Remove extra newline
[official-gcc.git] / gcc / reorg.c
blob84beb9395aa546169155de2d80b60d41d364c87d
1 /* Perform instruction reorganizations for delay slot filling.
2 Copyright (C) 1992-2020 Free Software Foundation, Inc.
3 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu).
4 Hacked by Michael Tiemann (tiemann@cygnus.com).
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* Instruction reorganization pass.
24 This pass runs after register allocation and final jump
25 optimization. It should be the last pass to run before peephole.
26 It serves primarily to fill delay slots of insns, typically branch
27 and call insns. Other insns typically involve more complicated
28 interactions of data dependencies and resource constraints, and
29 are better handled by scheduling before register allocation (by the
30 function `schedule_insns').
32 The Branch Penalty is the number of extra cycles that are needed to
33 execute a branch insn. On an ideal machine, branches take a single
34 cycle, and the Branch Penalty is 0. Several RISC machines approach
35 branch delays differently:
37 The MIPS has a single branch delay slot. Most insns
38 (except other branches) can be used to fill this slot. When the
39 slot is filled, two insns execute in two cycles, reducing the
40 branch penalty to zero.
42 The SPARC always has a branch delay slot, but its effects can be
43 annulled when the branch is not taken. This means that failing to
44 find other sources of insns, we can hoist an insn from the branch
45 target that would only be safe to execute knowing that the branch
46 is taken.
48 The HP-PA always has a branch delay slot. For unconditional branches
49 its effects can be annulled when the branch is taken. The effects
50 of the delay slot in a conditional branch can be nullified for forward
51 taken branches, or for untaken backward branches. This means
52 we can hoist insns from the fall-through path for forward branches or
53 steal insns from the target of backward branches.
55 The TMS320C3x and C4x have three branch delay slots. When the three
56 slots are filled, the branch penalty is zero. Most insns can fill the
57 delay slots except jump insns.
59 Three techniques for filling delay slots have been implemented so far:
61 (1) `fill_simple_delay_slots' is the simplest, most efficient way
62 to fill delay slots. This pass first looks for insns which come
63 from before the branch and which are safe to execute after the
64 branch. Then it searches after the insn requiring delay slots or,
65 in the case of a branch, for insns that are after the point at
66 which the branch merges into the fallthrough code, if such a point
67 exists. When such insns are found, the branch penalty decreases
68 and no code expansion takes place.
70 (2) `fill_eager_delay_slots' is more complicated: it is used for
71 scheduling conditional jumps, or for scheduling jumps which cannot
72 be filled using (1). A machine need not have annulled jumps to use
73 this strategy, but it helps (by keeping more options open).
74 `fill_eager_delay_slots' tries to guess the direction the branch
75 will go; if it guesses right 100% of the time, it can reduce the
76 branch penalty as much as `fill_simple_delay_slots' does. If it
77 guesses wrong 100% of the time, it might as well schedule nops. When
78 `fill_eager_delay_slots' takes insns from the fall-through path of
79 the jump, usually there is no code expansion; when it takes insns
80 from the branch target, there is code expansion if it is not the
81 only way to reach that target.
83 (3) `relax_delay_slots' uses a set of rules to simplify code that
84 has been reorganized by (1) and (2). It finds cases where
85 conditional test can be eliminated, jumps can be threaded, extra
86 insns can be eliminated, etc. It is the job of (1) and (2) to do a
87 good job of scheduling locally; `relax_delay_slots' takes care of
88 making the various individual schedules work well together. It is
89 especially tuned to handle the control flow interactions of branch
90 insns. It does nothing for insns with delay slots that do not
91 branch.
93 On machines that use CC0, we are very conservative. We will not make
94 a copy of an insn involving CC0 since we want to maintain a 1-1
95 correspondence between the insn that sets and uses CC0. The insns are
96 allowed to be separated by placing an insn that sets CC0 (but not an insn
97 that uses CC0; we could do this, but it doesn't seem worthwhile) in a
98 delay slot. In that case, we point each insn at the other with REG_CC_USER
99 and REG_CC_SETTER notes. Note that these restrictions affect very few
100 machines because most RISC machines with delay slots will not use CC0
101 (the RT is the only known exception at this point). */
103 #include "config.h"
104 #include "system.h"
105 #include "coretypes.h"
106 #include "backend.h"
107 #include "target.h"
108 #include "rtl.h"
109 #include "tree.h"
110 #include "predict.h"
111 #include "memmodel.h"
112 #include "tm_p.h"
113 #include "expmed.h"
114 #include "insn-config.h"
115 #include "emit-rtl.h"
116 #include "recog.h"
117 #include "insn-attr.h"
118 #include "resource.h"
119 #include "tree-pass.h"
122 /* First, some functions that were used before GCC got a control flow graph.
123 These functions are now only used here in reorg.c, and have therefore
124 been moved here to avoid inadvertent misuse elsewhere in the compiler. */
126 /* Return the last label to mark the same position as LABEL. Return LABEL
127 itself if it is null or any return rtx. */
129 static rtx
130 skip_consecutive_labels (rtx label_or_return)
132 rtx_insn *insn;
134 if (label_or_return && ANY_RETURN_P (label_or_return))
135 return label_or_return;
137 rtx_insn *label = as_a <rtx_insn *> (label_or_return);
139 /* __builtin_unreachable can create a CODE_LABEL followed by a BARRIER.
141 Since reaching the CODE_LABEL is undefined behavior, we can return
142 any code label and we're OK at runtime.
144 However, if we return a CODE_LABEL which leads to a shrinked wrapped
145 epilogue, but the path does not have a prologue, then we will trip
146 a sanity check in the dwarf2 cfi code which wants to verify that
147 the CFIs are all the same on the traces leading to the epilogue.
149 So we explicitly disallow looking through BARRIERS here. */
150 for (insn = label;
151 insn != 0 && !INSN_P (insn) && !BARRIER_P (insn);
152 insn = NEXT_INSN (insn))
153 if (LABEL_P (insn))
154 label = insn;
156 return label;
159 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
160 and REG_CC_USER notes so we can find it. */
162 static void
163 link_cc0_insns (rtx_insn *insn)
165 rtx user = next_nonnote_insn (insn);
167 if (NONJUMP_INSN_P (user) && GET_CODE (PATTERN (user)) == SEQUENCE)
168 user = XVECEXP (PATTERN (user), 0, 0);
170 add_reg_note (user, REG_CC_SETTER, insn);
171 add_reg_note (insn, REG_CC_USER, user);
174 /* Insns which have delay slots that have not yet been filled. */
176 static struct obstack unfilled_slots_obstack;
177 static rtx *unfilled_firstobj;
179 /* Define macros to refer to the first and last slot containing unfilled
180 insns. These are used because the list may move and its address
181 should be recomputed at each use. */
183 #define unfilled_slots_base \
184 ((rtx_insn **) obstack_base (&unfilled_slots_obstack))
186 #define unfilled_slots_next \
187 ((rtx_insn **) obstack_next_free (&unfilled_slots_obstack))
189 /* Points to the label before the end of the function, or before a
190 return insn. */
191 static rtx_code_label *function_return_label;
192 /* Likewise for a simple_return. */
193 static rtx_code_label *function_simple_return_label;
195 /* Mapping between INSN_UID's and position in the code since INSN_UID's do
196 not always monotonically increase. */
197 static int *uid_to_ruid;
199 /* Highest valid index in `uid_to_ruid'. */
200 static int max_uid;
202 static int stop_search_p (rtx_insn *, int);
203 static int resource_conflicts_p (struct resources *, struct resources *);
204 static int insn_references_resource_p (rtx, struct resources *, bool);
205 static int insn_sets_resource_p (rtx, struct resources *, bool);
206 static rtx_code_label *find_end_label (rtx);
207 static rtx_insn *emit_delay_sequence (rtx_insn *, const vec<rtx_insn *> &,
208 int);
209 static void add_to_delay_list (rtx_insn *, vec<rtx_insn *> *);
210 static rtx_insn *delete_from_delay_slot (rtx_insn *);
211 static void delete_scheduled_jump (rtx_insn *);
212 static void note_delay_statistics (int, int);
213 static int get_jump_flags (const rtx_insn *, rtx);
214 static int mostly_true_jump (rtx);
215 static rtx get_branch_condition (const rtx_insn *, rtx);
216 static int condition_dominates_p (rtx, const rtx_insn *);
217 static int redirect_with_delay_slots_safe_p (rtx_insn *, rtx, rtx);
218 static int redirect_with_delay_list_safe_p (rtx_insn *, rtx,
219 const vec<rtx_insn *> &);
220 static int check_annul_list_true_false (int, const vec<rtx_insn *> &);
221 static void steal_delay_list_from_target (rtx_insn *, rtx, rtx_sequence *,
222 vec<rtx_insn *> *,
223 struct resources *,
224 struct resources *,
225 struct resources *,
226 int, int *, int *,
227 rtx *);
228 static void steal_delay_list_from_fallthrough (rtx_insn *, rtx, rtx_sequence *,
229 vec<rtx_insn *> *,
230 struct resources *,
231 struct resources *,
232 struct resources *,
233 int, int *, int *);
234 static void try_merge_delay_insns (rtx_insn *, rtx_insn *);
235 static rtx_insn *redundant_insn (rtx, rtx_insn *, const vec<rtx_insn *> &);
236 static int own_thread_p (rtx, rtx, int);
237 static void update_block (rtx_insn *, rtx_insn *);
238 static int reorg_redirect_jump (rtx_jump_insn *, rtx);
239 static void update_reg_dead_notes (rtx_insn *, rtx_insn *);
240 static void fix_reg_dead_note (rtx_insn *, rtx);
241 static void update_reg_unused_notes (rtx_insn *, rtx);
242 static void fill_simple_delay_slots (int);
243 static void fill_slots_from_thread (rtx_jump_insn *, rtx, rtx, rtx,
244 int, int, int, int,
245 int *, vec<rtx_insn *> *);
246 static void fill_eager_delay_slots (void);
247 static void relax_delay_slots (rtx_insn *);
248 static void make_return_insns (rtx_insn *);
250 /* A wrapper around next_active_insn which takes care to return ret_rtx
251 unchanged. */
253 static rtx
254 first_active_target_insn (rtx insn)
256 if (ANY_RETURN_P (insn))
257 return insn;
258 return next_active_insn (as_a <rtx_insn *> (insn));
261 /* Return true iff INSN is a simplejump, or any kind of return insn. */
263 static bool
264 simplejump_or_return_p (rtx insn)
266 return (JUMP_P (insn)
267 && (simplejump_p (as_a <rtx_insn *> (insn))
268 || ANY_RETURN_P (PATTERN (insn))));
271 /* Return TRUE if this insn should stop the search for insn to fill delay
272 slots. LABELS_P indicates that labels should terminate the search.
273 In all cases, jumps terminate the search. */
275 static int
276 stop_search_p (rtx_insn *insn, int labels_p)
278 if (insn == 0)
279 return 1;
281 /* If the insn can throw an exception that is caught within the function,
282 it may effectively perform a jump from the viewpoint of the function.
283 Therefore act like for a jump. */
284 if (can_throw_internal (insn))
285 return 1;
287 switch (GET_CODE (insn))
289 case NOTE:
290 case CALL_INSN:
291 case DEBUG_INSN:
292 return 0;
294 case CODE_LABEL:
295 return labels_p;
297 case JUMP_INSN:
298 case BARRIER:
299 return 1;
301 case INSN:
302 /* OK unless it contains a delay slot or is an `asm' insn of some type.
303 We don't know anything about these. */
304 return (GET_CODE (PATTERN (insn)) == SEQUENCE
305 || GET_CODE (PATTERN (insn)) == ASM_INPUT
306 || asm_noperands (PATTERN (insn)) >= 0);
308 default:
309 gcc_unreachable ();
313 /* Return TRUE if any resources are marked in both RES1 and RES2 or if either
314 resource set contains a volatile memory reference. Otherwise, return FALSE. */
316 static int
317 resource_conflicts_p (struct resources *res1, struct resources *res2)
319 if ((res1->cc && res2->cc) || (res1->memory && res2->memory)
320 || res1->volatil || res2->volatil)
321 return 1;
323 return hard_reg_set_intersect_p (res1->regs, res2->regs);
326 /* Return TRUE if any resource marked in RES, a `struct resources', is
327 referenced by INSN. If INCLUDE_DELAYED_EFFECTS is set, return if the called
328 routine is using those resources.
330 We compute this by computing all the resources referenced by INSN and
331 seeing if this conflicts with RES. It might be faster to directly check
332 ourselves, and this is the way it used to work, but it means duplicating
333 a large block of complex code. */
335 static int
336 insn_references_resource_p (rtx insn, struct resources *res,
337 bool include_delayed_effects)
339 struct resources insn_res;
341 CLEAR_RESOURCE (&insn_res);
342 mark_referenced_resources (insn, &insn_res, include_delayed_effects);
343 return resource_conflicts_p (&insn_res, res);
346 /* Return TRUE if INSN modifies resources that are marked in RES.
347 INCLUDE_DELAYED_EFFECTS is set if the actions of that routine should be
348 included. CC0 is only modified if it is explicitly set; see comments
349 in front of mark_set_resources for details. */
351 static int
352 insn_sets_resource_p (rtx insn, struct resources *res,
353 bool include_delayed_effects)
355 struct resources insn_sets;
357 CLEAR_RESOURCE (&insn_sets);
358 mark_set_resources (insn, &insn_sets, 0,
359 (include_delayed_effects
360 ? MARK_SRC_DEST_CALL
361 : MARK_SRC_DEST));
362 return resource_conflicts_p (&insn_sets, res);
365 /* Find a label at the end of the function or before a RETURN. If there
366 is none, try to make one. If that fails, returns 0.
368 The property of such a label is that it is placed just before the
369 epilogue or a bare RETURN insn, so that another bare RETURN can be
370 turned into a jump to the label unconditionally. In particular, the
371 label cannot be placed before a RETURN insn with a filled delay slot.
373 ??? There may be a problem with the current implementation. Suppose
374 we start with a bare RETURN insn and call find_end_label. It may set
375 function_return_label just before the RETURN. Suppose the machinery
376 is able to fill the delay slot of the RETURN insn afterwards. Then
377 function_return_label is no longer valid according to the property
378 described above and find_end_label will still return it unmodified.
379 Note that this is probably mitigated by the following observation:
380 once function_return_label is made, it is very likely the target of
381 a jump, so filling the delay slot of the RETURN will be much more
382 difficult.
383 KIND is either simple_return_rtx or ret_rtx, indicating which type of
384 return we're looking for. */
386 static rtx_code_label *
387 find_end_label (rtx kind)
389 rtx_insn *insn;
390 rtx_code_label **plabel;
392 if (kind == ret_rtx)
393 plabel = &function_return_label;
394 else
396 gcc_assert (kind == simple_return_rtx);
397 plabel = &function_simple_return_label;
400 /* If we found one previously, return it. */
401 if (*plabel)
402 return *plabel;
404 /* Otherwise, see if there is a label at the end of the function. If there
405 is, it must be that RETURN insns aren't needed, so that is our return
406 label and we don't have to do anything else. */
408 insn = get_last_insn ();
409 while (NOTE_P (insn)
410 || (NONJUMP_INSN_P (insn)
411 && (GET_CODE (PATTERN (insn)) == USE
412 || GET_CODE (PATTERN (insn)) == CLOBBER)))
413 insn = PREV_INSN (insn);
415 /* When a target threads its epilogue we might already have a
416 suitable return insn. If so put a label before it for the
417 function_return_label. */
418 if (BARRIER_P (insn)
419 && JUMP_P (PREV_INSN (insn))
420 && PATTERN (PREV_INSN (insn)) == kind)
422 rtx_insn *temp = PREV_INSN (PREV_INSN (insn));
423 rtx_code_label *label = gen_label_rtx ();
424 LABEL_NUSES (label) = 0;
426 /* Put the label before any USE insns that may precede the RETURN
427 insn. */
428 while (GET_CODE (temp) == USE)
429 temp = PREV_INSN (temp);
431 emit_label_after (label, temp);
432 *plabel = label;
435 else if (LABEL_P (insn))
436 *plabel = as_a <rtx_code_label *> (insn);
437 else
439 rtx_code_label *label = gen_label_rtx ();
440 LABEL_NUSES (label) = 0;
441 /* If the basic block reorder pass moves the return insn to
442 some other place try to locate it again and put our
443 function_return_label there. */
444 while (insn && ! (JUMP_P (insn) && (PATTERN (insn) == kind)))
445 insn = PREV_INSN (insn);
446 if (insn)
448 insn = PREV_INSN (insn);
450 /* Put the label before any USE insns that may precede the
451 RETURN insn. */
452 while (GET_CODE (insn) == USE)
453 insn = PREV_INSN (insn);
455 emit_label_after (label, insn);
457 else
459 if (targetm.have_epilogue () && ! targetm.have_return ())
460 /* The RETURN insn has its delay slot filled so we cannot
461 emit the label just before it. Since we already have
462 an epilogue and cannot emit a new RETURN, we cannot
463 emit the label at all. */
464 return NULL;
466 /* Otherwise, make a new label and emit a RETURN and BARRIER,
467 if needed. */
468 emit_label (label);
469 if (targetm.have_return ())
471 /* The return we make may have delay slots too. */
472 rtx_insn *pat = targetm.gen_return ();
473 rtx_insn *insn = emit_jump_insn (pat);
474 set_return_jump_label (insn);
475 emit_barrier ();
476 if (num_delay_slots (insn) > 0)
477 obstack_ptr_grow (&unfilled_slots_obstack, insn);
480 *plabel = label;
483 /* Show one additional use for this label so it won't go away until
484 we are done. */
485 ++LABEL_NUSES (*plabel);
487 return *plabel;
490 /* Put INSN and LIST together in a SEQUENCE rtx of LENGTH, and replace
491 the pattern of INSN with the SEQUENCE.
