Use MODE_BASE_REG_CLASS in legitimize macros.
[official-gcc.git] / gcc / unroll.c
blobdf02b7c8cbbdeb8500862bd20dba1954562c2756
1 /* Try to unroll loops, and split induction variables.
2 Copyright (C) 1992, 1993, 1994, 1995, 1997, 1998, 1999, 2000, 2001, 2002
3 Free Software Foundation, Inc.
4 Contributed by James E. Wilson, Cygnus Support/UC Berkeley.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
23 /* Try to unroll a loop, and split induction variables.
25 Loops for which the number of iterations can be calculated exactly are
26 handled specially. If the number of iterations times the insn_count is
27 less than MAX_UNROLLED_INSNS, then the loop is unrolled completely.
28 Otherwise, we try to unroll the loop a number of times modulo the number
29 of iterations, so that only one exit test will be needed. It is unrolled
30 a number of times approximately equal to MAX_UNROLLED_INSNS divided by
31 the insn count.
33 Otherwise, if the number of iterations can be calculated exactly at
34 run time, and the loop is always entered at the top, then we try to
35 precondition the loop. That is, at run time, calculate how many times
36 the loop will execute, and then execute the loop body a few times so
37 that the remaining iterations will be some multiple of 4 (or 2 if the
38 loop is large). Then fall through to a loop unrolled 4 (or 2) times,
39 with only one exit test needed at the end of the loop.
41 Otherwise, if the number of iterations can not be calculated exactly,
42 not even at run time, then we still unroll the loop a number of times
43 approximately equal to MAX_UNROLLED_INSNS divided by the insn count,
44 but there must be an exit test after each copy of the loop body.
46 For each induction variable, which is dead outside the loop (replaceable)
47 or for which we can easily calculate the final value, if we can easily
48 calculate its value at each place where it is set as a function of the
49 current loop unroll count and the variable's value at loop entry, then
50 the induction variable is split into `N' different variables, one for
51 each copy of the loop body. One variable is live across the backward
52 branch, and the others are all calculated as a function of this variable.
53 This helps eliminate data dependencies, and leads to further opportunities
54 for cse. */
56 /* Possible improvements follow: */
58 /* ??? Add an extra pass somewhere to determine whether unrolling will
59 give any benefit. E.g. after generating all unrolled insns, compute the
60 cost of all insns and compare against cost of insns in rolled loop.
62 - On traditional architectures, unrolling a non-constant bound loop
63 is a win if there is a giv whose only use is in memory addresses, the
64 memory addresses can be split, and hence giv increments can be
65 eliminated.
66 - It is also a win if the loop is executed many times, and preconditioning
67 can be performed for the loop.
68 Add code to check for these and similar cases. */
70 /* ??? Improve control of which loops get unrolled. Could use profiling
71 info to only unroll the most commonly executed loops. Perhaps have
72 a user specifyable option to control the amount of code expansion,
73 or the percent of loops to consider for unrolling. Etc. */
75 /* ??? Look at the register copies inside the loop to see if they form a
76 simple permutation. If so, iterate the permutation until it gets back to
77 the start state. This is how many times we should unroll the loop, for
78 best results, because then all register copies can be eliminated.
79 For example, the lisp nreverse function should be unrolled 3 times
80 while (this)
82 next = this->cdr;
83 this->cdr = prev;
84 prev = this;
85 this = next;
88 ??? The number of times to unroll the loop may also be based on data
89 references in the loop. For example, if we have a loop that references
90 x[i-1], x[i], and x[i+1], we should unroll it a multiple of 3 times. */
92 /* ??? Add some simple linear equation solving capability so that we can
93 determine the number of loop iterations for more complex loops.
94 For example, consider this loop from gdb
95 #define SWAP_TARGET_AND_HOST(buffer,len)
97 char tmp;
98 char *p = (char *) buffer;
99 char *q = ((char *) buffer) + len - 1;
100 int iterations = (len + 1) >> 1;
101 int i;
102 for (p; p < q; p++, q--;)
104 tmp = *q;
105 *q = *p;
106 *p = tmp;
109 Note that:
110 start value = p = &buffer + current_iteration
111 end value = q = &buffer + len - 1 - current_iteration
112 Given the loop exit test of "p < q", then there must be "q - p" iterations,
113 set equal to zero and solve for number of iterations:
114 q - p = len - 1 - 2*current_iteration = 0
115 current_iteration = (len - 1) / 2
116 Hence, there are (len - 1) / 2 (rounded up to the nearest integer)
117 iterations of this loop. */
119 /* ??? Currently, no labels are marked as loop invariant when doing loop
120 unrolling. This is because an insn inside the loop, that loads the address
121 of a label inside the loop into a register, could be moved outside the loop
122 by the invariant code motion pass if labels were invariant. If the loop
123 is subsequently unrolled, the code will be wrong because each unrolled
124 body of the loop will use the same address, whereas each actually needs a
125 different address. A case where this happens is when a loop containing
126 a switch statement is unrolled.
128 It would be better to let labels be considered invariant. When we
129 unroll loops here, check to see if any insns using a label local to the
130 loop were moved before the loop. If so, then correct the problem, by
131 moving the insn back into the loop, or perhaps replicate the insn before
132 the loop, one copy for each time the loop is unrolled. */
134 #include "config.h"
135 #include "system.h"
136 #include "rtl.h"
137 #include "tm_p.h"
138 #include "insn-config.h"
139 #include "integrate.h"
140 #include "regs.h"
141 #include "recog.h"
142 #include "flags.h"
143 #include "function.h"
144 #include "expr.h"
145 #include "loop.h"
146 #include "toplev.h"
147 #include "hard-reg-set.h"
148 #include "basic-block.h"
149 #include "predict.h"
151 /* The prime factors looked for when trying to unroll a loop by some
152 number which is modulo the total number of iterations. Just checking
153 for these 4 prime factors will find at least one factor for 75% of
154 all numbers theoretically. Practically speaking, this will succeed
155 almost all of the time since loops are generally a multiple of 2
156 and/or 5. */
158 #define NUM_FACTORS 4
160 static struct _factor { const int factor; int count; }
161 factors[NUM_FACTORS] = { {2, 0}, {3, 0}, {5, 0}, {7, 0}};
163 /* Describes the different types of loop unrolling performed. */
165 enum unroll_types
167 UNROLL_COMPLETELY,
168 UNROLL_MODULO,
169 UNROLL_NAIVE
172 /* This controls which loops are unrolled, and by how much we unroll
173 them. */
175 #ifndef MAX_UNROLLED_INSNS
176 #define MAX_UNROLLED_INSNS 100
177 #endif
179 /* Indexed by register number, if non-zero, then it contains a pointer
180 to a struct induction for a DEST_REG giv which has been combined with
181 one of more address givs. This is needed because whenever such a DEST_REG
182 giv is modified, we must modify the value of all split address givs
183 that were combined with this DEST_REG giv. */
185 static struct induction **addr_combined_regs;
187 /* Indexed by register number, if this is a splittable induction variable,
188 then this will hold the current value of the register, which depends on the
189 iteration number. */
191 static rtx *splittable_regs;
193 /* Indexed by register number, if this is a splittable induction variable,
194 then this will hold the number of instructions in the loop that modify
195 the induction variable. Used to ensure that only the last insn modifying
196 a split iv will update the original iv of the dest. */
198 static int *splittable_regs_updates;
200 /* Forward declarations. */
202 static void init_reg_map PARAMS ((struct inline_remap *, int));
203 static rtx calculate_giv_inc PARAMS ((rtx, rtx, unsigned int));
204 static rtx initial_reg_note_copy PARAMS ((rtx, struct inline_remap *));
205 static void final_reg_note_copy PARAMS ((rtx *, struct inline_remap *));
206 static void copy_loop_body PARAMS ((struct loop *, rtx, rtx,
207 struct inline_remap *, rtx, int,
208 enum unroll_types, rtx, rtx, rtx, rtx));
209 static int find_splittable_regs PARAMS ((const struct loop *,
210 enum unroll_types, int));
211 static int find_splittable_givs PARAMS ((const struct loop *,
212 struct iv_class *, enum unroll_types,
213 rtx, int));
214 static int reg_dead_after_loop PARAMS ((const struct loop *, rtx));
215 static rtx fold_rtx_mult_add PARAMS ((rtx, rtx, rtx, enum machine_mode));
216 static int verify_addresses PARAMS ((struct induction *, rtx, int));
217 static rtx remap_split_bivs PARAMS ((struct loop *, rtx));
218 static rtx find_common_reg_term PARAMS ((rtx, rtx));
219 static rtx subtract_reg_term PARAMS ((rtx, rtx));
220 static rtx loop_find_equiv_value PARAMS ((const struct loop *, rtx));
221 static rtx ujump_to_loop_cont PARAMS ((rtx, rtx));
223 /* Try to unroll one loop and split induction variables in the loop.
225 The loop is described by the arguments LOOP and INSN_COUNT.
226 STRENGTH_REDUCTION_P indicates whether information generated in the
227 strength reduction pass is available.
229 This function is intended to be called from within `strength_reduce'
230 in loop.c. */
232 void
233 unroll_loop (loop, insn_count, strength_reduce_p)
234 struct loop *loop;
235 int insn_count;
236 int strength_reduce_p;
238 struct loop_info *loop_info = LOOP_INFO (loop);
239 struct loop_ivs *ivs = LOOP_IVS (loop);
240 int i, j;
241 unsigned int r;
242 unsigned HOST_WIDE_INT temp;
243 int unroll_number = 1;
244 rtx copy_start, copy_end;
245 rtx insn, sequence, pattern, tem;
246 int max_labelno, max_insnno;
247 rtx insert_before;
248 struct inline_remap *map;
249 char *local_label = NULL;
250 char *local_regno;
251 unsigned int max_local_regnum;
252 unsigned int maxregnum;
253 rtx exit_label = 0;
254 rtx start_label;
255 struct iv_class *bl;
256 int splitting_not_safe = 0;
257 enum unroll_types unroll_type = UNROLL_NAIVE;
258 int loop_preconditioned = 0;
259 rtx safety_label;
260 /* This points to the last real insn in the loop, which should be either
261 a JUMP_INSN (for conditional jumps) or a BARRIER (for unconditional
262 jumps). */
263 rtx last_loop_insn;
264 rtx loop_start = loop->start;
265 rtx loop_end = loop->end;
267 /* Don't bother unrolling huge loops. Since the minimum factor is
268 two, loops greater than one half of MAX_UNROLLED_INSNS will never
269 be unrolled. */
270 if (insn_count > MAX_UNROLLED_INSNS / 2)
272 if (loop_dump_stream)
273 fprintf (loop_dump_stream, "Unrolling failure: Loop too big.\n");
274 return;
277 /* When emitting debugger info, we can't unroll loops with unequal numbers
278 of block_beg and block_end notes, because that would unbalance the block
279 structure of the function. This can happen as a result of the
280 "if (foo) bar; else break;" optimization in jump.c. */
281 /* ??? Gcc has a general policy that -g is never supposed to change the code
282 that the compiler emits, so we must disable this optimization always,
283 even if debug info is not being output. This is rare, so this should
284 not be a significant performance problem. */
286 if (1 /* write_symbols != NO_DEBUG */)
288 int block_begins = 0;
289 int block_ends = 0;
291 for (insn = loop_start; insn != loop_end; insn = NEXT_INSN (insn))
293 if (GET_CODE (insn) == NOTE)
295 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
296 block_begins++;
297 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
298 block_ends++;
299 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG
300 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END)
302 /* Note, would be nice to add code to unroll EH
303 regions, but until that time, we punt (don't
304 unroll). For the proper way of doing it, see
305 expand_inline_function. */
307 if (loop_dump_stream)
308 fprintf (loop_dump_stream,
309 "Unrolling failure: cannot unroll EH regions.\n");
310 return;
315 if (block_begins != block_ends)
317 if (loop_dump_stream)
318 fprintf (loop_dump_stream,
319 "Unrolling failure: Unbalanced block notes.\n");
320 return;
324 /* Determine type of unroll to perform. Depends on the number of iterations
325 and the size of the loop. */
327 /* If there is no strength reduce info, then set
328 loop_info->n_iterations to zero. This can happen if
329 strength_reduce can't find any bivs in the loop. A value of zero
330 indicates that the number of iterations could not be calculated. */
332 if (! strength_reduce_p)
333 loop_info->n_iterations = 0;
335 if (loop_dump_stream && loop_info->n_iterations > 0)
337 fputs ("Loop unrolling: ", loop_dump_stream);
338 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC,
339 loop_info->n_iterations);
340 fputs (" iterations.\n", loop_dump_stream);
343 /* Find and save a pointer to the last nonnote insn in the loop. */
345 last_loop_insn = prev_nonnote_insn (loop_end);
347 /* Calculate how many times to unroll the loop. Indicate whether or
348 not the loop is being completely unrolled. */
350 if (loop_info->n_iterations == 1)
352 /* Handle the case where the loop begins with an unconditional
353 jump to the loop condition. Make sure to delete the jump
354 insn, otherwise the loop body will never execute. */
356 rtx ujump = ujump_to_loop_cont (loop->start, loop->cont);
357 if (ujump)
358 delete_related_insns (ujump);
360 /* If number of iterations is exactly 1, then eliminate the compare and
361 branch at the end of the loop since they will never be taken.
