Merge from google/integration.
[official-gcc.git] / libstdc++-v3 / include / bits / stl_multimap.h
blobca37f359e1b8b8c105f7a7e89c0eb4b40b3dc624
1 // Multimap implementation -*- C++ -*-
3 // Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 // 2011 Free Software Foundation, Inc.
5 //
6 // This file is part of the GNU ISO C++ Library. This library is free
7 // software; you can redistribute it and/or modify it under the
8 // terms of the GNU General Public License as published by the
9 // Free Software Foundation; either version 3, or (at your option)
10 // any later version.
12 // This library is distributed in the hope that it will be useful,
13 // but WITHOUT ANY WARRANTY; without even the implied warranty of
14 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 // GNU General Public License for more details.
17 // Under Section 7 of GPL version 3, you are granted additional
18 // permissions described in the GCC Runtime Library Exception, version
19 // 3.1, as published by the Free Software Foundation.
21 // You should have received a copy of the GNU General Public License and
22 // a copy of the GCC Runtime Library Exception along with this program;
23 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 // <http://www.gnu.org/licenses/>.
28 * Copyright (c) 1994
29 * Hewlett-Packard Company
31 * Permission to use, copy, modify, distribute and sell this software
32 * and its documentation for any purpose is hereby granted without fee,
33 * provided that the above copyright notice appear in all copies and
34 * that both that copyright notice and this permission notice appear
35 * in supporting documentation. Hewlett-Packard Company makes no
36 * representations about the suitability of this software for any
37 * purpose. It is provided "as is" without express or implied warranty.
40 * Copyright (c) 1996,1997
41 * Silicon Graphics Computer Systems, Inc.
43 * Permission to use, copy, modify, distribute and sell this software
44 * and its documentation for any purpose is hereby granted without fee,
45 * provided that the above copyright notice appear in all copies and
46 * that both that copyright notice and this permission notice appear
47 * in supporting documentation. Silicon Graphics makes no
48 * representations about the suitability of this software for any
49 * purpose. It is provided "as is" without express or implied warranty.
52 /** @file bits/stl_multimap.h
53 * This is an internal header file, included by other library headers.
54 * Do not attempt to use it directly. @headername{map}
57 #ifndef _STL_MULTIMAP_H
58 #define _STL_MULTIMAP_H 1
60 #include <bits/concept_check.h>
61 #include <initializer_list>
63 namespace std _GLIBCXX_VISIBILITY(default)
65 _GLIBCXX_BEGIN_NAMESPACE_CONTAINER
67 /**
68 * @brief A standard container made up of (key,value) pairs, which can be
69 * retrieved based on a key, in logarithmic time.
71 * @ingroup associative_containers
73 * Meets the requirements of a <a href="tables.html#65">container</a>, a
74 * <a href="tables.html#66">reversible container</a>, and an
75 * <a href="tables.html#69">associative container</a> (using equivalent
76 * keys). For a @c multimap<Key,T> the key_type is Key, the mapped_type
77 * is T, and the value_type is std::pair<const Key,T>.
79 * Multimaps support bidirectional iterators.
81 * The private tree data is declared exactly the same way for map and
82 * multimap; the distinction is made entirely in how the tree functions are
83 * called (*_unique versus *_equal, same as the standard).
85 template <typename _Key, typename _Tp,
86 typename _Compare = std::less<_Key>,
87 typename _Alloc = std::allocator<std::pair<const _Key, _Tp> > >
88 class multimap
90 public:
91 typedef _Key key_type;
92 typedef _Tp mapped_type;
93 typedef std::pair<const _Key, _Tp> value_type;
94 typedef _Compare key_compare;
95 typedef _Alloc allocator_type;
97 private:
98 // concept requirements
99 typedef typename _Alloc::value_type _Alloc_value_type;
100 __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
101 __glibcxx_class_requires4(_Compare, bool, _Key, _Key,
102 _BinaryFunctionConcept)
103 __glibcxx_class_requires2(value_type, _Alloc_value_type, _SameTypeConcept)
105 public:
106 class value_compare
107 : public std::binary_function<value_type, value_type, bool>
109 friend class multimap<_Key, _Tp, _Compare, _Alloc>;
110 protected:
111 _Compare comp;
113 value_compare(_Compare __c)
114 : comp(__c) { }
116 public:
117 bool operator()(const value_type& __x, const value_type& __y) const
118 { return comp(__x.first, __y.first); }
121 private:
122 /// This turns a red-black tree into a [multi]map.