493 Returns the insn containing the SEQUENCE that replaces INSN. */
495 static rtx_insn *
496 emit_delay_sequence (rtx_insn *insn, const vec<rtx_insn *> &list, int length)
498 /* Allocate the rtvec to hold the insns and the SEQUENCE. */
499 rtvec seqv = rtvec_alloc (length + 1);
500 rtx seq = gen_rtx_SEQUENCE (VOIDmode, seqv);
501 rtx_insn *seq_insn = make_insn_raw (seq);
503 /* If DELAY_INSN has a location, use it for SEQ_INSN. If DELAY_INSN does
504 not have a location, but one of the delayed insns does, we pick up a
505 location from there later. */
506 INSN_LOCATION (seq_insn) = INSN_LOCATION (insn);
508 /* Unlink INSN from the insn chain, so that we can put it into
509 the SEQUENCE. Remember where we want to emit SEQUENCE in AFTER. */
510 rtx_insn *after = PREV_INSN (insn);
511 remove_insn (insn);
512 SET_NEXT_INSN (insn) = SET_PREV_INSN (insn) = NULL;
514 /* Build our SEQUENCE and rebuild the insn chain. */
515 start_sequence ();
516 XVECEXP (seq, 0, 0) = emit_insn (insn);
518 unsigned int delay_insns = list.length ();
519 gcc_assert (delay_insns == (unsigned int) length);
520 for (unsigned int i = 0; i < delay_insns; i++)
522 rtx_insn *tem = list[i];
523 rtx note, next;
525 /* Show that this copy of the insn isn't deleted. */
526 tem->set_undeleted ();
528 /* Unlink insn from its original place, and re-emit it into
529 the sequence. */
530 SET_NEXT_INSN (tem) = SET_PREV_INSN (tem) = NULL;
531 XVECEXP (seq, 0, i + 1) = emit_insn (tem);
533 /* SPARC assembler, for instance, emit warning when debug info is output
534 into the delay slot. */
535 if (INSN_LOCATION (tem) && !INSN_LOCATION (seq_insn))
536 INSN_LOCATION (seq_insn) = INSN_LOCATION (tem);
537 INSN_LOCATION (tem) = 0;
539 for (note = REG_NOTES (tem); note; note = next)
541 next = XEXP (note, 1);
542 switch (REG_NOTE_KIND (note))
544 case REG_DEAD:
545 /* Remove any REG_DEAD notes because we can't rely on them now
546 that the insn has been moved. */
547 remove_note (tem, note);
548 break;
550 case REG_LABEL_OPERAND:
551 case REG_LABEL_TARGET:
552 /* Keep the label reference count up to date. */
553 if (LABEL_P (XEXP (note, 0)))
554 LABEL_NUSES (XEXP (note, 0)) ++;
555 break;
557 default:
558 break;
562 end_sequence ();
564 /* Splice our SEQUENCE into the insn stream where INSN used to be. */
565 add_insn_after (seq_insn, after, NULL);
567 return seq_insn;
570 /* Add INSN to DELAY_LIST and return the head of the new list. The list must
571 be in the order in which the insns are to be executed. */
573 static void
574 add_to_delay_list (rtx_insn *insn, vec<rtx_insn *> *delay_list)
576 /* If INSN has its block number recorded, clear it since we may
577 be moving the insn to a new block. */
578 clear_hashed_info_for_insn (insn);
580 delay_list->safe_push (insn);
583 /* Delete INSN from the delay slot of the insn that it is in, which may
584 produce an insn with no delay slots. Return the new insn. */
586 static rtx_insn *
587 delete_from_delay_slot (rtx_insn *insn)
589 rtx_insn *trial, *seq_insn, *prev;
590 rtx_sequence *seq;
591 int i;
592 int had_barrier = 0;
594 /* We first must find the insn containing the SEQUENCE with INSN in its
595 delay slot. Do this by finding an insn, TRIAL, where
596 PREV_INSN (NEXT_INSN (TRIAL)) != TRIAL. */
598 for (trial = insn;
599 PREV_INSN (NEXT_INSN (trial)) == trial;
600 trial = NEXT_INSN (trial))
603 seq_insn = PREV_INSN (NEXT_INSN (trial));
604 seq = as_a <rtx_sequence *> (PATTERN (seq_insn));
606 if (NEXT_INSN (seq_insn) && BARRIER_P (NEXT_INSN (seq_insn)))
607 had_barrier = 1;
609 /* Create a delay list consisting of all the insns other than the one
610 we are deleting (unless we were the only one). */
611 auto_vec<rtx_insn *, 5> delay_list;
612 if (seq->len () > 2)
613 for (i = 1; i < seq->len (); i++)
614 if (seq->insn (i) != insn)
615 add_to_delay_list (seq->insn (i), &delay_list);
617 /* Delete the old SEQUENCE, re-emit the insn that used to have the delay
618 list, and rebuild the delay list if non-empty. */
619 prev = PREV_INSN (seq_insn);
620 trial = seq->insn (0);
621 delete_related_insns (seq_insn);
622 add_insn_after (trial, prev, NULL);
624 /* If there was a barrier after the old SEQUENCE, remit it. */
625 if (had_barrier)
626 emit_barrier_after (trial);
628 /* If there are any delay insns, remit them. Otherwise clear the
629 annul flag. */
630 if (!delay_list.is_empty ())
631 trial = emit_delay_sequence (trial, delay_list, XVECLEN (seq, 0) - 2);
632 else if (JUMP_P (trial))
633 INSN_ANNULLED_BRANCH_P (trial) = 0;
635 INSN_FROM_TARGET_P (insn) = 0;
637 /* Show we need to fill this insn again. */
638 obstack_ptr_grow (&unfilled_slots_obstack, trial);
640 return trial;
643 /* Delete INSN, a JUMP_INSN. If it is a conditional jump, we must track down
644 the insn that sets CC0 for it and delete it too. */
646 static void
647 delete_scheduled_jump (rtx_insn *insn)
649 /* Delete the insn that sets cc0 for us. On machines without cc0, we could
650 delete the insn that sets the condition code, but it is hard to find it.
651 Since this case is rare anyway, don't bother trying; there would likely
652 be other insns that became dead anyway, which we wouldn't know to
653 delete. */
655 if (HAVE_cc0 && reg_mentioned_p (cc0_rtx, insn))
657 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
659 /* If a reg-note was found, it points to an insn to set CC0. This
660 insn is in the delay list of some other insn. So delete it from
661 the delay list it was in. */
662 if (note)
664 if (! FIND_REG_INC_NOTE (XEXP (note, 0), NULL_RTX)
665 && sets_cc0_p (PATTERN (XEXP (note, 0))) == 1)
666 delete_from_delay_slot (as_a <rtx_insn *> (XEXP (note, 0)));
668 else
670 /* The insn setting CC0 is our previous insn, but it may be in
671 a delay slot. It will be the last insn in the delay slot, if
672 it is. */
673 rtx_insn *trial = previous_insn (insn);
674 if (NOTE_P (trial))
675 trial = prev_nonnote_insn (trial);
676 if (sets_cc0_p (PATTERN (trial)) != 1
677 || FIND_REG_INC_NOTE (trial, NULL_RTX))
678 return;
679 if (PREV_INSN (NEXT_INSN (trial)) == trial)
680 delete_related_insns (trial);
681 else
682 delete_from_delay_slot (trial);
686 delete_related_insns (insn);
689 /* Counters for delay-slot filling. */
691 #define NUM_REORG_FUNCTIONS 2
692 #define MAX_DELAY_HISTOGRAM 3
693 #define MAX_REORG_PASSES 2
695 static int num_insns_needing_delays[NUM_REORG_FUNCTIONS][MAX_REORG_PASSES];
697 static int num_filled_delays[NUM_REORG_FUNCTIONS][MAX_DELAY_HISTOGRAM+1][MAX_REORG_PASSES];
699 static int reorg_pass_number;
701 static void
702 note_delay_statistics (int slots_filled, int index)
704 num_insns_needing_delays[index][reorg_pass_number]++;
705 if (slots_filled > MAX_DELAY_HISTOGRAM)
706 slots_filled = MAX_DELAY_HISTOGRAM;
707 num_filled_delays[index][slots_filled][reorg_pass_number]++;
710 /* Optimize the following cases:
712 1. When a conditional branch skips over only one instruction,
713 use an annulling branch and put that insn in the delay slot.
714 Use either a branch that annuls when the condition if true or
715 invert the test with a branch that annuls when the condition is
716 false. This saves insns, since otherwise we must copy an insn
717 from the L1 target.
719 (orig) (skip) (otherwise)
720 Bcc.n L1 Bcc',a L1 Bcc,a L1'
721 insn insn insn2
722 L1: L1: L1:
723 insn2 insn2 insn2
724 insn3 insn3 L1':
725 insn3
727 2. When a conditional branch skips over only one instruction,
728 and after that, it unconditionally branches somewhere else,
729 perform the similar optimization. This saves executing the
730 second branch in the case where the inverted condition is true.
732 Bcc.n L1 Bcc',a L2
733 insn insn
734 L1: L1:
735 Bra L2 Bra L2
737 INSN is a JUMP_INSN.
739 This should be expanded to skip over N insns, where N is the number
740 of delay slots required. */
742 static void
743 optimize_skip (rtx_jump_insn *insn, vec<rtx_insn *> *delay_list)
745 rtx_insn *trial = next_nonnote_insn (insn);
746 rtx_insn *next_trial = next_active_insn (trial);
747 int flags;
749 flags = get_jump_flags (insn, JUMP_LABEL (insn));
751 if (trial == 0
752 || !NONJUMP_INSN_P (trial)
753 || GET_CODE (PATTERN (trial)) == SEQUENCE
754 || recog_memoized (trial) < 0
755 || (! eligible_for_annul_false (insn, 0, trial, flags)
756 && ! eligible_for_annul_true (insn, 0, trial, flags))
757 || RTX_FRAME_RELATED_P (trial)
758 || can_throw_internal (trial))
759 return;
761 /* There are two cases where we are just executing one insn (we assume
762 here that a branch requires only one insn; this should be generalized
763 at some point): Where the branch goes around a single insn or where
764 we have one insn followed by a branch to the same label we branch to.
765 In both of these cases, inverting the jump and annulling the delay
766 slot give the same effect in fewer insns. */
767 if (next_trial == next_active_insn (JUMP_LABEL_AS_INSN (insn))
768 || (next_trial != 0
769 && simplejump_or_return_p (next_trial)
770 && JUMP_LABEL (insn) == JUMP_LABEL (next_trial)))
772 if (eligible_for_annul_false (insn, 0, trial, flags))
774 if (invert_jump (insn, JUMP_LABEL (insn), 1))
775 INSN_FROM_TARGET_P (trial) = 1;
776 else if (! eligible_for_annul_true (insn, 0, trial, flags))
777 return;
780 add_to_delay_list (trial, delay_list);
781 next_trial = next_active_insn (trial);
782 update_block (trial, trial);
783 delete_related_insns (trial);
785 /* Also, if we are targeting an unconditional
786 branch, thread our jump to the target of that branch. Don't
787 change this into a RETURN here, because it may not accept what
788 we have in the delay slot. We'll fix this up later. */
789 if (next_trial && simplejump_or_return_p (next_trial))
791 rtx target_label = JUMP_LABEL (next_trial);
792 if (ANY_RETURN_P (target_label))
793 target_label = find_end_label (target_label);
795 if (target_label)
797 /* Recompute the flags based on TARGET_LABEL since threading
798 the jump to TARGET_LABEL may change the direction of the
799 jump (which may change the circumstances in which the
800 delay slot is nullified). */
801 flags = get_jump_flags (insn, target_label);
802 if (eligible_for_annul_true (insn, 0, trial, flags))
803 reorg_redirect_jump (insn, target_label);
807 INSN_ANNULLED_BRANCH_P (insn) = 1;
811 /* Encode and return branch direction and prediction information for
812 INSN assuming it will jump to LABEL.
814 Non conditional branches return no direction information and
815 are predicted as very likely taken. */
817 static int
818 get_jump_flags (const rtx_insn *insn, rtx label)
820 int flags;
822 /* get_jump_flags can be passed any insn with delay slots, these may
823 be INSNs, CALL_INSNs, or JUMP_INSNs. Only JUMP_INSNs have branch
824 direction information, and only if they are conditional jumps.
826 If LABEL is a return, then there is no way to determine the branch
827 direction. */
828 if (JUMP_P (insn)
829 && (condjump_p (insn) || condjump_in_parallel_p (insn))
830 && !ANY_RETURN_P (label)
831 && INSN_UID (insn) <= max_uid
832 && INSN_UID (label) <= max_uid)
833 flags
834 = (uid_to_ruid[INSN_UID (label)] > uid_to_ruid[INSN_UID (insn)])
835 ? ATTR_FLAG_forward : ATTR_FLAG_backward;
836 /* No valid direction information. */
837 else
838 flags = 0;
840 return flags;
843 /* Return truth value of the statement that this branch
844 is mostly taken. If we think that the branch is extremely likely
845 to be taken, we return 2. If the branch is slightly more likely to be
846 taken, return 1. If the branch is slightly less likely to be taken,
847 return 0 and if the branch is highly unlikely to be taken, return -1. */
849 static int
850 mostly_true_jump (rtx jump_insn)
852 /* If branch probabilities are available, then use that number since it
853 always gives a correct answer. */
854 rtx note = find_reg_note (jump_insn, REG_BR_PROB, 0);
855 if (note)
857 int prob = profile_probability::from_reg_br_prob_note (XINT (note, 0))
858 .to_reg_br_prob_base ();
860 if (prob >= REG_BR_PROB_BASE * 9 / 10)
861 return 2;
862 else if (prob >= REG_BR_PROB_BASE / 2)
863 return 1;
864 else if (prob >= REG_BR_PROB_BASE / 10)
865 return 0;
866 else
867 return -1;
870 /* If there is no note, assume branches are not taken.
871 This should be rare. */
872 return 0;
875 /* Return the condition under which INSN will branch to TARGET. If TARGET
876 is zero, return the condition under which INSN will return. If INSN is
877 an unconditional branch, return const_true_rtx. If INSN isn't a simple
878 type of jump, or it doesn't go to TARGET, return 0. */
880 static rtx
881 get_branch_condition (const rtx_insn *insn, rtx target)
883 rtx pat = PATTERN (insn);
884 rtx src;
886 if (condjump_in_parallel_p (insn))
887 pat = XVECEXP (pat, 0, 0);
889 if (ANY_RETURN_P (pat) && pat == target)
890 return const_true_rtx;
892 if (GET_CODE (pat) != SET || SET_DEST (pat) != pc_rtx)
893 return 0;
895 src = SET_SRC (pat);
896 if (GET_CODE (src) == LABEL_REF && label_ref_label (src) == target)
897 return const_true_rtx;
899 else if (GET_CODE (src) == IF_THEN_ELSE
900 && XEXP (src, 2) == pc_rtx
901 && ((GET_CODE (XEXP (src, 1)) == LABEL_REF
902 && label_ref_label (XEXP (src, 1)) == target)
903 || (ANY_RETURN_P (XEXP (src, 1)) && XEXP (src, 1) == target)))
904 return XEXP (src, 0);
906 else if (GET_CODE (src) == IF_THEN_ELSE
907 && XEXP (src, 1) == pc_rtx
908 && ((GET_CODE (XEXP (src, 2)) == LABEL_REF
909 && label_ref_label (XEXP (src, 2)) == target)
910 || (ANY_RETURN_P (XEXP (src, 2)) && XEXP (src, 2) == target)))
912 enum rtx_code rev;
913 rev = reversed_comparison_code (XEXP (src, 0), insn);
914 if (rev != UNKNOWN)
915 return gen_rtx_fmt_ee (rev, GET_MODE (XEXP (src, 0)),
916 XEXP (XEXP (src, 0), 0),
917 XEXP (XEXP (src, 0), 1));
920 return 0;
923 /* Return nonzero if CONDITION is more strict than the condition of
924 INSN, i.e., if INSN will always branch if CONDITION is true. */
926 static int
927 condition_dominates_p (rtx condition, const rtx_insn *insn)
929 rtx other_condition = get_branch_condition (insn, JUMP_LABEL (insn));
930 enum rtx_code code = GET_CODE (condition);
931 enum rtx_code other_code;
933 if (rtx_equal_p (condition, other_condition)
934 || other_condition == const_true_rtx)
935 return 1;
937 else if (condition == const_true_rtx || other_condition == 0)
938 return 0;
940 other_code = GET_CODE (other_condition);
941 if (GET_RTX_LENGTH (code) != 2 || GET_RTX_LENGTH (other_code) != 2
942 || ! rtx_equal_p (XEXP (condition, 0), XEXP (other_condition, 0))
943 || ! rtx_equal_p (XEXP (condition, 1), XEXP (other_condition, 1)))
944 return 0;
946 return comparison_dominates_p (code, other_code);
949 /* Return nonzero if redirecting JUMP to NEWLABEL does not invalidate
950 any insns already in the delay slot of JUMP. */
952 static int
953 redirect_with_delay_slots_safe_p (rtx_insn *jump, rtx newlabel, rtx seq)
955 int flags, i;
956 rtx_sequence *pat = as_a <rtx_sequence *> (PATTERN (seq));
958 /* Make sure all the delay slots of this jump would still
959 be valid after threading the jump. If they are still
960 valid, then return nonzero. */
962 flags = get_jump_flags (jump, newlabel);
963 for (i = 1; i < pat->len (); i++)
964 if (! (
965 #if ANNUL_IFFALSE_SLOTS
966 (INSN_ANNULLED_BRANCH_P (jump)
967 && INSN_FROM_TARGET_P (pat->insn (i)))
968 ? eligible_for_annul_false (jump, i - 1, pat->insn (i), flags) :
969 #endif
970 #if ANNUL_IFTRUE_SLOTS
971 (INSN_ANNULLED_BRANCH_P (jump)
972 && ! INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)))
973 ? eligible_for_annul_true (jump, i - 1, pat->insn (i), flags) :
974 #endif
975 eligible_for_delay (jump, i - 1, pat->insn (i), flags)))
976 break;
978 return (i == pat->len ());
981 /* Return nonzero if redirecting JUMP to NEWLABEL does not invalidate
982 any insns we wish to place in the delay slot of JUMP. */
984 static int
985 redirect_with_delay_list_safe_p (rtx_insn *jump, rtx newlabel,
986 const vec<rtx_insn *> &delay_list)
988 /* Make sure all the insns in DELAY_LIST would still be
989 valid after threading the jump. If they are still
990 valid, then return nonzero. */
992 int flags = get_jump_flags (jump, newlabel);
993 unsigned int delay_insns = delay_list.length ();
994 unsigned int i = 0;
995 for (; i < delay_insns; i++)
996 if (! (
997 #if ANNUL_IFFALSE_SLOTS
998 (INSN_ANNULLED_BRANCH_P (jump)
999 && INSN_FROM_TARGET_P (delay_list[i]))
1000 ? eligible_for_annul_false (jump, i, delay_list[i], flags) :
1001 #endif
1002 #if ANNUL_IFTRUE_SLOTS
1003 (INSN_ANNULLED_BRANCH_P (jump)
1004 && ! INSN_FROM_TARGET_P (delay_list[i]))
1005 ? eligible_for_annul_true (jump, i, delay_list[i], flags) :
1006 #endif
1007 eligible_for_delay (jump, i, delay_list[i], flags)))
1008 break;
1010 return i == delay_insns;
1013 /* DELAY_LIST is a list of insns that have already been placed into delay
1014 slots. See if all of them have the same annulling status as ANNUL_TRUE_P.
