if VR is ~[0, 0]. */
748 static inline bool
749 range_is_nonnull (value_range_t *vr)
751 return vr->type == VR_ANTI_RANGE
752 && integer_zerop (vr->min)
753 && integer_zerop (vr->max);
757 /* Return true if VR is [0, 0]. */
759 static inline bool
760 range_is_null (value_range_t *vr)
762 return vr->type == VR_RANGE
763 && integer_zerop (vr->min)
764 && integer_zerop (vr->max);
768 /* Return true if value range VR involves at least one symbol. */
770 static inline bool
771 symbolic_range_p (value_range_t *vr)
773 return (!is_gimple_min_invariant (vr->min)
774 || !is_gimple_min_invariant (vr->max));
777 /* Return true if value range VR uses an overflow infinity. */
779 static inline bool
780 overflow_infinity_range_p (value_range_t *vr)
782 return (vr->type == VR_RANGE
783 && (is_overflow_infinity (vr->min)
784 || is_overflow_infinity (vr->max)));
787 /* Return false if we can not make a valid comparison based on VR;
788 this will be the case if it uses an overflow infinity and overflow
789 is not undefined (i.e., -fno-strict-overflow is in effect).
790 Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
791 uses an overflow infinity. */
793 static bool
794 usable_range_p (value_range_t *vr, bool *strict_overflow_p)
796 gcc_assert (vr->type == VR_RANGE);
797 if (is_overflow_infinity (vr->min))
799 *strict_overflow_p = true;
800 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->min)))
801 return false;
803 if (is_overflow_infinity (vr->max))
805 *strict_overflow_p = true;
806 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->max)))
807 return false;
809 return true;
813 /* Like tree_expr_nonnegative_warnv_p, but this function uses value
814 ranges obtained so far. */
816 static bool
817 vrp_expr_computes_nonnegative (tree expr, bool *strict_overflow_p)
819 return (tree_expr_nonnegative_warnv_p (expr, strict_overflow_p)
820 || (TREE_CODE (expr) == SSA_NAME
821 && ssa_name_nonnegative_p (expr)));
824 /* Return true if the result of assignment STMT is know to be non-negative.
825 If the return value is based on the assumption that signed overflow is
826 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
827 *STRICT_OVERFLOW_P.*/
829 static bool
830 gimple_assign_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
832 enum tree_code code = gimple_assign_rhs_code (stmt);
833 switch (get_gimple_rhs_class (code))
835 case GIMPLE_UNARY_RHS:
836 return tree_unary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
837 gimple_expr_type (stmt),
838 gimple_assign_rhs1 (stmt),
839 strict_overflow_p);
840 case GIMPLE_BINARY_RHS:
841 return tree_binary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
842 gimple_expr_type (stmt),
843 gimple_assign_rhs1 (stmt),
844 gimple_assign_rhs2 (stmt),
845 strict_overflow_p);
846 case GIMPLE_SINGLE_RHS:
847 return tree_single_nonnegative_warnv_p (gimple_assign_rhs1 (stmt),
848 strict_overflow_p);
849 case GIMPLE_INVALID_RHS:
850 gcc_unreachable ();
851 default:
852 gcc_unreachable ();
856 /* Return true if return value of call STMT is know to be non-negative.
857 If the return value is based on the assumption that signed overflow is
858 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
859 *STRICT_OVERFLOW_P.*/
861 static bool
862 gimple_call_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
864 tree arg0 = gimple_call_num_args (stmt) > 0 ?
865 gimple_call_arg (stmt, 0) : NULL_TREE;
866 tree arg1 = gimple_call_num_args (stmt) > 1 ?
867 gimple_call_arg (stmt, 1) : NULL_TREE;
869 return tree_call_nonnegative_warnv_p (gimple_expr_type (stmt),
870 gimple_call_fndecl (stmt),
871 arg0,
872 arg1,
873 strict_overflow_p);
876 /* Return true if STMT is know to to compute a non-negative value.
877 If the return value is based on the assumption that signed overflow is
878 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
879 *STRICT_OVERFLOW_P.*/
881 static bool
882 gimple_stmt_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
884 switch (gimple_code (stmt))
886 case GIMPLE_ASSIGN:
887 return gimple_assign_nonnegative_warnv_p (stmt, strict_overflow_p);
888 case GIMPLE_CALL:
889 return gimple_call_nonnegative_warnv_p (stmt, strict_overflow_p);
890 default:
891 gcc_unreachable ();
895 /* Return true if the result of assignment STMT is know to be non-zero.
896 If the return value is based on the assumption that signed overflow is
897 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
898 *STRICT_OVERFLOW_P.*/
900 static bool
901 gimple_assign_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
903 enum tree_code code = gimple_assign_rhs_code (stmt);
904 switch (get_gimple_rhs_class (code))
906 case GIMPLE_UNARY_RHS:
907 return tree_unary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
908 gimple_expr_type (stmt),
909 gimple_assign_rhs1 (stmt),
910 strict_overflow_p);
911 case GIMPLE_BINARY_RHS:
912 return tree_binary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
913 gimple_expr_type (stmt),
914 gimple_assign_rhs1 (stmt),
915 gimple_assign_rhs2 (stmt),
916 strict_overflow_p);
917 case GIMPLE_SINGLE_RHS:
918 return tree_single_nonzero_warnv_p (gimple_assign_rhs1 (stmt),
919 strict_overflow_p);
920 case GIMPLE_INVALID_RHS:
921 gcc_unreachable ();
922 default:
923 gcc_unreachable ();
927 /* Return true if STMT is know to to compute a non-zero value.
928 If the return value is based on the assumption that signed overflow is
929 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
930 *STRICT_OVERFLOW_P.*/
932 static bool
933 gimple_stmt_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
935 switch (gimple_code (stmt))
937 case GIMPLE_ASSIGN:
938 return gimple_assign_nonzero_warnv_p (stmt, strict_overflow_p);
939 case GIMPLE_CALL:
940 return gimple_alloca_call_p (stmt);
941 default:
942 gcc_unreachable ();
946 /* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
947 obtained so far. */
949 static bool
950 vrp_stmt_computes_nonzero (gimple stmt, bool *strict_overflow_p)
952 if (gimple_stmt_nonzero_warnv_p (stmt, strict_overflow_p))
953 return true;
955 /* If we have an expression of the form &X->a, then the expression
956 is nonnull if X is nonnull. */
957 if (is_gimple_assign (stmt)
958 && gimple_assign_rhs_code (stmt) == ADDR_EXPR)
960 tree expr = gimple_assign_rhs1 (stmt);
961 tree base = get_base_address (TREE_OPERAND (expr, 0));
963 if (base != NULL_TREE
964 && TREE_CODE (base) == INDIRECT_REF
965 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
967 value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
968 if (range_is_nonnull (vr))
969 return true;
973 return false;
976 /* Returns true if EXPR is a valid value (as expected by compare_values) --
977 a gimple invariant, or SSA_NAME +- CST. */
979 static bool
980 valid_value_p (tree expr)
982 if (TREE_CODE (expr) == SSA_NAME)
983 return true;
985 if (TREE_CODE (expr) == PLUS_EXPR
986 || TREE_CODE (expr) == MINUS_EXPR)
987 return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
988 && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
990 return is_gimple_min_invariant (expr);
993 /* Return
994 1 if VAL < VAL2
995 0 if !(VAL < VAL2)
996 -2 if those are incomparable. */
997 static inline int
998 operand_less_p (tree val, tree val2)
1000 /* LT is folded faster than GE and others. Inline the common case. */
1001 if (TREE_CODE (val) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
1003 if (TYPE_UNSIGNED (TREE_TYPE (val)))
1004 return INT_CST_LT_UNSIGNED (val, val2);
1005 else
1007 if (INT_CST_LT (val, val2))
1008 return 1;
1011 else
1013 tree tcmp;
1015 fold_defer_overflow_warnings ();
1017 tcmp = fold_binary_to_constant (LT_EXPR, boolean_type_node, val, val2);
1019 fold_undefer_and_ignore_overflow_warnings ();
1021 if (!tcmp
1022 || TREE_CODE (tcmp) != INTEGER_CST)
1023 return -2;
1025 if (!integer_zerop (tcmp))
1026 return 1;
1029 /* val >= val2, not considering overflow infinity. */
1030 if (is_negative_overflow_infinity (val))
1031 return is_negative_overflow_infinity (val2) ? 0 : 1;
1032 else if (is_positive_overflow_infinity (val2))
1033 return is_positive_overflow_infinity (val) ? 0 : 1;
1035 return 0;
1038 /* Compare two values VAL1 and VAL2. Return
1040 -2 if VAL1 and VAL2 cannot be compared at compile-time,
1041 -1 if VAL1 < VAL2,
1042 0 if VAL1 == VAL2,
1043 +1 if VAL1 > VAL2, and
1044 +2 if VAL1 != VAL2
1046 This is similar to tree_int_cst_compare but supports pointer values
1047 and values that cannot be compared at compile time.
1049 If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
1050 true if the return value is only valid if we assume that signed
1051 overflow is undefined. */
1053 static int
1054 compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
1056 if (val1 == val2)
1057 return 0;
1059 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
1060 both integers. */
1061 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
1062 == POINTER_TYPE_P (TREE_TYPE (val2)));
1063 /* Convert the two values into the same type. This is needed because
1064 sizetype causes sign extension even for unsigned types. */
1065 val2 = fold_convert (TREE_TYPE (val1), val2);
1066 STRIP_USELESS_TYPE_CONVERSION (val2);
1068 if ((TREE_CODE (val1) == SSA_NAME
1069 || TREE_CODE (val1) == PLUS_EXPR
1070 || TREE_CODE (val1) == MINUS_EXPR)
1071 && (TREE_CODE (val2) == SSA_NAME
1072 || TREE_CODE (val2) == PLUS_EXPR
1073 || TREE_CODE (val2) == MINUS_EXPR))
1075 tree n1, c1, n2, c2;
1076 enum tree_code code1, code2;
1078 /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
1079 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
1080 same name, return -2. */
1081 if (TREE_CODE (val1) == SSA_NAME)
1083 code1 = SSA_NAME;
1084 n1 = val1;
1085 c1 = NULL_TREE;
1087 else
1089 code1 = TREE_CODE (val1);
1090 n1 = TREE_OPERAND (val1, 0);
1091 c1 = TREE_OPERAND (val1, 1);
1092 if (tree_int_cst_sgn (c1) == -1)
1094 if (is_negative_overflow_infinity (c1))
1095 return -2;
1096 c1 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c1), c1);
1097 if (!c1)
1098 return -2;
1099 code1 = code1 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
1103 if (TREE_CODE (val2) == SSA_NAME)
1105 code2 = SSA_NAME;
1106 n2 = val2;
1107 c2 = NULL_TREE;
1109 else
1111 code2 = TREE_CODE (val2);
1112 n2 = TREE_OPERAND (val2, 0);
1113 c2 = TREE_OPERAND (val2, 1);
1114 if (tree_int_cst_sgn (c2) == -1)
1116 if (is_negative_overflow_infinity (c2))
1117 return -2;
1118 c2 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c2), c2);
1119 if (!c2)
1120 return -2;
1121 code2 = code2 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
1125 /* Both values must use the same name. */
1126 if (n1 != n2)
1127 return -2;
1129 if (code1 == SSA_NAME
1130 && code2 == SSA_NAME)
1131 /* NAME == NAME */
1132 return 0;
1134 /* If overflow is defined we cannot simplify more. */
1135 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1)))
1136 return -2;
1138 if (strict_overflow_p != NULL
1139 && (code1 == SSA_NAME || !TREE_NO_WARNING (val1))
1140 && (code2 == SSA_NAME || !TREE_NO_WARNING (val2)))
1141 *strict_overflow_p = true;
1143 if (code1 == SSA_NAME)
1145 if (code2 == PLUS_EXPR)
1146 /* NAME < NAME + CST */
1147 return -1;
1148 else if (code2 == MINUS_EXPR)
1149 /* NAME > NAME - CST */
1150 return 1;
1152 else if (code1 == PLUS_EXPR)
1154 if (code2 == SSA_NAME)
1155 /* NAME + CST > NAME */
1156 return 1;
1157 else if (code2 == PLUS_EXPR)
1158 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
1159 return compare_values_warnv (c1, c2, strict_overflow_p);
1160 else if (code2 == MINUS_EXPR)
1161 /* NAME + CST1 > NAME - CST2 */
1162 return 1;
1164 else if (code1 == MINUS_EXPR)
1166 if (code2 == SSA_NAME)
1167 /* NAME - CST < NAME */
1168 return -1;
1169 else if (code2 == PLUS_EXPR)
1170 /* NAME - CST1 < NAME + CST2 */
1171 return -1;
1172 else if (code2 == MINUS_EXPR)
1173 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
1174 C1 and C2 are swapped in the call to compare_values. */
1175 return compare_values_warnv (c2, c1, strict_overflow_p);
1178 gcc_unreachable ();
1181 /* We cannot compare non-constants. */
1182 if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
1183 return -2;
1185 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
1187 /* We cannot compare overflowed values, except for overflow
1188 infinities. */
1189 if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
1191 if (strict_overflow_p != NULL)
1192 *strict_overflow_p = true;
1193 if (is_negative_overflow_infinity (val1))
1194 return is_negative_overflow_infinity (val2) ? 0 : -1;
1195 else if (is_negative_overflow_infinity (val2))
1196 return 1;
1197 else if (is_positive_overflow_infinity (val1))
1198 return is_positive_overflow_infinity (val2) ? 0 : 1;
1199 else if (is_positive_overflow_infinity (val2))
1200 return -1;
1201 return -2;
1204 return tree_int_cst_compare (val1, val2);
1206 else
1208 tree t;
1210 /* First see if VAL1 and VAL2 are not the same. */
1211 if (val1 == val2 || operand_equal_p (val1, val2, 0))
1212 return 0;
1214 /* If VAL1 is a lower address than VAL2, return -1. */
1215 if (operand_less_p (val1, val2) == 1)
1216 return -1;
1218 /* If VAL1 is a higher address than VAL2, return +1. */
1219 if (operand_less_p (val2, val1) == 1)
1220 return 1;
1222 /* If VAL1 is different than VAL2, return +2.
1223 For integer constants we either have already returned -1 or 1
1224 or they are equivalent. We still might succeed in proving
1225 something about non-trivial operands. */
1226 if (TREE_CODE (val1) != INTEGER_CST
1227 || TREE_CODE (val2) != INTEGER_CST)
1229 t = fold_binary_to_constant (NE_EXPR, boolean_type_node, val1, val2);
1230 if (t && integer_onep (t))
1231 return 2;
1234 return -2;
1238 /* Compare values like compare_values_warnv, but treat comparisons of
1239 nonconstants which rely on undefined overflow as incomparable. */
1241 static int
1242 compare_values (tree val1, tree val2)
1244 bool sop;
1245 int ret;
1247 sop = false;
1248 ret = compare_values_warnv (val1, val2, &sop);
1249 if (sop
1250 && (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2)))
1251 ret = -2;
1252 return ret;
1256 /* Return 1 if VAL is inside value range VR (VR->MIN <= VAL <= VR->MAX),
1257 0 if VAL is not inside VR,
1258 -2 if we cannot tell either way.
1260 FIXME, the current semantics of this functions are a bit quirky
1261 when taken in the context of VRP. In here we do not care
1262 about VR's type. If VR is the anti-range ~[3, 5] the call
1263 value_inside_range (4, VR) will return 1.
1265 This is counter-intuitive in a strict sense, but the callers
1266 currently expect this. They are calling the function
1267 merely to determine whether VR->MIN <= VAL <= VR->MAX. The
1268 callers are applying the VR_RANGE/VR_ANTI_RANGE semantics
1269 themselves.
1271 This also applies to value_ranges_intersect_p and
1272 range_includes_zero_p. The semantics of VR_RANGE and
1273 VR_ANTI_RANGE should be encoded here, but that also means
1274 adapting the users of these functions to the new semantics.
1276 Benchmark compile/20001226-1.c compilation time after changing this
1277 function. */
1279 static inline int
1280 value_inside_range (tree val, value_range_t * vr)
1282 int cmp1, cmp2;
1284 cmp1 = operand_less_p (val, vr->min);
1285 if (cmp1 == -2)
1286 return -2;
1287 if (cmp1 == 1)
1288 return 0;
1290 cmp2 = operand_less_p (vr->max, val);
1291 if (cmp2 == -2)
1292 return -2;
1294 return !cmp2;
1298 /* Return true if value ranges VR0 and VR1 have a non-empty
1299 intersection.
1301 Benchmark compile/20001226-1.c compilation time after changing this
1302 function.
1305 static inline bool
1306 value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
1308 /* The value ranges do not intersect if the maximum of the first range is
1309 less than the minimum of the second range or vice versa.
1310 When those relations are unknown, we can't do any better. */
1311 if (operand_less_p (vr0->max, vr1->min) != 0)
1312 return false;
1313 if (operand_less_p (vr1->max, vr0->min) != 0)
1314 return false;
1315 return true;
1319 /* Return true if VR includes the value zero, false otherwise. FIXME,
1320 currently this will return false for an anti-range like ~[-4, 3].
1321 This will be wrong when the semantics of value_inside_range are
1322 modified (currently the users of this function expect these
1323 semantics). */
1325 static inline bool
1326 range_includes_zero_p (value_range_t *vr)
1328 tree zero;
1330 gcc_assert (vr->type != VR_UNDEFINED
1331 && vr->type != VR_VARYING
1332 && !symbolic_range_p (vr));
1334 zero = build_int_cst (TREE_TYPE (vr->min), 0);
1335 return (value_inside_range (zero, vr) == 1);
1338 /* Return true if T, an SSA_NAME, is known to be nonnegative. Return
1339 false otherwise or if no value range information is available. */
1341 bool
1342 ssa_name_nonnegative_p (const_tree t)
1344 value_range_t *vr = get_value_range (t);
1346 if (!vr)
1347 return false;
1349 /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
1350 which would return a useful value should be encoded as a VR_RANGE. */
1351 if (vr->type == VR_RANGE)
1353 int result = compare_values (vr->min, integer_zero_node);
1355 return (result == 0 || result == 1);
1357 return false;
1360 /* If OP has a value range with a single constant value return that,
1361 otherwise return NULL_TREE. This returns OP itself if OP is a
1362 constant. */
1364 static tree
1365 op_with_constant_singleton_value_range (tree op)
1367 value_range_t *vr;
1369 if (is_gimple_min_invariant (op))
1370 return op;
1372 if (TREE_CODE (op) != SSA_NAME)
1373 return NULL_TREE;
1375 vr = get_value_range (op);
1376 if (vr->type == VR_RANGE
1377 && operand_equal_p (vr->min, vr->max, 0)
1378 && is_gimple_min_invariant (vr->min))
1379 return vr->min;
1381 return NULL_TREE;
1385 /* Extract value range information from an ASSERT_EXPR EXPR and store
1386 it in *VR_P. */
1388 static void
1389 extract_range_from_assert (value_range_t *vr_p, tree expr)
1391 tree var, cond, limit, min, max, type;
1392 value_range_t *var_vr, *limit_vr;
1393 enum tree_code cond_code;
1395 var = ASSERT_EXPR_VAR (expr);
1396 cond = ASSERT_EXPR_COND (expr);
1398 gcc_assert (COMPARISON_CLASS_P (cond));
1400 /* Find VAR in the ASSERT_EXPR conditional. */
1401 if (var == TREE_OPERAND (cond, 0)
1402 || TREE_CODE (TREE_OPERAND (cond, 0)) == PLUS_EXPR
1403 || TREE_CODE (TREE_OPERAND (cond, 0)) == NOP_EXPR)
1405 /* If the predicate is of the form VAR COMP LIMIT, then we just
1406 take LIMIT from the RHS and use the same comparison code. */
1407 cond_code = TREE_CODE (cond);
1408 limit = TREE_OPERAND (cond, 1);
1409 cond = TREE_OPERAND (cond, 0);
1411 else
1413 /* If the predicate is of the form LIMIT COMP VAR, then we need
1414 to flip around the comparison code to create the proper range
1415 for VAR. */
1416 cond_code = swap_tree_comparison (TREE_CODE (cond));
1417 limit = TREE_OPERAND (cond, 0);
1418 cond = TREE_OPERAND (cond, 1);
1421 limit = avoid_overflow_infinity (limit);
1423 type = TREE_TYPE (limit);
1424 gcc_assert (limit != var);
1426 /* For pointer arithmetic, we only keep track of pointer equality
1427 and inequality. */
1428 if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
1430 set_value_range_to_varying (vr_p);
1431 return;
1434 /* If LIMIT is another SSA name and LIMIT has a range of its own,
1435 try to use LIMIT's range to avoid creating symbolic ranges
1436 unnecessarily. */
1437 limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
1439 /* LIMIT's range is only interesting if it has any useful information. */
1440 if (limit_vr
1441 && (limit_vr->type == VR_UNDEFINED
1442 || limit_vr->type == VR_VARYING
1443 || symbolic_range_p (limit_vr)))
1444 limit_vr = NULL;
1446 /* Initially, the new range has the same set of equivalences of
1447 VAR's range. This will be revised before returning the final
1448 value. Since assertions may be chained via mutually exclusive
1449 predicates, we will need to trim the set of equivalences before
1450 we are done. */
1451 gcc_assert (vr_p->equiv == NULL);
1452 add_equivalence (&vr_p->equiv, var);
1454 /* Extract a new range based on the asserted comparison for VAR and
1455 LIMIT's value range. Notice that if LIMIT has an anti-range, we
1456 will only use it for equality comparisons (EQ_EXPR). For any
1457 other kind of assertion, we cannot derive a range from LIMIT's
1458 anti-range that can be used to describe the new range. For
1459 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
1460 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
1461 no single range for x_2 that could describe LE_EXPR, so we might
1462 as well build the range [b_4, +INF] for it.
1463 One special case we handle is extracting a range from a
1464 range test encoded as (unsigned)var + CST <= limit. */
1465 if (TREE_CODE (cond) == NOP_EXPR
1466 || TREE_CODE (cond) == PLUS_EXPR)
1468 if (TREE_CODE (cond) == PLUS_EXPR)
1470 min = fold_build1 (NEGATE_EXPR, TREE_TYPE (TREE_OPERAND (cond, 1)),
1471 TREE_OPERAND (cond, 1));
1472 max = int_const_binop (PLUS_EXPR, limit, min, 0);
1473 cond = TREE_OPERAND (cond, 0);
1475 else
1477 min = build_int_cst (TREE_TYPE (var), 0);
1478 max = limit;
1481 /* Make sure to not set TREE_OVERFLOW on the final type
1482 conversion. We are willingly interpreting large positive
1483 unsigned values as negative singed values here. */
1484 min = force_fit_type_double (TREE_TYPE (var), TREE_INT_CST_LOW (min),
1485 TREE_INT_CST_HIGH (min), 0, false);
1486 max = force_fit_type_double (TREE_TYPE (var), TREE_INT_CST_LOW (max),
1487 TREE_INT_CST_HIGH (max), 0, false);
1489 /* We can transform a max, min range to an anti-range or
1490 vice-versa. Use set_and_canonicalize_value_range which does
1491 this for us. */
1492 if (cond_code == LE_EXPR)
1493 set_and_canonicalize_value_range (vr_p, VR_RANGE,
1494 min, max, vr_p->equiv);
1495 else if (cond_code == GT_EXPR)
1496 set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
1497 min, max, vr_p->equiv);
1498 else
1499 gcc_unreachable ();
1501 else if (cond_code == EQ_EXPR)
1503 enum value_range_type range_type;
1505 if (limit_vr)
1507 range_type = limit_vr->type;
1508 min = limit_vr->min;
1509 max = limit_vr->max;
1511 else
1513 range_type = VR_RANGE;
1514 min = limit;
1515 max = limit;
1518 set_value_range (vr_p, range_type, min, max, vr_p->equiv);
1520 /* When asserting the equality VAR == LIMIT and LIMIT is another
1521 SSA name, the new range will also inherit the equivalence set
1522 from LIMIT. */
1523 if (TREE_CODE (limit) == SSA_NAME)
1524 add_equivalence (&vr_p->equiv, limit);
1526 else if (cond_code == NE_EXPR)
1528 /* As described above, when LIMIT's range is an anti-range and
1529 this assertion is an inequality (NE_EXPR), then we cannot
1530 derive anything from the anti-range. For instance, if
1531 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
1532 not imply that VAR's range is [0, 0]. So, in the case of
1533 anti-ranges, we just assert the inequality using LIMIT and
1534 not its anti-range.
1536 If LIMIT_VR is a range, we can only use it to build a new
1537 anti-range if LIMIT_VR is a single-valued range. For
1538 instance, if LIMIT_VR is [0, 1], the predicate
1539 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
1540 Rather, it means that for value 0 VAR should be ~[0, 0]
1541 and for value 1, VAR should be ~[1, 1]. We cannot
1542 represent these ranges.
1544 The only situation in which we can build a valid
1545 anti-range is when LIMIT_VR is a single-valued range
1546 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
1547 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
1548 if (limit_vr
1549 && limit_vr->type == VR_RANGE
1550 && compare_values (limit_vr->min, limit_vr->max) == 0)
1552 min = limit_vr->min;
1553 max = limit_vr->max;
1555 else
1557 /* In any other case, we cannot use LIMIT's range to build a
1558 valid anti-range. */
1559 min = max = limit;
1562 /* If MIN and MAX cover the whole range for their type, then
1563 just use the original LIMIT. */
1564 if (INTEGRAL_TYPE_P (type)
1565 && vrp_val_is_min (min)
1566 && vrp_val_is_max (max))
1567 min = max = limit;
1569 set_value_range (vr_p, VR_ANTI_RANGE, min, max, vr_p->equiv);
1571 else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
1573 min = TYPE_MIN_VALUE (type);
1575 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1576 max = limit;
1577 else
1579 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1580 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
1581 LT_EXPR. */
1582 max = limit_vr->max;
1585 /* If the maximum value forces us to be out of bounds, simply punt.
1586 It would be pointless to try and do anything more since this
1587 all should be optimized away above us. */
1588 if ((cond_code == LT_EXPR
1589 && compare_values (max, min) == 0)
1590 || (CONSTANT_CLASS_P (max) && TREE_OVERFLOW (max)))
1591 set_value_range_to_varying (vr_p);
1592 else
1594 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
1595 if (cond_code == LT_EXPR)
1597 tree one = build_int_cst (type, 1);
1598 max = fold_build2 (MINUS_EXPR, type, max, one);
1599 if (EXPR_P (max))
1600 TREE_NO_WARNING (max) = 1;
1603 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1606 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
1608 max = TYPE_MAX_VALUE (type);
1610 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1611 min = limit;
1612 else
1614 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1615 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
1616 GT_EXPR. */
1617 min = limit_vr->min;
1620 /* If the minimum value forces us to be out of bounds, simply punt.