362 Then return, since no other action is needed here. */
364 /* If the last instruction is not a BARRIER or a JUMP_INSN, then
365 don't do anything. */
367 if (GET_CODE (last_loop_insn) == BARRIER)
369 /* Delete the jump insn. This will delete the barrier also. */
370 delete_related_insns (PREV_INSN (last_loop_insn));
372 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
374 #ifdef HAVE_cc0
375 rtx prev = PREV_INSN (last_loop_insn);
376 #endif
377 delete_related_insns (last_loop_insn);
378 #ifdef HAVE_cc0
379 /* The immediately preceding insn may be a compare which must be
380 deleted. */
381 if (only_sets_cc0_p (prev))
382 delete_related_insns (prev);
383 #endif
386 /* Remove the loop notes since this is no longer a loop. */
387 if (loop->vtop)
388 delete_related_insns (loop->vtop);
389 if (loop->cont)
390 delete_related_insns (loop->cont);
391 if (loop_start)
392 delete_related_insns (loop_start);
393 if (loop_end)
394 delete_related_insns (loop_end);
396 return;
398 else if (loop_info->n_iterations > 0
399 /* Avoid overflow in the next expression. */
400 && loop_info->n_iterations < MAX_UNROLLED_INSNS
401 && loop_info->n_iterations * insn_count < MAX_UNROLLED_INSNS)
403 unroll_number = loop_info->n_iterations;
404 unroll_type = UNROLL_COMPLETELY;
406 else if (loop_info->n_iterations > 0)
408 /* Try to factor the number of iterations. Don't bother with the
409 general case, only using 2, 3, 5, and 7 will get 75% of all
410 numbers theoretically, and almost all in practice. */
412 for (i = 0; i < NUM_FACTORS; i++)
413 factors[i].count = 0;
415 temp = loop_info->n_iterations;
416 for (i = NUM_FACTORS - 1; i >= 0; i--)
417 while (temp % factors[i].factor == 0)
419 factors[i].count++;
420 temp = temp / factors[i].factor;
423 /* Start with the larger factors first so that we generally
424 get lots of unrolling. */
426 unroll_number = 1;
427 temp = insn_count;
428 for (i = 3; i >= 0; i--)
429 while (factors[i].count--)
431 if (temp * factors[i].factor < MAX_UNROLLED_INSNS)
433 unroll_number *= factors[i].factor;
434 temp *= factors[i].factor;
436 else
437 break;
440 /* If we couldn't find any factors, then unroll as in the normal
441 case. */
442 if (unroll_number == 1)
444 if (loop_dump_stream)
445 fprintf (loop_dump_stream, "Loop unrolling: No factors found.\n");
447 else
448 unroll_type = UNROLL_MODULO;
451 /* Default case, calculate number of times to unroll loop based on its
452 size. */
453 if (unroll_type == UNROLL_NAIVE)
455 if (8 * insn_count < MAX_UNROLLED_INSNS)
456 unroll_number = 8;
457 else if (4 * insn_count < MAX_UNROLLED_INSNS)
458 unroll_number = 4;
459 else
460 unroll_number = 2;
463 /* Now we know how many times to unroll the loop. */
465 if (loop_dump_stream)
466 fprintf (loop_dump_stream, "Unrolling loop %d times.\n", unroll_number);
468 if (unroll_type == UNROLL_COMPLETELY || unroll_type == UNROLL_MODULO)
470 /* Loops of these types can start with jump down to the exit condition
471 in rare circumstances.
473 Consider a pair of nested loops where the inner loop is part
474 of the exit code for the outer loop.
476 In this case jump.c will not duplicate the exit test for the outer
477 loop, so it will start with a jump to the exit code.
479 Then consider if the inner loop turns out to iterate once and
480 only once. We will end up deleting the jumps associated with
481 the inner loop. However, the loop notes are not removed from
482 the instruction stream.
484 And finally assume that we can compute the number of iterations
485 for the outer loop.
487 In this case unroll may want to unroll the outer loop even though
488 it starts with a jump to the outer loop's exit code.
490 We could try to optimize this case, but it hardly seems worth it.
491 Just return without unrolling the loop in such cases. */
493 insn = loop_start;
494 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
495 insn = NEXT_INSN (insn);
496 if (GET_CODE (insn) == JUMP_INSN)
497 return;
500 if (unroll_type == UNROLL_COMPLETELY)
502 /* Completely unrolling the loop: Delete the compare and branch at
503 the end (the last two instructions). This delete must done at the
504 very end of loop unrolling, to avoid problems with calls to
505 back_branch_in_range_p, which is called by find_splittable_regs.
506 All increments of splittable bivs/givs are changed to load constant
507 instructions. */
509 copy_start = loop_start;
511 /* Set insert_before to the instruction immediately after the JUMP_INSN
512 (or BARRIER), so that any NOTEs between the JUMP_INSN and the end of
513 the loop will be correctly handled by copy_loop_body. */
514 insert_before = NEXT_INSN (last_loop_insn);
516 /* Set copy_end to the insn before the jump at the end of the loop. */
517 if (GET_CODE (last_loop_insn) == BARRIER)
518 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
519 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
521 copy_end = PREV_INSN (last_loop_insn);
522 #ifdef HAVE_cc0
523 /* The instruction immediately before the JUMP_INSN may be a compare
524 instruction which we do not want to copy. */
525 if (sets_cc0_p (PREV_INSN (copy_end)))
526 copy_end = PREV_INSN (copy_end);
527 #endif
529 else
531 /* We currently can't unroll a loop if it doesn't end with a
532 JUMP_INSN. There would need to be a mechanism that recognizes
533 this case, and then inserts a jump after each loop body, which
534 jumps to after the last loop body. */
535 if (loop_dump_stream)
536 fprintf (loop_dump_stream,
537 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
538 return;
541 else if (unroll_type == UNROLL_MODULO)
543 /* Partially unrolling the loop: The compare and branch at the end
544 (the last two instructions) must remain. Don't copy the compare
545 and branch instructions at the end of the loop. Insert the unrolled
546 code immediately before the compare/branch at the end so that the
547 code will fall through to them as before. */
549 copy_start = loop_start;
551 /* Set insert_before to the jump insn at the end of the loop.
552 Set copy_end to before the jump insn at the end of the loop. */
553 if (GET_CODE (last_loop_insn) == BARRIER)
555 insert_before = PREV_INSN (last_loop_insn);
556 copy_end = PREV_INSN (insert_before);
558 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
560 insert_before = last_loop_insn;
561 #ifdef HAVE_cc0
562 /* The instruction immediately before the JUMP_INSN may be a compare
563 instruction which we do not want to copy or delete. */
564 if (sets_cc0_p (PREV_INSN (insert_before)))
565 insert_before = PREV_INSN (insert_before);
566 #endif
567 copy_end = PREV_INSN (insert_before);
569 else
571 /* We currently can't unroll a loop if it doesn't end with a
572 JUMP_INSN. There would need to be a mechanism that recognizes
573 this case, and then inserts a jump after each loop body, which
574 jumps to after the last loop body. */
575 if (loop_dump_stream)
576 fprintf (loop_dump_stream,
577 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
578 return;
581 else
583 /* Normal case: Must copy the compare and branch instructions at the
584 end of the loop. */
586 if (GET_CODE (last_loop_insn) == BARRIER)
588 /* Loop ends with an unconditional jump and a barrier.
589 Handle this like above, don't copy jump and barrier.
590 This is not strictly necessary, but doing so prevents generating
591 unconditional jumps to an immediately following label.
593 This will be corrected below if the target of this jump is
594 not the start_label. */
596 insert_before = PREV_INSN (last_loop_insn);
597 copy_end = PREV_INSN (insert_before);
599 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
601 /* Set insert_before to immediately after the JUMP_INSN, so that
602 NOTEs at the end of the loop will be correctly handled by
603 copy_loop_body. */
604 insert_before = NEXT_INSN (last_loop_insn);
605 copy_end = last_loop_insn;
607 else
609 /* We currently can't unroll a loop if it doesn't end with a
610 JUMP_INSN. There would need to be a mechanism that recognizes
611 this case, and then inserts a jump after each loop body, which
612 jumps to after the last loop body. */
613 if (loop_dump_stream)
614 fprintf (loop_dump_stream,
615 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
616 return;
619 /* If copying exit test branches because they can not be eliminated,
620 then must convert the fall through case of the branch to a jump past
621 the end of the loop. Create a label to emit after the loop and save
622 it for later use. Do not use the label after the loop, if any, since
623 it might be used by insns outside the loop, or there might be insns
624 added before it later by final_[bg]iv_value which must be after
625 the real exit label. */
626 exit_label = gen_label_rtx ();
628 insn = loop_start;
629 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
630 insn = NEXT_INSN (insn);
632 if (GET_CODE (insn) == JUMP_INSN)
634 /* The loop starts with a jump down to the exit condition test.
635 Start copying the loop after the barrier following this
636 jump insn. */
637 copy_start = NEXT_INSN (insn);
639 /* Splitting induction variables doesn't work when the loop is
640 entered via a jump to the bottom, because then we end up doing
641 a comparison against a new register for a split variable, but
642 we did not execute the set insn for the new register because
643 it was skipped over. */
644 splitting_not_safe = 1;
645 if (loop_dump_stream)
646 fprintf (loop_dump_stream,
647 "Splitting not safe, because loop not entered at top.\n");
649 else
650 copy_start = loop_start;
653 /* This should always be the first label in the loop. */
654 start_label = NEXT_INSN (copy_start);
655 /* There may be a line number note and/or a loop continue note here. */
656 while (GET_CODE (start_label) == NOTE)
657 start_label = NEXT_INSN (start_label);
658 if (GET_CODE (start_label) != CODE_LABEL)
660 /* This can happen as a result of jump threading. If the first insns in
661 the loop test the same condition as the loop's backward jump, or the
662 opposite condition, then the backward jump will be modified to point
663 to elsewhere, and the loop's start label is deleted.
665 This case currently can not be handled by the loop unrolling code. */
667 if (loop_dump_stream)
668 fprintf (loop_dump_stream,
669 "Unrolling failure: unknown insns between BEG note and loop label.\n");
670 return;
672 if (LABEL_NAME (start_label))
674 /* The jump optimization pass must have combined the original start label
675 with a named label for a goto. We can't unroll this case because
676 jumps which go to the named label must be handled differently than
677 jumps to the loop start, and it is impossible to differentiate them
678 in this case. */
679 if (loop_dump_stream)
680 fprintf (loop_dump_stream,
681 "Unrolling failure: loop start label is gone\n");
682 return;
685 if (unroll_type == UNROLL_NAIVE
686 && GET_CODE (last_loop_insn) == BARRIER
687 && GET_CODE (PREV_INSN (last_loop_insn)) == JUMP_INSN
688 && start_label != JUMP_LABEL (PREV_INSN (last_loop_insn)))
690 /* In this case, we must copy the jump and barrier, because they will
691 not be converted to jumps to an immediately following label. */
693 insert_before = NEXT_INSN (last_loop_insn);
694 copy_end = last_loop_insn;
697 if (unroll_type == UNROLL_NAIVE
698 && GET_CODE (last_loop_insn) == JUMP_INSN
699 && start_label != JUMP_LABEL (last_loop_insn))
701 /* ??? The loop ends with a conditional branch that does not branch back
702 to the loop start label. In this case, we must emit an unconditional
703 branch to the loop exit after emitting the final branch.
704 copy_loop_body does not have support for this currently, so we
705 give up. It doesn't seem worthwhile to unroll anyways since
706 unrolling would increase the number of branch instructions
707 executed. */
708 if (loop_dump_stream)
709 fprintf (loop_dump_stream,
710 "Unrolling failure: final conditional branch not to loop start\n");
711 return;
714 /* Allocate a translation table for the labels and insn numbers.
715 They will be filled in as we copy the insns in the loop. */
717 max_labelno = max_label_num ();
718 max_insnno = get_max_uid ();
720 /* Various paths through the unroll code may reach the "egress" label
721 without initializing fields within the map structure.
723 To be safe, we use xcalloc to zero the memory. */
724 map = (struct inline_remap *) xcalloc (1, sizeof (struct inline_remap));
726 /* Allocate the label map. */
728 if (max_labelno > 0)
730 map->label_map = (rtx *) xmalloc (max_labelno * sizeof (rtx));
732 local_label = (char *) xcalloc (max_labelno, sizeof (char));
735 /* Search the loop and mark all local labels, i.e. the ones which have to
736 be distinct labels when copied. For all labels which might be
737 non-local, set their label_map entries to point to themselves.
738 If they happen to be local their label_map entries will be overwritten
739 before the loop body is copied. The label_map entries for local labels
740 will be set to a different value each time the loop body is copied. */
742 for (insn = copy_start; insn != loop_end; insn = NEXT_INSN (insn))
744 rtx note;
746 if (GET_CODE (insn) == CODE_LABEL)
747 local_label[CODE_LABEL_NUMBER (insn)] = 1;
748 else if (GET_CODE (insn) == JUMP_INSN)
750 if (JUMP_LABEL (insn))
751 set_label_in_map (map,
752 CODE_LABEL_NUMBER (JUMP_LABEL (insn)),
753 JUMP_LABEL (insn));
754 else if (GET_CODE (PATTERN (insn)) == ADDR_VEC
755 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
757 rtx pat = PATTERN (insn);
758 int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
759 int len = XVECLEN (pat, diff_vec_p);
760 rtx label;
762 for (i = 0; i < len; i++)
764 label = XEXP (XVECEXP (pat, diff_vec_p, i), 0);
765 set_label_in_map (map, CODE_LABEL_NUMBER (label), label);
769 if ((note = find_reg_note (insn, REG_LABEL, NULL_RTX)))
770 set_label_in_map (map, CODE_LABEL_NUMBER (XEXP (note, 0)),
771 XEXP (note, 0));
774 /* Allocate space for the insn map. */
776 map->insn_map = (rtx *) xmalloc (max_insnno * sizeof (rtx));
778 /* Set this to zero, to indicate that we are doing loop unrolling,
779 not function inlining. */
780 map->inline_target = 0;
782 /* The register and constant maps depend on the number of registers
783 present, so the final maps can't be created until after
784 find_splittable_regs is called. However, they are needed for
785 preconditioning, so we create temporary maps when preconditioning
786 is performed. */
788 /* The preconditioning code may allocate two new pseudo registers. */
789 maxregnum = max_reg_num ();
791 /* local_regno is only valid for regnos < max_local_regnum. */
792 max_local_regnum = maxregnum;
794 /* Allocate and zero out the splittable_regs and addr_combined_regs
795 arrays. These must be zeroed here because they will be used if
796 loop preconditioning is performed, and must be zero for that case.
798 It is safe to do this here, since the extra registers created by the
799 preconditioning code and find_splittable_regs will never be used
800 to access the splittable_regs[] and addr_combined_regs[] arrays. */
802 splittable_regs = (rtx *) xcalloc (maxregnum, sizeof (rtx));
803 splittable_regs_updates = (int *) xcalloc (maxregnum, sizeof (int));
804 addr_combined_regs
805 = (struct induction **) xcalloc (maxregnum, sizeof (struct induction *));
806 local_regno = (char *) xcalloc (maxregnum, sizeof (char));
808 /* Mark all local registers, i.e. the ones which are referenced only
809 inside the loop. */
810 if (INSN_UID (copy_end) < max_uid_for_loop)
812 int copy_start_luid = INSN_LUID (copy_start);
813 int copy_end_luid = INSN_LUID (copy_end);
815 /* If a register is used in the jump insn, we must not duplicate it
816 since it will also be used outside the loop. */
817 if (GET_CODE (copy_end) == JUMP_INSN)
818 copy_end_luid--;
820 /* If we have a target that uses cc0, then we also must not duplicate
821 the insn that sets cc0 before the jump insn, if one is present. */
822 #ifdef HAVE_cc0
823 if (GET_CODE (copy_end) == JUMP_INSN
824 && sets_cc0_p (PREV_INSN (copy_end)))
825 copy_end_luid--;
826 #endif
828 /* If copy_start points to the NOTE that starts the loop, then we must
829 use the next luid, because invariant pseudo-regs moved out of the loop
830 have their lifetimes modified to start here, but they are not safe
831 to duplicate. */
832 if (copy_start == loop_start)
833 copy_start_luid++;
835 /* If a pseudo's lifetime is entirely contained within this loop, then we
836 can use a different pseudo in each unrolled copy of the loop. This
837 results in better code. */
838 /* We must limit the generic test to max_reg_before_loop, because only
839 these pseudo registers have valid regno_first_uid info. */
840 for (r = FIRST_PSEUDO_REGISTER; r < max_reg_before_loop; ++r)
841 if (REGNO_FIRST_UID (r) > 0 && REGNO_FIRST_UID (r) <= max_uid_for_loop
842 && REGNO_FIRST_LUID (r) >= copy_start_luid
843 && REGNO_LAST_UID (r) > 0 && REGNO_LAST_UID (r) <= max_uid_for_loop
844 && REGNO_LAST_LUID (r) <= copy_end_luid)
846 /* However, we must also check for loop-carried dependencies.