1015 If not, return 0; otherwise return 1. */
1017 static int
1018 check_annul_list_true_false (int annul_true_p,
1019 const vec<rtx_insn *> &delay_list)
1021 rtx_insn *trial;
1022 unsigned int i;
1023 FOR_EACH_VEC_ELT (delay_list, i, trial)
1024 if ((annul_true_p && INSN_FROM_TARGET_P (trial))
1025 || (!annul_true_p && !INSN_FROM_TARGET_P (trial)))
1026 return 0;
1028 return 1;
1031 /* INSN branches to an insn whose pattern SEQ is a SEQUENCE. Given that
1032 the condition tested by INSN is CONDITION and the resources shown in
1033 OTHER_NEEDED are needed after INSN, see whether INSN can take all the insns
1034 from SEQ's delay list, in addition to whatever insns it may execute
1035 (in DELAY_LIST). SETS and NEEDED are denote resources already set and
1036 needed while searching for delay slot insns. Return the concatenated
1037 delay list if possible, otherwise, return 0.
1039 SLOTS_TO_FILL is the total number of slots required by INSN, and
1040 PSLOTS_FILLED points to the number filled so far (also the number of
1041 insns in DELAY_LIST). It is updated with the number that have been
1042 filled from the SEQUENCE, if any.
1044 PANNUL_P points to a nonzero value if we already know that we need
1045 to annul INSN. If this routine determines that annulling is needed,
1046 it may set that value nonzero.
1048 PNEW_THREAD points to a location that is to receive the place at which
1049 execution should continue. */
1051 static void
1052 steal_delay_list_from_target (rtx_insn *insn, rtx condition, rtx_sequence *seq,
1053 vec<rtx_insn *> *delay_list,
1054 struct resources *sets,
1055 struct resources *needed,
1056 struct resources *other_needed,
1057 int slots_to_fill, int *pslots_filled,
1058 int *pannul_p, rtx *pnew_thread)
1060 int slots_remaining = slots_to_fill - *pslots_filled;
1061 int total_slots_filled = *pslots_filled;
1062 auto_vec<rtx_insn *, 5> new_delay_list;
1063 int must_annul = *pannul_p;
1064 int used_annul = 0;
1065 int i;
1066 struct resources cc_set;
1067 rtx_insn **redundant;
1069 /* We can't do anything if there are more delay slots in SEQ than we
1070 can handle, or if we don't know that it will be a taken branch.
1071 We know that it will be a taken branch if it is either an unconditional
1072 branch or a conditional branch with a stricter branch condition.
1074 Also, exit if the branch has more than one set, since then it is computing
1075 other results that can't be ignored, e.g. the HPPA mov&branch instruction.
1076 ??? It may be possible to move other sets into INSN in addition to
1077 moving the instructions in the delay slots.
1079 We cannot steal the delay list if one of the instructions in the
1080 current delay_list modifies the condition codes and the jump in the
1081 sequence is a conditional jump. We cannot do this because we cannot
1082 change the direction of the jump because the condition codes
1083 will effect the direction of the jump in the sequence. */
1085 CLEAR_RESOURCE (&cc_set);
1087 rtx_insn *trial;
1088 FOR_EACH_VEC_ELT (*delay_list, i, trial)
1090 mark_set_resources (trial, &cc_set, 0, MARK_SRC_DEST_CALL);
1091 if (insn_references_resource_p (seq->insn (0), &cc_set, false))
1092 return;
1095 if (XVECLEN (seq, 0) - 1 > slots_remaining
1096 || ! condition_dominates_p (condition, seq->insn (0))
1097 || ! single_set (seq->insn (0)))
1098 return;
1100 /* On some targets, branches with delay slots can have a limited
1101 displacement. Give the back end a chance to tell us we can't do
1102 this. */
1103 if (! targetm.can_follow_jump (insn, seq->insn (0)))
1104 return;
1106 redundant = XALLOCAVEC (rtx_insn *, XVECLEN (seq, 0));
1107 for (i = 1; i < seq->len (); i++)
1109 rtx_insn *trial = seq->insn (i);
1110 int flags;
1112 if (insn_references_resource_p (trial, sets, false)
1113 || insn_sets_resource_p (trial, needed, false)
1114 || insn_sets_resource_p (trial, sets, false)
1115 /* If TRIAL sets CC0, we can't copy it, so we can't steal this
1116 delay list. */
1117 || (HAVE_cc0 && find_reg_note (trial, REG_CC_USER, NULL_RTX))
1118 /* If TRIAL is from the fallthrough code of an annulled branch insn
1119 in SEQ, we cannot use it. */
1120 || (INSN_ANNULLED_BRANCH_P (seq->insn (0))
1121 && ! INSN_FROM_TARGET_P (trial)))
1122 return;
1124 /* If this insn was already done (usually in a previous delay slot),
1125 pretend we put it in our delay slot. */
1126 redundant[i] = redundant_insn (trial, insn, new_delay_list);
1127 if (redundant[i])
1128 continue;
1130 /* We will end up re-vectoring this branch, so compute flags
1131 based on jumping to the new label. */
1132 flags = get_jump_flags (insn, JUMP_LABEL (seq->insn (0)));
1134 if (! must_annul
1135 && ((condition == const_true_rtx
1136 || (! insn_sets_resource_p (trial, other_needed, false)
1137 && ! may_trap_or_fault_p (PATTERN (trial)))))
1138 ? eligible_for_delay (insn, total_slots_filled, trial, flags)
1139 : (must_annul || (delay_list->is_empty () && new_delay_list.is_empty ()))
1140 && (must_annul = 1,
1141 check_annul_list_true_false (0, *delay_list)
1142 && check_annul_list_true_false (0, new_delay_list)
1143 && eligible_for_annul_false (insn, total_slots_filled,
1144 trial, flags)))
1146 if (must_annul)
1148 /* Frame related instructions cannot go into annulled delay
1149 slots, it messes up the dwarf info. */
1150 if (RTX_FRAME_RELATED_P (trial))
1151 return;
1152 used_annul = 1;
1154 rtx_insn *temp = copy_delay_slot_insn (trial);
1155 INSN_FROM_TARGET_P (temp) = 1;
1156 add_to_delay_list (temp, &new_delay_list);
1157 total_slots_filled++;
1159 if (--slots_remaining == 0)
1160 break;
1162 else
1163 return;
1166 /* Record the effect of the instructions that were redundant and which
1167 we therefore decided not to copy. */
1168 for (i = 1; i < seq->len (); i++)
1169 if (redundant[i])
1171 fix_reg_dead_note (redundant[i], insn);
1172 update_block (seq->insn (i), insn);
1175 /* Show the place to which we will be branching. */
1176 *pnew_thread = first_active_target_insn (JUMP_LABEL (seq->insn (0)));
1178 /* Add any new insns to the delay list and update the count of the
1179 number of slots filled. */
1180 *pslots_filled = total_slots_filled;
1181 if (used_annul)
1182 *pannul_p = 1;
1184 rtx_insn *temp;
1185 FOR_EACH_VEC_ELT (new_delay_list, i, temp)
1186 add_to_delay_list (temp, delay_list);
1189 /* Similar to steal_delay_list_from_target except that SEQ is on the
1190 fallthrough path of INSN. Here we only do something if the delay insn
1191 of SEQ is an unconditional branch. In that case we steal its delay slot
1192 for INSN since unconditional branches are much easier to fill. */
1194 static void
1195 steal_delay_list_from_fallthrough (rtx_insn *insn, rtx condition,
1196 rtx_sequence *seq,
1197 vec<rtx_insn *> *delay_list,
1198 struct resources *sets,
1199 struct resources *needed,
1200 struct resources *other_needed,
1201 int slots_to_fill, int *pslots_filled,
1202 int *pannul_p)
1204 int i;
1205 int flags;
1206 int must_annul = *pannul_p;
1207 int used_annul = 0;
1209 flags = get_jump_flags (insn, JUMP_LABEL (insn));
1211 /* We can't do anything if SEQ's delay insn isn't an
1212 unconditional branch. */
1214 if (! simplejump_or_return_p (seq->insn (0)))
1215 return;
1217 for (i = 1; i < seq->len (); i++)
1219 rtx_insn *trial = seq->insn (i);
1220 rtx_insn *prior_insn;
1222 /* If TRIAL sets CC0, stealing it will move it too far from the use
1223 of CC0. */
1224 if (insn_references_resource_p (trial, sets, false)
1225 || insn_sets_resource_p (trial, needed, false)
1226 || insn_sets_resource_p (trial, sets, false)
1227 || (HAVE_cc0 && sets_cc0_p (PATTERN (trial))))
1229 break;
1231 /* If this insn was already done, we don't need it. */
1232 if ((prior_insn = redundant_insn (trial, insn, *delay_list)))
1234 fix_reg_dead_note (prior_insn, insn);
1235 update_block (trial, insn);
1236 delete_from_delay_slot (trial);
1237 continue;
1240 if (! must_annul
1241 && ((condition == const_true_rtx
1242 || (! insn_sets_resource_p (trial, other_needed, false)
1243 && ! may_trap_or_fault_p (PATTERN (trial)))))
1244 ? eligible_for_delay (insn, *pslots_filled, trial, flags)
1245 : (must_annul || delay_list->is_empty ()) && (must_annul = 1,
1246 check_annul_list_true_false (1, *delay_list)
1247 && eligible_for_annul_true (insn, *pslots_filled, trial, flags)))
1249 if (must_annul)
1250 used_annul = 1;
1251 delete_from_delay_slot (trial);
1252 add_to_delay_list (trial, delay_list);
1254 if (++(*pslots_filled) == slots_to_fill)
1255 break;
1257 else
1258 break;
1261 if (used_annul)
1262 *pannul_p = 1;
1265 /* Try merging insns starting at THREAD which match exactly the insns in
1266 INSN's delay list.
1268 If all insns were matched and the insn was previously annulling, the
1269 annul bit will be cleared.
1271 For each insn that is merged, if the branch is or will be non-annulling,
1272 we delete the merged insn. */
1274 static void
1275 try_merge_delay_insns (rtx_insn *insn, rtx_insn *thread)
1277 rtx_insn *trial, *next_trial;
1278 rtx_insn *delay_insn = as_a <rtx_insn *> (XVECEXP (PATTERN (insn), 0, 0));
1279 int annul_p = JUMP_P (delay_insn) && INSN_ANNULLED_BRANCH_P (delay_insn);
1280 int slot_number = 1;
1281 int num_slots = XVECLEN (PATTERN (insn), 0);
1282 rtx next_to_match = XVECEXP (PATTERN (insn), 0, slot_number);
1283 struct resources set, needed, modified;
1284 auto_vec<std::pair<rtx_insn *, bool>, 10> merged_insns;
1285 int flags;
1287 flags = get_jump_flags (delay_insn, JUMP_LABEL (delay_insn));
1289 CLEAR_RESOURCE (&needed);
1290 CLEAR_RESOURCE (&set);
1292 /* If this is not an annulling branch, take into account anything needed in
1293 INSN's delay slot. This prevents two increments from being incorrectly
1294 folded into one. If we are annulling, this would be the correct
1295 thing to do. (The alternative, looking at things set in NEXT_TO_MATCH
1296 will essentially disable this optimization. This method is somewhat of
1297 a kludge, but I don't see a better way.) */
1298 if (! annul_p)
1299 for (int i = 1; i < num_slots; i++)
1300 if (XVECEXP (PATTERN (insn), 0, i))
1301 mark_referenced_resources (XVECEXP (PATTERN (insn), 0, i), &needed,
1302 true);
1304 for (trial = thread; !stop_search_p (trial, 1); trial = next_trial)
1306 rtx pat = PATTERN (trial);
1307 rtx oldtrial = trial;
1309 next_trial = next_nonnote_insn (trial);
1311 /* TRIAL must be a CALL_INSN or INSN. Skip USE and CLOBBER. */
1312 if (NONJUMP_INSN_P (trial)
1313 && (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER))
1314 continue;
1316 if (GET_CODE (next_to_match) == GET_CODE (trial)
1317 /* We can't share an insn that sets cc0. */
1318 && (!HAVE_cc0 || ! sets_cc0_p (pat))
1319 && ! insn_references_resource_p (trial, &set, true)
1320 && ! insn_sets_resource_p (trial, &set, true)
1321 && ! insn_sets_resource_p (trial, &needed, true)
1322 && (trial = try_split (pat, trial, 0)) != 0
1323 /* Update next_trial, in case try_split succeeded. */
1324 && (next_trial = next_nonnote_insn (trial))
1325 /* Likewise THREAD. */
1326 && (thread = oldtrial == thread ? trial : thread)
1327 && rtx_equal_p (PATTERN (next_to_match), PATTERN (trial))
1328 /* Have to test this condition if annul condition is different
1329 from (and less restrictive than) non-annulling one. */
1330 && eligible_for_delay (delay_insn, slot_number - 1, trial, flags))
1333 if (! annul_p)
1335 update_block (trial, thread);
1336 if (trial == thread)
1337 thread = next_active_insn (thread);
1339 delete_related_insns (trial);
1340 INSN_FROM_TARGET_P (next_to_match) = 0;
1342 else
1343 merged_insns.safe_push (std::pair<rtx_insn *, bool> (trial, false));
1345 if (++slot_number == num_slots)
1346 break;
1348 next_to_match = XVECEXP (PATTERN (insn), 0, slot_number);
1351 mark_set_resources (trial, &set, 0, MARK_SRC_DEST_CALL);
1352 mark_referenced_resources (trial, &needed, true);
1355 /* See if we stopped on a filled insn. If we did, try to see if its
1356 delay slots match. */
1357 if (slot_number != num_slots
1358 && trial && NONJUMP_INSN_P (trial)
1359 && GET_CODE (PATTERN (trial)) == SEQUENCE
1360 && !(JUMP_P (XVECEXP (PATTERN (trial), 0, 0))
1361 && INSN_ANNULLED_BRANCH_P (XVECEXP (PATTERN (trial), 0, 0))))
1363 rtx_sequence *pat = as_a <rtx_sequence *> (PATTERN (trial));
1364 rtx filled_insn = XVECEXP (pat, 0, 0);
1366 /* Account for resources set/needed by the filled insn. */
1367 mark_set_resources (filled_insn, &set, 0, MARK_SRC_DEST_CALL);
1368 mark_referenced_resources (filled_insn, &needed, true);
1370 for (int i = 1; i < pat->len (); i++)
1372 rtx_insn *dtrial = pat->insn (i);
1374 CLEAR_RESOURCE (&modified);
1375 /* Account for resources set by the insn following NEXT_TO_MATCH
1376 inside INSN's delay list. */
1377 for (int j = 1; slot_number + j < num_slots; j++)
1378 mark_set_resources (XVECEXP (PATTERN (insn), 0, slot_number + j),
1379 &modified, 0, MARK_SRC_DEST_CALL);
1380 /* Account for resources set by the insn before DTRIAL and inside
1381 TRIAL's delay list. */
1382 for (int j = 1; j < i; j++)
1383 mark_set_resources (XVECEXP (pat, 0, j),
1384 &modified, 0, MARK_SRC_DEST_CALL);
1385 if (! insn_references_resource_p (dtrial, &set, true)
1386 && ! insn_sets_resource_p (dtrial, &set, true)
1387 && ! insn_sets_resource_p (dtrial, &needed, true)
1388 && (!HAVE_cc0 || ! sets_cc0_p (PATTERN (dtrial)))
1389 && rtx_equal_p (PATTERN (next_to_match), PATTERN (dtrial))
1390 /* Check that DTRIAL and NEXT_TO_MATCH does not reference a
1391 resource modified between them (only dtrial is checked because
1392 next_to_match and dtrial shall to be equal in order to hit
1393 this line) */
1394 && ! insn_references_resource_p (dtrial, &modified, true)
1395 && eligible_for_delay (delay_insn, slot_number - 1, dtrial, flags))
1397 if (! annul_p)
1399 rtx_insn *new_rtx;
1401 update_block (dtrial, thread);
1402 new_rtx = delete_from_delay_slot (dtrial);
1403 if (thread->deleted ())
1404 thread = new_rtx;
1405 INSN_FROM_TARGET_P (next_to_match) = 0;
1407 else
1408 merged_insns.safe_push (std::pair<rtx_insn *, bool> (dtrial,
1409 true));
1411 if (++slot_number == num_slots)
1412 break;
1414 next_to_match = XVECEXP (PATTERN (insn), 0, slot_number);
1416 else
1418 /* Keep track of the set/referenced resources for the delay
1419 slots of any trial insns we encounter. */
1420 mark_set_resources (dtrial, &set, 0, MARK_SRC_DEST_CALL);
1421 mark_referenced_resources (dtrial, &needed, true);
1426 /* If all insns in the delay slot have been matched and we were previously
1427 annulling the branch, we need not any more. In that case delete all the
1428 merged insns. Also clear the INSN_FROM_TARGET_P bit of each insn in
1429 the delay list so that we know that it isn't only being used at the
1430 target. */
1431 if (slot_number == num_slots && annul_p)
1433 unsigned int len = merged_insns.length ();
1434 for (unsigned int i = len - 1; i < len; i--)
1435 if (merged_insns[i].second)
1437 update_block (merged_insns[i].first, thread);
1438 rtx_insn *new_rtx = delete_from_delay_slot (merged_insns[i].first);
1439 if (thread->deleted ())
1440 thread = new_rtx;
1442 else
1444 update_block (merged_insns[i].first, thread);
1445 delete_related_insns (merged_insns[i].first);
1448 INSN_ANNULLED_BRANCH_P (delay_insn) = 0;
1450 for (int i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1451 INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i)) = 0;
1455 /* See if INSN is redundant with an insn in front of TARGET. Often this
1456 is called when INSN is a candidate for a delay slot of TARGET.
1457 DELAY_LIST are insns that will be placed in delay slots of TARGET in front
1458 of INSN. Often INSN will be redundant with an insn in a delay slot of
1459 some previous insn. This happens when we have a series of branches to the
1460 same label; in that case the first insn at the target might want to go
1461 into each of the delay slots.
