LWG 2975 ensure construct(pair<T,U>*, ...) used to construct pairs
[official-gcc.git] / gcc / ada / sem_res.adb
blobe162e78a66e33d7c24d3d82fb5ce3d6c16af76a6
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ R E S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2018, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Debug; use Debug;
29 with Debug_A; use Debug_A;
30 with Einfo; use Einfo;
31 with Errout; use Errout;
32 with Expander; use Expander;
33 with Exp_Disp; use Exp_Disp;
34 with Exp_Ch6; use Exp_Ch6;
35 with Exp_Ch7; use Exp_Ch7;
36 with Exp_Tss; use Exp_Tss;
37 with Exp_Util; use Exp_Util;
38 with Freeze; use Freeze;
39 with Ghost; use Ghost;
40 with Inline; use Inline;
41 with Itypes; use Itypes;
42 with Lib; use Lib;
43 with Lib.Xref; use Lib.Xref;
44 with Namet; use Namet;
45 with Nmake; use Nmake;
46 with Nlists; use Nlists;
47 with Opt; use Opt;
48 with Output; use Output;
49 with Par_SCO; use Par_SCO;
50 with Restrict; use Restrict;
51 with Rident; use Rident;
52 with Rtsfind; use Rtsfind;
53 with Sem; use Sem;
54 with Sem_Aux; use Sem_Aux;
55 with Sem_Aggr; use Sem_Aggr;
56 with Sem_Attr; use Sem_Attr;
57 with Sem_Cat; use Sem_Cat;
58 with Sem_Ch4; use Sem_Ch4;
59 with Sem_Ch3; use Sem_Ch3;
60 with Sem_Ch6; use Sem_Ch6;
61 with Sem_Ch8; use Sem_Ch8;
62 with Sem_Ch13; use Sem_Ch13;
63 with Sem_Dim; use Sem_Dim;
64 with Sem_Disp; use Sem_Disp;
65 with Sem_Dist; use Sem_Dist;
66 with Sem_Elab; use Sem_Elab;
67 with Sem_Elim; use Sem_Elim;
68 with Sem_Eval; use Sem_Eval;
69 with Sem_Intr; use Sem_Intr;
70 with Sem_Util; use Sem_Util;
71 with Targparm; use Targparm;
72 with Sem_Type; use Sem_Type;
73 with Sem_Warn; use Sem_Warn;
74 with Sinfo; use Sinfo;
75 with Sinfo.CN; use Sinfo.CN;
76 with Snames; use Snames;
77 with Stand; use Stand;
78 with Stringt; use Stringt;
79 with Style; use Style;
80 with Tbuild; use Tbuild;
81 with Uintp; use Uintp;
82 with Urealp; use Urealp;
84 package body Sem_Res is
86 -----------------------
87 -- Local Subprograms --
88 -----------------------
90 -- Second pass (top-down) type checking and overload resolution procedures
91 -- Typ is the type required by context. These procedures propagate the
92 -- type information recursively to the descendants of N. If the node is not
93 -- overloaded, its Etype is established in the first pass. If overloaded,
94 -- the Resolve routines set the correct type. For arithmetic operators, the
95 -- Etype is the base type of the context.
97 -- Note that Resolve_Attribute is separated off in Sem_Attr
99 procedure Check_Discriminant_Use (N : Node_Id);
100 -- Enforce the restrictions on the use of discriminants when constraining
101 -- a component of a discriminated type (record or concurrent type).
103 procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id);
104 -- Given a node for an operator associated with type T, check that the
105 -- operator is visible. Operators all of whose operands are universal must
106 -- be checked for visibility during resolution because their type is not
107 -- determinable based on their operands.
109 procedure Check_Fully_Declared_Prefix
110 (Typ : Entity_Id;
111 Pref : Node_Id);
112 -- Check that the type of the prefix of a dereference is not incomplete
114 function Check_Infinite_Recursion (N : Node_Id) return Boolean;
115 -- Given a call node, N, which is known to occur immediately within the
116 -- subprogram being called, determines whether it is a detectable case of
117 -- an infinite recursion, and if so, outputs appropriate messages. Returns
118 -- True if an infinite recursion is detected, and False otherwise.
120 procedure Check_No_Direct_Boolean_Operators (N : Node_Id);
121 -- N is the node for a logical operator. If the operator is predefined, and
122 -- the root type of the operands is Standard.Boolean, then a check is made
123 -- for restriction No_Direct_Boolean_Operators. This procedure also handles
124 -- the style check for Style_Check_Boolean_And_Or.
126 function Is_Atomic_Ref_With_Address (N : Node_Id) return Boolean;
127 -- N is either an indexed component or a selected component. This function
128 -- returns true if the prefix refers to an object that has an address
129 -- clause (the case in which we may want to issue a warning).
131 function Is_Definite_Access_Type (E : Entity_Id) return Boolean;
132 -- Determine whether E is an access type declared by an access declaration,
133 -- and not an (anonymous) allocator type.
135 function Is_Predefined_Op (Nam : Entity_Id) return Boolean;
136 -- Utility to check whether the entity for an operator is a predefined
137 -- operator, in which case the expression is left as an operator in the
138 -- tree (else it is rewritten into a call). An instance of an intrinsic
139 -- conversion operation may be given an operator name, but is not treated
140 -- like an operator. Note that an operator that is an imported back-end
141 -- builtin has convention Intrinsic, but is expected to be rewritten into
142 -- a call, so such an operator is not treated as predefined by this
143 -- predicate.
145 procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id);
146 -- If a default expression in entry call N depends on the discriminants
147 -- of the task, it must be replaced with a reference to the discriminant
148 -- of the task being called.
150 procedure Resolve_Op_Concat_Arg
151 (N : Node_Id;
152 Arg : Node_Id;
153 Typ : Entity_Id;
154 Is_Comp : Boolean);
155 -- Internal procedure for Resolve_Op_Concat to resolve one operand of
156 -- concatenation operator. The operand is either of the array type or of
157 -- the component type. If the operand is an aggregate, and the component
158 -- type is composite, this is ambiguous if component type has aggregates.
160 procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id);
161 -- Does the first part of the work of Resolve_Op_Concat
163 procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id);
164 -- Does the "rest" of the work of Resolve_Op_Concat, after the left operand
165 -- has been resolved. See Resolve_Op_Concat for details.
167 procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id);
168 procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id);
169 procedure Resolve_Call (N : Node_Id; Typ : Entity_Id);
170 procedure Resolve_Case_Expression (N : Node_Id; Typ : Entity_Id);
171 procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id);
172 procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id);
173 procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id);
174 procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id);
175 procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id);
176 procedure Resolve_Expression_With_Actions (N : Node_Id; Typ : Entity_Id);
177 procedure Resolve_If_Expression (N : Node_Id; Typ : Entity_Id);
178 procedure Resolve_Generalized_Indexing (N : Node_Id; Typ : Entity_Id);
179 procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id);
180 procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id);
181 procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id);
182 procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id);
183 procedure Resolve_Null (N : Node_Id; Typ : Entity_Id);
184 procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id);
185 procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id);
186 procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id);
187 procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id);
188 procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id);
189 procedure Resolve_Raise_Expression (N : Node_Id; Typ : Entity_Id);
190 procedure Resolve_Range (N : Node_Id; Typ : Entity_Id);
191 procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id);
192 procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id);
193 procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id);
194 procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id);
195 procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id);
196 procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id);
197 procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id);
198 procedure Resolve_Target_Name (N : Node_Id; Typ : Entity_Id);
199 procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id);
200 procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id);
201 procedure Resolve_Unchecked_Expression (N : Node_Id; Typ : Entity_Id);
202 procedure Resolve_Unchecked_Type_Conversion (N : Node_Id; Typ : Entity_Id);
204 function Operator_Kind
205 (Op_Name : Name_Id;
206 Is_Binary : Boolean) return Node_Kind;
207 -- Utility to map the name of an operator into the corresponding Node. Used
208 -- by other node rewriting procedures.
210 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id);
211 -- Resolve actuals of call, and add default expressions for missing ones.
212 -- N is the Node_Id for the subprogram call, and Nam is the entity of the
213 -- called subprogram.
215 procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id);
216 -- Called from Resolve_Call, when the prefix denotes an entry or element
217 -- of entry family. Actuals are resolved as for subprograms, and the node
218 -- is rebuilt as an entry call. Also called for protected operations. Typ
219 -- is the context type, which is used when the operation is a protected
220 -- function with no arguments, and the return value is indexed.
222 procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id);
223 -- A call to a user-defined intrinsic operator is rewritten as a call to
224 -- the corresponding predefined operator, with suitable conversions. Note
225 -- that this applies only for intrinsic operators that denote predefined
226 -- operators, not ones that are intrinsic imports of back-end builtins.
228 procedure Resolve_Intrinsic_Unary_Operator (N : Node_Id; Typ : Entity_Id);
229 -- Ditto, for arithmetic unary operators
231 procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id);
232 -- If an operator node resolves to a call to a user-defined operator,
233 -- rewrite the node as a function call.
235 procedure Make_Call_Into_Operator
236 (N : Node_Id;
237 Typ : Entity_Id;
238 Op_Id : Entity_Id);
239 -- Inverse transformation: if an operator is given in functional notation,
240 -- then after resolving the node, transform into an operator node, so that
241 -- operands are resolved properly. Recall that predefined operators do not
242 -- have a full signature and special resolution rules apply.
244 procedure Rewrite_Renamed_Operator
245 (N : Node_Id;
246 Op : Entity_Id;
247 Typ : Entity_Id);
248 -- An operator can rename another, e.g. in an instantiation. In that
249 -- case, the proper operator node must be constructed and resolved.
251 procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id);
252 -- The String_Literal_Subtype is built for all strings that are not
253 -- operands of a static concatenation operation. If the argument is not
254 -- a N_String_Literal node, then the call has no effect.
256 procedure Set_Slice_Subtype (N : Node_Id);
257 -- Build subtype of array type, with the range specified by the slice
259 procedure Simplify_Type_Conversion (N : Node_Id);
260 -- Called after N has been resolved and evaluated, but before range checks
261 -- have been applied. Currently simplifies a combination of floating-point
262 -- to integer conversion and Rounding or Truncation attribute.
264 function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id;
265 -- A universal_fixed expression in an universal context is unambiguous if
266 -- there is only one applicable fixed point type. Determining whether there
267 -- is only one requires a search over all visible entities, and happens
268 -- only in very pathological cases (see 6115-006).
270 -------------------------
271 -- Ambiguous_Character --
272 -------------------------
274 procedure Ambiguous_Character (C : Node_Id) is
275 E : Entity_Id;
277 begin
278 if Nkind (C) = N_Character_Literal then
279 Error_Msg_N ("ambiguous character literal", C);
281 -- First the ones in Standard
283 Error_Msg_N ("\\possible interpretation: Character!", C);
284 Error_Msg_N ("\\possible interpretation: Wide_Character!", C);
286 -- Include Wide_Wide_Character in Ada 2005 mode
288 if Ada_Version >= Ada_2005 then
289 Error_Msg_N ("\\possible interpretation: Wide_Wide_Character!", C);
290 end if;
292 -- Now any other types that match
294 E := Current_Entity (C);
295 while Present (E) loop
296 Error_Msg_NE ("\\possible interpretation:}!", C, Etype (E));
297 E := Homonym (E);
298 end loop;
299 end if;
300 end Ambiguous_Character;
302 -------------------------
303 -- Analyze_And_Resolve --
304 -------------------------
306 procedure Analyze_And_Resolve (N : Node_Id) is
307 begin
308 Analyze (N);
309 Resolve (N);
310 end Analyze_And_Resolve;
312 procedure Analyze_And_Resolve (N : Node_Id; Typ : Entity_Id) is
313 begin
314 Analyze (N);
315 Resolve (N, Typ);
316 end Analyze_And_Resolve;
318 -- Versions with check(s) suppressed
320 procedure Analyze_And_Resolve
321 (N : Node_Id;
322 Typ : Entity_Id;
323 Suppress : Check_Id)
325 Scop : constant Entity_Id := Current_Scope;
327 begin
328 if Suppress = All_Checks then
329 declare
330 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
331 begin
332 Scope_Suppress.Suppress := (others => True);
333 Analyze_And_Resolve (N, Typ);
334 Scope_Suppress.Suppress := Sva;
335 end;
337 else
338 declare
339 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
340 begin
341 Scope_Suppress.Suppress (Suppress) := True;
342 Analyze_And_Resolve (N, Typ);
343 Scope_Suppress.Suppress (Suppress) := Svg;
344 end;
345 end if;
347 if Current_Scope /= Scop
348 and then Scope_Is_Transient
349 then
350 -- This can only happen if a transient scope was created for an inner
351 -- expression, which will be removed upon completion of the analysis
352 -- of an enclosing construct. The transient scope must have the
353 -- suppress status of the enclosing environment, not of this Analyze
354 -- call.
356 Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
357 Scope_Suppress;
358 end if;
359 end Analyze_And_Resolve;
361 procedure Analyze_And_Resolve
362 (N : Node_Id;
363 Suppress : Check_Id)
365 Scop : constant Entity_Id := Current_Scope;
367 begin
368 if Suppress = All_Checks then
369 declare
370 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
371 begin
372 Scope_Suppress.Suppress := (others => True);
373 Analyze_And_Resolve (N);
374 Scope_Suppress.Suppress := Sva;
375 end;
377 else
378 declare
379 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
380 begin
381 Scope_Suppress.Suppress (Suppress) := True;
382 Analyze_And_Resolve (N);
383 Scope_Suppress.Suppress (Suppress) := Svg;
384 end;
385 end if;
387 if Current_Scope /= Scop and then Scope_Is_Transient then
388 Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
389 Scope_Suppress;
390 end if;
391 end Analyze_And_Resolve;
393 ----------------------------
394 -- Check_Discriminant_Use --
395 ----------------------------
397 procedure Check_Discriminant_Use (N : Node_Id) is
398 PN : constant Node_Id := Parent (N);
399 Disc : constant Entity_Id := Entity (N);
400 P : Node_Id;
401 D : Node_Id;
403 begin
404 -- Any use in a spec-expression is legal
406 if In_Spec_Expression then
407 null;
409 elsif Nkind (PN) = N_Range then
411 -- Discriminant cannot be used to constrain a scalar type
413 P := Parent (PN);
415 if Nkind (P) = N_Range_Constraint
416 and then Nkind (Parent (P)) = N_Subtype_Indication
417 and then Nkind (Parent (Parent (P))) = N_Component_Definition
418 then
419 Error_Msg_N ("discriminant cannot constrain scalar type", N);
421 elsif Nkind (P) = N_Index_Or_Discriminant_Constraint then
423 -- The following check catches the unusual case where a
424 -- discriminant appears within an index constraint that is part
425 -- of a larger expression within a constraint on a component,
426 -- e.g. "C : Int range 1 .. F (new A(1 .. D))". For now we only
427 -- check case of record components, and note that a similar check
428 -- should also apply in the case of discriminant constraints
429 -- below. ???
431 -- Note that the check for N_Subtype_Declaration below is to
432 -- detect the valid use of discriminants in the constraints of a
433 -- subtype declaration when this subtype declaration appears
434 -- inside the scope of a record type (which is syntactically
435 -- illegal, but which may be created as part of derived type
436 -- processing for records). See Sem_Ch3.Build_Derived_Record_Type
437 -- for more info.
439 if Ekind (Current_Scope) = E_Record_Type
440 and then Scope (Disc) = Current_Scope
441 and then not
442 (Nkind (Parent (P)) = N_Subtype_Indication
443 and then
444 Nkind_In (Parent (Parent (P)), N_Component_Definition,
445 N_Subtype_Declaration)
446 and then Paren_Count (N) = 0)
447 then
448 Error_Msg_N
449 ("discriminant must appear alone in component constraint", N);
450 return;
451 end if;
453 -- Detect a common error:
455 -- type R (D : Positive := 100) is record
456 -- Name : String (1 .. D);
457 -- end record;
459 -- The default value causes an object of type R to be allocated
460 -- with room for Positive'Last characters. The RM does not mandate
461 -- the allocation of the maximum size, but that is what GNAT does
462 -- so we should warn the programmer that there is a problem.
464 Check_Large : declare
465 SI : Node_Id;
466 T : Entity_Id;
467 TB : Node_Id;
468 CB : Entity_Id;
470 function Large_Storage_Type (T : Entity_Id) return Boolean;
471 -- Return True if type T has a large enough range that any
472 -- array whose index type covered the whole range of the type
473 -- would likely raise Storage_Error.
475 ------------------------
476 -- Large_Storage_Type --
477 ------------------------
479 function Large_Storage_Type (T : Entity_Id) return Boolean is
480 begin
481 -- The type is considered large if its bounds are known at
482 -- compile time and if it requires at least as many bits as
483 -- a Positive to store the possible values.
485 return Compile_Time_Known_Value (Type_Low_Bound (T))
486 and then Compile_Time_Known_Value (Type_High_Bound (T))
487 and then
488 Minimum_Size (T, Biased => True) >=
489 RM_Size (Standard_Positive);
490 end Large_Storage_Type;
492 -- Start of processing for Check_Large
494 begin
495 -- Check that the Disc has a large range
497 if not Large_Storage_Type (Etype (Disc)) then
498 goto No_Danger;
499 end if;
501 -- If the enclosing type is limited, we allocate only the
502 -- default value, not the maximum, and there is no need for
503 -- a warning.
505 if Is_Limited_Type (Scope (Disc)) then
506 goto No_Danger;
507 end if;
509 -- Check that it is the high bound
511 if N /= High_Bound (PN)
512 or else No (Discriminant_Default_Value (Disc))
513 then
514 goto No_Danger;
515 end if;
517 -- Check the array allows a large range at this bound. First
518 -- find the array
520 SI := Parent (P);
522 if Nkind (SI) /= N_Subtype_Indication then
523 goto No_Danger;
524 end if;
526 T := Entity (Subtype_Mark (SI));
528 if not Is_Array_Type (T) then
529 goto No_Danger;
530 end if;
532 -- Next, find the dimension
534 TB := First_Index (T);
535 CB := First (Constraints (P));
536 while True
537 and then Present (TB)
538 and then Present (CB)
539 and then CB /= PN
540 loop
541 Next_Index (TB);
542 Next (CB);
543 end loop;
545 if CB /= PN then
546 goto No_Danger;
547 end if;
549 -- Now, check the dimension has a large range
551 if not Large_Storage_Type (Etype (TB)) then
552 goto No_Danger;
553 end if;
555 -- Warn about the danger
557 Error_Msg_N
558 ("??creation of & object may raise Storage_Error!",
559 Scope (Disc));
561 <<No_Danger>>
562 null;
564 end Check_Large;
565 end if;
567 -- Legal case is in index or discriminant constraint
569 elsif Nkind_In (PN, N_Index_Or_Discriminant_Constraint,
570 N_Discriminant_Association)
571 then
572 if Paren_Count (N) > 0 then
573 Error_Msg_N
574 ("discriminant in constraint must appear alone", N);
576 elsif Nkind (N) = N_Expanded_Name
577 and then Comes_From_Source (N)
578 then
579 Error_Msg_N
580 ("discriminant must appear alone as a direct name", N);
581 end if;
583 return;
585 -- Otherwise, context is an expression. It should not be within (i.e. a
586 -- subexpression of) a constraint for a component.
588 else
589 D := PN;
590 P := Parent (PN);
591 while not Nkind_In (P, N_Component_Declaration,
592 N_Subtype_Indication,
593 N_Entry_Declaration)
594 loop
595 D := P;
596 P := Parent (P);
597 exit when No (P);
598 end loop;
600 -- If the discriminant is used in an expression that is a bound of a
601 -- scalar type, an Itype is created and the bounds are attached to
602 -- its range, not to the original subtype indication. Such use is of
603 -- course a double fault.
605 if (Nkind (P) = N_Subtype_Indication
606 and then Nkind_In (Parent (P), N_Component_Definition,
607 N_Derived_Type_Definition)
608 and then D = Constraint (P))
610 -- The constraint itself may be given by a subtype indication,
611 -- rather than by a more common discrete range.
613 or else (Nkind (P) = N_Subtype_Indication
614 and then
615 Nkind (Parent (P)) = N_Index_Or_Discriminant_Constraint)
616 or else Nkind (P) = N_Entry_Declaration
617 or else Nkind (D) = N_Defining_Identifier
618 then
619 Error_Msg_N
620 ("discriminant in constraint must appear alone", N);
621 end if;
622 end if;
623 end Check_Discriminant_Use;
625 --------------------------------
626 -- Check_For_Visible_Operator --
627 --------------------------------
629 procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id) is
630 begin
631 if Is_Invisible_Operator (N, T) then
632 Error_Msg_NE -- CODEFIX
633 ("operator for} is not directly visible!", N, First_Subtype (T));
634 Error_Msg_N -- CODEFIX
635 ("use clause would make operation legal!", N);
636 end if;
637 end Check_For_Visible_Operator;
639 ----------------------------------
640 -- Check_Fully_Declared_Prefix --
641 ----------------------------------
643 procedure Check_Fully_Declared_Prefix
644 (Typ : Entity_Id;
645 Pref : Node_Id)
647 begin
648 -- Check that the designated type of the prefix of a dereference is
649 -- not an incomplete type. This cannot be done unconditionally, because
650 -- dereferences of private types are legal in default expressions. This
651 -- case is taken care of in Check_Fully_Declared, called below. There
652 -- are also 2005 cases where it is legal for the prefix to be unfrozen.
654 -- This consideration also applies to similar checks for allocators,
655 -- qualified expressions, and type conversions.
657 -- An additional exception concerns other per-object expressions that
658 -- are not directly related to component declarations, in particular
659 -- representation pragmas for tasks. These will be per-object
660 -- expressions if they depend on discriminants or some global entity.
661 -- If the task has access discriminants, the designated type may be
662 -- incomplete at the point the expression is resolved. This resolution
663 -- takes place within the body of the initialization procedure, where
664 -- the discriminant is replaced by its discriminal.
666 if Is_Entity_Name (Pref)
667 and then Ekind (Entity (Pref)) = E_In_Parameter
668 then
669 null;
671 -- Ada 2005 (AI-326): Tagged incomplete types allowed. The wrong usages
672 -- are handled by Analyze_Access_Attribute, Analyze_Assignment,
673 -- Analyze_Object_Renaming, and Freeze_Entity.
675 elsif Ada_Version >= Ada_2005
676 and then Is_Entity_Name (Pref)
677 and then Is_Access_Type (Etype (Pref))
678 and then Ekind (Directly_Designated_Type (Etype (Pref))) =
679 E_Incomplete_Type
680 and then Is_Tagged_Type (Directly_Designated_Type (Etype (Pref)))
681 then
682 null;
683 else
684 Check_Fully_Declared (Typ, Parent (Pref));
685 end if;
686 end Check_Fully_Declared_Prefix;
688 ------------------------------
689 -- Check_Infinite_Recursion --
690 ------------------------------
692 function Check_Infinite_Recursion (N : Node_Id) return Boolean is
693 P : Node_Id;
694 C : Node_Id;
696 function Same_Argument_List return Boolean;
697 -- Check whether list of actuals is identical to list of formals of
698 -- called function (which is also the enclosing scope).
700 ------------------------
701 -- Same_Argument_List --
702 ------------------------
704 function Same_Argument_List return Boolean is
705 A : Node_Id;
706 F : Entity_Id;
707 Subp : Entity_Id;
709 begin
710 if not Is_Entity_Name (Name (N)) then
711 return False;
712 else
713 Subp := Entity (Name (N));
714 end if;
716 F := First_Formal (Subp);
717 A := First_Actual (N);
718 while Present (F) and then Present (A) loop
719 if not Is_Entity_Name (A) or else Entity (A) /= F then
720 return False;
721 end if;
723 Next_Actual (A);
724 Next_Formal (F);
725 end loop;
727 return True;
728 end Same_Argument_List;
730 -- Start of processing for Check_Infinite_Recursion
732 begin
733 -- Special case, if this is a procedure call and is a call to the
734 -- current procedure with the same argument list, then this is for
735 -- sure an infinite recursion and we insert a call to raise SE.
737 if Is_List_Member (N)
738 and then List_Length (List_Containing (N)) = 1
739 and then Same_Argument_List
740 then
741 declare
742 P : constant Node_Id := Parent (N);
743 begin
744 if Nkind (P) = N_Handled_Sequence_Of_Statements
745 and then Nkind (Parent (P)) = N_Subprogram_Body
746 and then Is_Empty_List (Declarations (Parent (P)))
747 then
748 Error_Msg_Warn := SPARK_Mode /= On;
749 Error_Msg_N ("!infinite recursion<<", N);
750 Error_Msg_N ("\!Storage_Error [<<", N);
751 Insert_Action (N,
752 Make_Raise_Storage_Error (Sloc (N),
753 Reason => SE_Infinite_Recursion));
754 return True;
755 end if;
756 end;
757 end if;
759 -- If not that special case, search up tree, quitting if we reach a
760 -- construct (e.g. a conditional) that tells us that this is not a
761 -- case for an infinite recursion warning.
763 C := N;
764 loop
765 P := Parent (C);
767 -- If no parent, then we were not inside a subprogram, this can for
768 -- example happen when processing certain pragmas in a spec. Just
769 -- return False in this case.
771 if No (P) then
772 return False;
773 end if;
775 -- Done if we get to subprogram body, this is definitely an infinite
776 -- recursion case if we did not find anything to stop us.
778 exit when Nkind (P) = N_Subprogram_Body;
780 -- If appearing in conditional, result is false
782 if Nkind_In (P, N_Or_Else,
783 N_And_Then,
784 N_Case_Expression,
785 N_Case_Statement,
786 N_If_Expression,
787 N_If_Statement)
788 then
789 return False;
791 elsif Nkind (P) = N_Handled_Sequence_Of_Statements
792 and then C /= First (Statements (P))
793 then
794 -- If the call is the expression of a return statement and the
795 -- actuals are identical to the formals, it's worth a warning.
796 -- However, we skip this if there is an immediately preceding
797 -- raise statement, since the call is never executed.
799 -- Furthermore, this corresponds to a common idiom:
801 -- function F (L : Thing) return Boolean is
802 -- begin
803 -- raise Program_Error;
804 -- return F (L);
805 -- end F;
807 -- for generating a stub function
809 if Nkind (Parent (N)) = N_Simple_Return_Statement
810 and then Same_Argument_List
811 then
812 exit when not Is_List_Member (Parent (N));
814 -- OK, return statement is in a statement list, look for raise
816 declare
817 Nod : Node_Id;
819 begin
820 -- Skip past N_Freeze_Entity nodes generated by expansion
822 Nod := Prev (Parent (N));
823 while Present (Nod)
824 and then Nkind (Nod) = N_Freeze_Entity
825 loop
826 Prev (Nod);
827 end loop;
829 -- If no raise statement, give warning. We look at the
830 -- original node, because in the case of "raise ... with
831 -- ...", the node has been transformed into a call.
833 exit when Nkind (Original_Node (Nod)) /= N_Raise_Statement
834 and then
835 (Nkind (Nod) not in N_Raise_xxx_Error
836 or else Present (Condition (Nod)));
837 end;
838 end if;
840 return False;
842 else
843 C := P;
844 end if;
845 end loop;
847 Error_Msg_Warn := SPARK_Mode /= On;
848 Error_Msg_N ("!possible infinite recursion<<", N);
849 Error_Msg_N ("\!??Storage_Error ]<<", N);
851 return True;
852 end Check_Infinite_Recursion;
854 ---------------------------------------
855 -- Check_No_Direct_Boolean_Operators --
856 ---------------------------------------
858 procedure Check_No_Direct_Boolean_Operators (N : Node_Id) is
859 begin
860 if Scope (Entity (N)) = Standard_Standard
861 and then Root_Type (Etype (Left_Opnd (N))) = Standard_Boolean
862 then
863 -- Restriction only applies to original source code
865 if Comes_From_Source (N) then
866 Check_Restriction (No_Direct_Boolean_Operators, N);
867 end if;
868 end if;
870 -- Do style check (but skip if in instance, error is on template)
872 if Style_Check then
873 if not In_Instance then
874 Check_Boolean_Operator (N);
875 end if;
876 end if;
877 end Check_No_Direct_Boolean_Operators;
879 ------------------------------
880 -- Check_Parameterless_Call --
881 ------------------------------
883 procedure Check_Parameterless_Call (N : Node_Id) is
884 Nam : Node_Id;
886 function Prefix_Is_Access_Subp return Boolean;
887 -- If the prefix is of an access_to_subprogram type, the node must be
888 -- rewritten as a call. Ditto if the prefix is overloaded and all its
889 -- interpretations are access to subprograms.
891 ---------------------------
892 -- Prefix_Is_Access_Subp --
893 ---------------------------
895 function Prefix_Is_Access_Subp return Boolean is
896 I : Interp_Index;
897 It : Interp;
899 begin
900 -- If the context is an attribute reference that can apply to
901 -- functions, this is never a parameterless call (RM 4.1.4(6)).
903 if Nkind (Parent (N)) = N_Attribute_Reference
904 and then Nam_In (Attribute_Name (Parent (N)), Name_Address,
905 Name_Code_Address,
906 Name_Access)
907 then
908 return False;
909 end if;
911 if not Is_Overloaded (N) then
912 return
913 Ekind (Etype (N)) = E_Subprogram_Type
914 and then Base_Type (Etype (Etype (N))) /= Standard_Void_Type;
915 else
916 Get_First_Interp (N, I, It);
917 while Present (It.Typ) loop
918 if Ekind (It.Typ) /= E_Subprogram_Type
919 or else Base_Type (Etype (It.Typ)) = Standard_Void_Type
920 then
921 return False;
922 end if;
924 Get_Next_Interp (I, It);
925 end loop;
927 return True;
928 end if;
929 end Prefix_Is_Access_Subp;
931 -- Start of processing for Check_Parameterless_Call
933 begin
934 -- Defend against junk stuff if errors already detected
936 if Total_Errors_Detected /= 0 then
937 if Nkind (N) in N_Has_Etype and then Etype (N) = Any_Type then
938 return;
939 elsif Nkind (N) in N_Has_Chars
940 and then not Is_Valid_Name (Chars (N))
941 then
942 return;
943 end if;
945 Require_Entity (N);
946 end if;
948 -- If the context expects a value, and the name is a procedure, this is
949 -- most likely a missing 'Access. Don't try to resolve the parameterless
950 -- call, error will be caught when the outer call is analyzed.
952 if Is_Entity_Name (N)
953 and then Ekind (Entity (N)) = E_Procedure
954 and then not Is_Overloaded (N)
955 and then
956 Nkind_In (Parent (N), N_Parameter_Association,
957 N_Function_Call,
958 N_Procedure_Call_Statement)
959 then
960 return;
961 end if;
963 -- Rewrite as call if overloadable entity that is (or could be, in the
964 -- overloaded case) a function call. If we know for sure that the entity
965 -- is an enumeration literal, we do not rewrite it.
967 -- If the entity is the name of an operator, it cannot be a call because
968 -- operators cannot have default parameters. In this case, this must be
969 -- a string whose contents coincide with an operator name. Set the kind
970 -- of the node appropriately.
972 if (Is_Entity_Name (N)
973 and then Nkind (N) /= N_Operator_Symbol
974 and then Is_Overloadable (Entity (N))
975 and then (Ekind (Entity (N)) /= E_Enumeration_Literal
976 or else Is_Overloaded (N)))
978 -- Rewrite as call if it is an explicit dereference of an expression of
979 -- a subprogram access type, and the subprogram type is not that of a
980 -- procedure or entry.
982 or else
983 (Nkind (N) = N_Explicit_Dereference and then Prefix_Is_Access_Subp)
985 -- Rewrite as call if it is a selected component which is a function,
986 -- this is the case of a call to a protected function (which may be
987 -- overloaded with other protected operations).
989 or else
990 (Nkind (N) = N_Selected_Component
991 and then (Ekind (Entity (Selector_Name (N))) = E_Function
992 or else
993 (Ekind_In (Entity (Selector_Name (N)), E_Entry,
994 E_Procedure)
995 and then Is_Overloaded (Selector_Name (N)))))
997 -- If one of the above three conditions is met, rewrite as call. Apply
998 -- the rewriting only once.
1000 then
1001 if Nkind (Parent (N)) /= N_Function_Call
1002 or else N /= Name (Parent (N))
1003 then
1005 -- This may be a prefixed call that was not fully analyzed, e.g.
1006 -- an actual in an instance.
1008 if Ada_Version >= Ada_2005
1009 and then Nkind (N) = N_Selected_Component
1010 and then Is_Dispatching_Operation (Entity (Selector_Name (N)))
1011 then
1012 Analyze_Selected_Component (N);
1014 if Nkind (N) /= N_Selected_Component then
1015 return;
1016 end if;
1017 end if;
1019 -- The node is the name of the parameterless call. Preserve its
1020 -- descendants, which may be complex expressions.
1022 Nam := Relocate_Node (N);
1024 -- If overloaded, overload set belongs to new copy
1026 Save_Interps (N, Nam);
1028 -- Change node to parameterless function call (note that the
1029 -- Parameter_Associations associations field is left set to Empty,
1030 -- its normal default value since there are no parameters)
1032 Change_Node (N, N_Function_Call);
1033 Set_Name (N, Nam);
1034 Set_Sloc (N, Sloc (Nam));
1035 Analyze_Call (N);
1036 end if;
1038 elsif Nkind (N) = N_Parameter_Association then
1039 Check_Parameterless_Call (Explicit_Actual_Parameter (N));
1041 elsif Nkind (N) = N_Operator_Symbol then
1042 Change_Operator_Symbol_To_String_Literal (N);
1043 Set_Is_Overloaded (N, False);
1044 Set_Etype (N, Any_String);
1045 end if;
1046 end Check_Parameterless_Call;
1048 --------------------------------
1049 -- Is_Atomic_Ref_With_Address --
1050 --------------------------------
1052 function Is_Atomic_Ref_With_Address (N : Node_Id) return Boolean is
1053 Pref : constant Node_Id := Prefix (N);
1055 begin
1056 if not Is_Entity_Name (Pref) then
1057 return False;
1059 else
1060 declare
1061 Pent : constant Entity_Id := Entity (Pref);
1062 Ptyp : constant Entity_Id := Etype (Pent);
1063 begin
1064 return not Is_Access_Type (Ptyp)
1065 and then (Is_Atomic (Ptyp) or else Is_Atomic (Pent))
1066 and then Present (Address_Clause (Pent));
1067 end;
1068 end if;
1069 end Is_Atomic_Ref_With_Address;
1071 -----------------------------
1072 -- Is_Definite_Access_Type --
1073 -----------------------------
1075 function Is_Definite_Access_Type (E : Entity_Id) return Boolean is
1076 Btyp : constant Entity_Id := Base_Type (E);
1077 begin
1078 return Ekind (Btyp) = E_Access_Type
1079 or else (Ekind (Btyp) = E_Access_Subprogram_Type
1080 and then Comes_From_Source (Btyp));
1081 end Is_Definite_Access_Type;
1083 ----------------------
1084 -- Is_Predefined_Op --
1085 ----------------------
1087 function Is_Predefined_Op (Nam : Entity_Id) return Boolean is
1088 begin
1089 -- Predefined operators are intrinsic subprograms
1091 if not Is_Intrinsic_Subprogram (Nam) then
1092 return False;
1093 end if;
1095 -- A call to a back-end builtin is never a predefined operator
1097 if Is_Imported (Nam) and then Present (Interface_Name (Nam)) then
1098 return False;
1099 end if;
1101 return not Is_Generic_Instance (Nam)
1102 and then Chars (Nam) in Any_Operator_Name
1103 and then (No (Alias (Nam)) or else Is_Predefined_Op (Alias (Nam)));
1104 end Is_Predefined_Op;
1106 -----------------------------
1107 -- Make_Call_Into_Operator --
1108 -----------------------------
1110 procedure Make_Call_Into_Operator
1111 (N : Node_Id;
1112 Typ : Entity_Id;
1113 Op_Id : Entity_Id)
1115 Op_Name : constant Name_Id := Chars (Op_Id);
1116 Act1 : Node_Id := First_Actual (N);
1117 Act2 : Node_Id := Next_Actual (Act1);
1118 Error : Boolean := False;
1119 Func : constant Entity_Id := Entity (Name (N));
1120 Is_Binary : constant Boolean := Present (Act2);
1121 Op_Node : Node_Id;
1122 Opnd_Type : Entity_Id := Empty;
1123 Orig_Type : Entity_Id := Empty;
1124 Pack : Entity_Id;
1126 type Kind_Test is access function (E : Entity_Id) return Boolean;
1128 function Operand_Type_In_Scope (S : Entity_Id) return Boolean;
1129 -- If the operand is not universal, and the operator is given by an
1130 -- expanded name, verify that the operand has an interpretation with a
1131 -- type defined in the given scope of the operator.
1133 function Type_In_P (Test : Kind_Test) return Entity_Id;
1134 -- Find a type of the given class in package Pack that contains the
1135 -- operator.
1137 ---------------------------
1138 -- Operand_Type_In_Scope --
1139 ---------------------------
1141 function Operand_Type_In_Scope (S : Entity_Id) return Boolean is
1142 Nod : constant Node_Id := Right_Opnd (Op_Node);
1143 I : Interp_Index;
1144 It : Interp;
1146 begin
1147 if not Is_Overloaded (Nod) then
1148 return Scope (Base_Type (Etype (Nod))) = S;
1150 else
1151 Get_First_Interp (Nod, I, It);
1152 while Present (It.Typ) loop
1153 if Scope (Base_Type (It.Typ)) = S then
1154 return True;
1155 end if;
1157 Get_Next_Interp (I, It);
1158 end loop;
1160 return False;
1161 end if;
1162 end Operand_Type_In_Scope;
1164 ---------------
1165 -- Type_In_P --
1166 ---------------
1168 function Type_In_P (Test : Kind_Test) return Entity_Id is
1169 E : Entity_Id;
1171 function In_Decl return Boolean;
1172 -- Verify that node is not part of the type declaration for the
1173 -- candidate type, which would otherwise be invisible.
1175 -------------
1176 -- In_Decl --
1177 -------------
1179 function In_Decl return Boolean is
1180 Decl_Node : constant Node_Id := Parent (E);
1181 N2 : Node_Id;
1183 begin
1184 N2 := N;
1186 if Etype (E) = Any_Type then
1187 return True;
1189 elsif No (Decl_Node) then
1190 return False;
1192 else
1193 while Present (N2)
1194 and then Nkind (N2) /= N_Compilation_Unit
1195 loop
1196 if N2 = Decl_Node then
1197 return True;
1198 else
1199 N2 := Parent (N2);
1200 end if;
1201 end loop;
1203 return False;
1204 end if;
1205 end In_Decl;
1207 -- Start of processing for Type_In_P
1209 begin
1210 -- If the context type is declared in the prefix package, this is the
1211 -- desired base type.
1213 if Scope (Base_Type (Typ)) = Pack and then Test (Typ) then
1214 return Base_Type (Typ);
1216 else
1217 E := First_Entity (Pack);
1218 while Present (E) loop
1219 if Test (E) and then not In_Decl then
1220 return E;
1221 end if;
1223 Next_Entity (E);
1224 end loop;
1226 return Empty;
1227 end if;
1228 end Type_In_P;
1230 -- Start of processing for Make_Call_Into_Operator
1232 begin
1233 Op_Node := New_Node (Operator_Kind (Op_Name, Is_Binary), Sloc (N));
1235 -- Ensure that the corresponding operator has the same parent as the
1236 -- original call. This guarantees that parent traversals performed by
1237 -- the ABE mechanism succeed.
1239 Set_Parent (Op_Node, Parent (N));
1241 -- Binary operator
1243 if Is_Binary then
1244 Set_Left_Opnd (Op_Node, Relocate_Node (Act1));
1245 Set_Right_Opnd (Op_Node, Relocate_Node (Act2));
1246 Save_Interps (Act1, Left_Opnd (Op_Node));
1247 Save_Interps (Act2, Right_Opnd (Op_Node));
1248 Act1 := Left_Opnd (Op_Node);
1249 Act2 := Right_Opnd (Op_Node);
1251 -- Unary operator
1253 else
1254 Set_Right_Opnd (Op_Node, Relocate_Node (Act1));
1255 Save_Interps (Act1, Right_Opnd (Op_Node));
1256 Act1 := Right_Opnd (Op_Node);
1257 end if;
1259 -- If the operator is denoted by an expanded name, and the prefix is
1260 -- not Standard, but the operator is a predefined one whose scope is
1261 -- Standard, then this is an implicit_operator, inserted as an
1262 -- interpretation by the procedure of the same name. This procedure
1263 -- overestimates the presence of implicit operators, because it does
1264 -- not examine the type of the operands. Verify now that the operand
1265 -- type appears in the given scope. If right operand is universal,
1266 -- check the other operand. In the case of concatenation, either
1267 -- argument can be the component type, so check the type of the result.
1268 -- If both arguments are literals, look for a type of the right kind
1269 -- defined in the given scope. This elaborate nonsense is brought to
1270 -- you courtesy of b33302a. The type itself must be frozen, so we must
1271 -- find the type of the proper class in the given scope.
1273 -- A final wrinkle is the multiplication operator for fixed point types,
1274 -- which is defined in Standard only, and not in the scope of the
1275 -- fixed point type itself.
1277 if Nkind (Name (N)) = N_Expanded_Name then
1278 Pack := Entity (Prefix (Name (N)));
1280 -- If this is a package renaming, get renamed entity, which will be
1281 -- the scope of the operands if operaton is type-correct.
1283 if Present (Renamed_Entity (Pack)) then
1284 Pack := Renamed_Entity (Pack);
1285 end if;
1287 -- If the entity being called is defined in the given package, it is
1288 -- a renaming of a predefined operator, and known to be legal.
1290 if Scope (Entity (Name (N))) = Pack
1291 and then Pack /= Standard_Standard
1292 then
1293 null;
1295 -- Visibility does not need to be checked in an instance: if the
1296 -- operator was not visible in the generic it has been diagnosed
1297 -- already, else there is an implicit copy of it in the instance.
1299 elsif In_Instance then
1300 null;
1302 elsif Nam_In (Op_Name, Name_Op_Multiply, Name_Op_Divide)
1303 and then Is_Fixed_Point_Type (Etype (Left_Opnd (Op_Node)))
1304 and then Is_Fixed_Point_Type (Etype (Right_Opnd (Op_Node)))
1305 then
1306 if Pack /= Standard_Standard then
1307 Error := True;
1308 end if;
1310 -- Ada 2005 AI-420: Predefined equality on Universal_Access is
1311 -- available.
1313 elsif Ada_Version >= Ada_2005
1314 and then Nam_In (Op_Name, Name_Op_Eq, Name_Op_Ne)
1315 and then Ekind (Etype (Act1)) = E_Anonymous_Access_Type
1316 then
1317 null;
1319 else
1320 Opnd_Type := Base_Type (Etype (Right_Opnd (Op_Node)));
1322 if Op_Name = Name_Op_Concat then
1323 Opnd_Type := Base_Type (Typ);
1325 elsif (Scope (Opnd_Type) = Standard_Standard
1326 and then Is_Binary)
1327 or else (Nkind (Right_Opnd (Op_Node)) = N_Attribute_Reference
1328 and then Is_Binary
1329 and then not Comes_From_Source (Opnd_Type))
1330 then
1331 Opnd_Type := Base_Type (Etype (Left_Opnd (Op_Node)));
1332 end if;
1334 if Scope (Opnd_Type) = Standard_Standard then
1336 -- Verify that the scope contains a type that corresponds to
1337 -- the given literal. Optimize the case where Pack is Standard.
1339 if Pack /= Standard_Standard then
1340 if Opnd_Type = Universal_Integer then
1341 Orig_Type := Type_In_P (Is_Integer_Type'Access);
1343 elsif Opnd_Type = Universal_Real then
1344 Orig_Type := Type_In_P (Is_Real_Type'Access);
1346 elsif Opnd_Type = Any_String then
1347 Orig_Type := Type_In_P (Is_String_Type'Access);
1349 elsif Opnd_Type = Any_Access then
1350 Orig_Type := Type_In_P (Is_Definite_Access_Type'Access);
1352 elsif Opnd_Type = Any_Composite then
1353 Orig_Type := Type_In_P (Is_Composite_Type'Access);
1355 if Present (Orig_Type) then
1356 if Has_Private_Component (Orig_Type) then
1357 Orig_Type := Empty;
1358 else
1359 Set_Etype (Act1, Orig_Type);
1361 if Is_Binary then
1362 Set_Etype (Act2, Orig_Type);
1363 end if;
1364 end if;
1365 end if;
1367 else
1368 Orig_Type := Empty;
1369 end if;
1371 Error := No (Orig_Type);
1372 end if;
1374 elsif Ekind (Opnd_Type) = E_Allocator_Type
1375 and then No (Type_In_P (Is_Definite_Access_Type'Access))
1376 then
1377 Error := True;
1379 -- If the type is defined elsewhere, and the operator is not
1380 -- defined in the given scope (by a renaming declaration, e.g.)
1381 -- then this is an error as well. If an extension of System is
1382 -- present, and the type may be defined there, Pack must be
1383 -- System itself.
1385 elsif Scope (Opnd_Type) /= Pack
1386 and then Scope (Op_Id) /= Pack
1387 and then (No (System_Aux_Id)
1388 or else Scope (Opnd_Type) /= System_Aux_Id
1389 or else Pack /= Scope (System_Aux_Id))
1390 then
1391 if not Is_Overloaded (Right_Opnd (Op_Node)) then
1392 Error := True;
1393 else
1394 Error := not Operand_Type_In_Scope (Pack);
1395 end if;
1397 elsif Pack = Standard_Standard
1398 and then not Operand_Type_In_Scope (Standard_Standard)
1399 then
1400 Error := True;
1401 end if;
1402 end if;
1404 if Error then
1405 Error_Msg_Node_2 := Pack;
1406 Error_Msg_NE
1407 ("& not declared in&", N, Selector_Name (Name (N)));
1408 Set_Etype (N, Any_Type);
1409 return;
1411 -- Detect a mismatch between the context type and the result type
1412 -- in the named package, which is otherwise not detected if the
1413 -- operands are universal. Check is only needed if source entity is
1414 -- an operator, not a function that renames an operator.
1416 elsif Nkind (Parent (N)) /= N_Type_Conversion
1417 and then Ekind (Entity (Name (N))) = E_Operator
1418 and then Is_Numeric_Type (Typ)
1419 and then not Is_Universal_Numeric_Type (Typ)
1420 and then Scope (Base_Type (Typ)) /= Pack
1421 and then not In_Instance
1422 then
1423 if Is_Fixed_Point_Type (Typ)
1424 and then Nam_In (Op_Name, Name_Op_Multiply, Name_Op_Divide)
1425 then
1426 -- Already checked above
1428 null;
1430 -- Operator may be defined in an extension of System
1432 elsif Present (System_Aux_Id)
1433 and then Present (Opnd_Type)
1434 and then Scope (Opnd_Type) = System_Aux_Id
1435 then
1436 null;
1438 else
1439 -- Could we use Wrong_Type here??? (this would require setting
1440 -- Etype (N) to the actual type found where Typ was expected).
1442 Error_Msg_NE ("expect }", N, Typ);
1443 end if;
1444 end if;
1445 end if;
1447 Set_Chars (Op_Node, Op_Name);
1449 if not Is_Private_Type (Etype (N)) then
1450 Set_Etype (Op_Node, Base_Type (Etype (N)));
1451 else
1452 Set_Etype (Op_Node, Etype (N));
1453 end if;
1455 -- If this is a call to a function that renames a predefined equality,
1456 -- the renaming declaration provides a type that must be used to
1457 -- resolve the operands. This must be done now because resolution of
1458 -- the equality node will not resolve any remaining ambiguity, and it
1459 -- assumes that the first operand is not overloaded.
1461 if Nam_In (Op_Name, Name_Op_Eq, Name_Op_Ne)
1462 and then Ekind (Func) = E_Function
1463 and then Is_Overloaded (Act1)
1464 then
1465 Resolve (Act1, Base_Type (Etype (First_Formal (Func))));
1466 Resolve (Act2, Base_Type (Etype (First_Formal (Func))));
1467 end if;
1469 Set_Entity (Op_Node, Op_Id);
1470 Generate_Reference (Op_Id, N, ' ');
1472 -- Do rewrite setting Comes_From_Source on the result if the original
1473 -- call came from source. Although it is not strictly the case that the
1474 -- operator as such comes from the source, logically it corresponds
1475 -- exactly to the function call in the source, so it should be marked
1476 -- this way (e.g. to make sure that validity checks work fine).
1478 declare
1479 CS : constant Boolean := Comes_From_Source (N);
1480 begin
1481 Rewrite (N, Op_Node);
1482 Set_Comes_From_Source (N, CS);
1483 end;
1485 -- If this is an arithmetic operator and the result type is private,
1486 -- the operands and the result must be wrapped in conversion to
1487 -- expose the underlying numeric type and expand the proper checks,
1488 -- e.g. on division.
1490 if Is_Private_Type (Typ) then
1491 case Nkind (N) is
1492 when N_Op_Add
1493 | N_Op_Divide
1494 | N_Op_Expon
1495 | N_Op_Mod
1496 | N_Op_Multiply
1497 | N_Op_Rem
1498 | N_Op_Subtract
1500 Resolve_Intrinsic_Operator (N, Typ);
1502 when N_Op_Abs
1503 | N_Op_Minus
1504 | N_Op_Plus
1506 Resolve_Intrinsic_Unary_Operator (N, Typ);
1508 when others =>
1509 Resolve (N, Typ);
1510 end case;
1511 else
1512 Resolve (N, Typ);
1513 end if;
1515 -- If in ASIS_Mode, propagate operand types to original actuals of
1516 -- function call, which would otherwise not be fully resolved. If
1517 -- the call has already been constant-folded, nothing to do. We
1518 -- relocate the operand nodes rather than copy them, to preserve
1519 -- original_node pointers, given that the operands themselves may
1520 -- have been rewritten. If the call was itself a rewriting of an
1521 -- operator node, nothing to do.
1523 if ASIS_Mode
1524 and then Nkind (N) in N_Op
1525 and then Nkind (Original_Node (N)) = N_Function_Call
1526 then
1527 declare
1528 L : Node_Id;
1529 R : constant Node_Id := Right_Opnd (N);
1531 Old_First : constant Node_Id :=
1532 First (Parameter_Associations (Original_Node (N)));
1533 Old_Sec : Node_Id;
1535 begin
1536 if Is_Binary then
1537 L := Left_Opnd (N);
1538 Old_Sec := Next (Old_First);
1540 -- If the original call has named associations, replace the
1541 -- explicit actual parameter in the association with the proper
1542 -- resolved operand.
1544 if Nkind (Old_First) = N_Parameter_Association then
1545 if Chars (Selector_Name (Old_First)) =
1546 Chars (First_Entity (Op_Id))
1547 then
1548 Rewrite (Explicit_Actual_Parameter (Old_First),
1549 Relocate_Node (L));
1550 else
1551 Rewrite (Explicit_Actual_Parameter (Old_First),
1552 Relocate_Node (R));
1553 end if;
1555 else
1556 Rewrite (Old_First, Relocate_Node (L));
1557 end if;
1559 if Nkind (Old_Sec) = N_Parameter_Association then
1560 if Chars (Selector_Name (Old_Sec)) =
1561 Chars (First_Entity (Op_Id))
1562 then
1563 Rewrite (Explicit_Actual_Parameter (Old_Sec),
1564 Relocate_Node (L));
1565 else
1566 Rewrite (Explicit_Actual_Parameter (Old_Sec),
1567 Relocate_Node (R));
1568 end if;
1570 else
1571 Rewrite (Old_Sec, Relocate_Node (R));
1572 end if;
1574 else
1575 if Nkind (Old_First) = N_Parameter_Association then
1576 Rewrite (Explicit_Actual_Parameter (Old_First),
1577 Relocate_Node (R));
1578 else
1579 Rewrite (Old_First, Relocate_Node (R));
1580 end if;
1581 end if;
1582 end;
1584 Set_Parent (Original_Node (N), Parent (N));
1585 end if;
1586 end Make_Call_Into_Operator;
1588 -------------------
1589 -- Operator_Kind --
1590 -------------------
1592 function Operator_Kind
1593 (Op_Name : Name_Id;
1594 Is_Binary : Boolean) return Node_Kind
1596 Kind : Node_Kind;
1598 begin
1599 -- Use CASE statement or array???
1601 if Is_Binary then
1602 if Op_Name = Name_Op_And then
1603 Kind := N_Op_And;
1604 elsif Op_Name = Name_Op_Or then
1605 Kind := N_Op_Or;
1606 elsif Op_Name = Name_Op_Xor then
1607 Kind := N_Op_Xor;
1608 elsif Op_Name = Name_Op_Eq then
1609 Kind := N_Op_Eq;
1610 elsif Op_Name = Name_Op_Ne then
1611 Kind := N_Op_Ne;
1612 elsif Op_Name = Name_Op_Lt then
1613 Kind := N_Op_Lt;
1614 elsif Op_Name = Name_Op_Le then
1615 Kind := N_Op_Le;
1616 elsif Op_Name = Name_Op_Gt then
1617 Kind := N_Op_Gt;
1618 elsif Op_Name = Name_Op_Ge then
1619 Kind := N_Op_Ge;
1620 elsif Op_Name = Name_Op_Add then
1621 Kind := N_Op_Add;
1622 elsif Op_Name = Name_Op_Subtract then
1623 Kind := N_Op_Subtract;
1624 elsif Op_Name = Name_Op_Concat then
1625 Kind := N_Op_Concat;
1626 elsif Op_Name = Name_Op_Multiply then
1627 Kind := N_Op_Multiply;
1628 elsif Op_Name = Name_Op_Divide then
1629 Kind := N_Op_Divide;
1630 elsif Op_Name = Name_Op_Mod then
1631 Kind := N_Op_Mod;
1632 elsif Op_Name = Name_Op_Rem then
1633 Kind := N_Op_Rem;
1634 elsif Op_Name = Name_Op_Expon then
1635 Kind := N_Op_Expon;
1636 else
1637 raise Program_Error;
1638 end if;
1640 -- Unary operators
1642 else
1643 if Op_Name = Name_Op_Add then
1644 Kind := N_Op_Plus;
1645 elsif Op_Name = Name_Op_Subtract then
1646 Kind := N_Op_Minus;
1647 elsif Op_Name = Name_Op_Abs then
1648 Kind := N_Op_Abs;
1649 elsif Op_Name = Name_Op_Not then
1650 Kind := N_Op_Not;
1651 else
1652 raise Program_Error;
1653 end if;
1654 end if;
1656 return Kind;
1657 end Operator_Kind;
1659 ----------------------------
1660 -- Preanalyze_And_Resolve --
1661 ----------------------------
1663 procedure Preanalyze_And_Resolve (N : Node_Id; T : Entity_Id) is
1664 Save_Full_Analysis : constant Boolean := Full_Analysis;
1666 begin
1667 Full_Analysis := False;
1668 Expander_Mode_Save_And_Set (False);
1670 -- Normally, we suppress all checks for this preanalysis. There is no
1671 -- point in processing them now, since they will be applied properly
1672 -- and in the proper location when the default expressions reanalyzed
1673 -- and reexpanded later on. We will also have more information at that
1674 -- point for possible suppression of individual checks.
1676 -- However, in SPARK mode, most expansion is suppressed, and this
1677 -- later reanalysis and reexpansion may not occur. SPARK mode does
1678 -- require the setting of checking flags for proof purposes, so we
1679 -- do the SPARK preanalysis without suppressing checks.
1681 -- This special handling for SPARK mode is required for example in the
1682 -- case of Ada 2012 constructs such as quantified expressions, which are
1683 -- expanded in two separate steps.