847 If the value the pseudo has at the end of iteration X is
848 used by iteration X+1, then we can not use a different pseudo
849 for each unrolled copy of the loop. */
850 /* A pseudo is safe if regno_first_uid is a set, and this
851 set dominates all instructions from regno_first_uid to
852 regno_last_uid. */
853 /* ??? This check is simplistic. We would get better code if
854 this check was more sophisticated. */
855 if (set_dominates_use (r, REGNO_FIRST_UID (r), REGNO_LAST_UID (r),
856 copy_start, copy_end))
857 local_regno[r] = 1;
859 if (loop_dump_stream)
861 if (local_regno[r])
862 fprintf (loop_dump_stream, "Marked reg %d as local\n", r);
863 else
864 fprintf (loop_dump_stream, "Did not mark reg %d as local\n",
870 /* If this loop requires exit tests when unrolled, check to see if we
871 can precondition the loop so as to make the exit tests unnecessary.
872 Just like variable splitting, this is not safe if the loop is entered
873 via a jump to the bottom. Also, can not do this if no strength
874 reduce info, because precondition_loop_p uses this info. */
876 /* Must copy the loop body for preconditioning before the following
877 find_splittable_regs call since that will emit insns which need to
878 be after the preconditioned loop copies, but immediately before the
879 unrolled loop copies. */
881 /* Also, it is not safe to split induction variables for the preconditioned
882 copies of the loop body. If we split induction variables, then the code
883 assumes that each induction variable can be represented as a function
884 of its initial value and the loop iteration number. This is not true
885 in this case, because the last preconditioned copy of the loop body
886 could be any iteration from the first up to the `unroll_number-1'th,
887 depending on the initial value of the iteration variable. Therefore
888 we can not split induction variables here, because we can not calculate
889 their value. Hence, this code must occur before find_splittable_regs
890 is called. */
892 if (unroll_type == UNROLL_NAIVE && ! splitting_not_safe && strength_reduce_p)
894 rtx initial_value, final_value, increment;
895 enum machine_mode mode;
897 if (precondition_loop_p (loop,
898 &initial_value, &final_value, &increment,
899 &mode))
901 rtx diff;
902 rtx *labels;
903 int abs_inc, neg_inc;
904 enum rtx_code cc = loop_info->comparison_code;
905 int less_p = (cc == LE || cc == LEU || cc == LT || cc == LTU);
906 int unsigned_p = (cc == LEU || cc == GEU || cc == LTU || cc == GTU);
908 map->reg_map = (rtx *) xmalloc (maxregnum * sizeof (rtx));
910 VARRAY_CONST_EQUIV_INIT (map->const_equiv_varray, maxregnum,
911 "unroll_loop_precondition");
912 global_const_equiv_varray = map->const_equiv_varray;
914 init_reg_map (map, maxregnum);
916 /* Limit loop unrolling to 4, since this will make 7 copies of
917 the loop body. */
918 if (unroll_number > 4)
919 unroll_number = 4;
921 /* Save the absolute value of the increment, and also whether or
922 not it is negative. */
923 neg_inc = 0;
924 abs_inc = INTVAL (increment);
925 if (abs_inc < 0)
927 abs_inc = -abs_inc;
928 neg_inc = 1;
931 start_sequence ();
933 /* Calculate the difference between the final and initial values.
934 Final value may be a (plus (reg x) (const_int 1)) rtx.
935 Let the following cse pass simplify this if initial value is
936 a constant.
938 We must copy the final and initial values here to avoid
939 improperly shared rtl.
941 We have to deal with for (i = 0; --i < 6;) type loops.
942 For such loops the real final value is the first time the
943 loop variable overflows, so the diff we calculate is the
944 distance from the overflow value. This is 0 or ~0 for
945 unsigned loops depending on the direction, or INT_MAX,
946 INT_MAX+1 for signed loops. We really do not need the
947 exact value, since we are only interested in the diff
948 modulo the increment, and the increment is a power of 2,
949 so we can pretend that the overflow value is 0/~0. */
951 if (cc == NE || less_p != neg_inc)
952 diff = expand_simple_binop (mode, MINUS, copy_rtx (final_value),
953 copy_rtx (initial_value), NULL_RTX, 0,
954 OPTAB_LIB_WIDEN);
955 else
956 diff = expand_simple_unop (mode, neg_inc ? NOT : NEG,
957 copy_rtx (initial_value), NULL_RTX, 0);
959 /* Now calculate (diff % (unroll * abs (increment))) by using an
960 and instruction. */
961 diff = expand_simple_binop (GET_MODE (diff), AND, diff,
962 GEN_INT (unroll_number * abs_inc - 1),
963 NULL_RTX, 0, OPTAB_LIB_WIDEN);
965 /* Now emit a sequence of branches to jump to the proper precond
966 loop entry point. */
968 labels = (rtx *) xmalloc (sizeof (rtx) * unroll_number);
969 for (i = 0; i < unroll_number; i++)
970 labels[i] = gen_label_rtx ();
972 /* Check for the case where the initial value is greater than or
973 equal to the final value. In that case, we want to execute
974 exactly one loop iteration. The code below will fail for this
975 case. This check does not apply if the loop has a NE
976 comparison at the end. */
978 if (cc != NE)
980 rtx incremented_initval;
981 incremented_initval = expand_simple_binop (mode, PLUS,
982 initial_value,
983 increment,
984 NULL_RTX, 0,
985 OPTAB_LIB_WIDEN);
986 emit_cmp_and_jump_insns (incremented_initval, final_value,
987 less_p ? GE : LE, NULL_RTX,
988 mode, unsigned_p, labels[1]);
989 predict_insn_def (get_last_insn (), PRED_LOOP_CONDITION,
990 NOT_TAKEN);
991 JUMP_LABEL (get_last_insn ()) = labels[1];
992 LABEL_NUSES (labels[1])++;
995 /* Assuming the unroll_number is 4, and the increment is 2, then
996 for a negative increment: for a positive increment:
997 diff = 0,1 precond 0 diff = 0,7 precond 0
998 diff = 2,3 precond 3 diff = 1,2 precond 1
999 diff = 4,5 precond 2 diff = 3,4 precond 2
1000 diff = 6,7 precond 1 diff = 5,6 precond 3 */
1002 /* We only need to emit (unroll_number - 1) branches here, the
1003 last case just falls through to the following code. */
1005 /* ??? This would give better code if we emitted a tree of branches
1006 instead of the current linear list of branches. */
1008 for (i = 0; i < unroll_number - 1; i++)
1010 int cmp_const;
1011 enum rtx_code cmp_code;
1013 /* For negative increments, must invert the constant compared
1014 against, except when comparing against zero. */
1015 if (i == 0)
1017 cmp_const = 0;
1018 cmp_code = EQ;
1020 else if (neg_inc)
1022 cmp_const = unroll_number - i;
1023 cmp_code = GE;
1025 else
1027 cmp_const = i;
1028 cmp_code = LE;
1031 emit_cmp_and_jump_insns (diff, GEN_INT (abs_inc * cmp_const),
1032 cmp_code, NULL_RTX, mode, 0, labels[i]);
1033 JUMP_LABEL (get_last_insn ()) = labels[i];
1034 LABEL_NUSES (labels[i])++;
1035 predict_insn (get_last_insn (), PRED_LOOP_PRECONDITIONING,
1036 REG_BR_PROB_BASE / (unroll_number - i));
1039 /* If the increment is greater than one, then we need another branch,
1040 to handle other cases equivalent to 0. */
1042 /* ??? This should be merged into the code above somehow to help
1043 simplify the code here, and reduce the number of branches emitted.
1044 For the negative increment case, the branch here could easily
1045 be merged with the `0' case branch above. For the positive
1046 increment case, it is not clear how this can be simplified. */
1048 if (abs_inc != 1)
1050 int cmp_const;
1051 enum rtx_code cmp_code;
1053 if (neg_inc)
1055 cmp_const = abs_inc - 1;
1056 cmp_code = LE;
1058 else
1060 cmp_const = abs_inc * (unroll_number - 1) + 1;
1061 cmp_code = GE;
1064 emit_cmp_and_jump_insns (diff, GEN_INT (cmp_const), cmp_code,
1065 NULL_RTX, mode, 0, labels[0]);
1066 JUMP_LABEL (get_last_insn ()) = labels[0];
1067 LABEL_NUSES (labels[0])++;
1070 sequence = gen_sequence ();
1071 end_sequence ();
1072 loop_insn_hoist (loop, sequence);
1074 /* Only the last copy of the loop body here needs the exit
1075 test, so set copy_end to exclude the compare/branch here,
1076 and then reset it inside the loop when get to the last
1077 copy. */
1079 if (GET_CODE (last_loop_insn) == BARRIER)
1080 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1081 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
1083 copy_end = PREV_INSN (last_loop_insn);
1084 #ifdef HAVE_cc0
1085 /* The immediately preceding insn may be a compare which
1086 we do not want to copy. */
1087 if (sets_cc0_p (PREV_INSN (copy_end)))
1088 copy_end = PREV_INSN (copy_end);
1089 #endif
1091 else
1092 abort ();
1094 for (i = 1; i < unroll_number; i++)
1096 emit_label_after (labels[unroll_number - i],
1097 PREV_INSN (loop_start));
1099 memset ((char *) map->insn_map, 0, max_insnno * sizeof (rtx));
1100 memset ((char *) &VARRAY_CONST_EQUIV (map->const_equiv_varray, 0),
1101 0, (VARRAY_SIZE (map->const_equiv_varray)
1102 * sizeof (struct const_equiv_data)));
1103 map->const_age = 0;
1105 for (j = 0; j < max_labelno; j++)
1106 if (local_label[j])
1107 set_label_in_map (map, j, gen_label_rtx ());
1109 for (r = FIRST_PSEUDO_REGISTER; r < max_local_regnum; r++)
1110 if (local_regno[r])
1112 map->reg_map[r]
1113 = gen_reg_rtx (GET_MODE (regno_reg_rtx[r]));
1114 record_base_value (REGNO (map->reg_map[r]),
1115 regno_reg_rtx[r], 0);
1117 /* The last copy needs the compare/branch insns at the end,
1118 so reset copy_end here if the loop ends with a conditional
1119 branch. */
1121 if (i == unroll_number - 1)
1123 if (GET_CODE (last_loop_insn) == BARRIER)
1124 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1125 else
1126 copy_end = last_loop_insn;
1129 /* None of the copies are the `last_iteration', so just
1130 pass zero for that parameter. */
1131 copy_loop_body (loop, copy_start, copy_end, map, exit_label, 0,
1132 unroll_type, start_label, loop_end,
1133 loop_start, copy_end);
1135 emit_label_after (labels[0], PREV_INSN (loop_start));
1137 if (GET_CODE (last_loop_insn) == BARRIER)
1139 insert_before = PREV_INSN (last_loop_insn);
1140 copy_end = PREV_INSN (insert_before);
1142 else
1144 insert_before = last_loop_insn;
1145 #ifdef HAVE_cc0
1146 /* The instruction immediately before the JUMP_INSN may
1147 be a compare instruction which we do not want to copy
1148 or delete. */
1149 if (sets_cc0_p (PREV_INSN (insert_before)))
1150 insert_before = PREV_INSN (insert_before);
1151 #endif
1152 copy_end = PREV_INSN (insert_before);
1155 /* Set unroll type to MODULO now. */
1156 unroll_type = UNROLL_MODULO;
1157 loop_preconditioned = 1;
1159 /* Clean up. */
1160 free (labels);
1164 /* If reach here, and the loop type is UNROLL_NAIVE, then don't unroll
1165 the loop unless all loops are being unrolled. */
1166 if (unroll_type == UNROLL_NAIVE && ! flag_unroll_all_loops)
1168 if (loop_dump_stream)
1169 fprintf (loop_dump_stream,
1170 "Unrolling failure: Naive unrolling not being done.\n");
1171 goto egress;
1174 /* At this point, we are guaranteed to unroll the loop. */
1176 /* Keep track of the unroll factor for the loop. */
1177 loop_info->unroll_number = unroll_number;
1179 /* For each biv and giv, determine whether it can be safely split into
1180 a different variable for each unrolled copy of the loop body.
1181 We precalculate and save this info here, since computing it is
1182 expensive.