1463 If we are not careful, this routine can take up a significant fraction
1464 of the total compilation time (4%), but only wins rarely. Hence we
1465 speed this routine up by making two passes. The first pass goes back
1466 until it hits a label and sees if it finds an insn with an identical
1467 pattern. Only in this (relatively rare) event does it check for
1468 data conflicts.
1470 We do not split insns we encounter. This could cause us not to find a
1471 redundant insn, but the cost of splitting seems greater than the possible
1472 gain in rare cases. */
1474 static rtx_insn *
1475 redundant_insn (rtx insn, rtx_insn *target, const vec<rtx_insn *> &delay_list)
1477 rtx target_main = target;
1478 rtx ipat = PATTERN (insn);
1479 rtx_insn *trial;
1480 rtx pat;
1481 struct resources needed, set;
1482 int i;
1483 unsigned insns_to_search;
1485 /* If INSN has any REG_UNUSED notes, it can't match anything since we
1486 are allowed to not actually assign to such a register. */
1487 if (find_reg_note (insn, REG_UNUSED, NULL_RTX) != 0)
1488 return 0;
1490 /* Scan backwards looking for a match. */
1491 for (trial = PREV_INSN (target),
1492 insns_to_search = param_max_delay_slot_insn_search;
1493 trial && insns_to_search > 0;
1494 trial = PREV_INSN (trial))
1496 /* (use (insn))s can come immediately after a barrier if the
1497 label that used to precede them has been deleted as dead.
1498 See delete_related_insns. */
1499 if (LABEL_P (trial) || BARRIER_P (trial))
1500 return 0;
1502 if (!INSN_P (trial))
1503 continue;
1504 --insns_to_search;
1506 pat = PATTERN (trial);
1507 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
1508 continue;
1510 if (GET_CODE (trial) == DEBUG_INSN)
1511 continue;
1513 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (pat))
1515 /* Stop for a CALL and its delay slots because it is difficult to
1516 track its resource needs correctly. */
1517 if (CALL_P (seq->element (0)))
1518 return 0;
1520 /* Stop for an INSN or JUMP_INSN with delayed effects and its delay
1521 slots because it is difficult to track its resource needs
1522 correctly. */
1524 if (INSN_SETS_ARE_DELAYED (seq->insn (0)))
1525 return 0;
1527 if (INSN_REFERENCES_ARE_DELAYED (seq->insn (0)))
1528 return 0;
1530 /* See if any of the insns in the delay slot match, updating
1531 resource requirements as we go. */
1532 for (i = seq->len () - 1; i > 0; i--)
1533 if (GET_CODE (seq->element (i)) == GET_CODE (insn)
1534 && rtx_equal_p (PATTERN (seq->element (i)), ipat)
1535 && ! find_reg_note (seq->element (i), REG_UNUSED, NULL_RTX))
1536 break;
1538 /* If found a match, exit this loop early. */
1539 if (i > 0)
1540 break;
1543 else if (GET_CODE (trial) == GET_CODE (insn) && rtx_equal_p (pat, ipat)
1544 && ! find_reg_note (trial, REG_UNUSED, NULL_RTX))
1545 break;
1548 /* If we didn't find an insn that matches, return 0. */
1549 if (trial == 0)
1550 return 0;
1552 /* See what resources this insn sets and needs. If they overlap, or
1553 if this insn references CC0, it can't be redundant. */
1555 CLEAR_RESOURCE (&needed);
1556 CLEAR_RESOURCE (&set);
1557 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
1558 mark_referenced_resources (insn, &needed, true);
1560 /* If TARGET is a SEQUENCE, get the main insn. */
1561 if (NONJUMP_INSN_P (target) && GET_CODE (PATTERN (target)) == SEQUENCE)
1562 target_main = XVECEXP (PATTERN (target), 0, 0);
1564 if (resource_conflicts_p (&needed, &set)
1565 || (HAVE_cc0 && reg_mentioned_p (cc0_rtx, ipat))
1566 /* The insn requiring the delay may not set anything needed or set by
1567 INSN. */
1568 || insn_sets_resource_p (target_main, &needed, true)
1569 || insn_sets_resource_p (target_main, &set, true))
1570 return 0;
1572 /* Insns we pass may not set either NEEDED or SET, so merge them for
1573 simpler tests. */
1574 needed.memory |= set.memory;
1575 needed.regs |= set.regs;
1577 /* This insn isn't redundant if it conflicts with an insn that either is
1578 or will be in a delay slot of TARGET. */
1580 unsigned int j;
1581 rtx_insn *temp;
1582 FOR_EACH_VEC_ELT (delay_list, j, temp)
1583 if (insn_sets_resource_p (temp, &needed, true))
1584 return 0;
1586 if (NONJUMP_INSN_P (target) && GET_CODE (PATTERN (target)) == SEQUENCE)
1587 for (i = 1; i < XVECLEN (PATTERN (target), 0); i++)
1588 if (insn_sets_resource_p (XVECEXP (PATTERN (target), 0, i), &needed,
1589 true))
1590 return 0;
1592 /* Scan backwards until we reach a label or an insn that uses something
1593 INSN sets or sets something insn uses or sets. */
1595 for (trial = PREV_INSN (target),
1596 insns_to_search = param_max_delay_slot_insn_search;
1597 trial && !LABEL_P (trial) && insns_to_search > 0;
1598 trial = PREV_INSN (trial))
1600 if (!INSN_P (trial))
1601 continue;
1602 --insns_to_search;
1604 pat = PATTERN (trial);
1605 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
1606 continue;
1608 if (GET_CODE (trial) == DEBUG_INSN)
1609 continue;
1611 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (pat))
1613 bool annul_p = false;
1614 rtx_insn *control = seq->insn (0);
1616 /* If this is a CALL_INSN and its delay slots, it is hard to track
1617 the resource needs properly, so give up. */
1618 if (CALL_P (control))
1619 return 0;
1621 /* If this is an INSN or JUMP_INSN with delayed effects, it
1622 is hard to track the resource needs properly, so give up. */
1624 if (INSN_SETS_ARE_DELAYED (control))
1625 return 0;
1627 if (INSN_REFERENCES_ARE_DELAYED (control))
1628 return 0;
1630 if (JUMP_P (control))
1631 annul_p = INSN_ANNULLED_BRANCH_P (control);
1633 /* See if any of the insns in the delay slot match, updating
1634 resource requirements as we go. */
1635 for (i = seq->len () - 1; i > 0; i--)
1637 rtx_insn *candidate = seq->insn (i);
1639 /* If an insn will be annulled if the branch is false, it isn't
1640 considered as a possible duplicate insn. */
1641 if (rtx_equal_p (PATTERN (candidate), ipat)
1642 && ! (annul_p && INSN_FROM_TARGET_P (candidate)))
1644 /* Show that this insn will be used in the sequel. */
1645 INSN_FROM_TARGET_P (candidate) = 0;
1646 return candidate;
1649 /* Unless this is an annulled insn from the target of a branch,
1650 we must stop if it sets anything needed or set by INSN. */
1651 if ((!annul_p || !INSN_FROM_TARGET_P (candidate))
1652 && insn_sets_resource_p (candidate, &needed, true))
1653 return 0;
1656 /* If the insn requiring the delay slot conflicts with INSN, we
1657 must stop. */
1658 if (insn_sets_resource_p (control, &needed, true))
1659 return 0;
1661 else
1663 /* See if TRIAL is the same as INSN. */
1664 pat = PATTERN (trial);
1665 if (rtx_equal_p (pat, ipat))
1666 return trial;
1668 /* Can't go any further if TRIAL conflicts with INSN. */
1669 if (insn_sets_resource_p (trial, &needed, true))
1670 return 0;
1674 return 0;
1677 /* Return 1 if THREAD can only be executed in one way. If LABEL is nonzero,
1678 it is the target of the branch insn being scanned. If ALLOW_FALLTHROUGH
1679 is nonzero, we are allowed to fall into this thread; otherwise, we are
1680 not.
1682 If LABEL is used more than one or we pass a label other than LABEL before
1683 finding an active insn, we do not own this thread. */
1685 static int
1686 own_thread_p (rtx thread, rtx label, int allow_fallthrough)
1688 rtx_insn *active_insn;
1689 rtx_insn *insn;
1691 /* We don't own the function end. */
1692 if (thread == 0 || ANY_RETURN_P (thread))
1693 return 0;
1695 /* We have a non-NULL insn. */
1696 rtx_insn *thread_insn = as_a <rtx_insn *> (thread);
1698 /* Get the first active insn, or THREAD_INSN, if it is an active insn. */
1699 active_insn = next_active_insn (PREV_INSN (thread_insn));
1701 for (insn = thread_insn; insn != active_insn; insn = NEXT_INSN (insn))
1702 if (LABEL_P (insn)
1703 && (insn != label || LABEL_NUSES (insn) != 1))
1704 return 0;
1706 if (allow_fallthrough)
1707 return 1;
1709 /* Ensure that we reach a BARRIER before any insn or label. */
1710 for (insn = prev_nonnote_insn (thread_insn);
1711 insn == 0 || !BARRIER_P (insn);
1712 insn = prev_nonnote_insn (insn))
1713 if (insn == 0
1714 || LABEL_P (insn)
1715 || (NONJUMP_INSN_P (insn)
1716 && GET_CODE (PATTERN (insn)) != USE
1717 && GET_CODE (PATTERN (insn)) != CLOBBER))
1718 return 0;
1720 return 1;
1723 /* Called when INSN is being moved from a location near the target of a jump.
1724 We leave a marker of the form (use (INSN)) immediately in front of WHERE
1725 for mark_target_live_regs. These markers will be deleted at the end.
1727 We used to try to update the live status of registers if WHERE is at
1728 the start of a basic block, but that can't work since we may remove a
1729 BARRIER in relax_delay_slots. */
1731 static void
1732 update_block (rtx_insn *insn, rtx_insn *where)
1734 emit_insn_before (gen_rtx_USE (VOIDmode, insn), where);
1736 /* INSN might be making a value live in a block where it didn't use to
1737 be. So recompute liveness information for this block. */
1738 incr_ticks_for_insn (insn);
1741 /* Similar to REDIRECT_JUMP except that we update the BB_TICKS entry for
1742 the basic block containing the jump. */
1744 static int
1745 reorg_redirect_jump (rtx_jump_insn *jump, rtx nlabel)
1747 incr_ticks_for_insn (jump);
1748 return redirect_jump (jump, nlabel, 1);
1751 /* Called when INSN is being moved forward into a delay slot of DELAYED_INSN.
1752 We check every instruction between INSN and DELAYED_INSN for REG_DEAD notes
1753 that reference values used in INSN. If we find one, then we move the
1754 REG_DEAD note to INSN.
1756 This is needed to handle the case where a later insn (after INSN) has a
1757 REG_DEAD note for a register used by INSN, and this later insn subsequently
1758 gets moved before a CODE_LABEL because it is a redundant insn. In this
1759 case, mark_target_live_regs may be confused into thinking the register
1760 is dead because it sees a REG_DEAD note immediately before a CODE_LABEL. */
1762 static void
1763 update_reg_dead_notes (rtx_insn *insn, rtx_insn *delayed_insn)
1765 rtx link, next;
1766 rtx_insn *p;
1768 for (p = next_nonnote_insn (insn); p != delayed_insn;
1769 p = next_nonnote_insn (p))
1770 for (link = REG_NOTES (p); link; link = next)
1772 next = XEXP (link, 1);
1774 if (REG_NOTE_KIND (link) != REG_DEAD
1775 || !REG_P (XEXP (link, 0)))
1776 continue;
1778 if (reg_referenced_p (XEXP (link, 0), PATTERN (insn)))
1780 /* Move the REG_DEAD note from P to INSN. */
1781 remove_note (p, link);
1782 XEXP (link, 1) = REG_NOTES (insn);
1783 REG_NOTES (insn) = link;
1788 /* Called when an insn redundant with start_insn is deleted. If there
1789 is a REG_DEAD note for the target of start_insn between start_insn
1790 and stop_insn, then the REG_DEAD note needs to be deleted since the
1791 value no longer dies there.
1793 If the REG_DEAD note isn't deleted, then mark_target_live_regs may be
1794 confused into thinking the register is dead. */
1796 static void
1797 fix_reg_dead_note (rtx_insn *start_insn, rtx stop_insn)
1799 rtx link, next;
1800 rtx_insn *p;
1802 for (p = next_nonnote_insn (start_insn); p != stop_insn;
1803 p = next_nonnote_insn (p))
1804 for (link = REG_NOTES (p); link; link = next)
1806 next = XEXP (link, 1);
1808 if (REG_NOTE_KIND (link) != REG_DEAD
1809 || !REG_P (XEXP (link, 0)))
1810 continue;
1812 if (reg_set_p (XEXP (link, 0), PATTERN (start_insn)))
1814 remove_note (p, link);
1815 return;
1820 /* Delete any REG_UNUSED notes that exist on INSN but not on OTHER_INSN.
1822 This handles the case of udivmodXi4 instructions which optimize their
1823 output depending on whether any REG_UNUSED notes are present. We must
1824 make sure that INSN calculates as many results as OTHER_INSN does. */
1826 static void
1827 update_reg_unused_notes (rtx_insn *insn, rtx other_insn)
1829 rtx link, next;
1831 for (link = REG_NOTES (insn); link; link = next)
1833 next = XEXP (link, 1);
1835 if (REG_NOTE_KIND (link) != REG_UNUSED
1836 || !REG_P (XEXP (link, 0)))
1837 continue;
1839 if (!find_regno_note (other_insn, REG_UNUSED, REGNO (XEXP (link, 0))))
1840 remove_note (insn, link);
1844 static vec <rtx> sibling_labels;
1846 /* Return the label before INSN, or put a new label there. If SIBLING is
1847 non-zero, it is another label associated with the new label (if any),
1848 typically the former target of the jump that will be redirected to
1849 the new label. */
1851 static rtx_insn *
1852 get_label_before (rtx_insn *insn, rtx sibling)
1854 rtx_insn *label;
1856 /* Find an existing label at this point
1857 or make a new one if there is none. */
1858 label = prev_nonnote_insn (insn);
1860 if (label == 0 || !LABEL_P (label))
1862 rtx_insn *prev = PREV_INSN (insn);
1864 label = gen_label_rtx ();
1865 emit_label_after (label, prev);
1866 LABEL_NUSES (label) = 0;
1867 if (sibling)
1869 sibling_labels.safe_push (label);
1870 sibling_labels.safe_push (sibling);
1873 return label;
1876 /* Scan a function looking for insns that need a delay slot and find insns to
1877 put into the delay slot.
1879 NON_JUMPS_P is nonzero if we are to only try to fill non-jump insns (such
1880 as calls). We do these first since we don't want jump insns (that are
1881 easier to fill) to get the only insns that could be used for non-jump insns.
1882 When it is zero, only try to fill JUMP_INSNs.
1884 When slots are filled in this manner, the insns (including the
1885 delay_insn) are put together in a SEQUENCE rtx. In this fashion,
1886 it is possible to tell whether a delay slot has really been filled
1887 or not. `final' knows how to deal with this, by communicating
1888 through FINAL_SEQUENCE. */
1890 static void
1891 fill_simple_delay_slots (int non_jumps_p)
1893 rtx_insn *insn, *trial, *next_trial;
1894 rtx pat;
1895 int i;
1896 int num_unfilled_slots = unfilled_slots_next - unfilled_slots_base;
1897 struct resources needed, set;
1898 int slots_to_fill, slots_filled;
1899 auto_vec<rtx_insn *, 5> delay_list;
1901 for (i = 0; i < num_unfilled_slots; i++)
1903 int flags;
1904 /* Get the next insn to fill. If it has already had any slots assigned,
1905 we can't do anything with it. Maybe we'll improve this later. */
1907 insn = unfilled_slots_base[i];
1908 if (insn == 0
1909 || insn->deleted ()
1910 || (NONJUMP_INSN_P (insn)
1911 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1912 || (JUMP_P (insn) && non_jumps_p)
1913 || (!JUMP_P (insn) && ! non_jumps_p))
1914 continue;
1916 /* It may have been that this insn used to need delay slots, but
1917 now doesn't; ignore in that case. This can happen, for example,
1918 on the HP PA RISC, where the number of delay slots depends on
1919 what insns are nearby. */
1920 slots_to_fill = num_delay_slots (insn);
1922 /* Some machine description have defined instructions to have
1923 delay slots only in certain circumstances which may depend on
1924 nearby insns (which change due to reorg's actions).
1926 For example, the PA port normally has delay slots for unconditional
1927 jumps.
1929 However, the PA port claims such jumps do not have a delay slot
1930 if they are immediate successors of certain CALL_INSNs. This
1931 allows the port to favor filling the delay slot of the call with
1932 the unconditional jump. */
1933 if (slots_to_fill == 0)
1934 continue;
1936 /* This insn needs, or can use, some delay slots. SLOTS_TO_FILL
1937 says how many. After initialization, first try optimizing
1939 call _foo call _foo
1940 nop add %o7,.-L1,%o7
1941 b,a L1
1944 If this case applies, the delay slot of the call is filled with
1945 the unconditional jump. This is done first to avoid having the
1946 delay slot of the call filled in the backward scan. Also, since
1947 the unconditional jump is likely to also have a delay slot, that
1948 insn must exist when it is subsequently scanned.
1950 This is tried on each insn with delay slots as some machines
1951 have insns which perform calls, but are not represented as
1952 CALL_INSNs. */
1954 slots_filled = 0;
1955 delay_list.truncate (0);
1957 if (JUMP_P (insn))
1958 flags = get_jump_flags (insn, JUMP_LABEL (insn));
1959 else
1960 flags = get_jump_flags (insn, NULL_RTX);
1962 if ((trial = next_active_insn (insn))
1963 && JUMP_P (trial)
1964 && simplejump_p (trial)
1965 && eligible_for_delay (insn, slots_filled, trial, flags)
1966 && no_labels_between_p (insn, trial)
1967 && ! can_throw_internal (trial))
1969 rtx_insn **tmp;
1970 slots_filled++;
1971 add_to_delay_list (trial, &delay_list);
1973 /* TRIAL may have had its delay slot filled, then unfilled. When
1974 the delay slot is unfilled, TRIAL is placed back on the unfilled
1975 slots obstack. Unfortunately, it is placed on the end of the
1976 obstack, not in its original location. Therefore, we must search
1977 from entry i + 1 to the end of the unfilled slots obstack to
1978 try and find TRIAL. */
1979 tmp = &unfilled_slots_base[i + 1];
1980 while (*tmp != trial && tmp != unfilled_slots_next)
1981 tmp++;
1983 /* Remove the unconditional jump from consideration for delay slot
1984 filling and unthread it. */
1985 if (*tmp == trial)
1986 *tmp = 0;
1988 rtx_insn *next = NEXT_INSN (trial);
1989 rtx_insn *prev = PREV_INSN (trial);
1990 if (prev)
1991 SET_NEXT_INSN (prev) = next;
1992 if (next)
1993 SET_PREV_INSN (next) = prev;
1997 /* Now, scan backwards from the insn to search for a potential
1998 delay-slot candidate. Stop searching when a label or jump is hit.