1685 if GNATprove_Mode then
1686 Analyze_And_Resolve (N, T);
1687 else
1688 Analyze_And_Resolve (N, T, Suppress => All_Checks);
1689 end if;
1691 Expander_Mode_Restore;
1692 Full_Analysis := Save_Full_Analysis;
1693 end Preanalyze_And_Resolve;
1695 -- Version without context type
1697 procedure Preanalyze_And_Resolve (N : Node_Id) is
1698 Save_Full_Analysis : constant Boolean := Full_Analysis;
1700 begin
1701 Full_Analysis := False;
1702 Expander_Mode_Save_And_Set (False);
1704 Analyze (N);
1705 Resolve (N, Etype (N), Suppress => All_Checks);
1707 Expander_Mode_Restore;
1708 Full_Analysis := Save_Full_Analysis;
1709 end Preanalyze_And_Resolve;
1711 ----------------------------------
1712 -- Replace_Actual_Discriminants --
1713 ----------------------------------
1715 procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id) is
1716 Loc : constant Source_Ptr := Sloc (N);
1717 Tsk : Node_Id := Empty;
1719 function Process_Discr (Nod : Node_Id) return Traverse_Result;
1720 -- Comment needed???
1722 -------------------
1723 -- Process_Discr --
1724 -------------------
1726 function Process_Discr (Nod : Node_Id) return Traverse_Result is
1727 Ent : Entity_Id;
1729 begin
1730 if Nkind (Nod) = N_Identifier then
1731 Ent := Entity (Nod);
1733 if Present (Ent)
1734 and then Ekind (Ent) = E_Discriminant
1735 then
1736 Rewrite (Nod,
1737 Make_Selected_Component (Loc,
1738 Prefix => New_Copy_Tree (Tsk, New_Sloc => Loc),
1739 Selector_Name => Make_Identifier (Loc, Chars (Ent))));
1741 Set_Etype (Nod, Etype (Ent));
1742 end if;
1744 end if;
1746 return OK;
1747 end Process_Discr;
1749 procedure Replace_Discrs is new Traverse_Proc (Process_Discr);
1751 -- Start of processing for Replace_Actual_Discriminants
1753 begin
1754 if Expander_Active then
1755 null;
1757 -- Allow the replacement of concurrent discriminants in GNATprove even
1758 -- though this is a light expansion activity. Note that generic units
1759 -- are not modified.
1761 elsif GNATprove_Mode and not Inside_A_Generic then
1762 null;
1764 else
1765 return;
1766 end if;
1768 if Nkind (Name (N)) = N_Selected_Component then
1769 Tsk := Prefix (Name (N));
1771 elsif Nkind (Name (N)) = N_Indexed_Component then
1772 Tsk := Prefix (Prefix (Name (N)));
1773 end if;
1775 if Present (Tsk) then
1776 Replace_Discrs (Default);
1777 end if;
1778 end Replace_Actual_Discriminants;
1780 -------------
1781 -- Resolve --
1782 -------------
1784 procedure Resolve (N : Node_Id; Typ : Entity_Id) is
1785 Ambiguous : Boolean := False;
1786 Ctx_Type : Entity_Id := Typ;
1787 Expr_Type : Entity_Id := Empty; -- prevent junk warning
1788 Err_Type : Entity_Id := Empty;
1789 Found : Boolean := False;
1790 From_Lib : Boolean;
1791 I : Interp_Index;
1792 I1 : Interp_Index := 0; -- prevent junk warning
1793 It : Interp;
1794 It1 : Interp;
1795 Seen : Entity_Id := Empty; -- prevent junk warning
1797 function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean;
1798 -- Determine whether a node comes from a predefined library unit or
1799 -- Standard.
1801 procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id);
1802 -- Try and fix up a literal so that it matches its expected type. New
1803 -- literals are manufactured if necessary to avoid cascaded errors.
1805 procedure Report_Ambiguous_Argument;
1806 -- Additional diagnostics when an ambiguous call has an ambiguous
1807 -- argument (typically a controlling actual).
1809 procedure Resolution_Failed;
1810 -- Called when attempt at resolving current expression fails
1812 ------------------------------------
1813 -- Comes_From_Predefined_Lib_Unit --
1814 -------------------------------------
1816 function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean is
1817 begin
1818 return
1819 Sloc (Nod) = Standard_Location or else In_Predefined_Unit (Nod);
1820 end Comes_From_Predefined_Lib_Unit;
1822 --------------------
1823 -- Patch_Up_Value --
1824 --------------------
1826 procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id) is
1827 begin
1828 if Nkind (N) = N_Integer_Literal and then Is_Real_Type (Typ) then
1829 Rewrite (N,
1830 Make_Real_Literal (Sloc (N),
1831 Realval => UR_From_Uint (Intval (N))));
1832 Set_Etype (N, Universal_Real);
1833 Set_Is_Static_Expression (N);
1835 elsif Nkind (N) = N_Real_Literal and then Is_Integer_Type (Typ) then
1836 Rewrite (N,
1837 Make_Integer_Literal (Sloc (N),
1838 Intval => UR_To_Uint (Realval (N))));
1839 Set_Etype (N, Universal_Integer);
1840 Set_Is_Static_Expression (N);
1842 elsif Nkind (N) = N_String_Literal
1843 and then Is_Character_Type (Typ)
1844 then
1845 Set_Character_Literal_Name (Char_Code (Character'Pos ('A')));
1846 Rewrite (N,
1847 Make_Character_Literal (Sloc (N),
1848 Chars => Name_Find,
1849 Char_Literal_Value =>
1850 UI_From_Int (Character'Pos ('A'))));
1851 Set_Etype (N, Any_Character);
1852 Set_Is_Static_Expression (N);
1854 elsif Nkind (N) /= N_String_Literal and then Is_String_Type (Typ) then
1855 Rewrite (N,
1856 Make_String_Literal (Sloc (N),
1857 Strval => End_String));
1859 elsif Nkind (N) = N_Range then
1860 Patch_Up_Value (Low_Bound (N), Typ);
1861 Patch_Up_Value (High_Bound (N), Typ);
1862 end if;
1863 end Patch_Up_Value;
1865 -------------------------------
1866 -- Report_Ambiguous_Argument --
1867 -------------------------------
1869 procedure Report_Ambiguous_Argument is
1870 Arg : constant Node_Id := First (Parameter_Associations (N));
1871 I : Interp_Index;
1872 It : Interp;
1874 begin
1875 if Nkind (Arg) = N_Function_Call
1876 and then Is_Entity_Name (Name (Arg))
1877 and then Is_Overloaded (Name (Arg))
1878 then
1879 Error_Msg_NE ("ambiguous call to&", Arg, Name (Arg));
1881 -- Could use comments on what is going on here???
1883 Get_First_Interp (Name (Arg), I, It);
1884 while Present (It.Nam) loop
1885 Error_Msg_Sloc := Sloc (It.Nam);
1887 if Nkind (Parent (It.Nam)) = N_Full_Type_Declaration then
1888 Error_Msg_N ("interpretation (inherited) #!", Arg);
1889 else
1890 Error_Msg_N ("interpretation #!", Arg);
1891 end if;
1893 Get_Next_Interp (I, It);
1894 end loop;
1895 end if;
1896 end Report_Ambiguous_Argument;
1898 -----------------------
1899 -- Resolution_Failed --
1900 -----------------------
1902 procedure Resolution_Failed is
1903 begin
1904 Patch_Up_Value (N, Typ);
1906 -- Set the type to the desired one to minimize cascaded errors. Note
1907 -- that this is an approximation and does not work in all cases.
1909 Set_Etype (N, Typ);
1911 Debug_A_Exit ("resolving ", N, " (done, resolution failed)");
1912 Set_Is_Overloaded (N, False);
1914 -- The caller will return without calling the expander, so we need
1915 -- to set the analyzed flag. Note that it is fine to set Analyzed
1916 -- to True even if we are in the middle of a shallow analysis,
1917 -- (see the spec of sem for more details) since this is an error
1918 -- situation anyway, and there is no point in repeating the
1919 -- analysis later (indeed it won't work to repeat it later, since
1920 -- we haven't got a clear resolution of which entity is being
1921 -- referenced.)
1923 Set_Analyzed (N, True);
1924 return;
1925 end Resolution_Failed;
1927 -- Start of processing for Resolve
1929 begin
1930 if N = Error then
1931 return;
1932 end if;
1934 -- Access attribute on remote subprogram cannot be used for a non-remote
1935 -- access-to-subprogram type.
1937 if Nkind (N) = N_Attribute_Reference
1938 and then Nam_In (Attribute_Name (N), Name_Access,
1939 Name_Unrestricted_Access,
1940 Name_Unchecked_Access)
1941 and then Comes_From_Source (N)
1942 and then Is_Entity_Name (Prefix (N))
1943 and then Is_Subprogram (Entity (Prefix (N)))
1944 and then Is_Remote_Call_Interface (Entity (Prefix (N)))
1945 and then not Is_Remote_Access_To_Subprogram_Type (Typ)
1946 then
1947 Error_Msg_N
1948 ("prefix must statically denote a non-remote subprogram", N);
1949 end if;
1951 From_Lib := Comes_From_Predefined_Lib_Unit (N);
1953 -- If the context is a Remote_Access_To_Subprogram, access attributes
1954 -- must be resolved with the corresponding fat pointer. There is no need
1955 -- to check for the attribute name since the return type of an
1956 -- attribute is never a remote type.
1958 if Nkind (N) = N_Attribute_Reference
1959 and then Comes_From_Source (N)
1960 and then (Is_Remote_Call_Interface (Typ) or else Is_Remote_Types (Typ))
1961 then
1962 declare
1963 Attr : constant Attribute_Id :=
1964 Get_Attribute_Id (Attribute_Name (N));
1965 Pref : constant Node_Id := Prefix (N);
1966 Decl : Node_Id;
1967 Spec : Node_Id;
1968 Is_Remote : Boolean := True;
1970 begin
1971 -- Check that Typ is a remote access-to-subprogram type
1973 if Is_Remote_Access_To_Subprogram_Type (Typ) then
1975 -- Prefix (N) must statically denote a remote subprogram
1976 -- declared in a package specification.
1978 if Attr = Attribute_Access or else
1979 Attr = Attribute_Unchecked_Access or else
1980 Attr = Attribute_Unrestricted_Access
1981 then
1982 Decl := Unit_Declaration_Node (Entity (Pref));
1984 if Nkind (Decl) = N_Subprogram_Body then
1985 Spec := Corresponding_Spec (Decl);
1987 if Present (Spec) then
1988 Decl := Unit_Declaration_Node (Spec);
1989 end if;
1990 end if;
1992 Spec := Parent (Decl);
1994 if not Is_Entity_Name (Prefix (N))
1995 or else Nkind (Spec) /= N_Package_Specification
1996 or else
1997 not Is_Remote_Call_Interface (Defining_Entity (Spec))
1998 then
1999 Is_Remote := False;
2000 Error_Msg_N
2001 ("prefix must statically denote a remote subprogram ",
2003 end if;
2005 -- If we are generating code in distributed mode, perform
2006 -- semantic checks against corresponding remote entities.
2008 if Expander_Active
2009 and then Get_PCS_Name /= Name_No_DSA
2010 then
2011 Check_Subtype_Conformant
2012 (New_Id => Entity (Prefix (N)),
2013 Old_Id => Designated_Type
2014 (Corresponding_Remote_Type (Typ)),
2015 Err_Loc => N);
2017 if Is_Remote then
2018 Process_Remote_AST_Attribute (N, Typ);
2019 end if;
2020 end if;
2021 end if;
2022 end if;
2023 end;
2024 end if;
2026 Debug_A_Entry ("resolving ", N);
2028 if Debug_Flag_V then
2029 Write_Overloads (N);
2030 end if;
2032 if Comes_From_Source (N) then
2033 if Is_Fixed_Point_Type (Typ) then
2034 Check_Restriction (No_Fixed_Point, N);
2036 elsif Is_Floating_Point_Type (Typ)
2037 and then Typ /= Universal_Real
2038 and then Typ /= Any_Real
2039 then
2040 Check_Restriction (No_Floating_Point, N);
2041 end if;
2042 end if;
2044 -- Return if already analyzed
2046 if Analyzed (N) then
2047 Debug_A_Exit ("resolving ", N, " (done, already analyzed)");
2048 Analyze_Dimension (N);
2049 return;
2051 -- Any case of Any_Type as the Etype value means that we had a
2052 -- previous error.
2054 elsif Etype (N) = Any_Type then
2055 Debug_A_Exit ("resolving ", N, " (done, Etype = Any_Type)");
2056 return;
2057 end if;
2059 Check_Parameterless_Call (N);
2061 -- The resolution of an Expression_With_Actions is determined by
2062 -- its Expression.
2064 if Nkind (N) = N_Expression_With_Actions then
2065 Resolve (Expression (N), Typ);
2067 Found := True;
2068 Expr_Type := Etype (Expression (N));
2070 -- If not overloaded, then we know the type, and all that needs doing
2071 -- is to check that this type is compatible with the context.
2073 elsif not Is_Overloaded (N) then
2074 Found := Covers (Typ, Etype (N));
2075 Expr_Type := Etype (N);
2077 -- In the overloaded case, we must select the interpretation that
2078 -- is compatible with the context (i.e. the type passed to Resolve)
2080 else
2081 -- Loop through possible interpretations
2083 Get_First_Interp (N, I, It);
2084 Interp_Loop : while Present (It.Typ) loop
2085 if Debug_Flag_V then
2086 Write_Str ("Interp: ");
2087 Write_Interp (It);
2088 end if;
2090 -- We are only interested in interpretations that are compatible
2091 -- with the expected type, any other interpretations are ignored.
2093 if not Covers (Typ, It.Typ) then
2094 if Debug_Flag_V then
2095 Write_Str (" interpretation incompatible with context");
2096 Write_Eol;
2097 end if;
2099 else
2100 -- Skip the current interpretation if it is disabled by an
2101 -- abstract operator. This action is performed only when the
2102 -- type against which we are resolving is the same as the
2103 -- type of the interpretation.
2105 if Ada_Version >= Ada_2005
2106 and then It.Typ = Typ
2107 and then Typ /= Universal_Integer
2108 and then Typ /= Universal_Real
2109 and then Present (It.Abstract_Op)
2110 then
2111 if Debug_Flag_V then
2112 Write_Line ("Skip.");
2113 end if;
2115 goto Continue;
2116 end if;
2118 -- First matching interpretation
2120 if not Found then
2121 Found := True;
2122 I1 := I;
2123 Seen := It.Nam;
2124 Expr_Type := It.Typ;
2126 -- Matching interpretation that is not the first, maybe an
2127 -- error, but there are some cases where preference rules are
2128 -- used to choose between the two possibilities. These and
2129 -- some more obscure cases are handled in Disambiguate.
2131 else
2132 -- If the current statement is part of a predefined library
2133 -- unit, then all interpretations which come from user level
2134 -- packages should not be considered. Check previous and
2135 -- current one.
2137 if From_Lib then
2138 if not Comes_From_Predefined_Lib_Unit (It.Nam) then
2139 goto Continue;
2141 elsif not Comes_From_Predefined_Lib_Unit (Seen) then
2143 -- Previous interpretation must be discarded
2145 I1 := I;
2146 Seen := It.Nam;
2147 Expr_Type := It.Typ;
2148 Set_Entity (N, Seen);
2149 goto Continue;
2150 end if;
2151 end if;
2153 -- Otherwise apply further disambiguation steps
2155 Error_Msg_Sloc := Sloc (Seen);
2156 It1 := Disambiguate (N, I1, I, Typ);
2158 -- Disambiguation has succeeded. Skip the remaining
2159 -- interpretations.
2161 if It1 /= No_Interp then
2162 Seen := It1.Nam;
2163 Expr_Type := It1.Typ;
2165 while Present (It.Typ) loop
2166 Get_Next_Interp (I, It);
2167 end loop;
2169 else
2170 -- Before we issue an ambiguity complaint, check for the
2171 -- case of a subprogram call where at least one of the
2172 -- arguments is Any_Type, and if so suppress the message,
2173 -- since it is a cascaded error. This can also happen for
2174 -- a generalized indexing operation.
2176 if Nkind (N) in N_Subprogram_Call
2177 or else (Nkind (N) = N_Indexed_Component
2178 and then Present (Generalized_Indexing (N)))
2179 then
2180 declare
2181 A : Node_Id;
2182 E : Node_Id;
2184 begin
2185 if Nkind (N) = N_Indexed_Component then
2186 Rewrite (N, Generalized_Indexing (N));
2187 end if;
2189 A := First_Actual (N);
2190 while Present (A) loop
2191 E := A;
2193 if Nkind (E) = N_Parameter_Association then
2194 E := Explicit_Actual_Parameter (E);
2195 end if;
2197 if Etype (E) = Any_Type then
2198 if Debug_Flag_V then
2199 Write_Str ("Any_Type in call");
2200 Write_Eol;
2201 end if;
2203 exit Interp_Loop;
2204 end if;
2206 Next_Actual (A);
2207 end loop;
2208 end;
2210 elsif Nkind (N) in N_Binary_Op
2211 and then (Etype (Left_Opnd (N)) = Any_Type
2212 or else Etype (Right_Opnd (N)) = Any_Type)
2213 then
2214 exit Interp_Loop;
2216 elsif Nkind (N) in N_Unary_Op
2217 and then Etype (Right_Opnd (N)) = Any_Type
2218 then
2219 exit Interp_Loop;
2220 end if;
2222 -- Not that special case, so issue message using the flag
2223 -- Ambiguous to control printing of the header message
2224 -- only at the start of an ambiguous set.
2226 if not Ambiguous then
2227 if Nkind (N) = N_Function_Call
2228 and then Nkind (Name (N)) = N_Explicit_Dereference
2229 then
2230 Error_Msg_N
2231 ("ambiguous expression (cannot resolve indirect "
2232 & "call)!", N);
2233 else
2234 Error_Msg_NE -- CODEFIX
2235 ("ambiguous expression (cannot resolve&)!",
2236 N, It.Nam);
2237 end if;
2239 Ambiguous := True;
2241 if Nkind (Parent (Seen)) = N_Full_Type_Declaration then
2242 Error_Msg_N
2243 ("\\possible interpretation (inherited)#!", N);
2244 else
2245 Error_Msg_N -- CODEFIX
2246 ("\\possible interpretation#!", N);
2247 end if;
2249 if Nkind (N) in N_Subprogram_Call
2250 and then Present (Parameter_Associations (N))
2251 then
2252 Report_Ambiguous_Argument;
2253 end if;
2254 end if;
2256 Error_Msg_Sloc := Sloc (It.Nam);
2258 -- By default, the error message refers to the candidate
2259 -- interpretation. But if it is a predefined operator, it
2260 -- is implicitly declared at the declaration of the type
2261 -- of the operand. Recover the sloc of that declaration
2262 -- for the error message.
2264 if Nkind (N) in N_Op
2265 and then Scope (It.Nam) = Standard_Standard
2266 and then not Is_Overloaded (Right_Opnd (N))
2267 and then Scope (Base_Type (Etype (Right_Opnd (N)))) /=
2268 Standard_Standard
2269 then
2270 Err_Type := First_Subtype (Etype (Right_Opnd (N)));
2272 if Comes_From_Source (Err_Type)
2273 and then Present (Parent (Err_Type))
2274 then
2275 Error_Msg_Sloc := Sloc (Parent (Err_Type));
2276 end if;
2278 elsif Nkind (N) in N_Binary_Op
2279 and then Scope (It.Nam) = Standard_Standard
2280 and then not Is_Overloaded (Left_Opnd (N))
2281 and then Scope (Base_Type (Etype (Left_Opnd (N)))) /=
2282 Standard_Standard
2283 then
2284 Err_Type := First_Subtype (Etype (Left_Opnd (N)));
2286 if Comes_From_Source (Err_Type)
2287 and then Present (Parent (Err_Type))
2288 then
2289 Error_Msg_Sloc := Sloc (Parent (Err_Type));
2290 end if;
2292 -- If this is an indirect call, use the subprogram_type
2293 -- in the message, to have a meaningful location. Also
2294 -- indicate if this is an inherited operation, created
2295 -- by a type declaration.
2297 elsif Nkind (N) = N_Function_Call
2298 and then Nkind (Name (N)) = N_Explicit_Dereference
2299 and then Is_Type (It.Nam)
2300 then
2301 Err_Type := It.Nam;
2302 Error_Msg_Sloc :=
2303 Sloc (Associated_Node_For_Itype (Err_Type));
2304 else
2305 Err_Type := Empty;
2306 end if;
2308 if Nkind (N) in N_Op
2309 and then Scope (It.Nam) = Standard_Standard
2310 and then Present (Err_Type)
2311 then
2312 -- Special-case the message for universal_fixed
2313 -- operators, which are not declared with the type
2314 -- of the operand, but appear forever in Standard.
2316 if It.Typ = Universal_Fixed
2317 and then Scope (It.Nam) = Standard_Standard
2318 then
2319 Error_Msg_N
2320 ("\\possible interpretation as universal_fixed "
2321 & "operation (RM 4.5.5 (19))", N);
2322 else
2323 Error_Msg_N
2324 ("\\possible interpretation (predefined)#!", N);
2325 end if;
2327 elsif
2328 Nkind (Parent (It.Nam)) = N_Full_Type_Declaration
2329 then
2330 Error_Msg_N
2331 ("\\possible interpretation (inherited)#!", N);
2332 else
2333 Error_Msg_N -- CODEFIX
2334 ("\\possible interpretation#!", N);
2335 end if;
2337 end if;
2338 end if;
2340 -- We have a matching interpretation, Expr_Type is the type
2341 -- from this interpretation, and Seen is the entity.
2343 -- For an operator, just set the entity name. The type will be
2344 -- set by the specific operator resolution routine.
2346 if Nkind (N) in N_Op then
2347 Set_Entity (N, Seen);
2348 Generate_Reference (Seen, N);
2350 elsif Nkind_In (N, N_Case_Expression,
2351 N_Character_Literal,
2352 N_Delta_Aggregate,
2353 N_If_Expression)
2354 then
2355 Set_Etype (N, Expr_Type);
2357 -- AI05-0139-2: Expression is overloaded because type has
2358 -- implicit dereference. If type matches context, no implicit
2359 -- dereference is involved. If the expression is an entity,
2360 -- generate a reference to it, as this is not done for an
2361 -- overloaded construct during analysis.
2363 elsif Has_Implicit_Dereference (Expr_Type) then
2364 Set_Etype (N, Expr_Type);
2365 Set_Is_Overloaded (N, False);
2367 if Is_Entity_Name (N) then
2368 Generate_Reference (Entity (N), N);
2369 end if;
2371 exit Interp_Loop;
2373 elsif Is_Overloaded (N)
2374 and then Present (It.Nam)
2375 and then Ekind (It.Nam) = E_Discriminant
2376 and then Has_Implicit_Dereference (It.Nam)
2377 then
2378 -- If the node is a general indexing, the dereference is
2379 -- is inserted when resolving the rewritten form, else
2380 -- insert it now.
2382 if Nkind (N) /= N_Indexed_Component
2383 or else No (Generalized_Indexing (N))
2384 then
2385 Build_Explicit_Dereference (N, It.Nam);
2386 end if;
2388 -- For an explicit dereference, attribute reference, range,
2389 -- short-circuit form (which is not an operator node), or call
2390 -- with a name that is an explicit dereference, there is
2391 -- nothing to be done at this point.
2393 elsif Nkind_In (N, N_Attribute_Reference,
2394 N_And_Then,
2395 N_Explicit_Dereference,
2396 N_Identifier,
2397 N_Indexed_Component,
2398 N_Or_Else,
2399 N_Range,
2400 N_Selected_Component,
2401 N_Slice)
2402 or else Nkind (Name (N)) = N_Explicit_Dereference
2403 then
2404 null;
2406 -- For procedure or function calls, set the type of the name,
2407 -- and also the entity pointer for the prefix.
2409 elsif Nkind (N) in N_Subprogram_Call
2410 and then Is_Entity_Name (Name (N))
2411 then
2412 Set_Etype (Name (N), Expr_Type);
2413 Set_Entity (Name (N), Seen);
2414 Generate_Reference (Seen, Name (N));
2416 elsif Nkind (N) = N_Function_Call
2417 and then Nkind (Name (N)) = N_Selected_Component
2418 then
2419 Set_Etype (Name (N), Expr_Type);
2420 Set_Entity (Selector_Name (Name (N)), Seen);
2421 Generate_Reference (Seen, Selector_Name (Name (N)));
2423 -- For all other cases, just set the type of the Name
2425 else
2426 Set_Etype (Name (N), Expr_Type);
2427 end if;
2429 end if;
2431 <<Continue>>
2433 -- Move to next interpretation
2435 exit Interp_Loop when No (It.Typ);
2437 Get_Next_Interp (I, It);
2438 end loop Interp_Loop;
2439 end if;
2441 -- At this stage Found indicates whether or not an acceptable
2442 -- interpretation exists. If not, then we have an error, except that if
2443 -- the context is Any_Type as a result of some other error, then we
2444 -- suppress the error report.
2446 if not Found then
2447 if Typ /= Any_Type then
2449 -- If type we are looking for is Void, then this is the procedure
2450 -- call case, and the error is simply that what we gave is not a
2451 -- procedure name (we think of procedure calls as expressions with
2452 -- types internally, but the user doesn't think of them this way).
2454 if Typ = Standard_Void_Type then
2456 -- Special case message if function used as a procedure
2458 if Nkind (N) = N_Procedure_Call_Statement
2459 and then Is_Entity_Name (Name (N))
2460 and then Ekind (Entity (Name (N))) = E_Function
2461 then
2462 Error_Msg_NE
2463 ("cannot use call to function & as a statement",
2464 Name (N), Entity (Name (N)));
2465 Error_Msg_N
2466 ("\return value of a function call cannot be ignored",
2467 Name (N));
2469 -- Otherwise give general message (not clear what cases this
2470 -- covers, but no harm in providing for them).
2472 else
2473 Error_Msg_N ("expect procedure name in procedure call", N);
2474 end if;
2476 Found := True;
2478 -- Otherwise we do have a subexpression with the wrong type
2480 -- Check for the case of an allocator which uses an access type
2481 -- instead of the designated type. This is a common error and we
2482 -- specialize the message, posting an error on the operand of the
2483 -- allocator, complaining that we expected the designated type of
2484 -- the allocator.
2486 elsif Nkind (N) = N_Allocator
2487 and then Is_Access_Type (Typ)
2488 and then Is_Access_Type (Etype (N))
2489 and then Designated_Type (Etype (N)) = Typ
2490 then
2491 Wrong_Type (Expression (N), Designated_Type (Typ));
2492 Found := True;
2494 -- Check for view mismatch on Null in instances, for which the
2495 -- view-swapping mechanism has no identifier.
2497 elsif (In_Instance or else In_Inlined_Body)
2498 and then (Nkind (N) = N_Null)
2499 and then Is_Private_Type (Typ)
2500 and then Is_Access_Type (Full_View (Typ))
2501 then
2502 Resolve (N, Full_View (Typ));
2503 Set_Etype (N, Typ);
2504 return;
2506 -- Check for an aggregate. Sometimes we can get bogus aggregates
2507 -- from misuse of parentheses, and we are about to complain about
2508 -- the aggregate without even looking inside it.
2510 -- Instead, if we have an aggregate of type Any_Composite, then
2511 -- analyze and resolve the component fields, and then only issue
2512 -- another message if we get no errors doing this (otherwise
2513 -- assume that the errors in the aggregate caused the problem).
2515 elsif Nkind (N) = N_Aggregate
2516 and then Etype (N) = Any_Composite
2517 then
2518 -- Disable expansion in any case. If there is a type mismatch
2519 -- it may be fatal to try to expand the aggregate. The flag
2520 -- would otherwise be set to false when the error is posted.
2522 Expander_Active := False;
2524 declare
2525 procedure Check_Aggr (Aggr : Node_Id);
2526 -- Check one aggregate, and set Found to True if we have a
2527 -- definite error in any of its elements
2529 procedure Check_Elmt (Aelmt : Node_Id);
2530 -- Check one element of aggregate and set Found to True if
2531 -- we definitely have an error in the element.
2533 ----------------
2534 -- Check_Aggr --
2535 ----------------
2537 procedure Check_Aggr (Aggr : Node_Id) is
2538 Elmt : Node_Id;
2540 begin
2541 if Present (Expressions (Aggr)) then
2542 Elmt := First (Expressions (Aggr));
2543 while Present (Elmt) loop
2544 Check_Elmt (Elmt);
2545 Next (Elmt);
2546 end loop;
2547 end if;
2549 if Present (Component_Associations (Aggr)) then
2550 Elmt := First (Component_Associations (Aggr));
2551 while Present (Elmt) loop
2553 -- If this is a default-initialized component, then
2554 -- there is nothing to check. The box will be
2555 -- replaced by the appropriate call during late
2556 -- expansion.
2558 if Nkind (Elmt) /= N_Iterated_Component_Association
2559 and then not Box_Present (Elmt)
2560 then
2561 Check_Elmt (Expression (Elmt));
2562 end if;
2564 Next (Elmt);
2565 end loop;
2566 end if;
2567 end Check_Aggr;
2569 ----------------
2570 -- Check_Elmt --
2571 ----------------
2573 procedure Check_Elmt (Aelmt : Node_Id) is
2574 begin
2575 -- If we have a nested aggregate, go inside it (to
2576 -- attempt a naked analyze-resolve of the aggregate can
2577 -- cause undesirable cascaded errors). Do not resolve
2578 -- expression if it needs a type from context, as for
2579 -- integer * fixed expression.
2581 if Nkind (Aelmt) = N_Aggregate then
2582 Check_Aggr (Aelmt);
2584 else
2585 Analyze (Aelmt);
2587 if not Is_Overloaded (Aelmt)
2588 and then Etype (Aelmt) /= Any_Fixed
2589 then
2590 Resolve (Aelmt);
2591 end if;
2593 if Etype (Aelmt) = Any_Type then
2594 Found := True;
2595 end if;
2596 end if;
2597 end Check_Elmt;
2599 begin
2600 Check_Aggr (N);
2601 end;
2602 end if;
2604 -- Looks like we have a type error, but check for special case
2605 -- of Address wanted, integer found, with the configuration pragma
2606 -- Allow_Integer_Address active. If we have this case, introduce
2607 -- an unchecked conversion to allow the integer expression to be
2608 -- treated as an Address. The reverse case of integer wanted,
2609 -- Address found, is treated in an analogous manner.
2611 if Address_Integer_Convert_OK (Typ, Etype (N)) then
2612 Rewrite (N, Unchecked_Convert_To (Typ, Relocate_Node (N)));
2613 Analyze_And_Resolve (N, Typ);
2614 return;
2616 -- Under relaxed RM semantics silently replace occurrences of null
2617 -- by System.Address_Null.
2619 elsif Null_To_Null_Address_Convert_OK (N, Typ) then
2620 Replace_Null_By_Null_Address (N);
2621 Analyze_And_Resolve (N, Typ);
2622 return;
2623 end if;
2625 -- That special Allow_Integer_Address check did not apply, so we
2626 -- have a real type error. If an error message was issued already,
2627 -- Found got reset to True, so if it's still False, issue standard
2628 -- Wrong_Type message.
2630 if not Found then
2631 if Is_Overloaded (N) and then Nkind (N) = N_Function_Call then
2632 declare
2633 Subp_Name : Node_Id;
2635 begin
2636 if Is_Entity_Name (Name (N)) then
2637 Subp_Name := Name (N);
2639 elsif Nkind (Name (N)) = N_Selected_Component then
2641 -- Protected operation: retrieve operation name
2643 Subp_Name := Selector_Name (Name (N));
2645 else
2646 raise Program_Error;
2647 end if;
2649 Error_Msg_Node_2 := Typ;
2650 Error_Msg_NE
2651 ("no visible interpretation of& matches expected type&",
2652 N, Subp_Name);
2653 end;
2655 if All_Errors_Mode then
2656 declare
2657 Index : Interp_Index;
2658 It : Interp;
2660 begin
2661 Error_Msg_N ("\\possible interpretations:", N);
2663 Get_First_Interp (Name (N), Index, It);
2664 while Present (It.Nam) loop
2665 Error_Msg_Sloc := Sloc (It.Nam);
2666 Error_Msg_Node_2 := It.Nam;
2667 Error_Msg_NE
2668 ("\\ type& for & declared#", N, It.Typ);
2669 Get_Next_Interp (Index, It);
2670 end loop;
2671 end;
2673 else
2674 Error_Msg_N ("\use -gnatf for details", N);
2675 end if;
2677 else
2678 Wrong_Type (N, Typ);
2679 end if;
2680 end if;
2681 end if;
2683 Resolution_Failed;
2684 return;
2686 -- Test if we have more than one interpretation for the context
2688 elsif Ambiguous then
2689 Resolution_Failed;
2690 return;
2692 -- Only one intepretation
2694 else
2695 -- In Ada 2005, if we have something like "X : T := 2 + 2;", where
2696 -- the "+" on T is abstract, and the operands are of universal type,
2697 -- the above code will have (incorrectly) resolved the "+" to the
2698 -- universal one in Standard. Therefore check for this case and give
2699 -- an error. We can't do this earlier, because it would cause legal
2700 -- cases to get errors (when some other type has an abstract "+").
2702 if Ada_Version >= Ada_2005
2703 and then Nkind (N) in N_Op
2704 and then Is_Overloaded (N)
2705 and then Is_Universal_Numeric_Type (Etype (Entity (N)))
2706 then
2707 Get_First_Interp (N, I, It);
2708 while Present (It.Typ) loop
2709 if Present (It.Abstract_Op) and then
2710 Etype (It.Abstract_Op) = Typ
2711 then
2712 Error_Msg_NE
2713 ("cannot call abstract subprogram &!", N, It.Abstract_Op);
2714 return;
2715 end if;
2717 Get_Next_Interp (I, It);
2718 end loop;
2719 end if;
2721 -- Here we have an acceptable interpretation for the context
2723 -- Propagate type information and normalize tree for various
2724 -- predefined operations. If the context only imposes a class of
2725 -- types, rather than a specific type, propagate the actual type
2726 -- downward.
2728 if Typ = Any_Integer or else
2729 Typ = Any_Boolean or else
2730 Typ = Any_Modular or else
2731 Typ = Any_Real or else
2732 Typ = Any_Discrete
2733 then
2734 Ctx_Type := Expr_Type;
2736 -- Any_Fixed is legal in a real context only if a specific fixed-
2737 -- point type is imposed. If Norman Cohen can be confused by this,
2738 -- it deserves a separate message.
2740 if Typ = Any_Real
2741 and then Expr_Type = Any_Fixed
2742 then
2743 Error_Msg_N ("illegal context for mixed mode operation", N);
2744 Set_Etype (N, Universal_Real);
2745 Ctx_Type := Universal_Real;
2746 end if;
2747 end if;
2749 -- A user-defined operator is transformed into a function call at
2750 -- this point, so that further processing knows that operators are
2751 -- really operators (i.e. are predefined operators). User-defined
2752 -- operators that are intrinsic are just renamings of the predefined
2753 -- ones, and need not be turned into calls either, but if they rename
2754 -- a different operator, we must transform the node accordingly.
2755 -- Instantiations of Unchecked_Conversion are intrinsic but are
2756 -- treated as functions, even if given an operator designator.
2758 if Nkind (N) in N_Op
2759 and then Present (Entity (N))
2760 and then Ekind (Entity (N)) /= E_Operator
2761 then
2762 if not Is_Predefined_Op (Entity (N)) then
2763 Rewrite_Operator_As_Call (N, Entity (N));
2765 elsif Present (Alias (Entity (N)))
2766 and then
2767 Nkind (Parent (Parent (Entity (N)))) =
2768 N_Subprogram_Renaming_Declaration
2769 then
2770 Rewrite_Renamed_Operator (N, Alias (Entity (N)), Typ);
2772 -- If the node is rewritten, it will be fully resolved in
2773 -- Rewrite_Renamed_Operator.
2775 if Analyzed (N) then
2776 return;
2777 end if;
2778 end if;
2779 end if;
2781 case N_Subexpr'(Nkind (N)) is
2782 when N_Aggregate =>
2783 Resolve_Aggregate (N, Ctx_Type);
2785 when N_Allocator =>
2786 Resolve_Allocator (N, Ctx_Type);
2788 when N_Short_Circuit =>
2789 Resolve_Short_Circuit (N, Ctx_Type);
2791 when N_Attribute_Reference =>
2792 Resolve_Attribute (N, Ctx_Type);
2794 when N_Case_Expression =>
2795 Resolve_Case_Expression (N, Ctx_Type);
2797 when N_Character_Literal =>
2798 Resolve_Character_Literal (N, Ctx_Type);
2800 when N_Delta_Aggregate =>
2801 Resolve_Delta_Aggregate (N, Ctx_Type);
2803 when N_Expanded_Name =>
2804 Resolve_Entity_Name (N, Ctx_Type);
2806 when N_Explicit_Dereference =>
2807 Resolve_Explicit_Dereference (N, Ctx_Type);
2809 when N_Expression_With_Actions =>
2810 Resolve_Expression_With_Actions (N, Ctx_Type);
2812 when N_Extension_Aggregate =>
2813 Resolve_Extension_Aggregate (N, Ctx_Type);
2815 when N_Function_Call =>
2816 Resolve_Call (N, Ctx_Type);
2818 when N_Identifier =>
2819 Resolve_Entity_Name (N, Ctx_Type);
2821 when N_If_Expression =>
2822 Resolve_If_Expression (N, Ctx_Type);
2824 when N_Indexed_Component =>
2825 Resolve_Indexed_Component (N, Ctx_Type);
2827 when N_Integer_Literal =>
2828 Resolve_Integer_Literal (N, Ctx_Type);
2830 when N_Membership_Test =>
2831 Resolve_Membership_Op (N, Ctx_Type);
2833 when N_Null =>
2834 Resolve_Null (N, Ctx_Type);
2836 when N_Op_And
2837 | N_Op_Or
2838 | N_Op_Xor
2840 Resolve_Logical_Op (N, Ctx_Type);
2842 when N_Op_Eq
2843 | N_Op_Ne
2845 Resolve_Equality_Op (N, Ctx_Type);
2847 when N_Op_Ge
2848 | N_Op_Gt
2849 | N_Op_Le
2850 | N_Op_Lt
2852 Resolve_Comparison_Op (N, Ctx_Type);
2854 when N_Op_Not =>
2855 Resolve_Op_Not (N, Ctx_Type);
2857 when N_Op_Add
2858 | N_Op_Divide
2859 | N_Op_Mod
2860 | N_Op_Multiply
2861 | N_Op_Rem
2862 | N_Op_Subtract
2864 Resolve_Arithmetic_Op (N, Ctx_Type);
2866 when N_Op_Concat =>
2867 Resolve_Op_Concat (N, Ctx_Type);
2869 when N_Op_Expon =>
2870 Resolve_Op_Expon (N, Ctx_Type);
2872 when N_Op_Abs
2873 | N_Op_Minus
2874 | N_Op_Plus
2876 Resolve_Unary_Op (N, Ctx_Type);
2878 when N_Op_Shift =>
2879 Resolve_Shift (N, Ctx_Type);
2881 when N_Procedure_Call_Statement =>
2882 Resolve_Call (N, Ctx_Type);
2884 when N_Operator_Symbol =>
2885 Resolve_Operator_Symbol (N, Ctx_Type);
2887 when N_Qualified_Expression =>
2888 Resolve_Qualified_Expression (N, Ctx_Type);
2890 -- Why is the following null, needs a comment ???
2892 when N_Quantified_Expression =>
2893 null;
2895 when N_Raise_Expression =>
2896 Resolve_Raise_Expression (N, Ctx_Type);
2898 when N_Raise_xxx_Error =>
2899 Set_Etype (N, Ctx_Type);
2901 when N_Range =>
2902 Resolve_Range (N, Ctx_Type);
2904 when N_Real_Literal =>
2905 Resolve_Real_Literal (N, Ctx_Type);
2907 when N_Reference =>
2908 Resolve_Reference (N, Ctx_Type);
2910 when N_Selected_Component =>
2911 Resolve_Selected_Component (N, Ctx_Type);
2913 when N_Slice =>
2914 Resolve_Slice (N, Ctx_Type);
2916 when N_String_Literal =>
2917 Resolve_String_Literal (N, Ctx_Type);
2919 when N_Target_Name =>
2920 Resolve_Target_Name (N, Ctx_Type);
2922 when N_Type_Conversion =>
2923 Resolve_Type_Conversion (N, Ctx_Type);
2925 when N_Unchecked_Expression =>
2926 Resolve_Unchecked_Expression (N, Ctx_Type);
2928 when N_Unchecked_Type_Conversion =>
2929 Resolve_Unchecked_Type_Conversion (N, Ctx_Type);
2930 end case;
2932 -- Mark relevant use-type and use-package clauses as effective using
2933 -- the original node because constant folding may have occured and
2934 -- removed references that need to be examined.
2936 if Nkind (Original_Node (N)) in N_Op then
2937 Mark_Use_Clauses (Original_Node (N));
2938 end if;
2940 -- Ada 2012 (AI05-0149): Apply an (implicit) conversion to an
2941 -- expression of an anonymous access type that occurs in the context
2942 -- of a named general access type, except when the expression is that
2943 -- of a membership test. This ensures proper legality checking in
2944 -- terms of allowed conversions (expressions that would be illegal to
2945 -- convert implicitly are allowed in membership tests).
2947 if Ada_Version >= Ada_2012
2948 and then Ekind (Ctx_Type) = E_General_Access_Type
2949 and then Ekind (Etype (N)) = E_Anonymous_Access_Type
2950 and then Nkind (Parent (N)) not in N_Membership_Test
2951 then
2952 Rewrite (N, Convert_To (Ctx_Type, Relocate_Node (N)));
2953 Analyze_And_Resolve (N, Ctx_Type);
2954 end if;
2956 -- If the subexpression was replaced by a non-subexpression, then
2957 -- all we do is to expand it. The only legitimate case we know of
2958 -- is converting procedure call statement to entry call statements,
2959 -- but there may be others, so we are making this test general.
2961 if Nkind (N) not in N_Subexpr then
2962 Debug_A_Exit ("resolving ", N, " (done)");
2963 Expand (N);
2964 return;
2965 end if;
2967 -- The expression is definitely NOT overloaded at this point, so
2968 -- we reset the Is_Overloaded flag to avoid any confusion when
2969 -- reanalyzing the node.
2971 Set_Is_Overloaded (N, False);
2973 -- Freeze expression type, entity if it is a name, and designated
2974 -- type if it is an allocator (RM 13.14(10,11,13)).
2976 -- Now that the resolution of the type of the node is complete, and
2977 -- we did not detect an error, we can expand this node. We skip the
2978 -- expand call if we are in a default expression, see section
2979 -- "Handling of Default Expressions" in Sem spec.
2981 Debug_A_Exit ("resolving ", N, " (done)");
2983 -- We unconditionally freeze the expression, even if we are in
2984 -- default expression mode (the Freeze_Expression routine tests this
2985 -- flag and only freezes static types if it is set).
2987 -- Ada 2012 (AI05-177): The declaration of an expression function
2988 -- does not cause freezing, but we never reach here in that case.
2989 -- Here we are resolving the corresponding expanded body, so we do
2990 -- need to perform normal freezing.
2992 -- As elsewhere we do not emit freeze node within a generic. We make
2993 -- an exception for entities that are expressions, only to detect
2994 -- misuses of deferred constants and preserve the output of various
2995 -- tests.
2997 if not Inside_A_Generic or else Is_Entity_Name (N) then
2998 Freeze_Expression (N);
2999 end if;
3001 -- Now we can do the expansion
3003 Expand (N);
3004 end if;
3005 end Resolve;
3007 -------------
3008 -- Resolve --
3009 -------------
3011 -- Version with check(s) suppressed
3013 procedure Resolve (N : Node_Id; Typ : Entity_Id; Suppress : Check_Id) is
3014 begin
3015 if Suppress = All_Checks then
3016 declare
3017 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
3018 begin
3019 Scope_Suppress.Suppress := (others => True);
3020 Resolve (N, Typ);
3021 Scope_Suppress.Suppress := Sva;
3022 end;
3024 else
3025 declare
3026 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
3027 begin
3028 Scope_Suppress.Suppress (Suppress) := True;
3029 Resolve (N, Typ);
3030 Scope_Suppress.Suppress (Suppress) := Svg;
3031 end;
3032 end if;
3033 end Resolve;
3035 -------------
3036 -- Resolve --
3037 -------------
3039 -- Version with implicit type
3041 procedure Resolve (N : Node_Id) is
3042 begin
3043 Resolve (N, Etype (N));
3044 end Resolve;
3046 ---------------------
3047 -- Resolve_Actuals --
3048 ---------------------
3050 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id) is
3051 Loc : constant Source_Ptr := Sloc (N);
3052 A : Node_Id;
3053 A_Id : Entity_Id;
3054 A_Typ : Entity_Id := Empty; -- init to avoid warning
3055 F : Entity_Id;
3056 F_Typ : Entity_Id;
3057 Prev : Node_Id := Empty;
3058 Orig_A : Node_Id;
3059 Real_F : Entity_Id := Empty; -- init to avoid warning
3061 Real_Subp : Entity_Id;
3062 -- If the subprogram being called is an inherited operation for
3063 -- a formal derived type in an instance, Real_Subp is the subprogram
3064 -- that will be called. It may have different formal names than the
3065 -- operation of the formal in the generic, so after actual is resolved
3066 -- the name of the actual in a named association must carry the name
3067 -- of the actual of the subprogram being called.
3069 procedure Check_Aliased_Parameter;
3070 -- Check rules on aliased parameters and related accessibility rules
3071 -- in (RM 3.10.2 (10.2-10.4)).
3073 procedure Check_Argument_Order;
3074 -- Performs a check for the case where the actuals are all simple
3075 -- identifiers that correspond to the formal names, but in the wrong
3076 -- order, which is considered suspicious and cause for a warning.
3078 procedure Check_Prefixed_Call;
3079 -- If the original node is an overloaded call in prefix notation,
3080 -- insert an 'Access or a dereference as needed over the first actual.
3081 -- Try_Object_Operation has already verified that there is a valid
3082 -- interpretation, but the form of the actual can only be determined
3083 -- once the primitive operation is identified.
3085 procedure Flag_Effectively_Volatile_Objects (Expr : Node_Id);
3086 -- Emit an error concerning the illegal usage of an effectively volatile
3087 -- object in interfering context (SPARK RM 7.13(12)).
3089 procedure Insert_Default;
3090 -- If the actual is missing in a call, insert in the actuals list
3091 -- an instance of the default expression. The insertion is always
3092 -- a named association.
3094 function Same_Ancestor (T1, T2 : Entity_Id) return Boolean;
3095 -- Check whether T1 and T2, or their full views, are derived from a
3096 -- common type. Used to enforce the restrictions on array conversions
3097 -- of AI95-00246.
3099 function Static_Concatenation (N : Node_Id) return Boolean;
3100 -- Predicate to determine whether an actual that is a concatenation
3101 -- will be evaluated statically and does not need a transient scope.
3102 -- This must be determined before the actual is resolved and expanded
3103 -- because if needed the transient scope must be introduced earlier.
3105 -----------------------------
3106 -- Check_Aliased_Parameter --
3107 -----------------------------
3109 procedure Check_Aliased_Parameter is
3110 Nominal_Subt : Entity_Id;
3112 begin
3113 if Is_Aliased (F) then
3114 if Is_Tagged_Type (A_Typ) then
3115 null;
3117 elsif Is_Aliased_View (A) then
3118 if Is_Constr_Subt_For_U_Nominal (A_Typ) then
3119 Nominal_Subt := Base_Type (A_Typ);
3120 else
3121 Nominal_Subt := A_Typ;
3122 end if;
3124 if Subtypes_Statically_Match (F_Typ, Nominal_Subt) then
3125 null;
3127 -- In a generic body assume the worst for generic formals:
3128 -- they can have a constrained partial view (AI05-041).
3130 elsif Has_Discriminants (F_Typ)
3131 and then not Is_Constrained (F_Typ)
3132 and then not Has_Constrained_Partial_View (F_Typ)
3133 and then not Is_Generic_Type (F_Typ)
3134 then
3135 null;
3137 else
3138 Error_Msg_NE ("untagged actual does not match "
3139 & "aliased formal&", A, F);
3140 end if;
3142 else
3143 Error_Msg_NE ("actual for aliased formal& must be "
3144 & "aliased object", A, F);
3145 end if;
3147 if Ekind (Nam) = E_Procedure then
3148 null;
3150 elsif Ekind (Etype (Nam)) = E_Anonymous_Access_Type then
3151 if Nkind (Parent (N)) = N_Type_Conversion
3152 and then Type_Access_Level (Etype (Parent (N))) <
3153 Object_Access_Level (A)
3154 then
3155 Error_Msg_N ("aliased actual has wrong accessibility", A);
3156 end if;
3158 elsif Nkind (Parent (N)) = N_Qualified_Expression
3159 and then Nkind (Parent (Parent (N))) = N_Allocator
3160 and then Type_Access_Level (Etype (Parent (Parent (N)))) <
3161 Object_Access_Level (A)
3162 then
3163 Error_Msg_N
3164 ("aliased actual in allocator has wrong accessibility", A);
3165 end if;
3166 end if;
3167 end Check_Aliased_Parameter;
3169 --------------------------
3170 -- Check_Argument_Order --
3171 --------------------------
3173 procedure Check_Argument_Order is
3174 begin
3175 -- Nothing to do if no parameters, or original node is neither a
3176 -- function call nor a procedure call statement (happens in the
3177 -- operator-transformed-to-function call case), or the call does
3178 -- not come from source, or this warning is off.
3180 if not Warn_On_Parameter_Order
3181 or else No (Parameter_Associations (N))
3182 or else Nkind (Original_Node (N)) not in N_Subprogram_Call
3183 or else not Comes_From_Source (N)
3184 then
3185 return;
3186 end if;
3188 declare
3189 Nargs : constant Nat := List_Length (Parameter_Associations (N));
3191 begin
3192 -- Nothing to do if only one parameter
3194 if Nargs < 2 then
3195 return;
3196 end if;
3198 -- Here if at least two arguments
3200 declare
3201 Actuals : array (1 .. Nargs) of Node_Id;
3202 Actual : Node_Id;
3203 Formal : Node_Id;
3205 Wrong_Order : Boolean := False;
3206 -- Set True if an out of order case is found
3208 begin
3209 -- Collect identifier names of actuals, fail if any actual is
3210 -- not a simple identifier, and record max length of name.
3212 Actual := First (Parameter_Associations (N));
3213 for J in Actuals'Range loop
3214 if Nkind (Actual) /= N_Identifier then
3215 return;
3216 else
3217 Actuals (J) := Actual;
3218 Next (Actual);
3219 end if;
3220 end loop;
3222 -- If we got this far, all actuals are identifiers and the list
3223 -- of their names is stored in the Actuals array.
3225 Formal := First_Formal (Nam);
3226 for J in Actuals'Range loop
3228 -- If we ran out of formals, that's odd, probably an error
3229 -- which will be detected elsewhere, but abandon the search.
3231 if No (Formal) then
3232 return;
3233 end if;
3235 -- If name matches and is in order OK
3237 if Chars (Formal) = Chars (Actuals (J)) then
3238 null;
3240 else
3241 -- If no match, see if it is elsewhere in list and if so
3242 -- flag potential wrong order if type is compatible.
3244 for K in Actuals'Range loop
3245 if Chars (Formal) = Chars (Actuals (K))
3246 and then
3247 Has_Compatible_Type (Actuals (K), Etype (Formal))
3248 then
3249 Wrong_Order := True;
3250 goto Continue;
3251 end if;
3252 end loop;
3254 -- No match
3256 return;
3257 end if;
3259 <<Continue>> Next_Formal (Formal);
3260 end loop;
3262 -- If Formals left over, also probably an error, skip warning
3264 if Present (Formal) then
3265 return;
3266 end if;
3268 -- Here we give the warning if something was out of order
3270 if Wrong_Order then
3271 Error_Msg_N
3272 ("?P?actuals for this call may be in wrong order", N);
3273 end if;
3274 end;
3275 end;
3276 end Check_Argument_Order;
3278 -------------------------
3279 -- Check_Prefixed_Call --
3280 -------------------------
3282 procedure Check_Prefixed_Call is
3283 Act : constant Node_Id := First_Actual (N);
3284 A_Type : constant Entity_Id := Etype (Act);
3285 F_Type : constant Entity_Id := Etype (First_Formal (Nam));
3286 Orig : constant Node_Id := Original_Node (N);
3287 New_A : Node_Id;
3289 begin
3290 -- Check whether the call is a prefixed call, with or without
3291 -- additional actuals.
3293 if Nkind (Orig) = N_Selected_Component
3294 or else
3295 (Nkind (Orig) = N_Indexed_Component
3296 and then Nkind (Prefix (Orig)) = N_Selected_Component
3297 and then Is_Entity_Name (Prefix (Prefix (Orig)))
3298 and then Is_Entity_Name (Act)
3299 and then Chars (Act) = Chars (Prefix (Prefix (Orig))))
3300 then
3301 if Is_Access_Type (A_Type)
3302 and then not Is_Access_Type (F_Type)
3303 then
3304 -- Introduce dereference on object in prefix
3306 New_A :=
3307 Make_Explicit_Dereference (Sloc (Act),
3308 Prefix => Relocate_Node (Act));
3309 Rewrite (Act, New_A);
3310 Analyze (Act);
3312 elsif Is_Access_Type (F_Type)
3313 and then not Is_Access_Type (A_Type)
3314 then
3315 -- Introduce an implicit 'Access in prefix
3317 if not Is_Aliased_View (Act) then
3318 Error_Msg_NE
3319 ("object in prefixed call to& must be aliased "
3320 & "(RM 4.1.3 (13 1/2))",
3321 Prefix (Act), Nam);
3322 end if;
3324 Rewrite (Act,
3325 Make_Attribute_Reference (Loc,
3326 Attribute_Name => Name_Access,
3327 Prefix => Relocate_Node (Act)));
3328 end if;
3330 Analyze (Act);
3331 end if;
3332 end Check_Prefixed_Call;
3334 ---------------------------------------
3335 -- Flag_Effectively_Volatile_Objects --
3336 ---------------------------------------
3338 procedure Flag_Effectively_Volatile_Objects (Expr : Node_Id) is
3339 function Flag_Object (N : Node_Id) return Traverse_Result;
3340 -- Determine whether arbitrary node N denotes an effectively volatile
3341 -- object and if it does, emit an error.
3343 -----------------
3344 -- Flag_Object --
3345 -----------------
3347 function Flag_Object (N : Node_Id) return Traverse_Result is
3348 Id : Entity_Id;
3350 begin
3351 -- Do not consider nested function calls because they have already
3352 -- been processed during their own resolution.
3354 if Nkind (N) = N_Function_Call then
3355 return Skip;
3357 elsif Is_Entity_Name (N) and then Present (Entity (N)) then
3358 Id := Entity (N);
3360 if Is_Object (Id)
3361 and then Is_Effectively_Volatile (Id)
3362 and then (Async_Writers_Enabled (Id)
3363 or else Effective_Reads_Enabled (Id))
3364 then
3365 Error_Msg_N
3366 ("volatile object cannot appear in this context (SPARK "
3367 & "RM 7.1.3(11))", N);
3368 return Skip;
3369 end if;
3370 end if;
3372 return OK;
3373 end Flag_Object;
3375 procedure Flag_Objects is new Traverse_Proc (Flag_Object);
3377 -- Start of processing for Flag_Effectively_Volatile_Objects
3379 begin
3380 Flag_Objects (Expr);
3381 end Flag_Effectively_Volatile_Objects;
3383 --------------------
3384 -- Insert_Default --
3385 --------------------
3387 procedure Insert_Default is
3388 Actval : Node_Id;
3389 Assoc : Node_Id;
3391 begin
3392 -- Missing argument in call, nothing to insert
3394 if No (Default_Value (F)) then
3395 return;
3397 else
3398 -- Note that we do a full New_Copy_Tree, so that any associated
3399 -- Itypes are properly copied. This may not be needed any more,
3400 -- but it does no harm as a safety measure. Defaults of a generic
3401 -- formal may be out of bounds of the corresponding actual (see
3402 -- cc1311b) and an additional check may be required.