1184 Do this before deleting any instructions from the loop, so that
1185 back_branch_in_range_p will work correctly. */
1187 if (splitting_not_safe)
1188 temp = 0;
1189 else
1190 temp = find_splittable_regs (loop, unroll_type, unroll_number);
1192 /* find_splittable_regs may have created some new registers, so must
1193 reallocate the reg_map with the new larger size, and must realloc
1194 the constant maps also. */
1196 maxregnum = max_reg_num ();
1197 map->reg_map = (rtx *) xmalloc (maxregnum * sizeof (rtx));
1199 init_reg_map (map, maxregnum);
1201 if (map->const_equiv_varray == 0)
1202 VARRAY_CONST_EQUIV_INIT (map->const_equiv_varray,
1203 maxregnum + temp * unroll_number * 2,
1204 "unroll_loop");
1205 global_const_equiv_varray = map->const_equiv_varray;
1207 /* Search the list of bivs and givs to find ones which need to be remapped
1208 when split, and set their reg_map entry appropriately. */
1210 for (bl = ivs->list; bl; bl = bl->next)
1212 if (REGNO (bl->biv->src_reg) != bl->regno)
1213 map->reg_map[bl->regno] = bl->biv->src_reg;
1214 #if 0
1215 /* Currently, non-reduced/final-value givs are never split. */
1216 for (v = bl->giv; v; v = v->next_iv)
1217 if (REGNO (v->src_reg) != bl->regno)
1218 map->reg_map[REGNO (v->dest_reg)] = v->src_reg;
1219 #endif
1222 /* Use our current register alignment and pointer flags. */
1223 map->regno_pointer_align = cfun->emit->regno_pointer_align;
1224 map->x_regno_reg_rtx = cfun->emit->x_regno_reg_rtx;
1226 /* If the loop is being partially unrolled, and the iteration variables
1227 are being split, and are being renamed for the split, then must fix up
1228 the compare/jump instruction at the end of the loop to refer to the new
1229 registers. This compare isn't copied, so the registers used in it
1230 will never be replaced if it isn't done here. */
1232 if (unroll_type == UNROLL_MODULO)
1234 insn = NEXT_INSN (copy_end);
1235 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
1236 PATTERN (insn) = remap_split_bivs (loop, PATTERN (insn));
1239 /* For unroll_number times, make a copy of each instruction
1240 between copy_start and copy_end, and insert these new instructions
1241 before the end of the loop. */
1243 for (i = 0; i < unroll_number; i++)
1245 memset ((char *) map->insn_map, 0, max_insnno * sizeof (rtx));
1246 memset ((char *) &VARRAY_CONST_EQUIV (map->const_equiv_varray, 0), 0,
1247 VARRAY_SIZE (map->const_equiv_varray) * sizeof (struct const_equiv_data));
1248 map->const_age = 0;
1250 for (j = 0; j < max_labelno; j++)
1251 if (local_label[j])
1252 set_label_in_map (map, j, gen_label_rtx ());
1254 for (r = FIRST_PSEUDO_REGISTER; r < max_local_regnum; r++)
1255 if (local_regno[r])
1257 map->reg_map[r] = gen_reg_rtx (GET_MODE (regno_reg_rtx[r]));
1258 record_base_value (REGNO (map->reg_map[r]),
1259 regno_reg_rtx[r], 0);
1262 /* If loop starts with a branch to the test, then fix it so that
1263 it points to the test of the first unrolled copy of the loop. */
1264 if (i == 0 && loop_start != copy_start)
1266 insn = PREV_INSN (copy_start);
1267 pattern = PATTERN (insn);
1269 tem = get_label_from_map (map,
1270 CODE_LABEL_NUMBER
1271 (XEXP (SET_SRC (pattern), 0)));
1272 SET_SRC (pattern) = gen_rtx_LABEL_REF (VOIDmode, tem);
1274 /* Set the jump label so that it can be used by later loop unrolling
1275 passes. */
1276 JUMP_LABEL (insn) = tem;
1277 LABEL_NUSES (tem)++;
1280 copy_loop_body (loop, copy_start, copy_end, map, exit_label,
1281 i == unroll_number - 1, unroll_type, start_label,
1282 loop_end, insert_before, insert_before);
1285 /* Before deleting any insns, emit a CODE_LABEL immediately after the last
1286 insn to be deleted. This prevents any runaway delete_insn call from
1287 more insns that it should, as it always stops at a CODE_LABEL. */
1289 /* Delete the compare and branch at the end of the loop if completely
1290 unrolling the loop. Deleting the backward branch at the end also
1291 deletes the code label at the start of the loop. This is done at
1292 the very end to avoid problems with back_branch_in_range_p. */
1294 if (unroll_type == UNROLL_COMPLETELY)
1295 safety_label = emit_label_after (gen_label_rtx (), last_loop_insn);
1296 else
1297 safety_label = emit_label_after (gen_label_rtx (), copy_end);
1299 /* Delete all of the original loop instructions. Don't delete the
1300 LOOP_BEG note, or the first code label in the loop. */
1302 insn = NEXT_INSN (copy_start);
1303 while (insn != safety_label)
1305 /* ??? Don't delete named code labels. They will be deleted when the
1306 jump that references them is deleted. Otherwise, we end up deleting
1307 them twice, which causes them to completely disappear instead of turn
1308 into NOTE_INSN_DELETED_LABEL notes. This in turn causes aborts in
1309 dwarfout.c/dwarf2out.c. We could perhaps fix the dwarf*out.c files
1310 to handle deleted labels instead. Or perhaps fix DECL_RTL of the
1311 associated LABEL_DECL to point to one of the new label instances. */
1312 /* ??? Likewise, we can't delete a NOTE_INSN_DELETED_LABEL note. */
1313 if (insn != start_label
1314 && ! (GET_CODE (insn) == CODE_LABEL && LABEL_NAME (insn))
1315 && ! (GET_CODE (insn) == NOTE
1316 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL))
1317 insn = delete_related_insns (insn);
1318 else
1319 insn = NEXT_INSN (insn);
1322 /* Can now delete the 'safety' label emitted to protect us from runaway
1323 delete_related_insns calls. */
1324 if (INSN_DELETED_P (safety_label))
1325 abort ();
1326 delete_related_insns (safety_label);
1328 /* If exit_label exists, emit it after the loop. Doing the emit here
1329 forces it to have a higher INSN_UID than any insn in the unrolled loop.
1330 This is needed so that mostly_true_jump in reorg.c will treat jumps
1331 to this loop end label correctly, i.e. predict that they are usually
1332 not taken. */
1333 if (exit_label)
1334 emit_label_after (exit_label, loop_end);
1336 egress:
1337 if (unroll_type == UNROLL_COMPLETELY)
1339 /* Remove the loop notes since this is no longer a loop. */
1340 if (loop->vtop)
1341 delete_related_insns (loop->vtop);
1342 if (loop->cont)
1343 delete_related_insns (loop->cont);
1344 if (loop_start)
1345 delete_related_insns (loop_start);
1346 if (loop_end)
1347 delete_related_insns (loop_end);
1350 if (map->const_equiv_varray)
1351 VARRAY_FREE (map->const_equiv_varray);
1352 if (map->label_map)
1354 free (map->label_map);
1355 free (local_label);
1357 free (map->insn_map);
1358 free (splittable_regs);
1359 free (splittable_regs_updates);
1360 free (addr_combined_regs);
1361 free (local_regno);
1362 if (map->reg_map)
1363 free (map->reg_map);
1364 free (map);
1367 /* Return true if the loop can be safely, and profitably, preconditioned
1368 so that the unrolled copies of the loop body don't need exit tests.
1370 This only works if final_value, initial_value and increment can be
1371 determined, and if increment is a constant power of 2.
1372 If increment is not a power of 2, then the preconditioning modulo
1373 operation would require a real modulo instead of a boolean AND, and this
1374 is not considered `profitable'. */
1376 /* ??? If the loop is known to be executed very many times, or the machine
1377 has a very cheap divide instruction, then preconditioning is a win even
1378 when the increment is not a power of 2. Use RTX_COST to compute
1379 whether divide is cheap.
1380 ??? A divide by constant doesn't actually need a divide, look at
1381 expand_divmod. The reduced cost of this optimized modulo is not
1382 reflected in RTX_COST. */
1385 precondition_loop_p (loop, initial_value, final_value, increment, mode)
1386 const struct loop *loop;
1387 rtx *initial_value, *final_value, *increment;
1388 enum machine_mode *mode;
1390 rtx loop_start = loop->start;
1391 struct loop_info *loop_info = LOOP_INFO (loop);
1393 if (loop_info->n_iterations > 0)
1395 if (INTVAL (loop_info->increment) > 0)
1397 *initial_value = const0_rtx;
1398 *increment = const1_rtx;
1399 *final_value = GEN_INT (loop_info->n_iterations);
1401 else
1403 *initial_value = GEN_INT (loop_info->n_iterations);
1404 *increment = constm1_rtx;
1405 *final_value = const0_rtx;
1407 *mode = word_mode;
1409 if (loop_dump_stream)
1411 fputs ("Preconditioning: Success, number of iterations known, ",
1412 loop_dump_stream);
1413 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC,
1414 loop_info->n_iterations);
1415 fputs (".\n", loop_dump_stream);
1417 return 1;
1420 if (loop_info->iteration_var == 0)
1422 if (loop_dump_stream)
1423 fprintf (loop_dump_stream,
1424 "Preconditioning: Could not find iteration variable.\n");
1425 return 0;
1427 else if (loop_info->initial_value == 0)
1429 if (loop_dump_stream)
1430 fprintf (loop_dump_stream,
1431 "Preconditioning: Could not find initial value.\n");
1432 return 0;
1434 else if (loop_info->increment == 0)
1436 if (loop_dump_stream)
1437 fprintf (loop_dump_stream,
1438 "Preconditioning: Could not find increment value.\n");
1439 return 0;
1441 else if (GET_CODE (loop_info->increment) != CONST_INT)
1443 if (loop_dump_stream)
1444 fprintf (loop_dump_stream,
1445 "Preconditioning: Increment not a constant.\n");
1446 return 0;
1448 else if ((exact_log2 (INTVAL (loop_info->increment)) < 0)
1449 && (exact_log2 (-INTVAL (loop_info->increment)) < 0))
1451 if (loop_dump_stream)
1452 fprintf (loop_dump_stream,
1453 "Preconditioning: Increment not a constant power of 2.\n");
1454 return 0;
1457 /* Unsigned_compare and compare_dir can be ignored here, since they do
1458 not matter for preconditioning. */
1460 if (loop_info->final_value == 0)
1462 if (loop_dump_stream)
1463 fprintf (loop_dump_stream,
1464 "Preconditioning: EQ comparison loop.\n");
1465 return 0;
1468 /* Must ensure that final_value is invariant, so call
1469 loop_invariant_p to check. Before doing so, must check regno
1470 against max_reg_before_loop to make sure that the register is in
1471 the range covered by loop_invariant_p. If it isn't, then it is
1472 most likely a biv/giv which by definition are not invariant. */
1473 if ((GET_CODE (loop_info->final_value) == REG
1474 && REGNO (loop_info->final_value) >= max_reg_before_loop)
1475 || (GET_CODE (loop_info->final_value) == PLUS
1476 && REGNO (XEXP (loop_info->final_value, 0)) >= max_reg_before_loop)
1477 || ! loop_invariant_p (loop, loop_info->final_value))
1479 if (loop_dump_stream)
1480 fprintf (loop_dump_stream,
1481 "Preconditioning: Final value not invariant.\n");
1482 return 0;
1485 /* Fail for floating point values, since the caller of this function
1486 does not have code to deal with them. */
1487 if (GET_MODE_CLASS (GET_MODE (loop_info->final_value)) == MODE_FLOAT
1488 || GET_MODE_CLASS (GET_MODE (loop_info->initial_value)) == MODE_FLOAT)
1490 if (loop_dump_stream)
1491 fprintf (loop_dump_stream,
1492 "Preconditioning: Floating point final or initial value.\n");
1493 return 0;
1496 /* Fail if loop_info->iteration_var is not live before loop_start,
1497 since we need to test its value in the preconditioning code. */
1499 if (REGNO_FIRST_LUID (REGNO (loop_info->iteration_var))
1500 > INSN_LUID (loop_start))
1502 if (loop_dump_stream)
1503 fprintf (loop_dump_stream,
1504 "Preconditioning: Iteration var not live before loop start.\n");
1505 return 0;
1508 /* Note that loop_iterations biases the initial value for GIV iterators
1509 such as "while (i-- > 0)" so that we can calculate the number of
1510 iterations just like for BIV iterators.
1512 Also note that the absolute values of initial_value and
1513 final_value are unimportant as only their difference is used for
1514 calculating the number of loop iterations. */
1515 *initial_value = loop_info->initial_value;
1516 *increment = loop_info->increment;
1517 *final_value = loop_info->final_value;
1519 /* Decide what mode to do these calculations in. Choose the larger
1520 of final_value's mode and initial_value's mode, or a full-word if
1521 both are constants. */
1522 *mode = GET_MODE (*final_value);
1523 if (*mode == VOIDmode)
1525 *mode = GET_MODE (*initial_value);
1526 if (*mode == VOIDmode)
1527 *mode = word_mode;
1529 else if (*mode != GET_MODE (*initial_value)
1530 && (GET_MODE_SIZE (*mode)
1531 < GET_MODE_SIZE (GET_MODE (*initial_value))))
1532 *mode = GET_MODE (*initial_value);
1534 /* Success! */
1535 if (loop_dump_stream)
1536 fprintf (loop_dump_stream, "Preconditioning: Successful.\n");
1537 return 1;
1540 /* All pseudo-registers must be mapped to themselves. Two hard registers
1541 must be mapped, VIRTUAL_STACK_VARS_REGNUM and VIRTUAL_INCOMING_ARGS_
1542 REGNUM, to avoid function-inlining specific conversions of these
1543 registers. All other hard regs can not be mapped because they may be
1544 used with different
1545 modes. */
1547 static void
1548 init_reg_map (map, maxregnum)
1549 struct inline_remap *map;
1550 int maxregnum;
1552 int i;
1554 for (i = maxregnum - 1; i > LAST_VIRTUAL_REGISTER; i--)
1555 map->reg_map[i] = regno_reg_rtx[i];
1556 /* Just clear the rest of the entries. */
1557 for (i = LAST_VIRTUAL_REGISTER; i >= 0; i--)
1558 map->reg_map[i] = 0;
1560 map->reg_map[VIRTUAL_STACK_VARS_REGNUM]
1561 = regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM];
1562 map->reg_map[VIRTUAL_INCOMING_ARGS_REGNUM]
1563 = regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM];
1566 /* Strength-reduction will often emit code for optimized biv/givs which
1567 calculates their value in a temporary register, and then copies the result
1568 to the iv. This procedure reconstructs the pattern computing the iv;
1569 verifying that all operands are of the proper form.
1571 PATTERN must be the result of single_set.
1572 The return value is the amount that the giv is incremented by. */
1574 static rtx
1575 calculate_giv_inc (pattern, src_insn, regno)
1576 rtx pattern, src_insn;
1577 unsigned int regno;
1579 rtx increment;
1580 rtx increment_total = 0;
1581 int tries = 0;
1583 retry:
1584 /* Verify that we have an increment insn here. First check for a plus
1585 as the set source. */
1586 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1588 /* SR sometimes computes the new giv value in a temp, then copies it
1589 to the new_reg. */
1590 src_insn = PREV_INSN (src_insn);
1591 pattern = single_set (src_insn);
1592 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1593 abort ();
1595 /* The last insn emitted is not needed, so delete it to avoid confusing
1596 the second cse pass. This insn sets the giv unnecessarily. */
1597 delete_related_insns (get_last_insn ());
1600 /* Verify that we have a constant as the second operand of the plus. */
1601 increment = XEXP (SET_SRC (pattern), 1);
1602 if (GET_CODE (increment) != CONST_INT)
1604 /* SR sometimes puts the constant in a register, especially if it is
1605 too big to be an add immed operand. */
1606 increment = find_last_value (increment, &src_insn, NULL_RTX, 0);
1608 /* SR may have used LO_SUM to compute the constant if it is too large
1609 for a load immed operand. In this case, the constant is in operand
1610 one of the LO_SUM rtx. */
1611 if (GET_CODE (increment) == LO_SUM)
1612 increment = XEXP (increment, 1);
1614 /* Some ports store large constants in memory and add a REG_EQUAL
1615 note to the store insn. */
1616 else if (GET_CODE (increment) == MEM)
1618 rtx note = find_reg_note (src_insn, REG_EQUAL, 0);
1619 if (note)
1620 increment = XEXP (note, 0);
1623 else if (GET_CODE (increment) == IOR
1624 || GET_CODE (increment) == ASHIFT
1625 || GET_CODE (increment) == PLUS)
1627 /* The rs6000 port loads some constants with IOR.