123 typedef typename _Alloc::template rebind<value_type>::other
124 _Pair_alloc_type;
126 typedef _Rb_tree<key_type, value_type, _Select1st<value_type>,
127 key_compare, _Pair_alloc_type> _Rep_type;
128 /// The actual tree structure.
129 _Rep_type _M_t;
131 public:
132 // many of these are specified differently in ISO, but the following are
133 // "functionally equivalent"
134 typedef typename _Pair_alloc_type::pointer pointer;
135 typedef typename _Pair_alloc_type::const_pointer const_pointer;
136 typedef typename _Pair_alloc_type::reference reference;
137 typedef typename _Pair_alloc_type::const_reference const_reference;
138 typedef typename _Rep_type::iterator iterator;
139 typedef typename _Rep_type::const_iterator const_iterator;
140 typedef typename _Rep_type::size_type size_type;
141 typedef typename _Rep_type::difference_type difference_type;
142 typedef typename _Rep_type::reverse_iterator reverse_iterator;
143 typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;
145 // [23.3.2] construct/copy/destroy
146 // (get_allocator() is also listed in this section)
148 * @brief Default constructor creates no elements.
150 multimap()
151 : _M_t() { }
154 * @brief Creates a %multimap with no elements.
155 * @param comp A comparison object.
156 * @param a An allocator object.
158 explicit
159 multimap(const _Compare& __comp,
160 const allocator_type& __a = allocator_type())
161 : _M_t(__comp, __a) { }
164 * @brief %Multimap copy constructor.
165 * @param x A %multimap of identical element and allocator types.
167 * The newly-created %multimap uses a copy of the allocation object
168 * used by @a x.
170 multimap(const multimap& __x)
171 : _M_t(__x._M_t) { }
173 #ifdef __GXX_EXPERIMENTAL_CXX0X__
175 * @brief %Multimap move constructor.
176 * @param x A %multimap of identical element and allocator types.
178 * The newly-created %multimap contains the exact contents of @a x.
179 * The contents of @a x are a valid, but unspecified %multimap.
181 multimap(multimap&& __x)
182 : _M_t(std::move(__x._M_t)) { }
185 * @brief Builds a %multimap from an initializer_list.
186 * @param l An initializer_list.
187 * @param comp A comparison functor.
188 * @param a An allocator object.
190 * Create a %multimap consisting of copies of the elements from
191 * the initializer_list. This is linear in N if the list is already
192 * sorted, and NlogN otherwise (where N is @a __l.size()).
194 multimap(initializer_list<value_type> __l,
195 const _Compare& __comp = _Compare(),
196 const allocator_type& __a = allocator_type())
197 : _M_t(__comp, __a)
198 { _M_t._M_insert_equal(__l.begin(), __l.end()); }
199 #endif
202 * @brief Builds a %multimap from a range.
203 * @param first An input iterator.
204 * @param last An input iterator.
206 * Create a %multimap consisting of copies of the elements from
207 * [first,last). This is linear in N if the range is already sorted,
208 * and NlogN otherwise (where N is distance(first,last)).
210 template<typename _InputIterator>
211 multimap(_InputIterator __first, _InputIterator __last)
212 : _M_t()
213 { _M_t._M_insert_equal(__first, __last); }
216 * @brief Builds a %multimap from a range.