1621 It would be pointless to try and do anything more since this
1622 all should be optimized away above us. */
1623 if ((cond_code == GT_EXPR
1624 && compare_values (min, max) == 0)
1625 || (CONSTANT_CLASS_P (min) && TREE_OVERFLOW (min)))
1626 set_value_range_to_varying (vr_p);
1627 else
1629 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
1630 if (cond_code == GT_EXPR)
1632 tree one = build_int_cst (type, 1);
1633 min = fold_build2 (PLUS_EXPR, type, min, one);
1634 if (EXPR_P (min))
1635 TREE_NO_WARNING (min) = 1;
1638 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1641 else
1642 gcc_unreachable ();
1644 /* If VAR already had a known range, it may happen that the new
1645 range we have computed and VAR's range are not compatible. For
1646 instance,
1648 if (p_5 == NULL)
1649 p_6 = ASSERT_EXPR <p_5, p_5 == NULL>;
1650 x_7 = p_6->fld;
1651 p_8 = ASSERT_EXPR <p_6, p_6 != NULL>;
1653 While the above comes from a faulty program, it will cause an ICE
1654 later because p_8 and p_6 will have incompatible ranges and at
1655 the same time will be considered equivalent. A similar situation
1656 would arise from
1658 if (i_5 > 10)
1659 i_6 = ASSERT_EXPR <i_5, i_5 > 10>;
1660 if (i_5 < 5)
1661 i_7 = ASSERT_EXPR <i_6, i_6 < 5>;
1663 Again i_6 and i_7 will have incompatible ranges. It would be
1664 pointless to try and do anything with i_7's range because
1665 anything dominated by 'if (i_5 < 5)' will be optimized away.
1666 Note, due to the wa in which simulation proceeds, the statement
1667 i_7 = ASSERT_EXPR <...> we would never be visited because the
1668 conditional 'if (i_5 < 5)' always evaluates to false. However,
1669 this extra check does not hurt and may protect against future
1670 changes to VRP that may get into a situation similar to the
1671 NULL pointer dereference example.
1673 Note that these compatibility tests are only needed when dealing
1674 with ranges or a mix of range and anti-range. If VAR_VR and VR_P
1675 are both anti-ranges, they will always be compatible, because two
1676 anti-ranges will always have a non-empty intersection. */
1678 var_vr = get_value_range (var);
1680 /* We may need to make adjustments when VR_P and VAR_VR are numeric
1681 ranges or anti-ranges. */
1682 if (vr_p->type == VR_VARYING
1683 || vr_p->type == VR_UNDEFINED
1684 || var_vr->type == VR_VARYING
1685 || var_vr->type == VR_UNDEFINED
1686 || symbolic_range_p (vr_p)
1687 || symbolic_range_p (var_vr))
1688 return;
1690 if (var_vr->type == VR_RANGE && vr_p->type == VR_RANGE)
1692 /* If the two ranges have a non-empty intersection, we can
1693 refine the resulting range. Since the assert expression
1694 creates an equivalency and at the same time it asserts a
1695 predicate, we can take the intersection of the two ranges to
1696 get better precision. */
1697 if (value_ranges_intersect_p (var_vr, vr_p))
1699 /* Use the larger of the two minimums. */
1700 if (compare_values (vr_p->min, var_vr->min) == -1)
1701 min = var_vr->min;
1702 else
1703 min = vr_p->min;
1705 /* Use the smaller of the two maximums. */
1706 if (compare_values (vr_p->max, var_vr->max) == 1)
1707 max = var_vr->max;
1708 else
1709 max = vr_p->max;
1711 set_value_range (vr_p, vr_p->type, min, max, vr_p->equiv);
1713 else
1715 /* The two ranges do not intersect, set the new range to
1716 VARYING, because we will not be able to do anything
1717 meaningful with it. */
1718 set_value_range_to_varying (vr_p);
1721 else if ((var_vr->type == VR_RANGE && vr_p->type == VR_ANTI_RANGE)
1722 || (var_vr->type == VR_ANTI_RANGE && vr_p->type == VR_RANGE))
1724 /* A range and an anti-range will cancel each other only if
1725 their ends are the same. For instance, in the example above,
1726 p_8's range ~[0, 0] and p_6's range [0, 0] are incompatible,
1727 so VR_P should be set to VR_VARYING. */
1728 if (compare_values (var_vr->min, vr_p->min) == 0
1729 && compare_values (var_vr->max, vr_p->max) == 0)
1730 set_value_range_to_varying (vr_p);
1731 else
1733 tree min, max, anti_min, anti_max, real_min, real_max;
1734 int cmp;
1736 /* We want to compute the logical AND of the two ranges;
1737 there are three cases to consider.
1740 1. The VR_ANTI_RANGE range is completely within the
1741 VR_RANGE and the endpoints of the ranges are
1742 different. In that case the resulting range
1743 should be whichever range is more precise.
1744 Typically that will be the VR_RANGE.
1746 2. The VR_ANTI_RANGE is completely disjoint from
1747 the VR_RANGE. In this case the resulting range
1748 should be the VR_RANGE.
1750 3. There is some overlap between the VR_ANTI_RANGE
1751 and the VR_RANGE.
1753 3a. If the high limit of the VR_ANTI_RANGE resides
1754 within the VR_RANGE, then the result is a new
1755 VR_RANGE starting at the high limit of the
1756 VR_ANTI_RANGE + 1 and extending to the
1757 high limit of the original VR_RANGE.
1759 3b. If the low limit of the VR_ANTI_RANGE resides
1760 within the VR_RANGE, then the result is a new
1761 VR_RANGE starting at the low limit of the original
1762 VR_RANGE and extending to the low limit of the
1763 VR_ANTI_RANGE - 1. */
1764 if (vr_p->type == VR_ANTI_RANGE)
1766 anti_min = vr_p->min;
1767 anti_max = vr_p->max;
1768 real_min = var_vr->min;
1769 real_max = var_vr->max;
1771 else
1773 anti_min = var_vr->min;
1774 anti_max = var_vr->max;
1775 real_min = vr_p->min;
1776 real_max = vr_p->max;
1780 /* Case 1, VR_ANTI_RANGE completely within VR_RANGE,
1781 not including any endpoints. */
1782 if (compare_values (anti_max, real_max) == -1
1783 && compare_values (anti_min, real_min) == 1)
1785 /* If the range is covering the whole valid range of
1786 the type keep the anti-range. */
1787 if (!vrp_val_is_min (real_min)
1788 || !vrp_val_is_max (real_max))
1789 set_value_range (vr_p, VR_RANGE, real_min,
1790 real_max, vr_p->equiv);
1792 /* Case 2, VR_ANTI_RANGE completely disjoint from
1793 VR_RANGE. */
1794 else if (compare_values (anti_min, real_max) == 1
1795 || compare_values (anti_max, real_min) == -1)
1797 set_value_range (vr_p, VR_RANGE, real_min,
1798 real_max, vr_p->equiv);
1800 /* Case 3a, the anti-range extends into the low
1801 part of the real range. Thus creating a new
1802 low for the real range. */
1803 else if (((cmp = compare_values (anti_max, real_min)) == 1
1804 || cmp == 0)
1805 && compare_values (anti_max, real_max) == -1)
1807 gcc_assert (!is_positive_overflow_infinity (anti_max));
1808 if (needs_overflow_infinity (TREE_TYPE (anti_max))
1809 && vrp_val_is_max (anti_max))
1811 if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
1813 set_value_range_to_varying (vr_p);
1814 return;
1816 min = positive_overflow_infinity (TREE_TYPE (var_vr->min));
1818 else if (!POINTER_TYPE_P (TREE_TYPE (var_vr->min)))
1819 min = fold_build2 (PLUS_EXPR, TREE_TYPE (var_vr->min),
1820 anti_max,
1821 build_int_cst (TREE_TYPE (var_vr->min), 1));
1822 else
1823 min = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (var_vr->min),
1824 anti_max, size_int (1));
1825 max = real_max;
1826 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1828 /* Case 3b, the anti-range extends into the high
1829 part of the real range. Thus creating a new
1830 higher for the real range. */
1831 else if (compare_values (anti_min, real_min) == 1
1832 && ((cmp = compare_values (anti_min, real_max)) == -1
1833 || cmp == 0))
1835 gcc_assert (!is_negative_overflow_infinity (anti_min));
1836 if (needs_overflow_infinity (TREE_TYPE (anti_min))
1837 && vrp_val_is_min (anti_min))
1839 if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
1841 set_value_range_to_varying (vr_p);
1842 return;
1844 max = negative_overflow_infinity (TREE_TYPE (var_vr->min));
1846 else if (!POINTER_TYPE_P (TREE_TYPE (var_vr->min)))
1847 max = fold_build2 (MINUS_EXPR, TREE_TYPE (var_vr->min),
1848 anti_min,
1849 build_int_cst (TREE_TYPE (var_vr->min), 1));
1850 else
1851 max = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (var_vr->min),
1852 anti_min,
1853 size_int (-1));
1854 min = real_min;
1855 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1862 /* Extract range information from SSA name VAR and store it in VR. If
1863 VAR has an interesting range, use it. Otherwise, create the
1864 range [VAR, VAR] and return it. This is useful in situations where
1865 we may have conditionals testing values of VARYING names. For
1866 instance,
1868 x_3 = y_5;
1869 if (x_3 > y_5)
1872 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1873 always false. */
1875 static void
1876 extract_range_from_ssa_name (value_range_t *vr, tree var)
1878 value_range_t *var_vr = get_value_range (var);
1880 if (var_vr->type != VR_UNDEFINED && var_vr->type != VR_VARYING)
1881 copy_value_range (vr, var_vr);
1882 else
1883 set_value_range (vr, VR_RANGE, var, var, NULL);
1885 add_equivalence (&vr->equiv, var);
1889 /* Wrapper around int_const_binop. If the operation overflows and we
1890 are not using wrapping arithmetic, then adjust the result to be
1891 -INF or +INF depending on CODE, VAL1 and VAL2. This can return
1892 NULL_TREE if we need to use an overflow infinity representation but
1893 the type does not support it. */
1895 static tree
1896 vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
1898 tree res;
1900 res = int_const_binop (code, val1, val2, 0);
1902 /* If we are using unsigned arithmetic, operate symbolically
1903 on -INF and +INF as int_const_binop only handles signed overflow. */
1904 if (TYPE_UNSIGNED (TREE_TYPE (val1)))
1906 int checkz = compare_values (res, val1);
1907 bool overflow = false;
1909 /* Ensure that res = val1 [+*] val2 >= val1
1910 or that res = val1 - val2 <= val1. */
1911 if ((code == PLUS_EXPR
1912 && !(checkz == 1 || checkz == 0))
1913 || (code == MINUS_EXPR
1914 && !(checkz == 0 || checkz == -1)))
1916 overflow = true;
1918 /* Checking for multiplication overflow is done by dividing the
1919 output of the multiplication by the first input of the
1920 multiplication. If the result of that division operation is
1921 not equal to the second input of the multiplication, then the
1922 multiplication overflowed. */
1923 else if (code == MULT_EXPR && !integer_zerop (val1))
1925 tree tmp = int_const_binop (TRUNC_DIV_EXPR,
1926 res,
1927 val1, 0);
1928 int check = compare_values (tmp, val2);
1930 if (check != 0)
1931 overflow = true;
1934 if (overflow)
1936 res = copy_node (res);
1937 TREE_OVERFLOW (res) = 1;
1941 else if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1)))
1942 /* If the singed operation wraps then int_const_binop has done
1943 everything we want. */
1945 else if ((TREE_OVERFLOW (res)
1946 && !TREE_OVERFLOW (val1)
1947 && !TREE_OVERFLOW (val2))
1948 || is_overflow_infinity (val1)
1949 || is_overflow_infinity (val2))
1951 /* If the operation overflowed but neither VAL1 nor VAL2 are
1952 overflown, return -INF or +INF depending on the operation
1953 and the combination of signs of the operands. */
1954 int sgn1 = tree_int_cst_sgn (val1);
1955 int sgn2 = tree_int_cst_sgn (val2);
1957 if (needs_overflow_infinity (TREE_TYPE (res))
1958 && !supports_overflow_infinity (TREE_TYPE (res)))
1959 return NULL_TREE;
1961 /* We have to punt on adding infinities of different signs,
1962 since we can't tell what the sign of the result should be.
1963 Likewise for subtracting infinities of the same sign. */
1964 if (((code == PLUS_EXPR && sgn1 != sgn2)
1965 || (code == MINUS_EXPR && sgn1 == sgn2))
1966 && is_overflow_infinity (val1)
1967 && is_overflow_infinity (val2))
1968 return NULL_TREE;
1970 /* Don't try to handle division or shifting of infinities. */
1971 if ((code == TRUNC_DIV_EXPR
1972 || code == FLOOR_DIV_EXPR
1973 || code == CEIL_DIV_EXPR
1974 || code == EXACT_DIV_EXPR
1975 || code == ROUND_DIV_EXPR
1976 || code == RSHIFT_EXPR)
1977 && (is_overflow_infinity (val1)
1978 || is_overflow_infinity (val2)))
1979 return NULL_TREE;
1981 /* Notice that we only need to handle the restricted set of
1982 operations handled by extract_range_from_binary_expr.
1983 Among them, only multiplication, addition and subtraction
1984 can yield overflow without overflown operands because we
1985 are working with integral types only... except in the
1986 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
1987 for division too. */
1989 /* For multiplication, the sign of the overflow is given
1990 by the comparison of the signs of the operands. */
1991 if ((code == MULT_EXPR && sgn1 == sgn2)
1992 /* For addition, the operands must be of the same sign
1993 to yield an overflow. Its sign is therefore that
1994 of one of the operands, for example the first. For
1995 infinite operands X + -INF is negative, not positive. */
1996 || (code == PLUS_EXPR
1997 && (sgn1 >= 0
1998 ? !is_negative_overflow_infinity (val2)
1999 : is_positive_overflow_infinity (val2)))
2000 /* For subtraction, non-infinite operands must be of
2001 different signs to yield an overflow. Its sign is
2002 therefore that of the first operand or the opposite of
2003 that of the second operand. A first operand of 0 counts
2004 as positive here, for the corner case 0 - (-INF), which
2005 overflows, but must yield +INF. For infinite operands 0
2006 - INF is negative, not positive. */
2007 || (code == MINUS_EXPR
2008 && (sgn1 >= 0
2009 ? !is_positive_overflow_infinity (val2)
2010 : is_negative_overflow_infinity (val2)))
2011 /* We only get in here with positive shift count, so the
2012 overflow direction is the same as the sign of val1.
2013 Actually rshift does not overflow at all, but we only
2014 handle the case of shifting overflowed -INF and +INF. */
2015 || (code == RSHIFT_EXPR
2016 && sgn1 >= 0)
2017 /* For division, the only case is -INF / -1 = +INF. */
2018 || code == TRUNC_DIV_EXPR
2019 || code == FLOOR_DIV_EXPR
2020 || code == CEIL_DIV_EXPR
2021 || code == EXACT_DIV_EXPR
2022 || code == ROUND_DIV_EXPR)
2023 return (needs_overflow_infinity (TREE_TYPE (res))
2024 ? positive_overflow_infinity (TREE_TYPE (res))
2025 : TYPE_MAX_VALUE (TREE_TYPE (res)));
2026 else
2027 return (needs_overflow_infinity (TREE_TYPE (res))
2028 ? negative_overflow_infinity (TREE_TYPE (res))
2029 : TYPE_MIN_VALUE (TREE_TYPE (res)));
2032 return res;
2036 /* Extract range information from a binary expression EXPR based on
2037 the ranges of each of its operands and the expression code. */
2039 static void
2040 extract_range_from_binary_expr (value_range_t *vr,
2041 enum tree_code code,
2042 tree expr_type, tree op0, tree op1)
2044 enum value_range_type type;
2045 tree min, max;
2046 int cmp;
2047 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2048 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2050 /* Not all binary expressions can be applied to ranges in a
2051 meaningful way. Handle only arithmetic operations. */
2052 if (code != PLUS_EXPR
2053 && code != MINUS_EXPR
2054 && code != POINTER_PLUS_EXPR
2055 && code != MULT_EXPR
2056 && code != TRUNC_DIV_EXPR
2057 && code != FLOOR_DIV_EXPR
2058 && code != CEIL_DIV_EXPR
2059 && code != EXACT_DIV_EXPR
2060 && code != ROUND_DIV_EXPR
2061 && code != RSHIFT_EXPR
2062 && code != MIN_EXPR
2063 && code != MAX_EXPR
2064 && code != BIT_AND_EXPR
2065 && code != BIT_IOR_EXPR
2066 && code != TRUTH_AND_EXPR
2067 && code != TRUTH_OR_EXPR)
2069 /* We can still do constant propagation here. */
2070 tree const_op0 = op_with_constant_singleton_value_range (op0);
2071 tree const_op1 = op_with_constant_singleton_value_range (op1);
2072 if (const_op0 || const_op1)
2074 tree tem = fold_binary (code, expr_type,
2075 const_op0 ? const_op0 : op0,
2076 const_op1 ? const_op1 : op1);
2077 if (tem
2078 && is_gimple_min_invariant (tem)
2079 && !is_overflow_infinity (tem))
2081 set_value_range (vr, VR_RANGE, tem, tem, NULL);
2082 return;
2085 set_value_range_to_varying (vr);
2086 return;
2089 /* Get value ranges for each operand. For constant operands, create
2090 a new value range with the operand to simplify processing. */
2091 if (TREE_CODE (op0) == SSA_NAME)
2092 vr0 = *(get_value_range (op0));
2093 else if (is_gimple_min_invariant (op0))
2094 set_value_range_to_value (&vr0, op0, NULL);
2095 else
2096 set_value_range_to_varying (&vr0);
2098 if (TREE_CODE (op1) == SSA_NAME)
2099 vr1 = *(get_value_range (op1));
2100 else if (is_gimple_min_invariant (op1))
2101 set_value_range_to_value (&vr1, op1, NULL);
2102 else
2103 set_value_range_to_varying (&vr1);
2105 /* If either range is UNDEFINED, so is the result. */
2106 if (vr0.type == VR_UNDEFINED || vr1.type == VR_UNDEFINED)
2108 set_value_range_to_undefined (vr);
2109 return;
2112 /* The type of the resulting value range defaults to VR0.TYPE. */
2113 type = vr0.type;
2115 /* Refuse to operate on VARYING ranges, ranges of different kinds
2116 and symbolic ranges. As an exception, we allow BIT_AND_EXPR
2117 because we may be able to derive a useful range even if one of
2118 the operands is VR_VARYING or symbolic range. Similarly for
2119 divisions. TODO, we may be able to derive anti-ranges in
2120 some cases. */
2121 if (code != BIT_AND_EXPR
2122 && code != TRUTH_AND_EXPR
2123 && code != TRUTH_OR_EXPR
2124 && code != TRUNC_DIV_EXPR
2125 && code != FLOOR_DIV_EXPR
2126 && code != CEIL_DIV_EXPR
2127 && code != EXACT_DIV_EXPR
2128 && code != ROUND_DIV_EXPR
2129 && (vr0.type == VR_VARYING
2130 || vr1.type == VR_VARYING
2131 || vr0.type != vr1.type
2132 || symbolic_range_p (&vr0)
2133 || symbolic_range_p (&vr1)))
2135 set_value_range_to_varying (vr);
2136 return;
2139 /* Now evaluate the expression to determine the new range. */
2140 if (POINTER_TYPE_P (expr_type)
2141 || POINTER_TYPE_P (TREE_TYPE (op0))
2142 || POINTER_TYPE_P (TREE_TYPE (op1)))
2144 if (code == MIN_EXPR || code == MAX_EXPR)
2146 /* For MIN/MAX expressions with pointers, we only care about
2147 nullness, if both are non null, then the result is nonnull.
2148 If both are null, then the result is null. Otherwise they
2149 are varying. */
2150 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
2151 set_value_range_to_nonnull (vr, expr_type);
2152 else if (range_is_null (&vr0) && range_is_null (&vr1))
2153 set_value_range_to_null (vr, expr_type);
2154 else
2155 set_value_range_to_varying (vr);
2157 return;
2159 gcc_assert (code == POINTER_PLUS_EXPR);
2160 /* For pointer types, we are really only interested in asserting
2161 whether the expression evaluates to non-NULL. */
2162 if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
2163 set_value_range_to_nonnull (vr, expr_type);
2164 else if (range_is_null (&vr0) && range_is_null (&vr1))
2165 set_value_range_to_null (vr, expr_type);
2166 else
2167 set_value_range_to_varying (vr);
2169 return;
2172 /* For integer ranges, apply the operation to each end of the
2173 range and see what we end up with. */
2174 if (code == TRUTH_AND_EXPR
2175 || code == TRUTH_OR_EXPR)
2177 /* If one of the operands is zero, we know that the whole
2178 expression evaluates zero. */
2179 if (code == TRUTH_AND_EXPR
2180 && ((vr0.type == VR_RANGE
2181 && integer_zerop (vr0.min)
2182 && integer_zerop (vr0.max))
2183 || (vr1.type == VR_RANGE
2184 && integer_zerop (vr1.min)
2185 && integer_zerop (vr1.max))))
2187 type = VR_RANGE;
2188 min = max = build_int_cst (expr_type, 0);
2190 /* If one of the operands is one, we know that the whole
2191 expression evaluates one. */
2192 else if (code == TRUTH_OR_EXPR
2193 && ((vr0.type == VR_RANGE
2194 && integer_onep (vr0.min)
2195 && integer_onep (vr0.max))
2196 || (vr1.type == VR_RANGE
2197 && integer_onep (vr1.min)
2198 && integer_onep (vr1.max))))
2200 type = VR_RANGE;
2201 min = max = build_int_cst (expr_type, 1);
2203 else if (vr0.type != VR_VARYING
2204 && vr1.type != VR_VARYING
2205 && vr0.type == vr1.type
2206 && !symbolic_range_p (&vr0)
2207 && !overflow_infinity_range_p (&vr0)
2208 && !symbolic_range_p (&vr1)
2209 && !overflow_infinity_range_p (&vr1))
2211 /* Boolean expressions cannot be folded with int_const_binop. */
2212 min = fold_binary (code, expr_type, vr0.min, vr1.min);
2213 max = fold_binary (code, expr_type, vr0.max, vr1.max);
2215 else
2217 /* The result of a TRUTH_*_EXPR is always true or false. */
2218 set_value_range_to_truthvalue (vr, expr_type);
2219 return;
2222 else if (code == PLUS_EXPR
2223 || code == MIN_EXPR
2224 || code == MAX_EXPR)
2226 /* If we have a PLUS_EXPR with two VR_ANTI_RANGEs, drop to
2227 VR_VARYING. It would take more effort to compute a precise
2228 range for such a case. For example, if we have op0 == 1 and
2229 op1 == -1 with their ranges both being ~[0,0], we would have
2230 op0 + op1 == 0, so we cannot claim that the sum is in ~[0,0].
2231 Note that we are guaranteed to have vr0.type == vr1.type at
2232 this point. */
2233 if (code == PLUS_EXPR && vr0.type == VR_ANTI_RANGE)
2235 set_value_range_to_varying (vr);
2236 return;
2239 /* For operations that make the resulting range directly
2240 proportional to the original ranges, apply the operation to
2241 the same end of each range. */
2242 min = vrp_int_const_binop (code, vr0.min, vr1.min);
2243 max = vrp_int_const_binop (code, vr0.max, vr1.max);
2245 /* If both additions overflowed the range kind is still correct.
2246 This happens regularly with subtracting something in unsigned
2247 arithmetic.
2248 ??? See PR30318 for all the cases we do not handle. */
2249 if (code == PLUS_EXPR
2250 && (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2251 && (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2253 min = build_int_cst_wide (TREE_TYPE (min),
2254 TREE_INT_CST_LOW (min),
2255 TREE_INT_CST_HIGH (min));
2256 max = build_int_cst_wide (TREE_TYPE (max),
2257 TREE_INT_CST_LOW (max),
2258 TREE_INT_CST_HIGH (max));
2261 else if (code == MULT_EXPR
2262 || code == TRUNC_DIV_EXPR
2263 || code == FLOOR_DIV_EXPR
2264 || code == CEIL_DIV_EXPR
2265 || code == EXACT_DIV_EXPR
2266 || code == ROUND_DIV_EXPR
2267 || code == RSHIFT_EXPR)
2269 tree val[4];
2270 size_t i;
2271 bool sop;
2273 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
2274 drop to VR_VARYING. It would take more effort to compute a
2275 precise range for such a case. For example, if we have
2276 op0 == 65536 and op1 == 65536 with their ranges both being
2277 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
2278 we cannot claim that the product is in ~[0,0]. Note that we
2279 are guaranteed to have vr0.type == vr1.type at this
2280 point. */
2281 if (code == MULT_EXPR
2282 && vr0.type == VR_ANTI_RANGE
2283 && !TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0)))
2285 set_value_range_to_varying (vr);
2286 return;
2289 /* If we have a RSHIFT_EXPR with any shift values outside [0..prec-1],
2290 then drop to VR_VARYING. Outside of this range we get undefined
2291 behavior from the shift operation. We cannot even trust
2292 SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
2293 shifts, and the operation at the tree level may be widened. */
2294 if (code == RSHIFT_EXPR)
2296 if (vr1.type == VR_ANTI_RANGE
2297 || !vrp_expr_computes_nonnegative (op1, &sop)
2298 || (operand_less_p
2299 (build_int_cst (TREE_TYPE (vr1.max),
2300 TYPE_PRECISION (expr_type) - 1),
2301 vr1.max) != 0))
2303 set_value_range_to_varying (vr);
2304 return;
2308 else if ((code == TRUNC_DIV_EXPR
2309 || code == FLOOR_DIV_EXPR
2310 || code == CEIL_DIV_EXPR
2311 || code == EXACT_DIV_EXPR
2312 || code == ROUND_DIV_EXPR)
2313 && (vr0.type != VR_RANGE || symbolic_range_p (&vr0)))
2315 /* For division, if op1 has VR_RANGE but op0 does not, something
2316 can be deduced just from that range. Say [min, max] / [4, max]
2317 gives [min / 4, max / 4] range. */
2318 if (vr1.type == VR_RANGE
2319 && !symbolic_range_p (&vr1)
2320 && !range_includes_zero_p (&vr1))
2322 vr0.type = type = VR_RANGE;
2323 vr0.min = vrp_val_min (TREE_TYPE (op0));
2324 vr0.max = vrp_val_max (TREE_TYPE (op1));
2326 else
2328 set_value_range_to_varying (vr);
2329 return;
2333 /* For divisions, if op0 is VR_RANGE, we can deduce a range
2334 even if op1 is VR_VARYING, VR_ANTI_RANGE, symbolic or can
2335 include 0. */
2336 if ((code == TRUNC_DIV_EXPR
2337 || code == FLOOR_DIV_EXPR
2338 || code == CEIL_DIV_EXPR
2339 || code == EXACT_DIV_EXPR
2340 || code == ROUND_DIV_EXPR)
2341 && vr0.type == VR_RANGE
2342 && (vr1.type != VR_RANGE
2343 || symbolic_range_p (&vr1)
2344 || range_includes_zero_p (&vr1)))
2346 tree zero = build_int_cst (TREE_TYPE (vr0.min), 0);
2347 int cmp;
2349 sop = false;
2350 min = NULL_TREE;
2351 max = NULL_TREE;
2352 if (vrp_expr_computes_nonnegative (op1, &sop) && !sop)
2354 /* For unsigned division or when divisor is known
2355 to be non-negative, the range has to cover
2356 all numbers from 0 to max for positive max
2357 and all numbers from min to 0 for negative min. */
2358 cmp = compare_values (vr0.max, zero);
2359 if (cmp == -1)
2360 max = zero;
2361 else if (cmp == 0 || cmp == 1)
2362 max = vr0.max;
2363 else
2364 type = VR_VARYING;
2365 cmp = compare_values (vr0.min, zero);
2366 if (cmp == 1)
2367 min = zero;
2368 else if (cmp == 0 || cmp == -1)
2369 min = vr0.min;
2370 else
2371 type = VR_VARYING;
2373 else
2375 /* Otherwise the range is -max .. max or min .. -min
2376 depending on which bound is bigger in absolute value,
2377 as the division can change the sign. */
2378 abs_extent_range (vr, vr0.min, vr0.max);
2379 return;
2381 if (type == VR_VARYING)
2383 set_value_range_to_varying (vr);
2384 return;
2388 /* Multiplications and divisions are a bit tricky to handle,
2389 depending on the mix of signs we have in the two ranges, we
2390 need to operate on different values to get the minimum and
2391 maximum values for the new range. One approach is to figure
2392 out all the variations of range combinations and do the
2393 operations.