1628 The alpha port loads some constants with ASHIFT and PLUS. */
1629 rtx second_part = XEXP (increment, 1);
1630 enum rtx_code code = GET_CODE (increment);
1632 increment = find_last_value (XEXP (increment, 0),
1633 &src_insn, NULL_RTX, 0);
1634 /* Don't need the last insn anymore. */
1635 delete_related_insns (get_last_insn ());
1637 if (GET_CODE (second_part) != CONST_INT
1638 || GET_CODE (increment) != CONST_INT)
1639 abort ();
1641 if (code == IOR)
1642 increment = GEN_INT (INTVAL (increment) | INTVAL (second_part));
1643 else if (code == PLUS)
1644 increment = GEN_INT (INTVAL (increment) + INTVAL (second_part));
1645 else
1646 increment = GEN_INT (INTVAL (increment) << INTVAL (second_part));
1649 if (GET_CODE (increment) != CONST_INT)
1650 abort ();
1652 /* The insn loading the constant into a register is no longer needed,
1653 so delete it. */
1654 delete_related_insns (get_last_insn ());
1657 if (increment_total)
1658 increment_total = GEN_INT (INTVAL (increment_total) + INTVAL (increment));
1659 else
1660 increment_total = increment;
1662 /* Check that the source register is the same as the register we expected
1663 to see as the source. If not, something is seriously wrong. */
1664 if (GET_CODE (XEXP (SET_SRC (pattern), 0)) != REG
1665 || REGNO (XEXP (SET_SRC (pattern), 0)) != regno)
1667 /* Some machines (e.g. the romp), may emit two add instructions for
1668 certain constants, so lets try looking for another add immediately
1669 before this one if we have only seen one add insn so far. */
1671 if (tries == 0)
1673 tries++;
1675 src_insn = PREV_INSN (src_insn);
1676 pattern = single_set (src_insn);
1678 delete_related_insns (get_last_insn ());
1680 goto retry;
1683 abort ();
1686 return increment_total;
1689 /* Copy REG_NOTES, except for insn references, because not all insn_map
1690 entries are valid yet. We do need to copy registers now though, because
1691 the reg_map entries can change during copying. */
1693 static rtx
1694 initial_reg_note_copy (notes, map)
1695 rtx notes;
1696 struct inline_remap *map;
1698 rtx copy;
1700 if (notes == 0)
1701 return 0;
1703 copy = rtx_alloc (GET_CODE (notes));
1704 PUT_REG_NOTE_KIND (copy, REG_NOTE_KIND (notes));
1706 if (GET_CODE (notes) == EXPR_LIST)
1707 XEXP (copy, 0) = copy_rtx_and_substitute (XEXP (notes, 0), map, 0);
1708 else if (GET_CODE (notes) == INSN_LIST)
1709 /* Don't substitute for these yet. */
1710 XEXP (copy, 0) = copy_rtx (XEXP (notes, 0));
1711 else
1712 abort ();
1714 XEXP (copy, 1) = initial_reg_note_copy (XEXP (notes, 1), map);
1716 return copy;
1719 /* Fixup insn references in copied REG_NOTES. */
1721 static void
1722 final_reg_note_copy (notesp, map)
1723 rtx *notesp;
1724 struct inline_remap *map;
1726 while (*notesp)
1728 rtx note = *notesp;
1730 if (GET_CODE (note) == INSN_LIST)
1732 /* Sometimes, we have a REG_WAS_0 note that points to a
1733 deleted instruction. In that case, we can just delete the
1734 note. */
1735 if (REG_NOTE_KIND (note) == REG_WAS_0)
1737 *notesp = XEXP (note, 1);
1738 continue;
1740 else
1742 rtx insn = map->insn_map[INSN_UID (XEXP (note, 0))];
1744 /* If we failed to remap the note, something is awry. */
1745 if (!insn)
1746 abort ();
1748 XEXP (note, 0) = insn;
1752 notesp = &XEXP (note, 1);
1756 /* Copy each instruction in the loop, substituting from map as appropriate.
1757 This is very similar to a loop in expand_inline_function. */
1759 static void
1760 copy_loop_body (loop, copy_start, copy_end, map, exit_label, last_iteration,
1761 unroll_type, start_label, loop_end, insert_before,
1762 copy_notes_from)
1763 struct loop *loop;
1764 rtx copy_start, copy_end;
1765 struct inline_remap *map;
1766 rtx exit_label;
1767 int last_iteration;
1768 enum unroll_types unroll_type;
1769 rtx start_label, loop_end, insert_before, copy_notes_from;
1771 struct loop_ivs *ivs = LOOP_IVS (loop);
1772 rtx insn, pattern;
1773 rtx set, tem, copy = NULL_RTX;
1774 int dest_reg_was_split, i;
1775 #ifdef HAVE_cc0
1776 rtx cc0_insn = 0;
1777 #endif
1778 rtx final_label = 0;
1779 rtx giv_inc, giv_dest_reg, giv_src_reg;
1781 /* If this isn't the last iteration, then map any references to the
1782 start_label to final_label. Final label will then be emitted immediately
1783 after the end of this loop body if it was ever used.
1785 If this is the last iteration, then map references to the start_label
1786 to itself. */
1787 if (! last_iteration)
1789 final_label = gen_label_rtx ();
1790 set_label_in_map (map, CODE_LABEL_NUMBER (start_label), final_label);
1792 else
1793 set_label_in_map (map, CODE_LABEL_NUMBER (start_label), start_label);
1795 start_sequence ();
1797 /* Emit a NOTE_INSN_DELETED to force at least two insns onto the sequence.
1798 Else gen_sequence could return a raw pattern for a jump which we pass
1799 off to emit_insn_before (instead of emit_jump_insn_before) which causes
1800 a variety of losing behaviors later. */
1801 emit_note (0, NOTE_INSN_DELETED);
1803 insn = copy_start;
1806 insn = NEXT_INSN (insn);
1808 map->orig_asm_operands_vector = 0;
1810 switch (GET_CODE (insn))
1812 case INSN:
1813 pattern = PATTERN (insn);
1814 copy = 0;
1815 giv_inc = 0;
1817 /* Check to see if this is a giv that has been combined with
1818 some split address givs. (Combined in the sense that
1819 `combine_givs' in loop.c has put two givs in the same register.)
1820 In this case, we must search all givs based on the same biv to
1821 find the address givs. Then split the address givs.
1822 Do this before splitting the giv, since that may map the
1823 SET_DEST to a new register. */
1825 if ((set = single_set (insn))
1826 && GET_CODE (SET_DEST (set)) == REG
1827 && addr_combined_regs[REGNO (SET_DEST (set))])
1829 struct iv_class *bl;
1830 struct induction *v, *tv;
1831 unsigned int regno = REGNO (SET_DEST (set));
1833 v = addr_combined_regs[REGNO (SET_DEST (set))];
1834 bl = REG_IV_CLASS (ivs, REGNO (v->src_reg));
1836 /* Although the giv_inc amount is not needed here, we must call
1837 calculate_giv_inc here since it might try to delete the
1838 last insn emitted. If we wait until later to call it,
1839 we might accidentally delete insns generated immediately
1840 below by emit_unrolled_add. */
1842 giv_inc = calculate_giv_inc (set, insn, regno);
1844 /* Now find all address giv's that were combined with this
1845 giv 'v'. */
1846 for (tv = bl->giv; tv; tv = tv->next_iv)
1847 if (tv->giv_type == DEST_ADDR && tv->same == v)
1849 int this_giv_inc;
1851 /* If this DEST_ADDR giv was not split, then ignore it. */
1852 if (*tv->location != tv->dest_reg)
1853 continue;
1855 /* Scale this_giv_inc if the multiplicative factors of
1856 the two givs are different. */
1857 this_giv_inc = INTVAL (giv_inc);
1858 if (tv->mult_val != v->mult_val)
1859 this_giv_inc = (this_giv_inc / INTVAL (v->mult_val)
1860 * INTVAL (tv->mult_val));
1862 tv->dest_reg = plus_constant (tv->dest_reg, this_giv_inc);
1863 *tv->location = tv->dest_reg;
1865 if (last_iteration && unroll_type != UNROLL_COMPLETELY)
1867 /* Must emit an insn to increment the split address
1868 giv. Add in the const_adjust field in case there
1869 was a constant eliminated from the address. */
1870 rtx value, dest_reg;
1872 /* tv->dest_reg will be either a bare register,
1873 or else a register plus a constant. */
1874 if (GET_CODE (tv->dest_reg) == REG)
1875 dest_reg = tv->dest_reg;
1876 else
1877 dest_reg = XEXP (tv->dest_reg, 0);
1879 /* Check for shared address givs, and avoid
1880 incrementing the shared pseudo reg more than
1881 once. */
1882 if (! tv->same_insn && ! tv->shared)
1884 /* tv->dest_reg may actually be a (PLUS (REG)
1885 (CONST)) here, so we must call plus_constant
1886 to add the const_adjust amount before calling
1887 emit_unrolled_add below. */
1888 value = plus_constant (tv->dest_reg,
1889 tv->const_adjust);
1891 if (GET_CODE (value) == PLUS)
1893 /* The constant could be too large for an add
1894 immediate, so can't directly emit an insn
1895 here. */
1896 emit_unrolled_add (dest_reg, XEXP (value, 0),
1897 XEXP (value, 1));
1901 /* Reset the giv to be just the register again, in case
1902 it is used after the set we have just emitted.
1903 We must subtract the const_adjust factor added in
1904 above. */
1905 tv->dest_reg = plus_constant (dest_reg,
1906 -tv->const_adjust);
1907 *tv->location = tv->dest_reg;
1912 /* If this is a setting of a splittable variable, then determine
1913 how to split the variable, create a new set based on this split,
1914 and set up the reg_map so that later uses of the variable will
1915 use the new split variable. */
1917 dest_reg_was_split = 0;
1919 if ((set = single_set (insn))
1920 && GET_CODE (SET_DEST (set)) == REG
1921 && splittable_regs[REGNO (SET_DEST (set))])
1923 unsigned int regno = REGNO (SET_DEST (set));
1924 unsigned int src_regno;
1926 dest_reg_was_split = 1;
1928 giv_dest_reg = SET_DEST (set);
1929 giv_src_reg = giv_dest_reg;
1930 /* Compute the increment value for the giv, if it wasn't
1931 already computed above. */
1932 if (giv_inc == 0)
1933 giv_inc = calculate_giv_inc (set, insn, regno);
1935 src_regno = REGNO (giv_src_reg);
1937 if (unroll_type == UNROLL_COMPLETELY)
1939 /* Completely unrolling the loop. Set the induction
1940 variable to a known constant value. */
1942 /* The value in splittable_regs may be an invariant
1943 value, so we must use plus_constant here. */
1944 splittable_regs[regno]
1945 = plus_constant (splittable_regs[src_regno],
1946 INTVAL (giv_inc));
1948 if (GET_CODE (splittable_regs[regno]) == PLUS)
1950 giv_src_reg = XEXP (splittable_regs[regno], 0);
1951 giv_inc = XEXP (splittable_regs[regno], 1);
1953 else
1955 /* The splittable_regs value must be a REG or a
1956 CONST_INT, so put the entire value in the giv_src_reg
1957 variable. */
1958 giv_src_reg = splittable_regs[regno];
1959 giv_inc = const0_rtx;
1962 else
1964 /* Partially unrolling loop. Create a new pseudo
1965 register for the iteration variable, and set it to
1966 be a constant plus the original register. Except
1967 on the last iteration, when the result has to
1968 go back into the original iteration var register. */
1970 /* Handle bivs which must be mapped to a new register
1971 when split. This happens for bivs which need their
1972 final value set before loop entry. The new register
1973 for the biv was stored in the biv's first struct
1974 induction entry by find_splittable_regs. */
1976 if (regno < ivs->n_regs
1977 && REG_IV_TYPE (ivs, regno) == BASIC_INDUCT)
1979 giv_src_reg = REG_IV_CLASS (ivs, regno)->biv->src_reg;
1980 giv_dest_reg = giv_src_reg;
1983 #if 0
1984 /* If non-reduced/final-value givs were split, then
1985 this would have to remap those givs also. See
1986 find_splittable_regs. */
1987 #endif
1989 splittable_regs[regno]
1990 = simplify_gen_binary (PLUS, GET_MODE (giv_src_reg),
1991 giv_inc,
1992 splittable_regs[src_regno]);
1993 giv_inc = splittable_regs[regno];
1995 /* Now split the induction variable by changing the dest
1996 of this insn to a new register, and setting its
1997 reg_map entry to point to this new register.
1999 If this is the last iteration, and this is the last insn
2000 that will update the iv, then reuse the original dest,
2001 to ensure that the iv will have the proper value when
2002 the loop exits or repeats.
2004 Using splittable_regs_updates here like this is safe,
2005 because it can only be greater than one if all
2006 instructions modifying the iv are always executed in
2007 order. */
2009 if (! last_iteration
2010 || (splittable_regs_updates[regno]-- != 1))
2012 tem = gen_reg_rtx (GET_MODE (giv_src_reg));
2013 giv_dest_reg = tem;
2014 map->reg_map[regno] = tem;
2015 record_base_value (REGNO (tem),
2016 giv_inc == const0_rtx
2017 ? giv_src_reg
2018 : gen_rtx_PLUS (GET_MODE (giv_src_reg),
2019 giv_src_reg, giv_inc),
2022 else
2023 map->reg_map[regno] = giv_src_reg;
2026 /* The constant being added could be too large for an add
2027 immediate, so can't directly emit an insn here. */
2028 emit_unrolled_add (giv_dest_reg, giv_src_reg, giv_inc);
2029 copy = get_last_insn ();
2030 pattern = PATTERN (copy);
2032 else
2034 pattern = copy_rtx_and_substitute (pattern, map, 0);
2035 copy = emit_insn (pattern);
2037 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
2039 #ifdef HAVE_cc0
2040 /* If this insn is setting CC0, it may need to look at
2041 the insn that uses CC0 to see what type of insn it is.