217 * @param first An input iterator.
218 * @param last An input iterator.
219 * @param comp A comparison functor.
220 * @param a An allocator object.
222 * Create a %multimap consisting of copies of the elements from
223 * [first,last). This is linear in N if the range is already sorted,
224 * and NlogN otherwise (where N is distance(first,last)).
226 template<typename _InputIterator>
227 multimap(_InputIterator __first, _InputIterator __last,
228 const _Compare& __comp,
229 const allocator_type& __a = allocator_type())
230 : _M_t(__comp, __a)
231 { _M_t._M_insert_equal(__first, __last); }
233 // FIXME There is no dtor declared, but we should have something generated
234 // by Doxygen. I don't know what tags to add to this paragraph to make
235 // that happen:
237 * The dtor only erases the elements, and note that if the elements
238 * themselves are pointers, the pointed-to memory is not touched in any
239 * way. Managing the pointer is the user's responsibility.
243 * @brief %Multimap assignment operator.
244 * @param x A %multimap of identical element and allocator types.
246 * All the elements of @a x are copied, but unlike the copy constructor,
247 * the allocator object is not copied.
249 multimap&
250 operator=(const multimap& __x)
252 _M_t = __x._M_t;
253 return *this;
256 #ifdef __GXX_EXPERIMENTAL_CXX0X__
258 * @brief %Multimap move assignment operator.
259 * @param x A %multimap of identical element and allocator types.
261 * The contents of @a x are moved into this multimap (without copying).
262 * @a x is a valid, but unspecified multimap.
264 multimap&
265 operator=(multimap&& __x)
267 // NB: DR 1204.
268 // NB: DR 675.
269 this->clear();
270 this->swap(__x);
271 return *this;
275 * @brief %Multimap list assignment operator.
276 * @param l An initializer_list.
278 * This function fills a %multimap with copies of the elements
279 * in the initializer list @a l.
281 * Note that the assignment completely changes the %multimap and
282 * that the resulting %multimap's size is the same as the number
283 * of elements assigned. Old data may be lost.
285 multimap&
286 operator=(initializer_list<value_type> __l)
288 this->clear();
289 this->insert(__l.begin(), __l.end());
290 return *this;
292 #endif
294 /// Get a copy of the memory allocation object.
295 allocator_type
296 get_allocator() const
297 { return _M_t.get_allocator(); }
299 // iterators
301 * Returns a read/write iterator that points to the first pair in the
302 * %multimap. Iteration is done in ascending order according to the
303 * keys.
305 iterator
306 begin()
307 { return _M_t.begin(); }
310 * Returns a read-only (constant) iterator that points to the first pair
311 * in the %multimap. Iteration is done in ascending order according to
312 * the keys.
314 const_iterator
315 begin() const
316 { return _M_t.begin(); }
319 * Returns a read/write iterator that points one past the last pair in
320 * the %multimap. Iteration is done in ascending order according to the
321 * keys.
323 iterator
324 end()
325 { return _M_t.end(); }
328 * Returns a read-only (constant) iterator that points one past the last
329 * pair in the %multimap. Iteration is done in ascending order according
330 * to the keys.
332 const_iterator
333 end() const
334 { return _M_t.end(); }
337 * Returns a read/write reverse iterator that points to the last pair in
338 * the %multimap. Iteration is done in descending order according to the
339 * keys.
341 reverse_iterator
342 rbegin()
343 { return _M_t.rbegin(); }
346 * Returns a read-only (constant) reverse iterator that points to the
347 * last pair in the %multimap. Iteration is done in descending order
348 * according to the keys.
350 const_reverse_iterator
351 rbegin() const
352 { return _M_t.rbegin(); }
355 * Returns a read/write reverse iterator that points to one before the
356 * first pair in the %multimap. Iteration is done in descending order
357 * according to the keys.