2000 For each candidate, if it is to go into the delay slot (moved
2001 forward in execution sequence), it must not need or set any resources
2002 that were set by later insns and must not set any resources that
2003 are needed for those insns.
2005 The delay slot insn itself sets resources unless it is a call
2006 (in which case the called routine, not the insn itself, is doing
2007 the setting). */
2009 if (slots_filled < slots_to_fill)
2011 /* If the flags register is dead after the insn, then we want to be
2012 able to accept a candidate that clobbers it. For this purpose,
2013 we need to filter the flags register during life analysis, so
2014 that it doesn't create RAW and WAW dependencies, while still
2015 creating the necessary WAR dependencies. */
2016 bool filter_flags
2017 = (slots_to_fill == 1
2018 && targetm.flags_regnum != INVALID_REGNUM
2019 && find_regno_note (insn, REG_DEAD, targetm.flags_regnum));
2020 struct resources fset;
2021 CLEAR_RESOURCE (&needed);
2022 CLEAR_RESOURCE (&set);
2023 mark_set_resources (insn, &set, 0, MARK_SRC_DEST);
2024 if (filter_flags)
2026 CLEAR_RESOURCE (&fset);
2027 mark_set_resources (insn, &fset, 0, MARK_SRC_DEST);
2029 mark_referenced_resources (insn, &needed, false);
2031 for (trial = prev_nonnote_insn (insn); ! stop_search_p (trial, 1);
2032 trial = next_trial)
2034 next_trial = prev_nonnote_insn (trial);
2036 /* This must be an INSN or CALL_INSN. */
2037 pat = PATTERN (trial);
2039 /* Stand-alone USE and CLOBBER are just for flow. */
2040 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
2041 continue;
2043 /* And DEBUG_INSNs never go into delay slots. */
2044 if (GET_CODE (trial) == DEBUG_INSN)
2045 continue;
2047 /* Check for resource conflict first, to avoid unnecessary
2048 splitting. */
2049 if (! insn_references_resource_p (trial, &set, true)
2050 && ! insn_sets_resource_p (trial,
2051 filter_flags ? &fset : &set,
2052 true)
2053 && ! insn_sets_resource_p (trial, &needed, true)
2054 /* Can't separate set of cc0 from its use. */
2055 && (!HAVE_cc0 || ! (reg_mentioned_p (cc0_rtx, pat) && ! sets_cc0_p (pat)))
2056 && ! can_throw_internal (trial))
2058 trial = try_split (pat, trial, 1);
2059 next_trial = prev_nonnote_insn (trial);
2060 if (eligible_for_delay (insn, slots_filled, trial, flags))
2062 /* In this case, we are searching backward, so if we
2063 find insns to put on the delay list, we want
2064 to put them at the head, rather than the
2065 tail, of the list. */
2067 update_reg_dead_notes (trial, insn);
2068 delay_list.safe_insert (0, trial);
2069 update_block (trial, trial);
2070 delete_related_insns (trial);
2071 if (slots_to_fill == ++slots_filled)
2072 break;
2073 continue;
2077 mark_set_resources (trial, &set, 0, MARK_SRC_DEST_CALL);
2078 if (filter_flags)
2080 mark_set_resources (trial, &fset, 0, MARK_SRC_DEST_CALL);
2081 /* If the flags register is set, then it doesn't create RAW
2082 dependencies any longer and it also doesn't create WAW
2083 dependencies since it's dead after the original insn. */
2084 if (TEST_HARD_REG_BIT (fset.regs, targetm.flags_regnum))
2086 CLEAR_HARD_REG_BIT (needed.regs, targetm.flags_regnum);
2087 CLEAR_HARD_REG_BIT (fset.regs, targetm.flags_regnum);
2090 mark_referenced_resources (trial, &needed, true);
2094 /* If all needed slots haven't been filled, we come here. */
2096 /* Try to optimize case of jumping around a single insn. */
2097 if ((ANNUL_IFTRUE_SLOTS || ANNUL_IFFALSE_SLOTS)
2098 && slots_filled != slots_to_fill
2099 && delay_list.is_empty ()
2100 && JUMP_P (insn)
2101 && (condjump_p (insn) || condjump_in_parallel_p (insn))
2102 && !ANY_RETURN_P (JUMP_LABEL (insn)))
2104 optimize_skip (as_a <rtx_jump_insn *> (insn), &delay_list);
2105 if (!delay_list.is_empty ())
2106 slots_filled += 1;
2109 /* Try to get insns from beyond the insn needing the delay slot.
2110 These insns can neither set or reference resources set in insns being
2111 skipped, cannot set resources in the insn being skipped, and, if this
2112 is a CALL_INSN (or a CALL_INSN is passed), cannot trap (because the
2113 call might not return).
2115 There used to be code which continued past the target label if
2116 we saw all uses of the target label. This code did not work,
2117 because it failed to account for some instructions which were
2118 both annulled and marked as from the target. This can happen as a
2119 result of optimize_skip. Since this code was redundant with
2120 fill_eager_delay_slots anyways, it was just deleted. */
2122 if (slots_filled != slots_to_fill
2123 /* If this instruction could throw an exception which is
2124 caught in the same function, then it's not safe to fill
2125 the delay slot with an instruction from beyond this
2126 point. For example, consider:
2128 int i = 2;
2130 try {
2131 f();
2132 i = 3;
2133 } catch (...) {}
2135 return i;
2137 Even though `i' is a local variable, we must be sure not
2138 to put `i = 3' in the delay slot if `f' might throw an
2139 exception.
2141 Presumably, we should also check to see if we could get
2142 back to this function via `setjmp'. */
2143 && ! can_throw_internal (insn)
2144 && !JUMP_P (insn))
2146 int maybe_never = 0;
2147 rtx pat, trial_delay;
2149 CLEAR_RESOURCE (&needed);
2150 CLEAR_RESOURCE (&set);
2151 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
2152 mark_referenced_resources (insn, &needed, true);
2154 if (CALL_P (insn))
2155 maybe_never = 1;
2157 for (trial = next_nonnote_insn (insn); !stop_search_p (trial, 1);
2158 trial = next_trial)
2160 next_trial = next_nonnote_insn (trial);
2162 /* This must be an INSN or CALL_INSN. */
2163 pat = PATTERN (trial);
2165 /* Stand-alone USE and CLOBBER are just for flow. */
2166 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
2167 continue;
2169 /* And DEBUG_INSNs do not go in delay slots. */
2170 if (GET_CODE (trial) == DEBUG_INSN)
2171 continue;
2173 /* If this already has filled delay slots, get the insn needing
2174 the delay slots. */
2175 if (GET_CODE (pat) == SEQUENCE)
2176 trial_delay = XVECEXP (pat, 0, 0);
2177 else
2178 trial_delay = trial;
2180 /* Stop our search when seeing a jump. */
2181 if (JUMP_P (trial_delay))
2182 break;
2184 /* See if we have a resource problem before we try to split. */
2185 if (GET_CODE (pat) != SEQUENCE
2186 && ! insn_references_resource_p (trial, &set, true)
2187 && ! insn_sets_resource_p (trial, &set, true)
2188 && ! insn_sets_resource_p (trial, &needed, true)
2189 && (!HAVE_cc0 && ! (reg_mentioned_p (cc0_rtx, pat) && ! sets_cc0_p (pat)))
2190 && ! (maybe_never && may_trap_or_fault_p (pat))
2191 && (trial = try_split (pat, trial, 0))
2192 && eligible_for_delay (insn, slots_filled, trial, flags)
2193 && ! can_throw_internal (trial))
2195 next_trial = next_nonnote_insn (trial);
2196 add_to_delay_list (trial, &delay_list);
2197 if (HAVE_cc0 && reg_mentioned_p (cc0_rtx, pat))
2198 link_cc0_insns (trial);
2200 delete_related_insns (trial);
2201 if (slots_to_fill == ++slots_filled)
2202 break;
2203 continue;
2206 mark_set_resources (trial, &set, 0, MARK_SRC_DEST_CALL);
2207 mark_referenced_resources (trial, &needed, true);
2209 /* Ensure we don't put insns between the setting of cc and the
2210 comparison by moving a setting of cc into an earlier delay
2211 slot since these insns could clobber the condition code. */
2212 set.cc = 1;
2214 /* If this is a call, we might not get here. */
2215 if (CALL_P (trial_delay))
2216 maybe_never = 1;
2219 /* If there are slots left to fill and our search was stopped by an
2220 unconditional branch, try the insn at the branch target. We can
2221 redirect the branch if it works.
2223 Don't do this if the insn at the branch target is a branch. */
2224 if (slots_to_fill != slots_filled
2225 && trial
2226 && jump_to_label_p (trial)
2227 && simplejump_p (trial)
2228 && (next_trial = next_active_insn (JUMP_LABEL_AS_INSN (trial))) != 0
2229 && ! (NONJUMP_INSN_P (next_trial)
2230 && GET_CODE (PATTERN (next_trial)) == SEQUENCE)
2231 && !JUMP_P (next_trial)
2232 && ! insn_references_resource_p (next_trial, &set, true)
2233 && ! insn_sets_resource_p (next_trial, &set, true)
2234 && ! insn_sets_resource_p (next_trial, &needed, true)
2235 && (!HAVE_cc0 || ! reg_mentioned_p (cc0_rtx, PATTERN (next_trial)))
2236 && ! (maybe_never && may_trap_or_fault_p (PATTERN (next_trial)))
2237 && (next_trial = try_split (PATTERN (next_trial), next_trial, 0))
2238 && eligible_for_delay (insn, slots_filled, next_trial, flags)
2239 && ! can_throw_internal (trial))
2241 /* See comment in relax_delay_slots about necessity of using
2242 next_real_nondebug_insn here. */
2243 rtx_insn *new_label = next_real_nondebug_insn (next_trial);
2245 if (new_label != 0)
2246 new_label = get_label_before (new_label, JUMP_LABEL (trial));
2247 else
2248 new_label = find_end_label (simple_return_rtx);
2250 if (new_label)
2252 add_to_delay_list (copy_delay_slot_insn (next_trial),
2253 &delay_list);
2254 slots_filled++;
2255 reorg_redirect_jump (as_a <rtx_jump_insn *> (trial),
2256 new_label);
2261 /* If this is an unconditional jump, then try to get insns from the
2262 target of the jump. */
2263 rtx_jump_insn *jump_insn;
2264 if ((jump_insn = dyn_cast <rtx_jump_insn *> (insn))
2265 && simplejump_p (jump_insn)
2266 && slots_filled != slots_to_fill)
2267 fill_slots_from_thread (jump_insn, const_true_rtx,
2268 next_active_insn (JUMP_LABEL_AS_INSN (insn)),
2269 NULL, 1, 1, own_thread_p (JUMP_LABEL (insn),
2270 JUMP_LABEL (insn), 0),
2271 slots_to_fill, &slots_filled, &delay_list);
2273 if (!delay_list.is_empty ())
2274 unfilled_slots_base[i]
2275 = emit_delay_sequence (insn, delay_list, slots_filled);
2277 if (slots_to_fill == slots_filled)
2278 unfilled_slots_base[i] = 0;
2280 note_delay_statistics (slots_filled, 0);
2284 /* Follow any unconditional jump at LABEL, for the purpose of redirecting JUMP;
2285 return the ultimate label reached by any such chain of jumps.
2286 Return a suitable return rtx if the chain ultimately leads to a
2287 return instruction.
2288 If LABEL is not followed by a jump, return LABEL.
2289 If the chain loops or we can't find end, return LABEL,
2290 since that tells caller to avoid changing the insn.
2291 If the returned label is obtained by following a crossing jump,
2292 set *CROSSING to true, otherwise set it to false. */
2294 static rtx
2295 follow_jumps (rtx label, rtx_insn *jump, bool *crossing)
2297 rtx_insn *insn;
2298 rtx_insn *next;
2299 int depth;
2301 *crossing = false;
2302 if (ANY_RETURN_P (label))
2303 return label;
2305 rtx_insn *value = as_a <rtx_insn *> (label);
2307 for (depth = 0;
2308 (depth < 10
2309 && (insn = next_active_insn (value)) != 0
2310 && JUMP_P (insn)
2311 && JUMP_LABEL (insn) != NULL_RTX
2312 && ((any_uncondjump_p (insn) && onlyjump_p (insn))
2313 || ANY_RETURN_P (PATTERN (insn)))
2314 && (next = NEXT_INSN (insn))
2315 && BARRIER_P (next));
2316 depth++)
2318 rtx this_label_or_return = JUMP_LABEL (insn);
2320 /* If we have found a cycle, make the insn jump to itself. */
2321 if (this_label_or_return == label)
2322 return label;
2324 /* Cannot follow returns and cannot look through tablejumps. */
2325 if (ANY_RETURN_P (this_label_or_return))
2326 return this_label_or_return;
2328 rtx_insn *this_label = as_a <rtx_insn *> (this_label_or_return);
2329 if (NEXT_INSN (this_label)
2330 && JUMP_TABLE_DATA_P (NEXT_INSN (this_label)))
2331 break;
2333 if (!targetm.can_follow_jump (jump, insn))
2334 break;
2335 if (!*crossing)
2336 *crossing = CROSSING_JUMP_P (jump);
2337 value = this_label;
2339 if (depth == 10)
2340 return label;
2341 return value;
2344 /* Try to find insns to place in delay slots.
2346 INSN is the jump needing SLOTS_TO_FILL delay slots. It tests CONDITION
2347 or is an unconditional branch if CONDITION is const_true_rtx.
2348 *PSLOTS_FILLED is updated with the number of slots that we have filled.
2350 THREAD is a flow-of-control, either the insns to be executed if the
2351 branch is true or if the branch is false, THREAD_IF_TRUE says which.
2353 OPPOSITE_THREAD is the thread in the opposite direction. It is used
2354 to see if any potential delay slot insns set things needed there.
2356 LIKELY is nonzero if it is extremely likely that the branch will be
2357 taken and THREAD_IF_TRUE is set. This is used for the branch at the
2358 end of a loop back up to the top.
2360 OWN_THREAD is true if we are the only user of the thread, i.e. it is
2361 the target of the jump when we are the only jump going there.