2395 However, this involves several calls to compare_values and it
2396 is pretty convoluted. It's simpler to do the 4 operations
2397 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
2398 MAX1) and then figure the smallest and largest values to form
2399 the new range. */
2400 else
2402 gcc_assert ((vr0.type == VR_RANGE
2403 || (code == MULT_EXPR && vr0.type == VR_ANTI_RANGE))
2404 && vr0.type == vr1.type);
2406 /* Compute the 4 cross operations. */
2407 sop = false;
2408 val[0] = vrp_int_const_binop (code, vr0.min, vr1.min);
2409 if (val[0] == NULL_TREE)
2410 sop = true;
2412 if (vr1.max == vr1.min)
2413 val[1] = NULL_TREE;
2414 else
2416 val[1] = vrp_int_const_binop (code, vr0.min, vr1.max);
2417 if (val[1] == NULL_TREE)
2418 sop = true;
2421 if (vr0.max == vr0.min)
2422 val[2] = NULL_TREE;
2423 else
2425 val[2] = vrp_int_const_binop (code, vr0.max, vr1.min);
2426 if (val[2] == NULL_TREE)
2427 sop = true;
2430 if (vr0.min == vr0.max || vr1.min == vr1.max)
2431 val[3] = NULL_TREE;
2432 else
2434 val[3] = vrp_int_const_binop (code, vr0.max, vr1.max);
2435 if (val[3] == NULL_TREE)
2436 sop = true;
2439 if (sop)
2441 set_value_range_to_varying (vr);
2442 return;
2445 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
2446 of VAL[i]. */
2447 min = val[0];
2448 max = val[0];
2449 for (i = 1; i < 4; i++)
2451 if (!is_gimple_min_invariant (min)
2452 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2453 || !is_gimple_min_invariant (max)
2454 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2455 break;
2457 if (val[i])
2459 if (!is_gimple_min_invariant (val[i])
2460 || (TREE_OVERFLOW (val[i])
2461 && !is_overflow_infinity (val[i])))
2463 /* If we found an overflowed value, set MIN and MAX
2464 to it so that we set the resulting range to
2465 VARYING. */
2466 min = max = val[i];
2467 break;
2470 if (compare_values (val[i], min) == -1)
2471 min = val[i];
2473 if (compare_values (val[i], max) == 1)
2474 max = val[i];
2479 else if (code == MINUS_EXPR)
2481 /* If we have a MINUS_EXPR with two VR_ANTI_RANGEs, drop to
2482 VR_VARYING. It would take more effort to compute a precise
2483 range for such a case. For example, if we have op0 == 1 and
2484 op1 == 1 with their ranges both being ~[0,0], we would have
2485 op0 - op1 == 0, so we cannot claim that the difference is in
2486 ~[0,0]. Note that we are guaranteed to have
2487 vr0.type == vr1.type at this point. */
2488 if (vr0.type == VR_ANTI_RANGE)
2490 set_value_range_to_varying (vr);
2491 return;
2494 /* For MINUS_EXPR, apply the operation to the opposite ends of
2495 each range. */
2496 min = vrp_int_const_binop (code, vr0.min, vr1.max);
2497 max = vrp_int_const_binop (code, vr0.max, vr1.min);
2499 else if (code == BIT_AND_EXPR)
2501 if (vr0.type == VR_RANGE
2502 && vr0.min == vr0.max
2503 && TREE_CODE (vr0.max) == INTEGER_CST
2504 && !TREE_OVERFLOW (vr0.max)
2505 && tree_int_cst_sgn (vr0.max) >= 0)
2507 min = build_int_cst (expr_type, 0);
2508 max = vr0.max;
2510 else if (vr1.type == VR_RANGE
2511 && vr1.min == vr1.max
2512 && TREE_CODE (vr1.max) == INTEGER_CST
2513 && !TREE_OVERFLOW (vr1.max)
2514 && tree_int_cst_sgn (vr1.max) >= 0)
2516 type = VR_RANGE;
2517 min = build_int_cst (expr_type, 0);
2518 max = vr1.max;
2520 else
2522 set_value_range_to_varying (vr);
2523 return;
2526 else if (code == BIT_IOR_EXPR)
2528 if (vr0.type == VR_RANGE
2529 && vr1.type == VR_RANGE
2530 && TREE_CODE (vr0.min) == INTEGER_CST
2531 && TREE_CODE (vr1.min) == INTEGER_CST
2532 && TREE_CODE (vr0.max) == INTEGER_CST
2533 && TREE_CODE (vr1.max) == INTEGER_CST
2534 && tree_int_cst_sgn (vr0.min) >= 0
2535 && tree_int_cst_sgn (vr1.min) >= 0)
2537 double_int vr0_max = tree_to_double_int (vr0.max);
2538 double_int vr1_max = tree_to_double_int (vr1.max);
2539 double_int ior_max;
2541 /* Set all bits to the right of the most significant one to 1.
2542 For example, [0, 4] | [4, 4] = [4, 7]. */
2543 ior_max.low = vr0_max.low | vr1_max.low;
2544 ior_max.high = vr0_max.high | vr1_max.high;
2545 if (ior_max.high != 0)
2547 ior_max.low = ~(unsigned HOST_WIDE_INT)0u;
2548 ior_max.high |= ((HOST_WIDE_INT) 1
2549 << floor_log2 (ior_max.high)) - 1;
2551 else if (ior_max.low != 0)
2552 ior_max.low |= ((unsigned HOST_WIDE_INT) 1u
2553 << floor_log2 (ior_max.low)) - 1;
2555 /* Both of these endpoints are conservative. */
2556 min = vrp_int_const_binop (MAX_EXPR, vr0.min, vr1.min);
2557 max = double_int_to_tree (expr_type, ior_max);
2559 else
2561 set_value_range_to_varying (vr);
2562 return;
2565 else
2566 gcc_unreachable ();
2568 /* If either MIN or MAX overflowed, then set the resulting range to
2569 VARYING. But we do accept an overflow infinity
2570 representation. */
2571 if (min == NULL_TREE
2572 || !is_gimple_min_invariant (min)
2573 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2574 || max == NULL_TREE
2575 || !is_gimple_min_invariant (max)
2576 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2578 set_value_range_to_varying (vr);
2579 return;
2582 /* We punt if:
2583 1) [-INF, +INF]
2584 2) [-INF, +-INF(OVF)]
2585 3) [+-INF(OVF), +INF]
2586 4) [+-INF(OVF), +-INF(OVF)]
2587 We learn nothing when we have INF and INF(OVF) on both sides.
2588 Note that we do accept [-INF, -INF] and [+INF, +INF] without
2589 overflow. */
2590 if ((vrp_val_is_min (min) || is_overflow_infinity (min))
2591 && (vrp_val_is_max (max) || is_overflow_infinity (max)))
2593 set_value_range_to_varying (vr);
2594 return;
2597 cmp = compare_values (min, max);
2598 if (cmp == -2 || cmp == 1)
2600 /* If the new range has its limits swapped around (MIN > MAX),
2601 then the operation caused one of them to wrap around, mark
2602 the new range VARYING. */
2603 set_value_range_to_varying (vr);
2605 else
2606 set_value_range (vr, type, min, max, NULL);
2610 /* Extract range information from a unary expression EXPR based on
2611 the range of its operand and the expression code. */
2613 static void
2614 extract_range_from_unary_expr (value_range_t *vr, enum tree_code code,
2615 tree type, tree op0)
2617 tree min, max;
2618 int cmp;
2619 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2621 /* Refuse to operate on certain unary expressions for which we
2622 cannot easily determine a resulting range. */
2623 if (code == FIX_TRUNC_EXPR
2624 || code == FLOAT_EXPR
2625 || code == BIT_NOT_EXPR
2626 || code == CONJ_EXPR)
2628 /* We can still do constant propagation here. */
2629 if ((op0 = op_with_constant_singleton_value_range (op0)) != NULL_TREE)
2631 tree tem = fold_unary (code, type, op0);
2632 if (tem
2633 && is_gimple_min_invariant (tem)
2634 && !is_overflow_infinity (tem))
2636 set_value_range (vr, VR_RANGE, tem, tem, NULL);
2637 return;
2640 set_value_range_to_varying (vr);
2641 return;
2644 /* Get value ranges for the operand. For constant operands, create
2645 a new value range with the operand to simplify processing. */
2646 if (TREE_CODE (op0) == SSA_NAME)
2647 vr0 = *(get_value_range (op0));
2648 else if (is_gimple_min_invariant (op0))
2649 set_value_range_to_value (&vr0, op0, NULL);
2650 else
2651 set_value_range_to_varying (&vr0);
2653 /* If VR0 is UNDEFINED, so is the result. */
2654 if (vr0.type == VR_UNDEFINED)
2656 set_value_range_to_undefined (vr);
2657 return;
2660 /* Refuse to operate on symbolic ranges, or if neither operand is
2661 a pointer or integral type. */
2662 if ((!INTEGRAL_TYPE_P (TREE_TYPE (op0))
2663 && !POINTER_TYPE_P (TREE_TYPE (op0)))
2664 || (vr0.type != VR_VARYING
2665 && symbolic_range_p (&vr0)))
2667 set_value_range_to_varying (vr);
2668 return;
2671 /* If the expression involves pointers, we are only interested in
2672 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
2673 if (POINTER_TYPE_P (type) || POINTER_TYPE_P (TREE_TYPE (op0)))
2675 bool sop;
2677 sop = false;
2678 if (range_is_nonnull (&vr0)
2679 || (tree_unary_nonzero_warnv_p (code, type, op0, &sop)
2680 && !sop))
2681 set_value_range_to_nonnull (vr, type);
2682 else if (range_is_null (&vr0))
2683 set_value_range_to_null (vr, type);
2684 else
2685 set_value_range_to_varying (vr);
2687 return;
2690 /* Handle unary expressions on integer ranges. */
2691 if (CONVERT_EXPR_CODE_P (code)
2692 && INTEGRAL_TYPE_P (type)
2693 && INTEGRAL_TYPE_P (TREE_TYPE (op0)))
2695 tree inner_type = TREE_TYPE (op0);
2696 tree outer_type = type;
2698 /* If VR0 is varying and we increase the type precision, assume
2699 a full range for the following transformation. */
2700 if (vr0.type == VR_VARYING
2701 && TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type))
2703 vr0.type = VR_RANGE;
2704 vr0.min = TYPE_MIN_VALUE (inner_type);
2705 vr0.max = TYPE_MAX_VALUE (inner_type);
2708 /* If VR0 is a constant range or anti-range and the conversion is
2709 not truncating we can convert the min and max values and
2710 canonicalize the resulting range. Otherwise we can do the
2711 conversion if the size of the range is less than what the
2712 precision of the target type can represent and the range is
2713 not an anti-range. */
2714 if ((vr0.type == VR_RANGE
2715 || vr0.type == VR_ANTI_RANGE)
2716 && TREE_CODE (vr0.min) == INTEGER_CST
2717 && TREE_CODE (vr0.max) == INTEGER_CST
2718 && (!is_overflow_infinity (vr0.min)
2719 || (vr0.type == VR_RANGE
2720 && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)
2721 && needs_overflow_infinity (outer_type)
2722 && supports_overflow_infinity (outer_type)))
2723 && (!is_overflow_infinity (vr0.max)
2724 || (vr0.type == VR_RANGE
2725 && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)
2726 && needs_overflow_infinity (outer_type)
2727 && supports_overflow_infinity (outer_type)))
2728 && (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
2729 || (vr0.type == VR_RANGE
2730 && integer_zerop (int_const_binop (RSHIFT_EXPR,
2731 int_const_binop (MINUS_EXPR, vr0.max, vr0.min, 0),
2732 size_int (TYPE_PRECISION (outer_type)), 0)))))
2734 tree new_min, new_max;
2735 new_min = force_fit_type_double (outer_type,
2736 TREE_INT_CST_LOW (vr0.min),
2737 TREE_INT_CST_HIGH (vr0.min), 0, 0);
2738 new_max = force_fit_type_double (outer_type,
2739 TREE_INT_CST_LOW (vr0.max),
2740 TREE_INT_CST_HIGH (vr0.max), 0, 0);
2741 if (is_overflow_infinity (vr0.min))
2742 new_min = negative_overflow_infinity (outer_type);
2743 if (is_overflow_infinity (vr0.max))
2744 new_max = positive_overflow_infinity (outer_type);
2745 set_and_canonicalize_value_range (vr, vr0.type,
2746 new_min, new_max, NULL);
2747 return;
2750 set_value_range_to_varying (vr);
2751 return;
2754 /* Conversion of a VR_VARYING value to a wider type can result
2755 in a usable range. So wait until after we've handled conversions
2756 before dropping the result to VR_VARYING if we had a source
2757 operand that is VR_VARYING. */
2758 if (vr0.type == VR_VARYING)
2760 set_value_range_to_varying (vr);
2761 return;
2764 /* Apply the operation to each end of the range and see what we end
2765 up with. */
2766 if (code == NEGATE_EXPR
2767 && !TYPE_UNSIGNED (type))
2769 /* NEGATE_EXPR flips the range around. We need to treat
2770 TYPE_MIN_VALUE specially. */
2771 if (is_positive_overflow_infinity (vr0.max))
2772 min = negative_overflow_infinity (type);
2773 else if (is_negative_overflow_infinity (vr0.max))
2774 min = positive_overflow_infinity (type);
2775 else if (!vrp_val_is_min (vr0.max))
2776 min = fold_unary_to_constant (code, type, vr0.max);
2777 else if (needs_overflow_infinity (type))
2779 if (supports_overflow_infinity (type)
2780 && !is_overflow_infinity (vr0.min)
2781 && !vrp_val_is_min (vr0.min))
2782 min = positive_overflow_infinity (type);
2783 else
2785 set_value_range_to_varying (vr);
2786 return;
2789 else
2790 min = TYPE_MIN_VALUE (type);
2792 if (is_positive_overflow_infinity (vr0.min))
2793 max = negative_overflow_infinity (type);
2794 else if (is_negative_overflow_infinity (vr0.min))
2795 max = positive_overflow_infinity (type);
2796 else if (!vrp_val_is_min (vr0.min))
2797 max = fold_unary_to_constant (code, type, vr0.min);
2798 else if (needs_overflow_infinity (type))
2800 if (supports_overflow_infinity (type))
2801 max = positive_overflow_infinity (type);
2802 else
2804 set_value_range_to_varying (vr);
2805 return;
2808 else
2809 max = TYPE_MIN_VALUE (type);
2811 else if (code == NEGATE_EXPR
2812 && TYPE_UNSIGNED (type))
2814 if (!range_includes_zero_p (&vr0))
2816 max = fold_unary_to_constant (code, type, vr0.min);
2817 min = fold_unary_to_constant (code, type, vr0.max);
2819 else
2821 if (range_is_null (&vr0))
2822 set_value_range_to_null (vr, type);
2823 else
2824 set_value_range_to_varying (vr);
2825 return;
2828 else if (code == ABS_EXPR
2829 && !TYPE_UNSIGNED (type))
2831 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
2832 useful range. */
2833 if (!TYPE_OVERFLOW_UNDEFINED (type)
2834 && ((vr0.type == VR_RANGE
2835 && vrp_val_is_min (vr0.min))
2836 || (vr0.type == VR_ANTI_RANGE
2837 && !vrp_val_is_min (vr0.min)
2838 && !range_includes_zero_p (&vr0))))
2840 set_value_range_to_varying (vr);
2841 return;
2844 /* ABS_EXPR may flip the range around, if the original range
2845 included negative values. */
2846 if (is_overflow_infinity (vr0.min))
2847 min = positive_overflow_infinity (type);
2848 else if (!vrp_val_is_min (vr0.min))
2849 min = fold_unary_to_constant (code, type, vr0.min);
2850 else if (!needs_overflow_infinity (type))
2851 min = TYPE_MAX_VALUE (type);
2852 else if (supports_overflow_infinity (type))
2853 min = positive_overflow_infinity (type);
2854 else
2856 set_value_range_to_varying (vr);
2857 return;
2860 if (is_overflow_infinity (vr0.max))
2861 max = positive_overflow_infinity (type);
2862 else if (!vrp_val_is_min (vr0.max))
2863 max = fold_unary_to_constant (code, type, vr0.max);
2864 else if (!needs_overflow_infinity (type))
2865 max = TYPE_MAX_VALUE (type);
2866 else if (supports_overflow_infinity (type)
2867 /* We shouldn't generate [+INF, +INF] as set_value_range
2868 doesn't like this and ICEs. */
2869 && !is_positive_overflow_infinity (min))
2870 max = positive_overflow_infinity (type);
2871 else
2873 set_value_range_to_varying (vr);
2874 return;
2877 cmp = compare_values (min, max);
2879 /* If a VR_ANTI_RANGEs contains zero, then we have
2880 ~[-INF, min(MIN, MAX)]. */
2881 if (vr0.type == VR_ANTI_RANGE)
2883 if (range_includes_zero_p (&vr0))
2885 /* Take the lower of the two values. */
2886 if (cmp != 1)
2887 max = min;
2889 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
2890 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
2891 flag_wrapv is set and the original anti-range doesn't include
2892 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
2893 if (TYPE_OVERFLOW_WRAPS (type))
2895 tree type_min_value = TYPE_MIN_VALUE (type);
2897 min = (vr0.min != type_min_value
2898 ? int_const_binop (PLUS_EXPR, type_min_value,
2899 integer_one_node, 0)
2900 : type_min_value);
2902 else
2904 if (overflow_infinity_range_p (&vr0))
2905 min = negative_overflow_infinity (type);
2906 else
2907 min = TYPE_MIN_VALUE (type);
2910 else
2912 /* All else has failed, so create the range [0, INF], even for
2913 flag_wrapv since TYPE_MIN_VALUE is in the original
2914 anti-range. */
2915 vr0.type = VR_RANGE;
2916 min = build_int_cst (type, 0);
2917 if (needs_overflow_infinity (type))
2919 if (supports_overflow_infinity (type))
2920 max = positive_overflow_infinity (type);
2921 else
2923 set_value_range_to_varying (vr);
2924 return;
2927 else
2928 max = TYPE_MAX_VALUE (type);
2932 /* If the range contains zero then we know that the minimum value in the
2933 range will be zero. */
2934 else if (range_includes_zero_p (&vr0))
2936 if (cmp == 1)
2937 max = min;
2938 min = build_int_cst (type, 0);
2940 else
2942 /* If the range was reversed, swap MIN and MAX. */
2943 if (cmp == 1)
2945 tree t = min;
2946 min = max;
2947 max = t;
2951 else
2953 /* Otherwise, operate on each end of the range. */
2954 min = fold_unary_to_constant (code, type, vr0.min);
2955 max = fold_unary_to_constant (code, type, vr0.max);
2957 if (needs_overflow_infinity (type))
2959 gcc_assert (code != NEGATE_EXPR && code != ABS_EXPR);
2961 /* If both sides have overflowed, we don't know
2962 anything. */
2963 if ((is_overflow_infinity (vr0.min)
2964 || TREE_OVERFLOW (min))
2965 && (is_overflow_infinity (vr0.max)
2966 || TREE_OVERFLOW (max)))
2968 set_value_range_to_varying (vr);
2969 return;
2972 if (is_overflow_infinity (vr0.min))
2973 min = vr0.min;
2974 else if (TREE_OVERFLOW (min))
2976 if (supports_overflow_infinity (type))
2977 min = (tree_int_cst_sgn (min) >= 0
2978 ? positive_overflow_infinity (TREE_TYPE (min))
2979 : negative_overflow_infinity (TREE_TYPE (min)));
2980 else
2982 set_value_range_to_varying (vr);
2983 return;
2987 if (is_overflow_infinity (vr0.max))
2988 max = vr0.max;
2989 else if (TREE_OVERFLOW (max))
2991 if (supports_overflow_infinity (type))
2992 max = (tree_int_cst_sgn (max) >= 0
2993 ? positive_overflow_infinity (TREE_TYPE (max))
2994 : negative_overflow_infinity (TREE_TYPE (max)));
2995 else
2997 set_value_range_to_varying (vr);
2998 return;
3004 cmp = compare_values (min, max);
3005 if (cmp == -2 || cmp == 1)
3007 /* If the new range has its limits swapped around (MIN > MAX),
3008 then the operation caused one of them to wrap around, mark
3009 the new range VARYING. */
3010 set_value_range_to_varying (vr);
3012 else
3013 set_value_range (vr, vr0.type, min, max, NULL);
3017 /* Extract range information from a conditional expression EXPR based on
3018 the ranges of each of its operands and the expression code. */
3020 static void
3021 extract_range_from_cond_expr (value_range_t *vr, tree expr)
3023 tree op0, op1;
3024 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3025 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3027 /* Get value ranges for each operand. For constant operands, create
3028 a new value range with the operand to simplify processing. */
3029 op0 = COND_EXPR_THEN (expr);
3030 if (TREE_CODE (op0) == SSA_NAME)
3031 vr0 = *(get_value_range (op0));
3032 else if (is_gimple_min_invariant (op0))
3033 set_value_range_to_value (&vr0, op0, NULL);
3034 else
3035 set_value_range_to_varying (&vr0);
3037 op1 = COND_EXPR_ELSE (expr);
3038 if (TREE_CODE (op1) == SSA_NAME)
3039 vr1 = *(get_value_range (op1));
3040 else if (is_gimple_min_invariant (op1))
3041 set_value_range_to_value (&vr1, op1, NULL);
3042 else
3043 set_value_range_to_varying (&vr1);
3045 /* The resulting value range is the union of the operand ranges */
3046 vrp_meet (&vr0, &vr1);
3047 copy_value_range (vr, &vr0);
3051 /* Extract range information from a comparison expression EXPR based
3052 on the range of its operand and the expression code. */
3054 static void
3055 extract_range_from_comparison (value_range_t *vr, enum tree_code code,
3056 tree type, tree op0, tree op1)
3058 bool sop = false;
3059 tree val;
3061 val = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, false, &sop,
3062 NULL);
3064 /* A disadvantage of using a special infinity as an overflow
3065 representation is that we lose the ability to record overflow
3066 when we don't have an infinity. So we have to ignore a result
3067 which relies on overflow. */
3069 if (val && !is_overflow_infinity (val) && !sop)
3071 /* Since this expression was found on the RHS of an assignment,
3072 its type may be different from _Bool. Convert VAL to EXPR's
3073 type. */
3074 val = fold_convert (type, val);
3075 if (is_gimple_min_invariant (val))
3076 set_value_range_to_value (vr, val, vr->equiv);
3077 else
3078 set_value_range (vr, VR_RANGE, val, val, vr->equiv);
3080 else
3081 /* The result of a comparison is always true or false. */
3082 set_value_range_to_truthvalue (vr, type);
3085 /* Try to derive a nonnegative or nonzero range out of STMT relying
3086 primarily on generic routines in fold in conjunction with range data.