2042 In that case, the call to recog via validate_change will
2043 fail. So don't substitute constants here. Instead,
2044 do it when we emit the following insn.
2046 For example, see the pyr.md file. That machine has signed and
2047 unsigned compares. The compare patterns must check the
2048 following branch insn to see which what kind of compare to
2049 emit.
2051 If the previous insn set CC0, substitute constants on it as
2052 well. */
2053 if (sets_cc0_p (PATTERN (copy)) != 0)
2054 cc0_insn = copy;
2055 else
2057 if (cc0_insn)
2058 try_constants (cc0_insn, map);
2059 cc0_insn = 0;
2060 try_constants (copy, map);
2062 #else
2063 try_constants (copy, map);
2064 #endif
2066 /* Make split induction variable constants `permanent' since we
2067 know there are no backward branches across iteration variable
2068 settings which would invalidate this. */
2069 if (dest_reg_was_split)
2071 int regno = REGNO (SET_DEST (set));
2073 if ((size_t) regno < VARRAY_SIZE (map->const_equiv_varray)
2074 && (VARRAY_CONST_EQUIV (map->const_equiv_varray, regno).age
2075 == map->const_age))
2076 VARRAY_CONST_EQUIV (map->const_equiv_varray, regno).age = -1;
2078 break;
2080 case JUMP_INSN:
2081 pattern = copy_rtx_and_substitute (PATTERN (insn), map, 0);
2082 copy = emit_jump_insn (pattern);
2083 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
2085 if (JUMP_LABEL (insn))
2087 JUMP_LABEL (copy) = get_label_from_map (map,
2088 CODE_LABEL_NUMBER
2089 (JUMP_LABEL (insn)));
2090 LABEL_NUSES (JUMP_LABEL (copy))++;
2092 if (JUMP_LABEL (insn) == start_label && insn == copy_end
2093 && ! last_iteration)
2096 /* This is a branch to the beginning of the loop; this is the
2097 last insn being copied; and this is not the last iteration.
2098 In this case, we want to change the original fall through
2099 case to be a branch past the end of the loop, and the
2100 original jump label case to fall_through. */
2102 if (!invert_jump (copy, exit_label, 0))
2104 rtx jmp;
2105 rtx lab = gen_label_rtx ();
2106 /* Can't do it by reversing the jump (probably because we
2107 couldn't reverse the conditions), so emit a new
2108 jump_insn after COPY, and redirect the jump around
2109 that. */
2110 jmp = emit_jump_insn_after (gen_jump (exit_label), copy);
2111 JUMP_LABEL (jmp) = exit_label;
2112 LABEL_NUSES (exit_label)++;
2113 jmp = emit_barrier_after (jmp);
2114 emit_label_after (lab, jmp);
2115 LABEL_NUSES (lab) = 0;
2116 if (!redirect_jump (copy, lab, 0))
2117 abort ();
2121 #ifdef HAVE_cc0
2122 if (cc0_insn)
2123 try_constants (cc0_insn, map);
2124 cc0_insn = 0;
2125 #endif
2126 try_constants (copy, map);
2128 /* Set the jump label of COPY correctly to avoid problems with
2129 later passes of unroll_loop, if INSN had jump label set. */
2130 if (JUMP_LABEL (insn))
2132 rtx label = 0;
2134 /* Can't use the label_map for every insn, since this may be
2135 the backward branch, and hence the label was not mapped. */
2136 if ((set = single_set (copy)))
2138 tem = SET_SRC (set);
2139 if (GET_CODE (tem) == LABEL_REF)
2140 label = XEXP (tem, 0);
2141 else if (GET_CODE (tem) == IF_THEN_ELSE)
2143 if (XEXP (tem, 1) != pc_rtx)
2144 label = XEXP (XEXP (tem, 1), 0);
2145 else
2146 label = XEXP (XEXP (tem, 2), 0);
2150 if (label && GET_CODE (label) == CODE_LABEL)
2151 JUMP_LABEL (copy) = label;
2152 else
2154 /* An unrecognizable jump insn, probably the entry jump
2155 for a switch statement. This label must have been mapped,
2156 so just use the label_map to get the new jump label. */
2157 JUMP_LABEL (copy)
2158 = get_label_from_map (map,
2159 CODE_LABEL_NUMBER (JUMP_LABEL (insn)));
2162 /* If this is a non-local jump, then must increase the label
2163 use count so that the label will not be deleted when the
2164 original jump is deleted. */
2165 LABEL_NUSES (JUMP_LABEL (copy))++;
2167 else if (GET_CODE (PATTERN (copy)) == ADDR_VEC
2168 || GET_CODE (PATTERN (copy)) == ADDR_DIFF_VEC)
2170 rtx pat = PATTERN (copy);
2171 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
2172 int len = XVECLEN (pat, diff_vec_p);
2173 int i;
2175 for (i = 0; i < len; i++)
2176 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))++;
2179 /* If this used to be a conditional jump insn but whose branch
2180 direction is now known, we must do something special. */
2181 if (any_condjump_p (insn) && onlyjump_p (insn) && map->last_pc_value)
2183 #ifdef HAVE_cc0
2184 /* If the previous insn set cc0 for us, delete it. */
2185 if (only_sets_cc0_p (PREV_INSN (copy)))
2186 delete_related_insns (PREV_INSN (copy));
2187 #endif
2189 /* If this is now a no-op, delete it. */
2190 if (map->last_pc_value == pc_rtx)
2192 delete_insn (copy);
2193 copy = 0;
2195 else
2196 /* Otherwise, this is unconditional jump so we must put a
2197 BARRIER after it. We could do some dead code elimination
2198 here, but jump.c will do it just as well. */
2199 emit_barrier ();
2201 break;
2203 case CALL_INSN:
2204 pattern = copy_rtx_and_substitute (PATTERN (insn), map, 0);
2205 copy = emit_call_insn (pattern);
2206 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
2208 /* Because the USAGE information potentially contains objects other
2209 than hard registers, we need to copy it. */
2210 CALL_INSN_FUNCTION_USAGE (copy)
2211 = copy_rtx_and_substitute (CALL_INSN_FUNCTION_USAGE (insn),
2212 map, 0);
2214 #ifdef HAVE_cc0
2215 if (cc0_insn)
2216 try_constants (cc0_insn, map);
2217 cc0_insn = 0;
2218 #endif
2219 try_constants (copy, map);
2221 /* Be lazy and assume CALL_INSNs clobber all hard registers. */
2222 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2223 VARRAY_CONST_EQUIV (map->const_equiv_varray, i).rtx = 0;
2224 break;
2226 case CODE_LABEL:
2227 /* If this is the loop start label, then we don't need to emit a
2228 copy of this label since no one will use it. */
2230 if (insn != start_label)
2232 copy = emit_label (get_label_from_map (map,
2233 CODE_LABEL_NUMBER (insn)));
2234 map->const_age++;
2236 break;
2238 case BARRIER:
2239 copy = emit_barrier ();
2240 break;
2242 case NOTE:
2243 /* VTOP and CONT notes are valid only before the loop exit test.
2244 If placed anywhere else, loop may generate bad code. */
2245 /* BASIC_BLOCK notes exist to stabilize basic block structures with
2246 the associated rtl. We do not want to share the structure in
2247 this new block. */
2249 if (NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED
2250 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED_LABEL
2251 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK
2252 && ((NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_VTOP
2253 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_CONT)
2254 || (last_iteration && unroll_type != UNROLL_COMPLETELY)))
2255 copy = emit_note (NOTE_SOURCE_FILE (insn),
2256 NOTE_LINE_NUMBER (insn));
2257 else
2258 copy = 0;
2259 break;
2261 default:
2262 abort ();
2265 map->insn_map[INSN_UID (insn)] = copy;
2267 while (insn != copy_end);
2269 /* Now finish coping the REG_NOTES. */
2270 insn = copy_start;
2273 insn = NEXT_INSN (insn);
2274 if ((GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
2275 || GET_CODE (insn) == CALL_INSN)
2276 && map->insn_map[INSN_UID (insn)])
2277 final_reg_note_copy (&REG_NOTES (map->insn_map[INSN_UID (insn)]), map);
2279 while (insn != copy_end);
2281 /* There may be notes between copy_notes_from and loop_end. Emit a copy of
2282 each of these notes here, since there may be some important ones, such as
2283 NOTE_INSN_BLOCK_END notes, in this group. We don't do this on the last
2284 iteration, because the original notes won't be deleted.
2286 We can't use insert_before here, because when from preconditioning,
2287 insert_before points before the loop. We can't use copy_end, because
2288 there may be insns already inserted after it (which we don't want to
2289 copy) when not from preconditioning code. */
2291 if (! last_iteration)
2293 for (insn = copy_notes_from; insn != loop_end; insn = NEXT_INSN (insn))
2295 /* VTOP notes are valid only before the loop exit test.
2296 If placed anywhere else, loop may generate bad code.
2297 There is no need to test for NOTE_INSN_LOOP_CONT notes
2298 here, since COPY_NOTES_FROM will be at most one or two (for cc0)
2299 instructions before the last insn in the loop, and if the
2300 end test is that short, there will be a VTOP note between
2301 the CONT note and the test. */
2302 if (GET_CODE (insn) == NOTE
2303 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED
2304 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK
2305 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_VTOP)
2306 emit_note (NOTE_SOURCE_FILE (insn), NOTE_LINE_NUMBER (insn));
2310 if (final_label && LABEL_NUSES (final_label) > 0)
2311 emit_label (final_label);
2313 tem = gen_sequence ();
2314 end_sequence ();
2315 loop_insn_emit_before (loop, 0, insert_before, tem);
2318 /* Emit an insn, using the expand_binop to ensure that a valid insn is
2319 emitted. This will correctly handle the case where the increment value
2320 won't fit in the immediate field of a PLUS insns. */
2322 void
2323 emit_unrolled_add (dest_reg, src_reg, increment)
2324 rtx dest_reg, src_reg, increment;
2326 rtx result;
2328 result = expand_simple_binop (GET_MODE (dest_reg), PLUS, src_reg, increment,
2329 dest_reg, 0, OPTAB_LIB_WIDEN);
2331 if (dest_reg != result)
2332 emit_move_insn (dest_reg, result);
2335 /* Searches the insns between INSN and LOOP->END. Returns 1 if there
2336 is a backward branch in that range that branches to somewhere between
2337 LOOP->START and INSN. Returns 0 otherwise. */
2339 /* ??? This is quadratic algorithm. Could be rewritten to be linear.
2340 In practice, this is not a problem, because this function is seldom called,
2341 and uses a negligible amount of CPU time on average. */
2344 back_branch_in_range_p (loop, insn)
2345 const struct loop *loop;
2346 rtx insn;
2348 rtx p, q, target_insn;
2349 rtx loop_start = loop->start;
2350 rtx loop_end = loop->end;
2351 rtx orig_loop_end = loop->end;
2353 /* Stop before we get to the backward branch at the end of the loop. */
2354 loop_end = prev_nonnote_insn (loop_end);
2355 if (GET_CODE (loop_end) == BARRIER)
2356 loop_end = PREV_INSN (loop_end);
2358 /* Check in case insn has been deleted, search forward for first non
2359 deleted insn following it. */
2360 while (INSN_DELETED_P (insn))
2361 insn = NEXT_INSN (insn);
2363 /* Check for the case where insn is the last insn in the loop. Deal
2364 with the case where INSN was a deleted loop test insn, in which case
2365 it will now be the NOTE_LOOP_END. */
2366 if (insn == loop_end || insn == orig_loop_end)
2367 return 0;
2369 for (p = NEXT_INSN (insn); p != loop_end; p = NEXT_INSN (p))
2371 if (GET_CODE (p) == JUMP_INSN)
2373 target_insn = JUMP_LABEL (p);
2375 /* Search from loop_start to insn, to see if one of them is
2376 the target_insn. We can't use INSN_LUID comparisons here,
2377 since insn may not have an LUID entry. */
2378 for (q = loop_start; q != insn; q = NEXT_INSN (q))
2379 if (q == target_insn)
2380 return 1;
2384 return 0;
2387 /* Try to generate the simplest rtx for the expression
2388 (PLUS (MULT mult1 mult2) add1). This is used to calculate the initial
2389 value of giv's. */
2391 static rtx
2392 fold_rtx_mult_add (mult1, mult2, add1, mode)
2393 rtx mult1, mult2, add1;
2394 enum machine_mode mode;
2396 rtx temp, mult_res;
2397 rtx result;
2399 /* The modes must all be the same. This should always be true. For now,
2400 check to make sure. */
2401 if ((GET_MODE (mult1) != mode && GET_MODE (mult1) != VOIDmode)
2402 || (GET_MODE (mult2) != mode && GET_MODE (mult2) != VOIDmode)
2403 || (GET_MODE (add1) != mode && GET_MODE (add1) != VOIDmode))
2404 abort ();
2406 /* Ensure that if at least one of mult1/mult2 are constant, then mult2
2407 will be a constant. */
2408 if (GET_CODE (mult1) == CONST_INT)
2410 temp = mult2;
2411 mult2 = mult1;
2412 mult1 = temp;
2415 mult_res = simplify_binary_operation (MULT, mode, mult1, mult2);
2416 if (! mult_res)
2417 mult_res = gen_rtx_MULT (mode, mult1, mult2);
2419 /* Again, put the constant second. */
2420 if (GET_CODE (add1) == CONST_INT)
2422 temp = add1;
2423 add1 = mult_res;
2424 mult_res = temp;
2427 result = simplify_binary_operation (PLUS, mode, add1, mult_res);
2428 if (! result)
2429 result = gen_rtx_PLUS (mode, add1, mult_res);
2431 return result;
2434 /* Searches the list of induction struct's for the biv BL, to try to calculate
2435 the total increment value for one iteration of the loop as a constant.
2437 Returns the increment value as an rtx, simplified as much as possible,
2438 if it can be calculated. Otherwise, returns 0. */
2441 biv_total_increment (bl)
2442 const struct iv_class *bl;
2444 struct induction *v;
2445 rtx result;
2447 /* For increment, must check every instruction that sets it. Each
2448 instruction must be executed only once each time through the loop.
2449 To verify this, we check that the insn is always executed, and that
2450 there are no backward branches after the insn that branch to before it.