3404 Actval :=
3405 New_Copy_Tree
3406 (Default_Value (F),
3407 New_Scope => Current_Scope,
3408 New_Sloc => Loc);
3410 -- Propagate dimension information, if any.
3412 Copy_Dimensions (Default_Value (F), Actval);
3414 if Is_Concurrent_Type (Scope (Nam))
3415 and then Has_Discriminants (Scope (Nam))
3416 then
3417 Replace_Actual_Discriminants (N, Actval);
3418 end if;
3420 if Is_Overloadable (Nam)
3421 and then Present (Alias (Nam))
3422 then
3423 if Base_Type (Etype (F)) /= Base_Type (Etype (Actval))
3424 and then not Is_Tagged_Type (Etype (F))
3425 then
3426 -- If default is a real literal, do not introduce a
3427 -- conversion whose effect may depend on the run-time
3428 -- size of universal real.
3430 if Nkind (Actval) = N_Real_Literal then
3431 Set_Etype (Actval, Base_Type (Etype (F)));
3432 else
3433 Actval := Unchecked_Convert_To (Etype (F), Actval);
3434 end if;
3435 end if;
3437 if Is_Scalar_Type (Etype (F)) then
3438 Enable_Range_Check (Actval);
3439 end if;
3441 Set_Parent (Actval, N);
3443 -- Resolve aggregates with their base type, to avoid scope
3444 -- anomalies: the subtype was first built in the subprogram
3445 -- declaration, and the current call may be nested.
3447 if Nkind (Actval) = N_Aggregate then
3448 Analyze_And_Resolve (Actval, Etype (F));
3449 else
3450 Analyze_And_Resolve (Actval, Etype (Actval));
3451 end if;
3453 else
3454 Set_Parent (Actval, N);
3456 -- See note above concerning aggregates
3458 if Nkind (Actval) = N_Aggregate
3459 and then Has_Discriminants (Etype (Actval))
3460 then
3461 Analyze_And_Resolve (Actval, Base_Type (Etype (Actval)));
3463 -- Resolve entities with their own type, which may differ from
3464 -- the type of a reference in a generic context (the view
3465 -- swapping mechanism did not anticipate the re-analysis of
3466 -- default values in calls).
3468 elsif Is_Entity_Name (Actval) then
3469 Analyze_And_Resolve (Actval, Etype (Entity (Actval)));
3471 else
3472 Analyze_And_Resolve (Actval, Etype (Actval));
3473 end if;
3474 end if;
3476 -- If default is a tag indeterminate function call, propagate tag
3477 -- to obtain proper dispatching.
3479 if Is_Controlling_Formal (F)
3480 and then Nkind (Default_Value (F)) = N_Function_Call
3481 then
3482 Set_Is_Controlling_Actual (Actval);
3483 end if;
3484 end if;
3486 -- If the default expression raises constraint error, then just
3487 -- silently replace it with an N_Raise_Constraint_Error node, since
3488 -- we already gave the warning on the subprogram spec. If node is
3489 -- already a Raise_Constraint_Error leave as is, to prevent loops in
3490 -- the warnings removal machinery.
3492 if Raises_Constraint_Error (Actval)
3493 and then Nkind (Actval) /= N_Raise_Constraint_Error
3494 then
3495 Rewrite (Actval,
3496 Make_Raise_Constraint_Error (Loc,
3497 Reason => CE_Range_Check_Failed));
3499 Set_Raises_Constraint_Error (Actval);
3500 Set_Etype (Actval, Etype (F));
3501 end if;
3503 Assoc :=
3504 Make_Parameter_Association (Loc,
3505 Explicit_Actual_Parameter => Actval,
3506 Selector_Name => Make_Identifier (Loc, Chars (F)));
3508 -- Case of insertion is first named actual
3510 if No (Prev)
3511 or else Nkind (Parent (Prev)) /= N_Parameter_Association
3512 then
3513 Set_Next_Named_Actual (Assoc, First_Named_Actual (N));
3514 Set_First_Named_Actual (N, Actval);
3516 if No (Prev) then
3517 if No (Parameter_Associations (N)) then
3518 Set_Parameter_Associations (N, New_List (Assoc));
3519 else
3520 Append (Assoc, Parameter_Associations (N));
3521 end if;
3523 else
3524 Insert_After (Prev, Assoc);
3525 end if;
3527 -- Case of insertion is not first named actual
3529 else
3530 Set_Next_Named_Actual
3531 (Assoc, Next_Named_Actual (Parent (Prev)));
3532 Set_Next_Named_Actual (Parent (Prev), Actval);
3533 Append (Assoc, Parameter_Associations (N));
3534 end if;
3536 Mark_Rewrite_Insertion (Assoc);
3537 Mark_Rewrite_Insertion (Actval);
3539 Prev := Actval;
3540 end Insert_Default;
3542 -------------------
3543 -- Same_Ancestor --
3544 -------------------
3546 function Same_Ancestor (T1, T2 : Entity_Id) return Boolean is
3547 FT1 : Entity_Id := T1;
3548 FT2 : Entity_Id := T2;
3550 begin
3551 if Is_Private_Type (T1)
3552 and then Present (Full_View (T1))
3553 then
3554 FT1 := Full_View (T1);
3555 end if;
3557 if Is_Private_Type (T2)
3558 and then Present (Full_View (T2))
3559 then
3560 FT2 := Full_View (T2);
3561 end if;
3563 return Root_Type (Base_Type (FT1)) = Root_Type (Base_Type (FT2));
3564 end Same_Ancestor;
3566 --------------------------
3567 -- Static_Concatenation --
3568 --------------------------
3570 function Static_Concatenation (N : Node_Id) return Boolean is
3571 begin
3572 case Nkind (N) is
3573 when N_String_Literal =>
3574 return True;
3576 when N_Op_Concat =>
3578 -- Concatenation is static when both operands are static and
3579 -- the concatenation operator is a predefined one.
3581 return Scope (Entity (N)) = Standard_Standard
3582 and then
3583 Static_Concatenation (Left_Opnd (N))
3584 and then
3585 Static_Concatenation (Right_Opnd (N));
3587 when others =>
3588 if Is_Entity_Name (N) then
3589 declare
3590 Ent : constant Entity_Id := Entity (N);
3591 begin
3592 return Ekind (Ent) = E_Constant
3593 and then Present (Constant_Value (Ent))
3594 and then
3595 Is_OK_Static_Expression (Constant_Value (Ent));
3596 end;
3598 else
3599 return False;
3600 end if;
3601 end case;
3602 end Static_Concatenation;
3604 -- Start of processing for Resolve_Actuals
3606 begin
3607 Check_Argument_Order;
3609 if Is_Overloadable (Nam)
3610 and then Is_Inherited_Operation (Nam)
3611 and then In_Instance
3612 and then Present (Alias (Nam))
3613 and then Present (Overridden_Operation (Alias (Nam)))
3614 then
3615 Real_Subp := Alias (Nam);
3616 else
3617 Real_Subp := Empty;
3618 end if;
3620 if Present (First_Actual (N)) then
3621 Check_Prefixed_Call;
3622 end if;
3624 A := First_Actual (N);
3625 F := First_Formal (Nam);
3627 if Present (Real_Subp) then
3628 Real_F := First_Formal (Real_Subp);
3629 end if;
3631 while Present (F) loop
3632 if No (A) and then Needs_No_Actuals (Nam) then
3633 null;
3635 -- If we have an error in any actual or formal, indicated by a type
3636 -- of Any_Type, then abandon resolution attempt, and set result type
3637 -- to Any_Type. Skip this if the actual is a Raise_Expression, whose
3638 -- type is imposed from context.
3640 elsif (Present (A) and then Etype (A) = Any_Type)
3641 or else Etype (F) = Any_Type
3642 then
3643 if Nkind (A) /= N_Raise_Expression then
3644 Set_Etype (N, Any_Type);
3645 return;
3646 end if;
3647 end if;
3649 -- Case where actual is present
3651 -- If the actual is an entity, generate a reference to it now. We
3652 -- do this before the actual is resolved, because a formal of some
3653 -- protected subprogram, or a task discriminant, will be rewritten
3654 -- during expansion, and the source entity reference may be lost.
3656 if Present (A)
3657 and then Is_Entity_Name (A)
3658 and then Comes_From_Source (A)
3659 then
3660 -- Annotate the tree by creating a variable reference marker when
3661 -- the actual denotes a variable reference, in case the reference
3662 -- is folded or optimized away. The variable reference marker is
3663 -- automatically saved for later examination by the ABE Processing
3664 -- phase. The status of the reference is set as follows:
3666 -- status mode
3667 -- read IN, IN OUT
3668 -- write IN OUT, OUT
3670 if Needs_Variable_Reference_Marker
3671 (N => A,
3672 Calls_OK => True)
3673 then
3674 Build_Variable_Reference_Marker
3675 (N => A,
3676 Read => Ekind (F) /= E_Out_Parameter,
3677 Write => Ekind (F) /= E_In_Parameter);
3678 end if;
3680 Orig_A := Entity (A);
3682 if Present (Orig_A) then
3683 if Is_Formal (Orig_A)
3684 and then Ekind (F) /= E_In_Parameter
3685 then
3686 Generate_Reference (Orig_A, A, 'm');
3688 elsif not Is_Overloaded (A) then
3689 if Ekind (F) /= E_Out_Parameter then
3690 Generate_Reference (Orig_A, A);
3692 -- RM 6.4.1(12): For an out parameter that is passed by
3693 -- copy, the formal parameter object is created, and:
3695 -- * For an access type, the formal parameter is initialized
3696 -- from the value of the actual, without checking that the
3697 -- value satisfies any constraint, any predicate, or any
3698 -- exclusion of the null value.
3700 -- * For a scalar type that has the Default_Value aspect
3701 -- specified, the formal parameter is initialized from the
3702 -- value of the actual, without checking that the value
3703 -- satisfies any constraint or any predicate.
3704 -- I do not understand why this case is included??? this is
3705 -- not a case where an OUT parameter is treated as IN OUT.
3707 -- * For a composite type with discriminants or that has
3708 -- implicit initial values for any subcomponents, the
3709 -- behavior is as for an in out parameter passed by copy.
3711 -- Hence for these cases we generate the read reference now
3712 -- (the write reference will be generated later by
3713 -- Note_Possible_Modification).
3715 elsif Is_By_Copy_Type (Etype (F))
3716 and then
3717 (Is_Access_Type (Etype (F))
3718 or else
3719 (Is_Scalar_Type (Etype (F))
3720 and then
3721 Present (Default_Aspect_Value (Etype (F))))
3722 or else
3723 (Is_Composite_Type (Etype (F))
3724 and then (Has_Discriminants (Etype (F))
3725 or else Is_Partially_Initialized_Type
3726 (Etype (F)))))
3727 then
3728 Generate_Reference (Orig_A, A);
3729 end if;
3730 end if;
3731 end if;
3732 end if;
3734 if Present (A)
3735 and then (Nkind (Parent (A)) /= N_Parameter_Association
3736 or else Chars (Selector_Name (Parent (A))) = Chars (F))
3737 then
3738 -- If style checking mode on, check match of formal name
3740 if Style_Check then
3741 if Nkind (Parent (A)) = N_Parameter_Association then
3742 Check_Identifier (Selector_Name (Parent (A)), F);
3743 end if;
3744 end if;
3746 -- If the formal is Out or In_Out, do not resolve and expand the
3747 -- conversion, because it is subsequently expanded into explicit
3748 -- temporaries and assignments. However, the object of the
3749 -- conversion can be resolved. An exception is the case of tagged
3750 -- type conversion with a class-wide actual. In that case we want
3751 -- the tag check to occur and no temporary will be needed (no
3752 -- representation change can occur) and the parameter is passed by
3753 -- reference, so we go ahead and resolve the type conversion.
3754 -- Another exception is the case of reference to component or
3755 -- subcomponent of a bit-packed array, in which case we want to
3756 -- defer expansion to the point the in and out assignments are
3757 -- performed.
3759 if Ekind (F) /= E_In_Parameter
3760 and then Nkind (A) = N_Type_Conversion
3761 and then not Is_Class_Wide_Type (Etype (Expression (A)))
3762 then
3763 if Ekind (F) = E_In_Out_Parameter
3764 and then Is_Array_Type (Etype (F))
3765 then
3766 -- In a view conversion, the conversion must be legal in
3767 -- both directions, and thus both component types must be
3768 -- aliased, or neither (4.6 (8)).
3770 -- The extra rule in 4.6 (24.9.2) seems unduly restrictive:
3771 -- the privacy requirement should not apply to generic
3772 -- types, and should be checked in an instance. ARG query
3773 -- is in order ???
3775 if Has_Aliased_Components (Etype (Expression (A))) /=
3776 Has_Aliased_Components (Etype (F))
3777 then
3778 Error_Msg_N
3779 ("both component types in a view conversion must be"
3780 & " aliased, or neither", A);
3782 -- Comment here??? what set of cases???
3784 elsif
3785 not Same_Ancestor (Etype (F), Etype (Expression (A)))
3786 then
3787 -- Check view conv between unrelated by ref array types
3789 if Is_By_Reference_Type (Etype (F))
3790 or else Is_By_Reference_Type (Etype (Expression (A)))
3791 then
3792 Error_Msg_N
3793 ("view conversion between unrelated by reference "
3794 & "array types not allowed (\'A'I-00246)", A);
3796 -- In Ada 2005 mode, check view conversion component
3797 -- type cannot be private, tagged, or volatile. Note
3798 -- that we only apply this to source conversions. The
3799 -- generated code can contain conversions which are
3800 -- not subject to this test, and we cannot extract the
3801 -- component type in such cases since it is not present.
3803 elsif Comes_From_Source (A)
3804 and then Ada_Version >= Ada_2005
3805 then
3806 declare
3807 Comp_Type : constant Entity_Id :=
3808 Component_Type
3809 (Etype (Expression (A)));
3810 begin
3811 if (Is_Private_Type (Comp_Type)
3812 and then not Is_Generic_Type (Comp_Type))
3813 or else Is_Tagged_Type (Comp_Type)
3814 or else Is_Volatile (Comp_Type)
3815 then
3816 Error_Msg_N
3817 ("component type of a view conversion cannot"
3818 & " be private, tagged, or volatile"
3819 & " (RM 4.6 (24))",
3820 Expression (A));
3821 end if;
3822 end;
3823 end if;
3824 end if;
3825 end if;
3827 -- Resolve expression if conversion is all OK
3829 if (Conversion_OK (A)
3830 or else Valid_Conversion (A, Etype (A), Expression (A)))
3831 and then not Is_Ref_To_Bit_Packed_Array (Expression (A))
3832 then
3833 Resolve (Expression (A));
3834 end if;
3836 -- If the actual is a function call that returns a limited
3837 -- unconstrained object that needs finalization, create a
3838 -- transient scope for it, so that it can receive the proper
3839 -- finalization list.
3841 elsif Expander_Active
3842 and then Nkind (A) = N_Function_Call
3843 and then Is_Limited_Record (Etype (F))
3844 and then not Is_Constrained (Etype (F))
3845 and then (Needs_Finalization (Etype (F))
3846 or else Has_Task (Etype (F)))
3847 then
3848 Establish_Transient_Scope (A, Manage_Sec_Stack => False);
3849 Resolve (A, Etype (F));
3851 -- A small optimization: if one of the actuals is a concatenation
3852 -- create a block around a procedure call to recover stack space.
3853 -- This alleviates stack usage when several procedure calls in
3854 -- the same statement list use concatenation. We do not perform
3855 -- this wrapping for code statements, where the argument is a
3856 -- static string, and we want to preserve warnings involving
3857 -- sequences of such statements.
3859 elsif Expander_Active
3860 and then Nkind (A) = N_Op_Concat
3861 and then Nkind (N) = N_Procedure_Call_Statement
3862 and then not (Is_Intrinsic_Subprogram (Nam)
3863 and then Chars (Nam) = Name_Asm)
3864 and then not Static_Concatenation (A)
3865 then
3866 Establish_Transient_Scope (A, Manage_Sec_Stack => False);
3867 Resolve (A, Etype (F));
3869 else
3870 if Nkind (A) = N_Type_Conversion
3871 and then Is_Array_Type (Etype (F))
3872 and then not Same_Ancestor (Etype (F), Etype (Expression (A)))
3873 and then
3874 (Is_Limited_Type (Etype (F))
3875 or else Is_Limited_Type (Etype (Expression (A))))
3876 then
3877 Error_Msg_N
3878 ("conversion between unrelated limited array types not "
3879 & "allowed ('A'I-00246)", A);
3881 if Is_Limited_Type (Etype (F)) then
3882 Explain_Limited_Type (Etype (F), A);
3883 end if;
3885 if Is_Limited_Type (Etype (Expression (A))) then
3886 Explain_Limited_Type (Etype (Expression (A)), A);
3887 end if;
3888 end if;
3890 -- (Ada 2005: AI-251): If the actual is an allocator whose
3891 -- directly designated type is a class-wide interface, we build
3892 -- an anonymous access type to use it as the type of the
3893 -- allocator. Later, when the subprogram call is expanded, if
3894 -- the interface has a secondary dispatch table the expander
3895 -- will add a type conversion to force the correct displacement
3896 -- of the pointer.
3898 if Nkind (A) = N_Allocator then
3899 declare
3900 DDT : constant Entity_Id :=
3901 Directly_Designated_Type (Base_Type (Etype (F)));
3903 New_Itype : Entity_Id;
3905 begin
3906 if Is_Class_Wide_Type (DDT)
3907 and then Is_Interface (DDT)
3908 then
3909 New_Itype := Create_Itype (E_Anonymous_Access_Type, A);
3910 Set_Etype (New_Itype, Etype (A));
3911 Set_Directly_Designated_Type
3912 (New_Itype, Directly_Designated_Type (Etype (A)));
3913 Set_Etype (A, New_Itype);
3914 end if;
3916 -- Ada 2005, AI-162:If the actual is an allocator, the
3917 -- innermost enclosing statement is the master of the
3918 -- created object. This needs to be done with expansion
3919 -- enabled only, otherwise the transient scope will not
3920 -- be removed in the expansion of the wrapped construct.
3922 if Expander_Active
3923 and then (Needs_Finalization (DDT)
3924 or else Has_Task (DDT))
3925 then
3926 Establish_Transient_Scope
3927 (A, Manage_Sec_Stack => False);
3928 end if;
3929 end;
3931 if Ekind (Etype (F)) = E_Anonymous_Access_Type then
3932 Check_Restriction (No_Access_Parameter_Allocators, A);
3933 end if;
3934 end if;
3936 -- (Ada 2005): The call may be to a primitive operation of a
3937 -- tagged synchronized type, declared outside of the type. In
3938 -- this case the controlling actual must be converted to its
3939 -- corresponding record type, which is the formal type. The
3940 -- actual may be a subtype, either because of a constraint or
3941 -- because it is a generic actual, so use base type to locate
3942 -- concurrent type.
3944 F_Typ := Base_Type (Etype (F));
3946 if Is_Tagged_Type (F_Typ)
3947 and then (Is_Concurrent_Type (F_Typ)
3948 or else Is_Concurrent_Record_Type (F_Typ))
3949 then
3950 -- If the actual is overloaded, look for an interpretation
3951 -- that has a synchronized type.
3953 if not Is_Overloaded (A) then
3954 A_Typ := Base_Type (Etype (A));
3956 else
3957 declare
3958 Index : Interp_Index;
3959 It : Interp;
3961 begin
3962 Get_First_Interp (A, Index, It);
3963 while Present (It.Typ) loop
3964 if Is_Concurrent_Type (It.Typ)
3965 or else Is_Concurrent_Record_Type (It.Typ)
3966 then
3967 A_Typ := Base_Type (It.Typ);
3968 exit;
3969 end if;
3971 Get_Next_Interp (Index, It);
3972 end loop;
3973 end;
3974 end if;
3976 declare
3977 Full_A_Typ : Entity_Id;
3979 begin
3980 if Present (Full_View (A_Typ)) then
3981 Full_A_Typ := Base_Type (Full_View (A_Typ));
3982 else
3983 Full_A_Typ := A_Typ;
3984 end if;
3986 -- Tagged synchronized type (case 1): the actual is a
3987 -- concurrent type.
3989 if Is_Concurrent_Type (A_Typ)
3990 and then Corresponding_Record_Type (A_Typ) = F_Typ
3991 then
3992 Rewrite (A,
3993 Unchecked_Convert_To
3994 (Corresponding_Record_Type (A_Typ), A));
3995 Resolve (A, Etype (F));
3997 -- Tagged synchronized type (case 2): the formal is a
3998 -- concurrent type.
4000 elsif Ekind (Full_A_Typ) = E_Record_Type
4001 and then Present
4002 (Corresponding_Concurrent_Type (Full_A_Typ))
4003 and then Is_Concurrent_Type (F_Typ)
4004 and then Present (Corresponding_Record_Type (F_Typ))
4005 and then Full_A_Typ = Corresponding_Record_Type (F_Typ)
4006 then
4007 Resolve (A, Corresponding_Record_Type (F_Typ));
4009 -- Common case
4011 else
4012 Resolve (A, Etype (F));
4013 end if;
4014 end;
4016 -- Not a synchronized operation
4018 else
4019 Resolve (A, Etype (F));
4020 end if;
4021 end if;
4023 A_Typ := Etype (A);
4024 F_Typ := Etype (F);
4026 -- An actual cannot be an untagged formal incomplete type
4028 if Ekind (A_Typ) = E_Incomplete_Type
4029 and then not Is_Tagged_Type (A_Typ)
4030 and then Is_Generic_Type (A_Typ)
4031 then
4032 Error_Msg_N
4033 ("invalid use of untagged formal incomplete type", A);
4034 end if;
4036 if Comes_From_Source (Original_Node (N))
4037 and then Nkind_In (Original_Node (N), N_Function_Call,
4038 N_Procedure_Call_Statement)
4039 then
4040 -- In formal mode, check that actual parameters matching
4041 -- formals of tagged types are objects (or ancestor type
4042 -- conversions of objects), not general expressions.
4044 if Is_Actual_Tagged_Parameter (A) then
4045 if Is_SPARK_05_Object_Reference (A) then
4046 null;
4048 elsif Nkind (A) = N_Type_Conversion then
4049 declare
4050 Operand : constant Node_Id := Expression (A);
4051 Operand_Typ : constant Entity_Id := Etype (Operand);
4052 Target_Typ : constant Entity_Id := A_Typ;
4054 begin
4055 if not Is_SPARK_05_Object_Reference (Operand) then
4056 Check_SPARK_05_Restriction
4057 ("object required", Operand);
4059 -- In formal mode, the only view conversions are those
4060 -- involving ancestor conversion of an extended type.
4062 elsif not
4063 (Is_Tagged_Type (Target_Typ)
4064 and then not Is_Class_Wide_Type (Target_Typ)
4065 and then Is_Tagged_Type (Operand_Typ)
4066 and then not Is_Class_Wide_Type (Operand_Typ)
4067 and then Is_Ancestor (Target_Typ, Operand_Typ))
4068 then
4069 if Ekind_In
4070 (F, E_Out_Parameter, E_In_Out_Parameter)
4071 then
4072 Check_SPARK_05_Restriction
4073 ("ancestor conversion is the only permitted "
4074 & "view conversion", A);
4075 else
4076 Check_SPARK_05_Restriction
4077 ("ancestor conversion required", A);
4078 end if;
4080 else
4081 null;
4082 end if;
4083 end;
4085 else
4086 Check_SPARK_05_Restriction ("object required", A);
4087 end if;
4089 -- In formal mode, the only view conversions are those
4090 -- involving ancestor conversion of an extended type.
4092 elsif Nkind (A) = N_Type_Conversion
4093 and then Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter)
4094 then
4095 Check_SPARK_05_Restriction
4096 ("ancestor conversion is the only permitted view "
4097 & "conversion", A);
4098 end if;
4099 end if;
4101 -- has warnings suppressed, then we reset Never_Set_In_Source for
4102 -- the calling entity. The reason for this is to catch cases like
4103 -- GNAT.Spitbol.Patterns.Vstring_Var where the called subprogram
4104 -- uses trickery to modify an IN parameter.
4106 if Ekind (F) = E_In_Parameter
4107 and then Is_Entity_Name (A)
4108 and then Present (Entity (A))
4109 and then Ekind (Entity (A)) = E_Variable
4110 and then Has_Warnings_Off (F_Typ)
4111 then
4112 Set_Never_Set_In_Source (Entity (A), False);
4113 end if;
4115 -- Perform error checks for IN and IN OUT parameters
4117 if Ekind (F) /= E_Out_Parameter then
4119 -- Check unset reference. For scalar parameters, it is clearly
4120 -- wrong to pass an uninitialized value as either an IN or
4121 -- IN-OUT parameter. For composites, it is also clearly an
4122 -- error to pass a completely uninitialized value as an IN
4123 -- parameter, but the case of IN OUT is trickier. We prefer
4124 -- not to give a warning here. For example, suppose there is
4125 -- a routine that sets some component of a record to False.
4126 -- It is perfectly reasonable to make this IN-OUT and allow
4127 -- either initialized or uninitialized records to be passed
4128 -- in this case.
4130 -- For partially initialized composite values, we also avoid
4131 -- warnings, since it is quite likely that we are passing a
4132 -- partially initialized value and only the initialized fields
4133 -- will in fact be read in the subprogram.
4135 if Is_Scalar_Type (A_Typ)
4136 or else (Ekind (F) = E_In_Parameter
4137 and then not Is_Partially_Initialized_Type (A_Typ))
4138 then
4139 Check_Unset_Reference (A);
4140 end if;
4142 -- In Ada 83 we cannot pass an OUT parameter as an IN or IN OUT
4143 -- actual to a nested call, since this constitutes a reading of
4144 -- the parameter, which is not allowed.
4146 if Ada_Version = Ada_83
4147 and then Is_Entity_Name (A)
4148 and then Ekind (Entity (A)) = E_Out_Parameter
4149 then
4150 Error_Msg_N ("(Ada 83) illegal reading of out parameter", A);
4151 end if;
4152 end if;
4154 -- In -gnatd.q mode, forget that a given array is constant when
4155 -- it is passed as an IN parameter to a foreign-convention
4156 -- subprogram. This is in case the subprogram evilly modifies the
4157 -- object. Of course, correct code would use IN OUT.
4159 if Debug_Flag_Dot_Q
4160 and then Ekind (F) = E_In_Parameter
4161 and then Has_Foreign_Convention (Nam)
4162 and then Is_Array_Type (F_Typ)
4163 and then Nkind (A) in N_Has_Entity
4164 and then Present (Entity (A))
4165 then
4166 Set_Is_True_Constant (Entity (A), False);
4167 end if;
4169 -- Case of OUT or IN OUT parameter
4171 if Ekind (F) /= E_In_Parameter then
4173 -- For an Out parameter, check for useless assignment. Note
4174 -- that we can't set Last_Assignment this early, because we may
4175 -- kill current values in Resolve_Call, and that call would
4176 -- clobber the Last_Assignment field.
4178 -- Note: call Warn_On_Useless_Assignment before doing the check
4179 -- below for Is_OK_Variable_For_Out_Formal so that the setting
4180 -- of Referenced_As_LHS/Referenced_As_Out_Formal properly
4181 -- reflects the last assignment, not this one.
4183 if Ekind (F) = E_Out_Parameter then
4184 if Warn_On_Modified_As_Out_Parameter (F)
4185 and then Is_Entity_Name (A)
4186 and then Present (Entity (A))
4187 and then Comes_From_Source (N)
4188 then
4189 Warn_On_Useless_Assignment (Entity (A), A);
4190 end if;
4191 end if;
4193 -- Validate the form of the actual. Note that the call to
4194 -- Is_OK_Variable_For_Out_Formal generates the required
4195 -- reference in this case.
4197 -- A call to an initialization procedure for an aggregate
4198 -- component may initialize a nested component of a constant
4199 -- designated object. In this context the object is variable.
4201 if not Is_OK_Variable_For_Out_Formal (A)
4202 and then not Is_Init_Proc (Nam)
4203 then
4204 Error_Msg_NE ("actual for& must be a variable", A, F);
4206 if Is_Subprogram (Current_Scope) then
4207 if Is_Invariant_Procedure (Current_Scope)
4208 or else Is_Partial_Invariant_Procedure (Current_Scope)
4209 then
4210 Error_Msg_N
4211 ("function used in invariant cannot modify its "
4212 & "argument", F);
4214 elsif Is_Predicate_Function (Current_Scope) then
4215 Error_Msg_N
4216 ("function used in predicate cannot modify its "
4217 & "argument", F);
4218 end if;
4219 end if;
4220 end if;
4222 -- What's the following about???
4224 if Is_Entity_Name (A) then
4225 Kill_Checks (Entity (A));
4226 else
4227 Kill_All_Checks;
4228 end if;
4229 end if;
4231 if Etype (A) = Any_Type then
4232 Set_Etype (N, Any_Type);
4233 return;
4234 end if;
4236 -- Apply appropriate constraint/predicate checks for IN [OUT] case
4238 if Ekind_In (F, E_In_Parameter, E_In_Out_Parameter) then
4240 -- Apply predicate tests except in certain special cases. Note
4241 -- that it might be more consistent to apply these only when
4242 -- expansion is active (in Exp_Ch6.Expand_Actuals), as we do
4243 -- for the outbound predicate tests ??? In any case indicate
4244 -- the function being called, for better warnings if the call
4245 -- leads to an infinite recursion.
4247 if Predicate_Tests_On_Arguments (Nam) then
4248 Apply_Predicate_Check (A, F_Typ, Nam);
4249 end if;
4251 -- Apply required constraint checks
4253 -- Gigi looks at the check flag and uses the appropriate types.
4254 -- For now since one flag is used there is an optimization
4255 -- which might not be done in the IN OUT case since Gigi does
4256 -- not do any analysis. More thought required about this ???
4258 -- In fact is this comment obsolete??? doesn't the expander now
4259 -- generate all these tests anyway???
4261 if Is_Scalar_Type (Etype (A)) then
4262 Apply_Scalar_Range_Check (A, F_Typ);
4264 elsif Is_Array_Type (Etype (A)) then
4265 Apply_Length_Check (A, F_Typ);
4267 elsif Is_Record_Type (F_Typ)
4268 and then Has_Discriminants (F_Typ)
4269 and then Is_Constrained (F_Typ)
4270 and then (not Is_Derived_Type (F_Typ)
4271 or else Comes_From_Source (Nam))
4272 then
4273 Apply_Discriminant_Check (A, F_Typ);
4275 -- For view conversions of a discriminated object, apply
4276 -- check to object itself, the conversion alreay has the
4277 -- proper type.
4279 if Nkind (A) = N_Type_Conversion
4280 and then Is_Constrained (Etype (Expression (A)))
4281 then
4282 Apply_Discriminant_Check (Expression (A), F_Typ);
4283 end if;
4285 elsif Is_Access_Type (F_Typ)
4286 and then Is_Array_Type (Designated_Type (F_Typ))
4287 and then Is_Constrained (Designated_Type (F_Typ))
4288 then
4289 Apply_Length_Check (A, F_Typ);
4291 elsif Is_Access_Type (F_Typ)
4292 and then Has_Discriminants (Designated_Type (F_Typ))
4293 and then Is_Constrained (Designated_Type (F_Typ))
4294 then
4295 Apply_Discriminant_Check (A, F_Typ);
4297 else
4298 Apply_Range_Check (A, F_Typ);
4299 end if;
4301 -- Ada 2005 (AI-231): Note that the controlling parameter case
4302 -- already existed in Ada 95, which is partially checked
4303 -- elsewhere (see Checks), and we don't want the warning
4304 -- message to differ.
4306 if Is_Access_Type (F_Typ)
4307 and then Can_Never_Be_Null (F_Typ)
4308 and then Known_Null (A)
4309 then
4310 if Is_Controlling_Formal (F) then
4311 Apply_Compile_Time_Constraint_Error
4312 (N => A,
4313 Msg => "null value not allowed here??",
4314 Reason => CE_Access_Check_Failed);
4316 elsif Ada_Version >= Ada_2005 then
4317 Apply_Compile_Time_Constraint_Error
4318 (N => A,
4319 Msg => "(Ada 2005) null not allowed in "
4320 & "null-excluding formal??",
4321 Reason => CE_Null_Not_Allowed);
4322 end if;
4323 end if;
4324 end if;
4326 -- Checks for OUT parameters and IN OUT parameters
4328 if Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter) then
4330 -- If there is a type conversion, make sure the return value
4331 -- meets the constraints of the variable before the conversion.
4333 if Nkind (A) = N_Type_Conversion then
4334 if Is_Scalar_Type (A_Typ) then
4335 Apply_Scalar_Range_Check
4336 (Expression (A), Etype (Expression (A)), A_Typ);
4338 -- In addition, the returned value of the parameter must
4339 -- satisfy the bounds of the object type (see comment
4340 -- below).
4342 Apply_Scalar_Range_Check (A, A_Typ, F_Typ);
4344 else
4345 Apply_Range_Check
4346 (Expression (A), Etype (Expression (A)), A_Typ);
4347 end if;
4349 -- If no conversion, apply scalar range checks and length check
4350 -- based on the subtype of the actual (NOT that of the formal).
4351 -- This indicates that the check takes place on return from the
4352 -- call. During expansion the required constraint checks are
4353 -- inserted. In GNATprove mode, in the absence of expansion,
4354 -- the flag indicates that the returned value is valid.
4356 else
4357 if Is_Scalar_Type (F_Typ) then
4358 Apply_Scalar_Range_Check (A, A_Typ, F_Typ);
4360 elsif Is_Array_Type (F_Typ)
4361 and then Ekind (F) = E_Out_Parameter
4362 then
4363 Apply_Length_Check (A, F_Typ);
4364 else
4365 Apply_Range_Check (A, A_Typ, F_Typ);
4366 end if;
4367 end if;
4369 -- Note: we do not apply the predicate checks for the case of
4370 -- OUT and IN OUT parameters. They are instead applied in the
4371 -- Expand_Actuals routine in Exp_Ch6.
4372 end if;
4374 -- An actual associated with an access parameter is implicitly
4375 -- converted to the anonymous access type of the formal and must
4376 -- satisfy the legality checks for access conversions.
4378 if Ekind (F_Typ) = E_Anonymous_Access_Type then
4379 if not Valid_Conversion (A, F_Typ, A) then
4380 Error_Msg_N
4381 ("invalid implicit conversion for access parameter", A);
4382 end if;
4384 -- If the actual is an access selected component of a variable,
4385 -- the call may modify its designated object. It is reasonable
4386 -- to treat this as a potential modification of the enclosing
4387 -- record, to prevent spurious warnings that it should be
4388 -- declared as a constant, because intuitively programmers
4389 -- regard the designated subcomponent as part of the record.
4391 if Nkind (A) = N_Selected_Component
4392 and then Is_Entity_Name (Prefix (A))
4393 and then not Is_Constant_Object (Entity (Prefix (A)))
4394 then
4395 Note_Possible_Modification (A, Sure => False);
4396 end if;
4397 end if;
4399 -- Check bad case of atomic/volatile argument (RM C.6(12))
4401 if Is_By_Reference_Type (Etype (F))
4402 and then Comes_From_Source (N)
4403 then
4404 if Is_Atomic_Object (A)
4405 and then not Is_Atomic (Etype (F))
4406 then
4407 Error_Msg_NE
4408 ("cannot pass atomic argument to non-atomic formal&",
4409 A, F);
4411 elsif Is_Volatile_Object (A)
4412 and then not Is_Volatile (Etype (F))
4413 then
4414 Error_Msg_NE
4415 ("cannot pass volatile argument to non-volatile formal&",
4416 A, F);
4417 end if;
4418 end if;
4420 -- Check that subprograms don't have improper controlling
4421 -- arguments (RM 3.9.2 (9)).
4423 -- A primitive operation may have an access parameter of an
4424 -- incomplete tagged type, but a dispatching call is illegal
4425 -- if the type is still incomplete.
4427 if Is_Controlling_Formal (F) then
4428 Set_Is_Controlling_Actual (A);
4430 if Ekind (Etype (F)) = E_Anonymous_Access_Type then
4431 declare
4432 Desig : constant Entity_Id := Designated_Type (Etype (F));
4433 begin
4434 if Ekind (Desig) = E_Incomplete_Type
4435 and then No (Full_View (Desig))
4436 and then No (Non_Limited_View (Desig))
4437 then
4438 Error_Msg_NE
4439 ("premature use of incomplete type& "
4440 & "in dispatching call", A, Desig);
4441 end if;
4442 end;
4443 end if;
4445 elsif Nkind (A) = N_Explicit_Dereference then
4446 Validate_Remote_Access_To_Class_Wide_Type (A);
4447 end if;
4449 -- Apply legality rule 3.9.2 (9/1)
4451 if (Is_Class_Wide_Type (A_Typ) or else Is_Dynamically_Tagged (A))
4452 and then not Is_Class_Wide_Type (F_Typ)
4453 and then not Is_Controlling_Formal (F)
4454 and then not In_Instance
4455 then
4456 Error_Msg_N ("class-wide argument not allowed here!", A);
4458 if Is_Subprogram (Nam) and then Comes_From_Source (Nam) then
4459 Error_Msg_Node_2 := F_Typ;
4460 Error_Msg_NE
4461 ("& is not a dispatching operation of &!", A, Nam);
4462 end if;
4464 -- Apply the checks described in 3.10.2(27): if the context is a
4465 -- specific access-to-object, the actual cannot be class-wide.
4466 -- Use base type to exclude access_to_subprogram cases.
4468 elsif Is_Access_Type (A_Typ)
4469 and then Is_Access_Type (F_Typ)
4470 and then not Is_Access_Subprogram_Type (Base_Type (F_Typ))
4471 and then (Is_Class_Wide_Type (Designated_Type (A_Typ))
4472 or else (Nkind (A) = N_Attribute_Reference
4473 and then
4474 Is_Class_Wide_Type (Etype (Prefix (A)))))
4475 and then not Is_Class_Wide_Type (Designated_Type (F_Typ))
4476 and then not Is_Controlling_Formal (F)
4478 -- Disable these checks for call to imported C++ subprograms
4480 and then not
4481 (Is_Entity_Name (Name (N))
4482 and then Is_Imported (Entity (Name (N)))
4483 and then Convention (Entity (Name (N))) = Convention_CPP)
4484 then
4485 Error_Msg_N
4486 ("access to class-wide argument not allowed here!", A);
4488 if Is_Subprogram (Nam) and then Comes_From_Source (Nam) then
4489 Error_Msg_Node_2 := Designated_Type (F_Typ);
4490 Error_Msg_NE
4491 ("& is not a dispatching operation of &!", A, Nam);
4492 end if;
4493 end if;
4495 Check_Aliased_Parameter;
4497 Eval_Actual (A);
4499 -- If it is a named association, treat the selector_name as a
4500 -- proper identifier, and mark the corresponding entity.
4502 if Nkind (Parent (A)) = N_Parameter_Association
4504 -- Ignore reference in SPARK mode, as it refers to an entity not
4505 -- in scope at the point of reference, so the reference should
4506 -- be ignored for computing effects of subprograms.
4508 and then not GNATprove_Mode
4509 then
4510 -- If subprogram is overridden, use name of formal that
4511 -- is being called.
4513 if Present (Real_Subp) then
4514 Set_Entity (Selector_Name (Parent (A)), Real_F);
4515 Set_Etype (Selector_Name (Parent (A)), Etype (Real_F));
4517 else
4518 Set_Entity (Selector_Name (Parent (A)), F);
4519 Generate_Reference (F, Selector_Name (Parent (A)));
4520 Set_Etype (Selector_Name (Parent (A)), F_Typ);
4521 Generate_Reference (F_Typ, N, ' ');
4522 end if;
4523 end if;
4525 Prev := A;
4527 if Ekind (F) /= E_Out_Parameter then
4528 Check_Unset_Reference (A);
4529 end if;
4531 -- The following checks are only relevant when SPARK_Mode is on as
4532 -- they are not standard Ada legality rule. Internally generated
4533 -- temporaries are ignored.
4535 if SPARK_Mode = On and then Comes_From_Source (A) then
4537 -- An effectively volatile object may act as an actual when the
4538 -- corresponding formal is of a non-scalar effectively volatile
4539 -- type (SPARK RM 7.1.3(11)).
4541 if not Is_Scalar_Type (Etype (F))
4542 and then Is_Effectively_Volatile (Etype (F))
4543 then
4544 null;
4546 -- An effectively volatile object may act as an actual in a
4547 -- call to an instance of Unchecked_Conversion.
4548 -- (SPARK RM 7.1.3(11)).
4550 elsif Is_Unchecked_Conversion_Instance (Nam) then
4551 null;
4553 -- The actual denotes an object
4555 elsif Is_Effectively_Volatile_Object (A) then
4556 Error_Msg_N
4557 ("volatile object cannot act as actual in a call (SPARK "
4558 & "RM 7.1.3(11))", A);
4560 -- Otherwise the actual denotes an expression. Inspect the
4561 -- expression and flag each effectively volatile object with
4562 -- enabled property Async_Writers or Effective_Reads as illegal
4563 -- because it apprears within an interfering context. Note that
4564 -- this is usually done in Resolve_Entity_Name, but when the
4565 -- effectively volatile object appears as an actual in a call,
4566 -- the call must be resolved first.
4568 else
4569 Flag_Effectively_Volatile_Objects (A);
4570 end if;
4572 -- An effectively volatile variable cannot act as an actual
4573 -- parameter in a procedure call when the variable has enabled
4574 -- property Effective_Reads and the corresponding formal is of
4575 -- mode IN (SPARK RM 7.1.3(10)).
4577 if Ekind (Nam) = E_Procedure
4578 and then Ekind (F) = E_In_Parameter
4579 and then Is_Entity_Name (A)
4580 then
4581 A_Id := Entity (A);
4583 if Ekind (A_Id) = E_Variable
4584 and then Is_Effectively_Volatile (Etype (A_Id))
4585 and then Effective_Reads_Enabled (A_Id)
4586 then
4587 Error_Msg_NE
4588 ("effectively volatile variable & cannot appear as "
4589 & "actual in procedure call", A, A_Id);
4591 Error_Msg_Name_1 := Name_Effective_Reads;
4592 Error_Msg_N ("\\variable has enabled property %", A);
4593 Error_Msg_N ("\\corresponding formal has mode IN", A);
4594 end if;
4595 end if;
4596 end if;
4598 -- A formal parameter of a specific tagged type whose related
4599 -- subprogram is subject to pragma Extensions_Visible with value
4600 -- "False" cannot act as an actual in a subprogram with value
4601 -- "True" (SPARK RM 6.1.7(3)).
4603 if Is_EVF_Expression (A)
4604 and then Extensions_Visible_Status (Nam) =
4605 Extensions_Visible_True
4606 then
4607 Error_Msg_N
4608 ("formal parameter cannot act as actual parameter when "
4609 & "Extensions_Visible is False", A);
4610 Error_Msg_NE
4611 ("\subprogram & has Extensions_Visible True", A, Nam);
4612 end if;
4614 -- The actual parameter of a Ghost subprogram whose formal is of
4615 -- mode IN OUT or OUT must be a Ghost variable (SPARK RM 6.9(12)).
4617 if Comes_From_Source (Nam)
4618 and then Is_Ghost_Entity (Nam)
4619 and then Ekind_In (F, E_In_Out_Parameter, E_Out_Parameter)
4620 and then Is_Entity_Name (A)
4621 and then Present (Entity (A))
4622 and then not Is_Ghost_Entity (Entity (A))
4623 then
4624 Error_Msg_NE
4625 ("non-ghost variable & cannot appear as actual in call to "
4626 & "ghost procedure", A, Entity (A));
4628 if Ekind (F) = E_In_Out_Parameter then
4629 Error_Msg_N ("\corresponding formal has mode `IN OUT`", A);
4630 else
4631 Error_Msg_N ("\corresponding formal has mode OUT", A);
4632 end if;
4633 end if;
4635 Next_Actual (A);
4637 -- Case where actual is not present
4639 else
4640 Insert_Default;
4641 end if;
4643 Next_Formal (F);
4645 if Present (Real_Subp) then
4646 Next_Formal (Real_F);
4647 end if;
4648 end loop;
4649 end Resolve_Actuals;
4651 -----------------------
4652 -- Resolve_Allocator --
4653 -----------------------
4655 procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id) is
4656 Desig_T : constant Entity_Id := Designated_Type (Typ);
4657 E : constant Node_Id := Expression (N);
4658 Subtyp : Entity_Id;
4659 Discrim : Entity_Id;
4660 Constr : Node_Id;
4661 Aggr : Node_Id;
4662 Assoc : Node_Id := Empty;
4663 Disc_Exp : Node_Id;
4665 procedure Check_Allocator_Discrim_Accessibility
4666 (Disc_Exp : Node_Id;
4667 Alloc_Typ : Entity_Id);
4668 -- Check that accessibility level associated with an access discriminant
4669 -- initialized in an allocator by the expression Disc_Exp is not deeper
4670 -- than the level of the allocator type Alloc_Typ. An error message is
4671 -- issued if this condition is violated. Specialized checks are done for
4672 -- the cases of a constraint expression which is an access attribute or
4673 -- an access discriminant.
4675 function In_Dispatching_Context return Boolean;
4676 -- If the allocator is an actual in a call, it is allowed to be class-
4677 -- wide when the context is not because it is a controlling actual.
4679 -------------------------------------------
4680 -- Check_Allocator_Discrim_Accessibility --
4681 -------------------------------------------
4683 procedure Check_Allocator_Discrim_Accessibility
4684 (Disc_Exp : Node_Id;
4685 Alloc_Typ : Entity_Id)
4687 begin
4688 if Type_Access_Level (Etype (Disc_Exp)) >
4689 Deepest_Type_Access_Level (Alloc_Typ)
4690 then
4691 Error_Msg_N
4692 ("operand type has deeper level than allocator type", Disc_Exp);
4694 -- When the expression is an Access attribute the level of the prefix
4695 -- object must not be deeper than that of the allocator's type.
4697 elsif Nkind (Disc_Exp) = N_Attribute_Reference
4698 and then Get_Attribute_Id (Attribute_Name (Disc_Exp)) =
4699 Attribute_Access
4700 and then Object_Access_Level (Prefix (Disc_Exp)) >
4701 Deepest_Type_Access_Level (Alloc_Typ)
4702 then
4703 Error_Msg_N
4704 ("prefix of attribute has deeper level than allocator type",
4705 Disc_Exp);
4707 -- When the expression is an access discriminant the check is against
4708 -- the level of the prefix object.
4710 elsif Ekind (Etype (Disc_Exp)) = E_Anonymous_Access_Type
4711 and then Nkind (Disc_Exp) = N_Selected_Component
4712 and then Object_Access_Level (Prefix (Disc_Exp)) >
4713 Deepest_Type_Access_Level (Alloc_Typ)
4714 then
4715 Error_Msg_N
4716 ("access discriminant has deeper level than allocator type",
4717 Disc_Exp);
4719 -- All other cases are legal
4721 else
4722 null;
4723 end if;
4724 end Check_Allocator_Discrim_Accessibility;
4726 ----------------------------
4727 -- In_Dispatching_Context --
4728 ----------------------------
4730 function In_Dispatching_Context return Boolean is
4731 Par : constant Node_Id := Parent (N);
4733 begin
4734 return Nkind (Par) in N_Subprogram_Call
4735 and then Is_Entity_Name (Name (Par))
4736 and then Is_Dispatching_Operation (Entity (Name (Par)));
4737 end In_Dispatching_Context;
4739 -- Start of processing for Resolve_Allocator
4741 begin
4742 -- Replace general access with specific type
4744 if Ekind (Etype (N)) = E_Allocator_Type then
4745 Set_Etype (N, Base_Type (Typ));
4746 end if;
4748 if Is_Abstract_Type (Typ) then
4749 Error_Msg_N ("type of allocator cannot be abstract", N);
4750 end if;
4752 -- For qualified expression, resolve the expression using the given
4753 -- subtype (nothing to do for type mark, subtype indication)
4755 if Nkind (E) = N_Qualified_Expression then
4756 if Is_Class_Wide_Type (Etype (E))
4757 and then not Is_Class_Wide_Type (Desig_T)
4758 and then not In_Dispatching_Context
4759 then
4760 Error_Msg_N
4761 ("class-wide allocator not allowed for this access type", N);
4762 end if;
4764 Resolve (Expression (E), Etype (E));
4765 Check_Non_Static_Context (Expression (E));
4766 Check_Unset_Reference (Expression (E));
4768 -- Allocators generated by the build-in-place expansion mechanism
4769 -- are explicitly marked as coming from source but do not need to be
4770 -- checked for limited initialization. To exclude this case, ensure
4771 -- that the parent of the allocator is a source node.
4772 -- The return statement constructed for an Expression_Function does
4773 -- not come from source but requires a limited check.
4775 if Is_Limited_Type (Etype (E))
4776 and then Comes_From_Source (N)
4777 and then
4778 (Comes_From_Source (Parent (N))
4779 or else
4780 (Ekind (Current_Scope) = E_Function
4781 and then Nkind (Original_Node (Unit_Declaration_Node
4782 (Current_Scope))) = N_Expression_Function))
4783 and then not In_Instance_Body
4784 then
4785 if not OK_For_Limited_Init (Etype (E), Expression (E)) then
4786 if Nkind (Parent (N)) = N_Assignment_Statement then
4787 Error_Msg_N
4788 ("illegal expression for initialized allocator of a "
4789 & "limited type (RM 7.5 (2.7/2))", N);
4790 else
4791 Error_Msg_N
4792 ("initialization not allowed for limited types", N);
4793 end if;
4795 Explain_Limited_Type (Etype (E), N);
4796 end if;
4797 end if;
4799 -- A qualified expression requires an exact match of the type. Class-
4800 -- wide matching is not allowed.
4802 if (Is_Class_Wide_Type (Etype (Expression (E)))
4803 or else Is_Class_Wide_Type (Etype (E)))
4804 and then Base_Type (Etype (Expression (E))) /= Base_Type (Etype (E))
4805 then
4806 Wrong_Type (Expression (E), Etype (E));
4807 end if;
4809 -- Calls to build-in-place functions are not currently supported in
4810 -- allocators for access types associated with a simple storage pool.
4811 -- Supporting such allocators may require passing additional implicit
4812 -- parameters to build-in-place functions (or a significant revision
4813 -- of the current b-i-p implementation to unify the handling for
4814 -- multiple kinds of storage pools). ???
4816 if Is_Limited_View (Desig_T)
4817 and then Nkind (Expression (E)) = N_Function_Call
4818 then
4819 declare
4820 Pool : constant Entity_Id :=
4821 Associated_Storage_Pool (Root_Type (Typ));
4822 begin
4823 if Present (Pool)
4824 and then
4825 Present (Get_Rep_Pragma
4826 (Etype (Pool), Name_Simple_Storage_Pool_Type))
4827 then
4828 Error_Msg_N
4829 ("limited function calls not yet supported in simple "
4830 & "storage pool allocators", Expression (E));
4831 end if;
4832 end;
4833 end if;
4835 -- A special accessibility check is needed for allocators that
4836 -- constrain access discriminants. The level of the type of the
4837 -- expression used to constrain an access discriminant cannot be
4838 -- deeper than the type of the allocator (in contrast to access
4839 -- parameters, where the level of the actual can be arbitrary).
4841 -- We can't use Valid_Conversion to perform this check because in
4842 -- general the type of the allocator is unrelated to the type of
4843 -- the access discriminant.
4845 if Ekind (Typ) /= E_Anonymous_Access_Type
4846 or else Is_Local_Anonymous_Access (Typ)
4847 then
4848 Subtyp := Entity (Subtype_Mark (E));
4850 Aggr := Original_Node (Expression (E));
4852 if Has_Discriminants (Subtyp)
4853 and then Nkind_In (Aggr, N_Aggregate, N_Extension_Aggregate)
4854 then
4855 Discrim := First_Discriminant (Base_Type (Subtyp));
4857 -- Get the first component expression of the aggregate
4859 if Present (Expressions (Aggr)) then
4860 Disc_Exp := First (Expressions (Aggr));
4862 elsif Present (Component_Associations (Aggr)) then
4863 Assoc := First (Component_Associations (Aggr));
4865 if Present (Assoc) then
4866 Disc_Exp := Expression (Assoc);
4867 else
4868 Disc_Exp := Empty;
4869 end if;
4871 else
4872 Disc_Exp := Empty;
4873 end if;
4875 while Present (Discrim) and then Present (Disc_Exp) loop
4876 if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
4877 Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
4878 end if;
4880 Next_Discriminant (Discrim);
4882 if Present (Discrim) then
4883 if Present (Assoc) then
4884 Next (Assoc);
4885 Disc_Exp := Expression (Assoc);
4887 elsif Present (Next (Disc_Exp)) then
4888 Next (Disc_Exp);
4890 else
4891 Assoc := First (Component_Associations (Aggr));
4893 if Present (Assoc) then
4894 Disc_Exp := Expression (Assoc);
4895 else
4896 Disc_Exp := Empty;
4897 end if;
4898 end if;
4899 end if;
4900 end loop;
4901 end if;
4902 end if;
4904 -- For a subtype mark or subtype indication, freeze the subtype
4906 else
4907 Freeze_Expression (E);
4909 if Is_Access_Constant (Typ) and then not No_Initialization (N) then
4910 Error_Msg_N
4911 ("initialization required for access-to-constant allocator", N);
4912 end if;
4914 -- A special accessibility check is needed for allocators that
4915 -- constrain access discriminants. The level of the type of the
4916 -- expression used to constrain an access discriminant cannot be
4917 -- deeper than the type of the allocator (in contrast to access
4918 -- parameters, where the level of the actual can be arbitrary).
4919 -- We can't use Valid_Conversion to perform this check because
4920 -- in general the type of the allocator is unrelated to the type
4921 -- of the access discriminant.
4923 if Nkind (Original_Node (E)) = N_Subtype_Indication
4924 and then (Ekind (Typ) /= E_Anonymous_Access_Type
4925 or else Is_Local_Anonymous_Access (Typ))
4926 then
4927 Subtyp := Entity (Subtype_Mark (Original_Node (E)));
4929 if Has_Discriminants (Subtyp) then
4930 Discrim := First_Discriminant (Base_Type (Subtyp));
4931 Constr := First (Constraints (Constraint (Original_Node (E))));
4932 while Present (Discrim) and then Present (Constr) loop
4933 if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
4934 if Nkind (Constr) = N_Discriminant_Association then
4935 Disc_Exp := Original_Node (Expression (Constr));
4936 else
4937 Disc_Exp := Original_Node (Constr);
4938 end if;
4940 Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
4941 end if;
4943 Next_Discriminant (Discrim);
4944 Next (Constr);
4945 end loop;
4946 end if;
4947 end if;
4948 end if;
4950 -- Ada 2005 (AI-344): A class-wide allocator requires an accessibility
4951 -- check that the level of the type of the created object is not deeper
4952 -- than the level of the allocator's access type, since extensions can
4953 -- now occur at deeper levels than their ancestor types. This is a
4954 -- static accessibility level check; a run-time check is also needed in
4955 -- the case of an initialized allocator with a class-wide argument (see
4956 -- Expand_Allocator_Expression).
4958 if Ada_Version >= Ada_2005
4959 and then Is_Class_Wide_Type (Desig_T)
4960 then
4961 declare
4962 Exp_Typ : Entity_Id;
4964 begin
4965 if Nkind (E) = N_Qualified_Expression then
4966 Exp_Typ := Etype (E);
4967 elsif Nkind (E) = N_Subtype_Indication then
4968 Exp_Typ := Entity (Subtype_Mark (Original_Node (E)));
4969 else
4970 Exp_Typ := Entity (E);
4971 end if;
4973 if Type_Access_Level (Exp_Typ) >
4974 Deepest_Type_Access_Level (Typ)
4975 then
4976 if In_Instance_Body then
4977 Error_Msg_Warn := SPARK_Mode /= On;
4978 Error_Msg_N
4979 ("type in allocator has deeper level than "
4980 & "designated class-wide type<<", E);
4981 Error_Msg_N ("\Program_Error [<<", E);
4982 Rewrite (N,
4983 Make_Raise_Program_Error (Sloc (N),
4984 Reason => PE_Accessibility_Check_Failed));
4985 Set_Etype (N, Typ);
4987 -- Do not apply Ada 2005 accessibility checks on a class-wide
4988 -- allocator if the type given in the allocator is a formal
4989 -- type. A run-time check will be performed in the instance.