3087 Store the result in *VR */
3089 static void
3090 extract_range_basic (value_range_t *vr, gimple stmt)
3092 bool sop = false;
3093 tree type = gimple_expr_type (stmt);
3095 if (INTEGRAL_TYPE_P (type)
3096 && gimple_stmt_nonnegative_warnv_p (stmt, &sop))
3097 set_value_range_to_nonnegative (vr, type,
3098 sop || stmt_overflow_infinity (stmt));
3099 else if (vrp_stmt_computes_nonzero (stmt, &sop)
3100 && !sop)
3101 set_value_range_to_nonnull (vr, type);
3102 else
3103 set_value_range_to_varying (vr);
3107 /* Try to compute a useful range out of assignment STMT and store it
3108 in *VR. */
3110 static void
3111 extract_range_from_assignment (value_range_t *vr, gimple stmt)
3113 enum tree_code code = gimple_assign_rhs_code (stmt);
3115 if (code == ASSERT_EXPR)
3116 extract_range_from_assert (vr, gimple_assign_rhs1 (stmt));
3117 else if (code == SSA_NAME)
3118 extract_range_from_ssa_name (vr, gimple_assign_rhs1 (stmt));
3119 else if (TREE_CODE_CLASS (code) == tcc_binary
3120 || code == TRUTH_AND_EXPR
3121 || code == TRUTH_OR_EXPR
3122 || code == TRUTH_XOR_EXPR)
3123 extract_range_from_binary_expr (vr, gimple_assign_rhs_code (stmt),
3124 gimple_expr_type (stmt),
3125 gimple_assign_rhs1 (stmt),
3126 gimple_assign_rhs2 (stmt));
3127 else if (TREE_CODE_CLASS (code) == tcc_unary)
3128 extract_range_from_unary_expr (vr, gimple_assign_rhs_code (stmt),
3129 gimple_expr_type (stmt),
3130 gimple_assign_rhs1 (stmt));
3131 else if (code == COND_EXPR)
3132 extract_range_from_cond_expr (vr, gimple_assign_rhs1 (stmt));
3133 else if (TREE_CODE_CLASS (code) == tcc_comparison)
3134 extract_range_from_comparison (vr, gimple_assign_rhs_code (stmt),
3135 gimple_expr_type (stmt),
3136 gimple_assign_rhs1 (stmt),
3137 gimple_assign_rhs2 (stmt));
3138 else if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS
3139 && is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
3140 set_value_range_to_value (vr, gimple_assign_rhs1 (stmt), NULL);
3141 else
3142 set_value_range_to_varying (vr);
3144 if (vr->type == VR_VARYING)
3145 extract_range_basic (vr, stmt);
3148 /* Given a range VR, a LOOP and a variable VAR, determine whether it
3149 would be profitable to adjust VR using scalar evolution information
3150 for VAR. If so, update VR with the new limits. */
3152 static void
3153 adjust_range_with_scev (value_range_t *vr, struct loop *loop,
3154 gimple stmt, tree var)
3156 tree init, step, chrec, tmin, tmax, min, max, type;
3157 enum ev_direction dir;
3159 /* TODO. Don't adjust anti-ranges. An anti-range may provide
3160 better opportunities than a regular range, but I'm not sure. */
3161 if (vr->type == VR_ANTI_RANGE)
3162 return;
3164 chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
3166 /* Like in PR19590, scev can return a constant function. */
3167 if (is_gimple_min_invariant (chrec))
3169 set_value_range_to_value (vr, chrec, vr->equiv);
3170 return;
3173 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
3174 return;
3176 init = initial_condition_in_loop_num (chrec, loop->num);
3177 step = evolution_part_in_loop_num (chrec, loop->num);
3179 /* If STEP is symbolic, we can't know whether INIT will be the
3180 minimum or maximum value in the range. Also, unless INIT is
3181 a simple expression, compare_values and possibly other functions
3182 in tree-vrp won't be able to handle it. */
3183 if (step == NULL_TREE
3184 || !is_gimple_min_invariant (step)
3185 || !valid_value_p (init))
3186 return;
3188 dir = scev_direction (chrec);
3189 if (/* Do not adjust ranges if we do not know whether the iv increases
3190 or decreases, ... */
3191 dir == EV_DIR_UNKNOWN
3192 /* ... or if it may wrap. */
3193 || scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
3194 true))
3195 return;
3197 /* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
3198 negative_overflow_infinity and positive_overflow_infinity,
3199 because we have concluded that the loop probably does not
3200 wrap. */
3202 type = TREE_TYPE (var);
3203 if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
3204 tmin = lower_bound_in_type (type, type);
3205 else
3206 tmin = TYPE_MIN_VALUE (type);
3207 if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
3208 tmax = upper_bound_in_type (type, type);
3209 else
3210 tmax = TYPE_MAX_VALUE (type);
3212 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
3214 min = tmin;
3215 max = tmax;
3217 /* For VARYING or UNDEFINED ranges, just about anything we get
3218 from scalar evolutions should be better. */
3220 if (dir == EV_DIR_DECREASES)
3221 max = init;
3222 else
3223 min = init;
3225 /* If we would create an invalid range, then just assume we
3226 know absolutely nothing. This may be over-conservative,
3227 but it's clearly safe, and should happen only in unreachable
3228 parts of code, or for invalid programs. */
3229 if (compare_values (min, max) == 1)
3230 return;
3232 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
3234 else if (vr->type == VR_RANGE)
3236 min = vr->min;
3237 max = vr->max;
3239 if (dir == EV_DIR_DECREASES)
3241 /* INIT is the maximum value. If INIT is lower than VR->MAX
3242 but no smaller than VR->MIN, set VR->MAX to INIT. */
3243 if (compare_values (init, max) == -1)
3245 max = init;
3247 /* If we just created an invalid range with the minimum
3248 greater than the maximum, we fail conservatively.
3249 This should happen only in unreachable
3250 parts of code, or for invalid programs. */
3251 if (compare_values (min, max) == 1)
3252 return;
3255 /* According to the loop information, the variable does not
3256 overflow. If we think it does, probably because of an
3257 overflow due to arithmetic on a different INF value,
3258 reset now. */
3259 if (is_negative_overflow_infinity (min))
3260 min = tmin;
3262 else
3264 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
3265 if (compare_values (init, min) == 1)
3267 min = init;
3269 /* Again, avoid creating invalid range by failing. */
3270 if (compare_values (min, max) == 1)
3271 return;
3274 if (is_positive_overflow_infinity (max))
3275 max = tmax;
3278 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
3282 /* Return true if VAR may overflow at STMT. This checks any available
3283 loop information to see if we can determine that VAR does not
3284 overflow. */
3286 static bool
3287 vrp_var_may_overflow (tree var, gimple stmt)
3289 struct loop *l;
3290 tree chrec, init, step;
3292 if (current_loops == NULL)
3293 return true;
3295 l = loop_containing_stmt (stmt);
3296 if (l == NULL
3297 || !loop_outer (l))
3298 return true;
3300 chrec = instantiate_parameters (l, analyze_scalar_evolution (l, var));
3301 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
3302 return true;
3304 init = initial_condition_in_loop_num (chrec, l->num);
3305 step = evolution_part_in_loop_num (chrec, l->num);
3307 if (step == NULL_TREE
3308 || !is_gimple_min_invariant (step)
3309 || !valid_value_p (init))
3310 return true;
3312 /* If we get here, we know something useful about VAR based on the
3313 loop information. If it wraps, it may overflow. */
3315 if (scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
3316 true))
3317 return true;
3319 if (dump_file && (dump_flags & TDF_DETAILS) != 0)
3321 print_generic_expr (dump_file, var, 0);
3322 fprintf (dump_file, ": loop information indicates does not overflow\n");
3325 return false;
3329 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
3331 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
3332 all the values in the ranges.
3334 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
3336 - Return NULL_TREE if it is not always possible to determine the
3337 value of the comparison.
3339 Also set *STRICT_OVERFLOW_P to indicate whether a range with an
3340 overflow infinity was used in the test. */
3343 static tree
3344 compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1,
3345 bool *strict_overflow_p)
3347 /* VARYING or UNDEFINED ranges cannot be compared. */
3348 if (vr0->type == VR_VARYING
3349 || vr0->type == VR_UNDEFINED
3350 || vr1->type == VR_VARYING
3351 || vr1->type == VR_UNDEFINED)
3352 return NULL_TREE;
3354 /* Anti-ranges need to be handled separately. */
3355 if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
3357 /* If both are anti-ranges, then we cannot compute any
3358 comparison. */
3359 if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
3360 return NULL_TREE;
3362 /* These comparisons are never statically computable. */
3363 if (comp == GT_EXPR
3364 || comp == GE_EXPR
3365 || comp == LT_EXPR
3366 || comp == LE_EXPR)
3367 return NULL_TREE;
3369 /* Equality can be computed only between a range and an
3370 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
3371 if (vr0->type == VR_RANGE)
3373 /* To simplify processing, make VR0 the anti-range. */
3374 value_range_t *tmp = vr0;
3375 vr0 = vr1;
3376 vr1 = tmp;
3379 gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
3381 if (compare_values_warnv (vr0->min, vr1->min, strict_overflow_p) == 0
3382 && compare_values_warnv (vr0->max, vr1->max, strict_overflow_p) == 0)
3383 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
3385 return NULL_TREE;
3388 if (!usable_range_p (vr0, strict_overflow_p)
3389 || !usable_range_p (vr1, strict_overflow_p))
3390 return NULL_TREE;
3392 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
3393 operands around and change the comparison code. */
3394 if (comp == GT_EXPR || comp == GE_EXPR)
3396 value_range_t *tmp;
3397 comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
3398 tmp = vr0;
3399 vr0 = vr1;
3400 vr1 = tmp;
3403 if (comp == EQ_EXPR)
3405 /* Equality may only be computed if both ranges represent
3406 exactly one value. */
3407 if (compare_values_warnv (vr0->min, vr0->max, strict_overflow_p) == 0
3408 && compare_values_warnv (vr1->min, vr1->max, strict_overflow_p) == 0)
3410 int cmp_min = compare_values_warnv (vr0->min, vr1->min,
3411 strict_overflow_p);
3412 int cmp_max = compare_values_warnv (vr0->max, vr1->max,
3413 strict_overflow_p);
3414 if (cmp_min == 0 && cmp_max == 0)
3415 return boolean_true_node;
3416 else if (cmp_min != -2 && cmp_max != -2)
3417 return boolean_false_node;
3419 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
3420 else if (compare_values_warnv (vr0->min, vr1->max,
3421 strict_overflow_p) == 1
3422 || compare_values_warnv (vr1->min, vr0->max,
3423 strict_overflow_p) == 1)
3424 return boolean_false_node;
3426 return NULL_TREE;
3428 else if (comp == NE_EXPR)
3430 int cmp1, cmp2;
3432 /* If VR0 is completely to the left or completely to the right
3433 of VR1, they are always different. Notice that we need to
3434 make sure that both comparisons yield similar results to
3435 avoid comparing values that cannot be compared at
3436 compile-time. */
3437 cmp1 = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
3438 cmp2 = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
3439 if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
3440 return boolean_true_node;
3442 /* If VR0 and VR1 represent a single value and are identical,
3443 return false. */
3444 else if (compare_values_warnv (vr0->min, vr0->max,
3445 strict_overflow_p) == 0
3446 && compare_values_warnv (vr1->min, vr1->max,
3447 strict_overflow_p) == 0
3448 && compare_values_warnv (vr0->min, vr1->min,
3449 strict_overflow_p) == 0
3450 && compare_values_warnv (vr0->max, vr1->max,
3451 strict_overflow_p) == 0)
3452 return boolean_false_node;
3454 /* Otherwise, they may or may not be different. */
3455 else
3456 return NULL_TREE;
3458 else if (comp == LT_EXPR || comp == LE_EXPR)
3460 int tst;
3462 /* If VR0 is to the left of VR1, return true. */
3463 tst = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
3464 if ((comp == LT_EXPR && tst == -1)
3465 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
3467 if (overflow_infinity_range_p (vr0)
3468 || overflow_infinity_range_p (vr1))
3469 *strict_overflow_p = true;
3470 return boolean_true_node;
3473 /* If VR0 is to the right of VR1, return false. */
3474 tst = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
3475 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
3476 || (comp == LE_EXPR && tst == 1))
3478 if (overflow_infinity_range_p (vr0)
3479 || overflow_infinity_range_p (vr1))
3480 *strict_overflow_p = true;
3481 return boolean_false_node;
3484 /* Otherwise, we don't know. */
3485 return NULL_TREE;
3488 gcc_unreachable ();
3492 /* Given a value range VR, a value VAL and a comparison code COMP, return
3493 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
3494 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
3495 always returns false. Return NULL_TREE if it is not always
3496 possible to determine the value of the comparison. Also set
3497 *STRICT_OVERFLOW_P to indicate whether a range with an overflow
3498 infinity was used in the test. */
3500 static tree
3501 compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val,
3502 bool *strict_overflow_p)
3504 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
3505 return NULL_TREE;
3507 /* Anti-ranges need to be handled separately. */
3508 if (vr->type == VR_ANTI_RANGE)
3510 /* For anti-ranges, the only predicates that we can compute at
3511 compile time are equality and inequality. */
3512 if (comp == GT_EXPR
3513 || comp == GE_EXPR
3514 || comp == LT_EXPR
3515 || comp == LE_EXPR)
3516 return NULL_TREE;
3518 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
3519 if (value_inside_range (val, vr) == 1)
3520 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
3522 return NULL_TREE;
3525 if (!usable_range_p (vr, strict_overflow_p))
3526 return NULL_TREE;
3528 if (comp == EQ_EXPR)
3530 /* EQ_EXPR may only be computed if VR represents exactly
3531 one value. */
3532 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0)
3534 int cmp = compare_values_warnv (vr->min, val, strict_overflow_p);
3535 if (cmp == 0)
3536 return boolean_true_node;
3537 else if (cmp == -1 || cmp == 1 || cmp == 2)
3538 return boolean_false_node;
3540 else if (compare_values_warnv (val, vr->min, strict_overflow_p) == -1
3541 || compare_values_warnv (vr->max, val, strict_overflow_p) == -1)
3542 return boolean_false_node;
3544 return NULL_TREE;
3546 else if (comp == NE_EXPR)
3548 /* If VAL is not inside VR, then they are always different. */
3549 if (compare_values_warnv (vr->max, val, strict_overflow_p) == -1
3550 || compare_values_warnv (vr->min, val, strict_overflow_p) == 1)
3551 return boolean_true_node;
3553 /* If VR represents exactly one value equal to VAL, then return
3554 false. */
3555 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0
3556 && compare_values_warnv (vr->min, val, strict_overflow_p) == 0)
3557 return boolean_false_node;
3559 /* Otherwise, they may or may not be different. */
3560 return NULL_TREE;
3562 else if (comp == LT_EXPR || comp == LE_EXPR)
3564 int tst;
3566 /* If VR is to the left of VAL, return true. */
3567 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
3568 if ((comp == LT_EXPR && tst == -1)
3569 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
3571 if (overflow_infinity_range_p (vr))
3572 *strict_overflow_p = true;
3573 return boolean_true_node;
3576 /* If VR is to the right of VAL, return false. */
3577 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
3578 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
3579 || (comp == LE_EXPR && tst == 1))
3581 if (overflow_infinity_range_p (vr))
3582 *strict_overflow_p = true;
3583 return boolean_false_node;
3586 /* Otherwise, we don't know. */
3587 return NULL_TREE;
3589 else if (comp == GT_EXPR || comp == GE_EXPR)
3591 int tst;
3593 /* If VR is to the right of VAL, return true. */
3594 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
3595 if ((comp == GT_EXPR && tst == 1)
3596 || (comp == GE_EXPR && (tst == 0 || tst == 1)))
3598 if (overflow_infinity_range_p (vr))
3599 *strict_overflow_p = true;
3600 return boolean_true_node;
3603 /* If VR is to the left of VAL, return false. */
3604 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
3605 if ((comp == GT_EXPR && (tst == -1 || tst == 0))
3606 || (comp == GE_EXPR && tst == -1))
3608 if (overflow_infinity_range_p (vr))
3609 *strict_overflow_p = true;
3610 return boolean_false_node;
3613 /* Otherwise, we don't know. */
3614 return NULL_TREE;
3617 gcc_unreachable ();
3621 /* Debugging dumps. */
3623 void dump_value_range (FILE *, value_range_t *);
3624 void debug_value_range (value_range_t *);
3625 void dump_all_value_ranges (FILE *);
3626 void debug_all_value_ranges (void);
3627 void dump_vr_equiv (FILE *, bitmap);
3628 void debug_vr_equiv (bitmap);
3631 /* Dump value range VR to FILE. */
3633 void
3634 dump_value_range (FILE *file, value_range_t *vr)
3636 if (vr == NULL)
3637 fprintf (file, "[]");
3638 else if (vr->type == VR_UNDEFINED)
3639 fprintf (file, "UNDEFINED");
3640 else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
3642 tree type = TREE_TYPE (vr->min);
3644 fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
3646 if (is_negative_overflow_infinity (vr->min))
3647 fprintf (file, "-INF(OVF)");
3648 else if (INTEGRAL_TYPE_P (type)
3649 && !TYPE_UNSIGNED (type)
3650 && vrp_val_is_min (vr->min))
3651 fprintf (file, "-INF");
3652 else
3653 print_generic_expr (file, vr->min, 0);
3655 fprintf (file, ", ");
3657 if (is_positive_overflow_infinity (vr->max))
3658 fprintf (file, "+INF(OVF)");
3659 else if (INTEGRAL_TYPE_P (type)
3660 && vrp_val_is_max (vr->max))
3661 fprintf (file, "+INF");
3662 else
3663 print_generic_expr (file, vr->max, 0);
3665 fprintf (file, "]");
3667 if (vr->equiv)
3669 bitmap_iterator bi;
3670 unsigned i, c = 0;
3672 fprintf (file, " EQUIVALENCES: { ");
3674 EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
3676 print_generic_expr (file, ssa_name (i), 0);
3677 fprintf (file, " ");
3678 c++;
3681 fprintf (file, "} (%u elements)", c);
3684 else if (vr->type == VR_VARYING)
3685 fprintf (file, "VARYING");
3686 else
3687 fprintf (file, "INVALID RANGE");
3691 /* Dump value range VR to stderr. */
3693 void
3694 debug_value_range (value_range_t *vr)
3696 dump_value_range (stderr, vr);
3697 fprintf (stderr, "\n");
3701 /* Dump value ranges of all SSA_NAMEs to FILE. */
3703 void
3704 dump_all_value_ranges (FILE *file)
3706 size_t i;
3708 for (i = 0; i < num_ssa_names; i++)
3710 if (vr_value[i])
3712 print_generic_expr (file, ssa_name (i), 0);
3713 fprintf (file, ": ");
3714 dump_value_range (file, vr_value[i]);
3715 fprintf (file, "\n");
3719 fprintf (file, "\n");
3723 /* Dump all value ranges to stderr. */
3725 void
3726 debug_all_value_ranges (void)
3728 dump_all_value_ranges (stderr);
3732 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
3733 create a new SSA name N and return the assertion assignment
3734 'V = ASSERT_EXPR <V, V OP W>'. */
3736 static gimple
3737 build_assert_expr_for (tree cond, tree v)
3739 tree n;
3740 gimple assertion;
3742 gcc_assert (TREE_CODE (v) == SSA_NAME);
3743 n = duplicate_ssa_name (v, NULL);
3745 if (COMPARISON_CLASS_P (cond))
3747 tree a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
3748 assertion = gimple_build_assign (n, a);
3750 else if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
3752 /* Given !V, build the assignment N = false. */
3753 tree op0 = TREE_OPERAND (cond, 0);
3754 gcc_assert (op0 == v);
3755 assertion = gimple_build_assign (n, boolean_false_node);
3757 else if (TREE_CODE (cond) == SSA_NAME)
3759 /* Given V, build the assignment N = true. */
3760 gcc_assert (v == cond);
3761 assertion = gimple_build_assign (n, boolean_true_node);
3763 else
3764 gcc_unreachable ();
3766 SSA_NAME_DEF_STMT (n) = assertion;
3768 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
3769 operand of the ASSERT_EXPR. Register the new name and the old one
3770 in the replacement table so that we can fix the SSA web after
3771 adding all the ASSERT_EXPRs. */
3772 register_new_name_mapping (n, v);
3774 return assertion;
3778 /* Return false if EXPR is a predicate expression involving floating
3779 point values. */
3781 static inline bool
3782 fp_predicate (gimple stmt)
3784 GIMPLE_CHECK (stmt, GIMPLE_COND);
3786 return FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt)));
3790 /* If the range of values taken by OP can be inferred after STMT executes,
3791 return the comparison code (COMP_CODE_P) and value (VAL_P) that
3792 describes the inferred range. Return true if a range could be
3793 inferred. */
3795 static bool
3796 infer_value_range (gimple stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
3798 *val_p = NULL_TREE;
3799 *comp_code_p = ERROR_MARK;
3801 /* Do not attempt to infer anything in names that flow through
3802 abnormal edges. */
3803 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
3804 return false;
3806 /* Similarly, don't infer anything from statements that may throw
3807 exceptions. */
3808 if (stmt_could_throw_p (stmt))
3809 return false;
3811 /* If STMT is the last statement of a basic block with no
3812 successors, there is no point inferring anything about any of its
3813 operands. We would not be able to find a proper insertion point
3814 for the assertion, anyway. */
3815 if (stmt_ends_bb_p (stmt) && EDGE_COUNT (gimple_bb (stmt)->succs) == 0)
3816 return false;
3818 /* We can only assume that a pointer dereference will yield
3819 non-NULL if -fdelete-null-pointer-checks is enabled. */
3820 if (flag_delete_null_pointer_checks
3821 && POINTER_TYPE_P (TREE_TYPE (op))
3822 && gimple_code (stmt) != GIMPLE_ASM)
3824 unsigned num_uses, num_loads, num_stores;
3826 count_uses_and_derefs (op, stmt, &num_uses, &num_loads, &num_stores);
3827 if (num_loads + num_stores > 0)
3829 *val_p = build_int_cst (TREE_TYPE (op), 0);
3830 *comp_code_p = NE_EXPR;
3831 return true;
3835 return false;
3839 void dump_asserts_for (FILE *, tree);
3840 void debug_asserts_for (tree);
3841 void dump_all_asserts (FILE *);
3842 void debug_all_asserts (void);
3844 /* Dump all the registered assertions for NAME to FILE. */
3846 void
3847 dump_asserts_for (FILE *file, tree name)
3849 assert_locus_t loc;
3851 fprintf (file, "Assertions to be inserted for ");
3852 print_generic_expr (file, name, 0);
3853 fprintf (file, "\n");
3855 loc = asserts_for[SSA_NAME_VERSION (name)];
3856 while (loc)
3858 fprintf (file, "\t");
3859 print_gimple_stmt (file, gsi_stmt (loc->si), 0, 0);
3860 fprintf (file, "\n\tBB #%d", loc->bb->index);
3861 if (loc->e)
3863 fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
3864 loc->e->dest->index);
3865 dump_edge_info (file, loc->e, 0);
3867 fprintf (file, "\n\tPREDICATE: ");
3868 print_generic_expr (file, name, 0);
3869 fprintf (file, " %s ", tree_code_name[(int)loc->comp_code]);
3870 print_generic_expr (file, loc->val, 0);
3871 fprintf (file, "\n\n");
3872 loc = loc->next;
3875 fprintf (file, "\n");
3879 /* Dump all the registered assertions for NAME to stderr. */
3881 void
3882 debug_asserts_for (tree name)
3884 dump_asserts_for (stderr, name);
3888 /* Dump all the registered assertions for all the names to FILE. */
3890 void
3891 dump_all_asserts (FILE *file)
3893 unsigned i;
3894 bitmap_iterator bi;
3896 fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
3897 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
3898 dump_asserts_for (file, ssa_name (i));
3899 fprintf (file, "\n");
3903 /* Dump all the registered assertions for all the names to stderr. */
3905 void
3906 debug_all_asserts (void)
3908 dump_all_asserts (stderr);
3912 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
3913 'EXPR COMP_CODE VAL' at a location that dominates block BB or
3914 E->DEST, then register this location as a possible insertion point
3915 for ASSERT_EXPR <NAME, EXPR COMP_CODE VAL>.
3917 BB, E and SI provide the exact insertion point for the new
3918 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
3919 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
3920 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
3921 must not be NULL. */
3923 static void
3924 register_new_assert_for (tree name, tree expr,
3925 enum tree_code comp_code,
3926 tree val,
3927 basic_block bb,
3928 edge e,
3929 gimple_stmt_iterator si)
3931 assert_locus_t n, loc, last_loc;
3932 basic_block dest_bb;
3934 #if defined ENABLE_CHECKING
3935 gcc_assert (bb == NULL || e == NULL);
3937 if (e == NULL)
3938 gcc_assert (gimple_code (gsi_stmt (si)) != GIMPLE_COND
3939 && gimple_code (gsi_stmt (si)) != GIMPLE_SWITCH);
3940 #endif
3942 /* Never build an assert comparing against an integer constant with
3943 TREE_OVERFLOW set. This confuses our undefined overflow warning
3944 machinery. */
3945 if (TREE_CODE (val) == INTEGER_CST
3946 && TREE_OVERFLOW (val))
3947 val = build_int_cst_wide (TREE_TYPE (val),
3948 TREE_INT_CST_LOW (val), TREE_INT_CST_HIGH (val));
3950 /* The new assertion A will be inserted at BB or E. We need to
3951 determine if the new location is dominated by a previously
3952 registered location for A. If we are doing an edge insertion,
3953 assume that A will be inserted at E->DEST. Note that this is not
3954 necessarily true.
3956 If E is a critical edge, it will be split. But even if E is
3957 split, the new block will dominate the same set of blocks that
3958 E->DEST dominates.
3960 The reverse, however, is not true, blocks dominated by E->DEST
3961 will not be dominated by the new block created to split E. So,
3962 if the insertion location is on a critical edge, we will not use
3963 the new location to move another assertion previously registered
3964 at a block dominated by E->DEST. */
3965 dest_bb = (bb) ? bb : e->dest;
3967 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
3968 VAL at a block dominating DEST_BB, then we don't need to insert a new
3969 one. Similarly, if the same assertion already exists at a block
3970 dominated by DEST_BB and the new location is not on a critical
3971 edge, then update the existing location for the assertion (i.e.,
3972 move the assertion up in the dominance tree).
3974 Note, this is implemented as a simple linked list because there
3975 should not be more than a handful of assertions registered per
3976 name. If this becomes a performance problem, a table hashed by
3977 COMP_CODE and VAL could be implemented. */
3978 loc = asserts_for[SSA_NAME_VERSION (name)];
3979 last_loc = loc;
3980 while (loc)
3982 if (loc->comp_code == comp_code
3983 && (loc->val == val
3984 || operand_equal_p (loc->val, val, 0))
3985 && (loc->expr == expr
3986 || operand_equal_p (loc->expr, expr, 0)))
3988 /* If the assertion NAME COMP_CODE VAL has already been
3989 registered at a basic block that dominates DEST_BB, then
3990 we don't need to insert the same assertion again. Note
3991 that we don't check strict dominance here to avoid
3992 replicating the same assertion inside the same basic
3993 block more than once (e.g., when a pointer is
3994 dereferenced several times inside a block).
3996 An exception to this rule are edge insertions. If the
3997 new assertion is to be inserted on edge E, then it will
3998 dominate all the other insertions that we may want to
3999 insert in DEST_BB. So, if we are doing an edge
4000 insertion, don't do this dominance check. */
4001 if (e == NULL
4002 && dominated_by_p (CDI_DOMINATORS, dest_bb, loc->bb))
4003 return;
4005 /* Otherwise, if E is not a critical edge and DEST_BB
4006 dominates the existing location for the assertion, move
4007 the assertion up in the dominance tree by updating its
4008 location information. */
4009 if ((e == NULL || !EDGE_CRITICAL_P (e))
4010 && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
4012 loc->bb = dest_bb;
4013 loc->e = e;
4014 loc->si = si;
4015 return;
4019 /* Update the last node of the list and move to the next one. */
4020 last_loc = loc;
4021 loc = loc->next;
4024 /* If we didn't find an assertion already registered for
4025 NAME COMP_CODE VAL, add a new one at the end of the list of
4026 assertions associated with NAME. */
4027 n = XNEW (struct assert_locus_d);
4028 n->bb = dest_bb;
4029 n->e = e;
4030 n->si = si;
4031 n->comp_code = comp_code;
4032 n->val = val;
4033 n->expr = expr;
4034 n->next = NULL;
4036 if (last_loc)
4037 last_loc->next = n;
4038 else
4039 asserts_for[SSA_NAME_VERSION (name)] = n;
4041 bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
4044 /* (COND_OP0 COND_CODE COND_OP1) is a predicate which uses NAME.
4045 Extract a suitable test code and value and store them into *CODE_P and
4046 *VAL_P so the predicate is normalized to NAME *CODE_P *VAL_P.
4048 If no extraction was possible, return FALSE, otherwise return TRUE.
4050 If INVERT is true, then we invert the result stored into *CODE_P. */
4052 static bool
4053 extract_code_and_val_from_cond_with_ops (tree name, enum tree_code cond_code,
4054 tree cond_op0, tree cond_op1,
4055 bool invert, enum tree_code *code_p,
4056 tree *val_p)
4058 enum tree_code comp_code;
4059 tree val;
4061 /* Otherwise, we have a comparison of the form NAME COMP VAL
4062 or VAL COMP NAME. */
4063 if (name == cond_op1)
4065 /* If the predicate is of the form VAL COMP NAME, flip
4066 COMP around because we need to register NAME as the
4067 first operand in the predicate. */
4068 comp_code = swap_tree_comparison (cond_code);
4069 val = cond_op0;
4071 else
4073 /* The comparison is of the form NAME COMP VAL, so the
4074 comparison code remains unchanged. */
4075 comp_code = cond_code;
4076 val = cond_op1;
4079 /* Invert the comparison code as necessary. */
4080 if (invert)
4081 comp_code = invert_tree_comparison (comp_code, 0);
4083 /* VRP does not handle float types. */
4084 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (val)))
4085 return false;
4087 /* Do not register always-false predicates.