359 reverse_iterator
360 rend()
361 { return _M_t.rend(); }
364 * Returns a read-only (constant) reverse iterator that points to one
365 * before the first pair in the %multimap. Iteration is done in
366 * descending order according to the keys.
368 const_reverse_iterator
369 rend() const
370 { return _M_t.rend(); }
372 #ifdef __GXX_EXPERIMENTAL_CXX0X__
374 * Returns a read-only (constant) iterator that points to the first pair
375 * in the %multimap. Iteration is done in ascending order according to
376 * the keys.
378 const_iterator
379 cbegin() const
380 { return _M_t.begin(); }
383 * Returns a read-only (constant) iterator that points one past the last
384 * pair in the %multimap. Iteration is done in ascending order according
385 * to the keys.
387 const_iterator
388 cend() const
389 { return _M_t.end(); }
392 * Returns a read-only (constant) reverse iterator that points to the
393 * last pair in the %multimap. Iteration is done in descending order
394 * according to the keys.
396 const_reverse_iterator
397 crbegin() const
398 { return _M_t.rbegin(); }
401 * Returns a read-only (constant) reverse iterator that points to one
402 * before the first pair in the %multimap. Iteration is done in
403 * descending order according to the keys.
405 const_reverse_iterator
406 crend() const
407 { return _M_t.rend(); }
408 #endif
410 // capacity
411 /** Returns true if the %multimap is empty. */
412 bool
413 empty() const
414 { return _M_t.empty(); }
416 /** Returns the size of the %multimap. */
417 size_type
418 size() const
419 { return _M_t.size(); }
421 /** Returns the maximum size of the %multimap. */
422 size_type
423 max_size() const
424 { return _M_t.max_size(); }
426 // modifiers
428 * @brief Inserts a std::pair into the %multimap.
429 * @param x Pair to be inserted (see std::make_pair for easy creation
430 * of pairs).
431 * @return An iterator that points to the inserted (key,value) pair.
433 * This function inserts a (key, value) pair into the %multimap.
434 * Contrary to a std::map the %multimap does not rely on unique keys and
435 * thus multiple pairs with the same key can be inserted.
437 * Insertion requires logarithmic time.
439 iterator
440 insert(const value_type& __x)
441 { return _M_t._M_insert_equal(__x); }
443 #ifdef __GXX_EXPERIMENTAL_CXX0X__
444 template<typename _Pair, typename = typename
445 std::enable_if<std::is_convertible<_Pair,
446 value_type>::value>::type>
447 iterator
448 insert(_Pair&& __x)
449 { return _M_t._M_insert_equal(std::forward<_Pair>(__x)); }
450 #endif
453 * @brief Inserts a std::pair into the %multimap.
454 * @param position An iterator that serves as a hint as to where the
455 * pair should be inserted.
456 * @param x Pair to be inserted (see std::make_pair for easy creation
457 * of pairs).
458 * @return An iterator that points to the inserted (key,value) pair.
460 * This function inserts a (key, value) pair into the %multimap.
461 * Contrary to a std::map the %multimap does not rely on unique keys and
462 * thus multiple pairs with the same key can be inserted.
463 * Note that the first parameter is only a hint and can potentially
464 * improve the performance of the insertion process. A bad hint would
465 * cause no gains in efficiency.
467 * For more on @a hinting, see:
468 * http://gcc.gnu.org/onlinedocs/libstdc++/manual/bk01pt07ch17.html
470 * Insertion requires logarithmic time (if the hint is not taken).
472 iterator
473 #ifdef __GXX_EXPERIMENTAL_CXX0X__
474 insert(const_iterator __position, const value_type& __x)
475 #else
476 insert(iterator __position, const value_type& __x)
477 #endif
478 { return _M_t._M_insert_equal_(__position, __x); }
480 #ifdef __GXX_EXPERIMENTAL_CXX0X__
481 template<typename _Pair, typename = typename
482 std::enable_if<std::is_convertible<_Pair,
483 value_type>::value>::type>
484 iterator
485 insert(const_iterator __position, _Pair&& __x)
486 { return _M_t._M_insert_equal_(__position,
487 std::forward<_Pair>(__x)); }
488 #endif
491 * @brief A template function that attempts to insert a range
492 * of elements.