2451 Also, the insn must have a mult_val of one (to make sure it really is
2452 an increment). */
2454 result = const0_rtx;
2455 for (v = bl->biv; v; v = v->next_iv)
2457 if (v->always_computable && v->mult_val == const1_rtx
2458 && ! v->maybe_multiple)
2459 result = fold_rtx_mult_add (result, const1_rtx, v->add_val, v->mode);
2460 else
2461 return 0;
2464 return result;
2467 /* For each biv and giv, determine whether it can be safely split into
2468 a different variable for each unrolled copy of the loop body. If it
2469 is safe to split, then indicate that by saving some useful info
2470 in the splittable_regs array.
2472 If the loop is being completely unrolled, then splittable_regs will hold
2473 the current value of the induction variable while the loop is unrolled.
2474 It must be set to the initial value of the induction variable here.
2475 Otherwise, splittable_regs will hold the difference between the current
2476 value of the induction variable and the value the induction variable had
2477 at the top of the loop. It must be set to the value 0 here.
2479 Returns the total number of instructions that set registers that are
2480 splittable. */
2482 /* ?? If the loop is only unrolled twice, then most of the restrictions to
2483 constant values are unnecessary, since we can easily calculate increment
2484 values in this case even if nothing is constant. The increment value
2485 should not involve a multiply however. */
2487 /* ?? Even if the biv/giv increment values aren't constant, it may still
2488 be beneficial to split the variable if the loop is only unrolled a few
2489 times, since multiplies by small integers (1,2,3,4) are very cheap. */
2491 static int
2492 find_splittable_regs (loop, unroll_type, unroll_number)
2493 const struct loop *loop;
2494 enum unroll_types unroll_type;
2495 int unroll_number;
2497 struct loop_ivs *ivs = LOOP_IVS (loop);
2498 struct iv_class *bl;
2499 struct induction *v;
2500 rtx increment, tem;
2501 rtx biv_final_value;
2502 int biv_splittable;
2503 int result = 0;
2505 for (bl = ivs->list; bl; bl = bl->next)
2507 /* Biv_total_increment must return a constant value,
2508 otherwise we can not calculate the split values. */
2510 increment = biv_total_increment (bl);
2511 if (! increment || GET_CODE (increment) != CONST_INT)
2512 continue;
2514 /* The loop must be unrolled completely, or else have a known number
2515 of iterations and only one exit, or else the biv must be dead
2516 outside the loop, or else the final value must be known. Otherwise,
2517 it is unsafe to split the biv since it may not have the proper
2518 value on loop exit. */
2520 /* loop_number_exit_count is non-zero if the loop has an exit other than
2521 a fall through at the end. */
2523 biv_splittable = 1;
2524 biv_final_value = 0;
2525 if (unroll_type != UNROLL_COMPLETELY
2526 && (loop->exit_count || unroll_type == UNROLL_NAIVE)
2527 && (REGNO_LAST_LUID (bl->regno) >= INSN_LUID (loop->end)
2528 || ! bl->init_insn
2529 || INSN_UID (bl->init_insn) >= max_uid_for_loop
2530 || (REGNO_FIRST_LUID (bl->regno)
2531 < INSN_LUID (bl->init_insn))
2532 || reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
2533 && ! (biv_final_value = final_biv_value (loop, bl)))
2534 biv_splittable = 0;
2536 /* If any of the insns setting the BIV don't do so with a simple
2537 PLUS, we don't know how to split it. */
2538 for (v = bl->biv; biv_splittable && v; v = v->next_iv)
2539 if ((tem = single_set (v->insn)) == 0
2540 || GET_CODE (SET_DEST (tem)) != REG
2541 || REGNO (SET_DEST (tem)) != bl->regno
2542 || GET_CODE (SET_SRC (tem)) != PLUS)
2543 biv_splittable = 0;
2545 /* If final value is non-zero, then must emit an instruction which sets
2546 the value of the biv to the proper value. This is done after
2547 handling all of the givs, since some of them may need to use the
2548 biv's value in their initialization code. */
2550 /* This biv is splittable. If completely unrolling the loop, save
2551 the biv's initial value. Otherwise, save the constant zero. */
2553 if (biv_splittable == 1)
2555 if (unroll_type == UNROLL_COMPLETELY)
2557 /* If the initial value of the biv is itself (i.e. it is too
2558 complicated for strength_reduce to compute), or is a hard
2559 register, or it isn't invariant, then we must create a new
2560 pseudo reg to hold the initial value of the biv. */
2562 if (GET_CODE (bl->initial_value) == REG
2563 && (REGNO (bl->initial_value) == bl->regno
2564 || REGNO (bl->initial_value) < FIRST_PSEUDO_REGISTER
2565 || ! loop_invariant_p (loop, bl->initial_value)))
2567 rtx tem = gen_reg_rtx (bl->biv->mode);
2569 record_base_value (REGNO (tem), bl->biv->add_val, 0);
2570 loop_insn_hoist (loop,
2571 gen_move_insn (tem, bl->biv->src_reg));
2573 if (loop_dump_stream)
2574 fprintf (loop_dump_stream,
2575 "Biv %d initial value remapped to %d.\n",
2576 bl->regno, REGNO (tem));
2578 splittable_regs[bl->regno] = tem;
2580 else
2581 splittable_regs[bl->regno] = bl->initial_value;
2583 else
2584 splittable_regs[bl->regno] = const0_rtx;
2586 /* Save the number of instructions that modify the biv, so that
2587 we can treat the last one specially. */
2589 splittable_regs_updates[bl->regno] = bl->biv_count;
2590 result += bl->biv_count;
2592 if (loop_dump_stream)
2593 fprintf (loop_dump_stream,
2594 "Biv %d safe to split.\n", bl->regno);
2597 /* Check every giv that depends on this biv to see whether it is
2598 splittable also. Even if the biv isn't splittable, givs which
2599 depend on it may be splittable if the biv is live outside the
2600 loop, and the givs aren't. */
2602 result += find_splittable_givs (loop, bl, unroll_type, increment,
2603 unroll_number);
2605 /* If final value is non-zero, then must emit an instruction which sets
2606 the value of the biv to the proper value. This is done after
2607 handling all of the givs, since some of them may need to use the
2608 biv's value in their initialization code. */
2609 if (biv_final_value)
2611 /* If the loop has multiple exits, emit the insns before the
2612 loop to ensure that it will always be executed no matter
2613 how the loop exits. Otherwise emit the insn after the loop,
2614 since this is slightly more efficient. */
2615 if (! loop->exit_count)
2616 loop_insn_sink (loop, gen_move_insn (bl->biv->src_reg,
2617 biv_final_value));
2618 else
2620 /* Create a new register to hold the value of the biv, and then
2621 set the biv to its final value before the loop start. The biv
2622 is set to its final value before loop start to ensure that
2623 this insn will always be executed, no matter how the loop
2624 exits. */
2625 rtx tem = gen_reg_rtx (bl->biv->mode);
2626 record_base_value (REGNO (tem), bl->biv->add_val, 0);
2628 loop_insn_hoist (loop, gen_move_insn (tem, bl->biv->src_reg));
2629 loop_insn_hoist (loop, gen_move_insn (bl->biv->src_reg,
2630 biv_final_value));
2632 if (loop_dump_stream)
2633 fprintf (loop_dump_stream, "Biv %d mapped to %d for split.\n",
2634 REGNO (bl->biv->src_reg), REGNO (tem));
2636 /* Set up the mapping from the original biv register to the new
2637 register. */
2638 bl->biv->src_reg = tem;
2642 return result;
2645 /* Return 1 if the first and last unrolled copy of the address giv V is valid
2646 for the instruction that is using it. Do not make any changes to that
2647 instruction. */
2649 static int
2650 verify_addresses (v, giv_inc, unroll_number)
2651 struct induction *v;
2652 rtx giv_inc;
2653 int unroll_number;
2655 int ret = 1;
2656 rtx orig_addr = *v->location;
2657 rtx last_addr = plus_constant (v->dest_reg,
2658 INTVAL (giv_inc) * (unroll_number - 1));
2660 /* First check to see if either address would fail. Handle the fact
2661 that we have may have a match_dup. */
2662 if (! validate_replace_rtx (*v->location, v->dest_reg, v->insn)
2663 || ! validate_replace_rtx (*v->location, last_addr, v->insn))
2664 ret = 0;
2666 /* Now put things back the way they were before. This should always
2667 succeed. */
2668 if (! validate_replace_rtx (*v->location, orig_addr, v->insn))
2669 abort ();
2671 return ret;
2674 /* For every giv based on the biv BL, check to determine whether it is
2675 splittable. This is a subroutine to find_splittable_regs ().
2677 Return the number of instructions that set splittable registers. */
2679 static int
2680 find_splittable_givs (loop, bl, unroll_type, increment, unroll_number)
2681 const struct loop *loop;
2682 struct iv_class *bl;
2683 enum unroll_types unroll_type;
2684 rtx increment;
2685 int unroll_number;
2687 struct loop_ivs *ivs = LOOP_IVS (loop);
2688 struct induction *v, *v2;
2689 rtx final_value;
2690 rtx tem;
2691 int result = 0;
2693 /* Scan the list of givs, and set the same_insn field when there are
2694 multiple identical givs in the same insn. */
2695 for (v = bl->giv; v; v = v->next_iv)
2696 for (v2 = v->next_iv; v2; v2 = v2->next_iv)
2697 if (v->insn == v2->insn && rtx_equal_p (v->new_reg, v2->new_reg)
2698 && ! v2->same_insn)
2699 v2->same_insn = v;
2701 for (v = bl->giv; v; v = v->next_iv)
2703 rtx giv_inc, value;
2705 /* Only split the giv if it has already been reduced, or if the loop is
2706 being completely unrolled. */
2707 if (unroll_type != UNROLL_COMPLETELY && v->ignore)
2708 continue;
2710 /* The giv can be split if the insn that sets the giv is executed once
2711 and only once on every iteration of the loop. */
2712 /* An address giv can always be split. v->insn is just a use not a set,
2713 and hence it does not matter whether it is always executed. All that
2714 matters is that all the biv increments are always executed, and we
2715 won't reach here if they aren't. */
2716 if (v->giv_type != DEST_ADDR
2717 && (! v->always_computable
2718 || back_branch_in_range_p (loop, v->insn)))
2719 continue;
2721 /* The giv increment value must be a constant. */
2722 giv_inc = fold_rtx_mult_add (v->mult_val, increment, const0_rtx,
2723 v->mode);
2724 if (! giv_inc || GET_CODE (giv_inc) != CONST_INT)
2725 continue;
2727 /* The loop must be unrolled completely, or else have a known number of
2728 iterations and only one exit, or else the giv must be dead outside
2729 the loop, or else the final value of the giv must be known.
2730 Otherwise, it is not safe to split the giv since it may not have the
2731 proper value on loop exit. */
2733 /* The used outside loop test will fail for DEST_ADDR givs. They are
2734 never used outside the loop anyways, so it is always safe to split a
2735 DEST_ADDR giv. */
2737 final_value = 0;
2738 if (unroll_type != UNROLL_COMPLETELY
2739 && (loop->exit_count || unroll_type == UNROLL_NAIVE)
2740 && v->giv_type != DEST_ADDR
2741 /* The next part is true if the pseudo is used outside the loop.
2742 We assume that this is true for any pseudo created after loop
2743 starts, because we don't have a reg_n_info entry for them. */
2744 && (REGNO (v->dest_reg) >= max_reg_before_loop
2745 || (REGNO_FIRST_UID (REGNO (v->dest_reg)) != INSN_UID (v->insn)
2746 /* Check for the case where the pseudo is set by a shift/add
2747 sequence, in which case the first insn setting the pseudo
2748 is the first insn of the shift/add sequence. */
2749 && (! (tem = find_reg_note (v->insn, REG_RETVAL, NULL_RTX))
2750 || (REGNO_FIRST_UID (REGNO (v->dest_reg))
2751 != INSN_UID (XEXP (tem, 0)))))
2752 /* Line above always fails if INSN was moved by loop opt. */
2753 || (REGNO_LAST_LUID (REGNO (v->dest_reg))
2754 >= INSN_LUID (loop->end)))
2755 && ! (final_value = v->final_value))
2756 continue;
2758 #if 0
2759 /* Currently, non-reduced/final-value givs are never split. */
2760 /* Should emit insns after the loop if possible, as the biv final value
2761 code below does. */
2763 /* If the final value is non-zero, and the giv has not been reduced,
2764 then must emit an instruction to set the final value. */
2765 if (final_value && !v->new_reg)
2767 /* Create a new register to hold the value of the giv, and then set
2768 the giv to its final value before the loop start. The giv is set
2769 to its final value before loop start to ensure that this insn
2770 will always be executed, no matter how we exit. */
2771 tem = gen_reg_rtx (v->mode);
2772 loop_insn_hoist (loop, gen_move_insn (tem, v->dest_reg));
2773 loop_insn_hoist (loop, gen_move_insn (v->dest_reg, final_value));
2775 if (loop_dump_stream)
2776 fprintf (loop_dump_stream, "Giv %d mapped to %d for split.\n",
2777 REGNO (v->dest_reg), REGNO (tem));
2779 v->src_reg = tem;
2781 #endif
2783 /* This giv is splittable. If completely unrolling the loop, save the
2784 giv's initial value. Otherwise, save the constant zero for it. */
2786 if (unroll_type == UNROLL_COMPLETELY)
2788 /* It is not safe to use bl->initial_value here, because it may not
2789 be invariant. It is safe to use the initial value stored in
2790 the splittable_regs array if it is set. In rare cases, it won't
2791 be set, so then we do exactly the same thing as
2792 find_splittable_regs does to get a safe value. */
2793 rtx biv_initial_value;
2795 if (splittable_regs[bl->regno])
2796 biv_initial_value = splittable_regs[bl->regno];
2797 else if (GET_CODE (bl->initial_value) != REG
2798 || (REGNO (bl->initial_value) != bl->regno
2799 && REGNO (bl->initial_value) >= FIRST_PSEUDO_REGISTER))
2800 biv_initial_value = bl->initial_value;
2801 else
2803 rtx tem = gen_reg_rtx (bl->biv->mode);
2805 record_base_value (REGNO (tem), bl->biv->add_val, 0);
2806 loop_insn_hoist (loop, gen_move_insn (tem, bl->biv->src_reg));
2807 biv_initial_value = tem;
2809 biv_initial_value = extend_value_for_giv (v, biv_initial_value);
2810 value = fold_rtx_mult_add (v->mult_val, biv_initial_value,
2811 v->add_val, v->mode);
2813 else
2814 value = const0_rtx;
2816 if (v->new_reg)
2818 /* If a giv was combined with another giv, then we can only split
2819 this giv if the giv it was combined with was reduced. This
2820 is because the value of v->new_reg is meaningless in this
2821 case. */
2822 if (v->same && ! v->same->new_reg)
2824 if (loop_dump_stream)
2825 fprintf (loop_dump_stream,
2826 "giv combined with unreduced giv not split.\n");
2827 continue;
2829 /* If the giv is an address destination, it could be something other
2830 than a simple register, these have to be treated differently. */
2831 else if (v->giv_type == DEST_REG)
2833 /* If value is not a constant, register, or register plus
2834 constant, then compute its value into a register before
2835 loop start. This prevents invalid rtx sharing, and should
2836 generate better code. We can use bl->initial_value here
2837 instead of splittable_regs[bl->regno] because this code
2838 is going before the loop start. */
2839 if (unroll_type == UNROLL_COMPLETELY
2840 && GET_CODE (value) != CONST_INT
2841 && GET_CODE (value) != REG
2842 && (GET_CODE (value) != PLUS
2843 || GET_CODE (XEXP (value, 0)) != REG
2844 || GET_CODE (XEXP (value, 1)) != CONST_INT))
2846 rtx tem = gen_reg_rtx (v->mode);
2847 record_base_value (REGNO (tem), v->add_val, 0);
2848 loop_iv_add_mult_hoist (loop, bl->initial_value, v->mult_val,
2849 v->add_val, tem);
2850 value = tem;
2853 splittable_regs[REGNO (v->new_reg)] = value;
2855 else
2857 /* Splitting address givs is useful since it will often allow us
2858 to eliminate some increment insns for the base giv as
2859 unnecessary. */
2861 /* If the addr giv is combined with a dest_reg giv, then all
2862 references to that dest reg will be remapped, which is NOT
2863 what we want for split addr regs. We always create a new
2864 register for the split addr giv, just to be safe. */
2866 /* If we have multiple identical address givs within a
2867 single instruction, then use a single pseudo reg for
2868 both. This is necessary in case one is a match_dup
2869 of the other. */
2871 v->const_adjust = 0;
2873 if (v->same_insn)
2875 v->dest_reg = v->same_insn->dest_reg;
2876 if (loop_dump_stream)
2877 fprintf (loop_dump_stream,
2878 "Sharing address givs in insn %d\n",
2879 INSN_UID (v->insn));
2881 /* If multiple address GIVs have been combined with the
2882 same dest_reg GIV, do not create a new register for
2883 each. */
2884 else if (unroll_type != UNROLL_COMPLETELY
2885 && v->giv_type == DEST_ADDR
2886 && v->same && v->same->giv_type == DEST_ADDR
2887 && v->same->unrolled
2888 /* combine_givs_p may return true for some cases
2889 where the add and mult values are not equal.