4088 FIXME: this works around a limitation in fold() when dealing with
4089 enumerations. Given 'enum { N1, N2 } x;', fold will not
4090 fold 'if (x > N2)' to 'if (0)'. */
4091 if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
4092 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
4094 tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
4095 tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
4097 if (comp_code == GT_EXPR
4098 && (!max
4099 || compare_values (val, max) == 0))
4100 return false;
4102 if (comp_code == LT_EXPR
4103 && (!min
4104 || compare_values (val, min) == 0))
4105 return false;
4107 *code_p = comp_code;
4108 *val_p = val;
4109 return true;
4112 /* Try to register an edge assertion for SSA name NAME on edge E for
4113 the condition COND contributing to the conditional jump pointed to by BSI.
4114 Invert the condition COND if INVERT is true.
4115 Return true if an assertion for NAME could be registered. */
4117 static bool
4118 register_edge_assert_for_2 (tree name, edge e, gimple_stmt_iterator bsi,
4119 enum tree_code cond_code,
4120 tree cond_op0, tree cond_op1, bool invert)
4122 tree val;
4123 enum tree_code comp_code;
4124 bool retval = false;
4126 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
4127 cond_op0,
4128 cond_op1,
4129 invert, &comp_code, &val))
4130 return false;
4132 /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
4133 reachable from E. */
4134 if (live_on_edge (e, name)
4135 && !has_single_use (name))
4137 register_new_assert_for (name, name, comp_code, val, NULL, e, bsi);
4138 retval = true;
4141 /* In the case of NAME <= CST and NAME being defined as
4142 NAME = (unsigned) NAME2 + CST2 we can assert NAME2 >= -CST2
4143 and NAME2 <= CST - CST2. We can do the same for NAME > CST.
4144 This catches range and anti-range tests. */
4145 if ((comp_code == LE_EXPR
4146 || comp_code == GT_EXPR)
4147 && TREE_CODE (val) == INTEGER_CST
4148 && TYPE_UNSIGNED (TREE_TYPE (val)))
4150 gimple def_stmt = SSA_NAME_DEF_STMT (name);
4151 tree cst2 = NULL_TREE, name2 = NULL_TREE, name3 = NULL_TREE;
4153 /* Extract CST2 from the (optional) addition. */
4154 if (is_gimple_assign (def_stmt)
4155 && gimple_assign_rhs_code (def_stmt) == PLUS_EXPR)
4157 name2 = gimple_assign_rhs1 (def_stmt);
4158 cst2 = gimple_assign_rhs2 (def_stmt);
4159 if (TREE_CODE (name2) == SSA_NAME
4160 && TREE_CODE (cst2) == INTEGER_CST)
4161 def_stmt = SSA_NAME_DEF_STMT (name2);
4164 /* Extract NAME2 from the (optional) sign-changing cast. */
4165 if (gimple_assign_cast_p (def_stmt))
4167 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt))
4168 && ! TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
4169 && (TYPE_PRECISION (gimple_expr_type (def_stmt))
4170 == TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))))
4171 name3 = gimple_assign_rhs1 (def_stmt);
4174 /* If name3 is used later, create an ASSERT_EXPR for it. */
4175 if (name3 != NULL_TREE
4176 && TREE_CODE (name3) == SSA_NAME
4177 && (cst2 == NULL_TREE
4178 || TREE_CODE (cst2) == INTEGER_CST)
4179 && INTEGRAL_TYPE_P (TREE_TYPE (name3))
4180 && live_on_edge (e, name3)
4181 && !has_single_use (name3))
4183 tree tmp;
4185 /* Build an expression for the range test. */
4186 tmp = build1 (NOP_EXPR, TREE_TYPE (name), name3);
4187 if (cst2 != NULL_TREE)
4188 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
4190 if (dump_file)
4192 fprintf (dump_file, "Adding assert for ");
4193 print_generic_expr (dump_file, name3, 0);
4194 fprintf (dump_file, " from ");
4195 print_generic_expr (dump_file, tmp, 0);
4196 fprintf (dump_file, "\n");
4199 register_new_assert_for (name3, tmp, comp_code, val, NULL, e, bsi);
4201 retval = true;
4204 /* If name2 is used later, create an ASSERT_EXPR for it. */
4205 if (name2 != NULL_TREE
4206 && TREE_CODE (name2) == SSA_NAME
4207 && TREE_CODE (cst2) == INTEGER_CST
4208 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
4209 && live_on_edge (e, name2)
4210 && !has_single_use (name2))
4212 tree tmp;
4214 /* Build an expression for the range test. */
4215 tmp = name2;
4216 if (TREE_TYPE (name) != TREE_TYPE (name2))
4217 tmp = build1 (NOP_EXPR, TREE_TYPE (name), tmp);
4218 if (cst2 != NULL_TREE)
4219 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
4221 if (dump_file)
4223 fprintf (dump_file, "Adding assert for ");
4224 print_generic_expr (dump_file, name2, 0);
4225 fprintf (dump_file, " from ");
4226 print_generic_expr (dump_file, tmp, 0);
4227 fprintf (dump_file, "\n");
4230 register_new_assert_for (name2, tmp, comp_code, val, NULL, e, bsi);
4232 retval = true;
4236 return retval;
4239 /* OP is an operand of a truth value expression which is known to have
4240 a particular value. Register any asserts for OP and for any
4241 operands in OP's defining statement.
4243 If CODE is EQ_EXPR, then we want to register OP is zero (false),
4244 if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
4246 static bool
4247 register_edge_assert_for_1 (tree op, enum tree_code code,
4248 edge e, gimple_stmt_iterator bsi)
4250 bool retval = false;
4251 gimple op_def;
4252 tree val;
4253 enum tree_code rhs_code;
4255 /* We only care about SSA_NAMEs. */
4256 if (TREE_CODE (op) != SSA_NAME)
4257 return false;
4259 /* We know that OP will have a zero or nonzero value. If OP is used
4260 more than once go ahead and register an assert for OP.
4262 The FOUND_IN_SUBGRAPH support is not helpful in this situation as
4263 it will always be set for OP (because OP is used in a COND_EXPR in
4264 the subgraph). */
4265 if (!has_single_use (op))
4267 val = build_int_cst (TREE_TYPE (op), 0);
4268 register_new_assert_for (op, op, code, val, NULL, e, bsi);
4269 retval = true;
4272 /* Now look at how OP is set. If it's set from a comparison,
4273 a truth operation or some bit operations, then we may be able
4274 to register information about the operands of that assignment. */
4275 op_def = SSA_NAME_DEF_STMT (op);
4276 if (gimple_code (op_def) != GIMPLE_ASSIGN)
4277 return retval;
4279 rhs_code = gimple_assign_rhs_code (op_def);
4281 if (TREE_CODE_CLASS (rhs_code) == tcc_comparison)
4283 bool invert = (code == EQ_EXPR ? true : false);
4284 tree op0 = gimple_assign_rhs1 (op_def);
4285 tree op1 = gimple_assign_rhs2 (op_def);
4287 if (TREE_CODE (op0) == SSA_NAME)
4288 retval |= register_edge_assert_for_2 (op0, e, bsi, rhs_code, op0, op1,
4289 invert);
4290 if (TREE_CODE (op1) == SSA_NAME)
4291 retval |= register_edge_assert_for_2 (op1, e, bsi, rhs_code, op0, op1,
4292 invert);
4294 else if ((code == NE_EXPR
4295 && (gimple_assign_rhs_code (op_def) == TRUTH_AND_EXPR
4296 || gimple_assign_rhs_code (op_def) == BIT_AND_EXPR))
4297 || (code == EQ_EXPR
4298 && (gimple_assign_rhs_code (op_def) == TRUTH_OR_EXPR
4299 || gimple_assign_rhs_code (op_def) == BIT_IOR_EXPR)))
4301 /* Recurse on each operand. */
4302 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
4303 code, e, bsi);
4304 retval |= register_edge_assert_for_1 (gimple_assign_rhs2 (op_def),
4305 code, e, bsi);
4307 else if (gimple_assign_rhs_code (op_def) == TRUTH_NOT_EXPR)
4309 /* Recurse, flipping CODE. */
4310 code = invert_tree_comparison (code, false);
4311 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
4312 code, e, bsi);
4314 else if (gimple_assign_rhs_code (op_def) == SSA_NAME)
4316 /* Recurse through the copy. */
4317 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
4318 code, e, bsi);
4320 else if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (op_def)))
4322 /* Recurse through the type conversion. */
4323 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
4324 code, e, bsi);
4327 return retval;
4330 /* Try to register an edge assertion for SSA name NAME on edge E for
4331 the condition COND contributing to the conditional jump pointed to by SI.
4332 Return true if an assertion for NAME could be registered. */
4334 static bool
4335 register_edge_assert_for (tree name, edge e, gimple_stmt_iterator si,
4336 enum tree_code cond_code, tree cond_op0,
4337 tree cond_op1)
4339 tree val;
4340 enum tree_code comp_code;
4341 bool retval = false;
4342 bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
4344 /* Do not attempt to infer anything in names that flow through
4345 abnormal edges. */
4346 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
4347 return false;
4349 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
4350 cond_op0, cond_op1,
4351 is_else_edge,
4352 &comp_code, &val))
4353 return false;
4355 /* Register ASSERT_EXPRs for name. */
4356 retval |= register_edge_assert_for_2 (name, e, si, cond_code, cond_op0,
4357 cond_op1, is_else_edge);
4360 /* If COND is effectively an equality test of an SSA_NAME against
4361 the value zero or one, then we may be able to assert values
4362 for SSA_NAMEs which flow into COND. */
4364 /* In the case of NAME == 1 or NAME != 0, for TRUTH_AND_EXPR defining
4365 statement of NAME we can assert both operands of the TRUTH_AND_EXPR
4366 have nonzero value. */
4367 if (((comp_code == EQ_EXPR && integer_onep (val))
4368 || (comp_code == NE_EXPR && integer_zerop (val))))
4370 gimple def_stmt = SSA_NAME_DEF_STMT (name);
4372 if (is_gimple_assign (def_stmt)
4373 && (gimple_assign_rhs_code (def_stmt) == TRUTH_AND_EXPR
4374 || gimple_assign_rhs_code (def_stmt) == BIT_AND_EXPR))
4376 tree op0 = gimple_assign_rhs1 (def_stmt);
4377 tree op1 = gimple_assign_rhs2 (def_stmt);
4378 retval |= register_edge_assert_for_1 (op0, NE_EXPR, e, si);
4379 retval |= register_edge_assert_for_1 (op1, NE_EXPR, e, si);
4383 /* In the case of NAME == 0 or NAME != 1, for TRUTH_OR_EXPR defining
4384 statement of NAME we can assert both operands of the TRUTH_OR_EXPR
4385 have zero value. */
4386 if (((comp_code == EQ_EXPR && integer_zerop (val))
4387 || (comp_code == NE_EXPR && integer_onep (val))))
4389 gimple def_stmt = SSA_NAME_DEF_STMT (name);
4391 if (is_gimple_assign (def_stmt)
4392 && (gimple_assign_rhs_code (def_stmt) == TRUTH_OR_EXPR
4393 /* For BIT_IOR_EXPR only if NAME == 0 both operands have
4394 necessarily zero value. */
4395 || (comp_code == EQ_EXPR
4396 && (gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR))))
4398 tree op0 = gimple_assign_rhs1 (def_stmt);
4399 tree op1 = gimple_assign_rhs2 (def_stmt);
4400 retval |= register_edge_assert_for_1 (op0, EQ_EXPR, e, si);
4401 retval |= register_edge_assert_for_1 (op1, EQ_EXPR, e, si);
4405 return retval;
4409 /* Determine whether the outgoing edges of BB should receive an
4410 ASSERT_EXPR for each of the operands of BB's LAST statement.
4411 The last statement of BB must be a COND_EXPR.
4413 If any of the sub-graphs rooted at BB have an interesting use of
4414 the predicate operands, an assert location node is added to the
4415 list of assertions for the corresponding operands. */
4417 static bool
4418 find_conditional_asserts (basic_block bb, gimple last)
4420 bool need_assert;
4421 gimple_stmt_iterator bsi;
4422 tree op;
4423 edge_iterator ei;
4424 edge e;
4425 ssa_op_iter iter;
4427 need_assert = false;
4428 bsi = gsi_for_stmt (last);
4430 /* Look for uses of the operands in each of the sub-graphs
4431 rooted at BB. We need to check each of the outgoing edges
4432 separately, so that we know what kind of ASSERT_EXPR to
4433 insert. */
4434 FOR_EACH_EDGE (e, ei, bb->succs)
4436 if (e->dest == bb)
4437 continue;
4439 /* Register the necessary assertions for each operand in the
4440 conditional predicate. */
4441 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
4443 need_assert |= register_edge_assert_for (op, e, bsi,
4444 gimple_cond_code (last),
4445 gimple_cond_lhs (last),
4446 gimple_cond_rhs (last));
4450 return need_assert;
4453 /* Compare two case labels sorting first by the destination label uid
4454 and then by the case value. */
4456 static int
4457 compare_case_labels (const void *p1, const void *p2)
4459 const_tree const case1 = *(const_tree const*)p1;
4460 const_tree const case2 = *(const_tree const*)p2;
4461 unsigned int uid1 = DECL_UID (CASE_LABEL (case1));
4462 unsigned int uid2 = DECL_UID (CASE_LABEL (case2));
4464 if (uid1 < uid2)
4465 return -1;
4466 else if (uid1 == uid2)
4468 /* Make sure the default label is first in a group. */
4469 if (!CASE_LOW (case1))
4470 return -1;
4471 else if (!CASE_LOW (case2))
4472 return 1;
4473 else
4474 return tree_int_cst_compare (CASE_LOW (case1), CASE_LOW (case2));
4476 else
4477 return 1;
4480 /* Determine whether the outgoing edges of BB should receive an
4481 ASSERT_EXPR for each of the operands of BB's LAST statement.
4482 The last statement of BB must be a SWITCH_EXPR.
4484 If any of the sub-graphs rooted at BB have an interesting use of
4485 the predicate operands, an assert location node is added to the
4486 list of assertions for the corresponding operands. */
4488 static bool
4489 find_switch_asserts (basic_block bb, gimple last)
4491 bool need_assert;
4492 gimple_stmt_iterator bsi;
4493 tree op;
4494 edge e;
4495 tree vec2;
4496 size_t n = gimple_switch_num_labels(last);
4497 #if GCC_VERSION >= 4000
4498 unsigned int idx;
4499 #else
4500 /* Work around GCC 3.4 bug (PR 37086). */
4501 volatile unsigned int idx;
4502 #endif
4504 need_assert = false;
4505 bsi = gsi_for_stmt (last);
4506 op = gimple_switch_index (last);
4507 if (TREE_CODE (op) != SSA_NAME)
4508 return false;
4510 /* Build a vector of case labels sorted by destination label. */
4511 vec2 = make_tree_vec (n);
4512 for (idx = 0; idx < n; ++idx)
4513 TREE_VEC_ELT (vec2, idx) = gimple_switch_label (last, idx);
4514 qsort (&TREE_VEC_ELT (vec2, 0), n, sizeof (tree), compare_case_labels);
4516 for (idx = 0; idx < n; ++idx)
4518 tree min, max;
4519 tree cl = TREE_VEC_ELT (vec2, idx);
4521 min = CASE_LOW (cl);
4522 max = CASE_HIGH (cl);
4524 /* If there are multiple case labels with the same destination
4525 we need to combine them to a single value range for the edge. */
4526 if (idx + 1 < n
4527 && CASE_LABEL (cl) == CASE_LABEL (TREE_VEC_ELT (vec2, idx + 1)))
4529 /* Skip labels until the last of the group. */
4530 do {
4531 ++idx;
4532 } while (idx < n
4533 && CASE_LABEL (cl) == CASE_LABEL (TREE_VEC_ELT (vec2, idx)));
4534 --idx;
4536 /* Pick up the maximum of the case label range. */
4537 if (CASE_HIGH (TREE_VEC_ELT (vec2, idx)))
4538 max = CASE_HIGH (TREE_VEC_ELT (vec2, idx));
4539 else
4540 max = CASE_LOW (TREE_VEC_ELT (vec2, idx));
4543 /* Nothing to do if the range includes the default label until we
4544 can register anti-ranges. */
4545 if (min == NULL_TREE)
4546 continue;
4548 /* Find the edge to register the assert expr on. */
4549 e = find_edge (bb, label_to_block (CASE_LABEL (cl)));
4551 /* Register the necessary assertions for the operand in the
4552 SWITCH_EXPR. */
4553 need_assert |= register_edge_assert_for (op, e, bsi,
4554 max ? GE_EXPR : EQ_EXPR,
4556 fold_convert (TREE_TYPE (op),
4557 min));
4558 if (max)
4560 need_assert |= register_edge_assert_for (op, e, bsi, LE_EXPR,
4562 fold_convert (TREE_TYPE (op),
4563 max));
4567 return need_assert;
4571 /* Traverse all the statements in block BB looking for statements that
4572 may generate useful assertions for the SSA names in their operand.
4573 If a statement produces a useful assertion A for name N_i, then the
4574 list of assertions already generated for N_i is scanned to
4575 determine if A is actually needed.
4577 If N_i already had the assertion A at a location dominating the
4578 current location, then nothing needs to be done. Otherwise, the
4579 new location for A is recorded instead.
4581 1- For every statement S in BB, all the variables used by S are
4582 added to bitmap FOUND_IN_SUBGRAPH.
4584 2- If statement S uses an operand N in a way that exposes a known
4585 value range for N, then if N was not already generated by an
4586 ASSERT_EXPR, create a new assert location for N. For instance,
4587 if N is a pointer and the statement dereferences it, we can
4588 assume that N is not NULL.
4590 3- COND_EXPRs are a special case of #2. We can derive range
4591 information from the predicate but need to insert different
4592 ASSERT_EXPRs for each of the sub-graphs rooted at the
4593 conditional block. If the last statement of BB is a conditional
4594 expression of the form 'X op Y', then
4596 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
4598 b) If the conditional is the only entry point to the sub-graph
4599 corresponding to the THEN_CLAUSE, recurse into it. On
4600 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
4601 an ASSERT_EXPR is added for the corresponding variable.
4603 c) Repeat step (b) on the ELSE_CLAUSE.
4605 d) Mark X and Y in FOUND_IN_SUBGRAPH.
4607 For instance,
4609 if (a == 9)
4610 b = a;
4611 else
4612 b = c + 1;
4614 In this case, an assertion on the THEN clause is useful to
4615 determine that 'a' is always 9 on that edge. However, an assertion
4616 on the ELSE clause would be unnecessary.
4618 4- If BB does not end in a conditional expression, then we recurse
4619 into BB's dominator children.
4621 At the end of the recursive traversal, every SSA name will have a
4622 list of locations where ASSERT_EXPRs should be added. When a new
4623 location for name N is found, it is registered by calling
4624 register_new_assert_for. That function keeps track of all the
4625 registered assertions to prevent adding unnecessary assertions.
4626 For instance, if a pointer P_4 is dereferenced more than once in a
4627 dominator tree, only the location dominating all the dereference of
4628 P_4 will receive an ASSERT_EXPR.
4630 If this function returns true, then it means that there are names
4631 for which we need to generate ASSERT_EXPRs. Those assertions are
4632 inserted by process_assert_insertions. */
4634 static bool
4635 find_assert_locations_1 (basic_block bb, sbitmap live)
4637 gimple_stmt_iterator si;
4638 gimple last;
4639 gimple phi;
4640 bool need_assert;
4642 need_assert = false;
4643 last = last_stmt (bb);
4645 /* If BB's last statement is a conditional statement involving integer
4646 operands, determine if we need to add ASSERT_EXPRs. */
4647 if (last
4648 && gimple_code (last) == GIMPLE_COND
4649 && !fp_predicate (last)
4650 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
4651 need_assert |= find_conditional_asserts (bb, last);
4653 /* If BB's last statement is a switch statement involving integer
4654 operands, determine if we need to add ASSERT_EXPRs. */
4655 if (last
4656 && gimple_code (last) == GIMPLE_SWITCH
4657 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
4658 need_assert |= find_switch_asserts (bb, last);
4660 /* Traverse all the statements in BB marking used names and looking
4661 for statements that may infer assertions for their used operands. */
4662 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
4664 gimple stmt;
4665 tree op;
4666 ssa_op_iter i;
4668 stmt = gsi_stmt (si);
4670 if (is_gimple_debug (stmt))
4671 continue;
4673 /* See if we can derive an assertion for any of STMT's operands. */
4674 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
4676 tree value;
4677 enum tree_code comp_code;
4679 /* Mark OP in our live bitmap. */
4680 SET_BIT (live, SSA_NAME_VERSION (op));
4682 /* If OP is used in such a way that we can infer a value
4683 range for it, and we don't find a previous assertion for
4684 it, create a new assertion location node for OP. */
4685 if (infer_value_range (stmt, op, &comp_code, &value))
4687 /* If we are able to infer a nonzero value range for OP,
4688 then walk backwards through the use-def chain to see if OP
4689 was set via a typecast.
4691 If so, then we can also infer a nonzero value range
4692 for the operand of the NOP_EXPR. */
4693 if (comp_code == NE_EXPR && integer_zerop (value))
4695 tree t = op;
4696 gimple def_stmt = SSA_NAME_DEF_STMT (t);
4698 while (is_gimple_assign (def_stmt)
4699 && gimple_assign_rhs_code (def_stmt) == NOP_EXPR
4700 && TREE_CODE
4701 (gimple_assign_rhs1 (def_stmt)) == SSA_NAME
4702 && POINTER_TYPE_P
4703 (TREE_TYPE (gimple_assign_rhs1 (def_stmt))))
4705 t = gimple_assign_rhs1 (def_stmt);
4706 def_stmt = SSA_NAME_DEF_STMT (t);
4708 /* Note we want to register the assert for the
4709 operand of the NOP_EXPR after SI, not after the
4710 conversion. */
4711 if (! has_single_use (t))
4713 register_new_assert_for (t, t, comp_code, value,
4714 bb, NULL, si);
4715 need_assert = true;
4720 /* If OP is used only once, namely in this STMT, don't
4721 bother creating an ASSERT_EXPR for it. Such an
4722 ASSERT_EXPR would do nothing but increase compile time. */
4723 if (!has_single_use (op))
4725 register_new_assert_for (op, op, comp_code, value,
4726 bb, NULL, si);
4727 need_assert = true;
4733 /* Traverse all PHI nodes in BB marking used operands. */
4734 for (si = gsi_start_phis (bb); !gsi_end_p(si); gsi_next (&si))
4736 use_operand_p arg_p;
4737 ssa_op_iter i;
4738 phi = gsi_stmt (si);
4740 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
4742 tree arg = USE_FROM_PTR (arg_p);
4743 if (TREE_CODE (arg) == SSA_NAME)
4744 SET_BIT (live, SSA_NAME_VERSION (arg));
4748 return need_assert;
4751 /* Do an RPO walk over the function computing SSA name liveness
4752 on-the-fly and deciding on assert expressions to insert.
4753 Returns true if there are assert expressions to be inserted. */
4755 static bool
4756 find_assert_locations (void)
4758 int *rpo = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
4759 int *bb_rpo = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
4760 int *last_rpo = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
4761 int rpo_cnt, i;
4762 bool need_asserts;
4764 live = XCNEWVEC (sbitmap, last_basic_block + NUM_FIXED_BLOCKS);
4765 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
4766 for (i = 0; i < rpo_cnt; ++i)
4767 bb_rpo[rpo[i]] = i;
4769 need_asserts = false;
4770 for (i = rpo_cnt-1; i >= 0; --i)
4772 basic_block bb = BASIC_BLOCK (rpo[i]);
4773 edge e;
4774 edge_iterator ei;
4776 if (!live[rpo[i]])
4778 live[rpo[i]] = sbitmap_alloc (num_ssa_names);
4779 sbitmap_zero (live[rpo[i]]);
4782 /* Process BB and update the live information with uses in
4783 this block. */
4784 need_asserts |= find_assert_locations_1 (bb, live[rpo[i]]);
4786 /* Merge liveness into the predecessor blocks and free it. */
4787 if (!sbitmap_empty_p (live[rpo[i]]))
4789 int pred_rpo = i;
4790 FOR_EACH_EDGE (e, ei, bb->preds)
4792 int pred = e->src->index;
4793 if (e->flags & EDGE_DFS_BACK)
4794 continue;
4796 if (!live[pred])
4798 live[pred] = sbitmap_alloc (num_ssa_names);
4799 sbitmap_zero (live[pred]);
4801 sbitmap_a_or_b (live[pred], live[pred], live[rpo[i]]);
4803 if (bb_rpo[pred] < pred_rpo)
4804 pred_rpo = bb_rpo[pred];
4807 /* Record the RPO number of the last visited block that needs
4808 live information from this block. */
4809 last_rpo[rpo[i]] = pred_rpo;
4811 else
4813 sbitmap_free (live[rpo[i]]);
4814 live[rpo[i]] = NULL;
4817 /* We can free all successors live bitmaps if all their
4818 predecessors have been visited already. */
4819 FOR_EACH_EDGE (e, ei, bb->succs)
4820 if (last_rpo[e->dest->index] == i
4821 && live[e->dest->index])
4823 sbitmap_free (live[e->dest->index]);
4824 live[e->dest->index] = NULL;
4828 XDELETEVEC (rpo);
4829 XDELETEVEC (bb_rpo);
4830 XDELETEVEC (last_rpo);
4831 for (i = 0; i < last_basic_block + NUM_FIXED_BLOCKS; ++i)
4832 if (live[i])
4833 sbitmap_free (live[i]);
4834 XDELETEVEC (live);
4836 return need_asserts;
4839 /* Create an ASSERT_EXPR for NAME and insert it in the location
4840 indicated by LOC. Return true if we made any edge insertions. */
4842 static bool
4843 process_assert_insertions_for (tree name, assert_locus_t loc)
4845 /* Build the comparison expression NAME_i COMP_CODE VAL. */
4846 gimple stmt;
4847 tree cond;
4848 gimple assert_stmt;
4849 edge_iterator ei;
4850 edge e;
4852 /* If we have X <=> X do not insert an assert expr for that. */
4853 if (loc->expr == loc->val)
4854 return false;
4856 cond = build2 (loc->comp_code, boolean_type_node, loc->expr, loc->val);
4857 assert_stmt = build_assert_expr_for (cond, name);
4858 if (loc->e)
4860 /* We have been asked to insert the assertion on an edge. This
4861 is used only by COND_EXPR and SWITCH_EXPR assertions. */
4862 #if defined ENABLE_CHECKING
4863 gcc_assert (gimple_code (gsi_stmt (loc->si)) == GIMPLE_COND
4864 || gimple_code (gsi_stmt (loc->si)) == GIMPLE_SWITCH);
4865 #endif
4867 gsi_insert_on_edge (loc->e, assert_stmt);
4868 return true;
4871 /* Otherwise, we can insert right after LOC->SI iff the
4872 statement must not be the last statement in the block. */
4873 stmt = gsi_stmt (loc->si);
4874 if (!stmt_ends_bb_p (stmt))
4876 gsi_insert_after (&loc->si, assert_stmt, GSI_SAME_STMT);
4877 return false;
4880 /* If STMT must be the last statement in BB, we can only insert new
4881 assertions on the non-abnormal edge out of BB. Note that since
4882 STMT is not control flow, there may only be one non-abnormal edge
4883 out of BB. */
4884 FOR_EACH_EDGE (e, ei, loc->bb->succs)
4885 if (!(e->flags & EDGE_ABNORMAL))
4887 gsi_insert_on_edge (e, assert_stmt);
4888 return true;
4891 gcc_unreachable ();
4895 /* Process all the insertions registered for every name N_i registered
4896 in NEED_ASSERT_FOR. The list of assertions to be inserted are
4897 found in ASSERTS_FOR[i]. */
4899 static void
4900 process_assert_insertions (void)
4902 unsigned i;
4903 bitmap_iterator bi;
4904 bool update_edges_p = false;
4905 int num_asserts = 0;
4907 if (dump_file && (dump_flags & TDF_DETAILS))
4908 dump_all_asserts (dump_file);
4910 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
4912 assert_locus_t loc = asserts_for[i];
4913 gcc_assert (loc);
4915 while (loc)
4917 assert_locus_t next = loc->next;
4918 update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
4919 free (loc);
4920 loc = next;
4921 num_asserts++;
4925 if (update_edges_p)
4926 gsi_commit_edge_inserts ();
4928 statistics_counter_event (cfun, "Number of ASSERT_EXPR expressions inserted",
4929 num_asserts);
4933 /* Traverse the flowgraph looking for conditional jumps to insert range
4934 expressions. These range expressions are meant to provide information
4935 to optimizations that need to reason in terms of value ranges. They
4936 will not be expanded into RTL. For instance, given:
4938 x = ...