493 * @param first Iterator pointing to the start of the range to be
494 * inserted.
495 * @param last Iterator pointing to the end of the range.
497 * Complexity similar to that of the range constructor.
499 template<typename _InputIterator>
500 void
501 insert(_InputIterator __first, _InputIterator __last)
502 { _M_t._M_insert_equal(__first, __last); }
504 #ifdef __GXX_EXPERIMENTAL_CXX0X__
506 * @brief Attempts to insert a list of std::pairs into the %multimap.
507 * @param list A std::initializer_list<value_type> of pairs to be
508 * inserted.
510 * Complexity similar to that of the range constructor.
512 void
513 insert(initializer_list<value_type> __l)
514 { this->insert(__l.begin(), __l.end()); }
515 #endif
517 #ifdef __GXX_EXPERIMENTAL_CXX0X__
518 // _GLIBCXX_RESOLVE_LIB_DEFECTS
519 // DR 130. Associative erase should return an iterator.
521 * @brief Erases an element from a %multimap.
522 * @param position An iterator pointing to the element to be erased.
523 * @return An iterator pointing to the element immediately following
524 * @a position prior to the element being erased. If no such
525 * element exists, end() is returned.
527 * This function erases an element, pointed to by the given iterator,
528 * from a %multimap. Note that this function only erases the element,
529 * and that if the element is itself a pointer, the pointed-to memory is
530 * not touched in any way. Managing the pointer is the user's
531 * responsibility.
533 iterator
534 erase(const_iterator __position)
535 { return _M_t.erase(__position); }
536 #else
538 * @brief Erases an element from a %multimap.
539 * @param position An iterator pointing to the element to be erased.
541 * This function erases an element, pointed to by the given iterator,
542 * from a %multimap. Note that this function only erases the element,
543 * and that if the element is itself a pointer, the pointed-to memory is
544 * not touched in any way. Managing the pointer is the user's
545 * responsibility.
547 void
548 erase(iterator __position)
549 { _M_t.erase(__position); }
550 #endif
553 * @brief Erases elements according to the provided key.
554 * @param x Key of element to be erased.
555 * @return The number of elements erased.
557 * This function erases all elements located by the given key from a
558 * %multimap.
559 * Note that this function only erases the element, and that if
560 * the element is itself a pointer, the pointed-to memory is not touched
561 * in any way. Managing the pointer is the user's responsibility.
563 size_type
564 erase(const key_type& __x)
565 { return _M_t.erase(__x); }
567 #ifdef __GXX_EXPERIMENTAL_CXX0X__
568 // _GLIBCXX_RESOLVE_LIB_DEFECTS
569 // DR 130. Associative erase should return an iterator.
571 * @brief Erases a [first,last) range of elements from a %multimap.
572 * @param first Iterator pointing to the start of the range to be
573 * erased.
574 * @param last Iterator pointing to the end of the range to be erased.
575 * @return The iterator @a last.
577 * This function erases a sequence of elements from a %multimap.
578 * Note that this function only erases the elements, and that if
579 * the elements themselves are pointers, the pointed-to memory is not
580 * touched in any way. Managing the pointer is the user's
581 * responsibility.
583 iterator
584 erase(const_iterator __first, const_iterator __last)
585 { return _M_t.erase(__first, __last); }
586 #else
587 // _GLIBCXX_RESOLVE_LIB_DEFECTS
588 // DR 130. Associative erase should return an iterator.
590 * @brief Erases a [first,last) range of elements from a %multimap.
591 * @param first Iterator pointing to the start of the range to be
592 * erased.
593 * @param last Iterator pointing to the end of the range to be erased.