4991 elsif not Is_Generic_Type (Exp_Typ) then
4992 Error_Msg_N ("type in allocator has deeper level than "
4993 & "designated class-wide type", E);
4994 end if;
4995 end if;
4996 end;
4997 end if;
4999 -- Check for allocation from an empty storage pool
5001 if No_Pool_Assigned (Typ) then
5002 Error_Msg_N ("allocation from empty storage pool!", N);
5004 -- If the context is an unchecked conversion, as may happen within an
5005 -- inlined subprogram, the allocator is being resolved with its own
5006 -- anonymous type. In that case, if the target type has a specific
5007 -- storage pool, it must be inherited explicitly by the allocator type.
5009 elsif Nkind (Parent (N)) = N_Unchecked_Type_Conversion
5010 and then No (Associated_Storage_Pool (Typ))
5011 then
5012 Set_Associated_Storage_Pool
5013 (Typ, Associated_Storage_Pool (Etype (Parent (N))));
5014 end if;
5016 if Ekind (Etype (N)) = E_Anonymous_Access_Type then
5017 Check_Restriction (No_Anonymous_Allocators, N);
5018 end if;
5020 -- Check that an allocator with task parts isn't for a nested access
5021 -- type when restriction No_Task_Hierarchy applies.
5023 if not Is_Library_Level_Entity (Base_Type (Typ))
5024 and then Has_Task (Base_Type (Desig_T))
5025 then
5026 Check_Restriction (No_Task_Hierarchy, N);
5027 end if;
5029 -- An illegal allocator may be rewritten as a raise Program_Error
5030 -- statement.
5032 if Nkind (N) = N_Allocator then
5034 -- Avoid coextension processing for an allocator that is the
5035 -- expansion of a build-in-place function call.
5037 if Nkind (Original_Node (N)) = N_Allocator
5038 and then Nkind (Expression (Original_Node (N))) =
5039 N_Qualified_Expression
5040 and then Nkind (Expression (Expression (Original_Node (N)))) =
5041 N_Function_Call
5042 and then Is_Expanded_Build_In_Place_Call
5043 (Expression (Expression (Original_Node (N))))
5044 then
5045 null; -- b-i-p function call case
5047 else
5048 -- An anonymous access discriminant is the definition of a
5049 -- coextension.
5051 if Ekind (Typ) = E_Anonymous_Access_Type
5052 and then Nkind (Associated_Node_For_Itype (Typ)) =
5053 N_Discriminant_Specification
5054 then
5055 declare
5056 Discr : constant Entity_Id :=
5057 Defining_Identifier (Associated_Node_For_Itype (Typ));
5059 begin
5060 Check_Restriction (No_Coextensions, N);
5062 -- Ada 2012 AI05-0052: If the designated type of the
5063 -- allocator is limited, then the allocator shall not
5064 -- be used to define the value of an access discriminant
5065 -- unless the discriminated type is immutably limited.
5067 if Ada_Version >= Ada_2012
5068 and then Is_Limited_Type (Desig_T)
5069 and then not Is_Limited_View (Scope (Discr))
5070 then
5071 Error_Msg_N
5072 ("only immutably limited types can have anonymous "
5073 & "access discriminants designating a limited type",
5075 end if;
5076 end;
5078 -- Avoid marking an allocator as a dynamic coextension if it is
5079 -- within a static construct.
5081 if not Is_Static_Coextension (N) then
5082 Set_Is_Dynamic_Coextension (N);
5084 -- Finalization and deallocation of coextensions utilizes an
5085 -- approximate implementation which does not directly adhere
5086 -- to the semantic rules. Warn on potential issues involving
5087 -- coextensions.
5089 if Is_Controlled (Desig_T) then
5090 Error_Msg_N
5091 ("??coextension will not be finalized when its "
5092 & "associated owner is deallocated or finalized", N);
5093 else
5094 Error_Msg_N
5095 ("??coextension will not be deallocated when its "
5096 & "associated owner is deallocated", N);
5097 end if;
5098 end if;
5100 -- Cleanup for potential static coextensions
5102 else
5103 Set_Is_Dynamic_Coextension (N, False);
5104 Set_Is_Static_Coextension (N, False);
5106 -- Anonymous access-to-controlled objects are not finalized on
5107 -- time because this involves run-time ownership and currently
5108 -- this property is not available. In rare cases the object may
5109 -- not be finalized at all. Warn on potential issues involving
5110 -- anonymous access-to-controlled objects.
5112 if Ekind (Typ) = E_Anonymous_Access_Type
5113 and then Is_Controlled_Active (Desig_T)
5114 then
5115 Error_Msg_N
5116 ("??object designated by anonymous access object might "
5117 & "not be finalized until its enclosing library unit "
5118 & "goes out of scope", N);
5119 Error_Msg_N ("\use named access type instead", N);
5120 end if;
5121 end if;
5122 end if;
5123 end if;
5125 -- Report a simple error: if the designated object is a local task,
5126 -- its body has not been seen yet, and its activation will fail an
5127 -- elaboration check.
5129 if Is_Task_Type (Desig_T)
5130 and then Scope (Base_Type (Desig_T)) = Current_Scope
5131 and then Is_Compilation_Unit (Current_Scope)
5132 and then Ekind (Current_Scope) = E_Package
5133 and then not In_Package_Body (Current_Scope)
5134 then
5135 Error_Msg_Warn := SPARK_Mode /= On;
5136 Error_Msg_N ("cannot activate task before body seen<<", N);
5137 Error_Msg_N ("\Program_Error [<<", N);
5138 end if;
5140 -- Ada 2012 (AI05-0111-3): Detect an attempt to allocate a task or a
5141 -- type with a task component on a subpool. This action must raise
5142 -- Program_Error at runtime.
5144 if Ada_Version >= Ada_2012
5145 and then Nkind (N) = N_Allocator
5146 and then Present (Subpool_Handle_Name (N))
5147 and then Has_Task (Desig_T)
5148 then
5149 Error_Msg_Warn := SPARK_Mode /= On;
5150 Error_Msg_N ("cannot allocate task on subpool<<", N);
5151 Error_Msg_N ("\Program_Error [<<", N);
5153 Rewrite (N,
5154 Make_Raise_Program_Error (Sloc (N),
5155 Reason => PE_Explicit_Raise));
5156 Set_Etype (N, Typ);
5157 end if;
5158 end Resolve_Allocator;
5160 ---------------------------
5161 -- Resolve_Arithmetic_Op --
5162 ---------------------------
5164 -- Used for resolving all arithmetic operators except exponentiation
5166 procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id) is
5167 L : constant Node_Id := Left_Opnd (N);
5168 R : constant Node_Id := Right_Opnd (N);
5169 TL : constant Entity_Id := Base_Type (Etype (L));
5170 TR : constant Entity_Id := Base_Type (Etype (R));
5171 T : Entity_Id;
5172 Rop : Node_Id;
5174 B_Typ : constant Entity_Id := Base_Type (Typ);
5175 -- We do the resolution using the base type, because intermediate values
5176 -- in expressions always are of the base type, not a subtype of it.
5178 function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean;
5179 -- Returns True if N is in a context that expects "any real type"
5181 function Is_Integer_Or_Universal (N : Node_Id) return Boolean;
5182 -- Return True iff given type is Integer or universal real/integer
5184 procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id);
5185 -- Choose type of integer literal in fixed-point operation to conform
5186 -- to available fixed-point type. T is the type of the other operand,
5187 -- which is needed to determine the expected type of N.
5189 procedure Set_Operand_Type (N : Node_Id);
5190 -- Set operand type to T if universal
5192 -------------------------------
5193 -- Expected_Type_Is_Any_Real --
5194 -------------------------------
5196 function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean is
5197 begin
5198 -- N is the expression after "delta" in a fixed_point_definition;
5199 -- see RM-3.5.9(6):
5201 return Nkind_In (Parent (N), N_Ordinary_Fixed_Point_Definition,
5202 N_Decimal_Fixed_Point_Definition,
5204 -- N is one of the bounds in a real_range_specification;
5205 -- see RM-3.5.7(5):
5207 N_Real_Range_Specification,
5209 -- N is the expression of a delta_constraint;
5210 -- see RM-J.3(3):
5212 N_Delta_Constraint);
5213 end Expected_Type_Is_Any_Real;
5215 -----------------------------
5216 -- Is_Integer_Or_Universal --
5217 -----------------------------
5219 function Is_Integer_Or_Universal (N : Node_Id) return Boolean is
5220 T : Entity_Id;
5221 Index : Interp_Index;
5222 It : Interp;
5224 begin
5225 if not Is_Overloaded (N) then
5226 T := Etype (N);
5227 return Base_Type (T) = Base_Type (Standard_Integer)
5228 or else T = Universal_Integer
5229 or else T = Universal_Real;
5230 else
5231 Get_First_Interp (N, Index, It);
5232 while Present (It.Typ) loop
5233 if Base_Type (It.Typ) = Base_Type (Standard_Integer)
5234 or else It.Typ = Universal_Integer
5235 or else It.Typ = Universal_Real
5236 then
5237 return True;
5238 end if;
5240 Get_Next_Interp (Index, It);
5241 end loop;
5242 end if;
5244 return False;
5245 end Is_Integer_Or_Universal;
5247 ----------------------------
5248 -- Set_Mixed_Mode_Operand --
5249 ----------------------------
5251 procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id) is
5252 Index : Interp_Index;
5253 It : Interp;
5255 begin
5256 if Universal_Interpretation (N) = Universal_Integer then
5258 -- A universal integer literal is resolved as standard integer
5259 -- except in the case of a fixed-point result, where we leave it
5260 -- as universal (to be handled by Exp_Fixd later on)
5262 if Is_Fixed_Point_Type (T) then
5263 Resolve (N, Universal_Integer);
5264 else
5265 Resolve (N, Standard_Integer);
5266 end if;
5268 elsif Universal_Interpretation (N) = Universal_Real
5269 and then (T = Base_Type (Standard_Integer)
5270 or else T = Universal_Integer
5271 or else T = Universal_Real)
5272 then
5273 -- A universal real can appear in a fixed-type context. We resolve
5274 -- the literal with that context, even though this might raise an
5275 -- exception prematurely (the other operand may be zero).
5277 Resolve (N, B_Typ);
5279 elsif Etype (N) = Base_Type (Standard_Integer)
5280 and then T = Universal_Real
5281 and then Is_Overloaded (N)
5282 then
5283 -- Integer arg in mixed-mode operation. Resolve with universal
5284 -- type, in case preference rule must be applied.
5286 Resolve (N, Universal_Integer);
5288 elsif Etype (N) = T and then B_Typ /= Universal_Fixed then
5290 -- If the operand is part of a fixed multiplication operation,
5291 -- a conversion will be applied to each operand, so resolve it
5292 -- with its own type.
5294 if Nkind_In (Parent (N), N_Op_Divide, N_Op_Multiply) then
5295 Resolve (N);
5297 else
5298 -- Not a mixed-mode operation, resolve with context
5300 Resolve (N, B_Typ);
5301 end if;
5303 elsif Etype (N) = Any_Fixed then
5305 -- N may itself be a mixed-mode operation, so use context type
5307 Resolve (N, B_Typ);
5309 elsif Is_Fixed_Point_Type (T)
5310 and then B_Typ = Universal_Fixed
5311 and then Is_Overloaded (N)
5312 then
5313 -- Must be (fixed * fixed) operation, operand must have one
5314 -- compatible interpretation.
5316 Resolve (N, Any_Fixed);
5318 elsif Is_Fixed_Point_Type (B_Typ)
5319 and then (T = Universal_Real or else Is_Fixed_Point_Type (T))
5320 and then Is_Overloaded (N)
5321 then
5322 -- C * F(X) in a fixed context, where C is a real literal or a
5323 -- fixed-point expression. F must have either a fixed type
5324 -- interpretation or an integer interpretation, but not both.
5326 Get_First_Interp (N, Index, It);
5327 while Present (It.Typ) loop
5328 if Base_Type (It.Typ) = Base_Type (Standard_Integer) then
5329 if Analyzed (N) then
5330 Error_Msg_N ("ambiguous operand in fixed operation", N);
5331 else
5332 Resolve (N, Standard_Integer);
5333 end if;
5335 elsif Is_Fixed_Point_Type (It.Typ) then
5336 if Analyzed (N) then
5337 Error_Msg_N ("ambiguous operand in fixed operation", N);
5338 else
5339 Resolve (N, It.Typ);
5340 end if;
5341 end if;
5343 Get_Next_Interp (Index, It);
5344 end loop;
5346 -- Reanalyze the literal with the fixed type of the context. If
5347 -- context is Universal_Fixed, we are within a conversion, leave
5348 -- the literal as a universal real because there is no usable
5349 -- fixed type, and the target of the conversion plays no role in
5350 -- the resolution.
5352 declare
5353 Op2 : Node_Id;
5354 T2 : Entity_Id;
5356 begin
5357 if N = L then
5358 Op2 := R;
5359 else
5360 Op2 := L;
5361 end if;
5363 if B_Typ = Universal_Fixed
5364 and then Nkind (Op2) = N_Real_Literal
5365 then
5366 T2 := Universal_Real;
5367 else
5368 T2 := B_Typ;
5369 end if;
5371 Set_Analyzed (Op2, False);
5372 Resolve (Op2, T2);
5373 end;
5375 -- A universal real conditional expression can appear in a fixed-type
5376 -- context and must be resolved with that context to facilitate the
5377 -- code generation to the backend.
5379 elsif Nkind_In (N, N_Case_Expression, N_If_Expression)
5380 and then Etype (N) = Universal_Real
5381 and then Is_Fixed_Point_Type (B_Typ)
5382 then
5383 Resolve (N, B_Typ);
5385 else
5386 Resolve (N);
5387 end if;
5388 end Set_Mixed_Mode_Operand;
5390 ----------------------
5391 -- Set_Operand_Type --
5392 ----------------------
5394 procedure Set_Operand_Type (N : Node_Id) is
5395 begin
5396 if Etype (N) = Universal_Integer
5397 or else Etype (N) = Universal_Real
5398 then
5399 Set_Etype (N, T);
5400 end if;
5401 end Set_Operand_Type;
5403 -- Start of processing for Resolve_Arithmetic_Op
5405 begin
5406 if Comes_From_Source (N)
5407 and then Ekind (Entity (N)) = E_Function
5408 and then Is_Imported (Entity (N))
5409 and then Is_Intrinsic_Subprogram (Entity (N))
5410 then
5411 Resolve_Intrinsic_Operator (N, Typ);
5412 return;
5414 -- Special-case for mixed-mode universal expressions or fixed point type
5415 -- operation: each argument is resolved separately. The same treatment
5416 -- is required if one of the operands of a fixed point operation is
5417 -- universal real, since in this case we don't do a conversion to a
5418 -- specific fixed-point type (instead the expander handles the case).
5420 -- Set the type of the node to its universal interpretation because
5421 -- legality checks on an exponentiation operand need the context.
5423 elsif (B_Typ = Universal_Integer or else B_Typ = Universal_Real)
5424 and then Present (Universal_Interpretation (L))
5425 and then Present (Universal_Interpretation (R))
5426 then
5427 Set_Etype (N, B_Typ);
5428 Resolve (L, Universal_Interpretation (L));
5429 Resolve (R, Universal_Interpretation (R));
5431 elsif (B_Typ = Universal_Real
5432 or else Etype (N) = Universal_Fixed
5433 or else (Etype (N) = Any_Fixed
5434 and then Is_Fixed_Point_Type (B_Typ))
5435 or else (Is_Fixed_Point_Type (B_Typ)
5436 and then (Is_Integer_Or_Universal (L)
5437 or else
5438 Is_Integer_Or_Universal (R))))
5439 and then Nkind_In (N, N_Op_Multiply, N_Op_Divide)
5440 then
5441 if TL = Universal_Integer or else TR = Universal_Integer then
5442 Check_For_Visible_Operator (N, B_Typ);
5443 end if;
5445 -- If context is a fixed type and one operand is integer, the other
5446 -- is resolved with the type of the context.
5448 if Is_Fixed_Point_Type (B_Typ)
5449 and then (Base_Type (TL) = Base_Type (Standard_Integer)
5450 or else TL = Universal_Integer)
5451 then
5452 Resolve (R, B_Typ);
5453 Resolve (L, TL);
5455 elsif Is_Fixed_Point_Type (B_Typ)
5456 and then (Base_Type (TR) = Base_Type (Standard_Integer)
5457 or else TR = Universal_Integer)
5458 then
5459 Resolve (L, B_Typ);
5460 Resolve (R, TR);
5462 -- If both operands are universal and the context is a floating
5463 -- point type, the operands are resolved to the type of the context.
5465 elsif Is_Floating_Point_Type (B_Typ) then
5466 Resolve (L, B_Typ);
5467 Resolve (R, B_Typ);
5469 else
5470 Set_Mixed_Mode_Operand (L, TR);
5471 Set_Mixed_Mode_Operand (R, TL);
5472 end if;
5474 -- Check the rule in RM05-4.5.5(19.1/2) disallowing universal_fixed
5475 -- multiplying operators from being used when the expected type is
5476 -- also universal_fixed. Note that B_Typ will be Universal_Fixed in
5477 -- some cases where the expected type is actually Any_Real;
5478 -- Expected_Type_Is_Any_Real takes care of that case.
5480 if Etype (N) = Universal_Fixed
5481 or else Etype (N) = Any_Fixed
5482 then
5483 if B_Typ = Universal_Fixed
5484 and then not Expected_Type_Is_Any_Real (N)
5485 and then not Nkind_In (Parent (N), N_Type_Conversion,
5486 N_Unchecked_Type_Conversion)
5487 then
5488 Error_Msg_N ("type cannot be determined from context!", N);
5489 Error_Msg_N ("\explicit conversion to result type required", N);
5491 Set_Etype (L, Any_Type);
5492 Set_Etype (R, Any_Type);
5494 else
5495 if Ada_Version = Ada_83
5496 and then Etype (N) = Universal_Fixed
5497 and then not
5498 Nkind_In (Parent (N), N_Type_Conversion,
5499 N_Unchecked_Type_Conversion)
5500 then
5501 Error_Msg_N
5502 ("(Ada 83) fixed-point operation needs explicit "
5503 & "conversion", N);
5504 end if;
5506 -- The expected type is "any real type" in contexts like
5508 -- type T is delta <universal_fixed-expression> ...
5510 -- in which case we need to set the type to Universal_Real
5511 -- so that static expression evaluation will work properly.
5513 if Expected_Type_Is_Any_Real (N) then
5514 Set_Etype (N, Universal_Real);
5515 else
5516 Set_Etype (N, B_Typ);
5517 end if;
5518 end if;
5520 elsif Is_Fixed_Point_Type (B_Typ)
5521 and then (Is_Integer_Or_Universal (L)
5522 or else Nkind (L) = N_Real_Literal
5523 or else Nkind (R) = N_Real_Literal
5524 or else Is_Integer_Or_Universal (R))
5525 then
5526 Set_Etype (N, B_Typ);
5528 elsif Etype (N) = Any_Fixed then
5530 -- If no previous errors, this is only possible if one operand is
5531 -- overloaded and the context is universal. Resolve as such.
5533 Set_Etype (N, B_Typ);
5534 end if;
5536 else
5537 if (TL = Universal_Integer or else TL = Universal_Real)
5538 and then
5539 (TR = Universal_Integer or else TR = Universal_Real)
5540 then
5541 Check_For_Visible_Operator (N, B_Typ);
5542 end if;
5544 -- If the context is Universal_Fixed and the operands are also
5545 -- universal fixed, this is an error, unless there is only one
5546 -- applicable fixed_point type (usually Duration).
5548 if B_Typ = Universal_Fixed and then Etype (L) = Universal_Fixed then
5549 T := Unique_Fixed_Point_Type (N);
5551 if T = Any_Type then
5552 Set_Etype (N, T);
5553 return;
5554 else
5555 Resolve (L, T);
5556 Resolve (R, T);
5557 end if;
5559 else
5560 Resolve (L, B_Typ);
5561 Resolve (R, B_Typ);
5562 end if;
5564 -- If one of the arguments was resolved to a non-universal type.
5565 -- label the result of the operation itself with the same type.
5566 -- Do the same for the universal argument, if any.
5568 T := Intersect_Types (L, R);
5569 Set_Etype (N, Base_Type (T));
5570 Set_Operand_Type (L);
5571 Set_Operand_Type (R);
5572 end if;
5574 Generate_Operator_Reference (N, Typ);
5575 Analyze_Dimension (N);
5576 Eval_Arithmetic_Op (N);
5578 -- In SPARK, a multiplication or division with operands of fixed point
5579 -- types must be qualified or explicitly converted to identify the
5580 -- result type.
5582 if (Is_Fixed_Point_Type (Etype (L))
5583 or else Is_Fixed_Point_Type (Etype (R)))
5584 and then Nkind_In (N, N_Op_Multiply, N_Op_Divide)
5585 and then
5586 not Nkind_In (Parent (N), N_Qualified_Expression, N_Type_Conversion)
5587 then
5588 Check_SPARK_05_Restriction
5589 ("operation should be qualified or explicitly converted", N);
5590 end if;
5592 -- Set overflow and division checking bit
5594 if Nkind (N) in N_Op then
5595 if not Overflow_Checks_Suppressed (Etype (N)) then
5596 Enable_Overflow_Check (N);
5597 end if;
5599 -- Give warning if explicit division by zero
5601 if Nkind_In (N, N_Op_Divide, N_Op_Rem, N_Op_Mod)
5602 and then not Division_Checks_Suppressed (Etype (N))
5603 then
5604 Rop := Right_Opnd (N);
5606 if Compile_Time_Known_Value (Rop)
5607 and then ((Is_Integer_Type (Etype (Rop))
5608 and then Expr_Value (Rop) = Uint_0)
5609 or else
5610 (Is_Real_Type (Etype (Rop))
5611 and then Expr_Value_R (Rop) = Ureal_0))
5612 then
5613 -- Specialize the warning message according to the operation.
5614 -- When SPARK_Mode is On, force a warning instead of an error
5615 -- in that case, as this likely corresponds to deactivated
5616 -- code. The following warnings are for the case
5618 case Nkind (N) is
5619 when N_Op_Divide =>
5621 -- For division, we have two cases, for float division
5622 -- of an unconstrained float type, on a machine where
5623 -- Machine_Overflows is false, we don't get an exception
5624 -- at run-time, but rather an infinity or Nan. The Nan
5625 -- case is pretty obscure, so just warn about infinities.
5627 if Is_Floating_Point_Type (Typ)
5628 and then not Is_Constrained (Typ)
5629 and then not Machine_Overflows_On_Target
5630 then
5631 Error_Msg_N
5632 ("float division by zero, may generate "
5633 & "'+'/'- infinity??", Right_Opnd (N));
5635 -- For all other cases, we get a Constraint_Error
5637 else
5638 Apply_Compile_Time_Constraint_Error
5639 (N, "division by zero??", CE_Divide_By_Zero,
5640 Loc => Sloc (Right_Opnd (N)),
5641 Warn => SPARK_Mode = On);
5642 end if;
5644 when N_Op_Rem =>
5645 Apply_Compile_Time_Constraint_Error
5646 (N, "rem with zero divisor??", CE_Divide_By_Zero,
5647 Loc => Sloc (Right_Opnd (N)),
5648 Warn => SPARK_Mode = On);
5650 when N_Op_Mod =>
5651 Apply_Compile_Time_Constraint_Error
5652 (N, "mod with zero divisor??", CE_Divide_By_Zero,
5653 Loc => Sloc (Right_Opnd (N)),
5654 Warn => SPARK_Mode = On);
5656 -- Division by zero can only happen with division, rem,
5657 -- and mod operations.
5659 when others =>
5660 raise Program_Error;
5661 end case;
5663 -- In GNATprove mode, we enable the division check so that
5664 -- GNATprove will issue a message if it cannot be proved.
5666 if GNATprove_Mode then
5667 Activate_Division_Check (N);
5668 end if;
5670 -- Otherwise just set the flag to check at run time
5672 else
5673 Activate_Division_Check (N);
5674 end if;
5675 end if;
5677 -- If Restriction No_Implicit_Conditionals is active, then it is
5678 -- violated if either operand can be negative for mod, or for rem
5679 -- if both operands can be negative.
5681 if Restriction_Check_Required (No_Implicit_Conditionals)
5682 and then Nkind_In (N, N_Op_Rem, N_Op_Mod)
5683 then
5684 declare
5685 Lo : Uint;
5686 Hi : Uint;
5687 OK : Boolean;
5689 LNeg : Boolean;
5690 RNeg : Boolean;
5691 -- Set if corresponding operand might be negative
5693 begin
5694 Determine_Range
5695 (Left_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5696 LNeg := (not OK) or else Lo < 0;
5698 Determine_Range
5699 (Right_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5700 RNeg := (not OK) or else Lo < 0;
5702 -- Check if we will be generating conditionals. There are two
5703 -- cases where that can happen, first for REM, the only case
5704 -- is largest negative integer mod -1, where the division can
5705 -- overflow, but we still have to give the right result. The
5706 -- front end generates a test for this annoying case. Here we
5707 -- just test if both operands can be negative (that's what the
5708 -- expander does, so we match its logic here).
5710 -- The second case is mod where either operand can be negative.
5711 -- In this case, the back end has to generate additional tests.
5713 if (Nkind (N) = N_Op_Rem and then (LNeg and RNeg))
5714 or else
5715 (Nkind (N) = N_Op_Mod and then (LNeg or RNeg))
5716 then
5717 Check_Restriction (No_Implicit_Conditionals, N);
5718 end if;
5719 end;
5720 end if;
5721 end if;
5723 Check_Unset_Reference (L);
5724 Check_Unset_Reference (R);
5725 end Resolve_Arithmetic_Op;
5727 ------------------
5728 -- Resolve_Call --
5729 ------------------
5731 procedure Resolve_Call (N : Node_Id; Typ : Entity_Id) is
5732 function Same_Or_Aliased_Subprograms
5733 (S : Entity_Id;
5734 E : Entity_Id) return Boolean;
5735 -- Returns True if the subprogram entity S is the same as E or else
5736 -- S is an alias of E.
5738 ---------------------------------
5739 -- Same_Or_Aliased_Subprograms --
5740 ---------------------------------
5742 function Same_Or_Aliased_Subprograms
5743 (S : Entity_Id;
5744 E : Entity_Id) return Boolean
5746 Subp_Alias : constant Entity_Id := Alias (S);
5747 begin
5748 return S = E or else (Present (Subp_Alias) and then Subp_Alias = E);
5749 end Same_Or_Aliased_Subprograms;
5751 -- Local variables
5753 Loc : constant Source_Ptr := Sloc (N);
5754 Subp : constant Node_Id := Name (N);
5755 Body_Id : Entity_Id;
5756 I : Interp_Index;
5757 It : Interp;
5758 Nam : Entity_Id;
5759 Nam_Decl : Node_Id;
5760 Nam_UA : Entity_Id;
5761 Norm_OK : Boolean;
5762 Rtype : Entity_Id;
5763 Scop : Entity_Id;
5765 -- Start of processing for Resolve_Call
5767 begin
5768 -- Preserve relevant elaboration-related attributes of the context which
5769 -- are no longer available or very expensive to recompute once analysis,
5770 -- resolution, and expansion are over.
5772 Mark_Elaboration_Attributes
5773 (N_Id => N,
5774 Checks => True,
5775 Modes => True,
5776 Warnings => True);
5778 -- The context imposes a unique interpretation with type Typ on a
5779 -- procedure or function call. Find the entity of the subprogram that
5780 -- yields the expected type, and propagate the corresponding formal
5781 -- constraints on the actuals. The caller has established that an
5782 -- interpretation exists, and emitted an error if not unique.
5784 -- First deal with the case of a call to an access-to-subprogram,
5785 -- dereference made explicit in Analyze_Call.
5787 if Ekind (Etype (Subp)) = E_Subprogram_Type then
5788 if not Is_Overloaded (Subp) then
5789 Nam := Etype (Subp);
5791 else
5792 -- Find the interpretation whose type (a subprogram type) has a
5793 -- return type that is compatible with the context. Analysis of
5794 -- the node has established that one exists.
5796 Nam := Empty;
5798 Get_First_Interp (Subp, I, It);
5799 while Present (It.Typ) loop
5800 if Covers (Typ, Etype (It.Typ)) then
5801 Nam := It.Typ;
5802 exit;
5803 end if;
5805 Get_Next_Interp (I, It);
5806 end loop;
5808 if No (Nam) then
5809 raise Program_Error;
5810 end if;
5811 end if;
5813 -- If the prefix is not an entity, then resolve it
5815 if not Is_Entity_Name (Subp) then
5816 Resolve (Subp, Nam);
5817 end if;
5819 -- For an indirect call, we always invalidate checks, since we do not
5820 -- know whether the subprogram is local or global. Yes we could do
5821 -- better here, e.g. by knowing that there are no local subprograms,
5822 -- but it does not seem worth the effort. Similarly, we kill all
5823 -- knowledge of current constant values.
5825 Kill_Current_Values;
5827 -- If this is a procedure call which is really an entry call, do
5828 -- the conversion of the procedure call to an entry call. Protected
5829 -- operations use the same circuitry because the name in the call
5830 -- can be an arbitrary expression with special resolution rules.
5832 elsif Nkind_In (Subp, N_Selected_Component, N_Indexed_Component)
5833 or else (Is_Entity_Name (Subp)
5834 and then Ekind_In (Entity (Subp), E_Entry, E_Entry_Family))
5835 then
5836 Resolve_Entry_Call (N, Typ);
5838 if Legacy_Elaboration_Checks then
5839 Check_Elab_Call (N);
5840 end if;
5842 -- Annotate the tree by creating a call marker in case the original
5843 -- call is transformed by expansion. The call marker is automatically
5844 -- saved for later examination by the ABE Processing phase.
5846 Build_Call_Marker (N);
5848 -- Kill checks and constant values, as above for indirect case
5849 -- Who knows what happens when another task is activated?
5851 Kill_Current_Values;
5852 return;
5854 -- Normal subprogram call with name established in Resolve
5856 elsif not (Is_Type (Entity (Subp))) then
5857 Nam := Entity (Subp);
5858 Set_Entity_With_Checks (Subp, Nam);
5860 -- Otherwise we must have the case of an overloaded call
5862 else
5863 pragma Assert (Is_Overloaded (Subp));
5865 -- Initialize Nam to prevent warning (we know it will be assigned
5866 -- in the loop below, but the compiler does not know that).
5868 Nam := Empty;
5870 Get_First_Interp (Subp, I, It);
5871 while Present (It.Typ) loop
5872 if Covers (Typ, It.Typ) then
5873 Nam := It.Nam;
5874 Set_Entity_With_Checks (Subp, Nam);
5875 exit;
5876 end if;
5878 Get_Next_Interp (I, It);
5879 end loop;
5880 end if;
5882 if Is_Access_Subprogram_Type (Base_Type (Etype (Nam)))
5883 and then not Is_Access_Subprogram_Type (Base_Type (Typ))
5884 and then Nkind (Subp) /= N_Explicit_Dereference
5885 and then Present (Parameter_Associations (N))
5886 then
5887 -- The prefix is a parameterless function call that returns an access
5888 -- to subprogram. If parameters are present in the current call, add
5889 -- add an explicit dereference. We use the base type here because
5890 -- within an instance these may be subtypes.
5892 -- The dereference is added either in Analyze_Call or here. Should
5893 -- be consolidated ???
5895 Set_Is_Overloaded (Subp, False);
5896 Set_Etype (Subp, Etype (Nam));
5897 Insert_Explicit_Dereference (Subp);
5898 Nam := Designated_Type (Etype (Nam));
5899 Resolve (Subp, Nam);
5900 end if;
5902 -- Check that a call to Current_Task does not occur in an entry body
5904 if Is_RTE (Nam, RE_Current_Task) then
5905 declare
5906 P : Node_Id;
5908 begin
5909 P := N;
5910 loop
5911 P := Parent (P);
5913 -- Exclude calls that occur within the default of a formal
5914 -- parameter of the entry, since those are evaluated outside
5915 -- of the body.
5917 exit when No (P) or else Nkind (P) = N_Parameter_Specification;
5919 if Nkind (P) = N_Entry_Body
5920 or else (Nkind (P) = N_Subprogram_Body
5921 and then Is_Entry_Barrier_Function (P))
5922 then
5923 Rtype := Etype (N);
5924 Error_Msg_Warn := SPARK_Mode /= On;
5925 Error_Msg_NE
5926 ("& should not be used in entry body (RM C.7(17))<<",
5927 N, Nam);
5928 Error_Msg_NE ("\Program_Error [<<", N, Nam);
5929 Rewrite (N,
5930 Make_Raise_Program_Error (Loc,
5931 Reason => PE_Current_Task_In_Entry_Body));
5932 Set_Etype (N, Rtype);
5933 return;
5934 end if;
5935 end loop;
5936 end;
5937 end if;
5939 -- Check that a procedure call does not occur in the context of the
5940 -- entry call statement of a conditional or timed entry call. Note that
5941 -- the case of a call to a subprogram renaming of an entry will also be
5942 -- rejected. The test for N not being an N_Entry_Call_Statement is
5943 -- defensive, covering the possibility that the processing of entry
5944 -- calls might reach this point due to later modifications of the code
5945 -- above.
5947 if Nkind (Parent (N)) = N_Entry_Call_Alternative
5948 and then Nkind (N) /= N_Entry_Call_Statement
5949 and then Entry_Call_Statement (Parent (N)) = N
5950 then
5951 if Ada_Version < Ada_2005 then
5952 Error_Msg_N ("entry call required in select statement", N);
5954 -- Ada 2005 (AI-345): If a procedure_call_statement is used
5955 -- for a procedure_or_entry_call, the procedure_name or
5956 -- procedure_prefix of the procedure_call_statement shall denote
5957 -- an entry renamed by a procedure, or (a view of) a primitive
5958 -- subprogram of a limited interface whose first parameter is
5959 -- a controlling parameter.
5961 elsif Nkind (N) = N_Procedure_Call_Statement
5962 and then not Is_Renamed_Entry (Nam)
5963 and then not Is_Controlling_Limited_Procedure (Nam)
5964 then
5965 Error_Msg_N
5966 ("entry call or dispatching primitive of interface required", N);
5967 end if;
5968 end if;
5970 -- If the SPARK_05 restriction is active, we are not allowed
5971 -- to have a call to a subprogram before we see its completion.
5973 if not Has_Completion (Nam)
5974 and then Restriction_Check_Required (SPARK_05)
5976 -- Don't flag strange internal calls
5978 and then Comes_From_Source (N)
5979 and then Comes_From_Source (Nam)
5981 -- Only flag calls in extended main source
5983 and then In_Extended_Main_Source_Unit (Nam)
5984 and then In_Extended_Main_Source_Unit (N)
5986 -- Exclude enumeration literals from this processing
5988 and then Ekind (Nam) /= E_Enumeration_Literal
5989 then
5990 Check_SPARK_05_Restriction
5991 ("call to subprogram cannot appear before its body", N);
5992 end if;
5994 -- Check that this is not a call to a protected procedure or entry from
5995 -- within a protected function.
5997 Check_Internal_Protected_Use (N, Nam);
5999 -- Freeze the subprogram name if not in a spec-expression. Note that
6000 -- we freeze procedure calls as well as function calls. Procedure calls
6001 -- are not frozen according to the rules (RM 13.14(14)) because it is
6002 -- impossible to have a procedure call to a non-frozen procedure in
6003 -- pure Ada, but in the code that we generate in the expander, this
6004 -- rule needs extending because we can generate procedure calls that
6005 -- need freezing.
6007 -- In Ada 2012, expression functions may be called within pre/post
6008 -- conditions of subsequent functions or expression functions. Such
6009 -- calls do not freeze when they appear within generated bodies,
6010 -- (including the body of another expression function) which would
6011 -- place the freeze node in the wrong scope. An expression function
6012 -- is frozen in the usual fashion, by the appearance of a real body,
6013 -- or at the end of a declarative part.
6015 if Is_Entity_Name (Subp)
6016 and then not In_Spec_Expression
6017 and then not Is_Expression_Function_Or_Completion (Current_Scope)
6018 and then
6019 (not Is_Expression_Function_Or_Completion (Entity (Subp))
6020 or else Scope (Entity (Subp)) = Current_Scope)
6021 then
6022 Freeze_Expression (Subp);
6023 end if;
6025 -- For a predefined operator, the type of the result is the type imposed
6026 -- by context, except for a predefined operation on universal fixed.
6027 -- Otherwise The type of the call is the type returned by the subprogram
6028 -- being called.
6030 if Is_Predefined_Op (Nam) then
6031 if Etype (N) /= Universal_Fixed then
6032 Set_Etype (N, Typ);
6033 end if;
6035 -- If the subprogram returns an array type, and the context requires the
6036 -- component type of that array type, the node is really an indexing of
6037 -- the parameterless call. Resolve as such. A pathological case occurs
6038 -- when the type of the component is an access to the array type. In
6039 -- this case the call is truly ambiguous. If the call is to an intrinsic
6040 -- subprogram, it can't be an indexed component. This check is necessary
6041 -- because if it's Unchecked_Conversion, and we have "type T_Ptr is
6042 -- access T;" and "type T is array (...) of T_Ptr;" (i.e. an array of
6043 -- pointers to the same array), the compiler gets confused and does an
6044 -- infinite recursion.
6046 elsif (Needs_No_Actuals (Nam) or else Needs_One_Actual (Nam))
6047 and then
6048 ((Is_Array_Type (Etype (Nam))
6049 and then Covers (Typ, Component_Type (Etype (Nam))))
6050 or else
6051 (Is_Access_Type (Etype (Nam))
6052 and then Is_Array_Type (Designated_Type (Etype (Nam)))
6053 and then
6054 Covers (Typ, Component_Type (Designated_Type (Etype (Nam))))
6055 and then not Is_Intrinsic_Subprogram (Entity (Subp))))
6056 then
6057 declare
6058 Index_Node : Node_Id;
6059 New_Subp : Node_Id;
6060 Ret_Type : constant Entity_Id := Etype (Nam);
6062 begin
6063 if Is_Access_Type (Ret_Type)
6064 and then Ret_Type = Component_Type (Designated_Type (Ret_Type))
6065 then
6066 Error_Msg_N
6067 ("cannot disambiguate function call and indexing", N);
6068 else
6069 New_Subp := Relocate_Node (Subp);
6071 -- The called entity may be an explicit dereference, in which
6072 -- case there is no entity to set.
6074 if Nkind (New_Subp) /= N_Explicit_Dereference then
6075 Set_Entity (Subp, Nam);
6076 end if;
6078 if (Is_Array_Type (Ret_Type)
6079 and then Component_Type (Ret_Type) /= Any_Type)
6080 or else
6081 (Is_Access_Type (Ret_Type)
6082 and then
6083 Component_Type (Designated_Type (Ret_Type)) /= Any_Type)
6084 then
6085 if Needs_No_Actuals (Nam) then
6087 -- Indexed call to a parameterless function
6089 Index_Node :=
6090 Make_Indexed_Component (Loc,
6091 Prefix =>
6092 Make_Function_Call (Loc, Name => New_Subp),
6093 Expressions => Parameter_Associations (N));
6094 else
6095 -- An Ada 2005 prefixed call to a primitive operation
6096 -- whose first parameter is the prefix. This prefix was
6097 -- prepended to the parameter list, which is actually a
6098 -- list of indexes. Remove the prefix in order to build
6099 -- the proper indexed component.
6101 Index_Node :=
6102 Make_Indexed_Component (Loc,
6103 Prefix =>
6104 Make_Function_Call (Loc,
6105 Name => New_Subp,
6106 Parameter_Associations =>
6107 New_List
6108 (Remove_Head (Parameter_Associations (N)))),
6109 Expressions => Parameter_Associations (N));
6110 end if;
6112 -- Preserve the parenthesis count of the node
6114 Set_Paren_Count (Index_Node, Paren_Count (N));
6116 -- Since we are correcting a node classification error made
6117 -- by the parser, we call Replace rather than Rewrite.
6119 Replace (N, Index_Node);
6121 Set_Etype (Prefix (N), Ret_Type);
6122 Set_Etype (N, Typ);
6123 Resolve_Indexed_Component (N, Typ);
6125 if Legacy_Elaboration_Checks then
6126 Check_Elab_Call (Prefix (N));
6127 end if;
6129 -- Annotate the tree by creating a call marker in case
6130 -- the original call is transformed by expansion. The call
6131 -- marker is automatically saved for later examination by
6132 -- the ABE Processing phase.
6134 Build_Call_Marker (Prefix (N));
6135 end if;
6136 end if;
6138 return;
6139 end;
6141 else
6142 -- If the called function is not declared in the main unit and it
6143 -- returns the limited view of type then use the available view (as
6144 -- is done in Try_Object_Operation) to prevent back-end confusion;
6145 -- for the function entity itself. The call must appear in a context
6146 -- where the nonlimited view is available. If the function entity is
6147 -- in the extended main unit then no action is needed, because the
6148 -- back end handles this case. In either case the type of the call
6149 -- is the nonlimited view.
6151 if From_Limited_With (Etype (Nam))
6152 and then Present (Available_View (Etype (Nam)))
6153 then
6154 Set_Etype (N, Available_View (Etype (Nam)));
6156 if not In_Extended_Main_Code_Unit (Nam) then
6157 Set_Etype (Nam, Available_View (Etype (Nam)));
6158 end if;
6160 else
6161 Set_Etype (N, Etype (Nam));
6162 end if;
6163 end if;
6165 -- In the case where the call is to an overloaded subprogram, Analyze
6166 -- calls Normalize_Actuals once per overloaded subprogram. Therefore in
6167 -- such a case Normalize_Actuals needs to be called once more to order
6168 -- the actuals correctly. Otherwise the call will have the ordering
6169 -- given by the last overloaded subprogram whether this is the correct
6170 -- one being called or not.
6172 if Is_Overloaded (Subp) then
6173 Normalize_Actuals (N, Nam, False, Norm_OK);
6174 pragma Assert (Norm_OK);
6175 end if;
6177 -- In any case, call is fully resolved now. Reset Overload flag, to
6178 -- prevent subsequent overload resolution if node is analyzed again
6180 Set_Is_Overloaded (Subp, False);
6181 Set_Is_Overloaded (N, False);
6183 -- A Ghost entity must appear in a specific context
6185 if Is_Ghost_Entity (Nam) and then Comes_From_Source (N) then
6186 Check_Ghost_Context (Nam, N);
6187 end if;
6189 -- If we are calling the current subprogram from immediately within its
6190 -- body, then that is the case where we can sometimes detect cases of
6191 -- infinite recursion statically. Do not try this in case restriction
6192 -- No_Recursion is in effect anyway, and do it only for source calls.
6194 if Comes_From_Source (N) then
6195 Scop := Current_Scope;
6197 -- Check violation of SPARK_05 restriction which does not permit
6198 -- a subprogram body to contain a call to the subprogram directly.
6200 if Restriction_Check_Required (SPARK_05)
6201 and then Same_Or_Aliased_Subprograms (Nam, Scop)
6202 then
6203 Check_SPARK_05_Restriction
6204 ("subprogram may not contain direct call to itself", N);
6205 end if;
6207 -- Issue warning for possible infinite recursion in the absence
6208 -- of the No_Recursion restriction.
6210 if Same_Or_Aliased_Subprograms (Nam, Scop)
6211 and then not Restriction_Active (No_Recursion)
6212 and then Check_Infinite_Recursion (N)
6213 then
6214 -- Here we detected and flagged an infinite recursion, so we do
6215 -- not need to test the case below for further warnings. Also we
6216 -- are all done if we now have a raise SE node.
6218 if Nkind (N) = N_Raise_Storage_Error then
6219 return;
6220 end if;
6222 -- If call is to immediately containing subprogram, then check for
6223 -- the case of a possible run-time detectable infinite recursion.
6225 else
6226 Scope_Loop : while Scop /= Standard_Standard loop
6227 if Same_Or_Aliased_Subprograms (Nam, Scop) then
6229 -- Although in general case, recursion is not statically
6230 -- checkable, the case of calling an immediately containing
6231 -- subprogram is easy to catch.
6233 Check_Restriction (No_Recursion, N);
6235 -- If the recursive call is to a parameterless subprogram,
6236 -- then even if we can't statically detect infinite
6237 -- recursion, this is pretty suspicious, and we output a
6238 -- warning. Furthermore, we will try later to detect some
6239 -- cases here at run time by expanding checking code (see
6240 -- Detect_Infinite_Recursion in package Exp_Ch6).
6242 -- If the recursive call is within a handler, do not emit a
6243 -- warning, because this is a common idiom: loop until input
6244 -- is correct, catch illegal input in handler and restart.
6246 if No (First_Formal (Nam))
6247 and then Etype (Nam) = Standard_Void_Type
6248 and then not Error_Posted (N)
6249 and then Nkind (Parent (N)) /= N_Exception_Handler
6250 then
6251 -- For the case of a procedure call. We give the message
6252 -- only if the call is the first statement in a sequence
6253 -- of statements, or if all previous statements are
6254 -- simple assignments. This is simply a heuristic to
6255 -- decrease false positives, without losing too many good
6256 -- warnings. The idea is that these previous statements
6257 -- may affect global variables the procedure depends on.
6258 -- We also exclude raise statements, that may arise from
6259 -- constraint checks and are probably unrelated to the
6260 -- intended control flow.
6262 if Nkind (N) = N_Procedure_Call_Statement
6263 and then Is_List_Member (N)
6264 then
6265 declare
6266 P : Node_Id;
6267 begin
6268 P := Prev (N);
6269 while Present (P) loop
6270 if not Nkind_In (P, N_Assignment_Statement,
6271 N_Raise_Constraint_Error)
6272 then
6273 exit Scope_Loop;
6274 end if;
6276 Prev (P);
6277 end loop;
6278 end;
6279 end if;
6281 -- Do not give warning if we are in a conditional context
6283 declare
6284 K : constant Node_Kind := Nkind (Parent (N));
6285 begin
6286 if (K = N_Loop_Statement
6287 and then Present (Iteration_Scheme (Parent (N))))
6288 or else K = N_If_Statement
6289 or else K = N_Elsif_Part
6290 or else K = N_Case_Statement_Alternative
6291 then
6292 exit Scope_Loop;
6293 end if;
6294 end;
6296 -- Here warning is to be issued
6298 Set_Has_Recursive_Call (Nam);
6299 Error_Msg_Warn := SPARK_Mode /= On;
6300 Error_Msg_N ("possible infinite recursion<<!", N);
6301 Error_Msg_N ("\Storage_Error ]<<!", N);
6302 end if;
6304 exit Scope_Loop;
6305 end if;
6307 Scop := Scope (Scop);
6308 end loop Scope_Loop;
6309 end if;
6310 end if;
6312 -- Check obsolescent reference to Ada.Characters.Handling subprogram
6314 Check_Obsolescent_2005_Entity (Nam, Subp);
6316 -- If subprogram name is a predefined operator, it was given in
6317 -- functional notation. Replace call node with operator node, so
6318 -- that actuals can be resolved appropriately.
6320 if Is_Predefined_Op (Nam) or else Ekind (Nam) = E_Operator then
6321 Make_Call_Into_Operator (N, Typ, Entity (Name (N)));
6322 return;
6324 elsif Present (Alias (Nam))
6325 and then Is_Predefined_Op (Alias (Nam))
6326 then
6327 Resolve_Actuals (N, Nam);
6328 Make_Call_Into_Operator (N, Typ, Alias (Nam));
6329 return;
6330 end if;
6332 -- Create a transient scope if the resulting type requires it
6334 -- There are several notable exceptions:
6336 -- a) In init procs, the transient scope overhead is not needed, and is
6337 -- even incorrect when the call is a nested initialization call for a
6338 -- component whose expansion may generate adjust calls. However, if the
6339 -- call is some other procedure call within an initialization procedure
6340 -- (for example a call to Create_Task in the init_proc of the task
6341 -- run-time record) a transient scope must be created around this call.
6343 -- b) Enumeration literal pseudo-calls need no transient scope
6345 -- c) Intrinsic subprograms (Unchecked_Conversion and source info
6346 -- functions) do not use the secondary stack even though the return
6347 -- type may be unconstrained.
6349 -- d) Calls to a build-in-place function, since such functions may
6350 -- allocate their result directly in a target object, and cases where
6351 -- the result does get allocated in the secondary stack are checked for
6352 -- within the specialized Exp_Ch6 procedures for expanding those
6353 -- build-in-place calls.
6355 -- e) Calls to inlinable expression functions do not use the secondary
6356 -- stack (since the call will be replaced by its returned object).
6358 -- f) If the subprogram is marked Inline_Always, then even if it returns
6359 -- an unconstrained type the call does not require use of the secondary
6360 -- stack. However, inlining will only take place if the body to inline
6361 -- is already present. It may not be available if e.g. the subprogram is
6362 -- declared in a child instance.
6364 if Is_Inlined (Nam)
6365 and then Has_Pragma_Inline (Nam)
6366 and then Nkind (Unit_Declaration_Node (Nam)) = N_Subprogram_Declaration
6367 and then Present (Body_To_Inline (Unit_Declaration_Node (Nam)))
6368 then
6369 null;
6371 elsif Ekind (Nam) = E_Enumeration_Literal
6372 or else Is_Build_In_Place_Function (Nam)
6373 or else Is_Intrinsic_Subprogram (Nam)
6374 or else Is_Inlinable_Expression_Function (Nam)
6375 then
6376 null;
6378 elsif Expander_Active
6379 and then Ekind (Nam) = E_Function
6380 and then Requires_Transient_Scope (Etype (Nam))
6381 then
6382 Establish_Transient_Scope (N, Manage_Sec_Stack => True);
6384 -- If the call appears within the bounds of a loop, it will be
6385 -- rewritten and reanalyzed, nothing left to do here.
6387 if Nkind (N) /= N_Function_Call then
6388 return;
6389 end if;
6390 end if;
6392 -- A protected function cannot be called within the definition of the
6393 -- enclosing protected type, unless it is part of a pre/postcondition
6394 -- on another protected operation. This may appear in the entry wrapper
6395 -- created for an entry with preconditions.
6397 if Is_Protected_Type (Scope (Nam))
6398 and then In_Open_Scopes (Scope (Nam))
6399 and then not Has_Completion (Scope (Nam))
6400 and then not In_Spec_Expression
6401 and then not Is_Entry_Wrapper (Current_Scope)
6402 then
6403 Error_Msg_NE
6404 ("& cannot be called before end of protected definition", N, Nam);
6405 end if;
6407 -- Propagate interpretation to actuals, and add default expressions
6408 -- where needed.
6410 if Present (First_Formal (Nam)) then
6411 Resolve_Actuals (N, Nam);
6413 -- Overloaded literals are rewritten as function calls, for purpose of
6414 -- resolution. After resolution, we can replace the call with the
6415 -- literal itself.
6417 elsif Ekind (Nam) = E_Enumeration_Literal then
6418 Copy_Node (Subp, N);
6419 Resolve_Entity_Name (N, Typ);
6421 -- Avoid validation, since it is a static function call
6423 Generate_Reference (Nam, Subp);
6424 return;
6425 end if;
6427 -- If the subprogram is not global, then kill all saved values and
6428 -- checks. This is a bit conservative, since in many cases we could do
6429 -- better, but it is not worth the effort. Similarly, we kill constant
6430 -- values. However we do not need to do this for internal entities
6431 -- (unless they are inherited user-defined subprograms), since they
6432 -- are not in the business of molesting local values.
6434 -- If the flag Suppress_Value_Tracking_On_Calls is set, then we also
6435 -- kill all checks and values for calls to global subprograms. This
6436 -- takes care of the case where an access to a local subprogram is
6437 -- taken, and could be passed directly or indirectly and then called
6438 -- from almost any context.
6440 -- Note: we do not do this step till after resolving the actuals. That
6441 -- way we still take advantage of the current value information while
6442 -- scanning the actuals.
6444 -- We suppress killing values if we are processing the nodes associated
6445 -- with N_Freeze_Entity nodes. Otherwise the declaration of a tagged
6446 -- type kills all the values as part of analyzing the code that
6447 -- initializes the dispatch tables.
6449 if Inside_Freezing_Actions = 0
6450 and then (not Is_Library_Level_Entity (Nam)
6451 or else Suppress_Value_Tracking_On_Call
6452 (Nearest_Dynamic_Scope (Current_Scope)))
6453 and then (Comes_From_Source (Nam)
6454 or else (Present (Alias (Nam))
6455 and then Comes_From_Source (Alias (Nam))))
6456 then
6457 Kill_Current_Values;
6458 end if;
6460 -- If we are warning about unread OUT parameters, this is the place to
6461 -- set Last_Assignment for OUT and IN OUT parameters. We have to do this
6462 -- after the above call to Kill_Current_Values (since that call clears
6463 -- the Last_Assignment field of all local variables).
6465 if (Warn_On_Modified_Unread or Warn_On_All_Unread_Out_Parameters)
6466 and then Comes_From_Source (N)
6467 and then In_Extended_Main_Source_Unit (N)
6468 then
6469 declare
6470 F : Entity_Id;
6471 A : Node_Id;
6473 begin
6474 F := First_Formal (Nam);
6475 A := First_Actual (N);
6476 while Present (F) and then Present (A) loop
6477 if Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter)
6478 and then Warn_On_Modified_As_Out_Parameter (F)
6479 and then Is_Entity_Name (A)
6480 and then Present (Entity (A))
6481 and then Comes_From_Source (N)
6482 and then Safe_To_Capture_Value (N, Entity (A))
6483 then
6484 Set_Last_Assignment (Entity (A), A);
6485 end if;
6487 Next_Formal (F);
6488 Next_Actual (A);
6489 end loop;
6490 end;
6491 end if;
6493 -- If the subprogram is a primitive operation, check whether or not
6494 -- it is a correct dispatching call.
6496 if Is_Overloadable (Nam)
6497 and then Is_Dispatching_Operation (Nam)
6498 then
6499 Check_Dispatching_Call (N);
6501 elsif Ekind (Nam) /= E_Subprogram_Type
6502 and then Is_Abstract_Subprogram (Nam)
6503 and then not In_Instance
6504 then
6505 Error_Msg_NE ("cannot call abstract subprogram &!", N, Nam);
6506 end if;
6508 -- If this is a dispatching call, generate the appropriate reference,
6509 -- for better source navigation in GPS.
6511 if Is_Overloadable (Nam)
6512 and then Present (Controlling_Argument (N))
6513 then
6514 Generate_Reference (Nam, Subp, 'R');
6516 -- Normal case, not a dispatching call: generate a call reference
6518 else
6519 Generate_Reference (Nam, Subp, 's');
6520 end if;
6522 if Is_Intrinsic_Subprogram (Nam) then
6523 Check_Intrinsic_Call (N);
6524 end if;
6526 -- Check for violation of restriction No_Specific_Termination_Handlers
6527 -- and warn on a potentially blocking call to Abort_Task.
6529 if Restriction_Check_Required (No_Specific_Termination_Handlers)
6530 and then (Is_RTE (Nam, RE_Set_Specific_Handler)
6531 or else
6532 Is_RTE (Nam, RE_Specific_Handler))
6533 then
6534 Check_Restriction (No_Specific_Termination_Handlers, N);
6536 elsif Is_RTE (Nam, RE_Abort_Task) then
6537 Check_Potentially_Blocking_Operation (N);
6538 end if;
6540 -- A call to Ada.Real_Time.Timing_Events.Set_Handler to set a relative
6541 -- timing event violates restriction No_Relative_Delay (AI-0211). We
6542 -- need to check the second argument to determine whether it is an
6543 -- absolute or relative timing event.