4939 y = ...
4940 if (x < y)
4941 y = x - 2;
4942 else
4943 x = y + 3;
4945 this pass will transform the code into:
4947 x = ...
4948 y = ...
4949 if (x < y)
4951 x = ASSERT_EXPR <x, x < y>
4952 y = x - 2
4954 else
4956 y = ASSERT_EXPR <y, x <= y>
4957 x = y + 3
4960 The idea is that once copy and constant propagation have run, other
4961 optimizations will be able to determine what ranges of values can 'x'
4962 take in different paths of the code, simply by checking the reaching
4963 definition of 'x'. */
4965 static void
4966 insert_range_assertions (void)
4968 need_assert_for = BITMAP_ALLOC (NULL);
4969 asserts_for = XCNEWVEC (assert_locus_t, num_ssa_names);
4971 calculate_dominance_info (CDI_DOMINATORS);
4973 if (find_assert_locations ())
4975 process_assert_insertions ();
4976 update_ssa (TODO_update_ssa_no_phi);
4979 if (dump_file && (dump_flags & TDF_DETAILS))
4981 fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
4982 dump_function_to_file (current_function_decl, dump_file, dump_flags);
4985 free (asserts_for);
4986 BITMAP_FREE (need_assert_for);
4989 /* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
4990 and "struct" hacks. If VRP can determine that the
4991 array subscript is a constant, check if it is outside valid
4992 range. If the array subscript is a RANGE, warn if it is
4993 non-overlapping with valid range.
4994 IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
4996 static void
4997 check_array_ref (location_t location, tree ref, bool ignore_off_by_one)
4999 value_range_t* vr = NULL;
5000 tree low_sub, up_sub;
5001 tree low_bound, up_bound = array_ref_up_bound (ref);
5003 low_sub = up_sub = TREE_OPERAND (ref, 1);
5005 if (!up_bound || TREE_NO_WARNING (ref)
5006 || TREE_CODE (up_bound) != INTEGER_CST
5007 /* Can not check flexible arrays. */
5008 || (TYPE_SIZE (TREE_TYPE (ref)) == NULL_TREE
5009 && TYPE_DOMAIN (TREE_TYPE (ref)) != NULL_TREE
5010 && TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (ref))) == NULL_TREE)
5011 /* Accesses after the end of arrays of size 0 (gcc
5012 extension) and 1 are likely intentional ("struct
5013 hack"). */
5014 || compare_tree_int (up_bound, 1) <= 0)
5015 return;
5017 low_bound = array_ref_low_bound (ref);
5019 if (TREE_CODE (low_sub) == SSA_NAME)
5021 vr = get_value_range (low_sub);
5022 if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
5024 low_sub = vr->type == VR_RANGE ? vr->max : vr->min;
5025 up_sub = vr->type == VR_RANGE ? vr->min : vr->max;
5029 if (vr && vr->type == VR_ANTI_RANGE)
5031 if (TREE_CODE (up_sub) == INTEGER_CST
5032 && tree_int_cst_lt (up_bound, up_sub)
5033 && TREE_CODE (low_sub) == INTEGER_CST
5034 && tree_int_cst_lt (low_sub, low_bound))
5036 warning_at (location, OPT_Warray_bounds,
5037 "array subscript is outside array bounds");
5038 TREE_NO_WARNING (ref) = 1;
5041 else if (TREE_CODE (up_sub) == INTEGER_CST
5042 && tree_int_cst_lt (up_bound, up_sub)
5043 && !tree_int_cst_equal (up_bound, up_sub)
5044 && (!ignore_off_by_one
5045 || !tree_int_cst_equal (int_const_binop (PLUS_EXPR,
5046 up_bound,
5047 integer_one_node,
5049 up_sub)))
5051 warning_at (location, OPT_Warray_bounds,
5052 "array subscript is above array bounds");
5053 TREE_NO_WARNING (ref) = 1;
5055 else if (TREE_CODE (low_sub) == INTEGER_CST
5056 && tree_int_cst_lt (low_sub, low_bound))
5058 warning_at (location, OPT_Warray_bounds,
5059 "array subscript is below array bounds");
5060 TREE_NO_WARNING (ref) = 1;
5064 /* Searches if the expr T, located at LOCATION computes
5065 address of an ARRAY_REF, and call check_array_ref on it. */
5067 static void
5068 search_for_addr_array (tree t, location_t location)
5070 while (TREE_CODE (t) == SSA_NAME)
5072 gimple g = SSA_NAME_DEF_STMT (t);
5074 if (gimple_code (g) != GIMPLE_ASSIGN)
5075 return;
5077 if (get_gimple_rhs_class (gimple_assign_rhs_code (g))
5078 != GIMPLE_SINGLE_RHS)
5079 return;
5081 t = gimple_assign_rhs1 (g);
5085 /* We are only interested in addresses of ARRAY_REF's. */
5086 if (TREE_CODE (t) != ADDR_EXPR)
5087 return;
5089 /* Check each ARRAY_REFs in the reference chain. */
5092 if (TREE_CODE (t) == ARRAY_REF)
5093 check_array_ref (location, t, true /*ignore_off_by_one*/);
5095 t = TREE_OPERAND (t, 0);
5097 while (handled_component_p (t));
5100 /* walk_tree() callback that checks if *TP is
5101 an ARRAY_REF inside an ADDR_EXPR (in which an array
5102 subscript one outside the valid range is allowed). Call
5103 check_array_ref for each ARRAY_REF found. The location is
5104 passed in DATA. */
5106 static tree
5107 check_array_bounds (tree *tp, int *walk_subtree, void *data)
5109 tree t = *tp;
5110 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5111 location_t location;
5113 if (EXPR_HAS_LOCATION (t))
5114 location = EXPR_LOCATION (t);
5115 else
5117 location_t *locp = (location_t *) wi->info;
5118 location = *locp;
5121 *walk_subtree = TRUE;
5123 if (TREE_CODE (t) == ARRAY_REF)
5124 check_array_ref (location, t, false /*ignore_off_by_one*/);
5126 if (TREE_CODE (t) == INDIRECT_REF
5127 || (TREE_CODE (t) == RETURN_EXPR && TREE_OPERAND (t, 0)))
5128 search_for_addr_array (TREE_OPERAND (t, 0), location);
5130 if (TREE_CODE (t) == ADDR_EXPR)
5131 *walk_subtree = FALSE;
5133 return NULL_TREE;
5136 /* Walk over all statements of all reachable BBs and call check_array_bounds
5137 on them. */
5139 static void
5140 check_all_array_refs (void)
5142 basic_block bb;
5143 gimple_stmt_iterator si;
5145 FOR_EACH_BB (bb)
5147 edge_iterator ei;
5148 edge e;
5149 bool executable = false;
5151 /* Skip blocks that were found to be unreachable. */
5152 FOR_EACH_EDGE (e, ei, bb->preds)
5153 executable |= !!(e->flags & EDGE_EXECUTABLE);
5154 if (!executable)
5155 continue;
5157 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5159 gimple stmt = gsi_stmt (si);
5160 struct walk_stmt_info wi;
5161 if (!gimple_has_location (stmt))
5162 continue;
5164 if (is_gimple_call (stmt))
5166 size_t i;
5167 size_t n = gimple_call_num_args (stmt);
5168 for (i = 0; i < n; i++)
5170 tree arg = gimple_call_arg (stmt, i);
5171 search_for_addr_array (arg, gimple_location (stmt));
5174 else
5176 memset (&wi, 0, sizeof (wi));
5177 wi.info = CONST_CAST (void *, (const void *)
5178 gimple_location_ptr (stmt));
5180 walk_gimple_op (gsi_stmt (si),
5181 check_array_bounds,
5182 &wi);
5188 /* Convert range assertion expressions into the implied copies and
5189 copy propagate away the copies. Doing the trivial copy propagation
5190 here avoids the need to run the full copy propagation pass after
5191 VRP.
5193 FIXME, this will eventually lead to copy propagation removing the
5194 names that had useful range information attached to them. For
5195 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
5196 then N_i will have the range [3, +INF].
5198 However, by converting the assertion into the implied copy
5199 operation N_i = N_j, we will then copy-propagate N_j into the uses
5200 of N_i and lose the range information. We may want to hold on to
5201 ASSERT_EXPRs a little while longer as the ranges could be used in
5202 things like jump threading.
5204 The problem with keeping ASSERT_EXPRs around is that passes after
5205 VRP need to handle them appropriately.
5207 Another approach would be to make the range information a first
5208 class property of the SSA_NAME so that it can be queried from
5209 any pass. This is made somewhat more complex by the need for
5210 multiple ranges to be associated with one SSA_NAME. */
5212 static void
5213 remove_range_assertions (void)
5215 basic_block bb;
5216 gimple_stmt_iterator si;
5218 /* Note that the BSI iterator bump happens at the bottom of the
5219 loop and no bump is necessary if we're removing the statement
5220 referenced by the current BSI. */
5221 FOR_EACH_BB (bb)
5222 for (si = gsi_start_bb (bb); !gsi_end_p (si);)
5224 gimple stmt = gsi_stmt (si);
5225 gimple use_stmt;
5227 if (is_gimple_assign (stmt)
5228 && gimple_assign_rhs_code (stmt) == ASSERT_EXPR)
5230 tree rhs = gimple_assign_rhs1 (stmt);
5231 tree var;
5232 tree cond = fold (ASSERT_EXPR_COND (rhs));
5233 use_operand_p use_p;
5234 imm_use_iterator iter;
5236 gcc_assert (cond != boolean_false_node);
5238 /* Propagate the RHS into every use of the LHS. */
5239 var = ASSERT_EXPR_VAR (rhs);
5240 FOR_EACH_IMM_USE_STMT (use_stmt, iter,
5241 gimple_assign_lhs (stmt))
5242 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
5244 SET_USE (use_p, var);
5245 gcc_assert (TREE_CODE (var) == SSA_NAME);
5248 /* And finally, remove the copy, it is not needed. */
5249 gsi_remove (&si, true);
5250 release_defs (stmt);
5252 else
5253 gsi_next (&si);
5258 /* Return true if STMT is interesting for VRP. */
5260 static bool
5261 stmt_interesting_for_vrp (gimple stmt)
5263 if (gimple_code (stmt) == GIMPLE_PHI
5264 && is_gimple_reg (gimple_phi_result (stmt))
5265 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_phi_result (stmt)))
5266 || POINTER_TYPE_P (TREE_TYPE (gimple_phi_result (stmt)))))
5267 return true;
5268 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
5270 tree lhs = gimple_get_lhs (stmt);
5272 /* In general, assignments with virtual operands are not useful
5273 for deriving ranges, with the obvious exception of calls to
5274 builtin functions. */
5275 if (lhs && TREE_CODE (lhs) == SSA_NAME
5276 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
5277 || POINTER_TYPE_P (TREE_TYPE (lhs)))
5278 && ((is_gimple_call (stmt)
5279 && gimple_call_fndecl (stmt) != NULL_TREE
5280 && DECL_IS_BUILTIN (gimple_call_fndecl (stmt)))
5281 || !gimple_vuse (stmt)))
5282 return true;
5284 else if (gimple_code (stmt) == GIMPLE_COND
5285 || gimple_code (stmt) == GIMPLE_SWITCH)
5286 return true;
5288 return false;
5292 /* Initialize local data structures for VRP. */
5294 static void
5295 vrp_initialize (void)
5297 basic_block bb;
5299 vr_value = XCNEWVEC (value_range_t *, num_ssa_names);
5300 vr_phi_edge_counts = XCNEWVEC (int, num_ssa_names);
5302 FOR_EACH_BB (bb)
5304 gimple_stmt_iterator si;
5306 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
5308 gimple phi = gsi_stmt (si);
5309 if (!stmt_interesting_for_vrp (phi))
5311 tree lhs = PHI_RESULT (phi);
5312 set_value_range_to_varying (get_value_range (lhs));
5313 prop_set_simulate_again (phi, false);
5315 else
5316 prop_set_simulate_again (phi, true);
5319 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5321 gimple stmt = gsi_stmt (si);
5323 /* If the statement is a control insn, then we do not
5324 want to avoid simulating the statement once. Failure
5325 to do so means that those edges will never get added. */
5326 if (stmt_ends_bb_p (stmt))
5327 prop_set_simulate_again (stmt, true);
5328 else if (!stmt_interesting_for_vrp (stmt))
5330 ssa_op_iter i;
5331 tree def;
5332 FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
5333 set_value_range_to_varying (get_value_range (def));
5334 prop_set_simulate_again (stmt, false);
5336 else
5337 prop_set_simulate_again (stmt, true);
5343 /* Visit assignment STMT. If it produces an interesting range, record
5344 the SSA name in *OUTPUT_P. */
5346 static enum ssa_prop_result
5347 vrp_visit_assignment_or_call (gimple stmt, tree *output_p)
5349 tree def, lhs;
5350 ssa_op_iter iter;
5351 enum gimple_code code = gimple_code (stmt);
5352 lhs = gimple_get_lhs (stmt);
5354 /* We only keep track of ranges in integral and pointer types. */
5355 if (TREE_CODE (lhs) == SSA_NAME
5356 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
5357 /* It is valid to have NULL MIN/MAX values on a type. See
5358 build_range_type. */
5359 && TYPE_MIN_VALUE (TREE_TYPE (lhs))
5360 && TYPE_MAX_VALUE (TREE_TYPE (lhs)))
5361 || POINTER_TYPE_P (TREE_TYPE (lhs))))
5363 value_range_t new_vr = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
5365 if (code == GIMPLE_CALL)
5366 extract_range_basic (&new_vr, stmt);
5367 else
5368 extract_range_from_assignment (&new_vr, stmt);
5370 if (update_value_range (lhs, &new_vr))
5372 *output_p = lhs;
5374 if (dump_file && (dump_flags & TDF_DETAILS))
5376 fprintf (dump_file, "Found new range for ");
5377 print_generic_expr (dump_file, lhs, 0);
5378 fprintf (dump_file, ": ");
5379 dump_value_range (dump_file, &new_vr);
5380 fprintf (dump_file, "\n\n");
5383 if (new_vr.type == VR_VARYING)
5384 return SSA_PROP_VARYING;
5386 return SSA_PROP_INTERESTING;
5389 return SSA_PROP_NOT_INTERESTING;
5392 /* Every other statement produces no useful ranges. */
5393 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
5394 set_value_range_to_varying (get_value_range (def));
5396 return SSA_PROP_VARYING;
5399 /* Helper that gets the value range of the SSA_NAME with version I
5400 or a symbolic range containing the SSA_NAME only if the value range
5401 is varying or undefined. */
5403 static inline value_range_t
5404 get_vr_for_comparison (int i)
5406 value_range_t vr = *(vr_value[i]);
5408 /* If name N_i does not have a valid range, use N_i as its own
5409 range. This allows us to compare against names that may
5410 have N_i in their ranges. */
5411 if (vr.type == VR_VARYING || vr.type == VR_UNDEFINED)
5413 vr.type = VR_RANGE;
5414 vr.min = ssa_name (i);
5415 vr.max = ssa_name (i);
5418 return vr;
5421 /* Compare all the value ranges for names equivalent to VAR with VAL
5422 using comparison code COMP. Return the same value returned by
5423 compare_range_with_value, including the setting of
5424 *STRICT_OVERFLOW_P. */
5426 static tree
5427 compare_name_with_value (enum tree_code comp, tree var, tree val,
5428 bool *strict_overflow_p)
5430 bitmap_iterator bi;
5431 unsigned i;
5432 bitmap e;
5433 tree retval, t;
5434 int used_strict_overflow;
5435 bool sop;
5436 value_range_t equiv_vr;
5438 /* Get the set of equivalences for VAR. */
5439 e = get_value_range (var)->equiv;
5441 /* Start at -1. Set it to 0 if we do a comparison without relying
5442 on overflow, or 1 if all comparisons rely on overflow. */
5443 used_strict_overflow = -1;
5445 /* Compare vars' value range with val. */
5446 equiv_vr = get_vr_for_comparison (SSA_NAME_VERSION (var));
5447 sop = false;
5448 retval = compare_range_with_value (comp, &equiv_vr, val, &sop);
5449 if (retval)
5450 used_strict_overflow = sop ? 1 : 0;
5452 /* If the equiv set is empty we have done all work we need to do. */
5453 if (e == NULL)
5455 if (retval
5456 && used_strict_overflow > 0)
5457 *strict_overflow_p = true;
5458 return retval;
5461 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
5463 equiv_vr = get_vr_for_comparison (i);
5464 sop = false;
5465 t = compare_range_with_value (comp, &equiv_vr, val, &sop);
5466 if (t)
5468 /* If we get different answers from different members
5469 of the equivalence set this check must be in a dead
5470 code region. Folding it to a trap representation
5471 would be correct here. For now just return don't-know. */
5472 if (retval != NULL
5473 && t != retval)
5475 retval = NULL_TREE;
5476 break;
5478 retval = t;
5480 if (!sop)
5481 used_strict_overflow = 0;
5482 else if (used_strict_overflow < 0)
5483 used_strict_overflow = 1;
5487 if (retval
5488 && used_strict_overflow > 0)
5489 *strict_overflow_p = true;
5491 return retval;
5495 /* Given a comparison code COMP and names N1 and N2, compare all the
5496 ranges equivalent to N1 against all the ranges equivalent to N2
5497 to determine the value of N1 COMP N2. Return the same value
5498 returned by compare_ranges. Set *STRICT_OVERFLOW_P to indicate
5499 whether we relied on an overflow infinity in the comparison. */
5502 static tree
5503 compare_names (enum tree_code comp, tree n1, tree n2,
5504 bool *strict_overflow_p)
5506 tree t, retval;
5507 bitmap e1, e2;
5508 bitmap_iterator bi1, bi2;
5509 unsigned i1, i2;
5510 int used_strict_overflow;
5511 static bitmap_obstack *s_obstack = NULL;
5512 static bitmap s_e1 = NULL, s_e2 = NULL;
5514 /* Compare the ranges of every name equivalent to N1 against the
5515 ranges of every name equivalent to N2. */
5516 e1 = get_value_range (n1)->equiv;
5517 e2 = get_value_range (n2)->equiv;
5519 /* Use the fake bitmaps if e1 or e2 are not available. */
5520 if (s_obstack == NULL)
5522 s_obstack = XNEW (bitmap_obstack);
5523 bitmap_obstack_initialize (s_obstack);
5524 s_e1 = BITMAP_ALLOC (s_obstack);
5525 s_e2 = BITMAP_ALLOC (s_obstack);
5527 if (e1 == NULL)
5528 e1 = s_e1;
5529 if (e2 == NULL)
5530 e2 = s_e2;
5532 /* Add N1 and N2 to their own set of equivalences to avoid
5533 duplicating the body of the loop just to check N1 and N2
5534 ranges. */
5535 bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
5536 bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
5538 /* If the equivalence sets have a common intersection, then the two
5539 names can be compared without checking their ranges. */
5540 if (bitmap_intersect_p (e1, e2))
5542 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5543 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5545 return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
5546 ? boolean_true_node
5547 : boolean_false_node;
5550 /* Start at -1. Set it to 0 if we do a comparison without relying
5551 on overflow, or 1 if all comparisons rely on overflow. */
5552 used_strict_overflow = -1;
5554 /* Otherwise, compare all the equivalent ranges. First, add N1 and
5555 N2 to their own set of equivalences to avoid duplicating the body
5556 of the loop just to check N1 and N2 ranges. */
5557 EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
5559 value_range_t vr1 = get_vr_for_comparison (i1);
5561 t = retval = NULL_TREE;
5562 EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
5564 bool sop = false;
5566 value_range_t vr2 = get_vr_for_comparison (i2);
5568 t = compare_ranges (comp, &vr1, &vr2, &sop);
5569 if (t)
5571 /* If we get different answers from different members
5572 of the equivalence set this check must be in a dead
5573 code region. Folding it to a trap representation
5574 would be correct here. For now just return don't-know. */
5575 if (retval != NULL
5576 && t != retval)
5578 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5579 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5580 return NULL_TREE;
5582 retval = t;
5584 if (!sop)
5585 used_strict_overflow = 0;
5586 else if (used_strict_overflow < 0)
5587 used_strict_overflow = 1;
5591 if (retval)
5593 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5594 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5595 if (used_strict_overflow > 0)
5596 *strict_overflow_p = true;
5597 return retval;
5601 /* None of the equivalent ranges are useful in computing this
5602 comparison. */
5603 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5604 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5605 return NULL_TREE;
5608 /* Helper function for vrp_evaluate_conditional_warnv. */
5610 static tree
5611 vrp_evaluate_conditional_warnv_with_ops_using_ranges (enum tree_code code,
5612 tree op0, tree op1,
5613 bool * strict_overflow_p)
5615 value_range_t *vr0, *vr1;
5617 vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
5618 vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
5620 if (vr0 && vr1)
5621 return compare_ranges (code, vr0, vr1, strict_overflow_p);
5622 else if (vr0 && vr1 == NULL)
5623 return compare_range_with_value (code, vr0, op1, strict_overflow_p);
5624 else if (vr0 == NULL && vr1)
5625 return (compare_range_with_value
5626 (swap_tree_comparison (code), vr1, op0, strict_overflow_p));
5627 return NULL;
5630 /* Helper function for vrp_evaluate_conditional_warnv. */
5632 static tree
5633 vrp_evaluate_conditional_warnv_with_ops (enum tree_code code, tree op0,
5634 tree op1, bool use_equiv_p,
5635 bool *strict_overflow_p, bool *only_ranges)
5637 tree ret;
5638 if (only_ranges)
5639 *only_ranges = true;
5641 /* We only deal with integral and pointer types. */
5642 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
5643 && !POINTER_TYPE_P (TREE_TYPE (op0)))
5644 return NULL_TREE;
5646 if (use_equiv_p)
5648 if (only_ranges
5649 && (ret = vrp_evaluate_conditional_warnv_with_ops_using_ranges
5650 (code, op0, op1, strict_overflow_p)))
5651 return ret;
5652 *only_ranges = false;
5653 if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
5654 return compare_names (code, op0, op1, strict_overflow_p);
5655 else if (TREE_CODE (op0) == SSA_NAME)
5656 return compare_name_with_value (code, op0, op1, strict_overflow_p);
5657 else if (TREE_CODE (op1) == SSA_NAME)
5658 return (compare_name_with_value
5659 (swap_tree_comparison (code), op1, op0, strict_overflow_p));
5661 else
5662 return vrp_evaluate_conditional_warnv_with_ops_using_ranges (code, op0, op1,
5663 strict_overflow_p);
5664 return NULL_TREE;
5667 /* Given (CODE OP0 OP1) within STMT, try to simplify it based on value range
5668 information. Return NULL if the conditional can not be evaluated.
5669 The ranges of all the names equivalent with the operands in COND
5670 will be used when trying to compute the value. If the result is
5671 based on undefined signed overflow, issue a warning if
5672 appropriate. */
5674 static tree
5675 vrp_evaluate_conditional (enum tree_code code, tree op0, tree op1, gimple stmt)
5677 bool sop;
5678 tree ret;
5679 bool only_ranges;
5681 /* Some passes and foldings leak constants with overflow flag set
5682 into the IL. Avoid doing wrong things with these and bail out. */
5683 if ((TREE_CODE (op0) == INTEGER_CST
5684 && TREE_OVERFLOW (op0))
5685 || (TREE_CODE (op1) == INTEGER_CST
5686 && TREE_OVERFLOW (op1)))
5687 return NULL_TREE;
5689 sop = false;
5690 ret = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, true, &sop,
5691 &only_ranges);
5693 if (ret && sop)
5695 enum warn_strict_overflow_code wc;
5696 const char* warnmsg;
5698 if (is_gimple_min_invariant (ret))
5700 wc = WARN_STRICT_OVERFLOW_CONDITIONAL;
5701 warnmsg = G_("assuming signed overflow does not occur when "
5702 "simplifying conditional to constant");
5704 else
5706 wc = WARN_STRICT_OVERFLOW_COMPARISON;
5707 warnmsg = G_("assuming signed overflow does not occur when "
5708 "simplifying conditional");
5711 if (issue_strict_overflow_warning (wc))
5713 location_t location;
5715 if (!gimple_has_location (stmt))
5716 location = input_location;
5717 else
5718 location = gimple_location (stmt);
5719 warning_at (location, OPT_Wstrict_overflow, "%s", warnmsg);
5723 if (warn_type_limits
5724 && ret && only_ranges
5725 && TREE_CODE_CLASS (code) == tcc_comparison
5726 && TREE_CODE (op0) == SSA_NAME)
5728 /* If the comparison is being folded and the operand on the LHS
5729 is being compared against a constant value that is outside of
5730 the natural range of OP0's type, then the predicate will
5731 always fold regardless of the value of OP0. If -Wtype-limits
5732 was specified, emit a warning. */
5733 tree type = TREE_TYPE (op0);
5734 value_range_t *vr0 = get_value_range (op0);
5736 if (vr0->type != VR_VARYING
5737 && INTEGRAL_TYPE_P (type)
5738 && vrp_val_is_min (vr0->min)
5739 && vrp_val_is_max (vr0->max)
5740 && is_gimple_min_invariant (op1))
5742 location_t location;
5744 if (!gimple_has_location (stmt))
5745 location = input_location;
5746 else
5747 location = gimple_location (stmt);
5749 warning_at (location, OPT_Wtype_limits,
5750 integer_zerop (ret)
5751 ? G_("comparison always false "
5752 "due to limited range of data type")
5753 : G_("comparison always true "
5754 "due to limited range of data type"));
5758 return ret;
5762 /* Visit conditional statement STMT. If we can determine which edge
5763 will be taken out of STMT's basic block, record it in
5764 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
5765 SSA_PROP_VARYING. */
5767 static enum ssa_prop_result
5768 vrp_visit_cond_stmt (gimple stmt, edge *taken_edge_p)
5770 tree val;
5771 bool sop;
5773 *taken_edge_p = NULL;
5775 if (dump_file && (dump_flags & TDF_DETAILS))
5777 tree use;
5778 ssa_op_iter i;
5780 fprintf (dump_file, "\nVisiting conditional with predicate: ");
5781 print_gimple_stmt (dump_file, stmt, 0, 0);
5782 fprintf (dump_file, "\nWith known ranges\n");
5784 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
5786 fprintf (dump_file, "\t");
5787 print_generic_expr (dump_file, use, 0);
5788 fprintf (dump_file, ": ");
5789 dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
5792 fprintf (dump_file, "\n");
5795 /* Compute the value of the predicate COND by checking the known
5796 ranges of each of its operands.