595 * This function erases a sequence of elements from a %multimap.
596 * Note that this function only erases the elements, and that if
597 * the elements themselves are pointers, the pointed-to memory is not
598 * touched in any way. Managing the pointer is the user's
599 * responsibility.
601 void
602 erase(iterator __first, iterator __last)
603 { _M_t.erase(__first, __last); }
604 #endif
607 * @brief Swaps data with another %multimap.
608 * @param x A %multimap of the same element and allocator types.
610 * This exchanges the elements between two multimaps in constant time.
611 * (It is only swapping a pointer, an integer, and an instance of
612 * the @c Compare type (which itself is often stateless and empty), so it
613 * should be quite fast.)
614 * Note that the global std::swap() function is specialized such that
615 * std::swap(m1,m2) will feed to this function.
617 void
618 swap(multimap& __x)
619 { _M_t.swap(__x._M_t); }
622 * Erases all elements in a %multimap. Note that this function only
623 * erases the elements, and that if the elements themselves are pointers,
624 * the pointed-to memory is not touched in any way. Managing the pointer
625 * is the user's responsibility.
627 void
628 clear()
629 { _M_t.clear(); }
631 // observers
633 * Returns the key comparison object out of which the %multimap
634 * was constructed.
636 key_compare
637 key_comp() const
638 { return _M_t.key_comp(); }
641 * Returns a value comparison object, built from the key comparison
642 * object out of which the %multimap was constructed.
644 value_compare
645 value_comp() const
646 { return value_compare(_M_t.key_comp()); }
648 // multimap operations
650 * @brief Tries to locate an element in a %multimap.
651 * @param x Key of (key, value) pair to be located.
652 * @return Iterator pointing to sought-after element,
653 * or end() if not found.
655 * This function takes a key and tries to locate the element with which
656 * the key matches. If successful the function returns an iterator
657 * pointing to the sought after %pair. If unsuccessful it returns the
658 * past-the-end ( @c end() ) iterator.
660 iterator
661 find(const key_type& __x)
662 { return _M_t.find(__x); }
665 * @brief Tries to locate an element in a %multimap.
666 * @param x Key of (key, value) pair to be located.
667 * @return Read-only (constant) iterator pointing to sought-after
668 * element, or end() if not found.
670 * This function takes a key and tries to locate the element with which
671 * the key matches. If successful the function returns a constant
672 * iterator pointing to the sought after %pair. If unsuccessful it
673 * returns the past-the-end ( @c end() ) iterator.
675 const_iterator
676 find(const key_type& __x) const
677 { return _M_t.find(__x); }
680 * @brief Finds the number of elements with given key.
681 * @param x Key of (key, value) pairs to be located.
682 * @return Number of elements with specified key.
684 size_type
685 count(const key_type& __x) const
686 { return _M_t.count(__x); }
689 * @brief Finds the beginning of a subsequence matching given key.
690 * @param x Key of (key, value) pair to be located.
691 * @return Iterator pointing to first element equal to or greater
692 * than key, or end().
694 * This function returns the first element of a subsequence of elements
695 * that matches the given key. If unsuccessful it returns an iterator
696 * pointing to the first element that has a greater value than given key
697 * or end() if no such element exists.
699 iterator
700 lower_bound(const key_type& __x)
701 { return _M_t.lower_bound(__x); }
704 * @brief Finds the beginning of a subsequence matching given key.
705 * @param x Key of (key, value) pair to be located.
706 * @return Read-only (constant) iterator pointing to first element
707 * equal to or greater than key, or end().
709 * This function returns the first element of a subsequence of elements
710 * that matches the given key. If unsuccessful the iterator will point
711 * to the next greatest element or, if no such greater element exists, to
712 * end().
714 const_iterator
715 lower_bound(const key_type& __x) const
716 { return _M_t.lower_bound(__x); }
719 * @brief Finds the end of a subsequence matching given key.