6545 if Restriction_Check_Required (No_Relative_Delay)
6546 and then Is_RTE (Nam, RE_Set_Handler)
6547 and then Is_RTE (Etype (Next_Actual (First_Actual (N))), RE_Time_Span)
6548 then
6549 Check_Restriction (No_Relative_Delay, N);
6550 end if;
6552 -- Issue an error for a call to an eliminated subprogram. This routine
6553 -- will not perform the check if the call appears within a default
6554 -- expression.
6556 Check_For_Eliminated_Subprogram (Subp, Nam);
6558 -- In formal mode, the primitive operations of a tagged type or type
6559 -- extension do not include functions that return the tagged type.
6561 if Nkind (N) = N_Function_Call
6562 and then Is_Tagged_Type (Etype (N))
6563 and then Is_Entity_Name (Name (N))
6564 and then Is_Inherited_Operation_For_Type (Entity (Name (N)), Etype (N))
6565 then
6566 Check_SPARK_05_Restriction ("function not inherited", N);
6567 end if;
6569 -- Implement rule in 12.5.1 (23.3/2): In an instance, if the actual is
6570 -- class-wide and the call dispatches on result in a context that does
6571 -- not provide a tag, the call raises Program_Error.
6573 if Nkind (N) = N_Function_Call
6574 and then In_Instance
6575 and then Is_Generic_Actual_Type (Typ)
6576 and then Is_Class_Wide_Type (Typ)
6577 and then Has_Controlling_Result (Nam)
6578 and then Nkind (Parent (N)) = N_Object_Declaration
6579 then
6580 -- Verify that none of the formals are controlling
6582 declare
6583 Call_OK : Boolean := False;
6584 F : Entity_Id;
6586 begin
6587 F := First_Formal (Nam);
6588 while Present (F) loop
6589 if Is_Controlling_Formal (F) then
6590 Call_OK := True;
6591 exit;
6592 end if;
6594 Next_Formal (F);
6595 end loop;
6597 if not Call_OK then
6598 Error_Msg_Warn := SPARK_Mode /= On;
6599 Error_Msg_N ("!cannot determine tag of result<<", N);
6600 Error_Msg_N ("\Program_Error [<<!", N);
6601 Insert_Action (N,
6602 Make_Raise_Program_Error (Sloc (N),
6603 Reason => PE_Explicit_Raise));
6604 end if;
6605 end;
6606 end if;
6608 -- Check for calling a function with OUT or IN OUT parameter when the
6609 -- calling context (us right now) is not Ada 2012, so does not allow
6610 -- OUT or IN OUT parameters in function calls. Functions declared in
6611 -- a predefined unit are OK, as they may be called indirectly from a
6612 -- user-declared instantiation.
6614 if Ada_Version < Ada_2012
6615 and then Ekind (Nam) = E_Function
6616 and then Has_Out_Or_In_Out_Parameter (Nam)
6617 and then not In_Predefined_Unit (Nam)
6618 then
6619 Error_Msg_NE ("& has at least one OUT or `IN OUT` parameter", N, Nam);
6620 Error_Msg_N ("\call to this function only allowed in Ada 2012", N);
6621 end if;
6623 -- Check the dimensions of the actuals in the call. For function calls,
6624 -- propagate the dimensions from the returned type to N.
6626 Analyze_Dimension_Call (N, Nam);
6628 -- All done, evaluate call and deal with elaboration issues
6630 Eval_Call (N);
6632 if Legacy_Elaboration_Checks then
6633 Check_Elab_Call (N);
6634 end if;
6636 -- Annotate the tree by creating a call marker in case the original call
6637 -- is transformed by expansion. The call marker is automatically saved
6638 -- for later examination by the ABE Processing phase.
6640 Build_Call_Marker (N);
6642 -- In GNATprove mode, expansion is disabled, but we want to inline some
6643 -- subprograms to facilitate formal verification. Indirect calls through
6644 -- a subprogram type or within a generic cannot be inlined. Inlining is
6645 -- performed only for calls subject to SPARK_Mode on.
6647 if GNATprove_Mode
6648 and then SPARK_Mode = On
6649 and then Is_Overloadable (Nam)
6650 and then not Inside_A_Generic
6651 then
6652 Nam_UA := Ultimate_Alias (Nam);
6653 Nam_Decl := Unit_Declaration_Node (Nam_UA);
6655 if Nkind (Nam_Decl) = N_Subprogram_Declaration then
6656 Body_Id := Corresponding_Body (Nam_Decl);
6658 -- Nothing to do if the subprogram is not eligible for inlining in
6659 -- GNATprove mode, or inlining is disabled with switch -gnatdm
6661 if not Is_Inlined_Always (Nam_UA)
6662 or else not Can_Be_Inlined_In_GNATprove_Mode (Nam_UA, Body_Id)
6663 or else Debug_Flag_M
6664 then
6665 null;
6667 -- Calls cannot be inlined inside assertions, as GNATprove treats
6668 -- assertions as logic expressions. Only issue a message when the
6669 -- body has been seen, otherwise this leads to spurious messages
6670 -- on expression functions.
6672 elsif In_Assertion_Expr /= 0 then
6673 if Present (Body_Id) then
6674 Cannot_Inline
6675 ("cannot inline & (in assertion expression)?", N, Nam_UA);
6676 end if;
6678 -- Calls cannot be inlined inside default expressions
6680 elsif In_Default_Expr then
6681 Cannot_Inline
6682 ("cannot inline & (in default expression)?", N, Nam_UA);
6684 -- Inlining should not be performed during preanalysis
6686 elsif Full_Analysis then
6688 -- Do not inline calls inside expression functions, as this
6689 -- would prevent interpreting them as logical formulas in
6690 -- GNATprove. Only issue a message when the body has been seen,
6691 -- otherwise this leads to spurious messages on callees that
6692 -- are themselves expression functions.
6694 if Present (Current_Subprogram)
6695 and then Is_Expression_Function_Or_Completion
6696 (Current_Subprogram)
6697 then
6698 if Present (Body_Id)
6699 and then Present (Body_To_Inline (Nam_Decl))
6700 then
6701 Cannot_Inline
6702 ("cannot inline & (inside expression function)?",
6703 N, Nam_UA);
6704 end if;
6706 -- With the one-pass inlining technique, a call cannot be
6707 -- inlined if the corresponding body has not been seen yet.
6709 elsif No (Body_Id) then
6710 Cannot_Inline
6711 ("cannot inline & (body not seen yet)?", N, Nam_UA);
6713 -- Nothing to do if there is no body to inline, indicating that
6714 -- the subprogram is not suitable for inlining in GNATprove
6715 -- mode.
6717 elsif No (Body_To_Inline (Nam_Decl)) then
6718 null;
6720 -- Calls cannot be inlined inside potentially unevaluated
6721 -- expressions, as this would create complex actions inside
6722 -- expressions, that are not handled by GNATprove.
6724 elsif Is_Potentially_Unevaluated (N) then
6725 Cannot_Inline
6726 ("cannot inline & (in potentially unevaluated context)?",
6727 N, Nam_UA);
6729 -- Do not inline calls which would possibly lead to missing a
6730 -- type conversion check on an input parameter.
6732 elsif not Call_Can_Be_Inlined_In_GNATprove_Mode (N, Nam) then
6733 Cannot_Inline
6734 ("cannot inline & (possible check on input parameters)?",
6735 N, Nam_UA);
6737 -- Otherwise, inline the call
6739 else
6740 Expand_Inlined_Call (N, Nam_UA, Nam);
6741 end if;
6742 end if;
6743 end if;
6744 end if;
6746 Mark_Use_Clauses (Subp);
6748 Warn_On_Overlapping_Actuals (Nam, N);
6749 end Resolve_Call;
6751 -----------------------------
6752 -- Resolve_Case_Expression --
6753 -----------------------------
6755 procedure Resolve_Case_Expression (N : Node_Id; Typ : Entity_Id) is
6756 Alt : Node_Id;
6757 Alt_Expr : Node_Id;
6758 Alt_Typ : Entity_Id;
6759 Is_Dyn : Boolean;
6761 begin
6762 Alt := First (Alternatives (N));
6763 while Present (Alt) loop
6764 Alt_Expr := Expression (Alt);
6766 if Error_Posted (Alt_Expr) then
6767 return;
6768 end if;
6770 Resolve (Alt_Expr, Typ);
6771 Alt_Typ := Etype (Alt_Expr);
6773 -- When the expression is of a scalar subtype different from the
6774 -- result subtype, then insert a conversion to ensure the generation
6775 -- of a constraint check.
6777 if Is_Scalar_Type (Alt_Typ) and then Alt_Typ /= Typ then
6778 Rewrite (Alt_Expr, Convert_To (Typ, Alt_Expr));
6779 Analyze_And_Resolve (Alt_Expr, Typ);
6780 end if;
6782 Next (Alt);
6783 end loop;
6785 -- Apply RM 4.5.7 (17/3): whether the expression is statically or
6786 -- dynamically tagged must be known statically.
6788 if Is_Tagged_Type (Typ) and then not Is_Class_Wide_Type (Typ) then
6789 Alt := First (Alternatives (N));
6790 Is_Dyn := Is_Dynamically_Tagged (Expression (Alt));
6792 while Present (Alt) loop
6793 if Is_Dynamically_Tagged (Expression (Alt)) /= Is_Dyn then
6794 Error_Msg_N
6795 ("all or none of the dependent expressions can be "
6796 & "dynamically tagged", N);
6797 end if;
6799 Next (Alt);
6800 end loop;
6801 end if;
6803 Set_Etype (N, Typ);
6804 Eval_Case_Expression (N);
6805 Analyze_Dimension (N);
6806 end Resolve_Case_Expression;
6808 -------------------------------
6809 -- Resolve_Character_Literal --
6810 -------------------------------
6812 procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id) is
6813 B_Typ : constant Entity_Id := Base_Type (Typ);
6814 C : Entity_Id;
6816 begin
6817 -- Verify that the character does belong to the type of the context
6819 Set_Etype (N, B_Typ);
6820 Eval_Character_Literal (N);
6822 -- Wide_Wide_Character literals must always be defined, since the set
6823 -- of wide wide character literals is complete, i.e. if a character
6824 -- literal is accepted by the parser, then it is OK for wide wide
6825 -- character (out of range character literals are rejected).
6827 if Root_Type (B_Typ) = Standard_Wide_Wide_Character then
6828 return;
6830 -- Always accept character literal for type Any_Character, which
6831 -- occurs in error situations and in comparisons of literals, both
6832 -- of which should accept all literals.
6834 elsif B_Typ = Any_Character then
6835 return;
6837 -- For Standard.Character or a type derived from it, check that the
6838 -- literal is in range.
6840 elsif Root_Type (B_Typ) = Standard_Character then
6841 if In_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
6842 return;
6843 end if;
6845 -- For Standard.Wide_Character or a type derived from it, check that the
6846 -- literal is in range.
6848 elsif Root_Type (B_Typ) = Standard_Wide_Character then
6849 if In_Wide_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
6850 return;
6851 end if;
6853 -- If the entity is already set, this has already been resolved in a
6854 -- generic context, or comes from expansion. Nothing else to do.
6856 elsif Present (Entity (N)) then
6857 return;
6859 -- Otherwise we have a user defined character type, and we can use the
6860 -- standard visibility mechanisms to locate the referenced entity.
6862 else
6863 C := Current_Entity (N);
6864 while Present (C) loop
6865 if Etype (C) = B_Typ then
6866 Set_Entity_With_Checks (N, C);
6867 Generate_Reference (C, N);
6868 return;
6869 end if;
6871 C := Homonym (C);
6872 end loop;
6873 end if;
6875 -- If we fall through, then the literal does not match any of the
6876 -- entries of the enumeration type. This isn't just a constraint error
6877 -- situation, it is an illegality (see RM 4.2).
6879 Error_Msg_NE
6880 ("character not defined for }", N, First_Subtype (B_Typ));
6881 end Resolve_Character_Literal;
6883 ---------------------------
6884 -- Resolve_Comparison_Op --
6885 ---------------------------
6887 -- Context requires a boolean type, and plays no role in resolution.
6888 -- Processing identical to that for equality operators. The result type is
6889 -- the base type, which matters when pathological subtypes of booleans with
6890 -- limited ranges are used.
6892 procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id) is
6893 L : constant Node_Id := Left_Opnd (N);
6894 R : constant Node_Id := Right_Opnd (N);
6895 T : Entity_Id;
6897 begin
6898 -- If this is an intrinsic operation which is not predefined, use the
6899 -- types of its declared arguments to resolve the possibly overloaded
6900 -- operands. Otherwise the operands are unambiguous and specify the
6901 -- expected type.
6903 if Scope (Entity (N)) /= Standard_Standard then
6904 T := Etype (First_Entity (Entity (N)));
6906 else
6907 T := Find_Unique_Type (L, R);
6909 if T = Any_Fixed then
6910 T := Unique_Fixed_Point_Type (L);
6911 end if;
6912 end if;
6914 Set_Etype (N, Base_Type (Typ));
6915 Generate_Reference (T, N, ' ');
6917 -- Skip remaining processing if already set to Any_Type
6919 if T = Any_Type then
6920 return;
6921 end if;
6923 -- Deal with other error cases
6925 if T = Any_String or else
6926 T = Any_Composite or else
6927 T = Any_Character
6928 then
6929 if T = Any_Character then
6930 Ambiguous_Character (L);
6931 else
6932 Error_Msg_N ("ambiguous operands for comparison", N);
6933 end if;
6935 Set_Etype (N, Any_Type);
6936 return;
6937 end if;
6939 -- Resolve the operands if types OK
6941 Resolve (L, T);
6942 Resolve (R, T);
6943 Check_Unset_Reference (L);
6944 Check_Unset_Reference (R);
6945 Generate_Operator_Reference (N, T);
6946 Check_Low_Bound_Tested (N);
6948 -- In SPARK, ordering operators <, <=, >, >= are not defined for Boolean
6949 -- types or array types except String.
6951 if Is_Boolean_Type (T) then
6952 Check_SPARK_05_Restriction
6953 ("comparison is not defined on Boolean type", N);
6955 elsif Is_Array_Type (T)
6956 and then Base_Type (T) /= Standard_String
6957 then
6958 Check_SPARK_05_Restriction
6959 ("comparison is not defined on array types other than String", N);
6960 end if;
6962 -- Check comparison on unordered enumeration
6964 if Bad_Unordered_Enumeration_Reference (N, Etype (L)) then
6965 Error_Msg_Sloc := Sloc (Etype (L));
6966 Error_Msg_NE
6967 ("comparison on unordered enumeration type& declared#?U?",
6968 N, Etype (L));
6969 end if;
6971 Analyze_Dimension (N);
6973 -- Evaluate the relation (note we do this after the above check since
6974 -- this Eval call may change N to True/False. Skip this evaluation
6975 -- inside assertions, in order to keep assertions as written by users
6976 -- for tools that rely on these, e.g. GNATprove for loop invariants.
6977 -- Except evaluation is still performed even inside assertions for
6978 -- comparisons between values of universal type, which are useless
6979 -- for static analysis tools, and not supported even by GNATprove.
6981 if In_Assertion_Expr = 0
6982 or else (Is_Universal_Numeric_Type (Etype (L))
6983 and then
6984 Is_Universal_Numeric_Type (Etype (R)))
6985 then
6986 Eval_Relational_Op (N);
6987 end if;
6988 end Resolve_Comparison_Op;
6990 -----------------------------------------
6991 -- Resolve_Discrete_Subtype_Indication --
6992 -----------------------------------------
6994 procedure Resolve_Discrete_Subtype_Indication
6995 (N : Node_Id;
6996 Typ : Entity_Id)
6998 R : Node_Id;
6999 S : Entity_Id;
7001 begin
7002 Analyze (Subtype_Mark (N));
7003 S := Entity (Subtype_Mark (N));
7005 if Nkind (Constraint (N)) /= N_Range_Constraint then
7006 Error_Msg_N ("expect range constraint for discrete type", N);
7007 Set_Etype (N, Any_Type);
7009 else
7010 R := Range_Expression (Constraint (N));
7012 if R = Error then
7013 return;
7014 end if;
7016 Analyze (R);
7018 if Base_Type (S) /= Base_Type (Typ) then
7019 Error_Msg_NE
7020 ("expect subtype of }", N, First_Subtype (Typ));
7022 -- Rewrite the constraint as a range of Typ
7023 -- to allow compilation to proceed further.
7025 Set_Etype (N, Typ);
7026 Rewrite (Low_Bound (R),
7027 Make_Attribute_Reference (Sloc (Low_Bound (R)),
7028 Prefix => New_Occurrence_Of (Typ, Sloc (R)),
7029 Attribute_Name => Name_First));
7030 Rewrite (High_Bound (R),
7031 Make_Attribute_Reference (Sloc (High_Bound (R)),
7032 Prefix => New_Occurrence_Of (Typ, Sloc (R)),
7033 Attribute_Name => Name_First));
7035 else
7036 Resolve (R, Typ);
7037 Set_Etype (N, Etype (R));
7039 -- Additionally, we must check that the bounds are compatible
7040 -- with the given subtype, which might be different from the
7041 -- type of the context.
7043 Apply_Range_Check (R, S);
7045 -- ??? If the above check statically detects a Constraint_Error
7046 -- it replaces the offending bound(s) of the range R with a
7047 -- Constraint_Error node. When the itype which uses these bounds
7048 -- is frozen the resulting call to Duplicate_Subexpr generates
7049 -- a new temporary for the bounds.
7051 -- Unfortunately there are other itypes that are also made depend
7052 -- on these bounds, so when Duplicate_Subexpr is called they get
7053 -- a forward reference to the newly created temporaries and Gigi
7054 -- aborts on such forward references. This is probably sign of a
7055 -- more fundamental problem somewhere else in either the order of
7056 -- itype freezing or the way certain itypes are constructed.
7058 -- To get around this problem we call Remove_Side_Effects right
7059 -- away if either bounds of R are a Constraint_Error.
7061 declare
7062 L : constant Node_Id := Low_Bound (R);
7063 H : constant Node_Id := High_Bound (R);
7065 begin
7066 if Nkind (L) = N_Raise_Constraint_Error then
7067 Remove_Side_Effects (L);
7068 end if;
7070 if Nkind (H) = N_Raise_Constraint_Error then
7071 Remove_Side_Effects (H);
7072 end if;
7073 end;
7075 Check_Unset_Reference (Low_Bound (R));
7076 Check_Unset_Reference (High_Bound (R));
7077 end if;
7078 end if;
7079 end Resolve_Discrete_Subtype_Indication;
7081 -------------------------
7082 -- Resolve_Entity_Name --
7083 -------------------------
7085 -- Used to resolve identifiers and expanded names
7087 procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id) is
7088 function Is_Assignment_Or_Object_Expression
7089 (Context : Node_Id;
7090 Expr : Node_Id) return Boolean;
7091 -- Determine whether node Context denotes an assignment statement or an
7092 -- object declaration whose expression is node Expr.
7094 ----------------------------------------
7095 -- Is_Assignment_Or_Object_Expression --
7096 ----------------------------------------
7098 function Is_Assignment_Or_Object_Expression
7099 (Context : Node_Id;
7100 Expr : Node_Id) return Boolean
7102 begin
7103 if Nkind_In (Context, N_Assignment_Statement,
7104 N_Object_Declaration)
7105 and then Expression (Context) = Expr
7106 then
7107 return True;
7109 -- Check whether a construct that yields a name is the expression of
7110 -- an assignment statement or an object declaration.
7112 elsif (Nkind_In (Context, N_Attribute_Reference,
7113 N_Explicit_Dereference,
7114 N_Indexed_Component,
7115 N_Selected_Component,
7116 N_Slice)
7117 and then Prefix (Context) = Expr)
7118 or else
7119 (Nkind_In (Context, N_Type_Conversion,
7120 N_Unchecked_Type_Conversion)
7121 and then Expression (Context) = Expr)
7122 then
7123 return
7124 Is_Assignment_Or_Object_Expression
7125 (Context => Parent (Context),
7126 Expr => Context);
7128 -- Otherwise the context is not an assignment statement or an object
7129 -- declaration.
7131 else
7132 return False;
7133 end if;
7134 end Is_Assignment_Or_Object_Expression;
7136 -- Local variables
7138 E : constant Entity_Id := Entity (N);
7139 Par : Node_Id;
7141 -- Start of processing for Resolve_Entity_Name
7143 begin
7144 -- If garbage from errors, set to Any_Type and return
7146 if No (E) and then Total_Errors_Detected /= 0 then
7147 Set_Etype (N, Any_Type);
7148 return;
7149 end if;
7151 -- Replace named numbers by corresponding literals. Note that this is
7152 -- the one case where Resolve_Entity_Name must reset the Etype, since
7153 -- it is currently marked as universal.
7155 if Ekind (E) = E_Named_Integer then
7156 Set_Etype (N, Typ);
7157 Eval_Named_Integer (N);
7159 elsif Ekind (E) = E_Named_Real then
7160 Set_Etype (N, Typ);
7161 Eval_Named_Real (N);
7163 -- For enumeration literals, we need to make sure that a proper style
7164 -- check is done, since such literals are overloaded, and thus we did
7165 -- not do a style check during the first phase of analysis.
7167 elsif Ekind (E) = E_Enumeration_Literal then
7168 Set_Entity_With_Checks (N, E);
7169 Eval_Entity_Name (N);
7171 -- Case of (sub)type name appearing in a context where an expression
7172 -- is expected. This is legal if occurrence is a current instance.
7173 -- See RM 8.6 (17/3).
7175 elsif Is_Type (E) then
7176 if Is_Current_Instance (N) then
7177 null;
7179 -- Any other use is an error
7181 else
7182 Error_Msg_N
7183 ("invalid use of subtype mark in expression or call", N);
7184 end if;
7186 -- Check discriminant use if entity is discriminant in current scope,
7187 -- i.e. discriminant of record or concurrent type currently being
7188 -- analyzed. Uses in corresponding body are unrestricted.
7190 elsif Ekind (E) = E_Discriminant
7191 and then Scope (E) = Current_Scope
7192 and then not Has_Completion (Current_Scope)
7193 then
7194 Check_Discriminant_Use (N);
7196 -- A parameterless generic function cannot appear in a context that
7197 -- requires resolution.
7199 elsif Ekind (E) = E_Generic_Function then
7200 Error_Msg_N ("illegal use of generic function", N);
7202 -- In Ada 83 an OUT parameter cannot be read, but attributes of
7203 -- array types (i.e. bounds and length) are legal.
7205 elsif Ekind (E) = E_Out_Parameter
7206 and then (Nkind (Parent (N)) /= N_Attribute_Reference
7207 or else Is_Scalar_Type (Etype (E)))
7209 and then (Nkind (Parent (N)) in N_Op
7210 or else Nkind (Parent (N)) = N_Explicit_Dereference
7211 or else Is_Assignment_Or_Object_Expression
7212 (Context => Parent (N),
7213 Expr => N))
7214 then
7215 if Ada_Version = Ada_83 then
7216 Error_Msg_N ("(Ada 83) illegal reading of out parameter", N);
7217 end if;
7219 -- In all other cases, just do the possible static evaluation
7221 else
7222 -- A deferred constant that appears in an expression must have a
7223 -- completion, unless it has been removed by in-place expansion of
7224 -- an aggregate. A constant that is a renaming does not need
7225 -- initialization.
7227 if Ekind (E) = E_Constant
7228 and then Comes_From_Source (E)
7229 and then No (Constant_Value (E))
7230 and then Is_Frozen (Etype (E))
7231 and then not In_Spec_Expression
7232 and then not Is_Imported (E)
7233 and then Nkind (Parent (E)) /= N_Object_Renaming_Declaration
7234 then
7235 if No_Initialization (Parent (E))
7236 or else (Present (Full_View (E))
7237 and then No_Initialization (Parent (Full_View (E))))
7238 then
7239 null;
7240 else
7241 Error_Msg_N
7242 ("deferred constant is frozen before completion", N);
7243 end if;
7244 end if;
7246 Eval_Entity_Name (N);
7247 end if;
7249 Par := Parent (N);
7251 -- When the entity appears in a parameter association, retrieve the
7252 -- related subprogram call.
7254 if Nkind (Par) = N_Parameter_Association then
7255 Par := Parent (Par);
7256 end if;
7258 if Comes_From_Source (N) then
7260 -- The following checks are only relevant when SPARK_Mode is on as
7261 -- they are not standard Ada legality rules.
7263 if SPARK_Mode = On then
7265 -- An effectively volatile object subject to enabled properties
7266 -- Async_Writers or Effective_Reads must appear in non-interfering
7267 -- context (SPARK RM 7.1.3(12)).
7269 if Is_Object (E)
7270 and then Is_Effectively_Volatile (E)
7271 and then (Async_Writers_Enabled (E)
7272 or else Effective_Reads_Enabled (E))
7273 and then not Is_OK_Volatile_Context (Par, N)
7274 then
7275 SPARK_Msg_N
7276 ("volatile object cannot appear in this context "
7277 & "(SPARK RM 7.1.3(12))", N);
7278 end if;
7280 -- Check for possible elaboration issues with respect to reads of
7281 -- variables. The act of renaming the variable is not considered a
7282 -- read as it simply establishes an alias.
7284 if Legacy_Elaboration_Checks
7285 and then Ekind (E) = E_Variable
7286 and then Dynamic_Elaboration_Checks
7287 and then Nkind (Par) /= N_Object_Renaming_Declaration
7288 then
7289 Check_Elab_Call (N);
7290 end if;
7291 end if;
7293 -- The variable may eventually become a constituent of a single
7294 -- protected/task type. Record the reference now and verify its
7295 -- legality when analyzing the contract of the variable
7296 -- (SPARK RM 9.3).
7298 if Ekind (E) = E_Variable then
7299 Record_Possible_Part_Of_Reference (E, N);
7300 end if;
7302 -- A Ghost entity must appear in a specific context
7304 if Is_Ghost_Entity (E) then
7305 Check_Ghost_Context (E, N);
7306 end if;
7307 end if;
7309 -- We may be resolving an entity within expanded code, so a reference to
7310 -- an entity should be ignored when calculating effective use clauses to
7311 -- avoid inappropriate marking.
7313 if Comes_From_Source (N) then
7314 Mark_Use_Clauses (E);
7315 end if;
7316 end Resolve_Entity_Name;
7318 -------------------
7319 -- Resolve_Entry --
7320 -------------------
7322 procedure Resolve_Entry (Entry_Name : Node_Id) is
7323 Loc : constant Source_Ptr := Sloc (Entry_Name);
7324 Nam : Entity_Id;
7325 New_N : Node_Id;
7326 S : Entity_Id;
7327 Tsk : Entity_Id;
7328 E_Name : Node_Id;
7329 Index : Node_Id;
7331 function Actual_Index_Type (E : Entity_Id) return Entity_Id;
7332 -- If the bounds of the entry family being called depend on task
7333 -- discriminants, build a new index subtype where a discriminant is
7334 -- replaced with the value of the discriminant of the target task.
7335 -- The target task is the prefix of the entry name in the call.
7337 -----------------------
7338 -- Actual_Index_Type --
7339 -----------------------
7341 function Actual_Index_Type (E : Entity_Id) return Entity_Id is
7342 Typ : constant Entity_Id := Entry_Index_Type (E);
7343 Tsk : constant Entity_Id := Scope (E);
7344 Lo : constant Node_Id := Type_Low_Bound (Typ);
7345 Hi : constant Node_Id := Type_High_Bound (Typ);
7346 New_T : Entity_Id;
7348 function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id;
7349 -- If the bound is given by a discriminant, replace with a reference
7350 -- to the discriminant of the same name in the target task. If the
7351 -- entry name is the target of a requeue statement and the entry is
7352 -- in the current protected object, the bound to be used is the
7353 -- discriminal of the object (see Apply_Range_Checks for details of
7354 -- the transformation).
7356 -----------------------------
7357 -- Actual_Discriminant_Ref --
7358 -----------------------------
7360 function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id is
7361 Typ : constant Entity_Id := Etype (Bound);
7362 Ref : Node_Id;
7364 begin
7365 Remove_Side_Effects (Bound);
7367 if not Is_Entity_Name (Bound)
7368 or else Ekind (Entity (Bound)) /= E_Discriminant
7369 then
7370 return Bound;
7372 elsif Is_Protected_Type (Tsk)
7373 and then In_Open_Scopes (Tsk)
7374 and then Nkind (Parent (Entry_Name)) = N_Requeue_Statement
7375 then
7376 -- Note: here Bound denotes a discriminant of the corresponding
7377 -- record type tskV, whose discriminal is a formal of the
7378 -- init-proc tskVIP. What we want is the body discriminal,
7379 -- which is associated to the discriminant of the original
7380 -- concurrent type tsk.
7382 return New_Occurrence_Of
7383 (Find_Body_Discriminal (Entity (Bound)), Loc);
7385 else
7386 Ref :=
7387 Make_Selected_Component (Loc,
7388 Prefix => New_Copy_Tree (Prefix (Prefix (Entry_Name))),
7389 Selector_Name => New_Occurrence_Of (Entity (Bound), Loc));
7390 Analyze (Ref);
7391 Resolve (Ref, Typ);
7392 return Ref;
7393 end if;
7394 end Actual_Discriminant_Ref;
7396 -- Start of processing for Actual_Index_Type
7398 begin
7399 if not Has_Discriminants (Tsk)
7400 or else (not Is_Entity_Name (Lo) and then not Is_Entity_Name (Hi))
7401 then
7402 return Entry_Index_Type (E);
7404 else
7405 New_T := Create_Itype (Ekind (Typ), Parent (Entry_Name));
7406 Set_Etype (New_T, Base_Type (Typ));
7407 Set_Size_Info (New_T, Typ);
7408 Set_RM_Size (New_T, RM_Size (Typ));
7409 Set_Scalar_Range (New_T,
7410 Make_Range (Sloc (Entry_Name),
7411 Low_Bound => Actual_Discriminant_Ref (Lo),
7412 High_Bound => Actual_Discriminant_Ref (Hi)));
7414 return New_T;
7415 end if;
7416 end Actual_Index_Type;
7418 -- Start of processing for Resolve_Entry
7420 begin
7421 -- Find name of entry being called, and resolve prefix of name with its
7422 -- own type. The prefix can be overloaded, and the name and signature of
7423 -- the entry must be taken into account.
7425 if Nkind (Entry_Name) = N_Indexed_Component then
7427 -- Case of dealing with entry family within the current tasks
7429 E_Name := Prefix (Entry_Name);
7431 else
7432 E_Name := Entry_Name;
7433 end if;
7435 if Is_Entity_Name (E_Name) then
7437 -- Entry call to an entry (or entry family) in the current task. This
7438 -- is legal even though the task will deadlock. Rewrite as call to
7439 -- current task.
7441 -- This can also be a call to an entry in an enclosing task. If this
7442 -- is a single task, we have to retrieve its name, because the scope
7443 -- of the entry is the task type, not the object. If the enclosing
7444 -- task is a task type, the identity of the task is given by its own
7445 -- self variable.
7447 -- Finally this can be a requeue on an entry of the same task or
7448 -- protected object.
7450 S := Scope (Entity (E_Name));
7452 for J in reverse 0 .. Scope_Stack.Last loop
7453 if Is_Task_Type (Scope_Stack.Table (J).Entity)
7454 and then not Comes_From_Source (S)
7455 then
7456 -- S is an enclosing task or protected object. The concurrent
7457 -- declaration has been converted into a type declaration, and
7458 -- the object itself has an object declaration that follows
7459 -- the type in the same declarative part.
7461 Tsk := Next_Entity (S);
7462 while Etype (Tsk) /= S loop
7463 Next_Entity (Tsk);
7464 end loop;
7466 S := Tsk;
7467 exit;
7469 elsif S = Scope_Stack.Table (J).Entity then
7471 -- Call to current task. Will be transformed into call to Self
7473 exit;
7475 end if;
7476 end loop;
7478 New_N :=
7479 Make_Selected_Component (Loc,
7480 Prefix => New_Occurrence_Of (S, Loc),
7481 Selector_Name =>
7482 New_Occurrence_Of (Entity (E_Name), Loc));
7483 Rewrite (E_Name, New_N);
7484 Analyze (E_Name);
7486 elsif Nkind (Entry_Name) = N_Selected_Component
7487 and then Is_Overloaded (Prefix (Entry_Name))
7488 then
7489 -- Use the entry name (which must be unique at this point) to find
7490 -- the prefix that returns the corresponding task/protected type.
7492 declare
7493 Pref : constant Node_Id := Prefix (Entry_Name);
7494 Ent : constant Entity_Id := Entity (Selector_Name (Entry_Name));
7495 I : Interp_Index;
7496 It : Interp;
7498 begin
7499 Get_First_Interp (Pref, I, It);
7500 while Present (It.Typ) loop
7501 if Scope (Ent) = It.Typ then
7502 Set_Etype (Pref, It.Typ);
7503 exit;
7504 end if;
7506 Get_Next_Interp (I, It);
7507 end loop;
7508 end;
7509 end if;
7511 if Nkind (Entry_Name) = N_Selected_Component then
7512 Resolve (Prefix (Entry_Name));
7514 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
7515 Nam := Entity (Selector_Name (Prefix (Entry_Name)));
7516 Resolve (Prefix (Prefix (Entry_Name)));
7517 Index := First (Expressions (Entry_Name));
7518 Resolve (Index, Entry_Index_Type (Nam));
7520 -- Generate a reference for the index when it denotes an entity
7522 if Is_Entity_Name (Index) then
7523 Generate_Reference (Entity (Index), Nam);
7524 end if;
7526 -- Up to this point the expression could have been the actual in a
7527 -- simple entry call, and be given by a named association.
7529 if Nkind (Index) = N_Parameter_Association then
7530 Error_Msg_N ("expect expression for entry index", Index);
7531 else
7532 Apply_Range_Check (Index, Actual_Index_Type (Nam));
7533 end if;
7534 end if;
7535 end Resolve_Entry;
7537 ------------------------
7538 -- Resolve_Entry_Call --
7539 ------------------------
7541 procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id) is
7542 Entry_Name : constant Node_Id := Name (N);
7543 Loc : constant Source_Ptr := Sloc (Entry_Name);
7545 Nam : Entity_Id;
7546 Norm_OK : Boolean;
7547 Obj : Node_Id;
7548 Was_Over : Boolean;
7550 begin
7551 -- We kill all checks here, because it does not seem worth the effort to
7552 -- do anything better, an entry call is a big operation.
7554 Kill_All_Checks;
7556 -- Processing of the name is similar for entry calls and protected
7557 -- operation calls. Once the entity is determined, we can complete
7558 -- the resolution of the actuals.
7560 -- The selector may be overloaded, in the case of a protected object
7561 -- with overloaded functions. The type of the context is used for
7562 -- resolution.
7564 if Nkind (Entry_Name) = N_Selected_Component
7565 and then Is_Overloaded (Selector_Name (Entry_Name))
7566 and then Typ /= Standard_Void_Type
7567 then
7568 declare
7569 I : Interp_Index;
7570 It : Interp;
7572 begin
7573 Get_First_Interp (Selector_Name (Entry_Name), I, It);
7574 while Present (It.Typ) loop
7575 if Covers (Typ, It.Typ) then
7576 Set_Entity (Selector_Name (Entry_Name), It.Nam);
7577 Set_Etype (Entry_Name, It.Typ);
7579 Generate_Reference (It.Typ, N, ' ');
7580 end if;
7582 Get_Next_Interp (I, It);
7583 end loop;
7584 end;
7585 end if;
7587 Resolve_Entry (Entry_Name);
7589 if Nkind (Entry_Name) = N_Selected_Component then
7591 -- Simple entry or protected operation call
7593 Nam := Entity (Selector_Name (Entry_Name));
7594 Obj := Prefix (Entry_Name);
7596 if Is_Subprogram (Nam) then
7597 Check_For_Eliminated_Subprogram (Entry_Name, Nam);
7598 end if;
7600 Was_Over := Is_Overloaded (Selector_Name (Entry_Name));
7602 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
7604 -- Call to member of entry family
7606 Nam := Entity (Selector_Name (Prefix (Entry_Name)));
7607 Obj := Prefix (Prefix (Entry_Name));
7608 Was_Over := Is_Overloaded (Selector_Name (Prefix (Entry_Name)));
7609 end if;
7611 -- We cannot in general check the maximum depth of protected entry calls
7612 -- at compile time. But we can tell that any protected entry call at all
7613 -- violates a specified nesting depth of zero.
7615 if Is_Protected_Type (Scope (Nam)) then
7616 Check_Restriction (Max_Entry_Queue_Length, N);
7617 end if;
7619 -- Use context type to disambiguate a protected function that can be
7620 -- called without actuals and that returns an array type, and where the
7621 -- argument list may be an indexing of the returned value.
7623 if Ekind (Nam) = E_Function
7624 and then Needs_No_Actuals (Nam)
7625 and then Present (Parameter_Associations (N))
7626 and then
7627 ((Is_Array_Type (Etype (Nam))
7628 and then Covers (Typ, Component_Type (Etype (Nam))))
7630 or else (Is_Access_Type (Etype (Nam))
7631 and then Is_Array_Type (Designated_Type (Etype (Nam)))
7632 and then
7633 Covers
7634 (Typ,
7635 Component_Type (Designated_Type (Etype (Nam))))))
7636 then
7637 declare
7638 Index_Node : Node_Id;
7640 begin
7641 Index_Node :=
7642 Make_Indexed_Component (Loc,
7643 Prefix =>
7644 Make_Function_Call (Loc, Name => Relocate_Node (Entry_Name)),
7645 Expressions => Parameter_Associations (N));
7647 -- Since we are correcting a node classification error made by the
7648 -- parser, we call Replace rather than Rewrite.
7650 Replace (N, Index_Node);
7651 Set_Etype (Prefix (N), Etype (Nam));
7652 Set_Etype (N, Typ);
7653 Resolve_Indexed_Component (N, Typ);
7654 return;
7655 end;
7656 end if;
7658 if Ekind_In (Nam, E_Entry, E_Entry_Family)
7659 and then Present (Contract_Wrapper (Nam))
7660 and then Current_Scope /= Contract_Wrapper (Nam)
7661 then
7662 -- Note the entity being called before rewriting the call, so that
7663 -- it appears used at this point.
7665 Generate_Reference (Nam, Entry_Name, 'r');
7667 -- Rewrite as call to the precondition wrapper, adding the task
7668 -- object to the list of actuals. If the call is to a member of an
7669 -- entry family, include the index as well.
7671 declare
7672 New_Call : Node_Id;
7673 New_Actuals : List_Id;
7675 begin
7676 New_Actuals := New_List (Obj);
7678 if Nkind (Entry_Name) = N_Indexed_Component then
7679 Append_To (New_Actuals,
7680 New_Copy_Tree (First (Expressions (Entry_Name))));
7681 end if;
7683 Append_List (Parameter_Associations (N), New_Actuals);
7684 New_Call :=
7685 Make_Procedure_Call_Statement (Loc,
7686 Name =>
7687 New_Occurrence_Of (Contract_Wrapper (Nam), Loc),
7688 Parameter_Associations => New_Actuals);
7689 Rewrite (N, New_Call);
7691 -- Preanalyze and resolve new call. Current procedure is called
7692 -- from Resolve_Call, after which expansion will take place.
7694 Preanalyze_And_Resolve (N);
7695 return;
7696 end;
7697 end if;
7699 -- The operation name may have been overloaded. Order the actuals
7700 -- according to the formals of the resolved entity, and set the return
7701 -- type to that of the operation.
7703 if Was_Over then
7704 Normalize_Actuals (N, Nam, False, Norm_OK);
7705 pragma Assert (Norm_OK);
7706 Set_Etype (N, Etype (Nam));
7708 -- Reset the Is_Overloaded flag, since resolution is now completed
7710 -- Simple entry call
7712 if Nkind (Entry_Name) = N_Selected_Component then
7713 Set_Is_Overloaded (Selector_Name (Entry_Name), False);
7715 -- Call to a member of an entry family
7717 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
7718 Set_Is_Overloaded (Selector_Name (Prefix (Entry_Name)), False);
7719 end if;
7720 end if;
7722 Resolve_Actuals (N, Nam);
7723 Check_Internal_Protected_Use (N, Nam);
7725 -- Create a call reference to the entry
7727 Generate_Reference (Nam, Entry_Name, 's');
7729 if Ekind_In (Nam, E_Entry, E_Entry_Family) then
7730 Check_Potentially_Blocking_Operation (N);
7731 end if;
7733 -- Verify that a procedure call cannot masquerade as an entry
7734 -- call where an entry call is expected.
7736 if Ekind (Nam) = E_Procedure then
7737 if Nkind (Parent (N)) = N_Entry_Call_Alternative
7738 and then N = Entry_Call_Statement (Parent (N))
7739 then
7740 Error_Msg_N ("entry call required in select statement", N);
7742 elsif Nkind (Parent (N)) = N_Triggering_Alternative
7743 and then N = Triggering_Statement (Parent (N))
7744 then
7745 Error_Msg_N ("triggering statement cannot be procedure call", N);
7747 elsif Ekind (Scope (Nam)) = E_Task_Type
7748 and then not In_Open_Scopes (Scope (Nam))
7749 then
7750 Error_Msg_N ("task has no entry with this name", Entry_Name);
7751 end if;
7752 end if;
7754 -- After resolution, entry calls and protected procedure calls are
7755 -- changed into entry calls, for expansion. The structure of the node
7756 -- does not change, so it can safely be done in place. Protected
7757 -- function calls must keep their structure because they are
7758 -- subexpressions.
7760 if Ekind (Nam) /= E_Function then
7762 -- A protected operation that is not a function may modify the
7763 -- corresponding object, and cannot apply to a constant. If this
7764 -- is an internal call, the prefix is the type itself.
7766 if Is_Protected_Type (Scope (Nam))
7767 and then not Is_Variable (Obj)
7768 and then (not Is_Entity_Name (Obj)
7769 or else not Is_Type (Entity (Obj)))
7770 then
7771 Error_Msg_N
7772 ("prefix of protected procedure or entry call must be variable",
7773 Entry_Name);
7774 end if;
7776 declare
7777 Entry_Call : Node_Id;
7779 begin
7780 Entry_Call :=
7781 Make_Entry_Call_Statement (Loc,
7782 Name => Entry_Name,
7783 Parameter_Associations => Parameter_Associations (N));
7785 -- Inherit relevant attributes from the original call
7787 Set_First_Named_Actual
7788 (Entry_Call, First_Named_Actual (N));
7790 Set_Is_Elaboration_Checks_OK_Node
7791 (Entry_Call, Is_Elaboration_Checks_OK_Node (N));
7793 Set_Is_Elaboration_Warnings_OK_Node
7794 (Entry_Call, Is_Elaboration_Warnings_OK_Node (N));
7796 Set_Is_SPARK_Mode_On_Node
7797 (Entry_Call, Is_SPARK_Mode_On_Node (N));
7799 Rewrite (N, Entry_Call);
7800 Set_Analyzed (N, True);
7801 end;
7803 -- Protected functions can return on the secondary stack, in which case
7804 -- we must trigger the transient scope mechanism.
7806 elsif Expander_Active
7807 and then Requires_Transient_Scope (Etype (Nam))
7808 then
7809 Establish_Transient_Scope (N, Manage_Sec_Stack => True);
7810 end if;
7811 end Resolve_Entry_Call;
7813 -------------------------
7814 -- Resolve_Equality_Op --
7815 -------------------------
7817 -- Both arguments must have the same type, and the boolean context does
7818 -- not participate in the resolution. The first pass verifies that the
7819 -- interpretation is not ambiguous, and the type of the left argument is
7820 -- correctly set, or is Any_Type in case of ambiguity. If both arguments
7821 -- are strings or aggregates, allocators, or Null, they are ambiguous even
7822 -- though they carry a single (universal) type. Diagnose this case here.
7824 procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id) is
7825 L : constant Node_Id := Left_Opnd (N);
7826 R : constant Node_Id := Right_Opnd (N);
7827 T : Entity_Id := Find_Unique_Type (L, R);
7829 procedure Check_If_Expression (Cond : Node_Id);
7830 -- The resolution rule for if expressions requires that each such must
7831 -- have a unique type. This means that if several dependent expressions
7832 -- are of a non-null anonymous access type, and the context does not
7833 -- impose an expected type (as can be the case in an equality operation)
7834 -- the expression must be rejected.
7836 procedure Explain_Redundancy (N : Node_Id);
7837 -- Attempt to explain the nature of a redundant comparison with True. If
7838 -- the expression N is too complex, this routine issues a general error
7839 -- message.
7841 function Find_Unique_Access_Type return Entity_Id;
7842 -- In the case of allocators and access attributes, the context must
7843 -- provide an indication of the specific access type to be used. If
7844 -- one operand is of such a "generic" access type, check whether there
7845 -- is a specific visible access type that has the same designated type.
7846 -- This is semantically dubious, and of no interest to any real code,
7847 -- but c48008a makes it all worthwhile.
7849 -------------------------
7850 -- Check_If_Expression --
7851 -------------------------
7853 procedure Check_If_Expression (Cond : Node_Id) is
7854 Then_Expr : Node_Id;
7855 Else_Expr : Node_Id;
7857 begin
7858 if Nkind (Cond) = N_If_Expression then
7859 Then_Expr := Next (First (Expressions (Cond)));
7860 Else_Expr := Next (Then_Expr);
7862 if Nkind (Then_Expr) /= N_Null
7863 and then Nkind (Else_Expr) /= N_Null
7864 then
7865 Error_Msg_N ("cannot determine type of if expression", Cond);
7866 end if;
7867 end if;
7868 end Check_If_Expression;
7870 ------------------------
7871 -- Explain_Redundancy --
7872 ------------------------
7874 procedure Explain_Redundancy (N : Node_Id) is
7875 Error : Name_Id;
7876 Val : Node_Id;
7877 Val_Id : Entity_Id;
7879 begin
7880 Val := N;
7882 -- Strip the operand down to an entity
7884 loop
7885 if Nkind (Val) = N_Selected_Component then
7886 Val := Selector_Name (Val);
7887 else
7888 exit;
7889 end if;
7890 end loop;
7892 -- The construct denotes an entity
7894 if Is_Entity_Name (Val) and then Present (Entity (Val)) then
7895 Val_Id := Entity (Val);
7897 -- Do not generate an error message when the comparison is done
7898 -- against the enumeration literal Standard.True.
7900 if Ekind (Val_Id) /= E_Enumeration_Literal then
7902 -- Build a customized error message
7904 Name_Len := 0;
7905 Add_Str_To_Name_Buffer ("?r?");
7907 if Ekind (Val_Id) = E_Component then
7908 Add_Str_To_Name_Buffer ("component ");
7910 elsif Ekind (Val_Id) = E_Constant then
7911 Add_Str_To_Name_Buffer ("constant ");
7913 elsif Ekind (Val_Id) = E_Discriminant then
7914 Add_Str_To_Name_Buffer ("discriminant ");
7916 elsif Is_Formal (Val_Id) then
7917 Add_Str_To_Name_Buffer ("parameter ");
7919 elsif Ekind (Val_Id) = E_Variable then
7920 Add_Str_To_Name_Buffer ("variable ");
7921 end if;
7923 Add_Str_To_Name_Buffer ("& is always True!");
7924 Error := Name_Find;
7926 Error_Msg_NE (Get_Name_String (Error), Val, Val_Id);
7927 end if;
7929 -- The construct is too complex to disect, issue a general message
7931 else
7932 Error_Msg_N ("?r?expression is always True!", Val);
7933 end if;
7934 end Explain_Redundancy;
7936 -----------------------------
7937 -- Find_Unique_Access_Type --
7938 -----------------------------
7940 function Find_Unique_Access_Type return Entity_Id is
7941 Acc : Entity_Id;
7942 E : Entity_Id;
7943 S : Entity_Id;
7945 begin
7946 if Ekind_In (Etype (R), E_Allocator_Type,
7947 E_Access_Attribute_Type)
7948 then
7949 Acc := Designated_Type (Etype (R));
7951 elsif Ekind_In (Etype (L), E_Allocator_Type,
7952 E_Access_Attribute_Type)
7953 then
7954 Acc := Designated_Type (Etype (L));
7955 else
7956 return Empty;
7957 end if;
7959 S := Current_Scope;
7960 while S /= Standard_Standard loop
7961 E := First_Entity (S);
7962 while Present (E) loop
7963 if Is_Type (E)
7964 and then Is_Access_Type (E)
7965 and then Ekind (E) /= E_Allocator_Type
7966 and then Designated_Type (E) = Base_Type (Acc)
7967 then
7968 return E;
7969 end if;
7971 Next_Entity (E);
7972 end loop;
7974 S := Scope (S);
7975 end loop;
7977 return Empty;
7978 end Find_Unique_Access_Type;
7980 -- Start of processing for Resolve_Equality_Op
7982 begin
7983 Set_Etype (N, Base_Type (Typ));
7984 Generate_Reference (T, N, ' ');
7986 if T = Any_Fixed then
7987 T := Unique_Fixed_Point_Type (L);
7988 end if;
7990 if T /= Any_Type then
7991 if T = Any_String or else
7992 T = Any_Composite or else
7993 T = Any_Character
7994 then
7995 if T = Any_Character then
7996 Ambiguous_Character (L);
7997 else
7998 Error_Msg_N ("ambiguous operands for equality", N);
7999 end if;
8001 Set_Etype (N, Any_Type);
8002 return;
8004 elsif T = Any_Access
8005 or else Ekind_In (T, E_Allocator_Type, E_Access_Attribute_Type)
8006 then
8007 T := Find_Unique_Access_Type;
8009 if No (T) then
8010 Error_Msg_N ("ambiguous operands for equality", N);
8011 Set_Etype (N, Any_Type);
8012 return;
8013 end if;
8015 -- If expressions must have a single type, and if the context does
8016 -- not impose one the dependent expressions cannot be anonymous
8017 -- access types.
8019 -- Why no similar processing for case expressions???
8021 elsif Ada_Version >= Ada_2012
8022 and then Ekind_In (Etype (L), E_Anonymous_Access_Type,
8023 E_Anonymous_Access_Subprogram_Type)
8024 and then Ekind_In (Etype (R), E_Anonymous_Access_Type,
8025 E_Anonymous_Access_Subprogram_Type)
8026 then
8027 Check_If_Expression (L);
8028 Check_If_Expression (R);
8029 end if;
8031 Resolve (L, T);
8032 Resolve (R, T);
8034 -- In SPARK, equality operators = and /= for array types other than
8035 -- String are only defined when, for each index position, the
8036 -- operands have equal static bounds.
8038 if Is_Array_Type (T) then
8040 -- Protect call to Matching_Static_Array_Bounds to avoid costly
8041 -- operation if not needed.
8043 if Restriction_Check_Required (SPARK_05)
8044 and then Base_Type (T) /= Standard_String
8045 and then Base_Type (Etype (L)) = Base_Type (Etype (R))
8046 and then Etype (L) /= Any_Composite -- or else L in error
8047 and then Etype (R) /= Any_Composite -- or else R in error
8048 and then not Matching_Static_Array_Bounds (Etype (L), Etype (R))
8049 then
8050 Check_SPARK_05_Restriction
8051 ("array types should have matching static bounds", N);
8052 end if;
8053 end if;
8055 -- If the unique type is a class-wide type then it will be expanded
8056 -- into a dispatching call to the predefined primitive. Therefore we
8057 -- check here for potential violation of such restriction.
8059 if Is_Class_Wide_Type (T) then
8060 Check_Restriction (No_Dispatching_Calls, N);
8061 end if;
8063 -- Only warn for redundant equality comparison to True for objects
8064 -- (e.g. "X = True") and operations (e.g. "(X < Y) = True"). For
8065 -- other expressions, it may be a matter of preference to write
8066 -- "Expr = True" or "Expr".
8068 if Warn_On_Redundant_Constructs
8069 and then Comes_From_Source (N)
8070 and then Comes_From_Source (R)
8071 and then Is_Entity_Name (R)
8072 and then Entity (R) = Standard_True
8073 and then
8074 ((Is_Entity_Name (L) and then Is_Object (Entity (L)))
8075 or else
8076 Nkind (L) in N_Op)
8077 then
8078 Error_Msg_N -- CODEFIX
8079 ("?r?comparison with True is redundant!", N);
8080 Explain_Redundancy (Original_Node (R));
8081 end if;
8083 Check_Unset_Reference (L);
8084 Check_Unset_Reference (R);
8085 Generate_Operator_Reference (N, T);
8086 Check_Low_Bound_Tested (N);
8088 -- If this is an inequality, it may be the implicit inequality
8089 -- created for a user-defined operation, in which case the corres-
8090 -- ponding equality operation is not intrinsic, and the operation
8091 -- cannot be constant-folded. Else fold.
8093 if Nkind (N) = N_Op_Eq
8094 or else Comes_From_Source (Entity (N))
8095 or else Ekind (Entity (N)) = E_Operator
8096 or else Is_Intrinsic_Subprogram
8097 (Corresponding_Equality (Entity (N)))
8098 then
8099 Analyze_Dimension (N);
8100 Eval_Relational_Op (N);
8102 elsif Nkind (N) = N_Op_Ne
8103 and then Is_Abstract_Subprogram (Entity (N))
8104 then
8105 Error_Msg_NE ("cannot call abstract subprogram &!", N, Entity (N));
8106 end if;
8108 -- Ada 2005: If one operand is an anonymous access type, convert the
8109 -- other operand to it, to ensure that the underlying types match in
8110 -- the back-end. Same for access_to_subprogram, and the conversion
8111 -- verifies that the types are subtype conformant.
8113 -- We apply the same conversion in the case one of the operands is a
8114 -- private subtype of the type of the other.
8116 -- Why the Expander_Active test here ???
8118 if Expander_Active
8119 and then
8120 (Ekind_In (T, E_Anonymous_Access_Type,
8121 E_Anonymous_Access_Subprogram_Type)
8122 or else Is_Private_Type (T))
8123 then
8124 if Etype (L) /= T then
8125 Rewrite (L,
8126 Make_Unchecked_Type_Conversion (Sloc (L),
8127 Subtype_Mark => New_Occurrence_Of (T, Sloc (L)),
8128 Expression => Relocate_Node (L)));
8129 Analyze_And_Resolve (L, T);
8130 end if;
8132 if (Etype (R)) /= T then
8133 Rewrite (R,
8134 Make_Unchecked_Type_Conversion (Sloc (R),
8135 Subtype_Mark => New_Occurrence_Of (Etype (L), Sloc (R)),
8136 Expression => Relocate_Node (R)));
8137 Analyze_And_Resolve (R, T);
8138 end if;
8139 end if;
8140 end if;
8141 end Resolve_Equality_Op;
8143 ----------------------------------
8144 -- Resolve_Explicit_Dereference --
8145 ----------------------------------
8147 procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id) is
8148 Loc : constant Source_Ptr := Sloc (N);
8149 New_N : Node_Id;
8150 P : constant Node_Id := Prefix (N);
8152 P_Typ : Entity_Id;
8153 -- The candidate prefix type, if overloaded
8155 I : Interp_Index;
8156 It : Interp;
8158 begin
8159 Check_Fully_Declared_Prefix (Typ, P);
8160 P_Typ := Empty;
8162 -- A useful optimization: check whether the dereference denotes an
8163 -- element of a container, and if so rewrite it as a call to the
8164 -- corresponding Element function.
8166 -- Disabled for now, on advice of ARG. A more restricted form of the
8167 -- predicate might be acceptable ???
8169 -- if Is_Container_Element (N) then
8170 -- return;
8171 -- end if;
8173 if Is_Overloaded (P) then
8175 -- Use the context type to select the prefix that has the correct
8176 -- designated type. Keep the first match, which will be the inner-
8177 -- most.
8179 Get_First_Interp (P, I, It);
8181 while Present (It.Typ) loop
8182 if Is_Access_Type (It.Typ)
8183 and then Covers (Typ, Designated_Type (It.Typ))
8184 then
8185 if No (P_Typ) then
8186 P_Typ := It.Typ;
8187 end if;
8189 -- Remove access types that do not match, but preserve access
8190 -- to subprogram interpretations, in case a further dereference
8191 -- is needed (see below).