2363 If OWN_THREAD is false, it must be the "true" thread of a jump. In that
2364 case, we can only take insns from the head of the thread for our delay
2365 slot. We then adjust the jump to point after the insns we have taken. */
2367 static void
2368 fill_slots_from_thread (rtx_jump_insn *insn, rtx condition,
2369 rtx thread_or_return, rtx opposite_thread, int likely,
2370 int thread_if_true, int own_thread, int slots_to_fill,
2371 int *pslots_filled, vec<rtx_insn *> *delay_list)
2373 rtx new_thread;
2374 struct resources opposite_needed, set, needed;
2375 rtx_insn *trial;
2376 int lose = 0;
2377 int must_annul = 0;
2378 int flags;
2380 /* Validate our arguments. */
2381 gcc_assert (condition != const_true_rtx || thread_if_true);
2382 gcc_assert (own_thread || thread_if_true);
2384 flags = get_jump_flags (insn, JUMP_LABEL (insn));
2386 /* If our thread is the end of subroutine, we can't get any delay
2387 insns from that. */
2388 if (thread_or_return == NULL_RTX || ANY_RETURN_P (thread_or_return))
2389 return;
2391 rtx_insn *thread = as_a <rtx_insn *> (thread_or_return);
2393 /* If this is an unconditional branch, nothing is needed at the
2394 opposite thread. Otherwise, compute what is needed there. */
2395 if (condition == const_true_rtx)
2396 CLEAR_RESOURCE (&opposite_needed);
2397 else
2398 mark_target_live_regs (get_insns (), opposite_thread, &opposite_needed);
2400 /* If the insn at THREAD can be split, do it here to avoid having to
2401 update THREAD and NEW_THREAD if it is done in the loop below. Also
2402 initialize NEW_THREAD. */
2404 new_thread = thread = try_split (PATTERN (thread), thread, 0);
2406 /* Scan insns at THREAD. We are looking for an insn that can be removed
2407 from THREAD (it neither sets nor references resources that were set
2408 ahead of it and it doesn't set anything needs by the insns ahead of
2409 it) and that either can be placed in an annulling insn or aren't
2410 needed at OPPOSITE_THREAD. */
2412 CLEAR_RESOURCE (&needed);
2413 CLEAR_RESOURCE (&set);
2415 /* If we do not own this thread, we must stop as soon as we find
2416 something that we can't put in a delay slot, since all we can do
2417 is branch into THREAD at a later point. Therefore, labels stop
2418 the search if this is not the `true' thread. */
2420 for (trial = thread;
2421 ! stop_search_p (trial, ! thread_if_true) && (! lose || own_thread);
2422 trial = next_nonnote_insn (trial))
2424 rtx pat, old_trial;
2426 /* If we have passed a label, we no longer own this thread. */
2427 if (LABEL_P (trial))
2429 own_thread = 0;
2430 continue;
2433 pat = PATTERN (trial);
2434 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
2435 continue;
2437 if (GET_CODE (trial) == DEBUG_INSN)
2438 continue;
2440 /* If TRIAL conflicts with the insns ahead of it, we lose. Also,
2441 don't separate or copy insns that set and use CC0. */
2442 if (! insn_references_resource_p (trial, &set, true)
2443 && ! insn_sets_resource_p (trial, &set, true)
2444 && ! insn_sets_resource_p (trial, &needed, true)
2445 && (!HAVE_cc0 || (! (reg_mentioned_p (cc0_rtx, pat)
2446 && (! own_thread || ! sets_cc0_p (pat)))))
2447 && ! can_throw_internal (trial))
2449 rtx_insn *prior_insn;
2451 /* If TRIAL is redundant with some insn before INSN, we don't
2452 actually need to add it to the delay list; we can merely pretend
2453 we did. */
2454 if ((prior_insn = redundant_insn (trial, insn, *delay_list)))
2456 fix_reg_dead_note (prior_insn, insn);
2457 if (own_thread)
2459 update_block (trial, thread);
2460 if (trial == thread)
2462 thread = next_active_insn (thread);
2463 if (new_thread == trial)
2464 new_thread = thread;
2467 delete_related_insns (trial);
2469 else
2471 update_reg_unused_notes (prior_insn, trial);
2472 new_thread = next_active_insn (trial);
2475 continue;
2478 /* There are two ways we can win: If TRIAL doesn't set anything
2479 needed at the opposite thread and can't trap, or if it can
2480 go into an annulled delay slot. But we want neither to copy
2481 nor to speculate frame-related insns. */
2482 if (!must_annul
2483 && ((condition == const_true_rtx
2484 && (own_thread || !RTX_FRAME_RELATED_P (trial)))
2485 || (! insn_sets_resource_p (trial, &opposite_needed, true)
2486 && ! may_trap_or_fault_p (pat)
2487 && ! RTX_FRAME_RELATED_P (trial))))
2489 old_trial = trial;
2490 trial = try_split (pat, trial, 0);
2491 if (new_thread == old_trial)
2492 new_thread = trial;
2493 if (thread == old_trial)
2494 thread = trial;
2495 pat = PATTERN (trial);
2496 if (eligible_for_delay (insn, *pslots_filled, trial, flags))
2497 goto winner;
2499 else if (!RTX_FRAME_RELATED_P (trial)
2500 && ((ANNUL_IFTRUE_SLOTS && ! thread_if_true)
2501 || (ANNUL_IFFALSE_SLOTS && thread_if_true)))
2503 old_trial = trial;
2504 trial = try_split (pat, trial, 0);
2505 if (new_thread == old_trial)
2506 new_thread = trial;
2507 if (thread == old_trial)
2508 thread = trial;
2509 pat = PATTERN (trial);
2510 if ((must_annul || delay_list->is_empty ()) && (thread_if_true
2511 ? check_annul_list_true_false (0, *delay_list)
2512 && eligible_for_annul_false (insn, *pslots_filled, trial, flags)
2513 : check_annul_list_true_false (1, *delay_list)
2514 && eligible_for_annul_true (insn, *pslots_filled, trial, flags)))
2516 rtx_insn *temp;
2518 must_annul = 1;
2519 winner:
2521 if (HAVE_cc0 && reg_mentioned_p (cc0_rtx, pat))
2522 link_cc0_insns (trial);
2524 /* If we own this thread, delete the insn. If this is the
2525 destination of a branch, show that a basic block status
2526 may have been updated. In any case, mark the new
2527 starting point of this thread. */
2528 if (own_thread)
2530 rtx note;
2532 update_block (trial, thread);
2533 if (trial == thread)
2535 thread = next_active_insn (thread);
2536 if (new_thread == trial)
2537 new_thread = thread;
2540 /* We are moving this insn, not deleting it. We must
2541 temporarily increment the use count on any referenced
2542 label lest it be deleted by delete_related_insns. */
2543 for (note = REG_NOTES (trial);
2544 note != NULL_RTX;
2545 note = XEXP (note, 1))
2546 if (REG_NOTE_KIND (note) == REG_LABEL_OPERAND
2547 || REG_NOTE_KIND (note) == REG_LABEL_TARGET)
2549 /* REG_LABEL_OPERAND could be
2550 NOTE_INSN_DELETED_LABEL too. */
2551 if (LABEL_P (XEXP (note, 0)))
2552 LABEL_NUSES (XEXP (note, 0))++;
2553 else
2554 gcc_assert (REG_NOTE_KIND (note)
2555 == REG_LABEL_OPERAND);
2557 if (jump_to_label_p (trial))
2558 LABEL_NUSES (JUMP_LABEL (trial))++;
2560 delete_related_insns (trial);
2562 for (note = REG_NOTES (trial);
2563 note != NULL_RTX;
2564 note = XEXP (note, 1))
2565 if (REG_NOTE_KIND (note) == REG_LABEL_OPERAND
2566 || REG_NOTE_KIND (note) == REG_LABEL_TARGET)
2568 /* REG_LABEL_OPERAND could be
2569 NOTE_INSN_DELETED_LABEL too. */
2570 if (LABEL_P (XEXP (note, 0)))
2571 LABEL_NUSES (XEXP (note, 0))--;
2572 else
2573 gcc_assert (REG_NOTE_KIND (note)
2574 == REG_LABEL_OPERAND);
2576 if (jump_to_label_p (trial))
2577 LABEL_NUSES (JUMP_LABEL (trial))--;
2579 else
2580 new_thread = next_active_insn (trial);
2582 temp = own_thread ? trial : copy_delay_slot_insn (trial);
2583 if (thread_if_true)
2584 INSN_FROM_TARGET_P (temp) = 1;
2586 add_to_delay_list (temp, delay_list);
2588 if (slots_to_fill == ++(*pslots_filled))
2590 /* Even though we have filled all the slots, we
2591 may be branching to a location that has a
2592 redundant insn. Skip any if so. */
2593 while (new_thread && ! own_thread
2594 && ! insn_sets_resource_p (new_thread, &set, true)
2595 && ! insn_sets_resource_p (new_thread, &needed,
2596 true)
2597 && ! insn_references_resource_p (new_thread,
2598 &set, true)
2599 && (prior_insn
2600 = redundant_insn (new_thread, insn,
2601 *delay_list)))
2603 /* We know we do not own the thread, so no need
2604 to call update_block and delete_insn. */
2605 fix_reg_dead_note (prior_insn, insn);
2606 update_reg_unused_notes (prior_insn, new_thread);
2607 new_thread
2608 = next_active_insn (as_a<rtx_insn *> (new_thread));
2610 break;
2613 continue;
2618 /* This insn can't go into a delay slot. */
2619 lose = 1;
2620 mark_set_resources (trial, &set, 0, MARK_SRC_DEST_CALL);
2621 mark_referenced_resources (trial, &needed, true);
2623 /* Ensure we don't put insns between the setting of cc and the comparison
2624 by moving a setting of cc into an earlier delay slot since these insns
2625 could clobber the condition code. */
2626 set.cc = 1;
2628 /* If this insn is a register-register copy and the next insn has
2629 a use of our destination, change it to use our source. That way,
2630 it will become a candidate for our delay slot the next time
2631 through this loop. This case occurs commonly in loops that
2632 scan a list.
2634 We could check for more complex cases than those tested below,
2635 but it doesn't seem worth it. It might also be a good idea to try
2636 to swap the two insns. That might do better.
2638 We can't do this if the next insn modifies our destination, because
2639 that would make the replacement into the insn invalid. We also can't
2640 do this if it modifies our source, because it might be an earlyclobber
2641 operand. This latter test also prevents updating the contents of
2642 a PRE_INC. We also can't do this if there's overlap of source and
2643 destination. Overlap may happen for larger-than-register-size modes. */
2645 if (NONJUMP_INSN_P (trial) && GET_CODE (pat) == SET
2646 && REG_P (SET_SRC (pat))
2647 && REG_P (SET_DEST (pat))
2648 && !reg_overlap_mentioned_p (SET_DEST (pat), SET_SRC (pat)))
2650 rtx_insn *next = next_nonnote_insn (trial);
2652 if (next && NONJUMP_INSN_P (next)
2653 && GET_CODE (PATTERN (next)) != USE
2654 && ! reg_set_p (SET_DEST (pat), next)
2655 && ! reg_set_p (SET_SRC (pat), next)
2656 && reg_referenced_p (SET_DEST (pat), PATTERN (next))
2657 && ! modified_in_p (SET_DEST (pat), next))
2658 validate_replace_rtx (SET_DEST (pat), SET_SRC (pat), next);
2662 /* If we stopped on a branch insn that has delay slots, see if we can
2663 steal some of the insns in those slots. */
2664 if (trial && NONJUMP_INSN_P (trial)
2665 && GET_CODE (PATTERN (trial)) == SEQUENCE
2666 && JUMP_P (XVECEXP (PATTERN (trial), 0, 0)))
2668 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (trial));
2669 /* If this is the `true' thread, we will want to follow the jump,
2670 so we can only do this if we have taken everything up to here. */
2671 if (thread_if_true && trial == new_thread)
2673 steal_delay_list_from_target (insn, condition, sequence,
2674 delay_list, &set, &needed,
2675 &opposite_needed, slots_to_fill,
2676 pslots_filled, &must_annul,
2677 &new_thread);
2678 /* If we owned the thread and are told that it branched
2679 elsewhere, make sure we own the thread at the new location. */
2680 if (own_thread && trial != new_thread)
2681 own_thread = own_thread_p (new_thread, new_thread, 0);
2683 else if (! thread_if_true)
2684 steal_delay_list_from_fallthrough (insn, condition, sequence,
2685 delay_list, &set, &needed,
2686 &opposite_needed, slots_to_fill,
2687 pslots_filled, &must_annul);
2690 /* If we haven't found anything for this delay slot and it is very
2691 likely that the branch will be taken, see if the insn at our target
2692 increments or decrements a register with an increment that does not
2693 depend on the destination register. If so, try to place the opposite
2694 arithmetic insn after the jump insn and put the arithmetic insn in the
2695 delay slot. If we can't do this, return. */
2696 if (delay_list->is_empty () && likely
2697 && new_thread && !ANY_RETURN_P (new_thread)
2698 && NONJUMP_INSN_P (new_thread)
2699 && !RTX_FRAME_RELATED_P (new_thread)
2700 && GET_CODE (PATTERN (new_thread)) != ASM_INPUT
2701 && asm_noperands (PATTERN (new_thread)) < 0)
2703 rtx dest;
2704 rtx src;
2706 /* We know "new_thread" is an insn due to NONJUMP_INSN_P (new_thread)
2707 above. */
2708 trial = as_a <rtx_insn *> (new_thread);
2709 rtx pat = PATTERN (trial);
2711 if (!NONJUMP_INSN_P (trial)
2712 || GET_CODE (pat) != SET
2713 || ! eligible_for_delay (insn, 0, trial, flags)
2714 || can_throw_internal (trial))
2715 return;
2717 dest = SET_DEST (pat), src = SET_SRC (pat);
2718 if ((GET_CODE (src) == PLUS || GET_CODE (src) == MINUS)
2719 && rtx_equal_p (XEXP (src, 0), dest)
2720 && (!FLOAT_MODE_P (GET_MODE (src))
2721 || flag_unsafe_math_optimizations)
2722 && ! reg_overlap_mentioned_p (dest, XEXP (src, 1))
2723 && ! side_effects_p (pat))
2725 rtx other = XEXP (src, 1);
2726 rtx new_arith;
2727 rtx_insn *ninsn;
2729 /* If this is a constant adjustment, use the same code with
2730 the negated constant. Otherwise, reverse the sense of the
2731 arithmetic. */
2732 if (CONST_INT_P (other))
2733 new_arith = gen_rtx_fmt_ee (GET_CODE (src), GET_MODE (src), dest,
2734 negate_rtx (GET_MODE (src), other));
2735 else
2736 new_arith = gen_rtx_fmt_ee (GET_CODE (src) == PLUS ? MINUS : PLUS,
2737 GET_MODE (src), dest, other);
2739 ninsn = emit_insn_after (gen_rtx_SET (dest, new_arith), insn);
2741 if (recog_memoized (ninsn) < 0
2742 || (extract_insn (ninsn),
2743 !constrain_operands (1, get_preferred_alternatives (ninsn))))
2745 delete_related_insns (ninsn);
2746 return;
2749 if (own_thread)
2751 update_block (trial, thread);
2752 if (trial == thread)
2754 thread = next_active_insn (thread);
2755 if (new_thread == trial)
2756 new_thread = thread;
2758 delete_related_insns (trial);
2760 else
2761 new_thread = next_active_insn (trial);
2763 ninsn = own_thread ? trial : copy_delay_slot_insn (trial);
2764 if (thread_if_true)
2765 INSN_FROM_TARGET_P (ninsn) = 1;
2767 add_to_delay_list (ninsn, delay_list);
2768 (*pslots_filled)++;
2772 if (!delay_list->is_empty () && must_annul)
2773 INSN_ANNULLED_BRANCH_P (insn) = 1;
2775 /* If we are to branch into the middle of this thread, find an appropriate
2776 label or make a new one if none, and redirect INSN to it. If we hit the
2777 end of the function, use the end-of-function label. */
2778 if (new_thread != thread)
2780 rtx label;
2781 bool crossing = false;
2783 gcc_assert (thread_if_true);
2785 if (new_thread && simplejump_or_return_p (new_thread)
2786 && redirect_with_delay_list_safe_p (insn,
2787 JUMP_LABEL (new_thread),
2788 *delay_list))
2789 new_thread = follow_jumps (JUMP_LABEL (new_thread), insn,
2790 &crossing);
2792 if (ANY_RETURN_P (new_thread))
2793 label = find_end_label (new_thread);
2794 else if (LABEL_P (new_thread))
2795 label = new_thread;
2796 else
2797 label = get_label_before (as_a <rtx_insn *> (new_thread),
2798 JUMP_LABEL (insn));
2800 if (label)
2802 reorg_redirect_jump (insn, label);
2803 if (crossing)
2804 CROSSING_JUMP_P (insn) = 1;
2809 /* Make another attempt to find insns to place in delay slots.
2811 We previously looked for insns located in front of the delay insn
2812 and, for non-jump delay insns, located behind the delay insn.
2814 Here only try to schedule jump insns and try to move insns from either
2815 the target or the following insns into the delay slot. If annulling is
2816 supported, we will be likely to do this. Otherwise, we can do this only
2817 if safe. */
2819 static void
2820 fill_eager_delay_slots (void)
2822 rtx_insn *insn;
2823 int i;
2824 int num_unfilled_slots = unfilled_slots_next - unfilled_slots_base;
2826 for (i = 0; i < num_unfilled_slots; i++)
2828 rtx condition;
2829 rtx target_label, insn_at_target;
2830 rtx_insn *fallthrough_insn;
2831 auto_vec<rtx_insn *, 5> delay_list;
2832 rtx_jump_insn *jump_insn;
2833 int own_target;
2834 int own_fallthrough;
2835 int prediction, slots_to_fill, slots_filled;
2837 insn = unfilled_slots_base[i];
2838 if (insn == 0
2839 || insn->deleted ()
2840 || ! (jump_insn = dyn_cast <rtx_jump_insn *> (insn))
2841 || ! (condjump_p (jump_insn) || condjump_in_parallel_p (jump_insn)))
2842 continue;
2844 slots_to_fill = num_delay_slots (jump_insn);
2845 /* Some machine description have defined instructions to have
2846 delay slots only in certain circumstances which may depend on
2847 nearby insns (which change due to reorg's actions).
2849 For example, the PA port normally has delay slots for unconditional
2850 jumps.
2852 However, the PA port claims such jumps do not have a delay slot
2853 if they are immediate successors of certain CALL_INSNs. This
2854 allows the port to favor filling the delay slot of the call with
2855 the unconditional jump. */
2856 if (slots_to_fill == 0)
2857 continue;
2859 slots_filled = 0;
2860 target_label = JUMP_LABEL (jump_insn);
2861 condition = get_branch_condition (jump_insn, target_label);
2863 if (condition == 0)
2864 continue;
2866 /* Get the next active fallthrough and target insns and see if we own
2867 them. Then see whether the branch is likely true. We don't need
2868 to do a lot of this for unconditional branches. */
2870 insn_at_target = first_active_target_insn (target_label);
2871 own_target = own_thread_p (target_label, target_label, 0);
2873 if (condition == const_true_rtx)
2875 own_fallthrough = 0;
2876 fallthrough_insn = 0;
2877 prediction = 2;
2879 else
2881 fallthrough_insn = next_active_insn (jump_insn);
2882 own_fallthrough = own_thread_p (NEXT_INSN (jump_insn), NULL_RTX, 1);
2883 prediction = mostly_true_jump (jump_insn);
2886 /* If this insn is expected to branch, first try to get insns from our
2887 target, then our fallthrough insns. If it is not expected to branch,
2888 try the other order. */
2890 if (prediction > 0)
2892 fill_slots_from_thread (jump_insn, condition, insn_at_target,
2893 fallthrough_insn, prediction == 2, 1,
2894 own_target,
2895 slots_to_fill, &slots_filled, &delay_list);
2897 if (delay_list.is_empty () && own_fallthrough)
2899 /* Even though we didn't find anything for delay slots,
2900 we might have found a redundant insn which we deleted
2901 from the thread that was filled. So we have to recompute
2902 the next insn at the target. */
2903 target_label = JUMP_LABEL (jump_insn);
2904 insn_at_target = first_active_target_insn (target_label);
2906 fill_slots_from_thread (jump_insn, condition, fallthrough_insn,
2907 insn_at_target, 0, 0, own_fallthrough,
2908 slots_to_fill, &slots_filled,
2909 &delay_list);
2912 else
2914 if (own_fallthrough)
2915 fill_slots_from_thread (jump_insn, condition, fallthrough_insn,
2916 insn_at_target, 0, 0, own_fallthrough,
2917 slots_to_fill, &slots_filled, &delay_list);
2919 if (delay_list.is_empty ())
2920 fill_slots_from_thread (jump_insn, condition, insn_at_target,
2921 next_active_insn (insn), 0, 1, own_target,
2922 slots_to_fill, &slots_filled, &delay_list);
2925 if (!delay_list.is_empty ())
2926 unfilled_slots_base[i]
2927 = emit_delay_sequence (jump_insn, delay_list, slots_filled);
2929 if (slots_to_fill == slots_filled)
2930 unfilled_slots_base[i] = 0;
2932 note_delay_statistics (slots_filled, 1);
2936 static void delete_computation (rtx_insn *insn);
2938 /* Recursively delete prior insns that compute the value (used only by INSN
2939 which the caller is deleting) stored in the register mentioned by NOTE
2940 which is a REG_DEAD note associated with INSN. */
2942 static void
2943 delete_prior_computation (rtx note, rtx_insn *insn)
2945 rtx_insn *our_prev;
2946 rtx reg = XEXP (note, 0);
2948 for (our_prev = prev_nonnote_insn (insn);
2949 our_prev && (NONJUMP_INSN_P (our_prev)
2950 || CALL_P (our_prev));
2951 our_prev = prev_nonnote_insn (our_prev))
2953 rtx pat = PATTERN (our_prev);
2955 /* If we reach a CALL which is not calling a const function
2956 or the callee pops the arguments, then give up. */
2957 if (CALL_P (our_prev)
2958 && (! RTL_CONST_CALL_P (our_prev)
2959 || GET_CODE (pat) != SET || GET_CODE (SET_SRC (pat)) != CALL))
2960 break;
2962 /* If we reach a SEQUENCE, it is too complex to try to
2963 do anything with it, so give up. We can be run during
2964 and after reorg, so SEQUENCE rtl can legitimately show
2965 up here. */
2966 if (GET_CODE (pat) == SEQUENCE)
2967 break;
2969 if (GET_CODE (pat) == USE
2970 && NONJUMP_INSN_P (XEXP (pat, 0)))
2971 /* reorg creates USEs that look like this. We leave them
2972 alone because reorg needs them for its own purposes. */
2973 break;
2975 if (reg_set_p (reg, pat))
2977 if (side_effects_p (pat) && !CALL_P (our_prev))
2978 break;
2980 if (GET_CODE (pat) == PARALLEL)
2982 /* If we find a SET of something else, we can't
2983 delete the insn. */
2985 int i;
2987 for (i = 0; i < XVECLEN (pat, 0); i++)
2989 rtx part = XVECEXP (pat, 0, i);
2991 if (GET_CODE (part) == SET
2992 && SET_DEST (part) != reg)
2993 break;
2996 if (i == XVECLEN (pat, 0))
2997 delete_computation (our_prev);
2999 else if (GET_CODE (pat) == SET
3000 && REG_P (SET_DEST (pat)))
3002 int dest_regno = REGNO (SET_DEST (pat));
3003 int dest_endregno = END_REGNO (SET_DEST (pat));
3004 int regno = REGNO (reg);
3005 int endregno = END_REGNO (reg);
3007 if (dest_regno >= regno
3008 && dest_endregno <= endregno)
3009 delete_computation (our_prev);
3011 /* We may have a multi-word hard register and some, but not
3012 all, of the words of the register are needed in subsequent
3013 insns. Write REG_UNUSED notes for those parts that were not
3014 needed. */
3015 else if (dest_regno <= regno
3016 && dest_endregno >= endregno)
3018 int i;
3020 add_reg_note (our_prev, REG_UNUSED, reg);
3022 for (i = dest_regno; i < dest_endregno; i++)
3023 if (! find_regno_note (our_prev, REG_UNUSED, i))
3024 break;
3026 if (i == dest_endregno)
3027 delete_computation (our_prev);
3031 break;
3034 /* If PAT references the register that dies here, it is an
3035 additional use. Hence any prior SET isn't dead. However, this
3036 insn becomes the new place for the REG_DEAD note. */
3037 if (reg_overlap_mentioned_p (reg, pat))
3039 XEXP (note, 1) = REG_NOTES (our_prev);
3040 REG_NOTES (our_prev) = note;
3041 break;
3046 /* Delete INSN and recursively delete insns that compute values used only
3047 by INSN. This uses the REG_DEAD notes computed during flow analysis.