5798 Note that we cannot evaluate all the equivalent ranges here
5799 because those ranges may not yet be final and with the current
5800 propagation strategy, we cannot determine when the value ranges
5801 of the names in the equivalence set have changed.
5803 For instance, given the following code fragment
5805 i_5 = PHI <8, i_13>
5807 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
5808 if (i_14 == 1)
5811 Assume that on the first visit to i_14, i_5 has the temporary
5812 range [8, 8] because the second argument to the PHI function is
5813 not yet executable. We derive the range ~[0, 0] for i_14 and the
5814 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
5815 the first time, since i_14 is equivalent to the range [8, 8], we
5816 determine that the predicate is always false.
5818 On the next round of propagation, i_13 is determined to be
5819 VARYING, which causes i_5 to drop down to VARYING. So, another
5820 visit to i_14 is scheduled. In this second visit, we compute the
5821 exact same range and equivalence set for i_14, namely ~[0, 0] and
5822 { i_5 }. But we did not have the previous range for i_5
5823 registered, so vrp_visit_assignment thinks that the range for
5824 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
5825 is not visited again, which stops propagation from visiting
5826 statements in the THEN clause of that if().
5828 To properly fix this we would need to keep the previous range
5829 value for the names in the equivalence set. This way we would've
5830 discovered that from one visit to the other i_5 changed from
5831 range [8, 8] to VR_VARYING.
5833 However, fixing this apparent limitation may not be worth the
5834 additional checking. Testing on several code bases (GCC, DLV,
5835 MICO, TRAMP3D and SPEC2000) showed that doing this results in
5836 4 more predicates folded in SPEC. */
5837 sop = false;
5839 val = vrp_evaluate_conditional_warnv_with_ops (gimple_cond_code (stmt),
5840 gimple_cond_lhs (stmt),
5841 gimple_cond_rhs (stmt),
5842 false, &sop, NULL);
5843 if (val)
5845 if (!sop)
5846 *taken_edge_p = find_taken_edge (gimple_bb (stmt), val);
5847 else
5849 if (dump_file && (dump_flags & TDF_DETAILS))
5850 fprintf (dump_file,
5851 "\nIgnoring predicate evaluation because "
5852 "it assumes that signed overflow is undefined");
5853 val = NULL_TREE;
5857 if (dump_file && (dump_flags & TDF_DETAILS))
5859 fprintf (dump_file, "\nPredicate evaluates to: ");
5860 if (val == NULL_TREE)
5861 fprintf (dump_file, "DON'T KNOW\n");
5862 else
5863 print_generic_stmt (dump_file, val, 0);
5866 return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
5869 /* Searches the case label vector VEC for the index *IDX of the CASE_LABEL
5870 that includes the value VAL. The search is restricted to the range
5871 [START_IDX, n - 1] where n is the size of VEC.
5873 If there is a CASE_LABEL for VAL, its index is placed in IDX and true is
5874 returned.
5876 If there is no CASE_LABEL for VAL and there is one that is larger than VAL,
5877 it is placed in IDX and false is returned.
5879 If VAL is larger than any CASE_LABEL, n is placed on IDX and false is
5880 returned. */
5882 static bool
5883 find_case_label_index (gimple stmt, size_t start_idx, tree val, size_t *idx)
5885 size_t n = gimple_switch_num_labels (stmt);
5886 size_t low, high;
5888 /* Find case label for minimum of the value range or the next one.
5889 At each iteration we are searching in [low, high - 1]. */
5891 for (low = start_idx, high = n; high != low; )
5893 tree t;
5894 int cmp;
5895 /* Note that i != high, so we never ask for n. */
5896 size_t i = (high + low) / 2;
5897 t = gimple_switch_label (stmt, i);
5899 /* Cache the result of comparing CASE_LOW and val. */
5900 cmp = tree_int_cst_compare (CASE_LOW (t), val);
5902 if (cmp == 0)
5904 /* Ranges cannot be empty. */
5905 *idx = i;
5906 return true;
5908 else if (cmp > 0)
5909 high = i;
5910 else
5912 low = i + 1;
5913 if (CASE_HIGH (t) != NULL
5914 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
5916 *idx = i;
5917 return true;
5922 *idx = high;
5923 return false;
5926 /* Searches the case label vector VEC for the range of CASE_LABELs that is used
5927 for values between MIN and MAX. The first index is placed in MIN_IDX. The
5928 last index is placed in MAX_IDX. If the range of CASE_LABELs is empty
5929 then MAX_IDX < MIN_IDX.
5930 Returns true if the default label is not needed. */
5932 static bool
5933 find_case_label_range (gimple stmt, tree min, tree max, size_t *min_idx,
5934 size_t *max_idx)
5936 size_t i, j;
5937 bool min_take_default = !find_case_label_index (stmt, 1, min, &i);
5938 bool max_take_default = !find_case_label_index (stmt, i, max, &j);
5940 if (i == j
5941 && min_take_default
5942 && max_take_default)
5944 /* Only the default case label reached.
5945 Return an empty range. */
5946 *min_idx = 1;
5947 *max_idx = 0;
5948 return false;
5950 else
5952 bool take_default = min_take_default || max_take_default;
5953 tree low, high;
5954 size_t k;
5956 if (max_take_default)
5957 j--;
5959 /* If the case label range is continuous, we do not need
5960 the default case label. Verify that. */
5961 high = CASE_LOW (gimple_switch_label (stmt, i));
5962 if (CASE_HIGH (gimple_switch_label (stmt, i)))
5963 high = CASE_HIGH (gimple_switch_label (stmt, i));
5964 for (k = i + 1; k <= j; ++k)
5966 low = CASE_LOW (gimple_switch_label (stmt, k));
5967 if (!integer_onep (int_const_binop (MINUS_EXPR, low, high, 0)))
5969 take_default = true;
5970 break;
5972 high = low;
5973 if (CASE_HIGH (gimple_switch_label (stmt, k)))
5974 high = CASE_HIGH (gimple_switch_label (stmt, k));
5977 *min_idx = i;
5978 *max_idx = j;
5979 return !take_default;
5983 /* Visit switch statement STMT. If we can determine which edge
5984 will be taken out of STMT's basic block, record it in
5985 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
5986 SSA_PROP_VARYING. */
5988 static enum ssa_prop_result
5989 vrp_visit_switch_stmt (gimple stmt, edge *taken_edge_p)
5991 tree op, val;
5992 value_range_t *vr;
5993 size_t i = 0, j = 0;
5994 bool take_default;
5996 *taken_edge_p = NULL;
5997 op = gimple_switch_index (stmt);
5998 if (TREE_CODE (op) != SSA_NAME)
5999 return SSA_PROP_VARYING;
6001 vr = get_value_range (op);
6002 if (dump_file && (dump_flags & TDF_DETAILS))
6004 fprintf (dump_file, "\nVisiting switch expression with operand ");
6005 print_generic_expr (dump_file, op, 0);
6006 fprintf (dump_file, " with known range ");
6007 dump_value_range (dump_file, vr);
6008 fprintf (dump_file, "\n");
6011 if (vr->type != VR_RANGE
6012 || symbolic_range_p (vr))
6013 return SSA_PROP_VARYING;
6015 /* Find the single edge that is taken from the switch expression. */
6016 take_default = !find_case_label_range (stmt, vr->min, vr->max, &i, &j);
6018 /* Check if the range spans no CASE_LABEL. If so, we only reach the default
6019 label */
6020 if (j < i)
6022 gcc_assert (take_default);
6023 val = gimple_switch_default_label (stmt);
6025 else
6027 /* Check if labels with index i to j and maybe the default label
6028 are all reaching the same label. */
6030 val = gimple_switch_label (stmt, i);
6031 if (take_default
6032 && CASE_LABEL (gimple_switch_default_label (stmt))
6033 != CASE_LABEL (val))
6035 if (dump_file && (dump_flags & TDF_DETAILS))
6036 fprintf (dump_file, " not a single destination for this "
6037 "range\n");
6038 return SSA_PROP_VARYING;
6040 for (++i; i <= j; ++i)
6042 if (CASE_LABEL (gimple_switch_label (stmt, i)) != CASE_LABEL (val))
6044 if (dump_file && (dump_flags & TDF_DETAILS))
6045 fprintf (dump_file, " not a single destination for this "
6046 "range\n");
6047 return SSA_PROP_VARYING;
6052 *taken_edge_p = find_edge (gimple_bb (stmt),
6053 label_to_block (CASE_LABEL (val)));
6055 if (dump_file && (dump_flags & TDF_DETAILS))
6057 fprintf (dump_file, " will take edge to ");
6058 print_generic_stmt (dump_file, CASE_LABEL (val), 0);
6061 return SSA_PROP_INTERESTING;
6065 /* Evaluate statement STMT. If the statement produces a useful range,
6066 return SSA_PROP_INTERESTING and record the SSA name with the
6067 interesting range into *OUTPUT_P.
6069 If STMT is a conditional branch and we can determine its truth
6070 value, the taken edge is recorded in *TAKEN_EDGE_P.
6072 If STMT produces a varying value, return SSA_PROP_VARYING. */
6074 static enum ssa_prop_result
6075 vrp_visit_stmt (gimple stmt, edge *taken_edge_p, tree *output_p)
6077 tree def;
6078 ssa_op_iter iter;
6080 if (dump_file && (dump_flags & TDF_DETAILS))
6082 fprintf (dump_file, "\nVisiting statement:\n");
6083 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
6084 fprintf (dump_file, "\n");
6087 if (!stmt_interesting_for_vrp (stmt))
6088 gcc_assert (stmt_ends_bb_p (stmt));
6089 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
6091 /* In general, assignments with virtual operands are not useful
6092 for deriving ranges, with the obvious exception of calls to
6093 builtin functions. */
6095 if ((is_gimple_call (stmt)
6096 && gimple_call_fndecl (stmt) != NULL_TREE
6097 && DECL_IS_BUILTIN (gimple_call_fndecl (stmt)))
6098 || !gimple_vuse (stmt))
6099 return vrp_visit_assignment_or_call (stmt, output_p);
6101 else if (gimple_code (stmt) == GIMPLE_COND)
6102 return vrp_visit_cond_stmt (stmt, taken_edge_p);
6103 else if (gimple_code (stmt) == GIMPLE_SWITCH)
6104 return vrp_visit_switch_stmt (stmt, taken_edge_p);
6106 /* All other statements produce nothing of interest for VRP, so mark
6107 their outputs varying and prevent further simulation. */
6108 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
6109 set_value_range_to_varying (get_value_range (def));
6111 return SSA_PROP_VARYING;
6115 /* Meet operation for value ranges. Given two value ranges VR0 and
6116 VR1, store in VR0 a range that contains both VR0 and VR1. This
6117 may not be the smallest possible such range. */
6119 static void
6120 vrp_meet (value_range_t *vr0, value_range_t *vr1)
6122 if (vr0->type == VR_UNDEFINED)
6124 copy_value_range (vr0, vr1);
6125 return;
6128 if (vr1->type == VR_UNDEFINED)
6130 /* Nothing to do. VR0 already has the resulting range. */
6131 return;
6134 if (vr0->type == VR_VARYING)
6136 /* Nothing to do. VR0 already has the resulting range. */
6137 return;
6140 if (vr1->type == VR_VARYING)
6142 set_value_range_to_varying (vr0);
6143 return;
6146 if (vr0->type == VR_RANGE && vr1->type == VR_RANGE)
6148 int cmp;
6149 tree min, max;
6151 /* Compute the convex hull of the ranges. The lower limit of
6152 the new range is the minimum of the two ranges. If they
6153 cannot be compared, then give up. */
6154 cmp = compare_values (vr0->min, vr1->min);
6155 if (cmp == 0 || cmp == 1)
6156 min = vr1->min;
6157 else if (cmp == -1)
6158 min = vr0->min;
6159 else
6160 goto give_up;
6162 /* Similarly, the upper limit of the new range is the maximum
6163 of the two ranges. If they cannot be compared, then
6164 give up. */
6165 cmp = compare_values (vr0->max, vr1->max);
6166 if (cmp == 0 || cmp == -1)
6167 max = vr1->max;
6168 else if (cmp == 1)
6169 max = vr0->max;
6170 else
6171 goto give_up;
6173 /* Check for useless ranges. */
6174 if (INTEGRAL_TYPE_P (TREE_TYPE (min))
6175 && ((vrp_val_is_min (min) || is_overflow_infinity (min))
6176 && (vrp_val_is_max (max) || is_overflow_infinity (max))))
6177 goto give_up;
6179 /* The resulting set of equivalences is the intersection of
6180 the two sets. */
6181 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
6182 bitmap_and_into (vr0->equiv, vr1->equiv);
6183 else if (vr0->equiv && !vr1->equiv)
6184 bitmap_clear (vr0->equiv);
6186 set_value_range (vr0, vr0->type, min, max, vr0->equiv);
6188 else if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
6190 /* Two anti-ranges meet only if their complements intersect.
6191 Only handle the case of identical ranges. */
6192 if (compare_values (vr0->min, vr1->min) == 0
6193 && compare_values (vr0->max, vr1->max) == 0
6194 && compare_values (vr0->min, vr0->max) == 0)
6196 /* The resulting set of equivalences is the intersection of
6197 the two sets. */
6198 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
6199 bitmap_and_into (vr0->equiv, vr1->equiv);
6200 else if (vr0->equiv && !vr1->equiv)
6201 bitmap_clear (vr0->equiv);
6203 else
6204 goto give_up;
6206 else if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
6208 /* For a numeric range [VAL1, VAL2] and an anti-range ~[VAL3, VAL4],
6209 only handle the case where the ranges have an empty intersection.
6210 The result of the meet operation is the anti-range. */
6211 if (!symbolic_range_p (vr0)
6212 && !symbolic_range_p (vr1)
6213 && !value_ranges_intersect_p (vr0, vr1))
6215 /* Copy most of VR1 into VR0. Don't copy VR1's equivalence
6216 set. We need to compute the intersection of the two
6217 equivalence sets. */
6218 if (vr1->type == VR_ANTI_RANGE)
6219 set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr0->equiv);
6221 /* The resulting set of equivalences is the intersection of
6222 the two sets. */
6223 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
6224 bitmap_and_into (vr0->equiv, vr1->equiv);
6225 else if (vr0->equiv && !vr1->equiv)
6226 bitmap_clear (vr0->equiv);
6228 else
6229 goto give_up;
6231 else
6232 gcc_unreachable ();
6234 return;
6236 give_up:
6237 /* Failed to find an efficient meet. Before giving up and setting
6238 the result to VARYING, see if we can at least derive a useful
6239 anti-range. FIXME, all this nonsense about distinguishing
6240 anti-ranges from ranges is necessary because of the odd
6241 semantics of range_includes_zero_p and friends. */
6242 if (!symbolic_range_p (vr0)
6243 && ((vr0->type == VR_RANGE && !range_includes_zero_p (vr0))
6244 || (vr0->type == VR_ANTI_RANGE && range_includes_zero_p (vr0)))
6245 && !symbolic_range_p (vr1)
6246 && ((vr1->type == VR_RANGE && !range_includes_zero_p (vr1))
6247 || (vr1->type == VR_ANTI_RANGE && range_includes_zero_p (vr1))))
6249 set_value_range_to_nonnull (vr0, TREE_TYPE (vr0->min));
6251 /* Since this meet operation did not result from the meeting of
6252 two equivalent names, VR0 cannot have any equivalences. */
6253 if (vr0->equiv)
6254 bitmap_clear (vr0->equiv);
6256 else
6257 set_value_range_to_varying (vr0);
6261 /* Visit all arguments for PHI node PHI that flow through executable
6262 edges. If a valid value range can be derived from all the incoming
6263 value ranges, set a new range for the LHS of PHI. */
6265 static enum ssa_prop_result
6266 vrp_visit_phi_node (gimple phi)
6268 size_t i;
6269 tree lhs = PHI_RESULT (phi);
6270 value_range_t *lhs_vr = get_value_range (lhs);
6271 value_range_t vr_result = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
6272 int edges, old_edges;
6273 struct loop *l;
6275 copy_value_range (&vr_result, lhs_vr);
6277 if (dump_file && (dump_flags & TDF_DETAILS))
6279 fprintf (dump_file, "\nVisiting PHI node: ");
6280 print_gimple_stmt (dump_file, phi, 0, dump_flags);
6283 edges = 0;
6284 for (i = 0; i < gimple_phi_num_args (phi); i++)
6286 edge e = gimple_phi_arg_edge (phi, i);
6288 if (dump_file && (dump_flags & TDF_DETAILS))
6290 fprintf (dump_file,
6291 "\n Argument #%d (%d -> %d %sexecutable)\n",
6292 (int) i, e->src->index, e->dest->index,
6293 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
6296 if (e->flags & EDGE_EXECUTABLE)
6298 tree arg = PHI_ARG_DEF (phi, i);
6299 value_range_t vr_arg;
6301 ++edges;
6303 if (TREE_CODE (arg) == SSA_NAME)
6305 vr_arg = *(get_value_range (arg));
6307 else
6309 if (is_overflow_infinity (arg))
6311 arg = copy_node (arg);
6312 TREE_OVERFLOW (arg) = 0;
6315 vr_arg.type = VR_RANGE;
6316 vr_arg.min = arg;
6317 vr_arg.max = arg;
6318 vr_arg.equiv = NULL;
6321 if (dump_file && (dump_flags & TDF_DETAILS))
6323 fprintf (dump_file, "\t");
6324 print_generic_expr (dump_file, arg, dump_flags);
6325 fprintf (dump_file, "\n\tValue: ");
6326 dump_value_range (dump_file, &vr_arg);
6327 fprintf (dump_file, "\n");
6330 vrp_meet (&vr_result, &vr_arg);
6332 if (vr_result.type == VR_VARYING)
6333 break;
6337 /* If this is a loop PHI node SCEV may known more about its
6338 value-range. */
6339 if (current_loops
6340 && (l = loop_containing_stmt (phi))
6341 && l->header == gimple_bb (phi))
6342 adjust_range_with_scev (&vr_result, l, phi, lhs);
6344 if (vr_result.type == VR_VARYING)
6345 goto varying;
6347 old_edges = vr_phi_edge_counts[SSA_NAME_VERSION (lhs)];
6348 vr_phi_edge_counts[SSA_NAME_VERSION (lhs)] = edges;
6350 /* To prevent infinite iterations in the algorithm, derive ranges
6351 when the new value is slightly bigger or smaller than the
6352 previous one. We don't do this if we have seen a new executable
6353 edge; this helps us avoid an overflow infinity for conditionals
6354 which are not in a loop. */
6355 if (lhs_vr->type == VR_RANGE && vr_result.type == VR_RANGE
6356 && edges <= old_edges)
6358 if (!POINTER_TYPE_P (TREE_TYPE (lhs)))
6360 int cmp_min = compare_values (lhs_vr->min, vr_result.min);
6361 int cmp_max = compare_values (lhs_vr->max, vr_result.max);
6363 /* If the new minimum is smaller or larger than the previous
6364 one, go all the way to -INF. In the first case, to avoid
6365 iterating millions of times to reach -INF, and in the
6366 other case to avoid infinite bouncing between different
6367 minimums. */
6368 if (cmp_min > 0 || cmp_min < 0)
6370 /* If we will end up with a (-INF, +INF) range, set it to
6371 VARYING. Same if the previous max value was invalid for
6372 the type and we'd end up with vr_result.min > vr_result.max. */
6373 if (vrp_val_is_max (vr_result.max)
6374 || compare_values (TYPE_MIN_VALUE (TREE_TYPE (vr_result.min)),
6375 vr_result.max) > 0)
6376 goto varying;
6378 if (!needs_overflow_infinity (TREE_TYPE (vr_result.min))
6379 || !vrp_var_may_overflow (lhs, phi))
6380 vr_result.min = TYPE_MIN_VALUE (TREE_TYPE (vr_result.min));
6381 else if (supports_overflow_infinity (TREE_TYPE (vr_result.min)))
6382 vr_result.min =
6383 negative_overflow_infinity (TREE_TYPE (vr_result.min));
6384 else
6385 goto varying;
6388 /* Similarly, if the new maximum is smaller or larger than
6389 the previous one, go all the way to +INF. */
6390 if (cmp_max < 0 || cmp_max > 0)
6392 /* If we will end up with a (-INF, +INF) range, set it to
6393 VARYING. Same if the previous min value was invalid for
6394 the type and we'd end up with vr_result.max < vr_result.min. */
6395 if (vrp_val_is_min (vr_result.min)
6396 || compare_values (TYPE_MAX_VALUE (TREE_TYPE (vr_result.max)),
6397 vr_result.min) < 0)
6398 goto varying;
6400 if (!needs_overflow_infinity (TREE_TYPE (vr_result.max))
6401 || !vrp_var_may_overflow (lhs, phi))
6402 vr_result.max = TYPE_MAX_VALUE (TREE_TYPE (vr_result.max));
6403 else if (supports_overflow_infinity (TREE_TYPE (vr_result.max)))
6404 vr_result.max =
6405 positive_overflow_infinity (TREE_TYPE (vr_result.max));
6406 else
6407 goto varying;
6412 /* If the new range is different than the previous value, keep
6413 iterating. */
6414 if (update_value_range (lhs, &vr_result))
6415 return SSA_PROP_INTERESTING;
6417 /* Nothing changed, don't add outgoing edges. */
6418 return SSA_PROP_NOT_INTERESTING;
6420 /* No match found. Set the LHS to VARYING. */
6421 varying:
6422 set_value_range_to_varying (lhs_vr);
6423 return SSA_PROP_VARYING;
6426 /* Simplify boolean operations if the source is known
6427 to be already a boolean. */
6428 static bool
6429 simplify_truth_ops_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
6431 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
6432 tree val = NULL;
6433 tree op0, op1;
6434 value_range_t *vr;
6435 bool sop = false;
6436 bool need_conversion;
6438 op0 = gimple_assign_rhs1 (stmt);
6439 if (TYPE_PRECISION (TREE_TYPE (op0)) != 1)
6441 if (TREE_CODE (op0) != SSA_NAME)
6442 return false;
6443 vr = get_value_range (op0);
6445 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
6446 if (!val || !integer_onep (val))
6447 return false;
6449 val = compare_range_with_value (LE_EXPR, vr, integer_one_node, &sop);
6450 if (!val || !integer_onep (val))
6451 return false;
6454 if (rhs_code == TRUTH_NOT_EXPR)
6456 rhs_code = NE_EXPR;
6457 op1 = build_int_cst (TREE_TYPE (op0), 1);
6459 else
6461 op1 = gimple_assign_rhs2 (stmt);
6463 /* Reduce number of cases to handle. */
6464 if (is_gimple_min_invariant (op1))
6466 /* Exclude anything that should have been already folded. */
6467 if (rhs_code != EQ_EXPR
6468 && rhs_code != NE_EXPR
6469 && rhs_code != TRUTH_XOR_EXPR)
6470 return false;
6472 if (!integer_zerop (op1)
6473 && !integer_onep (op1)
6474 && !integer_all_onesp (op1))
6475 return false;
6477 /* Limit the number of cases we have to consider. */
6478 if (rhs_code == EQ_EXPR)
6480 rhs_code = NE_EXPR;
6481 op1 = fold_unary (TRUTH_NOT_EXPR, TREE_TYPE (op1), op1);
6484 else
6486 /* Punt on A == B as there is no BIT_XNOR_EXPR. */
6487 if (rhs_code == EQ_EXPR)
6488 return false;
6490 if (TYPE_PRECISION (TREE_TYPE (op1)) != 1)
6492 vr = get_value_range (op1);
6493 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
6494 if (!val || !integer_onep (val))
6495 return false;
6497 val = compare_range_with_value (LE_EXPR, vr, integer_one_node, &sop);
6498 if (!val || !integer_onep (val))
6499 return false;
6504 if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
6506 location_t location;
6508 if (!gimple_has_location (stmt))
6509 location = input_location;
6510 else
6511 location = gimple_location (stmt);
6513 if (rhs_code == TRUTH_AND_EXPR || rhs_code == TRUTH_OR_EXPR)
6514 warning_at (location, OPT_Wstrict_overflow,
6515 _("assuming signed overflow does not occur when "
6516 "simplifying && or || to & or |"));
6517 else
6518 warning_at (location, OPT_Wstrict_overflow,
6519 _("assuming signed overflow does not occur when "
6520 "simplifying ==, != or ! to identity or ^"));
6523 need_conversion =
6524 !useless_type_conversion_p (TREE_TYPE (gimple_assign_lhs (stmt)),
6525 TREE_TYPE (op0));
6527 /* Make sure to not sign-extend -1 as a boolean value. */
6528 if (need_conversion
6529 && !TYPE_UNSIGNED (TREE_TYPE (op0))
6530 && TYPE_PRECISION (TREE_TYPE (op0)) == 1)
6531 return false;
6533 switch (rhs_code)
6535 case TRUTH_AND_EXPR:
6536 rhs_code = BIT_AND_EXPR;
6537 break;
6538 case TRUTH_OR_EXPR:
6539 rhs_code = BIT_IOR_EXPR;
6540 break;
6541 case TRUTH_XOR_EXPR:
6542 case NE_EXPR:
6543 if (integer_zerop (op1))
6545 gimple_assign_set_rhs_with_ops (gsi,
6546 need_conversion ? NOP_EXPR : SSA_NAME,
6547 op0, NULL);
6548 update_stmt (gsi_stmt (*gsi));
6549 return true;
6552 rhs_code = BIT_XOR_EXPR;
6553 break;
6554 default:
6555 gcc_unreachable ();
6558 if (need_conversion)
6559 return false;
6561 gimple_assign_set_rhs_with_ops (gsi, rhs_code, op0, op1);
6562 update_stmt (gsi_stmt (*gsi));
6563 return true;
6566 /* Simplify a division or modulo operator to a right shift or
6567 bitwise and if the first operand is unsigned or is greater
6568 than zero and the second operand is an exact power of two. */
6570 static bool
6571 simplify_div_or_mod_using_ranges (gimple stmt)
6573 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
6574 tree val = NULL;
6575 tree op0 = gimple_assign_rhs1 (stmt);
6576 tree op1 = gimple_assign_rhs2 (stmt);
6577 value_range_t *vr = get_value_range (gimple_assign_rhs1 (stmt));
6579 if (TYPE_UNSIGNED (TREE_TYPE (op0)))
6581 val = integer_one_node;
6583 else
6585 bool sop = false;
6587 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
6589 if (val
6590 && sop
6591 && integer_onep (val)
6592 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
6594 location_t location;
6596 if (!gimple_has_location (stmt))
6597 location = input_location;
6598 else
6599 location = gimple_location (stmt);
6600 warning_at (location, OPT_Wstrict_overflow,
6601 "assuming signed overflow does not occur when "
6602 "simplifying %</%> or %<%%%> to %<>>%> or %<&%>");
6606 if (val && integer_onep (val))
6608 tree t;
6610 if (rhs_code == TRUNC_DIV_EXPR)
6612 t = build_int_cst (NULL_TREE, tree_log2 (op1));
6613 gimple_assign_set_rhs_code (stmt, RSHIFT_EXPR);
6614 gimple_assign_set_rhs1 (stmt, op0);
6615 gimple_assign_set_rhs2 (stmt, t);
6617 else
6619 t = build_int_cst (TREE_TYPE (op1), 1);
6620 t = int_const_binop (MINUS_EXPR, op1, t, 0);
6621 t = fold_convert (TREE_TYPE (op0), t);
6623 gimple_assign_set_rhs_code (stmt, BIT_AND_EXPR);
6624 gimple_assign_set_rhs1 (stmt, op0);
6625 gimple_assign_set_rhs2 (stmt, t);
6628 update_stmt (stmt);
6629 return true;
6632 return false;
6635 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
6636 ABS_EXPR. If the operand is <= 0, then simplify the
6637 ABS_EXPR into a NEGATE_EXPR. */
6639 static bool
6640 simplify_abs_using_ranges (gimple stmt)
6642 tree val = NULL;
6643 tree op = gimple_assign_rhs1 (stmt);
6644 tree type = TREE_TYPE (op);
6645 value_range_t *vr = get_value_range (op);
6647 if (TYPE_UNSIGNED (type))
6649 val = integer_zero_node;
6651 else if (vr)
6653 bool sop = false;
6655 val = compare_range_with_value (LE_EXPR, vr, integer_zero_node, &sop);
6656 if (!val)
6658 sop = false;
6659 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node,
6660 &sop);
6662 if (val)
6664 if (integer_zerop (val))
6665 val = integer_one_node;
6666 else if (integer_onep (val))
6667 val = integer_zero_node;
6671 if (val
6672 && (integer_onep (val) || integer_zerop (val)))
6674 if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
6676 location_t location;
6678 if (!gimple_has_location (stmt))
6679 location = input_location;
6680 else
6681 location = gimple_location (stmt);
6682 warning_at (location, OPT_Wstrict_overflow,
6683 "assuming signed overflow does not occur when "
6684 "simplifying %<abs (X)%> to %<X%> or %<-X%>");
6687 gimple_assign_set_rhs1 (stmt, op);
6688 if (integer_onep (val))
6689 gimple_assign_set_rhs_code (stmt, NEGATE_EXPR);
6690 else
6691 gimple_assign_set_rhs_code (stmt, SSA_NAME);
6692 update_stmt (stmt);
6693 return true;
6697 return false;
6700 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
6701 a known value range VR.