8193 elsif Ekind (It.Typ) /= E_Access_Subprogram_Type then
8194 Remove_Interp (I);
8195 end if;
8197 Get_Next_Interp (I, It);
8198 end loop;
8200 if Present (P_Typ) then
8201 Resolve (P, P_Typ);
8202 Set_Etype (N, Designated_Type (P_Typ));
8204 else
8205 -- If no interpretation covers the designated type of the prefix,
8206 -- this is the pathological case where not all implementations of
8207 -- the prefix allow the interpretation of the node as a call. Now
8208 -- that the expected type is known, Remove other interpretations
8209 -- from prefix, rewrite it as a call, and resolve again, so that
8210 -- the proper call node is generated.
8212 Get_First_Interp (P, I, It);
8213 while Present (It.Typ) loop
8214 if Ekind (It.Typ) /= E_Access_Subprogram_Type then
8215 Remove_Interp (I);
8216 end if;
8218 Get_Next_Interp (I, It);
8219 end loop;
8221 New_N :=
8222 Make_Function_Call (Loc,
8223 Name =>
8224 Make_Explicit_Dereference (Loc,
8225 Prefix => P),
8226 Parameter_Associations => New_List);
8228 Save_Interps (N, New_N);
8229 Rewrite (N, New_N);
8230 Analyze_And_Resolve (N, Typ);
8231 return;
8232 end if;
8234 -- If not overloaded, resolve P with its own type
8236 else
8237 Resolve (P);
8238 end if;
8240 -- If the prefix might be null, add an access check
8242 if Is_Access_Type (Etype (P))
8243 and then not Can_Never_Be_Null (Etype (P))
8244 then
8245 Apply_Access_Check (N);
8246 end if;
8248 -- If the designated type is a packed unconstrained array type, and the
8249 -- explicit dereference is not in the context of an attribute reference,
8250 -- then we must compute and set the actual subtype, since it is needed
8251 -- by Gigi. The reason we exclude the attribute case is that this is
8252 -- handled fine by Gigi, and in fact we use such attributes to build the
8253 -- actual subtype. We also exclude generated code (which builds actual
8254 -- subtypes directly if they are needed).
8256 if Is_Array_Type (Etype (N))
8257 and then Is_Packed (Etype (N))
8258 and then not Is_Constrained (Etype (N))
8259 and then Nkind (Parent (N)) /= N_Attribute_Reference
8260 and then Comes_From_Source (N)
8261 then
8262 Set_Etype (N, Get_Actual_Subtype (N));
8263 end if;
8265 Analyze_Dimension (N);
8267 -- Note: No Eval processing is required for an explicit dereference,
8268 -- because such a name can never be static.
8270 end Resolve_Explicit_Dereference;
8272 -------------------------------------
8273 -- Resolve_Expression_With_Actions --
8274 -------------------------------------
8276 procedure Resolve_Expression_With_Actions (N : Node_Id; Typ : Entity_Id) is
8277 begin
8278 Set_Etype (N, Typ);
8280 -- If N has no actions, and its expression has been constant folded,
8281 -- then rewrite N as just its expression. Note, we can't do this in
8282 -- the general case of Is_Empty_List (Actions (N)) as this would cause
8283 -- Expression (N) to be expanded again.
8285 if Is_Empty_List (Actions (N))
8286 and then Compile_Time_Known_Value (Expression (N))
8287 then
8288 Rewrite (N, Expression (N));
8289 end if;
8290 end Resolve_Expression_With_Actions;
8292 ----------------------------------
8293 -- Resolve_Generalized_Indexing --
8294 ----------------------------------
8296 procedure Resolve_Generalized_Indexing (N : Node_Id; Typ : Entity_Id) is
8297 Indexing : constant Node_Id := Generalized_Indexing (N);
8298 Call : Node_Id;
8299 Indexes : List_Id;
8300 Pref : Node_Id;
8302 begin
8303 -- In ASIS mode, propagate the information about the indexes back to
8304 -- to the original indexing node. The generalized indexing is either
8305 -- a function call, or a dereference of one. The actuals include the
8306 -- prefix of the original node, which is the container expression.
8308 if ASIS_Mode then
8309 Resolve (Indexing, Typ);
8310 Set_Etype (N, Etype (Indexing));
8311 Set_Is_Overloaded (N, False);
8313 Call := Indexing;
8314 while Nkind_In (Call, N_Explicit_Dereference, N_Selected_Component)
8315 loop
8316 Call := Prefix (Call);
8317 end loop;
8319 if Nkind (Call) = N_Function_Call then
8320 Indexes := New_Copy_List (Parameter_Associations (Call));
8321 Pref := Remove_Head (Indexes);
8322 Set_Expressions (N, Indexes);
8324 -- If expression is to be reanalyzed, reset Generalized_Indexing
8325 -- to recreate call node, as is the case when the expression is
8326 -- part of an expression function.
8328 if In_Spec_Expression then
8329 Set_Generalized_Indexing (N, Empty);
8330 end if;
8332 Set_Prefix (N, Pref);
8333 end if;
8335 else
8336 Rewrite (N, Indexing);
8337 Resolve (N, Typ);
8338 end if;
8339 end Resolve_Generalized_Indexing;
8341 ---------------------------
8342 -- Resolve_If_Expression --
8343 ---------------------------
8345 procedure Resolve_If_Expression (N : Node_Id; Typ : Entity_Id) is
8346 Condition : constant Node_Id := First (Expressions (N));
8347 Then_Expr : Node_Id;
8348 Else_Expr : Node_Id;
8349 Else_Typ : Entity_Id;
8350 Then_Typ : Entity_Id;
8352 begin
8353 -- Defend against malformed expressions
8355 if No (Condition) then
8356 return;
8357 end if;
8359 Then_Expr := Next (Condition);
8361 if No (Then_Expr) then
8362 return;
8363 end if;
8365 Else_Expr := Next (Then_Expr);
8367 Resolve (Condition, Any_Boolean);
8368 Resolve (Then_Expr, Typ);
8369 Then_Typ := Etype (Then_Expr);
8371 -- When the "then" expression is of a scalar subtype different from the
8372 -- result subtype, then insert a conversion to ensure the generation of
8373 -- a constraint check. The same is done for the else part below, again
8374 -- comparing subtypes rather than base types.
8376 if Is_Scalar_Type (Then_Typ) and then Then_Typ /= Typ then
8377 Rewrite (Then_Expr, Convert_To (Typ, Then_Expr));
8378 Analyze_And_Resolve (Then_Expr, Typ);
8379 end if;
8381 -- If ELSE expression present, just resolve using the determined type
8382 -- If type is universal, resolve to any member of the class.
8384 if Present (Else_Expr) then
8385 if Typ = Universal_Integer then
8386 Resolve (Else_Expr, Any_Integer);
8388 elsif Typ = Universal_Real then
8389 Resolve (Else_Expr, Any_Real);
8391 else
8392 Resolve (Else_Expr, Typ);
8393 end if;
8395 Else_Typ := Etype (Else_Expr);
8397 if Is_Scalar_Type (Else_Typ) and then Else_Typ /= Typ then
8398 Rewrite (Else_Expr, Convert_To (Typ, Else_Expr));
8399 Analyze_And_Resolve (Else_Expr, Typ);
8401 -- Apply RM 4.5.7 (17/3): whether the expression is statically or
8402 -- dynamically tagged must be known statically.
8404 elsif Is_Tagged_Type (Typ) and then not Is_Class_Wide_Type (Typ) then
8405 if Is_Dynamically_Tagged (Then_Expr) /=
8406 Is_Dynamically_Tagged (Else_Expr)
8407 then
8408 Error_Msg_N ("all or none of the dependent expressions "
8409 & "can be dynamically tagged", N);
8410 end if;
8411 end if;
8413 -- If no ELSE expression is present, root type must be Standard.Boolean
8414 -- and we provide a Standard.True result converted to the appropriate
8415 -- Boolean type (in case it is a derived boolean type).
8417 elsif Root_Type (Typ) = Standard_Boolean then
8418 Else_Expr :=
8419 Convert_To (Typ, New_Occurrence_Of (Standard_True, Sloc (N)));
8420 Analyze_And_Resolve (Else_Expr, Typ);
8421 Append_To (Expressions (N), Else_Expr);
8423 else
8424 Error_Msg_N ("can only omit ELSE expression in Boolean case", N);
8425 Append_To (Expressions (N), Error);
8426 end if;
8428 Set_Etype (N, Typ);
8430 if not Error_Posted (N) then
8431 Eval_If_Expression (N);
8432 end if;
8434 Analyze_Dimension (N);
8435 end Resolve_If_Expression;
8437 -------------------------------
8438 -- Resolve_Indexed_Component --
8439 -------------------------------
8441 procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id) is
8442 Name : constant Node_Id := Prefix (N);
8443 Expr : Node_Id;
8444 Array_Type : Entity_Id := Empty; -- to prevent junk warning
8445 Index : Node_Id;
8447 begin
8448 if Present (Generalized_Indexing (N)) then
8449 Resolve_Generalized_Indexing (N, Typ);
8450 return;
8451 end if;
8453 if Is_Overloaded (Name) then
8455 -- Use the context type to select the prefix that yields the correct
8456 -- component type.
8458 declare
8459 I : Interp_Index;
8460 It : Interp;
8461 I1 : Interp_Index := 0;
8462 P : constant Node_Id := Prefix (N);
8463 Found : Boolean := False;
8465 begin
8466 Get_First_Interp (P, I, It);
8467 while Present (It.Typ) loop
8468 if (Is_Array_Type (It.Typ)
8469 and then Covers (Typ, Component_Type (It.Typ)))
8470 or else (Is_Access_Type (It.Typ)
8471 and then Is_Array_Type (Designated_Type (It.Typ))
8472 and then
8473 Covers
8474 (Typ,
8475 Component_Type (Designated_Type (It.Typ))))
8476 then
8477 if Found then
8478 It := Disambiguate (P, I1, I, Any_Type);
8480 if It = No_Interp then
8481 Error_Msg_N ("ambiguous prefix for indexing", N);
8482 Set_Etype (N, Typ);
8483 return;
8485 else
8486 Found := True;
8487 Array_Type := It.Typ;
8488 I1 := I;
8489 end if;
8491 else
8492 Found := True;
8493 Array_Type := It.Typ;
8494 I1 := I;
8495 end if;
8496 end if;
8498 Get_Next_Interp (I, It);
8499 end loop;
8500 end;
8502 else
8503 Array_Type := Etype (Name);
8504 end if;
8506 Resolve (Name, Array_Type);
8507 Array_Type := Get_Actual_Subtype_If_Available (Name);
8509 -- If prefix is access type, dereference to get real array type.
8510 -- Note: we do not apply an access check because the expander always
8511 -- introduces an explicit dereference, and the check will happen there.
8513 if Is_Access_Type (Array_Type) then
8514 Array_Type := Designated_Type (Array_Type);
8515 end if;
8517 -- If name was overloaded, set component type correctly now
8518 -- If a misplaced call to an entry family (which has no index types)
8519 -- return. Error will be diagnosed from calling context.
8521 if Is_Array_Type (Array_Type) then
8522 Set_Etype (N, Component_Type (Array_Type));
8523 else
8524 return;
8525 end if;
8527 Index := First_Index (Array_Type);
8528 Expr := First (Expressions (N));
8530 -- The prefix may have resolved to a string literal, in which case its
8531 -- etype has a special representation. This is only possible currently
8532 -- if the prefix is a static concatenation, written in functional
8533 -- notation.
8535 if Ekind (Array_Type) = E_String_Literal_Subtype then
8536 Resolve (Expr, Standard_Positive);
8538 else
8539 while Present (Index) and Present (Expr) loop
8540 Resolve (Expr, Etype (Index));
8541 Check_Unset_Reference (Expr);
8543 if Is_Scalar_Type (Etype (Expr)) then
8544 Apply_Scalar_Range_Check (Expr, Etype (Index));
8545 else
8546 Apply_Range_Check (Expr, Get_Actual_Subtype (Index));
8547 end if;
8549 Next_Index (Index);
8550 Next (Expr);
8551 end loop;
8552 end if;
8554 Analyze_Dimension (N);
8556 -- Do not generate the warning on suspicious index if we are analyzing
8557 -- package Ada.Tags; otherwise we will report the warning with the
8558 -- Prims_Ptr field of the dispatch table.
8560 if Scope (Etype (Prefix (N))) = Standard_Standard
8561 or else not
8562 Is_RTU (Cunit_Entity (Get_Source_Unit (Etype (Prefix (N)))),
8563 Ada_Tags)
8564 then
8565 Warn_On_Suspicious_Index (Name, First (Expressions (N)));
8566 Eval_Indexed_Component (N);
8567 end if;
8569 -- If the array type is atomic, and the component is not atomic, then
8570 -- this is worth a warning, since we have a situation where the access
8571 -- to the component may cause extra read/writes of the atomic array
8572 -- object, or partial word accesses, which could be unexpected.
8574 if Nkind (N) = N_Indexed_Component
8575 and then Is_Atomic_Ref_With_Address (N)
8576 and then not (Has_Atomic_Components (Array_Type)
8577 or else (Is_Entity_Name (Prefix (N))
8578 and then Has_Atomic_Components
8579 (Entity (Prefix (N)))))
8580 and then not Is_Atomic (Component_Type (Array_Type))
8581 then
8582 Error_Msg_N
8583 ("??access to non-atomic component of atomic array", Prefix (N));
8584 Error_Msg_N
8585 ("??\may cause unexpected accesses to atomic object", Prefix (N));
8586 end if;
8587 end Resolve_Indexed_Component;
8589 -----------------------------
8590 -- Resolve_Integer_Literal --
8591 -----------------------------
8593 procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id) is
8594 begin
8595 Set_Etype (N, Typ);
8596 Eval_Integer_Literal (N);
8597 end Resolve_Integer_Literal;
8599 --------------------------------
8600 -- Resolve_Intrinsic_Operator --
8601 --------------------------------
8603 procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id) is
8604 Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
8605 Op : Entity_Id;
8606 Arg1 : Node_Id;
8607 Arg2 : Node_Id;
8609 function Convert_Operand (Opnd : Node_Id) return Node_Id;
8610 -- If the operand is a literal, it cannot be the expression in a
8611 -- conversion. Use a qualified expression instead.
8613 ---------------------
8614 -- Convert_Operand --
8615 ---------------------
8617 function Convert_Operand (Opnd : Node_Id) return Node_Id is
8618 Loc : constant Source_Ptr := Sloc (Opnd);
8619 Res : Node_Id;
8621 begin
8622 if Nkind_In (Opnd, N_Integer_Literal, N_Real_Literal) then
8623 Res :=
8624 Make_Qualified_Expression (Loc,
8625 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
8626 Expression => Relocate_Node (Opnd));
8627 Analyze (Res);
8629 else
8630 Res := Unchecked_Convert_To (Btyp, Opnd);
8631 end if;
8633 return Res;
8634 end Convert_Operand;
8636 -- Start of processing for Resolve_Intrinsic_Operator
8638 begin
8639 -- We must preserve the original entity in a generic setting, so that
8640 -- the legality of the operation can be verified in an instance.
8642 if not Expander_Active then
8643 return;
8644 end if;
8646 Op := Entity (N);
8647 while Scope (Op) /= Standard_Standard loop
8648 Op := Homonym (Op);
8649 pragma Assert (Present (Op));
8650 end loop;
8652 Set_Entity (N, Op);
8653 Set_Is_Overloaded (N, False);
8655 -- If the result or operand types are private, rewrite with unchecked
8656 -- conversions on the operands and the result, to expose the proper
8657 -- underlying numeric type.
8659 if Is_Private_Type (Typ)
8660 or else Is_Private_Type (Etype (Left_Opnd (N)))
8661 or else Is_Private_Type (Etype (Right_Opnd (N)))
8662 then
8663 Arg1 := Convert_Operand (Left_Opnd (N));
8665 if Nkind (N) = N_Op_Expon then
8666 Arg2 := Unchecked_Convert_To (Standard_Integer, Right_Opnd (N));
8667 else
8668 Arg2 := Convert_Operand (Right_Opnd (N));
8669 end if;
8671 if Nkind (Arg1) = N_Type_Conversion then
8672 Save_Interps (Left_Opnd (N), Expression (Arg1));
8673 end if;
8675 if Nkind (Arg2) = N_Type_Conversion then
8676 Save_Interps (Right_Opnd (N), Expression (Arg2));
8677 end if;
8679 Set_Left_Opnd (N, Arg1);
8680 Set_Right_Opnd (N, Arg2);
8682 Set_Etype (N, Btyp);
8683 Rewrite (N, Unchecked_Convert_To (Typ, N));
8684 Resolve (N, Typ);
8686 elsif Typ /= Etype (Left_Opnd (N))
8687 or else Typ /= Etype (Right_Opnd (N))
8688 then
8689 -- Add explicit conversion where needed, and save interpretations in
8690 -- case operands are overloaded.
8692 Arg1 := Convert_To (Typ, Left_Opnd (N));
8693 Arg2 := Convert_To (Typ, Right_Opnd (N));
8695 if Nkind (Arg1) = N_Type_Conversion then
8696 Save_Interps (Left_Opnd (N), Expression (Arg1));
8697 else
8698 Save_Interps (Left_Opnd (N), Arg1);
8699 end if;
8701 if Nkind (Arg2) = N_Type_Conversion then
8702 Save_Interps (Right_Opnd (N), Expression (Arg2));
8703 else
8704 Save_Interps (Right_Opnd (N), Arg2);
8705 end if;
8707 Rewrite (Left_Opnd (N), Arg1);
8708 Rewrite (Right_Opnd (N), Arg2);
8709 Analyze (Arg1);
8710 Analyze (Arg2);
8711 Resolve_Arithmetic_Op (N, Typ);
8713 else
8714 Resolve_Arithmetic_Op (N, Typ);
8715 end if;
8716 end Resolve_Intrinsic_Operator;
8718 --------------------------------------
8719 -- Resolve_Intrinsic_Unary_Operator --
8720 --------------------------------------
8722 procedure Resolve_Intrinsic_Unary_Operator
8723 (N : Node_Id;
8724 Typ : Entity_Id)
8726 Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
8727 Op : Entity_Id;
8728 Arg2 : Node_Id;
8730 begin
8731 Op := Entity (N);
8732 while Scope (Op) /= Standard_Standard loop
8733 Op := Homonym (Op);
8734 pragma Assert (Present (Op));
8735 end loop;
8737 Set_Entity (N, Op);
8739 if Is_Private_Type (Typ) then
8740 Arg2 := Unchecked_Convert_To (Btyp, Right_Opnd (N));
8741 Save_Interps (Right_Opnd (N), Expression (Arg2));
8743 Set_Right_Opnd (N, Arg2);
8745 Set_Etype (N, Btyp);
8746 Rewrite (N, Unchecked_Convert_To (Typ, N));
8747 Resolve (N, Typ);
8749 else
8750 Resolve_Unary_Op (N, Typ);
8751 end if;
8752 end Resolve_Intrinsic_Unary_Operator;
8754 ------------------------
8755 -- Resolve_Logical_Op --
8756 ------------------------
8758 procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id) is
8759 B_Typ : Entity_Id;
8761 begin
8762 Check_No_Direct_Boolean_Operators (N);
8764 -- Predefined operations on scalar types yield the base type. On the
8765 -- other hand, logical operations on arrays yield the type of the
8766 -- arguments (and the context).
8768 if Is_Array_Type (Typ) then
8769 B_Typ := Typ;
8770 else
8771 B_Typ := Base_Type (Typ);
8772 end if;
8774 -- The following test is required because the operands of the operation
8775 -- may be literals, in which case the resulting type appears to be
8776 -- compatible with a signed integer type, when in fact it is compatible
8777 -- only with modular types. If the context itself is universal, the
8778 -- operation is illegal.
8780 if not Valid_Boolean_Arg (Typ) then
8781 Error_Msg_N ("invalid context for logical operation", N);
8782 Set_Etype (N, Any_Type);
8783 return;
8785 elsif Typ = Any_Modular then
8786 Error_Msg_N
8787 ("no modular type available in this context", N);
8788 Set_Etype (N, Any_Type);
8789 return;
8791 elsif Is_Modular_Integer_Type (Typ)
8792 and then Etype (Left_Opnd (N)) = Universal_Integer
8793 and then Etype (Right_Opnd (N)) = Universal_Integer
8794 then
8795 Check_For_Visible_Operator (N, B_Typ);
8796 end if;
8798 -- Replace AND by AND THEN, or OR by OR ELSE, if Short_Circuit_And_Or
8799 -- is active and the result type is standard Boolean (do not mess with
8800 -- ops that return a nonstandard Boolean type, because something strange
8801 -- is going on).
8803 -- Note: you might expect this replacement to be done during expansion,
8804 -- but that doesn't work, because when the pragma Short_Circuit_And_Or
8805 -- is used, no part of the right operand of an "and" or "or" operator
8806 -- should be executed if the left operand would short-circuit the
8807 -- evaluation of the corresponding "and then" or "or else". If we left
8808 -- the replacement to expansion time, then run-time checks associated
8809 -- with such operands would be evaluated unconditionally, due to being
8810 -- before the condition prior to the rewriting as short-circuit forms
8811 -- during expansion.
8813 if Short_Circuit_And_Or
8814 and then B_Typ = Standard_Boolean
8815 and then Nkind_In (N, N_Op_And, N_Op_Or)
8816 then
8817 -- Mark the corresponding putative SCO operator as truly a logical
8818 -- (and short-circuit) operator.
8820 if Generate_SCO and then Comes_From_Source (N) then
8821 Set_SCO_Logical_Operator (N);
8822 end if;
8824 if Nkind (N) = N_Op_And then
8825 Rewrite (N,
8826 Make_And_Then (Sloc (N),
8827 Left_Opnd => Relocate_Node (Left_Opnd (N)),
8828 Right_Opnd => Relocate_Node (Right_Opnd (N))));
8829 Analyze_And_Resolve (N, B_Typ);
8831 -- Case of OR changed to OR ELSE
8833 else
8834 Rewrite (N,
8835 Make_Or_Else (Sloc (N),
8836 Left_Opnd => Relocate_Node (Left_Opnd (N)),
8837 Right_Opnd => Relocate_Node (Right_Opnd (N))));
8838 Analyze_And_Resolve (N, B_Typ);
8839 end if;
8841 -- Return now, since analysis of the rewritten ops will take care of
8842 -- other reference bookkeeping and expression folding.
8844 return;
8845 end if;
8847 Resolve (Left_Opnd (N), B_Typ);
8848 Resolve (Right_Opnd (N), B_Typ);
8850 Check_Unset_Reference (Left_Opnd (N));
8851 Check_Unset_Reference (Right_Opnd (N));
8853 Set_Etype (N, B_Typ);
8854 Generate_Operator_Reference (N, B_Typ);
8855 Eval_Logical_Op (N);
8857 -- In SPARK, logical operations AND, OR and XOR for arrays are defined
8858 -- only when both operands have same static lower and higher bounds. Of
8859 -- course the types have to match, so only check if operands are
8860 -- compatible and the node itself has no errors.
8862 if Is_Array_Type (B_Typ)
8863 and then Nkind (N) in N_Binary_Op
8864 then
8865 declare
8866 Left_Typ : constant Node_Id := Etype (Left_Opnd (N));
8867 Right_Typ : constant Node_Id := Etype (Right_Opnd (N));
8869 begin
8870 -- Protect call to Matching_Static_Array_Bounds to avoid costly
8871 -- operation if not needed.
8873 if Restriction_Check_Required (SPARK_05)
8874 and then Base_Type (Left_Typ) = Base_Type (Right_Typ)
8875 and then Left_Typ /= Any_Composite -- or Left_Opnd in error
8876 and then Right_Typ /= Any_Composite -- or Right_Opnd in error
8877 and then not Matching_Static_Array_Bounds (Left_Typ, Right_Typ)
8878 then
8879 Check_SPARK_05_Restriction
8880 ("array types should have matching static bounds", N);
8881 end if;
8882 end;
8883 end if;
8884 end Resolve_Logical_Op;
8886 ---------------------------
8887 -- Resolve_Membership_Op --
8888 ---------------------------
8890 -- The context can only be a boolean type, and does not determine the
8891 -- arguments. Arguments should be unambiguous, but the preference rule for
8892 -- universal types applies.
8894 procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id) is
8895 pragma Warnings (Off, Typ);
8897 L : constant Node_Id := Left_Opnd (N);
8898 R : constant Node_Id := Right_Opnd (N);
8899 T : Entity_Id;
8901 procedure Resolve_Set_Membership;
8902 -- Analysis has determined a unique type for the left operand. Use it to
8903 -- resolve the disjuncts.
8905 ----------------------------
8906 -- Resolve_Set_Membership --
8907 ----------------------------
8909 procedure Resolve_Set_Membership is
8910 Alt : Node_Id;
8911 Ltyp : Entity_Id;
8913 begin
8914 -- If the left operand is overloaded, find type compatible with not
8915 -- overloaded alternative of the right operand.
8917 if Is_Overloaded (L) then
8918 Ltyp := Empty;
8919 Alt := First (Alternatives (N));
8920 while Present (Alt) loop
8921 if not Is_Overloaded (Alt) then
8922 Ltyp := Intersect_Types (L, Alt);
8923 exit;
8924 else
8925 Next (Alt);
8926 end if;
8927 end loop;
8929 -- Unclear how to resolve expression if all alternatives are also
8930 -- overloaded.
8932 if No (Ltyp) then
8933 Error_Msg_N ("ambiguous expression", N);
8934 end if;
8936 else
8937 Ltyp := Etype (L);
8938 end if;
8940 Resolve (L, Ltyp);
8942 Alt := First (Alternatives (N));
8943 while Present (Alt) loop
8945 -- Alternative is an expression, a range
8946 -- or a subtype mark.
8948 if not Is_Entity_Name (Alt)
8949 or else not Is_Type (Entity (Alt))
8950 then
8951 Resolve (Alt, Ltyp);
8952 end if;
8954 Next (Alt);
8955 end loop;
8957 -- Check for duplicates for discrete case
8959 if Is_Discrete_Type (Ltyp) then
8960 declare
8961 type Ent is record
8962 Alt : Node_Id;
8963 Val : Uint;
8964 end record;
8966 Alts : array (0 .. List_Length (Alternatives (N))) of Ent;
8967 Nalts : Nat;
8969 begin
8970 -- Loop checking duplicates. This is quadratic, but giant sets
8971 -- are unlikely in this context so it's a reasonable choice.
8973 Nalts := 0;
8974 Alt := First (Alternatives (N));
8975 while Present (Alt) loop
8976 if Is_OK_Static_Expression (Alt)
8977 and then (Nkind_In (Alt, N_Integer_Literal,
8978 N_Character_Literal)
8979 or else Nkind (Alt) in N_Has_Entity)
8980 then
8981 Nalts := Nalts + 1;
8982 Alts (Nalts) := (Alt, Expr_Value (Alt));
8984 for J in 1 .. Nalts - 1 loop
8985 if Alts (J).Val = Alts (Nalts).Val then
8986 Error_Msg_Sloc := Sloc (Alts (J).Alt);
8987 Error_Msg_N ("duplicate of value given#??", Alt);
8988 end if;
8989 end loop;
8990 end if;
8992 Alt := Next (Alt);
8993 end loop;
8994 end;
8995 end if;
8997 -- RM 4.5.2 (28.1/3) specifies that for types other than records or
8998 -- limited types, evaluation of a membership test uses the predefined
8999 -- equality for the type. This may be confusing to users, and the
9000 -- following warning appears useful for the most common case.
9002 if Is_Scalar_Type (Ltyp)
9003 and then Present (Get_User_Defined_Eq (Ltyp))
9004 then
9005 Error_Msg_NE
9006 ("membership test on& uses predefined equality?", N, Ltyp);
9007 Error_Msg_N
9008 ("\even if user-defined equality exists (RM 4.5.2 (28.1/3)?", N);
9009 end if;
9010 end Resolve_Set_Membership;
9012 -- Start of processing for Resolve_Membership_Op
9014 begin
9015 if L = Error or else R = Error then
9016 return;
9017 end if;
9019 if Present (Alternatives (N)) then
9020 Resolve_Set_Membership;
9021 goto SM_Exit;
9023 elsif not Is_Overloaded (R)
9024 and then
9025 (Etype (R) = Universal_Integer
9026 or else
9027 Etype (R) = Universal_Real)
9028 and then Is_Overloaded (L)
9029 then
9030 T := Etype (R);
9032 -- Ada 2005 (AI-251): Support the following case:
9034 -- type I is interface;
9035 -- type T is tagged ...
9037 -- function Test (O : I'Class) is
9038 -- begin
9039 -- return O in T'Class.
9040 -- end Test;
9042 -- In this case we have nothing else to do. The membership test will be
9043 -- done at run time.
9045 elsif Ada_Version >= Ada_2005
9046 and then Is_Class_Wide_Type (Etype (L))
9047 and then Is_Interface (Etype (L))
9048 and then not Is_Interface (Etype (R))
9049 then
9050 return;
9051 else
9052 T := Intersect_Types (L, R);
9053 end if;
9055 -- If mixed-mode operations are present and operands are all literal,
9056 -- the only interpretation involves Duration, which is probably not
9057 -- the intention of the programmer.
9059 if T = Any_Fixed then
9060 T := Unique_Fixed_Point_Type (N);
9062 if T = Any_Type then
9063 return;
9064 end if;
9065 end if;
9067 Resolve (L, T);
9068 Check_Unset_Reference (L);
9070 if Nkind (R) = N_Range
9071 and then not Is_Scalar_Type (T)
9072 then
9073 Error_Msg_N ("scalar type required for range", R);
9074 end if;
9076 if Is_Entity_Name (R) then
9077 Freeze_Expression (R);
9078 else
9079 Resolve (R, T);
9080 Check_Unset_Reference (R);
9081 end if;
9083 -- Here after resolving membership operation
9085 <<SM_Exit>>
9087 Eval_Membership_Op (N);
9088 end Resolve_Membership_Op;
9090 ------------------
9091 -- Resolve_Null --
9092 ------------------
9094 procedure Resolve_Null (N : Node_Id; Typ : Entity_Id) is
9095 Loc : constant Source_Ptr := Sloc (N);
9097 begin
9098 -- Handle restriction against anonymous null access values This
9099 -- restriction can be turned off using -gnatdj.
9101 -- Ada 2005 (AI-231): Remove restriction
9103 if Ada_Version < Ada_2005
9104 and then not Debug_Flag_J
9105 and then Ekind (Typ) = E_Anonymous_Access_Type
9106 and then Comes_From_Source (N)
9107 then
9108 -- In the common case of a call which uses an explicitly null value
9109 -- for an access parameter, give specialized error message.
9111 if Nkind (Parent (N)) in N_Subprogram_Call then
9112 Error_Msg_N
9113 ("null is not allowed as argument for an access parameter", N);
9115 -- Standard message for all other cases (are there any?)
9117 else
9118 Error_Msg_N
9119 ("null cannot be of an anonymous access type", N);
9120 end if;
9121 end if;
9123 -- Ada 2005 (AI-231): Generate the null-excluding check in case of
9124 -- assignment to a null-excluding object.
9126 if Ada_Version >= Ada_2005
9127 and then Can_Never_Be_Null (Typ)
9128 and then Nkind (Parent (N)) = N_Assignment_Statement
9129 then
9130 if Inside_Init_Proc then
9132 -- Decide whether to generate an if_statement around our
9133 -- null-excluding check to avoid them on certain internal object
9134 -- declarations by looking at the type the current Init_Proc
9135 -- belongs to.
9137 -- Generate:
9138 -- if T1b_skip_null_excluding_check then
9139 -- [constraint_error "access check failed"]
9140 -- end if;
9142 if Needs_Conditional_Null_Excluding_Check
9143 (Etype (First_Formal (Enclosing_Init_Proc)))
9144 then
9145 Insert_Action (N,
9146 Make_If_Statement (Loc,
9147 Condition =>
9148 Make_Identifier (Loc,
9149 New_External_Name
9150 (Chars (Typ), "_skip_null_excluding_check")),
9151 Then_Statements =>
9152 New_List (
9153 Make_Raise_Constraint_Error (Loc,
9154 Reason => CE_Access_Check_Failed))));
9156 -- Otherwise, simply create the check
9158 else
9159 Insert_Action (N,
9160 Make_Raise_Constraint_Error (Loc,
9161 Reason => CE_Access_Check_Failed));
9162 end if;
9163 else
9164 Insert_Action
9165 (Compile_Time_Constraint_Error (N,
9166 "(Ada 2005) null not allowed in null-excluding objects??"),
9167 Make_Raise_Constraint_Error (Loc,
9168 Reason => CE_Access_Check_Failed));
9169 end if;
9170 end if;
9172 -- In a distributed context, null for a remote access to subprogram may
9173 -- need to be replaced with a special record aggregate. In this case,
9174 -- return after having done the transformation.
9176 if (Ekind (Typ) = E_Record_Type
9177 or else Is_Remote_Access_To_Subprogram_Type (Typ))
9178 and then Remote_AST_Null_Value (N, Typ)
9179 then
9180 return;
9181 end if;
9183 -- The null literal takes its type from the context
9185 Set_Etype (N, Typ);
9186 end Resolve_Null;
9188 -----------------------
9189 -- Resolve_Op_Concat --
9190 -----------------------
9192 procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id) is
9194 -- We wish to avoid deep recursion, because concatenations are often
9195 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
9196 -- operands nonrecursively until we find something that is not a simple
9197 -- concatenation (A in this case). We resolve that, and then walk back
9198 -- up the tree following Parent pointers, calling Resolve_Op_Concat_Rest
9199 -- to do the rest of the work at each level. The Parent pointers allow
9200 -- us to avoid recursion, and thus avoid running out of memory. See also
9201 -- Sem_Ch4.Analyze_Concatenation, where a similar approach is used.
9203 NN : Node_Id := N;
9204 Op1 : Node_Id;
9206 begin
9207 -- The following code is equivalent to:
9209 -- Resolve_Op_Concat_First (NN, Typ);
9210 -- Resolve_Op_Concat_Arg (N, ...);
9211 -- Resolve_Op_Concat_Rest (N, Typ);
9213 -- where the Resolve_Op_Concat_Arg call recurses back here if the left
9214 -- operand is a concatenation.
9216 -- Walk down left operands
9218 loop
9219 Resolve_Op_Concat_First (NN, Typ);
9220 Op1 := Left_Opnd (NN);
9221 exit when not (Nkind (Op1) = N_Op_Concat
9222 and then not Is_Array_Type (Component_Type (Typ))
9223 and then Entity (Op1) = Entity (NN));
9224 NN := Op1;
9225 end loop;
9227 -- Now (given the above example) NN is A&B and Op1 is A
9229 -- First resolve Op1 ...
9231 Resolve_Op_Concat_Arg (NN, Op1, Typ, Is_Component_Left_Opnd (NN));
9233 -- ... then walk NN back up until we reach N (where we started), calling
9234 -- Resolve_Op_Concat_Rest along the way.
9236 loop
9237 Resolve_Op_Concat_Rest (NN, Typ);
9238 exit when NN = N;
9239 NN := Parent (NN);
9240 end loop;
9242 if Base_Type (Etype (N)) /= Standard_String then
9243 Check_SPARK_05_Restriction
9244 ("result of concatenation should have type String", N);
9245 end if;
9246 end Resolve_Op_Concat;
9248 ---------------------------
9249 -- Resolve_Op_Concat_Arg --
9250 ---------------------------
9252 procedure Resolve_Op_Concat_Arg
9253 (N : Node_Id;
9254 Arg : Node_Id;
9255 Typ : Entity_Id;
9256 Is_Comp : Boolean)
9258 Btyp : constant Entity_Id := Base_Type (Typ);
9259 Ctyp : constant Entity_Id := Component_Type (Typ);
9261 begin
9262 if In_Instance then
9263 if Is_Comp
9264 or else (not Is_Overloaded (Arg)
9265 and then Etype (Arg) /= Any_Composite
9266 and then Covers (Ctyp, Etype (Arg)))
9267 then
9268 Resolve (Arg, Ctyp);
9269 else
9270 Resolve (Arg, Btyp);
9271 end if;
9273 -- If both Array & Array and Array & Component are visible, there is a
9274 -- potential ambiguity that must be reported.
9276 elsif Has_Compatible_Type (Arg, Ctyp) then
9277 if Nkind (Arg) = N_Aggregate
9278 and then Is_Composite_Type (Ctyp)
9279 then
9280 if Is_Private_Type (Ctyp) then
9281 Resolve (Arg, Btyp);
9283 -- If the operation is user-defined and not overloaded use its
9284 -- profile. The operation may be a renaming, in which case it has
9285 -- been rewritten, and we want the original profile.
9287 elsif not Is_Overloaded (N)
9288 and then Comes_From_Source (Entity (Original_Node (N)))
9289 and then Ekind (Entity (Original_Node (N))) = E_Function
9290 then
9291 Resolve (Arg,
9292 Etype
9293 (Next_Formal (First_Formal (Entity (Original_Node (N))))));
9294 return;
9296 -- Otherwise an aggregate may match both the array type and the
9297 -- component type.
9299 else
9300 Error_Msg_N ("ambiguous aggregate must be qualified", Arg);
9301 Set_Etype (Arg, Any_Type);
9302 end if;
9304 else
9305 if Is_Overloaded (Arg)
9306 and then Has_Compatible_Type (Arg, Typ)
9307 and then Etype (Arg) /= Any_Type
9308 then
9309 declare
9310 I : Interp_Index;
9311 It : Interp;
9312 Func : Entity_Id;
9314 begin
9315 Get_First_Interp (Arg, I, It);
9316 Func := It.Nam;
9317 Get_Next_Interp (I, It);
9319 -- Special-case the error message when the overloading is
9320 -- caused by a function that yields an array and can be
9321 -- called without parameters.
9323 if It.Nam = Func then
9324 Error_Msg_Sloc := Sloc (Func);
9325 Error_Msg_N ("ambiguous call to function#", Arg);
9326 Error_Msg_NE
9327 ("\\interpretation as call yields&", Arg, Typ);
9328 Error_Msg_NE
9329 ("\\interpretation as indexing of call yields&",
9330 Arg, Component_Type (Typ));
9332 else
9333 Error_Msg_N ("ambiguous operand for concatenation!", Arg);
9335 Get_First_Interp (Arg, I, It);
9336 while Present (It.Nam) loop
9337 Error_Msg_Sloc := Sloc (It.Nam);
9339 if Base_Type (It.Typ) = Btyp
9340 or else
9341 Base_Type (It.Typ) = Base_Type (Ctyp)
9342 then
9343 Error_Msg_N -- CODEFIX
9344 ("\\possible interpretation#", Arg);
9345 end if;
9347 Get_Next_Interp (I, It);
9348 end loop;
9349 end if;
9350 end;
9351 end if;
9353 Resolve (Arg, Component_Type (Typ));
9355 if Nkind (Arg) = N_String_Literal then
9356 Set_Etype (Arg, Component_Type (Typ));
9357 end if;
9359 if Arg = Left_Opnd (N) then
9360 Set_Is_Component_Left_Opnd (N);
9361 else
9362 Set_Is_Component_Right_Opnd (N);
9363 end if;
9364 end if;
9366 else
9367 Resolve (Arg, Btyp);
9368 end if;
9370 -- Concatenation is restricted in SPARK: each operand must be either a
9371 -- string literal, the name of a string constant, a static character or
9372 -- string expression, or another concatenation. Arg cannot be a
9373 -- concatenation here as callers of Resolve_Op_Concat_Arg call it
9374 -- separately on each final operand, past concatenation operations.
9376 if Is_Character_Type (Etype (Arg)) then
9377 if not Is_OK_Static_Expression (Arg) then
9378 Check_SPARK_05_Restriction
9379 ("character operand for concatenation should be static", Arg);
9380 end if;
9382 elsif Is_String_Type (Etype (Arg)) then
9383 if not (Nkind_In (Arg, N_Identifier, N_Expanded_Name)
9384 and then Is_Constant_Object (Entity (Arg)))
9385 and then not Is_OK_Static_Expression (Arg)
9386 then
9387 Check_SPARK_05_Restriction
9388 ("string operand for concatenation should be static", Arg);
9389 end if;
9391 -- Do not issue error on an operand that is neither a character nor a
9392 -- string, as the error is issued in Resolve_Op_Concat.
9394 else
9395 null;
9396 end if;
9398 Check_Unset_Reference (Arg);
9399 end Resolve_Op_Concat_Arg;
9401 -----------------------------
9402 -- Resolve_Op_Concat_First --
9403 -----------------------------
9405 procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id) is
9406 Btyp : constant Entity_Id := Base_Type (Typ);
9407 Op1 : constant Node_Id := Left_Opnd (N);
9408 Op2 : constant Node_Id := Right_Opnd (N);
9410 begin
9411 -- The parser folds an enormous sequence of concatenations of string
9412 -- literals into "" & "...", where the Is_Folded_In_Parser flag is set
9413 -- in the right operand. If the expression resolves to a predefined "&"
9414 -- operator, all is well. Otherwise, the parser's folding is wrong, so
9415 -- we give an error. See P_Simple_Expression in Par.Ch4.
9417 if Nkind (Op2) = N_String_Literal
9418 and then Is_Folded_In_Parser (Op2)
9419 and then Ekind (Entity (N)) = E_Function
9420 then
9421 pragma Assert (Nkind (Op1) = N_String_Literal -- should be ""
9422 and then String_Length (Strval (Op1)) = 0);
9423 Error_Msg_N ("too many user-defined concatenations", N);
9424 return;
9425 end if;
9427 Set_Etype (N, Btyp);
9429 if Is_Limited_Composite (Btyp) then
9430 Error_Msg_N ("concatenation not available for limited array", N);
9431 Explain_Limited_Type (Btyp, N);
9432 end if;
9433 end Resolve_Op_Concat_First;
9435 ----------------------------
9436 -- Resolve_Op_Concat_Rest --
9437 ----------------------------
9439 procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id) is
9440 Op1 : constant Node_Id := Left_Opnd (N);
9441 Op2 : constant Node_Id := Right_Opnd (N);
9443 begin
9444 Resolve_Op_Concat_Arg (N, Op2, Typ, Is_Component_Right_Opnd (N));
9446 Generate_Operator_Reference (N, Typ);
9448 if Is_String_Type (Typ) then
9449 Eval_Concatenation (N);
9450 end if;
9452 -- If this is not a static concatenation, but the result is a string
9453 -- type (and not an array of strings) ensure that static string operands
9454 -- have their subtypes properly constructed.
9456 if Nkind (N) /= N_String_Literal
9457 and then Is_Character_Type (Component_Type (Typ))
9458 then
9459 Set_String_Literal_Subtype (Op1, Typ);
9460 Set_String_Literal_Subtype (Op2, Typ);
9461 end if;
9462 end Resolve_Op_Concat_Rest;
9464 ----------------------
9465 -- Resolve_Op_Expon --
9466 ----------------------
9468 procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id) is
9469 B_Typ : constant Entity_Id := Base_Type (Typ);
9471 begin
9472 -- Catch attempts to do fixed-point exponentiation with universal
9473 -- operands, which is a case where the illegality is not caught during
9474 -- normal operator analysis. This is not done in preanalysis mode
9475 -- since the tree is not fully decorated during preanalysis.
9477 if Full_Analysis then
9478 if Is_Fixed_Point_Type (Typ) and then Comes_From_Source (N) then
9479 Error_Msg_N ("exponentiation not available for fixed point", N);
9480 return;
9482 elsif Nkind (Parent (N)) in N_Op
9483 and then Present (Etype (Parent (N)))
9484 and then Is_Fixed_Point_Type (Etype (Parent (N)))
9485 and then Etype (N) = Universal_Real
9486 and then Comes_From_Source (N)
9487 then
9488 Error_Msg_N ("exponentiation not available for fixed point", N);
9489 return;
9490 end if;
9491 end if;
9493 if Comes_From_Source (N)
9494 and then Ekind (Entity (N)) = E_Function
9495 and then Is_Imported (Entity (N))
9496 and then Is_Intrinsic_Subprogram (Entity (N))
9497 then
9498 Resolve_Intrinsic_Operator (N, Typ);
9499 return;
9500 end if;
9502 if Etype (Left_Opnd (N)) = Universal_Integer
9503 or else Etype (Left_Opnd (N)) = Universal_Real
9504 then
9505 Check_For_Visible_Operator (N, B_Typ);
9506 end if;
9508 -- We do the resolution using the base type, because intermediate values
9509 -- in expressions are always of the base type, not a subtype of it.
9511 Resolve (Left_Opnd (N), B_Typ);
9512 Resolve (Right_Opnd (N), Standard_Integer);
9514 -- For integer types, right argument must be in Natural range
9516 if Is_Integer_Type (Typ) then
9517 Apply_Scalar_Range_Check (Right_Opnd (N), Standard_Natural);
9518 end if;
9520 Check_Unset_Reference (Left_Opnd (N));
9521 Check_Unset_Reference (Right_Opnd (N));
9523 Set_Etype (N, B_Typ);
9524 Generate_Operator_Reference (N, B_Typ);
9526 Analyze_Dimension (N);
9528 if Ada_Version >= Ada_2012 and then Has_Dimension_System (B_Typ) then
9529 -- Evaluate the exponentiation operator for dimensioned type
9531 Eval_Op_Expon_For_Dimensioned_Type (N, B_Typ);
9532 else
9533 Eval_Op_Expon (N);
9534 end if;
9536 -- Set overflow checking bit. Much cleverer code needed here eventually
9537 -- and perhaps the Resolve routines should be separated for the various
9538 -- arithmetic operations, since they will need different processing. ???
9540 if Nkind (N) in N_Op then
9541 if not Overflow_Checks_Suppressed (Etype (N)) then
9542 Enable_Overflow_Check (N);
9543 end if;
9544 end if;
9545 end Resolve_Op_Expon;
9547 --------------------
9548 -- Resolve_Op_Not --
9549 --------------------
9551 procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id) is
9552 B_Typ : Entity_Id;
9554 function Parent_Is_Boolean return Boolean;
9555 -- This function determines if the parent node is a boolean operator or
9556 -- operation (comparison op, membership test, or short circuit form) and
9557 -- the not in question is the left operand of this operation. Note that
9558 -- if the not is in parens, then false is returned.
9560 -----------------------
9561 -- Parent_Is_Boolean --
9562 -----------------------
9564 function Parent_Is_Boolean return Boolean is
9565 begin
9566 if Paren_Count (N) /= 0 then
9567 return False;
9569 else
9570 case Nkind (Parent (N)) is
9571 when N_And_Then
9572 | N_In
9573 | N_Not_In
9574 | N_Op_And
9575 | N_Op_Eq
9576 | N_Op_Ge
9577 | N_Op_Gt
9578 | N_Op_Le
9579 | N_Op_Lt
9580 | N_Op_Ne
9581 | N_Op_Or
9582 | N_Op_Xor
9583 | N_Or_Else
9585 return Left_Opnd (Parent (N)) = N;
9587 when others =>
9588 return False;
9589 end case;
9590 end if;
9591 end Parent_Is_Boolean;
9593 -- Start of processing for Resolve_Op_Not
9595 begin
9596 -- Predefined operations on scalar types yield the base type. On the
9597 -- other hand, logical operations on arrays yield the type of the
9598 -- arguments (and the context).
9600 if Is_Array_Type (Typ) then
9601 B_Typ := Typ;
9602 else
9603 B_Typ := Base_Type (Typ);
9604 end if;
9606 -- Straightforward case of incorrect arguments
9608 if not Valid_Boolean_Arg (Typ) then
9609 Error_Msg_N ("invalid operand type for operator&", N);
9610 Set_Etype (N, Any_Type);
9611 return;
9613 -- Special case of probable missing parens
9615 elsif Typ = Universal_Integer or else Typ = Any_Modular then
9616 if Parent_Is_Boolean then
9617 Error_Msg_N
9618 ("operand of not must be enclosed in parentheses",
9619 Right_Opnd (N));
9620 else
9621 Error_Msg_N
9622 ("no modular type available in this context", N);
9623 end if;
9625 Set_Etype (N, Any_Type);
9626 return;
9628 -- OK resolution of NOT
9630 else
9631 -- Warn if non-boolean types involved. This is a case like not a < b
9632 -- where a and b are modular, where we will get (not a) < b and most
9633 -- likely not (a < b) was intended.
9635 if Warn_On_Questionable_Missing_Parens
9636 and then not Is_Boolean_Type (Typ)
9637 and then Parent_Is_Boolean
9638 then
9639 Error_Msg_N ("?q?not expression should be parenthesized here!", N);
9640 end if;
9642 -- Warn on double negation if checking redundant constructs
9644 if Warn_On_Redundant_Constructs
9645 and then Comes_From_Source (N)
9646 and then Comes_From_Source (Right_Opnd (N))
9647 and then Root_Type (Typ) = Standard_Boolean
9648 and then Nkind (Right_Opnd (N)) = N_Op_Not
9649 then
9650 Error_Msg_N ("redundant double negation?r?", N);
9651 end if;
9653 -- Complete resolution and evaluation of NOT
9655 Resolve (Right_Opnd (N), B_Typ);
9656 Check_Unset_Reference (Right_Opnd (N));
9657 Set_Etype (N, B_Typ);
9658 Generate_Operator_Reference (N, B_Typ);
9659 Eval_Op_Not (N);
9660 end if;
9661 end Resolve_Op_Not;
9663 -----------------------------
9664 -- Resolve_Operator_Symbol --
9665 -----------------------------
9667 -- Nothing to be done, all resolved already
9669 procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id) is
9670 pragma Warnings (Off, N);
9671 pragma Warnings (Off, Typ);
9673 begin
9674 null;
9675 end Resolve_Operator_Symbol;
9677 ----------------------------------
9678 -- Resolve_Qualified_Expression --
9679 ----------------------------------
9681 procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id) is
9682 pragma Warnings (Off, Typ);
9684 Target_Typ : constant Entity_Id := Entity (Subtype_Mark (N));
9685 Expr : constant Node_Id := Expression (N);
9687 begin
9688 Resolve (Expr, Target_Typ);
9690 -- Protect call to Matching_Static_Array_Bounds to avoid costly
9691 -- operation if not needed.
9693 if Restriction_Check_Required (SPARK_05)
9694 and then Is_Array_Type (Target_Typ)
9695 and then Is_Array_Type (Etype (Expr))
9696 and then Etype (Expr) /= Any_Composite -- or else Expr in error
9697 and then not Matching_Static_Array_Bounds (Target_Typ, Etype (Expr))
9698 then
9699 Check_SPARK_05_Restriction
9700 ("array types should have matching static bounds", N);
9701 end if;
9703 -- A qualified expression requires an exact match of the type, class-
9704 -- wide matching is not allowed. However, if the qualifying type is
9705 -- specific and the expression has a class-wide type, it may still be
9706 -- okay, since it can be the result of the expansion of a call to a
9707 -- dispatching function, so we also have to check class-wideness of the
9708 -- type of the expression's original node.
9710 if (Is_Class_Wide_Type (Target_Typ)
9711 or else
9712 (Is_Class_Wide_Type (Etype (Expr))
9713 and then Is_Class_Wide_Type (Etype (Original_Node (Expr)))))
9714 and then Base_Type (Etype (Expr)) /= Base_Type (Target_Typ)
9715 then
9716 Wrong_Type (Expr, Target_Typ);
9717 end if;
9719 -- If the target type is unconstrained, then we reset the type of the
9720 -- result from the type of the expression. For other cases, the actual
9721 -- subtype of the expression is the target type.
9723 if Is_Composite_Type (Target_Typ)
9724 and then not Is_Constrained (Target_Typ)
9725 then
9726 Set_Etype (N, Etype (Expr));
9727 end if;
9729 Analyze_Dimension (N);
9730 Eval_Qualified_Expression (N);
9732 -- If we still have a qualified expression after the static evaluation,
9733 -- then apply a scalar range check if needed. The reason that we do this
9734 -- after the Eval call is that otherwise, the application of the range
9735 -- check may convert an illegal static expression and result in warning
9736 -- rather than giving an error (e.g Integer'(Integer'Last + 1)).
9738 if Nkind (N) = N_Qualified_Expression and then Is_Scalar_Type (Typ) then
9739 Apply_Scalar_Range_Check (Expr, Typ);
9740 end if;
9742 -- Finally, check whether a predicate applies to the target type. This
9743 -- comes from AI12-0100. As for type conversions, check the enclosing
9744 -- context to prevent an infinite expansion.
9746 if Has_Predicates (Target_Typ) then
9747 if Nkind (Parent (N)) = N_Function_Call
9748 and then Present (Name (Parent (N)))
9749 and then (Is_Predicate_Function (Entity (Name (Parent (N))))
9750 or else
9751 Is_Predicate_Function_M (Entity (Name (Parent (N)))))
9752 then
9753 null;
9755 -- In the case of a qualified expression in an allocator, the check
9756 -- is applied when expanding the allocator, so avoid redundant check.
9758 elsif Nkind (N) = N_Qualified_Expression
9759 and then Nkind (Parent (N)) /= N_Allocator
9760 then
9761 Apply_Predicate_Check (N, Target_Typ);
9762 end if;
9763 end if;
9764 end Resolve_Qualified_Expression;
9766 ------------------------------
9767 -- Resolve_Raise_Expression --
9768 ------------------------------
9770 procedure Resolve_Raise_Expression (N : Node_Id; Typ : Entity_Id) is
9771 begin
9772 if Typ = Raise_Type then
9773 Error_Msg_N ("cannot find unique type for raise expression", N);
9774 Set_Etype (N, Any_Type);
9775 else
9776 Set_Etype (N, Typ);
9777 end if;
9778 end Resolve_Raise_Expression;
9780 -------------------
9781 -- Resolve_Range --
9782 -------------------
9784 procedure Resolve_Range (N : Node_Id; Typ : Entity_Id) is
9785 L : constant Node_Id := Low_Bound (N);
9786 H : constant Node_Id := High_Bound (N);
9788 function First_Last_Ref return Boolean;
9789 -- Returns True if N is of the form X'First .. X'Last where X is the
9790 -- same entity for both attributes.
9792 --------------------
9793 -- First_Last_Ref --
9794 --------------------
9796 function First_Last_Ref return Boolean is
9797 Lorig : constant Node_Id := Original_Node (L);
9798 Horig : constant Node_Id := Original_Node (H);
9800 begin
9801 if Nkind (Lorig) = N_Attribute_Reference
9802 and then Nkind (Horig) = N_Attribute_Reference
9803 and then Attribute_Name (Lorig) = Name_First
9804 and then Attribute_Name (Horig) = Name_Last
9805 then
9806 declare
9807 PL : constant Node_Id := Prefix (Lorig);
9808 PH : constant Node_Id := Prefix (Horig);
9809 begin
9810 if Is_Entity_Name (PL)
9811 and then Is_Entity_Name (PH)
9812 and then Entity (PL) = Entity (PH)
9813 then
9814 return True;
9815 end if;
9816 end;
9817 end if;
9819 return False;
9820 end First_Last_Ref;
9822 -- Start of processing for Resolve_Range
9824 begin
9825 Set_Etype (N, Typ);
9827 -- The lower bound should be in Typ. The higher bound can be in Typ's
9828 -- base type if the range is null. It may still be invalid if it is
9829 -- higher than the lower bound. This is checked later in the context in
9830 -- which the range appears.
9832 Resolve (L, Typ);
9833 Resolve (H, Base_Type (Typ));
9835 -- Reanalyze the lower bound after both bounds have been analyzed, so
9836 -- that the range is known to be static or not by now. This may trigger
9837 -- more compile-time evaluation, which is useful for static analysis
9838 -- with GNATprove. This is not needed for compilation or static analysis
9839 -- with CodePeer, as full expansion does that evaluation then.