720 * @param x Key of (key, value) pair to be located.
721 * @return Iterator pointing to the first element
722 * greater than key, or end().
724 iterator
725 upper_bound(const key_type& __x)
726 { return _M_t.upper_bound(__x); }
729 * @brief Finds the end of a subsequence matching given key.
730 * @param x Key of (key, value) pair to be located.
731 * @return Read-only (constant) iterator pointing to first iterator
732 * greater than key, or end().
734 const_iterator
735 upper_bound(const key_type& __x) const
736 { return _M_t.upper_bound(__x); }
739 * @brief Finds a subsequence matching given key.
740 * @param x Key of (key, value) pairs to be located.
741 * @return Pair of iterators that possibly points to the subsequence
742 * matching given key.
744 * This function is equivalent to
745 * @code
746 * std::make_pair(c.lower_bound(val),
747 * c.upper_bound(val))
748 * @endcode
749 * (but is faster than making the calls separately).
751 std::pair<iterator, iterator>
752 equal_range(const key_type& __x)
753 { return _M_t.equal_range(__x); }
756 * @brief Finds a subsequence matching given key.
757 * @param x Key of (key, value) pairs to be located.
758 * @return Pair of read-only (constant) iterators that possibly points
759 * to the subsequence matching given key.
761 * This function is equivalent to
762 * @code
763 * std::make_pair(c.lower_bound(val),
764 * c.upper_bound(val))
765 * @endcode
766 * (but is faster than making the calls separately).
768 std::pair<const_iterator, const_iterator>
769 equal_range(const key_type& __x) const
770 { return _M_t.equal_range(__x); }
772 template<typename _K1, typename _T1, typename _C1, typename _A1>
773 friend bool
774 operator==(const multimap<_K1, _T1, _C1, _A1>&,
775 const multimap<_K1, _T1, _C1, _A1>&);
777 template<typename _K1, typename _T1, typename _C1, typename _A1>
778 friend bool
779 operator<(const multimap<_K1, _T1, _C1, _A1>&,
780 const multimap<_K1, _T1, _C1, _A1>&);
784 * @brief Multimap equality comparison.
785 * @param x A %multimap.
786 * @param y A %multimap of the same type as @a x.
787 * @return True iff the size and elements of the maps are equal.
789 * This is an equivalence relation. It is linear in the size of the
790 * multimaps. Multimaps are considered equivalent if their sizes are equal,
791 * and if corresponding elements compare equal.
793 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
794 inline bool
795 operator==(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
796 const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
797 { return __x._M_t == __y._M_t; }
800 * @brief Multimap ordering relation.
801 * @param x A %multimap.
802 * @param y A %multimap of the same type as @a x.
803 * @return True iff @a x is lexicographically less than @a y.
805 * This is a total ordering relation. It is linear in the size of the
806 * multimaps. The elements must be comparable with @c <.
808 * See std::lexicographical_compare() for how the determination is made.
810 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
811 inline bool
812 operator<(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
813 const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
814 { return __x._M_t < __y._M_t; }
816 /// Based on operator==
817 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
818 inline bool
819 operator!=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
820 const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
821 { return !(__x == __y); }
823 /// Based on operator<
824 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
825 inline bool
826 operator>(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
827 const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
828 { return __y < __x; }
830 /// Based on operator<
831 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
832 inline bool
833 operator<=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
834 const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
835 { return !(__y < __x); }
837 /// Based on operator<
838 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
839 inline bool
840 operator>=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
841 const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
842 { return !(__x < __y); }
844 /// See std::multimap::swap().
845 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
846 inline void
847 swap(multimap<_Key, _Tp, _Compare, _Alloc>& __x,
848 multimap<_Key, _Tp, _Compare, _Alloc>& __y)
849 { __x.swap(__y); }
851 _GLIBCXX_END_NAMESPACE_CONTAINER
852 } // namespace std
854 #endif /* _STL_MULTIMAP_H */