3049 Look at all our REG_DEAD notes. If a previous insn does nothing other
3050 than set a register that dies in this insn, we can delete that insn
3051 as well.
3053 On machines with CC0, if CC0 is used in this insn, we may be able to
3054 delete the insn that set it. */
3056 static void
3057 delete_computation (rtx_insn *insn)
3059 rtx note, next;
3061 if (HAVE_cc0 && reg_referenced_p (cc0_rtx, PATTERN (insn)))
3063 rtx_insn *prev = prev_nonnote_insn (insn);
3064 /* We assume that at this stage
3065 CC's are always set explicitly
3066 and always immediately before the jump that
3067 will use them. So if the previous insn
3068 exists to set the CC's, delete it
3069 (unless it performs auto-increments, etc.). */
3070 if (prev && NONJUMP_INSN_P (prev)
3071 && sets_cc0_p (PATTERN (prev)))
3073 if (sets_cc0_p (PATTERN (prev)) > 0
3074 && ! side_effects_p (PATTERN (prev)))
3075 delete_computation (prev);
3076 else
3077 /* Otherwise, show that cc0 won't be used. */
3078 add_reg_note (prev, REG_UNUSED, cc0_rtx);
3082 for (note = REG_NOTES (insn); note; note = next)
3084 next = XEXP (note, 1);
3086 if (REG_NOTE_KIND (note) != REG_DEAD
3087 /* Verify that the REG_NOTE is legitimate. */
3088 || !REG_P (XEXP (note, 0)))
3089 continue;
3091 delete_prior_computation (note, insn);
3094 delete_related_insns (insn);
3097 /* If all INSN does is set the pc, delete it,
3098 and delete the insn that set the condition codes for it
3099 if that's what the previous thing was. */
3101 static void
3102 delete_jump (rtx_insn *insn)
3104 rtx set = single_set (insn);
3106 if (set && GET_CODE (SET_DEST (set)) == PC)
3107 delete_computation (insn);
3110 static rtx_insn *
3111 label_before_next_insn (rtx_insn *x, rtx scan_limit)
3113 rtx_insn *insn = next_active_insn (x);
3114 while (insn)
3116 insn = PREV_INSN (insn);
3117 if (insn == scan_limit || insn == NULL_RTX)
3118 return NULL;
3119 if (LABEL_P (insn))
3120 break;
3122 return insn;
3125 /* Return TRUE if there is a NOTE_INSN_SWITCH_TEXT_SECTIONS note in between
3126 BEG and END. */
3128 static bool
3129 switch_text_sections_between_p (const rtx_insn *beg, const rtx_insn *end)
3131 const rtx_insn *p;
3132 for (p = beg; p != end; p = NEXT_INSN (p))
3133 if (NOTE_P (p) && NOTE_KIND (p) == NOTE_INSN_SWITCH_TEXT_SECTIONS)
3134 return true;
3135 return false;
3139 /* Once we have tried two ways to fill a delay slot, make a pass over the
3140 code to try to improve the results and to do such things as more jump
3141 threading. */
3143 static void
3144 relax_delay_slots (rtx_insn *first)
3146 rtx_insn *insn, *next;
3147 rtx_sequence *pat;
3148 rtx_insn *delay_insn;
3149 rtx target_label;
3151 /* Look at every JUMP_INSN and see if we can improve it. */
3152 for (insn = first; insn; insn = next)
3154 rtx_insn *other, *prior_insn;
3155 bool crossing;
3157 next = next_active_insn (insn);
3159 /* If this is a jump insn, see if it now jumps to a jump, jumps to
3160 the next insn, or jumps to a label that is not the last of a
3161 group of consecutive labels. */
3162 if (is_a <rtx_jump_insn *> (insn)
3163 && (condjump_p (insn) || condjump_in_parallel_p (insn))
3164 && !ANY_RETURN_P (target_label = JUMP_LABEL (insn)))
3166 rtx_jump_insn *jump_insn = as_a <rtx_jump_insn *> (insn);
3167 target_label
3168 = skip_consecutive_labels (follow_jumps (target_label, jump_insn,
3169 &crossing));
3170 if (ANY_RETURN_P (target_label))
3171 target_label = find_end_label (target_label);
3173 if (target_label
3174 && next_active_insn (as_a<rtx_insn *> (target_label)) == next
3175 && ! condjump_in_parallel_p (jump_insn)
3176 && ! (next && switch_text_sections_between_p (jump_insn, next)))
3178 delete_jump (jump_insn);
3179 continue;
3182 if (target_label && target_label != JUMP_LABEL (jump_insn))
3184 reorg_redirect_jump (jump_insn, target_label);
3185 if (crossing)
3186 CROSSING_JUMP_P (jump_insn) = 1;
3189 /* See if this jump conditionally branches around an unconditional
3190 jump. If so, invert this jump and point it to the target of the
3191 second jump. Check if it's possible on the target. */
3192 if (next && simplejump_or_return_p (next)
3193 && any_condjump_p (jump_insn)
3194 && target_label
3195 && (next_active_insn (as_a<rtx_insn *> (target_label))
3196 == next_active_insn (next))
3197 && no_labels_between_p (jump_insn, next)
3198 && targetm.can_follow_jump (jump_insn, next))
3200 rtx label = JUMP_LABEL (next);
3202 /* Be careful how we do this to avoid deleting code or
3203 labels that are momentarily dead. See similar optimization
3204 in jump.c.
3206 We also need to ensure we properly handle the case when
3207 invert_jump fails. */
3209 ++LABEL_NUSES (target_label);
3210 if (!ANY_RETURN_P (label))
3211 ++LABEL_NUSES (label);
3213 if (invert_jump (jump_insn, label, 1))
3215 rtx_insn *from = delete_related_insns (next);
3217 /* We have just removed a BARRIER, which means that the block
3218 number of the next insns has effectively been changed (see
3219 find_basic_block in resource.c), so clear it. */
3220 if (from)
3221 clear_hashed_info_until_next_barrier (from);
3223 next = jump_insn;
3226 if (!ANY_RETURN_P (label))
3227 --LABEL_NUSES (label);
3229 if (--LABEL_NUSES (target_label) == 0)
3230 delete_related_insns (target_label);
3232 continue;
3236 /* If this is an unconditional jump and the previous insn is a
3237 conditional jump, try reversing the condition of the previous
3238 insn and swapping our targets. The next pass might be able to
3239 fill the slots.
3241 Don't do this if we expect the conditional branch to be true, because
3242 we would then be making the more common case longer. */
3244 if (simplejump_or_return_p (insn)
3245 && (other = prev_active_insn (insn)) != 0
3246 && any_condjump_p (other)
3247 && no_labels_between_p (other, insn)
3248 && mostly_true_jump (other) < 0)
3250 rtx other_target = JUMP_LABEL (other);
3251 target_label = JUMP_LABEL (insn);
3253 if (invert_jump (as_a <rtx_jump_insn *> (other), target_label, 0))
3254 reorg_redirect_jump (as_a <rtx_jump_insn *> (insn), other_target);
3257 /* Now look only at cases where we have a filled delay slot. */
3258 if (!NONJUMP_INSN_P (insn) || GET_CODE (PATTERN (insn)) != SEQUENCE)
3259 continue;
3261 pat = as_a <rtx_sequence *> (PATTERN (insn));
3262 delay_insn = pat->insn (0);
3264 /* See if the first insn in the delay slot is redundant with some
3265 previous insn. Remove it from the delay slot if so; then set up
3266 to reprocess this insn. */
3267 if ((prior_insn = redundant_insn (pat->insn (1), delay_insn, vNULL)))
3269 fix_reg_dead_note (prior_insn, insn);
3270 update_block (pat->insn (1), insn);
3271 delete_from_delay_slot (pat->insn (1));
3272 next = prev_active_insn (next);
3273 continue;
3276 /* See if we have a RETURN insn with a filled delay slot followed
3277 by a RETURN insn with an unfilled a delay slot. If so, we can delete
3278 the first RETURN (but not its delay insn). This gives the same
3279 effect in fewer instructions.
3281 Only do so if optimizing for size since this results in slower, but
3282 smaller code. */
3283 if (optimize_function_for_size_p (cfun)
3284 && ANY_RETURN_P (PATTERN (delay_insn))
3285 && next
3286 && JUMP_P (next)
3287 && PATTERN (next) == PATTERN (delay_insn))
3289 rtx_insn *after;
3290 int i;
3292 /* Delete the RETURN and just execute the delay list insns.
3294 We do this by deleting the INSN containing the SEQUENCE, then
3295 re-emitting the insns separately, and then deleting the RETURN.
3296 This allows the count of the jump target to be properly
3297 decremented.
3299 Note that we need to change the INSN_UID of the re-emitted insns
3300 since it is used to hash the insns for mark_target_live_regs and
3301 the re-emitted insns will no longer be wrapped up in a SEQUENCE.
3303 Clear the from target bit, since these insns are no longer
3304 in delay slots. */
3305 for (i = 0; i < XVECLEN (pat, 0); i++)
3306 INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)) = 0;
3308 rtx_insn *prev = PREV_INSN (insn);
3309 delete_related_insns (insn);
3310 gcc_assert (GET_CODE (pat) == SEQUENCE);
3311 add_insn_after (delay_insn, prev, NULL);
3312 after = delay_insn;
3313 for (i = 1; i < pat->len (); i++)
3314 after = emit_copy_of_insn_after (pat->insn (i), after);
3315 delete_scheduled_jump (delay_insn);
3316 continue;
3319 /* Now look only at the cases where we have a filled JUMP_INSN. */
3320 rtx_jump_insn *delay_jump_insn =
3321 dyn_cast <rtx_jump_insn *> (delay_insn);
3322 if (! delay_jump_insn || !(condjump_p (delay_jump_insn)
3323 || condjump_in_parallel_p (delay_jump_insn)))
3324 continue;
3326 target_label = JUMP_LABEL (delay_jump_insn);
3327 if (target_label && ANY_RETURN_P (target_label))
3328 continue;
3330 /* If this jump goes to another unconditional jump, thread it, but
3331 don't convert a jump into a RETURN here. */
3332 rtx trial = skip_consecutive_labels (follow_jumps (target_label,
3333 delay_jump_insn,
3334 &crossing));
3335 if (ANY_RETURN_P (trial))
3336 trial = find_end_label (trial);
3338 if (trial && trial != target_label
3339 && redirect_with_delay_slots_safe_p (delay_jump_insn, trial, insn))
3341 reorg_redirect_jump (delay_jump_insn, trial);
3342 target_label = trial;
3343 if (crossing)
3344 CROSSING_JUMP_P (delay_jump_insn) = 1;
3347 /* If the first insn at TARGET_LABEL is redundant with a previous
3348 insn, redirect the jump to the following insn and process again.
3349 We use next_real_nondebug_insn instead of next_active_insn so we
3350 don't skip USE-markers, or we'll end up with incorrect
3351 liveness info. */
3352 trial = next_real_nondebug_insn (target_label);
3353 if (trial && GET_CODE (PATTERN (trial)) != SEQUENCE
3354 && redundant_insn (trial, insn, vNULL)
3355 && ! can_throw_internal (trial))
3357 /* Figure out where to emit the special USE insn so we don't
3358 later incorrectly compute register live/death info. */
3359 rtx_insn *tmp = next_active_insn (as_a<rtx_insn *> (trial));
3360 if (tmp == 0)
3361 tmp = find_end_label (simple_return_rtx);
3363 if (tmp)
3365 /* Insert the special USE insn and update dataflow info.
3366 We know "trial" is an insn here as it is the output of
3367 next_real_nondebug_insn () above. */
3368 update_block (as_a <rtx_insn *> (trial), tmp);
3370 /* Now emit a label before the special USE insn, and
3371 redirect our jump to the new label. */
3372 target_label = get_label_before (PREV_INSN (tmp), target_label);
3373 reorg_redirect_jump (delay_jump_insn, target_label);
3374 next = insn;
3375 continue;
3379 /* Similarly, if it is an unconditional jump with one insn in its
3380 delay list and that insn is redundant, thread the jump. */
3381 rtx_sequence *trial_seq =
3382 trial ? dyn_cast <rtx_sequence *> (PATTERN (trial)) : NULL;
3383 if (trial_seq
3384 && trial_seq->len () == 2
3385 && JUMP_P (trial_seq->insn (0))
3386 && simplejump_or_return_p (trial_seq->insn (0))
3387 && redundant_insn (trial_seq->insn (1), insn, vNULL))
3389 rtx temp_label = JUMP_LABEL (trial_seq->insn (0));
3390 if (ANY_RETURN_P (temp_label))
3391 temp_label = find_end_label (temp_label);
3393 if (temp_label
3394 && redirect_with_delay_slots_safe_p (delay_jump_insn,
3395 temp_label, insn))
3397 update_block (trial_seq->insn (1), insn);
3398 reorg_redirect_jump (delay_jump_insn, temp_label);
3399 next = insn;
3400 continue;
3404 /* See if we have a simple (conditional) jump that is useless. */
3405 if (!CROSSING_JUMP_P (delay_jump_insn)
3406 && !INSN_ANNULLED_BRANCH_P (delay_jump_insn)
3407 && !condjump_in_parallel_p (delay_jump_insn)
3408 && prev_active_insn (as_a<rtx_insn *> (target_label)) == insn
3409 && !BARRIER_P (prev_nonnote_insn (as_a<rtx_insn *> (target_label)))
3410 /* If the last insn in the delay slot sets CC0 for some insn,
3411 various code assumes that it is in a delay slot. We could
3412 put it back where it belonged and delete the register notes,
3413 but it doesn't seem worthwhile in this uncommon case. */
3414 && (!HAVE_cc0
3415 || ! find_reg_note (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1),
3416 REG_CC_USER, NULL_RTX)))
3418 rtx_insn *after;
3419 int i;
3421 /* All this insn does is execute its delay list and jump to the
3422 following insn. So delete the jump and just execute the delay
3423 list insns.
3425 We do this by deleting the INSN containing the SEQUENCE, then
3426 re-emitting the insns separately, and then deleting the jump.
3427 This allows the count of the jump target to be properly
3428 decremented.
3430 Note that we need to change the INSN_UID of the re-emitted insns
3431 since it is used to hash the insns for mark_target_live_regs and
3432 the re-emitted insns will no longer be wrapped up in a SEQUENCE.