9841 if GNATprove_Mode then
9842 Set_Analyzed (L, False);
9843 Resolve (L, Typ);
9844 end if;
9846 -- Check for inappropriate range on unordered enumeration type
9848 if Bad_Unordered_Enumeration_Reference (N, Typ)
9850 -- Exclude X'First .. X'Last if X is the same entity for both
9852 and then not First_Last_Ref
9853 then
9854 Error_Msg_Sloc := Sloc (Typ);
9855 Error_Msg_NE
9856 ("subrange of unordered enumeration type& declared#?U?", N, Typ);
9857 end if;
9859 Check_Unset_Reference (L);
9860 Check_Unset_Reference (H);
9862 -- We have to check the bounds for being within the base range as
9863 -- required for a non-static context. Normally this is automatic and
9864 -- done as part of evaluating expressions, but the N_Range node is an
9865 -- exception, since in GNAT we consider this node to be a subexpression,
9866 -- even though in Ada it is not. The circuit in Sem_Eval could check for
9867 -- this, but that would put the test on the main evaluation path for
9868 -- expressions.
9870 Check_Non_Static_Context (L);
9871 Check_Non_Static_Context (H);
9873 -- Check for an ambiguous range over character literals. This will
9874 -- happen with a membership test involving only literals.
9876 if Typ = Any_Character then
9877 Ambiguous_Character (L);
9878 Set_Etype (N, Any_Type);
9879 return;
9880 end if;
9882 -- If bounds are static, constant-fold them, so size computations are
9883 -- identical between front-end and back-end. Do not perform this
9884 -- transformation while analyzing generic units, as type information
9885 -- would be lost when reanalyzing the constant node in the instance.
9887 if Is_Discrete_Type (Typ) and then Expander_Active then
9888 if Is_OK_Static_Expression (L) then
9889 Fold_Uint (L, Expr_Value (L), Is_OK_Static_Expression (L));
9890 end if;
9892 if Is_OK_Static_Expression (H) then
9893 Fold_Uint (H, Expr_Value (H), Is_OK_Static_Expression (H));
9894 end if;
9895 end if;
9896 end Resolve_Range;
9898 --------------------------
9899 -- Resolve_Real_Literal --
9900 --------------------------
9902 procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id) is
9903 Actual_Typ : constant Entity_Id := Etype (N);
9905 begin
9906 -- Special processing for fixed-point literals to make sure that the
9907 -- value is an exact multiple of small where this is required. We skip
9908 -- this for the universal real case, and also for generic types.
9910 if Is_Fixed_Point_Type (Typ)
9911 and then Typ /= Universal_Fixed
9912 and then Typ /= Any_Fixed
9913 and then not Is_Generic_Type (Typ)
9914 then
9915 declare
9916 Val : constant Ureal := Realval (N);
9917 Cintr : constant Ureal := Val / Small_Value (Typ);
9918 Cint : constant Uint := UR_Trunc (Cintr);
9919 Den : constant Uint := Norm_Den (Cintr);
9920 Stat : Boolean;
9922 begin
9923 -- Case of literal is not an exact multiple of the Small
9925 if Den /= 1 then
9927 -- For a source program literal for a decimal fixed-point type,
9928 -- this is statically illegal (RM 4.9(36)).
9930 if Is_Decimal_Fixed_Point_Type (Typ)
9931 and then Actual_Typ = Universal_Real
9932 and then Comes_From_Source (N)
9933 then
9934 Error_Msg_N ("value has extraneous low order digits", N);
9935 end if;
9937 -- Generate a warning if literal from source
9939 if Is_OK_Static_Expression (N)
9940 and then Warn_On_Bad_Fixed_Value
9941 then
9942 Error_Msg_N
9943 ("?b?static fixed-point value is not a multiple of Small!",
9945 end if;
9947 -- Replace literal by a value that is the exact representation
9948 -- of a value of the type, i.e. a multiple of the small value,
9949 -- by truncation, since Machine_Rounds is false for all GNAT
9950 -- fixed-point types (RM 4.9(38)).
9952 Stat := Is_OK_Static_Expression (N);
9953 Rewrite (N,
9954 Make_Real_Literal (Sloc (N),
9955 Realval => Small_Value (Typ) * Cint));
9957 Set_Is_Static_Expression (N, Stat);
9958 end if;
9960 -- In all cases, set the corresponding integer field
9962 Set_Corresponding_Integer_Value (N, Cint);
9963 end;
9964 end if;
9966 -- Now replace the actual type by the expected type as usual
9968 Set_Etype (N, Typ);
9969 Eval_Real_Literal (N);
9970 end Resolve_Real_Literal;
9972 -----------------------
9973 -- Resolve_Reference --
9974 -----------------------
9976 procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id) is
9977 P : constant Node_Id := Prefix (N);
9979 begin
9980 -- Replace general access with specific type
9982 if Ekind (Etype (N)) = E_Allocator_Type then
9983 Set_Etype (N, Base_Type (Typ));
9984 end if;
9986 Resolve (P, Designated_Type (Etype (N)));
9988 -- If we are taking the reference of a volatile entity, then treat it as
9989 -- a potential modification of this entity. This is too conservative,
9990 -- but necessary because remove side effects can cause transformations
9991 -- of normal assignments into reference sequences that otherwise fail to
9992 -- notice the modification.
9994 if Is_Entity_Name (P) and then Treat_As_Volatile (Entity (P)) then
9995 Note_Possible_Modification (P, Sure => False);
9996 end if;
9997 end Resolve_Reference;
9999 --------------------------------
10000 -- Resolve_Selected_Component --
10001 --------------------------------
10003 procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id) is
10004 Comp : Entity_Id;
10005 Comp1 : Entity_Id := Empty; -- prevent junk warning
10006 P : constant Node_Id := Prefix (N);
10007 S : constant Node_Id := Selector_Name (N);
10008 T : Entity_Id := Etype (P);
10009 I : Interp_Index;
10010 I1 : Interp_Index := 0; -- prevent junk warning
10011 It : Interp;
10012 It1 : Interp;
10013 Found : Boolean;
10015 function Init_Component return Boolean;
10016 -- Check whether this is the initialization of a component within an
10017 -- init proc (by assignment or call to another init proc). If true,
10018 -- there is no need for a discriminant check.
10020 --------------------
10021 -- Init_Component --
10022 --------------------
10024 function Init_Component return Boolean is
10025 begin
10026 return Inside_Init_Proc
10027 and then Nkind (Prefix (N)) = N_Identifier
10028 and then Chars (Prefix (N)) = Name_uInit
10029 and then Nkind (Parent (Parent (N))) = N_Case_Statement_Alternative;
10030 end Init_Component;
10032 -- Start of processing for Resolve_Selected_Component
10034 begin
10035 if Is_Overloaded (P) then
10037 -- Use the context type to select the prefix that has a selector
10038 -- of the correct name and type.
10040 Found := False;
10041 Get_First_Interp (P, I, It);
10043 Search : while Present (It.Typ) loop
10044 if Is_Access_Type (It.Typ) then
10045 T := Designated_Type (It.Typ);
10046 else
10047 T := It.Typ;
10048 end if;
10050 -- Locate selected component. For a private prefix the selector
10051 -- can denote a discriminant.
10053 if Is_Record_Type (T) or else Is_Private_Type (T) then
10055 -- The visible components of a class-wide type are those of
10056 -- the root type.
10058 if Is_Class_Wide_Type (T) then
10059 T := Etype (T);
10060 end if;
10062 Comp := First_Entity (T);
10063 while Present (Comp) loop
10064 if Chars (Comp) = Chars (S)
10065 and then Covers (Typ, Etype (Comp))
10066 then
10067 if not Found then
10068 Found := True;
10069 I1 := I;
10070 It1 := It;
10071 Comp1 := Comp;
10073 else
10074 It := Disambiguate (P, I1, I, Any_Type);
10076 if It = No_Interp then
10077 Error_Msg_N
10078 ("ambiguous prefix for selected component", N);
10079 Set_Etype (N, Typ);
10080 return;
10082 else
10083 It1 := It;
10085 -- There may be an implicit dereference. Retrieve
10086 -- designated record type.
10088 if Is_Access_Type (It1.Typ) then
10089 T := Designated_Type (It1.Typ);
10090 else
10091 T := It1.Typ;
10092 end if;
10094 if Scope (Comp1) /= T then
10096 -- Resolution chooses the new interpretation.
10097 -- Find the component with the right name.
10099 Comp1 := First_Entity (T);
10100 while Present (Comp1)
10101 and then Chars (Comp1) /= Chars (S)
10102 loop
10103 Comp1 := Next_Entity (Comp1);
10104 end loop;
10105 end if;
10107 exit Search;
10108 end if;
10109 end if;
10110 end if;
10112 Comp := Next_Entity (Comp);
10113 end loop;
10114 end if;
10116 Get_Next_Interp (I, It);
10117 end loop Search;
10119 -- There must be a legal interpretation at this point
10121 pragma Assert (Found);
10122 Resolve (P, It1.Typ);
10123 Set_Etype (N, Typ);
10124 Set_Entity_With_Checks (S, Comp1);
10126 -- The type of the context and that of the component are
10127 -- compatible and in general identical, but if they are anonymous
10128 -- access-to-subprogram types, the relevant type is that of the
10129 -- component. This matters in Unnest_Subprograms mode, where the
10130 -- relevant context is the one in which the type is declared, not
10131 -- the point of use. This determines what activation record to use.
10133 if Ekind (Typ) = E_Anonymous_Access_Subprogram_Type then
10134 Set_Etype (N, Etype (Comp1));
10135 end if;
10137 else
10138 -- Resolve prefix with its type
10140 Resolve (P, T);
10141 end if;
10143 -- Generate cross-reference. We needed to wait until full overloading
10144 -- resolution was complete to do this, since otherwise we can't tell if
10145 -- we are an lvalue or not.
10147 if May_Be_Lvalue (N) then
10148 Generate_Reference (Entity (S), S, 'm');
10149 else
10150 Generate_Reference (Entity (S), S, 'r');
10151 end if;
10153 -- If prefix is an access type, the node will be transformed into an
10154 -- explicit dereference during expansion. The type of the node is the
10155 -- designated type of that of the prefix.
10157 if Is_Access_Type (Etype (P)) then
10158 T := Designated_Type (Etype (P));
10159 Check_Fully_Declared_Prefix (T, P);
10160 else
10161 T := Etype (P);
10162 end if;
10164 -- Set flag for expander if discriminant check required on a component
10165 -- appearing within a variant.
10167 if Has_Discriminants (T)
10168 and then Ekind (Entity (S)) = E_Component
10169 and then Present (Original_Record_Component (Entity (S)))
10170 and then Ekind (Original_Record_Component (Entity (S))) = E_Component
10171 and then
10172 Is_Declared_Within_Variant (Original_Record_Component (Entity (S)))
10173 and then not Discriminant_Checks_Suppressed (T)
10174 and then not Init_Component
10175 then
10176 Set_Do_Discriminant_Check (N);
10177 end if;
10179 if Ekind (Entity (S)) = E_Void then
10180 Error_Msg_N ("premature use of component", S);
10181 end if;
10183 -- If the prefix is a record conversion, this may be a renamed
10184 -- discriminant whose bounds differ from those of the original
10185 -- one, so we must ensure that a range check is performed.
10187 if Nkind (P) = N_Type_Conversion
10188 and then Ekind (Entity (S)) = E_Discriminant
10189 and then Is_Discrete_Type (Typ)
10190 then
10191 Set_Etype (N, Base_Type (Typ));
10192 end if;
10194 -- Note: No Eval processing is required, because the prefix is of a
10195 -- record type, or protected type, and neither can possibly be static.
10197 -- If the record type is atomic, and the component is non-atomic, then
10198 -- this is worth a warning, since we have a situation where the access
10199 -- to the component may cause extra read/writes of the atomic array
10200 -- object, or partial word accesses, both of which may be unexpected.
10202 if Nkind (N) = N_Selected_Component
10203 and then Is_Atomic_Ref_With_Address (N)
10204 and then not Is_Atomic (Entity (S))
10205 and then not Is_Atomic (Etype (Entity (S)))
10206 then
10207 Error_Msg_N
10208 ("??access to non-atomic component of atomic record",
10209 Prefix (N));
10210 Error_Msg_N
10211 ("\??may cause unexpected accesses to atomic object",
10212 Prefix (N));
10213 end if;
10215 Analyze_Dimension (N);
10216 end Resolve_Selected_Component;
10218 -------------------
10219 -- Resolve_Shift --
10220 -------------------
10222 procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id) is
10223 B_Typ : constant Entity_Id := Base_Type (Typ);
10224 L : constant Node_Id := Left_Opnd (N);
10225 R : constant Node_Id := Right_Opnd (N);
10227 begin
10228 -- We do the resolution using the base type, because intermediate values
10229 -- in expressions always are of the base type, not a subtype of it.
10231 Resolve (L, B_Typ);
10232 Resolve (R, Standard_Natural);
10234 Check_Unset_Reference (L);
10235 Check_Unset_Reference (R);
10237 Set_Etype (N, B_Typ);
10238 Generate_Operator_Reference (N, B_Typ);
10239 Eval_Shift (N);
10240 end Resolve_Shift;
10242 ---------------------------
10243 -- Resolve_Short_Circuit --
10244 ---------------------------
10246 procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id) is
10247 B_Typ : constant Entity_Id := Base_Type (Typ);
10248 L : constant Node_Id := Left_Opnd (N);
10249 R : constant Node_Id := Right_Opnd (N);
10251 begin
10252 -- Ensure all actions associated with the left operand (e.g.
10253 -- finalization of transient objects) are fully evaluated locally within
10254 -- an expression with actions. This is particularly helpful for coverage
10255 -- analysis. However this should not happen in generics or if option
10256 -- Minimize_Expression_With_Actions is set.
10258 if Expander_Active and not Minimize_Expression_With_Actions then
10259 declare
10260 Reloc_L : constant Node_Id := Relocate_Node (L);
10261 begin
10262 Save_Interps (Old_N => L, New_N => Reloc_L);
10264 Rewrite (L,
10265 Make_Expression_With_Actions (Sloc (L),
10266 Actions => New_List,
10267 Expression => Reloc_L));
10269 -- Set Comes_From_Source on L to preserve warnings for unset
10270 -- reference.
10272 Set_Comes_From_Source (L, Comes_From_Source (Reloc_L));
10273 end;
10274 end if;
10276 Resolve (L, B_Typ);
10277 Resolve (R, B_Typ);
10279 -- Check for issuing warning for always False assert/check, this happens
10280 -- when assertions are turned off, in which case the pragma Assert/Check
10281 -- was transformed into:
10283 -- if False and then <condition> then ...
10285 -- and we detect this pattern
10287 if Warn_On_Assertion_Failure
10288 and then Is_Entity_Name (R)
10289 and then Entity (R) = Standard_False
10290 and then Nkind (Parent (N)) = N_If_Statement
10291 and then Nkind (N) = N_And_Then
10292 and then Is_Entity_Name (L)
10293 and then Entity (L) = Standard_False
10294 then
10295 declare
10296 Orig : constant Node_Id := Original_Node (Parent (N));
10298 begin
10299 -- Special handling of Asssert pragma
10301 if Nkind (Orig) = N_Pragma
10302 and then Pragma_Name (Orig) = Name_Assert
10303 then
10304 declare
10305 Expr : constant Node_Id :=
10306 Original_Node
10307 (Expression
10308 (First (Pragma_Argument_Associations (Orig))));
10310 begin
10311 -- Don't warn if original condition is explicit False,
10312 -- since obviously the failure is expected in this case.
10314 if Is_Entity_Name (Expr)
10315 and then Entity (Expr) = Standard_False
10316 then
10317 null;
10319 -- Issue warning. We do not want the deletion of the
10320 -- IF/AND-THEN to take this message with it. We achieve this
10321 -- by making sure that the expanded code points to the Sloc
10322 -- of the expression, not the original pragma.
10324 else
10325 -- Note: Use Error_Msg_F here rather than Error_Msg_N.
10326 -- The source location of the expression is not usually
10327 -- the best choice here. For example, it gets located on
10328 -- the last AND keyword in a chain of boolean expressiond
10329 -- AND'ed together. It is best to put the message on the
10330 -- first character of the assertion, which is the effect
10331 -- of the First_Node call here.
10333 Error_Msg_F
10334 ("?A?assertion would fail at run time!",
10335 Expression
10336 (First (Pragma_Argument_Associations (Orig))));
10337 end if;
10338 end;
10340 -- Similar processing for Check pragma
10342 elsif Nkind (Orig) = N_Pragma
10343 and then Pragma_Name (Orig) = Name_Check
10344 then
10345 -- Don't want to warn if original condition is explicit False
10347 declare
10348 Expr : constant Node_Id :=
10349 Original_Node
10350 (Expression
10351 (Next (First (Pragma_Argument_Associations (Orig)))));
10352 begin
10353 if Is_Entity_Name (Expr)
10354 and then Entity (Expr) = Standard_False
10355 then
10356 null;
10358 -- Post warning
10360 else
10361 -- Again use Error_Msg_F rather than Error_Msg_N, see
10362 -- comment above for an explanation of why we do this.
10364 Error_Msg_F
10365 ("?A?check would fail at run time!",
10366 Expression
10367 (Last (Pragma_Argument_Associations (Orig))));
10368 end if;
10369 end;
10370 end if;
10371 end;
10372 end if;
10374 -- Continue with processing of short circuit
10376 Check_Unset_Reference (L);
10377 Check_Unset_Reference (R);
10379 Set_Etype (N, B_Typ);
10380 Eval_Short_Circuit (N);
10381 end Resolve_Short_Circuit;
10383 -------------------
10384 -- Resolve_Slice --
10385 -------------------
10387 procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id) is
10388 Drange : constant Node_Id := Discrete_Range (N);
10389 Name : constant Node_Id := Prefix (N);
10390 Array_Type : Entity_Id := Empty;
10391 Dexpr : Node_Id := Empty;
10392 Index_Type : Entity_Id;
10394 begin
10395 if Is_Overloaded (Name) then
10397 -- Use the context type to select the prefix that yields the correct
10398 -- array type.
10400 declare
10401 I : Interp_Index;
10402 I1 : Interp_Index := 0;
10403 It : Interp;
10404 P : constant Node_Id := Prefix (N);
10405 Found : Boolean := False;
10407 begin
10408 Get_First_Interp (P, I, It);
10409 while Present (It.Typ) loop
10410 if (Is_Array_Type (It.Typ)
10411 and then Covers (Typ, It.Typ))
10412 or else (Is_Access_Type (It.Typ)
10413 and then Is_Array_Type (Designated_Type (It.Typ))
10414 and then Covers (Typ, Designated_Type (It.Typ)))
10415 then
10416 if Found then
10417 It := Disambiguate (P, I1, I, Any_Type);
10419 if It = No_Interp then
10420 Error_Msg_N ("ambiguous prefix for slicing", N);
10421 Set_Etype (N, Typ);
10422 return;
10423 else
10424 Found := True;
10425 Array_Type := It.Typ;
10426 I1 := I;
10427 end if;
10428 else
10429 Found := True;
10430 Array_Type := It.Typ;
10431 I1 := I;
10432 end if;
10433 end if;
10435 Get_Next_Interp (I, It);
10436 end loop;
10437 end;
10439 else
10440 Array_Type := Etype (Name);
10441 end if;
10443 Resolve (Name, Array_Type);
10445 if Is_Access_Type (Array_Type) then
10446 Apply_Access_Check (N);
10447 Array_Type := Designated_Type (Array_Type);
10449 -- If the prefix is an access to an unconstrained array, we must use
10450 -- the actual subtype of the object to perform the index checks. The
10451 -- object denoted by the prefix is implicit in the node, so we build
10452 -- an explicit representation for it in order to compute the actual
10453 -- subtype.
10455 if not Is_Constrained (Array_Type) then
10456 Remove_Side_Effects (Prefix (N));
10458 declare
10459 Obj : constant Node_Id :=
10460 Make_Explicit_Dereference (Sloc (N),
10461 Prefix => New_Copy_Tree (Prefix (N)));
10462 begin
10463 Set_Etype (Obj, Array_Type);
10464 Set_Parent (Obj, Parent (N));
10465 Array_Type := Get_Actual_Subtype (Obj);
10466 end;
10467 end if;
10469 elsif Is_Entity_Name (Name)
10470 or else Nkind (Name) = N_Explicit_Dereference
10471 or else (Nkind (Name) = N_Function_Call
10472 and then not Is_Constrained (Etype (Name)))
10473 then
10474 Array_Type := Get_Actual_Subtype (Name);
10476 -- If the name is a selected component that depends on discriminants,
10477 -- build an actual subtype for it. This can happen only when the name
10478 -- itself is overloaded; otherwise the actual subtype is created when
10479 -- the selected component is analyzed.
10481 elsif Nkind (Name) = N_Selected_Component
10482 and then Full_Analysis
10483 and then Depends_On_Discriminant (First_Index (Array_Type))
10484 then
10485 declare
10486 Act_Decl : constant Node_Id :=
10487 Build_Actual_Subtype_Of_Component (Array_Type, Name);
10488 begin
10489 Insert_Action (N, Act_Decl);
10490 Array_Type := Defining_Identifier (Act_Decl);
10491 end;
10493 -- Maybe this should just be "else", instead of checking for the
10494 -- specific case of slice??? This is needed for the case where the
10495 -- prefix is an Image attribute, which gets expanded to a slice, and so
10496 -- has a constrained subtype which we want to use for the slice range
10497 -- check applied below (the range check won't get done if the
10498 -- unconstrained subtype of the 'Image is used).
10500 elsif Nkind (Name) = N_Slice then
10501 Array_Type := Etype (Name);
10502 end if;
10504 -- Obtain the type of the array index
10506 if Ekind (Array_Type) = E_String_Literal_Subtype then
10507 Index_Type := Etype (String_Literal_Low_Bound (Array_Type));
10508 else
10509 Index_Type := Etype (First_Index (Array_Type));
10510 end if;
10512 -- If name was overloaded, set slice type correctly now
10514 Set_Etype (N, Array_Type);
10516 -- Handle the generation of a range check that compares the array index
10517 -- against the discrete_range. The check is not applied to internally
10518 -- built nodes associated with the expansion of dispatch tables. Check
10519 -- that Ada.Tags has already been loaded to avoid extra dependencies on
10520 -- the unit.
10522 if Tagged_Type_Expansion
10523 and then RTU_Loaded (Ada_Tags)
10524 and then Nkind (Prefix (N)) = N_Selected_Component
10525 and then Present (Entity (Selector_Name (Prefix (N))))
10526 and then Entity (Selector_Name (Prefix (N))) =
10527 RTE_Record_Component (RE_Prims_Ptr)
10528 then
10529 null;
10531 -- The discrete_range is specified by a subtype indication. Create a
10532 -- shallow copy and inherit the type, parent and source location from
10533 -- the discrete_range. This ensures that the range check is inserted
10534 -- relative to the slice and that the runtime exception points to the
10535 -- proper construct.
10537 elsif Is_Entity_Name (Drange) then
10538 Dexpr := New_Copy (Scalar_Range (Entity (Drange)));
10540 Set_Etype (Dexpr, Etype (Drange));
10541 Set_Parent (Dexpr, Parent (Drange));
10542 Set_Sloc (Dexpr, Sloc (Drange));
10544 -- The discrete_range is a regular range. Resolve the bounds and remove
10545 -- their side effects.
10547 else
10548 Resolve (Drange, Base_Type (Index_Type));
10550 if Nkind (Drange) = N_Range then
10551 Force_Evaluation (Low_Bound (Drange));
10552 Force_Evaluation (High_Bound (Drange));
10554 Dexpr := Drange;
10555 end if;
10556 end if;
10558 if Present (Dexpr) then
10559 Apply_Range_Check (Dexpr, Index_Type);
10560 end if;
10562 Set_Slice_Subtype (N);
10564 -- Check bad use of type with predicates
10566 declare
10567 Subt : Entity_Id;
10569 begin
10570 if Nkind (Drange) = N_Subtype_Indication
10571 and then Has_Predicates (Entity (Subtype_Mark (Drange)))
10572 then
10573 Subt := Entity (Subtype_Mark (Drange));
10574 else
10575 Subt := Etype (Drange);
10576 end if;
10578 if Has_Predicates (Subt) then
10579 Bad_Predicated_Subtype_Use
10580 ("subtype& has predicate, not allowed in slice", Drange, Subt);
10581 end if;
10582 end;
10584 -- Otherwise here is where we check suspicious indexes
10586 if Nkind (Drange) = N_Range then
10587 Warn_On_Suspicious_Index (Name, Low_Bound (Drange));
10588 Warn_On_Suspicious_Index (Name, High_Bound (Drange));
10589 end if;
10591 Analyze_Dimension (N);
10592 Eval_Slice (N);
10593 end Resolve_Slice;
10595 ----------------------------
10596 -- Resolve_String_Literal --
10597 ----------------------------
10599 procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id) is
10600 C_Typ : constant Entity_Id := Component_Type (Typ);
10601 R_Typ : constant Entity_Id := Root_Type (C_Typ);
10602 Loc : constant Source_Ptr := Sloc (N);
10603 Str : constant String_Id := Strval (N);
10604 Strlen : constant Nat := String_Length (Str);
10605 Subtype_Id : Entity_Id;
10606 Need_Check : Boolean;
10608 begin
10609 -- For a string appearing in a concatenation, defer creation of the
10610 -- string_literal_subtype until the end of the resolution of the
10611 -- concatenation, because the literal may be constant-folded away. This
10612 -- is a useful optimization for long concatenation expressions.
10614 -- If the string is an aggregate built for a single character (which
10615 -- happens in a non-static context) or a is null string to which special
10616 -- checks may apply, we build the subtype. Wide strings must also get a
10617 -- string subtype if they come from a one character aggregate. Strings
10618 -- generated by attributes might be static, but it is often hard to
10619 -- determine whether the enclosing context is static, so we generate
10620 -- subtypes for them as well, thus losing some rarer optimizations ???
10621 -- Same for strings that come from a static conversion.
10623 Need_Check :=
10624 (Strlen = 0 and then Typ /= Standard_String)
10625 or else Nkind (Parent (N)) /= N_Op_Concat
10626 or else (N /= Left_Opnd (Parent (N))
10627 and then N /= Right_Opnd (Parent (N)))
10628 or else ((Typ = Standard_Wide_String
10629 or else Typ = Standard_Wide_Wide_String)
10630 and then Nkind (Original_Node (N)) /= N_String_Literal);
10632 -- If the resolving type is itself a string literal subtype, we can just
10633 -- reuse it, since there is no point in creating another.
10635 if Ekind (Typ) = E_String_Literal_Subtype then
10636 Subtype_Id := Typ;
10638 elsif Nkind (Parent (N)) = N_Op_Concat
10639 and then not Need_Check
10640 and then not Nkind_In (Original_Node (N), N_Character_Literal,
10641 N_Attribute_Reference,
10642 N_Qualified_Expression,
10643 N_Type_Conversion)
10644 then
10645 Subtype_Id := Typ;
10647 -- Do not generate a string literal subtype for the default expression
10648 -- of a formal parameter in GNATprove mode. This is because the string
10649 -- subtype is associated with the freezing actions of the subprogram,
10650 -- however freezing is disabled in GNATprove mode and as a result the
10651 -- subtype is unavailable.
10653 elsif GNATprove_Mode
10654 and then Nkind (Parent (N)) = N_Parameter_Specification
10655 then
10656 Subtype_Id := Typ;
10658 -- Otherwise we must create a string literal subtype. Note that the
10659 -- whole idea of string literal subtypes is simply to avoid the need
10660 -- for building a full fledged array subtype for each literal.
10662 else
10663 Set_String_Literal_Subtype (N, Typ);
10664 Subtype_Id := Etype (N);
10665 end if;
10667 if Nkind (Parent (N)) /= N_Op_Concat
10668 or else Need_Check
10669 then
10670 Set_Etype (N, Subtype_Id);
10671 Eval_String_Literal (N);
10672 end if;
10674 if Is_Limited_Composite (Typ)
10675 or else Is_Private_Composite (Typ)
10676 then
10677 Error_Msg_N ("string literal not available for private array", N);
10678 Set_Etype (N, Any_Type);
10679 return;
10680 end if;
10682 -- The validity of a null string has been checked in the call to
10683 -- Eval_String_Literal.
10685 if Strlen = 0 then
10686 return;
10688 -- Always accept string literal with component type Any_Character, which
10689 -- occurs in error situations and in comparisons of literals, both of
10690 -- which should accept all literals.
10692 elsif R_Typ = Any_Character then
10693 return;
10695 -- If the type is bit-packed, then we always transform the string
10696 -- literal into a full fledged aggregate.
10698 elsif Is_Bit_Packed_Array (Typ) then
10699 null;
10701 -- Deal with cases of Wide_Wide_String, Wide_String, and String
10703 else
10704 -- For Standard.Wide_Wide_String, or any other type whose component
10705 -- type is Standard.Wide_Wide_Character, we know that all the
10706 -- characters in the string must be acceptable, since the parser
10707 -- accepted the characters as valid character literals.
10709 if R_Typ = Standard_Wide_Wide_Character then
10710 null;
10712 -- For the case of Standard.String, or any other type whose component
10713 -- type is Standard.Character, we must make sure that there are no
10714 -- wide characters in the string, i.e. that it is entirely composed
10715 -- of characters in range of type Character.
10717 -- If the string literal is the result of a static concatenation, the
10718 -- test has already been performed on the components, and need not be
10719 -- repeated.
10721 elsif R_Typ = Standard_Character
10722 and then Nkind (Original_Node (N)) /= N_Op_Concat
10723 then
10724 for J in 1 .. Strlen loop
10725 if not In_Character_Range (Get_String_Char (Str, J)) then
10727 -- If we are out of range, post error. This is one of the
10728 -- very few places that we place the flag in the middle of
10729 -- a token, right under the offending wide character. Not
10730 -- quite clear if this is right wrt wide character encoding
10731 -- sequences, but it's only an error message.
10733 Error_Msg
10734 ("literal out of range of type Standard.Character",
10735 Source_Ptr (Int (Loc) + J));
10736 return;
10737 end if;
10738 end loop;
10740 -- For the case of Standard.Wide_String, or any other type whose
10741 -- component type is Standard.Wide_Character, we must make sure that
10742 -- there are no wide characters in the string, i.e. that it is
10743 -- entirely composed of characters in range of type Wide_Character.
10745 -- If the string literal is the result of a static concatenation,
10746 -- the test has already been performed on the components, and need
10747 -- not be repeated.
10749 elsif R_Typ = Standard_Wide_Character
10750 and then Nkind (Original_Node (N)) /= N_Op_Concat
10751 then
10752 for J in 1 .. Strlen loop
10753 if not In_Wide_Character_Range (Get_String_Char (Str, J)) then
10755 -- If we are out of range, post error. This is one of the
10756 -- very few places that we place the flag in the middle of
10757 -- a token, right under the offending wide character.
10759 -- This is not quite right, because characters in general
10760 -- will take more than one character position ???
10762 Error_Msg
10763 ("literal out of range of type Standard.Wide_Character",
10764 Source_Ptr (Int (Loc) + J));
10765 return;
10766 end if;
10767 end loop;
10769 -- If the root type is not a standard character, then we will convert
10770 -- the string into an aggregate and will let the aggregate code do
10771 -- the checking. Standard Wide_Wide_Character is also OK here.
10773 else
10774 null;
10775 end if;
10777 -- See if the component type of the array corresponding to the string
10778 -- has compile time known bounds. If yes we can directly check
10779 -- whether the evaluation of the string will raise constraint error.
10780 -- Otherwise we need to transform the string literal into the
10781 -- corresponding character aggregate and let the aggregate code do
10782 -- the checking. We use the same transformation if the component
10783 -- type has a static predicate, which will be applied to each
10784 -- character when the aggregate is resolved.
10786 if Is_Standard_Character_Type (R_Typ) then
10788 -- Check for the case of full range, where we are definitely OK
10790 if Component_Type (Typ) = Base_Type (Component_Type (Typ)) then
10791 return;
10792 end if;
10794 -- Here the range is not the complete base type range, so check
10796 declare
10797 Comp_Typ_Lo : constant Node_Id :=
10798 Type_Low_Bound (Component_Type (Typ));
10799 Comp_Typ_Hi : constant Node_Id :=
10800 Type_High_Bound (Component_Type (Typ));
10802 Char_Val : Uint;
10804 begin
10805 if Compile_Time_Known_Value (Comp_Typ_Lo)
10806 and then Compile_Time_Known_Value (Comp_Typ_Hi)
10807 then
10808 for J in 1 .. Strlen loop
10809 Char_Val := UI_From_Int (Int (Get_String_Char (Str, J)));
10811 if Char_Val < Expr_Value (Comp_Typ_Lo)
10812 or else Char_Val > Expr_Value (Comp_Typ_Hi)
10813 then
10814 Apply_Compile_Time_Constraint_Error
10815 (N, "character out of range??",
10816 CE_Range_Check_Failed,
10817 Loc => Source_Ptr (Int (Loc) + J));
10818 end if;
10819 end loop;
10821 if not Has_Static_Predicate (C_Typ) then
10822 return;
10823 end if;
10824 end if;
10825 end;
10826 end if;
10827 end if;
10829 -- If we got here we meed to transform the string literal into the
10830 -- equivalent qualified positional array aggregate. This is rather
10831 -- heavy artillery for this situation, but it is hard work to avoid.
10833 declare
10834 Lits : constant List_Id := New_List;
10835 P : Source_Ptr := Loc + 1;
10836 C : Char_Code;
10838 begin
10839 -- Build the character literals, we give them source locations that
10840 -- correspond to the string positions, which is a bit tricky given
10841 -- the possible presence of wide character escape sequences.
10843 for J in 1 .. Strlen loop
10844 C := Get_String_Char (Str, J);
10845 Set_Character_Literal_Name (C);
10847 Append_To (Lits,
10848 Make_Character_Literal (P,
10849 Chars => Name_Find,
10850 Char_Literal_Value => UI_From_CC (C)));
10852 if In_Character_Range (C) then
10853 P := P + 1;
10855 -- Should we have a call to Skip_Wide here ???
10857 -- ??? else
10858 -- Skip_Wide (P);
10860 end if;
10861 end loop;
10863 Rewrite (N,
10864 Make_Qualified_Expression (Loc,
10865 Subtype_Mark => New_Occurrence_Of (Typ, Loc),
10866 Expression =>
10867 Make_Aggregate (Loc, Expressions => Lits)));
10869 Analyze_And_Resolve (N, Typ);
10870 end;
10871 end Resolve_String_Literal;
10873 -------------------------
10874 -- Resolve_Target_Name --
10875 -------------------------
10877 procedure Resolve_Target_Name (N : Node_Id; Typ : Entity_Id) is
10878 begin
10879 Set_Etype (N, Typ);
10880 end Resolve_Target_Name;
10882 -----------------------------
10883 -- Resolve_Type_Conversion --
10884 -----------------------------
10886 procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id) is
10887 Conv_OK : constant Boolean := Conversion_OK (N);
10888 Operand : constant Node_Id := Expression (N);
10889 Operand_Typ : constant Entity_Id := Etype (Operand);
10890 Target_Typ : constant Entity_Id := Etype (N);
10891 Rop : Node_Id;
10892 Orig_N : Node_Id;
10893 Orig_T : Node_Id;
10895 Test_Redundant : Boolean := Warn_On_Redundant_Constructs;
10896 -- Set to False to suppress cases where we want to suppress the test
10897 -- for redundancy to avoid possible false positives on this warning.
10899 begin
10900 if not Conv_OK
10901 and then not Valid_Conversion (N, Target_Typ, Operand)
10902 then
10903 return;
10904 end if;
10906 -- If the Operand Etype is Universal_Fixed, then the conversion is
10907 -- never redundant. We need this check because by the time we have
10908 -- finished the rather complex transformation, the conversion looks
10909 -- redundant when it is not.
10911 if Operand_Typ = Universal_Fixed then
10912 Test_Redundant := False;
10914 -- If the operand is marked as Any_Fixed, then special processing is
10915 -- required. This is also a case where we suppress the test for a
10916 -- redundant conversion, since most certainly it is not redundant.
10918 elsif Operand_Typ = Any_Fixed then
10919 Test_Redundant := False;
10921 -- Mixed-mode operation involving a literal. Context must be a fixed
10922 -- type which is applied to the literal subsequently.
10924 -- Multiplication and division involving two fixed type operands must
10925 -- yield a universal real because the result is computed in arbitrary
10926 -- precision.
10928 if Is_Fixed_Point_Type (Typ)
10929 and then Nkind_In (Operand, N_Op_Divide, N_Op_Multiply)
10930 and then Etype (Left_Opnd (Operand)) = Any_Fixed
10931 and then Etype (Right_Opnd (Operand)) = Any_Fixed
10932 then
10933 Set_Etype (Operand, Universal_Real);
10935 elsif Is_Numeric_Type (Typ)
10936 and then Nkind_In (Operand, N_Op_Multiply, N_Op_Divide)
10937 and then (Etype (Right_Opnd (Operand)) = Universal_Real
10938 or else
10939 Etype (Left_Opnd (Operand)) = Universal_Real)
10940 then
10941 -- Return if expression is ambiguous
10943 if Unique_Fixed_Point_Type (N) = Any_Type then
10944 return;
10946 -- If nothing else, the available fixed type is Duration
10948 else
10949 Set_Etype (Operand, Standard_Duration);
10950 end if;
10952 -- Resolve the real operand with largest available precision
10954 if Etype (Right_Opnd (Operand)) = Universal_Real then
10955 Rop := New_Copy_Tree (Right_Opnd (Operand));
10956 else
10957 Rop := New_Copy_Tree (Left_Opnd (Operand));
10958 end if;
10960 Resolve (Rop, Universal_Real);
10962 -- If the operand is a literal (it could be a non-static and
10963 -- illegal exponentiation) check whether the use of Duration
10964 -- is potentially inaccurate.
10966 if Nkind (Rop) = N_Real_Literal
10967 and then Realval (Rop) /= Ureal_0
10968 and then abs (Realval (Rop)) < Delta_Value (Standard_Duration)
10969 then
10970 Error_Msg_N
10971 ("??universal real operand can only "
10972 & "be interpreted as Duration!", Rop);
10973 Error_Msg_N
10974 ("\??precision will be lost in the conversion!", Rop);
10975 end if;
10977 elsif Is_Numeric_Type (Typ)
10978 and then Nkind (Operand) in N_Op
10979 and then Unique_Fixed_Point_Type (N) /= Any_Type
10980 then
10981 Set_Etype (Operand, Standard_Duration);
10983 else
10984 Error_Msg_N ("invalid context for mixed mode operation", N);
10985 Set_Etype (Operand, Any_Type);
10986 return;
10987 end if;
10988 end if;
10990 Resolve (Operand);
10992 -- In SPARK, a type conversion between array types should be restricted
10993 -- to types which have matching static bounds.
10995 -- Protect call to Matching_Static_Array_Bounds to avoid costly
10996 -- operation if not needed.
10998 if Restriction_Check_Required (SPARK_05)
10999 and then Is_Array_Type (Target_Typ)
11000 and then Is_Array_Type (Operand_Typ)
11001 and then Operand_Typ /= Any_Composite -- or else Operand in error
11002 and then not Matching_Static_Array_Bounds (Target_Typ, Operand_Typ)
11003 then
11004 Check_SPARK_05_Restriction
11005 ("array types should have matching static bounds", N);
11006 end if;
11008 -- In formal mode, the operand of an ancestor type conversion must be an
11009 -- object (not an expression).
11011 if Is_Tagged_Type (Target_Typ)
11012 and then not Is_Class_Wide_Type (Target_Typ)
11013 and then Is_Tagged_Type (Operand_Typ)
11014 and then not Is_Class_Wide_Type (Operand_Typ)
11015 and then Is_Ancestor (Target_Typ, Operand_Typ)
11016 and then not Is_SPARK_05_Object_Reference (Operand)
11017 then
11018 Check_SPARK_05_Restriction ("object required", Operand);
11019 end if;
11021 Analyze_Dimension (N);
11023 -- Note: we do the Eval_Type_Conversion call before applying the
11024 -- required checks for a subtype conversion. This is important, since
11025 -- both are prepared under certain circumstances to change the type
11026 -- conversion to a constraint error node, but in the case of
11027 -- Eval_Type_Conversion this may reflect an illegality in the static
11028 -- case, and we would miss the illegality (getting only a warning
11029 -- message), if we applied the type conversion checks first.
11031 Eval_Type_Conversion (N);
11033 -- Even when evaluation is not possible, we may be able to simplify the
11034 -- conversion or its expression. This needs to be done before applying
11035 -- checks, since otherwise the checks may use the original expression
11036 -- and defeat the simplifications. This is specifically the case for
11037 -- elimination of the floating-point Truncation attribute in
11038 -- float-to-int conversions.
11040 Simplify_Type_Conversion (N);
11042 -- If after evaluation we still have a type conversion, then we may need
11043 -- to apply checks required for a subtype conversion.
11045 -- Skip these type conversion checks if universal fixed operands
11046 -- operands involved, since range checks are handled separately for
11047 -- these cases (in the appropriate Expand routines in unit Exp_Fixd).
11049 if Nkind (N) = N_Type_Conversion
11050 and then not Is_Generic_Type (Root_Type (Target_Typ))
11051 and then Target_Typ /= Universal_Fixed
11052 and then Operand_Typ /= Universal_Fixed
11053 then
11054 Apply_Type_Conversion_Checks (N);
11055 end if;
11057 -- Issue warning for conversion of simple object to its own type. We
11058 -- have to test the original nodes, since they may have been rewritten
11059 -- by various optimizations.
11061 Orig_N := Original_Node (N);
11063 -- Here we test for a redundant conversion if the warning mode is
11064 -- active (and was not locally reset), and we have a type conversion
11065 -- from source not appearing in a generic instance.
11067 if Test_Redundant
11068 and then Nkind (Orig_N) = N_Type_Conversion
11069 and then Comes_From_Source (Orig_N)
11070 and then not In_Instance
11071 then
11072 Orig_N := Original_Node (Expression (Orig_N));
11073 Orig_T := Target_Typ;
11075 -- If the node is part of a larger expression, the Target_Type
11076 -- may not be the original type of the node if the context is a
11077 -- condition. Recover original type to see if conversion is needed.
11079 if Is_Boolean_Type (Orig_T)
11080 and then Nkind (Parent (N)) in N_Op
11081 then
11082 Orig_T := Etype (Parent (N));
11083 end if;
11085 -- If we have an entity name, then give the warning if the entity
11086 -- is the right type, or if it is a loop parameter covered by the
11087 -- original type (that's needed because loop parameters have an
11088 -- odd subtype coming from the bounds).
11090 if (Is_Entity_Name (Orig_N)
11091 and then
11092 (Etype (Entity (Orig_N)) = Orig_T
11093 or else
11094 (Ekind (Entity (Orig_N)) = E_Loop_Parameter
11095 and then Covers (Orig_T, Etype (Entity (Orig_N))))))
11097 -- If not an entity, then type of expression must match
11099 or else Etype (Orig_N) = Orig_T
11100 then
11101 -- One more check, do not give warning if the analyzed conversion
11102 -- has an expression with non-static bounds, and the bounds of the
11103 -- target are static. This avoids junk warnings in cases where the
11104 -- conversion is necessary to establish staticness, for example in
11105 -- a case statement.
11107 if not Is_OK_Static_Subtype (Operand_Typ)
11108 and then Is_OK_Static_Subtype (Target_Typ)
11109 then
11110 null;
11112 -- Finally, if this type conversion occurs in a context requiring
11113 -- a prefix, and the expression is a qualified expression then the
11114 -- type conversion is not redundant, since a qualified expression
11115 -- is not a prefix, whereas a type conversion is. For example, "X
11116 -- := T'(Funx(...)).Y;" is illegal because a selected component
11117 -- requires a prefix, but a type conversion makes it legal: "X :=
11118 -- T(T'(Funx(...))).Y;"
11120 -- In Ada 2012, a qualified expression is a name, so this idiom is
11121 -- no longer needed, but we still suppress the warning because it
11122 -- seems unfriendly for warnings to pop up when you switch to the
11123 -- newer language version.
11125 elsif Nkind (Orig_N) = N_Qualified_Expression
11126 and then Nkind_In (Parent (N), N_Attribute_Reference,
11127 N_Indexed_Component,
11128 N_Selected_Component,
11129 N_Slice,
11130 N_Explicit_Dereference)
11131 then
11132 null;
11134 -- Never warn on conversion to Long_Long_Integer'Base since
11135 -- that is most likely an artifact of the extended overflow
11136 -- checking and comes from complex expanded code.
11138 elsif Orig_T = Base_Type (Standard_Long_Long_Integer) then
11139 null;
11141 -- Here we give the redundant conversion warning. If it is an
11142 -- entity, give the name of the entity in the message. If not,
11143 -- just mention the expression.
11145 -- Shoudn't we test Warn_On_Redundant_Constructs here ???
11147 else
11148 if Is_Entity_Name (Orig_N) then
11149 Error_Msg_Node_2 := Orig_T;
11150 Error_Msg_NE -- CODEFIX
11151 ("??redundant conversion, & is of type &!",
11152 N, Entity (Orig_N));
11153 else
11154 Error_Msg_NE
11155 ("??redundant conversion, expression is of type&!",
11156 N, Orig_T);
11157 end if;
11158 end if;
11159 end if;
11160 end if;
11162 -- Ada 2005 (AI-251): Handle class-wide interface type conversions.
11163 -- No need to perform any interface conversion if the type of the
11164 -- expression coincides with the target type.
11166 if Ada_Version >= Ada_2005
11167 and then Expander_Active
11168 and then Operand_Typ /= Target_Typ
11169 then
11170 declare
11171 Opnd : Entity_Id := Operand_Typ;
11172 Target : Entity_Id := Target_Typ;
11174 begin
11175 -- If the type of the operand is a limited view, use nonlimited
11176 -- view when available. If it is a class-wide type, recover the
11177 -- class-wide type of the nonlimited view.
11179 if From_Limited_With (Opnd)
11180 and then Has_Non_Limited_View (Opnd)
11181 then
11182 Opnd := Non_Limited_View (Opnd);
11183 Set_Etype (Expression (N), Opnd);
11184 end if;
11186 if Is_Access_Type (Opnd) then
11187 Opnd := Designated_Type (Opnd);
11188 end if;
11190 if Is_Access_Type (Target_Typ) then
11191 Target := Designated_Type (Target);
11192 end if;
11194 if Opnd = Target then
11195 null;
11197 -- Conversion from interface type
11199 elsif Is_Interface (Opnd) then
11201 -- Ada 2005 (AI-217): Handle entities from limited views
11203 if From_Limited_With (Opnd) then
11204 Error_Msg_Qual_Level := 99;
11205 Error_Msg_NE -- CODEFIX
11206 ("missing WITH clause on package &", N,
11207 Cunit_Entity (Get_Source_Unit (Base_Type (Opnd))));
11208 Error_Msg_N
11209 ("type conversions require visibility of the full view",
11212 elsif From_Limited_With (Target)
11213 and then not
11214 (Is_Access_Type (Target_Typ)
11215 and then Present (Non_Limited_View (Etype (Target))))
11216 then
11217 Error_Msg_Qual_Level := 99;
11218 Error_Msg_NE -- CODEFIX
11219 ("missing WITH clause on package &", N,
11220 Cunit_Entity (Get_Source_Unit (Base_Type (Target))));
11221 Error_Msg_N
11222 ("type conversions require visibility of the full view",
11225 else
11226 Expand_Interface_Conversion (N);
11227 end if;
11229 -- Conversion to interface type
11231 elsif Is_Interface (Target) then
11233 -- Handle subtypes
11235 if Ekind_In (Opnd, E_Protected_Subtype, E_Task_Subtype) then
11236 Opnd := Etype (Opnd);
11237 end if;
11239 if Is_Class_Wide_Type (Opnd)
11240 or else Interface_Present_In_Ancestor
11241 (Typ => Opnd,
11242 Iface => Target)
11243 then
11244 Expand_Interface_Conversion (N);
11245 else
11246 Error_Msg_Name_1 := Chars (Etype (Target));
11247 Error_Msg_Name_2 := Chars (Opnd);
11248 Error_Msg_N
11249 ("wrong interface conversion (% is not a progenitor "
11250 & "of %)", N);
11251 end if;
11252 end if;
11253 end;
11254 end if;
11256 -- Ada 2012: once the type conversion is resolved, check whether the
11257 -- operand statisfies the static predicate of the target type.
11259 if Has_Predicates (Target_Typ) then
11260 Check_Expression_Against_Static_Predicate (N, Target_Typ);
11261 end if;
11263 -- If at this stage we have a real to integer conversion, make sure that
11264 -- the Do_Range_Check flag is set, because such conversions in general
11265 -- need a range check. We only need this if expansion is off.
11266 -- In GNATprove mode, we only do that when converting from fixed-point
11267 -- (as floating-point to integer conversions are now handled in
11268 -- GNATprove mode).
11270 if Nkind (N) = N_Type_Conversion
11271 and then not Expander_Active
11272 and then Is_Integer_Type (Target_Typ)
11273 and then (Is_Fixed_Point_Type (Operand_Typ)
11274 or else (not GNATprove_Mode
11275 and then Is_Floating_Point_Type (Operand_Typ)))
11276 then
11277 Set_Do_Range_Check (Operand);
11278 end if;
11280 -- Generating C code a type conversion of an access to constrained
11281 -- array type to access to unconstrained array type involves building
11282 -- a fat pointer which in general cannot be generated on the fly. We
11283 -- remove side effects in order to store the result of the conversion
11284 -- into a temporary.
11286 if Modify_Tree_For_C
11287 and then Nkind (N) = N_Type_Conversion
11288 and then Nkind (Parent (N)) /= N_Object_Declaration
11289 and then Is_Access_Type (Etype (N))
11290 and then Is_Array_Type (Designated_Type (Etype (N)))
11291 and then not Is_Constrained (Designated_Type (Etype (N)))
11292 and then Is_Constrained (Designated_Type (Etype (Expression (N))))
11293 then
11294 Remove_Side_Effects (N);
11295 end if;
11296 end Resolve_Type_Conversion;
11298 ----------------------
11299 -- Resolve_Unary_Op --
11300 ----------------------
11302 procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id) is
11303 B_Typ : constant Entity_Id := Base_Type (Typ);
11304 R : constant Node_Id := Right_Opnd (N);
11305 OK : Boolean;
11306 Lo : Uint;
11307 Hi : Uint;
11309 begin
11310 if Is_Modular_Integer_Type (Typ) and then Nkind (N) /= N_Op_Not then
11311 Error_Msg_Name_1 := Chars (Typ);
11312 Check_SPARK_05_Restriction
11313 ("unary operator not defined for modular type%", N);
11314 end if;
11316 -- Deal with intrinsic unary operators
11318 if Comes_From_Source (N)
11319 and then Ekind (Entity (N)) = E_Function
11320 and then Is_Imported (Entity (N))
11321 and then Is_Intrinsic_Subprogram (Entity (N))
11322 then
11323 Resolve_Intrinsic_Unary_Operator (N, Typ);
11324 return;
11325 end if;
11327 -- Deal with universal cases
11329 if Etype (R) = Universal_Integer
11330 or else
11331 Etype (R) = Universal_Real
11332 then
11333 Check_For_Visible_Operator (N, B_Typ);
11334 end if;
11336 Set_Etype (N, B_Typ);
11337 Resolve (R, B_Typ);
11339 -- Generate warning for expressions like abs (x mod 2)
11341 if Warn_On_Redundant_Constructs
11342 and then Nkind (N) = N_Op_Abs
11343 then
11344 Determine_Range (Right_Opnd (N), OK, Lo, Hi);
11346 if OK and then Hi >= Lo and then Lo >= 0 then
11347 Error_Msg_N -- CODEFIX
11348 ("?r?abs applied to known non-negative value has no effect", N);
11349 end if;
11350 end if;
11352 -- Deal with reference generation
11354 Check_Unset_Reference (R);
11355 Generate_Operator_Reference (N, B_Typ);
11356 Analyze_Dimension (N);
11357 Eval_Unary_Op (N);
11359 -- Set overflow checking bit. Much cleverer code needed here eventually
11360 -- and perhaps the Resolve routines should be separated for the various
11361 -- arithmetic operations, since they will need different processing ???
11363 if Nkind (N) in N_Op then
11364 if not Overflow_Checks_Suppressed (Etype (N)) then
11365 Enable_Overflow_Check (N);
11366 end if;
11367 end if;
11369 -- Generate warning for expressions like -5 mod 3 for integers. No need
11370 -- to worry in the floating-point case, since parens do not affect the
11371 -- result so there is no point in giving in a warning.
11373 declare
11374 Norig : constant Node_Id := Original_Node (N);
11375 Rorig : Node_Id;
11376 Val : Uint;
11377 HB : Uint;
11378 LB : Uint;
11379 Lval : Uint;
11380 Opnd : Node_Id;
11382 begin
11383 if Warn_On_Questionable_Missing_Parens
11384 and then Comes_From_Source (Norig)
11385 and then Is_Integer_Type (Typ)
11386 and then Nkind (Norig) = N_Op_Minus
11387 then
11388 Rorig := Original_Node (Right_Opnd (Norig));
11390 -- We are looking for cases where the right operand is not
11391 -- parenthesized, and is a binary operator, multiply, divide, or
11392 -- mod. These are the cases where the grouping can affect results.
11394 if Paren_Count (Rorig) = 0
11395 and then Nkind_In (Rorig, N_Op_Mod, N_Op_Multiply, N_Op_Divide)
11396 then
11397 -- For mod, we always give the warning, since the value is
11398 -- affected by the parenthesization (e.g. (-5) mod 315 /=
11399 -- -(5 mod 315)). But for the other cases, the only concern is
11400 -- overflow, e.g. for the case of 8 big signed (-(2 * 64)
11401 -- overflows, but (-2) * 64 does not). So we try to give the
11402 -- message only when overflow is possible.
11404 if Nkind (Rorig) /= N_Op_Mod
11405 and then Compile_Time_Known_Value (R)
11406 then
11407 Val := Expr_Value (R);
11409 if Compile_Time_Known_Value (Type_High_Bound (Typ)) then
11410 HB := Expr_Value (Type_High_Bound (Typ));
11411 else
11412 HB := Expr_Value (Type_High_Bound (Base_Type (Typ)));
11413 end if;
11415 if Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
11416 LB := Expr_Value (Type_Low_Bound (Typ));
11417 else
11418 LB := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
11419 end if;
11421 -- Note that the test below is deliberately excluding the
11422 -- largest negative number, since that is a potentially
11423 -- troublesome case (e.g. -2 * x, where the result is the
11424 -- largest negative integer has an overflow with 2 * x).
11426 if Val > LB and then Val <= HB then
11427 return;
11428 end if;
11429 end if;
11431 -- For the multiplication case, the only case we have to worry
11432 -- about is when (-a)*b is exactly the largest negative number
11433 -- so that -(a*b) can cause overflow. This can only happen if
11434 -- a is a power of 2, and more generally if any operand is a
11435 -- constant that is not a power of 2, then the parentheses
11436 -- cannot affect whether overflow occurs. We only bother to
11437 -- test the left most operand
11439 -- Loop looking at left operands for one that has known value
11441 Opnd := Rorig;
11442 Opnd_Loop : while Nkind (Opnd) = N_Op_Multiply loop
11443 if Compile_Time_Known_Value (Left_Opnd (Opnd)) then
11444 Lval := UI_Abs (Expr_Value (Left_Opnd (Opnd)));
11446 -- Operand value of 0 or 1 skips warning
11448 if Lval <= 1 then
11449 return;
11451 -- Otherwise check power of 2, if power of 2, warn, if
11452 -- anything else, skip warning.
11454 else
11455 while Lval /= 2 loop
11456 if Lval mod 2 = 1 then
11457 return;
11458 else
11459 Lval := Lval / 2;
11460 end if;
11461 end loop;
11463 exit Opnd_Loop;
11464 end if;
11465 end if;
11467 -- Keep looking at left operands
11469 Opnd := Left_Opnd (Opnd);
11470 end loop Opnd_Loop;
11472 -- For rem or "/" we can only have a problematic situation
11473 -- if the divisor has a value of minus one or one. Otherwise
11474 -- overflow is impossible (divisor > 1) or we have a case of
11475 -- division by zero in any case.