6703 If there is one and only one value which will satisfy the
6704 conditional, then return that value. Else return NULL. */
6706 static tree
6707 test_for_singularity (enum tree_code cond_code, tree op0,
6708 tree op1, value_range_t *vr)
6710 tree min = NULL;
6711 tree max = NULL;
6713 /* Extract minimum/maximum values which satisfy the
6714 the conditional as it was written. */
6715 if (cond_code == LE_EXPR || cond_code == LT_EXPR)
6717 /* This should not be negative infinity; there is no overflow
6718 here. */
6719 min = TYPE_MIN_VALUE (TREE_TYPE (op0));
6721 max = op1;
6722 if (cond_code == LT_EXPR && !is_overflow_infinity (max))
6724 tree one = build_int_cst (TREE_TYPE (op0), 1);
6725 max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
6726 if (EXPR_P (max))
6727 TREE_NO_WARNING (max) = 1;
6730 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
6732 /* This should not be positive infinity; there is no overflow
6733 here. */
6734 max = TYPE_MAX_VALUE (TREE_TYPE (op0));
6736 min = op1;
6737 if (cond_code == GT_EXPR && !is_overflow_infinity (min))
6739 tree one = build_int_cst (TREE_TYPE (op0), 1);
6740 min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
6741 if (EXPR_P (min))
6742 TREE_NO_WARNING (min) = 1;
6746 /* Now refine the minimum and maximum values using any
6747 value range information we have for op0. */
6748 if (min && max)
6750 if (compare_values (vr->min, min) == 1)
6751 min = vr->min;
6752 if (compare_values (vr->max, max) == -1)
6753 max = vr->max;
6755 /* If the new min/max values have converged to a single value,
6756 then there is only one value which can satisfy the condition,
6757 return that value. */
6758 if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
6759 return min;
6761 return NULL;
6764 /* Simplify a conditional using a relational operator to an equality
6765 test if the range information indicates only one value can satisfy
6766 the original conditional. */
6768 static bool
6769 simplify_cond_using_ranges (gimple stmt)
6771 tree op0 = gimple_cond_lhs (stmt);
6772 tree op1 = gimple_cond_rhs (stmt);
6773 enum tree_code cond_code = gimple_cond_code (stmt);
6775 if (cond_code != NE_EXPR
6776 && cond_code != EQ_EXPR
6777 && TREE_CODE (op0) == SSA_NAME
6778 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
6779 && is_gimple_min_invariant (op1))
6781 value_range_t *vr = get_value_range (op0);
6783 /* If we have range information for OP0, then we might be
6784 able to simplify this conditional. */
6785 if (vr->type == VR_RANGE)
6787 tree new_tree = test_for_singularity (cond_code, op0, op1, vr);
6789 if (new_tree)
6791 if (dump_file)
6793 fprintf (dump_file, "Simplified relational ");
6794 print_gimple_stmt (dump_file, stmt, 0, 0);
6795 fprintf (dump_file, " into ");
6798 gimple_cond_set_code (stmt, EQ_EXPR);
6799 gimple_cond_set_lhs (stmt, op0);
6800 gimple_cond_set_rhs (stmt, new_tree);
6802 update_stmt (stmt);
6804 if (dump_file)
6806 print_gimple_stmt (dump_file, stmt, 0, 0);
6807 fprintf (dump_file, "\n");
6810 return true;
6813 /* Try again after inverting the condition. We only deal
6814 with integral types here, so no need to worry about
6815 issues with inverting FP comparisons. */
6816 cond_code = invert_tree_comparison (cond_code, false);
6817 new_tree = test_for_singularity (cond_code, op0, op1, vr);
6819 if (new_tree)
6821 if (dump_file)
6823 fprintf (dump_file, "Simplified relational ");
6824 print_gimple_stmt (dump_file, stmt, 0, 0);
6825 fprintf (dump_file, " into ");
6828 gimple_cond_set_code (stmt, NE_EXPR);
6829 gimple_cond_set_lhs (stmt, op0);
6830 gimple_cond_set_rhs (stmt, new_tree);
6832 update_stmt (stmt);
6834 if (dump_file)
6836 print_gimple_stmt (dump_file, stmt, 0, 0);
6837 fprintf (dump_file, "\n");
6840 return true;
6845 return false;
6848 /* Simplify a switch statement using the value range of the switch
6849 argument. */
6851 static bool
6852 simplify_switch_using_ranges (gimple stmt)
6854 tree op = gimple_switch_index (stmt);
6855 value_range_t *vr;
6856 bool take_default;
6857 edge e;
6858 edge_iterator ei;
6859 size_t i = 0, j = 0, n, n2;
6860 tree vec2;
6861 switch_update su;
6863 if (TREE_CODE (op) == SSA_NAME)
6865 vr = get_value_range (op);
6867 /* We can only handle integer ranges. */
6868 if (vr->type != VR_RANGE
6869 || symbolic_range_p (vr))
6870 return false;
6872 /* Find case label for min/max of the value range. */
6873 take_default = !find_case_label_range (stmt, vr->min, vr->max, &i, &j);
6875 else if (TREE_CODE (op) == INTEGER_CST)
6877 take_default = !find_case_label_index (stmt, 1, op, &i);
6878 if (take_default)
6880 i = 1;
6881 j = 0;
6883 else
6885 j = i;
6888 else
6889 return false;
6891 n = gimple_switch_num_labels (stmt);
6893 /* Bail out if this is just all edges taken. */
6894 if (i == 1
6895 && j == n - 1
6896 && take_default)
6897 return false;
6899 /* Build a new vector of taken case labels. */
6900 vec2 = make_tree_vec (j - i + 1 + (int)take_default);
6901 n2 = 0;
6903 /* Add the default edge, if necessary. */
6904 if (take_default)
6905 TREE_VEC_ELT (vec2, n2++) = gimple_switch_default_label (stmt);
6907 for (; i <= j; ++i, ++n2)
6908 TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, i);
6910 /* Mark needed edges. */
6911 for (i = 0; i < n2; ++i)
6913 e = find_edge (gimple_bb (stmt),
6914 label_to_block (CASE_LABEL (TREE_VEC_ELT (vec2, i))));
6915 e->aux = (void *)-1;
6918 /* Queue not needed edges for later removal. */
6919 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
6921 if (e->aux == (void *)-1)
6923 e->aux = NULL;
6924 continue;
6927 if (dump_file && (dump_flags & TDF_DETAILS))
6929 fprintf (dump_file, "removing unreachable case label\n");
6931 VEC_safe_push (edge, heap, to_remove_edges, e);
6932 e->flags &= ~EDGE_EXECUTABLE;
6935 /* And queue an update for the stmt. */
6936 su.stmt = stmt;
6937 su.vec = vec2;
6938 VEC_safe_push (switch_update, heap, to_update_switch_stmts, &su);
6939 return false;
6942 /* Simplify STMT using ranges if possible. */
6944 static bool
6945 simplify_stmt_using_ranges (gimple_stmt_iterator *gsi)
6947 gimple stmt = gsi_stmt (*gsi);
6948 if (is_gimple_assign (stmt))
6950 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
6952 switch (rhs_code)
6954 case EQ_EXPR:
6955 case NE_EXPR:
6956 case TRUTH_NOT_EXPR:
6957 case TRUTH_AND_EXPR:
6958 case TRUTH_OR_EXPR:
6959 case TRUTH_XOR_EXPR:
6960 /* Transform EQ_EXPR, NE_EXPR, TRUTH_NOT_EXPR into BIT_XOR_EXPR
6961 or identity if the RHS is zero or one, and the LHS are known
6962 to be boolean values. Transform all TRUTH_*_EXPR into
6963 BIT_*_EXPR if both arguments are known to be boolean values. */
6964 if (INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (stmt))))
6965 return simplify_truth_ops_using_ranges (gsi, stmt);
6966 break;
6968 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
6969 and BIT_AND_EXPR respectively if the first operand is greater
6970 than zero and the second operand is an exact power of two. */
6971 case TRUNC_DIV_EXPR:
6972 case TRUNC_MOD_EXPR:
6973 if (INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (stmt)))
6974 && integer_pow2p (gimple_assign_rhs2 (stmt)))
6975 return simplify_div_or_mod_using_ranges (stmt);
6976 break;
6978 /* Transform ABS (X) into X or -X as appropriate. */
6979 case ABS_EXPR:
6980 if (TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME
6981 && INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (stmt))))
6982 return simplify_abs_using_ranges (stmt);
6983 break;
6985 default:
6986 break;
6989 else if (gimple_code (stmt) == GIMPLE_COND)
6990 return simplify_cond_using_ranges (stmt);
6991 else if (gimple_code (stmt) == GIMPLE_SWITCH)
6992 return simplify_switch_using_ranges (stmt);
6994 return false;
6997 /* If the statement pointed by SI has a predicate whose value can be
6998 computed using the value range information computed by VRP, compute
6999 its value and return true. Otherwise, return false. */
7001 static bool
7002 fold_predicate_in (gimple_stmt_iterator *si)
7004 bool assignment_p = false;
7005 tree val;
7006 gimple stmt = gsi_stmt (*si);
7008 if (is_gimple_assign (stmt)
7009 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) == tcc_comparison)
7011 assignment_p = true;
7012 val = vrp_evaluate_conditional (gimple_assign_rhs_code (stmt),
7013 gimple_assign_rhs1 (stmt),
7014 gimple_assign_rhs2 (stmt),
7015 stmt);
7017 else if (gimple_code (stmt) == GIMPLE_COND)
7018 val = vrp_evaluate_conditional (gimple_cond_code (stmt),
7019 gimple_cond_lhs (stmt),
7020 gimple_cond_rhs (stmt),
7021 stmt);
7022 else
7023 return false;
7025 if (val)
7027 if (assignment_p)
7028 val = fold_convert (gimple_expr_type (stmt), val);
7030 if (dump_file)
7032 fprintf (dump_file, "Folding predicate ");
7033 print_gimple_expr (dump_file, stmt, 0, 0);
7034 fprintf (dump_file, " to ");
7035 print_generic_expr (dump_file, val, 0);
7036 fprintf (dump_file, "\n");
7039 if (is_gimple_assign (stmt))
7040 gimple_assign_set_rhs_from_tree (si, val);
7041 else
7043 gcc_assert (gimple_code (stmt) == GIMPLE_COND);
7044 if (integer_zerop (val))
7045 gimple_cond_make_false (stmt);
7046 else if (integer_onep (val))
7047 gimple_cond_make_true (stmt);
7048 else
7049 gcc_unreachable ();
7052 return true;
7055 return false;
7058 /* Callback for substitute_and_fold folding the stmt at *SI. */
7060 static bool
7061 vrp_fold_stmt (gimple_stmt_iterator *si)
7063 if (fold_predicate_in (si))
7064 return true;
7066 return simplify_stmt_using_ranges (si);
7069 /* Stack of dest,src equivalency pairs that need to be restored after
7070 each attempt to thread a block's incoming edge to an outgoing edge.
7072 A NULL entry is used to mark the end of pairs which need to be
7073 restored. */
7074 static VEC(tree,heap) *stack;
7076 /* A trivial wrapper so that we can present the generic jump threading
7077 code with a simple API for simplifying statements. STMT is the
7078 statement we want to simplify, WITHIN_STMT provides the location
7079 for any overflow warnings. */
7081 static tree
7082 simplify_stmt_for_jump_threading (gimple stmt, gimple within_stmt)
7084 /* We only use VRP information to simplify conditionals. This is
7085 overly conservative, but it's unclear if doing more would be
7086 worth the compile time cost. */
7087 if (gimple_code (stmt) != GIMPLE_COND)
7088 return NULL;
7090 return vrp_evaluate_conditional (gimple_cond_code (stmt),
7091 gimple_cond_lhs (stmt),
7092 gimple_cond_rhs (stmt), within_stmt);
7095 /* Blocks which have more than one predecessor and more than
7096 one successor present jump threading opportunities, i.e.,
7097 when the block is reached from a specific predecessor, we
7098 may be able to determine which of the outgoing edges will
7099 be traversed. When this optimization applies, we are able
7100 to avoid conditionals at runtime and we may expose secondary
7101 optimization opportunities.
7103 This routine is effectively a driver for the generic jump
7104 threading code. It basically just presents the generic code
7105 with edges that may be suitable for jump threading.
7107 Unlike DOM, we do not iterate VRP if jump threading was successful.
7108 While iterating may expose new opportunities for VRP, it is expected
7109 those opportunities would be very limited and the compile time cost
7110 to expose those opportunities would be significant.
7112 As jump threading opportunities are discovered, they are registered
7113 for later realization. */
7115 static void
7116 identify_jump_threads (void)
7118 basic_block bb;
7119 gimple dummy;
7120 int i;
7121 edge e;
7123 /* Ugh. When substituting values earlier in this pass we can
7124 wipe the dominance information. So rebuild the dominator
7125 information as we need it within the jump threading code. */
7126 calculate_dominance_info (CDI_DOMINATORS);
7128 /* We do not allow VRP information to be used for jump threading
7129 across a back edge in the CFG. Otherwise it becomes too
7130 difficult to avoid eliminating loop exit tests. Of course
7131 EDGE_DFS_BACK is not accurate at this time so we have to
7132 recompute it. */
7133 mark_dfs_back_edges ();
7135 /* Do not thread across edges we are about to remove. Just marking
7136 them as EDGE_DFS_BACK will do. */
7137 for (i = 0; VEC_iterate (edge, to_remove_edges, i, e); ++i)
7138 e->flags |= EDGE_DFS_BACK;
7140 /* Allocate our unwinder stack to unwind any temporary equivalences
7141 that might be recorded. */
7142 stack = VEC_alloc (tree, heap, 20);
7144 /* To avoid lots of silly node creation, we create a single
7145 conditional and just modify it in-place when attempting to
7146 thread jumps. */
7147 dummy = gimple_build_cond (EQ_EXPR,
7148 integer_zero_node, integer_zero_node,
7149 NULL, NULL);
7151 /* Walk through all the blocks finding those which present a
7152 potential jump threading opportunity. We could set this up
7153 as a dominator walker and record data during the walk, but
7154 I doubt it's worth the effort for the classes of jump
7155 threading opportunities we are trying to identify at this
7156 point in compilation. */
7157 FOR_EACH_BB (bb)
7159 gimple last;
7161 /* If the generic jump threading code does not find this block
7162 interesting, then there is nothing to do. */
7163 if (! potentially_threadable_block (bb))
7164 continue;
7166 /* We only care about blocks ending in a COND_EXPR. While there
7167 may be some value in handling SWITCH_EXPR here, I doubt it's
7168 terribly important. */
7169 last = gsi_stmt (gsi_last_bb (bb));
7170 if (gimple_code (last) != GIMPLE_COND)
7171 continue;
7173 /* We're basically looking for any kind of conditional with
7174 integral type arguments. */
7175 if (TREE_CODE (gimple_cond_lhs (last)) == SSA_NAME
7176 && INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_lhs (last)))
7177 && (TREE_CODE (gimple_cond_rhs (last)) == SSA_NAME
7178 || is_gimple_min_invariant (gimple_cond_rhs (last)))
7179 && INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_rhs (last))))
7181 edge_iterator ei;
7183 /* We've got a block with multiple predecessors and multiple
7184 successors which also ends in a suitable conditional. For
7185 each predecessor, see if we can thread it to a specific
7186 successor. */
7187 FOR_EACH_EDGE (e, ei, bb->preds)
7189 /* Do not thread across back edges or abnormal edges
7190 in the CFG. */
7191 if (e->flags & (EDGE_DFS_BACK | EDGE_COMPLEX))
7192 continue;
7194 thread_across_edge (dummy, e, true, &stack,
7195 simplify_stmt_for_jump_threading);
7200 /* We do not actually update the CFG or SSA graphs at this point as
7201 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
7202 handle ASSERT_EXPRs gracefully. */
7205 /* We identified all the jump threading opportunities earlier, but could
7206 not transform the CFG at that time. This routine transforms the
7207 CFG and arranges for the dominator tree to be rebuilt if necessary.
7209 Note the SSA graph update will occur during the normal TODO
7210 processing by the pass manager. */
7211 static void
7212 finalize_jump_threads (void)
7214 thread_through_all_blocks (false);
7215 VEC_free (tree, heap, stack);
7219 /* Traverse all the blocks folding conditionals with known ranges. */
7221 static void
7222 vrp_finalize (void)
7224 size_t i;
7225 prop_value_t *single_val_range;
7226 bool do_value_subst_p;
7228 if (dump_file)
7230 fprintf (dump_file, "\nValue ranges after VRP:\n\n");
7231 dump_all_value_ranges (dump_file);
7232 fprintf (dump_file, "\n");
7235 /* We may have ended with ranges that have exactly one value. Those
7236 values can be substituted as any other const propagated
7237 value using substitute_and_fold. */
7238 single_val_range = XCNEWVEC (prop_value_t, num_ssa_names);
7240 do_value_subst_p = false;
7241 for (i = 0; i < num_ssa_names; i++)
7242 if (vr_value[i]
7243 && vr_value[i]->type == VR_RANGE
7244 && vr_value[i]->min == vr_value[i]->max
7245 && is_gimple_min_invariant (vr_value[i]->min))
7247 single_val_range[i].value = vr_value[i]->min;
7248 do_value_subst_p = true;
7251 if (!do_value_subst_p)
7253 /* We found no single-valued ranges, don't waste time trying to
7254 do single value substitution in substitute_and_fold. */
7255 free (single_val_range);
7256 single_val_range = NULL;
7259 substitute_and_fold (single_val_range, vrp_fold_stmt);
7261 if (warn_array_bounds)
7262 check_all_array_refs ();
7264 /* We must identify jump threading opportunities before we release
7265 the datastructures built by VRP. */
7266 identify_jump_threads ();
7268 /* Free allocated memory. */
7269 for (i = 0; i < num_ssa_names; i++)
7270 if (vr_value[i])
7272 BITMAP_FREE (vr_value[i]->equiv);
7273 free (vr_value[i]);
7276 free (single_val_range);
7277 free (vr_value);
7278 free (vr_phi_edge_counts);
7280 /* So that we can distinguish between VRP data being available
7281 and not available. */
7282 vr_value = NULL;
7283 vr_phi_edge_counts = NULL;
7287 /* Main entry point to VRP (Value Range Propagation). This pass is
7288 loosely based on J. R. C. Patterson, ``Accurate Static Branch
7289 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
7290 Programming Language Design and Implementation, pp. 67-78, 1995.
7291 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
7293 This is essentially an SSA-CCP pass modified to deal with ranges
7294 instead of constants.
7296 While propagating ranges, we may find that two or more SSA name
7297 have equivalent, though distinct ranges. For instance,
7299 1 x_9 = p_3->a;
7300 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
7301 3 if (p_4 == q_2)
7302 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
7303 5 endif
7304 6 if (q_2)
7306 In the code above, pointer p_5 has range [q_2, q_2], but from the
7307 code we can also determine that p_5 cannot be NULL and, if q_2 had
7308 a non-varying range, p_5's range should also be compatible with it.
7310 These equivalences are created by two expressions: ASSERT_EXPR and
7311 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
7312 result of another assertion, then we can use the fact that p_5 and
7313 p_4 are equivalent when evaluating p_5's range.
7315 Together with value ranges, we also propagate these equivalences
7316 between names so that we can take advantage of information from
7317 multiple ranges when doing final replacement. Note that this
7318 equivalency relation is transitive but not symmetric.
7320 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
7321 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
7322 in contexts where that assertion does not hold (e.g., in line 6).
7324 TODO, the main difference between this pass and Patterson's is that
7325 we do not propagate edge probabilities. We only compute whether
7326 edges can be taken or not. That is, instead of having a spectrum
7327 of jump probabilities between 0 and 1, we only deal with 0, 1 and
7328 DON'T KNOW. In the future, it may be worthwhile to propagate
7329 probabilities to aid branch prediction. */
7331 static unsigned int
7332 execute_vrp (void)
7334 int i;
7335 edge e;
7336 switch_update *su;
7338 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
7339 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
7340 scev_initialize ();
7342 insert_range_assertions ();
7344 to_remove_edges = VEC_alloc (edge, heap, 10);
7345 to_update_switch_stmts = VEC_alloc (switch_update, heap, 5);
7346 threadedge_initialize_values ();
7348 vrp_initialize ();
7349 ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
7350 vrp_finalize ();
7352 /* ASSERT_EXPRs must be removed before finalizing jump threads
7353 as finalizing jump threads calls the CFG cleanup code which
7354 does not properly handle ASSERT_EXPRs. */
7355 remove_range_assertions ();
7357 /* If we exposed any new variables, go ahead and put them into
7358 SSA form now, before we handle jump threading. This simplifies
7359 interactions between rewriting of _DECL nodes into SSA form
7360 and rewriting SSA_NAME nodes into SSA form after block
7361 duplication and CFG manipulation. */
7362 update_ssa (TODO_update_ssa);
7364 finalize_jump_threads ();
7366 /* Remove dead edges from SWITCH_EXPR optimization. This leaves the
7367 CFG in a broken state and requires a cfg_cleanup run. */
7368 for (i = 0; VEC_iterate (edge, to_remove_edges, i, e); ++i)
7369 remove_edge (e);
7370 /* Update SWITCH_EXPR case label vector. */
7371 for (i = 0; VEC_iterate (switch_update, to_update_switch_stmts, i, su); ++i)
7373 size_t j;
7374 size_t n = TREE_VEC_LENGTH (su->vec);
7375 tree label;
7376 gimple_switch_set_num_labels (su->stmt, n);
7377 for (j = 0; j < n; j++)
7378 gimple_switch_set_label (su->stmt, j, TREE_VEC_ELT (su->vec, j));
7379 /* As we may have replaced the default label with a regular one
7380 make sure to make it a real default label again. This ensures
7381 optimal expansion. */
7382 label = gimple_switch_default_label (su->stmt);
7383 CASE_LOW (label) = NULL_TREE;
7384 CASE_HIGH (label) = NULL_TREE;
7387 if (VEC_length (edge, to_remove_edges) > 0)
7388 free_dominance_info (CDI_DOMINATORS);
7390 VEC_free (edge, heap, to_remove_edges);
7391 VEC_free (switch_update, heap, to_update_switch_stmts);
7392 threadedge_finalize_values ();
7394 scev_finalize ();
7395 loop_optimizer_finalize ();
7396 return 0;
7399 static bool
7400 gate_vrp (void)
7402 return flag_tree_vrp != 0;
7405 struct gimple_opt_pass pass_vrp =
7408 GIMPLE_PASS,
7409 "vrp", /* name */
7410 gate_vrp, /* gate */
7411 execute_vrp, /* execute */
7412 NULL, /* sub */
7413 NULL, /* next */
7414 0, /* static_pass_number */
7415 TV_TREE_VRP, /* tv_id */
7416 PROP_ssa, /* properties_required */
7417 0, /* properties_provided */
7418 0, /* properties_destroyed */
7419 0, /* todo_flags_start */
7420 TODO_cleanup_cfg
7421 | TODO_ggc_collect
7422 | TODO_verify_ssa
7423 | TODO_dump_func
7424 | TODO_update_ssa /* todo_flags_finish */