3434 Clear the from target bit, since these insns are no longer
3435 in delay slots. */
3436 for (i = 0; i < XVECLEN (pat, 0); i++)
3437 INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)) = 0;
3439 rtx_insn *prev = PREV_INSN (insn);
3440 delete_related_insns (insn);
3441 gcc_assert (GET_CODE (pat) == SEQUENCE);
3442 add_insn_after (delay_jump_insn, prev, NULL);
3443 after = delay_jump_insn;
3444 for (i = 1; i < pat->len (); i++)
3445 after = emit_copy_of_insn_after (pat->insn (i), after);
3446 delete_scheduled_jump (delay_jump_insn);
3447 continue;
3450 /* See if this is an unconditional jump around a single insn which is
3451 identical to the one in its delay slot. In this case, we can just
3452 delete the branch and the insn in its delay slot. */
3453 if (next && NONJUMP_INSN_P (next)
3454 && label_before_next_insn (next, insn) == target_label
3455 && simplejump_p (insn)
3456 && XVECLEN (pat, 0) == 2
3457 && rtx_equal_p (PATTERN (next), PATTERN (pat->insn (1))))
3459 delete_related_insns (insn);
3460 continue;
3463 /* See if this jump (with its delay slots) conditionally branches
3464 around an unconditional jump (without delay slots). If so, invert
3465 this jump and point it to the target of the second jump. We cannot
3466 do this for annulled jumps, though. Again, don't convert a jump to
3467 a RETURN here. */
3468 if (! INSN_ANNULLED_BRANCH_P (delay_jump_insn)
3469 && any_condjump_p (delay_jump_insn)
3470 && next && simplejump_or_return_p (next)
3471 && (next_active_insn (as_a<rtx_insn *> (target_label))
3472 == next_active_insn (next))
3473 && no_labels_between_p (insn, next))
3475 rtx label = JUMP_LABEL (next);
3476 rtx old_label = JUMP_LABEL (delay_jump_insn);
3478 if (ANY_RETURN_P (label))
3479 label = find_end_label (label);
3481 /* find_end_label can generate a new label. Check this first. */
3482 if (label
3483 && no_labels_between_p (insn, next)
3484 && redirect_with_delay_slots_safe_p (delay_jump_insn,
3485 label, insn))
3487 /* Be careful how we do this to avoid deleting code or labels
3488 that are momentarily dead. See similar optimization in
3489 jump.c */
3490 if (old_label)
3491 ++LABEL_NUSES (old_label);
3493 if (invert_jump (delay_jump_insn, label, 1))
3495 /* Must update the INSN_FROM_TARGET_P bits now that
3496 the branch is reversed, so that mark_target_live_regs
3497 will handle the delay slot insn correctly. */
3498 for (int i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
3500 rtx slot = XVECEXP (PATTERN (insn), 0, i);
3501 INSN_FROM_TARGET_P (slot) = ! INSN_FROM_TARGET_P (slot);
3504 /* We have just removed a BARRIER, which means that the block
3505 number of the next insns has effectively been changed (see
3506 find_basic_block in resource.c), so clear it. */
3507 rtx_insn *from = delete_related_insns (next);
3508 if (from)
3509 clear_hashed_info_until_next_barrier (from);
3511 next = insn;
3514 if (old_label && --LABEL_NUSES (old_label) == 0)
3515 delete_related_insns (old_label);
3516 continue;
3520 /* If we own the thread opposite the way this insn branches, see if we
3521 can merge its delay slots with following insns. */
3522 if (INSN_FROM_TARGET_P (pat->insn (1))
3523 && own_thread_p (NEXT_INSN (insn), 0, 1))
3524 try_merge_delay_insns (insn, next);
3525 else if (! INSN_FROM_TARGET_P (pat->insn (1))
3526 && own_thread_p (target_label, target_label, 0))
3527 try_merge_delay_insns (insn,
3528 next_active_insn (as_a<rtx_insn *> (target_label)));
3530 /* If we get here, we haven't deleted INSN. But we may have deleted
3531 NEXT, so recompute it. */
3532 next = next_active_insn (insn);
3537 /* Look for filled jumps to the end of function label. We can try to convert
3538 them into RETURN insns if the insns in the delay slot are valid for the
3539 RETURN as well. */
3541 static void
3542 make_return_insns (rtx_insn *first)
3544 rtx_insn *insn;
3545 rtx_jump_insn *jump_insn;
3546 rtx real_return_label = function_return_label;
3547 rtx real_simple_return_label = function_simple_return_label;
3548 int slots, i;
3550 /* See if there is a RETURN insn in the function other than the one we
3551 made for END_OF_FUNCTION_LABEL. If so, set up anything we can't change
3552 into a RETURN to jump to it. */
3553 for (insn = first; insn; insn = NEXT_INSN (insn))
3554 if (JUMP_P (insn) && ANY_RETURN_P (PATTERN (insn)))
3556 rtx t = get_label_before (insn, NULL_RTX);
3557 if (PATTERN (insn) == ret_rtx)
3558 real_return_label = t;
3559 else
3560 real_simple_return_label = t;
3561 break;
3564 /* Show an extra usage of REAL_RETURN_LABEL so it won't go away if it
3565 was equal to END_OF_FUNCTION_LABEL. */
3566 if (real_return_label)
3567 LABEL_NUSES (real_return_label)++;
3568 if (real_simple_return_label)
3569 LABEL_NUSES (real_simple_return_label)++;
3571 /* Clear the list of insns to fill so we can use it. */
3572 obstack_free (&unfilled_slots_obstack, unfilled_firstobj);
3574 for (insn = first; insn; insn = NEXT_INSN (insn))
3576 int flags;
3577 rtx kind, real_label;
3579 /* Only look at filled JUMP_INSNs that go to the end of function
3580 label. */
3581 if (!NONJUMP_INSN_P (insn))
3582 continue;
3584 if (GET_CODE (PATTERN (insn)) != SEQUENCE)
3585 continue;
3587 rtx_sequence *pat = as_a <rtx_sequence *> (PATTERN (insn));
3589 if (!jump_to_label_p (pat->insn (0)))
3590 continue;
3592 if (JUMP_LABEL (pat->insn (0)) == function_return_label)
3594 kind = ret_rtx;
3595 real_label = real_return_label;
3597 else if (JUMP_LABEL (pat->insn (0)) == function_simple_return_label)
3599 kind = simple_return_rtx;
3600 real_label = real_simple_return_label;
3602 else
3603 continue;
3605 jump_insn = as_a <rtx_jump_insn *> (pat->insn (0));
3607 /* If we can't make the jump into a RETURN, try to redirect it to the best
3608 RETURN and go on to the next insn. */
3609 if (!reorg_redirect_jump (jump_insn, kind))
3611 /* Make sure redirecting the jump will not invalidate the delay
3612 slot insns. */
3613 if (redirect_with_delay_slots_safe_p (jump_insn, real_label, insn))
3614 reorg_redirect_jump (jump_insn, real_label);
3615 continue;
3618 /* See if this RETURN can accept the insns current in its delay slot.
3619 It can if it has more or an equal number of slots and the contents
3620 of each is valid. */
3622 flags = get_jump_flags (jump_insn, JUMP_LABEL (jump_insn));
3623 slots = num_delay_slots (jump_insn);
3624 if (slots >= XVECLEN (pat, 0) - 1)
3626 for (i = 1; i < XVECLEN (pat, 0); i++)
3627 if (! (
3628 #if ANNUL_IFFALSE_SLOTS
3629 (INSN_ANNULLED_BRANCH_P (jump_insn)
3630 && INSN_FROM_TARGET_P (pat->insn (i)))
3631 ? eligible_for_annul_false (jump_insn, i - 1,
3632 pat->insn (i), flags) :
3633 #endif
3634 #if ANNUL_IFTRUE_SLOTS
3635 (INSN_ANNULLED_BRANCH_P (jump_insn)
3636 && ! INSN_FROM_TARGET_P (pat->insn (i)))
3637 ? eligible_for_annul_true (jump_insn, i - 1,
3638 pat->insn (i), flags) :
3639 #endif
3640 eligible_for_delay (jump_insn, i - 1,
3641 pat->insn (i), flags)))
3642 break;
3644 else
3645 i = 0;
3647 if (i == XVECLEN (pat, 0))
3648 continue;
3650 /* We have to do something with this insn. If it is an unconditional
3651 RETURN, delete the SEQUENCE and output the individual insns,
3652 followed by the RETURN. Then set things up so we try to find
3653 insns for its delay slots, if it needs some. */
3654 if (ANY_RETURN_P (PATTERN (jump_insn)))
3656 rtx_insn *after = PREV_INSN (insn);
3658 delete_related_insns (insn);
3659 insn = jump_insn;
3660 for (i = 1; i < pat->len (); i++)
3661 after = emit_copy_of_insn_after (pat->insn (i), after);
3662 add_insn_after (insn, after, NULL);
3663 emit_barrier_after (insn);
3665 if (slots)
3666 obstack_ptr_grow (&unfilled_slots_obstack, insn);
3668 else
3669 /* It is probably more efficient to keep this with its current
3670 delay slot as a branch to a RETURN. */
3671 reorg_redirect_jump (jump_insn, real_label);
3674 /* Now delete REAL_RETURN_LABEL if we never used it. Then try to fill any
3675 new delay slots we have created. */
3676 if (real_return_label != NULL_RTX && --LABEL_NUSES (real_return_label) == 0)
3677 delete_related_insns (real_return_label);
3678 if (real_simple_return_label != NULL_RTX
3679 && --LABEL_NUSES (real_simple_return_label) == 0)
3680 delete_related_insns (real_simple_return_label);
3682 fill_simple_delay_slots (1);
3683 fill_simple_delay_slots (0);
3686 /* Try to find insns to place in delay slots. */
3688 static void
3689 dbr_schedule (rtx_insn *first)
3691 rtx_insn *insn, *next, *epilogue_insn = 0;
3692 int i;
3693 bool need_return_insns;
3695 /* If the current function has no insns other than the prologue and
3696 epilogue, then do not try to fill any delay slots. */
3697 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
3698 return;
3700 /* Find the highest INSN_UID and allocate and initialize our map from
3701 INSN_UID's to position in code. */
3702 for (max_uid = 0, insn = first; insn; insn = NEXT_INSN (insn))
3704 if (INSN_UID (insn) > max_uid)
3705 max_uid = INSN_UID (insn);
3706 if (NOTE_P (insn)
3707 && NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
3708 epilogue_insn = insn;
3711 uid_to_ruid = XNEWVEC (int, max_uid + 1);
3712 for (i = 0, insn = first; insn; i++, insn = NEXT_INSN (insn))
3713 uid_to_ruid[INSN_UID (insn)] = i;
3715 /* Initialize the list of insns that need filling. */
3716 if (unfilled_firstobj == 0)
3718 gcc_obstack_init (&unfilled_slots_obstack);
3719 unfilled_firstobj = XOBNEWVAR (&unfilled_slots_obstack, rtx, 0);
3722 for (insn = next_active_insn (first); insn; insn = next_active_insn (insn))
3724 rtx target;
3726 /* Skip vector tables. We can't get attributes for them. */
3727 if (JUMP_TABLE_DATA_P (insn))
3728 continue;
3730 if (JUMP_P (insn))
3731 INSN_ANNULLED_BRANCH_P (insn) = 0;
3732 INSN_FROM_TARGET_P (insn) = 0;
3734 if (num_delay_slots (insn) > 0)
3735 obstack_ptr_grow (&unfilled_slots_obstack, insn);
3737 /* Ensure all jumps go to the last of a set of consecutive labels. */
3738 if (JUMP_P (insn)
3739 && (condjump_p (insn) || condjump_in_parallel_p (insn))
3740 && !ANY_RETURN_P (JUMP_LABEL (insn))
3741 && ((target = skip_consecutive_labels (JUMP_LABEL (insn)))
3742 != JUMP_LABEL (insn)))
3743 redirect_jump (as_a <rtx_jump_insn *> (insn), target, 1);
3746 init_resource_info (epilogue_insn);
3748 /* Show we haven't computed an end-of-function label yet. */
3749 function_return_label = function_simple_return_label = NULL;
3751 /* Initialize the statistics for this function. */
3752 memset (num_insns_needing_delays, 0, sizeof num_insns_needing_delays);
3753 memset (num_filled_delays, 0, sizeof num_filled_delays);
3755 /* Now do the delay slot filling. Try everything twice in case earlier
3756 changes make more slots fillable. */
3758 for (reorg_pass_number = 0;
3759 reorg_pass_number < MAX_REORG_PASSES;
3760 reorg_pass_number++)
3762 fill_simple_delay_slots (1);
3763 fill_simple_delay_slots (0);
3764 if (!targetm.no_speculation_in_delay_slots_p ())
3765 fill_eager_delay_slots ();
3766 relax_delay_slots (first);
3769 /* If we made an end of function label, indicate that it is now
3770 safe to delete it by undoing our prior adjustment to LABEL_NUSES.
3771 If it is now unused, delete it. */
3772 if (function_return_label && --LABEL_NUSES (function_return_label) == 0)
3773 delete_related_insns (function_return_label);
3774 if (function_simple_return_label
3775 && --LABEL_NUSES (function_simple_return_label) == 0)
3776 delete_related_insns (function_simple_return_label);
3778 need_return_insns = false;
3779 need_return_insns |= targetm.have_return () && function_return_label != 0;
3780 need_return_insns |= (targetm.have_simple_return ()
3781 && function_simple_return_label != 0);
3782 if (need_return_insns)
3783 make_return_insns (first);
3785 /* Delete any USE insns made by update_block; subsequent passes don't need
3786 them or know how to deal with them. */
3787 for (insn = first; insn; insn = next)
3789 next = NEXT_INSN (insn);
3791 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
3792 && INSN_P (XEXP (PATTERN (insn), 0)))
3793 next = delete_related_insns (insn);
3796 obstack_free (&unfilled_slots_obstack, unfilled_firstobj);
3798 /* It is not clear why the line below is needed, but it does seem to be. */
3799 unfilled_firstobj = XOBNEWVAR (&unfilled_slots_obstack, rtx, 0);
3801 if (dump_file)
3803 int i, j, need_comma;
3804 int total_delay_slots[MAX_DELAY_HISTOGRAM + 1];
3805 int total_annul_slots[MAX_DELAY_HISTOGRAM + 1];
3807 for (reorg_pass_number = 0;
3808 reorg_pass_number < MAX_REORG_PASSES;
3809 reorg_pass_number++)
3811 fprintf (dump_file, ";; Reorg pass #%d:\n", reorg_pass_number + 1);
3812 for (i = 0; i < NUM_REORG_FUNCTIONS; i++)
3814 need_comma = 0;
3815 fprintf (dump_file, ";; Reorg function #%d\n", i);
3817 fprintf (dump_file, ";; %d insns needing delay slots\n;; ",
3818 num_insns_needing_delays[i][reorg_pass_number]);
3820 for (j = 0; j < MAX_DELAY_HISTOGRAM + 1; j++)
3821 if (num_filled_delays[i][j][reorg_pass_number])
3823 if (need_comma)
3824 fprintf (dump_file, ", ");
3825 need_comma = 1;
3826 fprintf (dump_file, "%d got %d delays",
3827 num_filled_delays[i][j][reorg_pass_number], j);
3829 fprintf (dump_file, "\n");
3832 memset (total_delay_slots, 0, sizeof total_delay_slots);
3833 memset (total_annul_slots, 0, sizeof total_annul_slots);
3834 for (insn = first; insn; insn = NEXT_INSN (insn))
3836 if (! insn->deleted ()
3837 && NONJUMP_INSN_P (insn)
3838 && GET_CODE (PATTERN (insn)) != USE
3839 && GET_CODE (PATTERN (insn)) != CLOBBER)
3841 if (GET_CODE (PATTERN (insn)) == SEQUENCE)
3843 rtx control;
3844 j = XVECLEN (PATTERN (insn), 0) - 1;
3845 if (j > MAX_DELAY_HISTOGRAM)
3846 j = MAX_DELAY_HISTOGRAM;
3847 control = XVECEXP (PATTERN (insn), 0, 0);
3848 if (JUMP_P (control) && INSN_ANNULLED_BRANCH_P (control))
3849 total_annul_slots[j]++;
3850 else
3851 total_delay_slots[j]++;
3853 else if (num_delay_slots (insn) > 0)
3854 total_delay_slots[0]++;
3857 fprintf (dump_file, ";; Reorg totals: ");
3858 need_comma = 0;
3859 for (j = 0; j < MAX_DELAY_HISTOGRAM + 1; j++)
3861 if (total_delay_slots[j])
3863 if (need_comma)
3864 fprintf (dump_file, ", ");
3865 need_comma = 1;
3866 fprintf (dump_file, "%d got %d delays", total_delay_slots[j], j);
3869 fprintf (dump_file, "\n");
3871 if (ANNUL_IFTRUE_SLOTS || ANNUL_IFFALSE_SLOTS)
3873 fprintf (dump_file, ";; Reorg annuls: ");
3874 need_comma = 0;
3875 for (j = 0; j < MAX_DELAY_HISTOGRAM + 1; j++)
3877 if (total_annul_slots[j])
3879 if (need_comma)
3880 fprintf (dump_file, ", ");
3881 need_comma = 1;
3882 fprintf (dump_file, "%d got %d delays", total_annul_slots[j], j);
3885 fprintf (dump_file, "\n");
3888 fprintf (dump_file, "\n");
3891 if (!sibling_labels.is_empty ())
3893 update_alignments (sibling_labels);
3894 sibling_labels.release ();
3897 free_resource_info ();
3898 free (uid_to_ruid);
3899 crtl->dbr_scheduled_p = true;
3902 /* Run delay slot optimization. */
3903 static unsigned int
3904 rest_of_handle_delay_slots (void)
3906 if (DELAY_SLOTS)
3907 dbr_schedule (get_insns ());
3909 return 0;
3912 namespace {
3914 const pass_data pass_data_delay_slots =
3916 RTL_PASS, /* type */
3917 "dbr", /* name */
3918 OPTGROUP_NONE, /* optinfo_flags */
3919 TV_DBR_SCHED, /* tv_id */
3920 0, /* properties_required */
3921 0, /* properties_provided */
3922 0, /* properties_destroyed */
3923 0, /* todo_flags_start */
3924 0, /* todo_flags_finish */
3927 class pass_delay_slots : public rtl_opt_pass
3929 public:
3930 pass_delay_slots (gcc::context *ctxt)
3931 : rtl_opt_pass (pass_data_delay_slots, ctxt)
3934 /* opt_pass methods: */
3935 virtual bool gate (function *);
3936 virtual unsigned int execute (function *)
3938 return rest_of_handle_delay_slots ();
3941 }; // class pass_delay_slots
3943 bool
3944 pass_delay_slots::gate (function *)
3946 /* At -O0 dataflow info isn't updated after RA. */
3947 if (DELAY_SLOTS)
3948 return optimize > 0 && flag_delayed_branch && !crtl->dbr_scheduled_p;
3950 return false;
3953 } // anon namespace
3955 rtl_opt_pass *
3956 make_pass_delay_slots (gcc::context *ctxt)
3958 return new pass_delay_slots (ctxt);
3961 /* Machine dependent reorg pass. */
3963 namespace {
3965 const pass_data pass_data_machine_reorg =
3967 RTL_PASS, /* type */
3968 "mach", /* name */
3969 OPTGROUP_NONE, /* optinfo_flags */
3970 TV_MACH_DEP, /* tv_id */
3971 0, /* properties_required */
3972 0, /* properties_provided */
3973 0, /* properties_destroyed */
3974 0, /* todo_flags_start */
3975 0, /* todo_flags_finish */
3978 class pass_machine_reorg : public rtl_opt_pass
3980 public:
3981 pass_machine_reorg (gcc::context *ctxt)
3982 : rtl_opt_pass (pass_data_machine_reorg, ctxt)
3985 /* opt_pass methods: */
3986 virtual bool gate (function *)
3988 return targetm.machine_dependent_reorg != 0;
3991 virtual unsigned int execute (function *)
3993 targetm.machine_dependent_reorg ();
3994 return 0;
3997 }; // class pass_machine_reorg
3999 } // anon namespace
4001 rtl_opt_pass *
4002 make_pass_machine_reorg (gcc::context *ctxt)
4004 return new pass_machine_reorg (ctxt);