11477 if Nkind_In (Rorig, N_Op_Divide, N_Op_Rem)
11478 and then Compile_Time_Known_Value (Right_Opnd (Rorig))
11479 and then UI_Abs (Expr_Value (Right_Opnd (Rorig))) /= 1
11480 then
11481 return;
11482 end if;
11484 -- If we fall through warning should be issued
11486 -- Shouldn't we test Warn_On_Questionable_Missing_Parens ???
11488 Error_Msg_N
11489 ("??unary minus expression should be parenthesized here!", N);
11490 end if;
11491 end if;
11492 end;
11493 end Resolve_Unary_Op;
11495 ----------------------------------
11496 -- Resolve_Unchecked_Expression --
11497 ----------------------------------
11499 procedure Resolve_Unchecked_Expression
11500 (N : Node_Id;
11501 Typ : Entity_Id)
11503 begin
11504 Resolve (Expression (N), Typ, Suppress => All_Checks);
11505 Set_Etype (N, Typ);
11506 end Resolve_Unchecked_Expression;
11508 ---------------------------------------
11509 -- Resolve_Unchecked_Type_Conversion --
11510 ---------------------------------------
11512 procedure Resolve_Unchecked_Type_Conversion
11513 (N : Node_Id;
11514 Typ : Entity_Id)
11516 pragma Warnings (Off, Typ);
11518 Operand : constant Node_Id := Expression (N);
11519 Opnd_Type : constant Entity_Id := Etype (Operand);
11521 begin
11522 -- Resolve operand using its own type
11524 Resolve (Operand, Opnd_Type);
11526 -- In an inlined context, the unchecked conversion may be applied
11527 -- to a literal, in which case its type is the type of the context.
11528 -- (In other contexts conversions cannot apply to literals).
11530 if In_Inlined_Body
11531 and then (Opnd_Type = Any_Character or else
11532 Opnd_Type = Any_Integer or else
11533 Opnd_Type = Any_Real)
11534 then
11535 Set_Etype (Operand, Typ);
11536 end if;
11538 Analyze_Dimension (N);
11539 Eval_Unchecked_Conversion (N);
11540 end Resolve_Unchecked_Type_Conversion;
11542 ------------------------------
11543 -- Rewrite_Operator_As_Call --
11544 ------------------------------
11546 procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id) is
11547 Loc : constant Source_Ptr := Sloc (N);
11548 Actuals : constant List_Id := New_List;
11549 New_N : Node_Id;
11551 begin
11552 if Nkind (N) in N_Binary_Op then
11553 Append (Left_Opnd (N), Actuals);
11554 end if;
11556 Append (Right_Opnd (N), Actuals);
11558 New_N :=
11559 Make_Function_Call (Sloc => Loc,
11560 Name => New_Occurrence_Of (Nam, Loc),
11561 Parameter_Associations => Actuals);
11563 Preserve_Comes_From_Source (New_N, N);
11564 Preserve_Comes_From_Source (Name (New_N), N);
11565 Rewrite (N, New_N);
11566 Set_Etype (N, Etype (Nam));
11567 end Rewrite_Operator_As_Call;
11569 ------------------------------
11570 -- Rewrite_Renamed_Operator --
11571 ------------------------------
11573 procedure Rewrite_Renamed_Operator
11574 (N : Node_Id;
11575 Op : Entity_Id;
11576 Typ : Entity_Id)
11578 Nam : constant Name_Id := Chars (Op);
11579 Is_Binary : constant Boolean := Nkind (N) in N_Binary_Op;
11580 Op_Node : Node_Id;
11582 begin
11583 -- Do not perform this transformation within a pre/postcondition,
11584 -- because the expression will be reanalyzed, and the transformation
11585 -- might affect the visibility of the operator, e.g. in an instance.
11586 -- Note that fully analyzed and expanded pre/postconditions appear as
11587 -- pragma Check equivalents.
11589 if In_Pre_Post_Condition (N) then
11590 return;
11591 end if;
11593 -- Likewise when an expression function is being preanalyzed, since the
11594 -- expression will be reanalyzed as part of the generated body.
11596 if In_Spec_Expression then
11597 declare
11598 S : constant Entity_Id := Current_Scope_No_Loops;
11599 begin
11600 if Ekind (S) = E_Function
11601 and then Nkind (Original_Node (Unit_Declaration_Node (S))) =
11602 N_Expression_Function
11603 then
11604 return;
11605 end if;
11606 end;
11607 end if;
11609 -- Rewrite the operator node using the real operator, not its renaming.
11610 -- Exclude user-defined intrinsic operations of the same name, which are
11611 -- treated separately and rewritten as calls.
11613 if Ekind (Op) /= E_Function or else Chars (N) /= Nam then
11614 Op_Node := New_Node (Operator_Kind (Nam, Is_Binary), Sloc (N));
11615 Set_Chars (Op_Node, Nam);
11616 Set_Etype (Op_Node, Etype (N));
11617 Set_Entity (Op_Node, Op);
11618 Set_Right_Opnd (Op_Node, Right_Opnd (N));
11620 -- Indicate that both the original entity and its renaming are
11621 -- referenced at this point.
11623 Generate_Reference (Entity (N), N);
11624 Generate_Reference (Op, N);
11626 if Is_Binary then
11627 Set_Left_Opnd (Op_Node, Left_Opnd (N));
11628 end if;
11630 Rewrite (N, Op_Node);
11632 -- If the context type is private, add the appropriate conversions so
11633 -- that the operator is applied to the full view. This is done in the
11634 -- routines that resolve intrinsic operators.
11636 if Is_Intrinsic_Subprogram (Op) and then Is_Private_Type (Typ) then
11637 case Nkind (N) is
11638 when N_Op_Add
11639 | N_Op_Divide
11640 | N_Op_Expon
11641 | N_Op_Mod
11642 | N_Op_Multiply
11643 | N_Op_Rem
11644 | N_Op_Subtract
11646 Resolve_Intrinsic_Operator (N, Typ);
11648 when N_Op_Abs
11649 | N_Op_Minus
11650 | N_Op_Plus
11652 Resolve_Intrinsic_Unary_Operator (N, Typ);
11654 when others =>
11655 Resolve (N, Typ);
11656 end case;
11657 end if;
11659 elsif Ekind (Op) = E_Function and then Is_Intrinsic_Subprogram (Op) then
11661 -- Operator renames a user-defined operator of the same name. Use the
11662 -- original operator in the node, which is the one Gigi knows about.
11664 Set_Entity (N, Op);
11665 Set_Is_Overloaded (N, False);
11666 end if;
11667 end Rewrite_Renamed_Operator;
11669 -----------------------
11670 -- Set_Slice_Subtype --
11671 -----------------------
11673 -- Build an implicit subtype declaration to represent the type delivered by
11674 -- the slice. This is an abbreviated version of an array subtype. We define
11675 -- an index subtype for the slice, using either the subtype name or the
11676 -- discrete range of the slice. To be consistent with index usage elsewhere
11677 -- we create a list header to hold the single index. This list is not
11678 -- otherwise attached to the syntax tree.
11680 procedure Set_Slice_Subtype (N : Node_Id) is
11681 Loc : constant Source_Ptr := Sloc (N);
11682 Index_List : constant List_Id := New_List;
11683 Index : Node_Id;
11684 Index_Subtype : Entity_Id;
11685 Index_Type : Entity_Id;
11686 Slice_Subtype : Entity_Id;
11687 Drange : constant Node_Id := Discrete_Range (N);
11689 begin
11690 Index_Type := Base_Type (Etype (Drange));
11692 if Is_Entity_Name (Drange) then
11693 Index_Subtype := Entity (Drange);
11695 else
11696 -- We force the evaluation of a range. This is definitely needed in
11697 -- the renamed case, and seems safer to do unconditionally. Note in
11698 -- any case that since we will create and insert an Itype referring
11699 -- to this range, we must make sure any side effect removal actions
11700 -- are inserted before the Itype definition.
11702 if Nkind (Drange) = N_Range then
11703 Force_Evaluation (Low_Bound (Drange));
11704 Force_Evaluation (High_Bound (Drange));
11706 -- If the discrete range is given by a subtype indication, the
11707 -- type of the slice is the base of the subtype mark.
11709 elsif Nkind (Drange) = N_Subtype_Indication then
11710 declare
11711 R : constant Node_Id := Range_Expression (Constraint (Drange));
11712 begin
11713 Index_Type := Base_Type (Entity (Subtype_Mark (Drange)));
11714 Force_Evaluation (Low_Bound (R));
11715 Force_Evaluation (High_Bound (R));
11716 end;
11717 end if;
11719 Index_Subtype := Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
11721 -- Take a new copy of Drange (where bounds have been rewritten to
11722 -- reference side-effect-free names). Using a separate tree ensures
11723 -- that further expansion (e.g. while rewriting a slice assignment
11724 -- into a FOR loop) does not attempt to remove side effects on the
11725 -- bounds again (which would cause the bounds in the index subtype
11726 -- definition to refer to temporaries before they are defined) (the
11727 -- reason is that some names are considered side effect free here
11728 -- for the subtype, but not in the context of a loop iteration
11729 -- scheme).
11731 Set_Scalar_Range (Index_Subtype, New_Copy_Tree (Drange));
11732 Set_Parent (Scalar_Range (Index_Subtype), Index_Subtype);
11733 Set_Etype (Index_Subtype, Index_Type);
11734 Set_Size_Info (Index_Subtype, Index_Type);
11735 Set_RM_Size (Index_Subtype, RM_Size (Index_Type));
11736 end if;
11738 Slice_Subtype := Create_Itype (E_Array_Subtype, N);
11740 Index := New_Occurrence_Of (Index_Subtype, Loc);
11741 Set_Etype (Index, Index_Subtype);
11742 Append (Index, Index_List);
11744 Set_First_Index (Slice_Subtype, Index);
11745 Set_Etype (Slice_Subtype, Base_Type (Etype (N)));
11746 Set_Is_Constrained (Slice_Subtype, True);
11748 Check_Compile_Time_Size (Slice_Subtype);
11750 -- The Etype of the existing Slice node is reset to this slice subtype.
11751 -- Its bounds are obtained from its first index.
11753 Set_Etype (N, Slice_Subtype);
11755 -- For bit-packed slice subtypes, freeze immediately (except in the case
11756 -- of being in a "spec expression" where we never freeze when we first
11757 -- see the expression).
11759 if Is_Bit_Packed_Array (Slice_Subtype) and not In_Spec_Expression then
11760 Freeze_Itype (Slice_Subtype, N);
11762 -- For all other cases insert an itype reference in the slice's actions
11763 -- so that the itype is frozen at the proper place in the tree (i.e. at
11764 -- the point where actions for the slice are analyzed). Note that this
11765 -- is different from freezing the itype immediately, which might be
11766 -- premature (e.g. if the slice is within a transient scope). This needs
11767 -- to be done only if expansion is enabled.
11769 elsif Expander_Active then
11770 Ensure_Defined (Typ => Slice_Subtype, N => N);
11771 end if;
11772 end Set_Slice_Subtype;
11774 --------------------------------
11775 -- Set_String_Literal_Subtype --
11776 --------------------------------
11778 procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id) is
11779 Loc : constant Source_Ptr := Sloc (N);
11780 Low_Bound : constant Node_Id :=
11781 Type_Low_Bound (Etype (First_Index (Typ)));
11782 Subtype_Id : Entity_Id;
11784 begin
11785 if Nkind (N) /= N_String_Literal then
11786 return;
11787 end if;
11789 Subtype_Id := Create_Itype (E_String_Literal_Subtype, N);
11790 Set_String_Literal_Length (Subtype_Id, UI_From_Int
11791 (String_Length (Strval (N))));
11792 Set_Etype (Subtype_Id, Base_Type (Typ));
11793 Set_Is_Constrained (Subtype_Id);
11794 Set_Etype (N, Subtype_Id);
11796 -- The low bound is set from the low bound of the corresponding index
11797 -- type. Note that we do not store the high bound in the string literal
11798 -- subtype, but it can be deduced if necessary from the length and the
11799 -- low bound.
11801 if Is_OK_Static_Expression (Low_Bound) then
11802 Set_String_Literal_Low_Bound (Subtype_Id, Low_Bound);
11804 -- If the lower bound is not static we create a range for the string
11805 -- literal, using the index type and the known length of the literal.
11806 -- The index type is not necessarily Positive, so the upper bound is
11807 -- computed as T'Val (T'Pos (Low_Bound) + L - 1).
11809 else
11810 declare
11811 Index_List : constant List_Id := New_List;
11812 Index_Type : constant Entity_Id := Etype (First_Index (Typ));
11813 High_Bound : constant Node_Id :=
11814 Make_Attribute_Reference (Loc,
11815 Attribute_Name => Name_Val,
11816 Prefix =>
11817 New_Occurrence_Of (Index_Type, Loc),
11818 Expressions => New_List (
11819 Make_Op_Add (Loc,
11820 Left_Opnd =>
11821 Make_Attribute_Reference (Loc,
11822 Attribute_Name => Name_Pos,
11823 Prefix =>
11824 New_Occurrence_Of (Index_Type, Loc),
11825 Expressions =>
11826 New_List (New_Copy_Tree (Low_Bound))),
11827 Right_Opnd =>
11828 Make_Integer_Literal (Loc,
11829 String_Length (Strval (N)) - 1))));
11831 Array_Subtype : Entity_Id;
11832 Drange : Node_Id;
11833 Index : Node_Id;
11834 Index_Subtype : Entity_Id;
11836 begin
11837 if Is_Integer_Type (Index_Type) then
11838 Set_String_Literal_Low_Bound
11839 (Subtype_Id, Make_Integer_Literal (Loc, 1));
11841 else
11842 -- If the index type is an enumeration type, build bounds
11843 -- expression with attributes.
11845 Set_String_Literal_Low_Bound
11846 (Subtype_Id,
11847 Make_Attribute_Reference (Loc,
11848 Attribute_Name => Name_First,
11849 Prefix =>
11850 New_Occurrence_Of (Base_Type (Index_Type), Loc)));
11851 Set_Etype (String_Literal_Low_Bound (Subtype_Id), Index_Type);
11852 end if;
11854 Analyze_And_Resolve (String_Literal_Low_Bound (Subtype_Id));
11856 -- Build bona fide subtype for the string, and wrap it in an
11857 -- unchecked conversion, because the backend expects the
11858 -- String_Literal_Subtype to have a static lower bound.
11860 Index_Subtype :=
11861 Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
11862 Drange := Make_Range (Loc, New_Copy_Tree (Low_Bound), High_Bound);
11863 Set_Scalar_Range (Index_Subtype, Drange);
11864 Set_Parent (Drange, N);
11865 Analyze_And_Resolve (Drange, Index_Type);
11867 -- In the context, the Index_Type may already have a constraint,
11868 -- so use common base type on string subtype. The base type may
11869 -- be used when generating attributes of the string, for example
11870 -- in the context of a slice assignment.
11872 Set_Etype (Index_Subtype, Base_Type (Index_Type));
11873 Set_Size_Info (Index_Subtype, Index_Type);
11874 Set_RM_Size (Index_Subtype, RM_Size (Index_Type));
11876 Array_Subtype := Create_Itype (E_Array_Subtype, N);
11878 Index := New_Occurrence_Of (Index_Subtype, Loc);
11879 Set_Etype (Index, Index_Subtype);
11880 Append (Index, Index_List);
11882 Set_First_Index (Array_Subtype, Index);
11883 Set_Etype (Array_Subtype, Base_Type (Typ));
11884 Set_Is_Constrained (Array_Subtype, True);
11886 Rewrite (N,
11887 Make_Unchecked_Type_Conversion (Loc,
11888 Subtype_Mark => New_Occurrence_Of (Array_Subtype, Loc),
11889 Expression => Relocate_Node (N)));
11890 Set_Etype (N, Array_Subtype);
11891 end;
11892 end if;
11893 end Set_String_Literal_Subtype;
11895 ------------------------------
11896 -- Simplify_Type_Conversion --
11897 ------------------------------
11899 procedure Simplify_Type_Conversion (N : Node_Id) is
11900 begin
11901 if Nkind (N) = N_Type_Conversion then
11902 declare
11903 Operand : constant Node_Id := Expression (N);
11904 Target_Typ : constant Entity_Id := Etype (N);
11905 Opnd_Typ : constant Entity_Id := Etype (Operand);
11907 begin
11908 -- Special processing if the conversion is the expression of a
11909 -- Rounding or Truncation attribute reference. In this case we
11910 -- replace:
11912 -- ityp (ftyp'Rounding (x)) or ityp (ftyp'Truncation (x))
11914 -- by
11916 -- ityp (x)
11918 -- with the Float_Truncate flag set to False or True respectively,
11919 -- which is more efficient.
11921 if Is_Floating_Point_Type (Opnd_Typ)
11922 and then
11923 (Is_Integer_Type (Target_Typ)
11924 or else (Is_Fixed_Point_Type (Target_Typ)
11925 and then Conversion_OK (N)))
11926 and then Nkind (Operand) = N_Attribute_Reference
11927 and then Nam_In (Attribute_Name (Operand), Name_Rounding,
11928 Name_Truncation)
11929 then
11930 declare
11931 Truncate : constant Boolean :=
11932 Attribute_Name (Operand) = Name_Truncation;
11933 begin
11934 Rewrite (Operand,
11935 Relocate_Node (First (Expressions (Operand))));
11936 Set_Float_Truncate (N, Truncate);
11937 end;
11938 end if;
11939 end;
11940 end if;
11941 end Simplify_Type_Conversion;
11943 -----------------------------
11944 -- Unique_Fixed_Point_Type --
11945 -----------------------------
11947 function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id is
11948 procedure Fixed_Point_Error (T1 : Entity_Id; T2 : Entity_Id);
11949 -- Give error messages for true ambiguity. Messages are posted on node
11950 -- N, and entities T1, T2 are the possible interpretations.
11952 -----------------------
11953 -- Fixed_Point_Error --
11954 -----------------------
11956 procedure Fixed_Point_Error (T1 : Entity_Id; T2 : Entity_Id) is
11957 begin
11958 Error_Msg_N ("ambiguous universal_fixed_expression", N);
11959 Error_Msg_NE ("\\possible interpretation as}", N, T1);
11960 Error_Msg_NE ("\\possible interpretation as}", N, T2);
11961 end Fixed_Point_Error;
11963 -- Local variables
11965 ErrN : Node_Id;
11966 Item : Node_Id;
11967 Scop : Entity_Id;
11968 T1 : Entity_Id;
11969 T2 : Entity_Id;
11971 -- Start of processing for Unique_Fixed_Point_Type
11973 begin
11974 -- The operations on Duration are visible, so Duration is always a
11975 -- possible interpretation.
11977 T1 := Standard_Duration;
11979 -- Look for fixed-point types in enclosing scopes
11981 Scop := Current_Scope;
11982 while Scop /= Standard_Standard loop
11983 T2 := First_Entity (Scop);
11984 while Present (T2) loop
11985 if Is_Fixed_Point_Type (T2)
11986 and then Current_Entity (T2) = T2
11987 and then Scope (Base_Type (T2)) = Scop
11988 then
11989 if Present (T1) then
11990 Fixed_Point_Error (T1, T2);
11991 return Any_Type;
11992 else
11993 T1 := T2;
11994 end if;
11995 end if;
11997 Next_Entity (T2);
11998 end loop;
12000 Scop := Scope (Scop);
12001 end loop;
12003 -- Look for visible fixed type declarations in the context
12005 Item := First (Context_Items (Cunit (Current_Sem_Unit)));
12006 while Present (Item) loop
12007 if Nkind (Item) = N_With_Clause then
12008 Scop := Entity (Name (Item));
12009 T2 := First_Entity (Scop);
12010 while Present (T2) loop
12011 if Is_Fixed_Point_Type (T2)
12012 and then Scope (Base_Type (T2)) = Scop
12013 and then (Is_Potentially_Use_Visible (T2) or else In_Use (T2))
12014 then
12015 if Present (T1) then
12016 Fixed_Point_Error (T1, T2);
12017 return Any_Type;
12018 else
12019 T1 := T2;
12020 end if;
12021 end if;
12023 Next_Entity (T2);
12024 end loop;
12025 end if;
12027 Next (Item);
12028 end loop;
12030 if Nkind (N) = N_Real_Literal then
12031 Error_Msg_NE ("??real literal interpreted as }!", N, T1);
12033 else
12034 -- When the context is a type conversion, issue the warning on the
12035 -- expression of the conversion because it is the actual operation.
12037 if Nkind_In (N, N_Type_Conversion, N_Unchecked_Type_Conversion) then
12038 ErrN := Expression (N);
12039 else
12040 ErrN := N;
12041 end if;
12043 Error_Msg_NE
12044 ("??universal_fixed expression interpreted as }!", ErrN, T1);
12045 end if;
12047 return T1;
12048 end Unique_Fixed_Point_Type;
12050 ----------------------
12051 -- Valid_Conversion --
12052 ----------------------
12054 function Valid_Conversion
12055 (N : Node_Id;
12056 Target : Entity_Id;
12057 Operand : Node_Id;
12058 Report_Errs : Boolean := True) return Boolean
12060 Target_Type : constant Entity_Id := Base_Type (Target);
12061 Opnd_Type : Entity_Id := Etype (Operand);
12062 Inc_Ancestor : Entity_Id;
12064 function Conversion_Check
12065 (Valid : Boolean;
12066 Msg : String) return Boolean;
12067 -- Little routine to post Msg if Valid is False, returns Valid value
12069 procedure Conversion_Error_N (Msg : String; N : Node_Or_Entity_Id);
12070 -- If Report_Errs, then calls Errout.Error_Msg_N with its arguments
12072 procedure Conversion_Error_NE
12073 (Msg : String;
12074 N : Node_Or_Entity_Id;
12075 E : Node_Or_Entity_Id);
12076 -- If Report_Errs, then calls Errout.Error_Msg_NE with its arguments
12078 function In_Instance_Code return Boolean;
12079 -- Return True if expression is within an instance but is not in one of
12080 -- the actuals of the instantiation. Type conversions within an instance
12081 -- are not rechecked because type visbility may lead to spurious errors,
12082 -- but conversions in an actual for a formal object must be checked.
12084 function Valid_Tagged_Conversion
12085 (Target_Type : Entity_Id;
12086 Opnd_Type : Entity_Id) return Boolean;
12087 -- Specifically test for validity of tagged conversions
12089 function Valid_Array_Conversion return Boolean;
12090 -- Check index and component conformance, and accessibility levels if
12091 -- the component types are anonymous access types (Ada 2005).
12093 ----------------------
12094 -- Conversion_Check --
12095 ----------------------
12097 function Conversion_Check
12098 (Valid : Boolean;
12099 Msg : String) return Boolean
12101 begin
12102 if not Valid
12104 -- A generic unit has already been analyzed and we have verified
12105 -- that a particular conversion is OK in that context. Since the
12106 -- instance is reanalyzed without relying on the relationships
12107 -- established during the analysis of the generic, it is possible
12108 -- to end up with inconsistent views of private types. Do not emit
12109 -- the error message in such cases. The rest of the machinery in
12110 -- Valid_Conversion still ensures the proper compatibility of
12111 -- target and operand types.
12113 and then not In_Instance_Code
12114 then
12115 Conversion_Error_N (Msg, Operand);
12116 end if;
12118 return Valid;
12119 end Conversion_Check;
12121 ------------------------
12122 -- Conversion_Error_N --
12123 ------------------------
12125 procedure Conversion_Error_N (Msg : String; N : Node_Or_Entity_Id) is
12126 begin
12127 if Report_Errs then
12128 Error_Msg_N (Msg, N);
12129 end if;
12130 end Conversion_Error_N;
12132 -------------------------
12133 -- Conversion_Error_NE --
12134 -------------------------
12136 procedure Conversion_Error_NE
12137 (Msg : String;
12138 N : Node_Or_Entity_Id;
12139 E : Node_Or_Entity_Id)
12141 begin
12142 if Report_Errs then
12143 Error_Msg_NE (Msg, N, E);
12144 end if;
12145 end Conversion_Error_NE;
12147 ----------------------
12148 -- In_Instance_Code --
12149 ----------------------
12151 function In_Instance_Code return Boolean is
12152 Par : Node_Id;
12154 begin
12155 if not In_Instance then
12156 return False;
12158 else
12159 Par := Parent (N);
12160 while Present (Par) loop
12162 -- The expression is part of an actual object if it appears in
12163 -- the generated object declaration in the instance.
12165 if Nkind (Par) = N_Object_Declaration
12166 and then Present (Corresponding_Generic_Association (Par))
12167 then
12168 return False;
12170 else
12171 exit when
12172 Nkind (Par) in N_Statement_Other_Than_Procedure_Call
12173 or else Nkind (Par) in N_Subprogram_Call
12174 or else Nkind (Par) in N_Declaration;
12175 end if;
12177 Par := Parent (Par);
12178 end loop;
12180 -- Otherwise the expression appears within the instantiated unit
12182 return True;
12183 end if;
12184 end In_Instance_Code;
12186 ----------------------------
12187 -- Valid_Array_Conversion --
12188 ----------------------------
12190 function Valid_Array_Conversion return Boolean is
12191 Opnd_Comp_Type : constant Entity_Id := Component_Type (Opnd_Type);
12192 Opnd_Comp_Base : constant Entity_Id := Base_Type (Opnd_Comp_Type);
12194 Opnd_Index : Node_Id;
12195 Opnd_Index_Type : Entity_Id;
12197 Target_Comp_Type : constant Entity_Id :=
12198 Component_Type (Target_Type);
12199 Target_Comp_Base : constant Entity_Id :=
12200 Base_Type (Target_Comp_Type);
12202 Target_Index : Node_Id;
12203 Target_Index_Type : Entity_Id;
12205 begin
12206 -- Error if wrong number of dimensions
12209 Number_Dimensions (Target_Type) /= Number_Dimensions (Opnd_Type)
12210 then
12211 Conversion_Error_N
12212 ("incompatible number of dimensions for conversion", Operand);
12213 return False;
12215 -- Number of dimensions matches
12217 else
12218 -- Loop through indexes of the two arrays
12220 Target_Index := First_Index (Target_Type);
12221 Opnd_Index := First_Index (Opnd_Type);
12222 while Present (Target_Index) and then Present (Opnd_Index) loop
12223 Target_Index_Type := Etype (Target_Index);
12224 Opnd_Index_Type := Etype (Opnd_Index);
12226 -- Error if index types are incompatible
12228 if not (Is_Integer_Type (Target_Index_Type)
12229 and then Is_Integer_Type (Opnd_Index_Type))
12230 and then (Root_Type (Target_Index_Type)
12231 /= Root_Type (Opnd_Index_Type))
12232 then
12233 Conversion_Error_N
12234 ("incompatible index types for array conversion",
12235 Operand);
12236 return False;
12237 end if;
12239 Next_Index (Target_Index);
12240 Next_Index (Opnd_Index);
12241 end loop;
12243 -- If component types have same base type, all set
12245 if Target_Comp_Base = Opnd_Comp_Base then
12246 null;
12248 -- Here if base types of components are not the same. The only
12249 -- time this is allowed is if we have anonymous access types.
12251 -- The conversion of arrays of anonymous access types can lead
12252 -- to dangling pointers. AI-392 formalizes the accessibility
12253 -- checks that must be applied to such conversions to prevent
12254 -- out-of-scope references.
12256 elsif Ekind_In
12257 (Target_Comp_Base, E_Anonymous_Access_Type,
12258 E_Anonymous_Access_Subprogram_Type)
12259 and then Ekind (Opnd_Comp_Base) = Ekind (Target_Comp_Base)
12260 and then
12261 Subtypes_Statically_Match (Target_Comp_Type, Opnd_Comp_Type)
12262 then
12263 if Type_Access_Level (Target_Type) <
12264 Deepest_Type_Access_Level (Opnd_Type)
12265 then
12266 if In_Instance_Body then
12267 Error_Msg_Warn := SPARK_Mode /= On;
12268 Conversion_Error_N
12269 ("source array type has deeper accessibility "
12270 & "level than target<<", Operand);
12271 Conversion_Error_N ("\Program_Error [<<", Operand);
12272 Rewrite (N,
12273 Make_Raise_Program_Error (Sloc (N),
12274 Reason => PE_Accessibility_Check_Failed));
12275 Set_Etype (N, Target_Type);
12276 return False;
12278 -- Conversion not allowed because of accessibility levels
12280 else
12281 Conversion_Error_N
12282 ("source array type has deeper accessibility "
12283 & "level than target", Operand);
12284 return False;
12285 end if;
12287 else
12288 null;
12289 end if;
12291 -- All other cases where component base types do not match
12293 else
12294 Conversion_Error_N
12295 ("incompatible component types for array conversion",
12296 Operand);
12297 return False;
12298 end if;
12300 -- Check that component subtypes statically match. For numeric
12301 -- types this means that both must be either constrained or
12302 -- unconstrained. For enumeration types the bounds must match.
12303 -- All of this is checked in Subtypes_Statically_Match.
12305 if not Subtypes_Statically_Match
12306 (Target_Comp_Type, Opnd_Comp_Type)
12307 then
12308 Conversion_Error_N
12309 ("component subtypes must statically match", Operand);
12310 return False;
12311 end if;
12312 end if;
12314 return True;
12315 end Valid_Array_Conversion;
12317 -----------------------------
12318 -- Valid_Tagged_Conversion --
12319 -----------------------------
12321 function Valid_Tagged_Conversion
12322 (Target_Type : Entity_Id;
12323 Opnd_Type : Entity_Id) return Boolean
12325 begin
12326 -- Upward conversions are allowed (RM 4.6(22))
12328 if Covers (Target_Type, Opnd_Type)
12329 or else Is_Ancestor (Target_Type, Opnd_Type)
12330 then
12331 return True;
12333 -- Downward conversion are allowed if the operand is class-wide
12334 -- (RM 4.6(23)).
12336 elsif Is_Class_Wide_Type (Opnd_Type)
12337 and then Covers (Opnd_Type, Target_Type)
12338 then
12339 return True;
12341 elsif Covers (Opnd_Type, Target_Type)
12342 or else Is_Ancestor (Opnd_Type, Target_Type)
12343 then
12344 return
12345 Conversion_Check (False,
12346 "downward conversion of tagged objects not allowed");
12348 -- Ada 2005 (AI-251): The conversion to/from interface types is
12349 -- always valid. The types involved may be class-wide (sub)types.
12351 elsif Is_Interface (Etype (Base_Type (Target_Type)))
12352 or else Is_Interface (Etype (Base_Type (Opnd_Type)))
12353 then
12354 return True;
12356 -- If the operand is a class-wide type obtained through a limited_
12357 -- with clause, and the context includes the nonlimited view, use
12358 -- it to determine whether the conversion is legal.
12360 elsif Is_Class_Wide_Type (Opnd_Type)
12361 and then From_Limited_With (Opnd_Type)
12362 and then Present (Non_Limited_View (Etype (Opnd_Type)))
12363 and then Is_Interface (Non_Limited_View (Etype (Opnd_Type)))
12364 then
12365 return True;
12367 elsif Is_Access_Type (Opnd_Type)
12368 and then Is_Interface (Directly_Designated_Type (Opnd_Type))
12369 then
12370 return True;
12372 else
12373 Conversion_Error_NE
12374 ("invalid tagged conversion, not compatible with}",
12375 N, First_Subtype (Opnd_Type));
12376 return False;
12377 end if;
12378 end Valid_Tagged_Conversion;
12380 -- Start of processing for Valid_Conversion
12382 begin
12383 Check_Parameterless_Call (Operand);
12385 if Is_Overloaded (Operand) then
12386 declare
12387 I : Interp_Index;
12388 I1 : Interp_Index;
12389 It : Interp;
12390 It1 : Interp;
12391 N1 : Entity_Id;
12392 T1 : Entity_Id;
12394 begin
12395 -- Remove procedure calls, which syntactically cannot appear in
12396 -- this context, but which cannot be removed by type checking,
12397 -- because the context does not impose a type.
12399 -- The node may be labelled overloaded, but still contain only one
12400 -- interpretation because others were discarded earlier. If this
12401 -- is the case, retain the single interpretation if legal.
12403 Get_First_Interp (Operand, I, It);
12404 Opnd_Type := It.Typ;
12405 Get_Next_Interp (I, It);
12407 if Present (It.Typ)
12408 and then Opnd_Type /= Standard_Void_Type
12409 then
12410 -- More than one candidate interpretation is available
12412 Get_First_Interp (Operand, I, It);
12413 while Present (It.Typ) loop
12414 if It.Typ = Standard_Void_Type then
12415 Remove_Interp (I);
12416 end if;
12418 -- When compiling for a system where Address is of a visible
12419 -- integer type, spurious ambiguities can be produced when
12420 -- arithmetic operations have a literal operand and return
12421 -- System.Address or a descendant of it. These ambiguities
12422 -- are usually resolved by the context, but for conversions
12423 -- there is no context type and the removal of the spurious
12424 -- operations must be done explicitly here.
12426 if not Address_Is_Private
12427 and then Is_Descendant_Of_Address (It.Typ)
12428 then
12429 Remove_Interp (I);
12430 end if;
12432 Get_Next_Interp (I, It);
12433 end loop;
12434 end if;
12436 Get_First_Interp (Operand, I, It);
12437 I1 := I;
12438 It1 := It;
12440 if No (It.Typ) then
12441 Conversion_Error_N ("illegal operand in conversion", Operand);
12442 return False;
12443 end if;
12445 Get_Next_Interp (I, It);
12447 if Present (It.Typ) then
12448 N1 := It1.Nam;
12449 T1 := It1.Typ;
12450 It1 := Disambiguate (Operand, I1, I, Any_Type);
12452 if It1 = No_Interp then
12453 Conversion_Error_N
12454 ("ambiguous operand in conversion", Operand);
12456 -- If the interpretation involves a standard operator, use
12457 -- the location of the type, which may be user-defined.
12459 if Sloc (It.Nam) = Standard_Location then
12460 Error_Msg_Sloc := Sloc (It.Typ);
12461 else
12462 Error_Msg_Sloc := Sloc (It.Nam);
12463 end if;
12465 Conversion_Error_N -- CODEFIX
12466 ("\\possible interpretation#!", Operand);
12468 if Sloc (N1) = Standard_Location then
12469 Error_Msg_Sloc := Sloc (T1);
12470 else
12471 Error_Msg_Sloc := Sloc (N1);
12472 end if;
12474 Conversion_Error_N -- CODEFIX
12475 ("\\possible interpretation#!", Operand);
12477 return False;
12478 end if;
12479 end if;
12481 Set_Etype (Operand, It1.Typ);
12482 Opnd_Type := It1.Typ;
12483 end;
12484 end if;
12486 -- Deal with conversion of integer type to address if the pragma
12487 -- Allow_Integer_Address is in effect. We convert the conversion to
12488 -- an unchecked conversion in this case and we are all done.
12490 if Address_Integer_Convert_OK (Opnd_Type, Target_Type) then
12491 Rewrite (N, Unchecked_Convert_To (Target_Type, Expression (N)));
12492 Analyze_And_Resolve (N, Target_Type);
12493 return True;
12494 end if;
12496 -- If we are within a child unit, check whether the type of the
12497 -- expression has an ancestor in a parent unit, in which case it
12498 -- belongs to its derivation class even if the ancestor is private.
12499 -- See RM 7.3.1 (5.2/3).
12501 Inc_Ancestor := Get_Incomplete_View_Of_Ancestor (Opnd_Type);
12503 -- Numeric types
12505 if Is_Numeric_Type (Target_Type) then
12507 -- A universal fixed expression can be converted to any numeric type
12509 if Opnd_Type = Universal_Fixed then
12510 return True;
12512 -- Also no need to check when in an instance or inlined body, because
12513 -- the legality has been established when the template was analyzed.
12514 -- Furthermore, numeric conversions may occur where only a private
12515 -- view of the operand type is visible at the instantiation point.
12516 -- This results in a spurious error if we check that the operand type
12517 -- is a numeric type.
12519 -- Note: in a previous version of this unit, the following tests were
12520 -- applied only for generated code (Comes_From_Source set to False),
12521 -- but in fact the test is required for source code as well, since
12522 -- this situation can arise in source code.
12524 elsif In_Instance_Code or else In_Inlined_Body then
12525 return True;
12527 -- Otherwise we need the conversion check
12529 else
12530 return Conversion_Check
12531 (Is_Numeric_Type (Opnd_Type)
12532 or else
12533 (Present (Inc_Ancestor)
12534 and then Is_Numeric_Type (Inc_Ancestor)),
12535 "illegal operand for numeric conversion");
12536 end if;
12538 -- Array types
12540 elsif Is_Array_Type (Target_Type) then
12541 if not Is_Array_Type (Opnd_Type)
12542 or else Opnd_Type = Any_Composite
12543 or else Opnd_Type = Any_String
12544 then
12545 Conversion_Error_N
12546 ("illegal operand for array conversion", Operand);
12547 return False;
12549 else
12550 return Valid_Array_Conversion;
12551 end if;
12553 -- Ada 2005 (AI-251): Internally generated conversions of access to
12554 -- interface types added to force the displacement of the pointer to
12555 -- reference the corresponding dispatch table.
12557 elsif not Comes_From_Source (N)
12558 and then Is_Access_Type (Target_Type)
12559 and then Is_Interface (Designated_Type (Target_Type))
12560 then
12561 return True;
12563 -- Ada 2005 (AI-251): Anonymous access types where target references an
12564 -- interface type.
12566 elsif Is_Access_Type (Opnd_Type)
12567 and then Ekind_In (Target_Type, E_General_Access_Type,
12568 E_Anonymous_Access_Type)
12569 and then Is_Interface (Directly_Designated_Type (Target_Type))
12570 then
12571 -- Check the static accessibility rule of 4.6(17). Note that the
12572 -- check is not enforced when within an instance body, since the
12573 -- RM requires such cases to be caught at run time.
12575 -- If the operand is a rewriting of an allocator no check is needed
12576 -- because there are no accessibility issues.
12578 if Nkind (Original_Node (N)) = N_Allocator then
12579 null;
12581 elsif Ekind (Target_Type) /= E_Anonymous_Access_Type then
12582 if Type_Access_Level (Opnd_Type) >
12583 Deepest_Type_Access_Level (Target_Type)
12584 then
12585 -- In an instance, this is a run-time check, but one we know
12586 -- will fail, so generate an appropriate warning. The raise
12587 -- will be generated by Expand_N_Type_Conversion.
12589 if In_Instance_Body then
12590 Error_Msg_Warn := SPARK_Mode /= On;
12591 Conversion_Error_N
12592 ("cannot convert local pointer to non-local access type<<",
12593 Operand);
12594 Conversion_Error_N ("\Program_Error [<<", Operand);
12596 else
12597 Conversion_Error_N
12598 ("cannot convert local pointer to non-local access type",
12599 Operand);
12600 return False;
12601 end if;
12603 -- Special accessibility checks are needed in the case of access
12604 -- discriminants declared for a limited type.
12606 elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
12607 and then not Is_Local_Anonymous_Access (Opnd_Type)
12608 then
12609 -- When the operand is a selected access discriminant the check
12610 -- needs to be made against the level of the object denoted by
12611 -- the prefix of the selected name (Object_Access_Level handles
12612 -- checking the prefix of the operand for this case).
12614 if Nkind (Operand) = N_Selected_Component
12615 and then Object_Access_Level (Operand) >
12616 Deepest_Type_Access_Level (Target_Type)
12617 then
12618 -- In an instance, this is a run-time check, but one we know
12619 -- will fail, so generate an appropriate warning. The raise
12620 -- will be generated by Expand_N_Type_Conversion.
12622 if In_Instance_Body then
12623 Error_Msg_Warn := SPARK_Mode /= On;
12624 Conversion_Error_N
12625 ("cannot convert access discriminant to non-local "
12626 & "access type<<", Operand);
12627 Conversion_Error_N ("\Program_Error [<<", Operand);
12629 -- Real error if not in instance body
12631 else
12632 Conversion_Error_N
12633 ("cannot convert access discriminant to non-local "
12634 & "access type", Operand);
12635 return False;
12636 end if;
12637 end if;
12639 -- The case of a reference to an access discriminant from
12640 -- within a limited type declaration (which will appear as
12641 -- a discriminal) is always illegal because the level of the
12642 -- discriminant is considered to be deeper than any (nameable)
12643 -- access type.
12645 if Is_Entity_Name (Operand)
12646 and then not Is_Local_Anonymous_Access (Opnd_Type)
12647 and then
12648 Ekind_In (Entity (Operand), E_In_Parameter, E_Constant)
12649 and then Present (Discriminal_Link (Entity (Operand)))
12650 then
12651 Conversion_Error_N
12652 ("discriminant has deeper accessibility level than target",
12653 Operand);
12654 return False;
12655 end if;
12656 end if;
12657 end if;
12659 return True;
12661 -- General and anonymous access types
12663 elsif Ekind_In (Target_Type, E_General_Access_Type,
12664 E_Anonymous_Access_Type)
12665 and then
12666 Conversion_Check
12667 (Is_Access_Type (Opnd_Type)
12668 and then not
12669 Ekind_In (Opnd_Type, E_Access_Subprogram_Type,
12670 E_Access_Protected_Subprogram_Type),
12671 "must be an access-to-object type")
12672 then
12673 if Is_Access_Constant (Opnd_Type)
12674 and then not Is_Access_Constant (Target_Type)
12675 then
12676 Conversion_Error_N
12677 ("access-to-constant operand type not allowed", Operand);
12678 return False;
12679 end if;
12681 -- Check the static accessibility rule of 4.6(17). Note that the
12682 -- check is not enforced when within an instance body, since the RM
12683 -- requires such cases to be caught at run time.
12685 if Ekind (Target_Type) /= E_Anonymous_Access_Type
12686 or else Is_Local_Anonymous_Access (Target_Type)
12687 or else Nkind (Associated_Node_For_Itype (Target_Type)) =
12688 N_Object_Declaration
12689 then
12690 -- Ada 2012 (AI05-0149): Perform legality checking on implicit
12691 -- conversions from an anonymous access type to a named general
12692 -- access type. Such conversions are not allowed in the case of
12693 -- access parameters and stand-alone objects of an anonymous
12694 -- access type. The implicit conversion case is recognized by
12695 -- testing that Comes_From_Source is False and that it's been
12696 -- rewritten. The Comes_From_Source test isn't sufficient because
12697 -- nodes in inlined calls to predefined library routines can have
12698 -- Comes_From_Source set to False. (Is there a better way to test
12699 -- for implicit conversions???)
12701 if Ada_Version >= Ada_2012
12702 and then not Comes_From_Source (N)
12703 and then Is_Rewrite_Substitution (N)
12704 and then Ekind (Target_Type) = E_General_Access_Type
12705 and then Ekind (Opnd_Type) = E_Anonymous_Access_Type
12706 then
12707 if Is_Itype (Opnd_Type) then
12709 -- Implicit conversions aren't allowed for objects of an
12710 -- anonymous access type, since such objects have nonstatic
12711 -- levels in Ada 2012.
12713 if Nkind (Associated_Node_For_Itype (Opnd_Type)) =
12714 N_Object_Declaration
12715 then
12716 Conversion_Error_N
12717 ("implicit conversion of stand-alone anonymous "
12718 & "access object not allowed", Operand);
12719 return False;
12721 -- Implicit conversions aren't allowed for anonymous access
12722 -- parameters. The "not Is_Local_Anonymous_Access_Type" test
12723 -- is done to exclude anonymous access results.
12725 elsif not Is_Local_Anonymous_Access (Opnd_Type)
12726 and then Nkind_In (Associated_Node_For_Itype (Opnd_Type),
12727 N_Function_Specification,
12728 N_Procedure_Specification)
12729 then
12730 Conversion_Error_N
12731 ("implicit conversion of anonymous access formal "
12732 & "not allowed", Operand);
12733 return False;
12735 -- This is a case where there's an enclosing object whose
12736 -- to which the "statically deeper than" relationship does
12737 -- not apply (such as an access discriminant selected from
12738 -- a dereference of an access parameter).
12740 elsif Object_Access_Level (Operand)
12741 = Scope_Depth (Standard_Standard)
12742 then
12743 Conversion_Error_N
12744 ("implicit conversion of anonymous access value "
12745 & "not allowed", Operand);
12746 return False;
12748 -- In other cases, the level of the operand's type must be
12749 -- statically less deep than that of the target type, else
12750 -- implicit conversion is disallowed (by RM12-8.6(27.1/3)).
12752 elsif Type_Access_Level (Opnd_Type) >
12753 Deepest_Type_Access_Level (Target_Type)
12754 then
12755 Conversion_Error_N
12756 ("implicit conversion of anonymous access value "
12757 & "violates accessibility", Operand);
12758 return False;
12759 end if;
12760 end if;
12762 elsif Type_Access_Level (Opnd_Type) >
12763 Deepest_Type_Access_Level (Target_Type)
12764 then
12765 -- In an instance, this is a run-time check, but one we know
12766 -- will fail, so generate an appropriate warning. The raise
12767 -- will be generated by Expand_N_Type_Conversion.
12769 if In_Instance_Body then
12770 Error_Msg_Warn := SPARK_Mode /= On;
12771 Conversion_Error_N
12772 ("cannot convert local pointer to non-local access type<<",
12773 Operand);
12774 Conversion_Error_N ("\Program_Error [<<", Operand);
12776 -- If not in an instance body, this is a real error
12778 else
12779 -- Avoid generation of spurious error message
12781 if not Error_Posted (N) then
12782 Conversion_Error_N
12783 ("cannot convert local pointer to non-local access type",
12784 Operand);
12785 end if;
12787 return False;
12788 end if;
12790 -- Special accessibility checks are needed in the case of access
12791 -- discriminants declared for a limited type.
12793 elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
12794 and then not Is_Local_Anonymous_Access (Opnd_Type)
12795 then
12796 -- When the operand is a selected access discriminant the check
12797 -- needs to be made against the level of the object denoted by
12798 -- the prefix of the selected name (Object_Access_Level handles
12799 -- checking the prefix of the operand for this case).
12801 if Nkind (Operand) = N_Selected_Component
12802 and then Object_Access_Level (Operand) >
12803 Deepest_Type_Access_Level (Target_Type)
12804 then
12805 -- In an instance, this is a run-time check, but one we know
12806 -- will fail, so generate an appropriate warning. The raise
12807 -- will be generated by Expand_N_Type_Conversion.
12809 if In_Instance_Body then
12810 Error_Msg_Warn := SPARK_Mode /= On;
12811 Conversion_Error_N
12812 ("cannot convert access discriminant to non-local "
12813 & "access type<<", Operand);
12814 Conversion_Error_N ("\Program_Error [<<", Operand);
12816 -- If not in an instance body, this is a real error
12818 else
12819 Conversion_Error_N
12820 ("cannot convert access discriminant to non-local "
12821 & "access type", Operand);
12822 return False;
12823 end if;
12824 end if;
12826 -- The case of a reference to an access discriminant from
12827 -- within a limited type declaration (which will appear as
12828 -- a discriminal) is always illegal because the level of the
12829 -- discriminant is considered to be deeper than any (nameable)
12830 -- access type.
12832 if Is_Entity_Name (Operand)
12833 and then
12834 Ekind_In (Entity (Operand), E_In_Parameter, E_Constant)
12835 and then Present (Discriminal_Link (Entity (Operand)))
12836 then
12837 Conversion_Error_N
12838 ("discriminant has deeper accessibility level than target",
12839 Operand);
12840 return False;
12841 end if;
12842 end if;
12843 end if;
12845 -- In the presence of limited_with clauses we have to use nonlimited
12846 -- views, if available.
12848 Check_Limited : declare
12849 function Full_Designated_Type (T : Entity_Id) return Entity_Id;
12850 -- Helper function to handle limited views
12852 --------------------------
12853 -- Full_Designated_Type --
12854 --------------------------
12856 function Full_Designated_Type (T : Entity_Id) return Entity_Id is
12857 Desig : constant Entity_Id := Designated_Type (T);
12859 begin
12860 -- Handle the limited view of a type
12862 if From_Limited_With (Desig)
12863 and then Has_Non_Limited_View (Desig)
12864 then
12865 return Available_View (Desig);
12866 else
12867 return Desig;
12868 end if;
12869 end Full_Designated_Type;
12871 -- Local Declarations
12873 Target : constant Entity_Id := Full_Designated_Type (Target_Type);
12874 Opnd : constant Entity_Id := Full_Designated_Type (Opnd_Type);
12876 Same_Base : constant Boolean :=
12877 Base_Type (Target) = Base_Type (Opnd);
12879 -- Start of processing for Check_Limited
12881 begin
12882 if Is_Tagged_Type (Target) then
12883 return Valid_Tagged_Conversion (Target, Opnd);
12885 else
12886 if not Same_Base then
12887 Conversion_Error_NE
12888 ("target designated type not compatible with }",
12889 N, Base_Type (Opnd));
12890 return False;
12892 -- Ada 2005 AI-384: legality rule is symmetric in both
12893 -- designated types. The conversion is legal (with possible
12894 -- constraint check) if either designated type is
12895 -- unconstrained.
12897 elsif Subtypes_Statically_Match (Target, Opnd)
12898 or else
12899 (Has_Discriminants (Target)
12900 and then
12901 (not Is_Constrained (Opnd)
12902 or else not Is_Constrained (Target)))
12903 then
12904 -- Special case, if Value_Size has been used to make the
12905 -- sizes different, the conversion is not allowed even
12906 -- though the subtypes statically match.
12908 if Known_Static_RM_Size (Target)
12909 and then Known_Static_RM_Size (Opnd)
12910 and then RM_Size (Target) /= RM_Size (Opnd)
12911 then
12912 Conversion_Error_NE
12913 ("target designated subtype not compatible with }",
12914 N, Opnd);
12915 Conversion_Error_NE
12916 ("\because sizes of the two designated subtypes differ",
12917 N, Opnd);
12918 return False;
12920 -- Normal case where conversion is allowed
12922 else
12923 return True;
12924 end if;
12926 else
12927 Error_Msg_NE
12928 ("target designated subtype not compatible with }",
12929 N, Opnd);
12930 return False;
12931 end if;
12932 end if;
12933 end Check_Limited;
12935 -- Access to subprogram types. If the operand is an access parameter,
12936 -- the type has a deeper accessibility that any master, and cannot be
12937 -- assigned. We must make an exception if the conversion is part of an
12938 -- assignment and the target is the return object of an extended return
12939 -- statement, because in that case the accessibility check takes place
12940 -- after the return.
12942 elsif Is_Access_Subprogram_Type (Target_Type)
12944 -- Note: this test of Opnd_Type is there to prevent entering this
12945 -- branch in the case of a remote access to subprogram type, which
12946 -- is internally represented as an E_Record_Type.
12948 and then Is_Access_Type (Opnd_Type)
12949 then
12950 if Ekind (Base_Type (Opnd_Type)) = E_Anonymous_Access_Subprogram_Type
12951 and then Is_Entity_Name (Operand)
12952 and then Ekind (Entity (Operand)) = E_In_Parameter
12953 and then
12954 (Nkind (Parent (N)) /= N_Assignment_Statement
12955 or else not Is_Entity_Name (Name (Parent (N)))
12956 or else not Is_Return_Object (Entity (Name (Parent (N)))))
12957 then
12958 Conversion_Error_N
12959 ("illegal attempt to store anonymous access to subprogram",
12960 Operand);
12961 Conversion_Error_N
12962 ("\value has deeper accessibility than any master "
12963 & "(RM 3.10.2 (13))",
12964 Operand);
12966 Error_Msg_NE
12967 ("\use named access type for& instead of access parameter",
12968 Operand, Entity (Operand));
12969 end if;
12971 -- Check that the designated types are subtype conformant
12973 Check_Subtype_Conformant (New_Id => Designated_Type (Target_Type),
12974 Old_Id => Designated_Type (Opnd_Type),
12975 Err_Loc => N);
12977 -- Check the static accessibility rule of 4.6(20)
12979 if Type_Access_Level (Opnd_Type) >
12980 Deepest_Type_Access_Level (Target_Type)
12981 then
12982 Conversion_Error_N
12983 ("operand type has deeper accessibility level than target",
12984 Operand);
12986 -- Check that if the operand type is declared in a generic body,
12987 -- then the target type must be declared within that same body
12988 -- (enforces last sentence of 4.6(20)).
12990 elsif Present (Enclosing_Generic_Body (Opnd_Type)) then
12991 declare
12992 O_Gen : constant Node_Id :=
12993 Enclosing_Generic_Body (Opnd_Type);
12995 T_Gen : Node_Id;
12997 begin
12998 T_Gen := Enclosing_Generic_Body (Target_Type);
12999 while Present (T_Gen) and then T_Gen /= O_Gen loop
13000 T_Gen := Enclosing_Generic_Body (T_Gen);
13001 end loop;
13003 if T_Gen /= O_Gen then
13004 Conversion_Error_N
13005 ("target type must be declared in same generic body "
13006 & "as operand type", N);
13007 end if;
13008 end;
13009 end if;
13011 return True;
13013 -- Remote access to subprogram types
13015 elsif Is_Remote_Access_To_Subprogram_Type (Target_Type)
13016 and then Is_Remote_Access_To_Subprogram_Type (Opnd_Type)
13017 then
13018 -- It is valid to convert from one RAS type to another provided
13019 -- that their specification statically match.
13021 -- Note: at this point, remote access to subprogram types have been
13022 -- expanded to their E_Record_Type representation, and we need to
13023 -- go back to the original access type definition using the
13024 -- Corresponding_Remote_Type attribute in order to check that the
13025 -- designated profiles match.
13027 pragma Assert (Ekind (Target_Type) = E_Record_Type);
13028 pragma Assert (Ekind (Opnd_Type) = E_Record_Type);
13030 Check_Subtype_Conformant
13031 (New_Id =>
13032 Designated_Type (Corresponding_Remote_Type (Target_Type)),
13033 Old_Id =>
13034 Designated_Type (Corresponding_Remote_Type (Opnd_Type)),
13035 Err_Loc =>
13037 return True;
13039 -- If it was legal in the generic, it's legal in the instance
13041 elsif In_Instance_Body then
13042 return True;
13044 -- If both are tagged types, check legality of view conversions
13046 elsif Is_Tagged_Type (Target_Type)
13047 and then
13048 Is_Tagged_Type (Opnd_Type)
13049 then
13050 return Valid_Tagged_Conversion (Target_Type, Opnd_Type);
13052 -- Types derived from the same root type are convertible
13054 elsif Root_Type (Target_Type) = Root_Type (Opnd_Type) then
13055 return True;
13057 -- In an instance or an inlined body, there may be inconsistent views of
13058 -- the same type, or of types derived from a common root.
13060 elsif (In_Instance or In_Inlined_Body)
13061 and then
13062 Root_Type (Underlying_Type (Target_Type)) =
13063 Root_Type (Underlying_Type (Opnd_Type))
13064 then
13065 return True;
13067 -- Special check for common access type error case
13069 elsif Ekind (Target_Type) = E_Access_Type
13070 and then Is_Access_Type (Opnd_Type)
13071 then
13072 Conversion_Error_N ("target type must be general access type!", N);
13073 Conversion_Error_NE -- CODEFIX
13074 ("add ALL to }!", N, Target_Type);
13075 return False;
13077 -- Here we have a real conversion error
13079 else
13080 -- Check for missing regular with_clause when only a limited view of
13081 -- target is available.
13083 if From_Limited_With (Opnd_Type) and then In_Package_Body then
13084 Conversion_Error_NE
13085 ("invalid conversion, not compatible with limited view of }",
13086 N, Opnd_Type);
13087 Conversion_Error_NE
13088 ("\add with_clause for& to current unit!", N, Scope (Opnd_Type));
13090 elsif Is_Access_Type (Opnd_Type)
13091 and then From_Limited_With (Designated_Type (Opnd_Type))
13092 and then In_Package_Body
13093 then
13094 Conversion_Error_NE
13095 ("invalid conversion, not compatible with }", N, Opnd_Type);
13096 Conversion_Error_NE
13097 ("\add with_clause for& to current unit!",
13098 N, Scope (Designated_Type (Opnd_Type)));
13100 else
13101 Conversion_Error_NE
13102 ("invalid conversion, not compatible with }", N, Opnd_Type);
13103 end if;
13105 return False;
13106 end if;
13107 end Valid_Conversion;
13109 end Sem_Res;