2890 To share a register here, the values must be
2891 equal. */
2892 && rtx_equal_p (v->same->mult_val, v->mult_val)
2893 && rtx_equal_p (v->same->add_val, v->add_val)
2894 /* If the memory references have different modes,
2895 then the address may not be valid and we must
2896 not share registers. */
2897 && verify_addresses (v, giv_inc, unroll_number))
2899 v->dest_reg = v->same->dest_reg;
2900 v->shared = 1;
2902 else if (unroll_type != UNROLL_COMPLETELY)
2904 /* If not completely unrolling the loop, then create a new
2905 register to hold the split value of the DEST_ADDR giv.
2906 Emit insn to initialize its value before loop start. */
2908 rtx tem = gen_reg_rtx (v->mode);
2909 struct induction *same = v->same;
2910 rtx new_reg = v->new_reg;
2911 record_base_value (REGNO (tem), v->add_val, 0);
2913 /* If the address giv has a constant in its new_reg value,
2914 then this constant can be pulled out and put in value,
2915 instead of being part of the initialization code. */
2917 if (GET_CODE (new_reg) == PLUS
2918 && GET_CODE (XEXP (new_reg, 1)) == CONST_INT)
2920 v->dest_reg
2921 = plus_constant (tem, INTVAL (XEXP (new_reg, 1)));
2923 /* Only succeed if this will give valid addresses.
2924 Try to validate both the first and the last
2925 address resulting from loop unrolling, if
2926 one fails, then can't do const elim here. */
2927 if (verify_addresses (v, giv_inc, unroll_number))
2929 /* Save the negative of the eliminated const, so
2930 that we can calculate the dest_reg's increment
2931 value later. */
2932 v->const_adjust = -INTVAL (XEXP (new_reg, 1));
2934 new_reg = XEXP (new_reg, 0);
2935 if (loop_dump_stream)
2936 fprintf (loop_dump_stream,
2937 "Eliminating constant from giv %d\n",
2938 REGNO (tem));
2940 else
2941 v->dest_reg = tem;
2943 else
2944 v->dest_reg = tem;
2946 /* If the address hasn't been checked for validity yet, do so
2947 now, and fail completely if either the first or the last
2948 unrolled copy of the address is not a valid address
2949 for the instruction that uses it. */
2950 if (v->dest_reg == tem
2951 && ! verify_addresses (v, giv_inc, unroll_number))
2953 for (v2 = v->next_iv; v2; v2 = v2->next_iv)
2954 if (v2->same_insn == v)
2955 v2->same_insn = 0;
2957 if (loop_dump_stream)
2958 fprintf (loop_dump_stream,
2959 "Invalid address for giv at insn %d\n",
2960 INSN_UID (v->insn));
2961 continue;
2964 v->new_reg = new_reg;
2965 v->same = same;
2967 /* We set this after the address check, to guarantee that
2968 the register will be initialized. */
2969 v->unrolled = 1;
2971 /* To initialize the new register, just move the value of
2972 new_reg into it. This is not guaranteed to give a valid
2973 instruction on machines with complex addressing modes.
2974 If we can't recognize it, then delete it and emit insns
2975 to calculate the value from scratch. */
2976 loop_insn_hoist (loop, gen_rtx_SET (VOIDmode, tem,
2977 copy_rtx (v->new_reg)));
2978 if (recog_memoized (PREV_INSN (loop->start)) < 0)
2980 rtx sequence, ret;
2982 /* We can't use bl->initial_value to compute the initial
2983 value, because the loop may have been preconditioned.
2984 We must calculate it from NEW_REG. */
2985 delete_related_insns (PREV_INSN (loop->start));
2987 start_sequence ();
2988 ret = force_operand (v->new_reg, tem);
2989 if (ret != tem)
2990 emit_move_insn (tem, ret);
2991 sequence = gen_sequence ();
2992 end_sequence ();
2993 loop_insn_hoist (loop, sequence);
2995 if (loop_dump_stream)
2996 fprintf (loop_dump_stream,
2997 "Invalid init insn, rewritten.\n");
3000 else
3002 v->dest_reg = value;
3004 /* Check the resulting address for validity, and fail
3005 if the resulting address would be invalid. */
3006 if (! verify_addresses (v, giv_inc, unroll_number))
3008 for (v2 = v->next_iv; v2; v2 = v2->next_iv)
3009 if (v2->same_insn == v)
3010 v2->same_insn = 0;
3012 if (loop_dump_stream)
3013 fprintf (loop_dump_stream,
3014 "Invalid address for giv at insn %d\n",
3015 INSN_UID (v->insn));
3016 continue;
3020 /* Store the value of dest_reg into the insn. This sharing
3021 will not be a problem as this insn will always be copied
3022 later. */
3024 *v->location = v->dest_reg;
3026 /* If this address giv is combined with a dest reg giv, then
3027 save the base giv's induction pointer so that we will be
3028 able to handle this address giv properly. The base giv
3029 itself does not have to be splittable. */
3031 if (v->same && v->same->giv_type == DEST_REG)
3032 addr_combined_regs[REGNO (v->same->new_reg)] = v->same;
3034 if (GET_CODE (v->new_reg) == REG)
3036 /* This giv maybe hasn't been combined with any others.
3037 Make sure that it's giv is marked as splittable here. */
3039 splittable_regs[REGNO (v->new_reg)] = value;
3041 /* Make it appear to depend upon itself, so that the
3042 giv will be properly split in the main loop above. */
3043 if (! v->same)
3045 v->same = v;
3046 addr_combined_regs[REGNO (v->new_reg)] = v;
3050 if (loop_dump_stream)
3051 fprintf (loop_dump_stream, "DEST_ADDR giv being split.\n");
3054 else
3056 #if 0
3057 /* Currently, unreduced giv's can't be split. This is not too much
3058 of a problem since unreduced giv's are not live across loop
3059 iterations anyways. When unrolling a loop completely though,
3060 it makes sense to reduce&split givs when possible, as this will
3061 result in simpler instructions, and will not require that a reg
3062 be live across loop iterations. */
3064 splittable_regs[REGNO (v->dest_reg)] = value;
3065 fprintf (stderr, "Giv %d at insn %d not reduced\n",
3066 REGNO (v->dest_reg), INSN_UID (v->insn));
3067 #else
3068 continue;
3069 #endif
3072 /* Unreduced givs are only updated once by definition. Reduced givs
3073 are updated as many times as their biv is. Mark it so if this is
3074 a splittable register. Don't need to do anything for address givs
3075 where this may not be a register. */
3077 if (GET_CODE (v->new_reg) == REG)
3079 int count = 1;
3080 if (! v->ignore)
3081 count = REG_IV_CLASS (ivs, REGNO (v->src_reg))->biv_count;
3083 splittable_regs_updates[REGNO (v->new_reg)] = count;
3086 result++;
3088 if (loop_dump_stream)
3090 int regnum;
3092 if (GET_CODE (v->dest_reg) == CONST_INT)
3093 regnum = -1;
3094 else if (GET_CODE (v->dest_reg) != REG)
3095 regnum = REGNO (XEXP (v->dest_reg, 0));
3096 else
3097 regnum = REGNO (v->dest_reg);
3098 fprintf (loop_dump_stream, "Giv %d at insn %d safe to split.\n",
3099 regnum, INSN_UID (v->insn));
3103 return result;
3106 /* Try to prove that the register is dead after the loop exits. Trace every
3107 loop exit looking for an insn that will always be executed, which sets
3108 the register to some value, and appears before the first use of the register
3109 is found. If successful, then return 1, otherwise return 0. */
3111 /* ?? Could be made more intelligent in the handling of jumps, so that
3112 it can search past if statements and other similar structures. */
3114 static int
3115 reg_dead_after_loop (loop, reg)
3116 const struct loop *loop;
3117 rtx reg;
3119 rtx insn, label;
3120 enum rtx_code code;
3121 int jump_count = 0;
3122 int label_count = 0;
3124 /* In addition to checking all exits of this loop, we must also check
3125 all exits of inner nested loops that would exit this loop. We don't
3126 have any way to identify those, so we just give up if there are any
3127 such inner loop exits. */
3129 for (label = loop->exit_labels; label; label = LABEL_NEXTREF (label))
3130 label_count++;
3132 if (label_count != loop->exit_count)
3133 return 0;
3135 /* HACK: Must also search the loop fall through exit, create a label_ref
3136 here which points to the loop->end, and append the loop_number_exit_labels
3137 list to it. */
3138 label = gen_rtx_LABEL_REF (VOIDmode, loop->end);
3139 LABEL_NEXTREF (label) = loop->exit_labels;
3141 for (; label; label = LABEL_NEXTREF (label))
3143 /* Succeed if find an insn which sets the biv or if reach end of
3144 function. Fail if find an insn that uses the biv, or if come to
3145 a conditional jump. */
3147 insn = NEXT_INSN (XEXP (label, 0));
3148 while (insn)
3150 code = GET_CODE (insn);
3151 if (GET_RTX_CLASS (code) == 'i')
3153 rtx set;
3155 if (reg_referenced_p (reg, PATTERN (insn)))
3156 return 0;
3158 set = single_set (insn);
3159 if (set && rtx_equal_p (SET_DEST (set), reg))
3160 break;
3163 if (code == JUMP_INSN)
3165 if (GET_CODE (PATTERN (insn)) == RETURN)
3166 break;
3167 else if (!any_uncondjump_p (insn)
3168 /* Prevent infinite loop following infinite loops. */
3169 || jump_count++ > 20)
3170 return 0;
3171 else
3172 insn = JUMP_LABEL (insn);
3175 insn = NEXT_INSN (insn);
3179 /* Success, the register is dead on all loop exits. */
3180 return 1;
3183 /* Try to calculate the final value of the biv, the value it will have at
3184 the end of the loop. If we can do it, return that value. */
3187 final_biv_value (loop, bl)
3188 const struct loop *loop;
3189 struct iv_class *bl;
3191 unsigned HOST_WIDE_INT n_iterations = LOOP_INFO (loop)->n_iterations;
3192 rtx increment, tem;
3194 /* ??? This only works for MODE_INT biv's. Reject all others for now. */
3196 if (GET_MODE_CLASS (bl->biv->mode) != MODE_INT)
3197 return 0;
3199 /* The final value for reversed bivs must be calculated differently than
3200 for ordinary bivs. In this case, there is already an insn after the
3201 loop which sets this biv's final value (if necessary), and there are
3202 no other loop exits, so we can return any value. */
3203 if (bl->reversed)
3205 if (loop_dump_stream)
3206 fprintf (loop_dump_stream,
3207 "Final biv value for %d, reversed biv.\n", bl->regno);
3209 return const0_rtx;
3212 /* Try to calculate the final value as initial value + (number of iterations
3213 * increment). For this to work, increment must be invariant, the only
3214 exit from the loop must be the fall through at the bottom (otherwise
3215 it may not have its final value when the loop exits), and the initial
3216 value of the biv must be invariant. */
3218 if (n_iterations != 0
3219 && ! loop->exit_count
3220 && loop_invariant_p (loop, bl->initial_value))
3222 increment = biv_total_increment (bl);
3224 if (increment && loop_invariant_p (loop, increment))
3226 /* Can calculate the loop exit value, emit insns after loop
3227 end to calculate this value into a temporary register in
3228 case it is needed later. */
3230 tem = gen_reg_rtx (bl->biv->mode);
3231 record_base_value (REGNO (tem), bl->biv->add_val, 0);
3232 loop_iv_add_mult_sink (loop, increment, GEN_INT (n_iterations),
3233 bl->initial_value, tem);
3235 if (loop_dump_stream)
3236 fprintf (loop_dump_stream,
3237 "Final biv value for %d, calculated.\n", bl->regno);
3239 return tem;
3243 /* Check to see if the biv is dead at all loop exits. */
3244 if (reg_dead_after_loop (loop, bl->biv->src_reg))
3246 if (loop_dump_stream)
3247 fprintf (loop_dump_stream,
3248 "Final biv value for %d, biv dead after loop exit.\n",
3249 bl->regno);
3251 return const0_rtx;
3254 return 0;
3257 /* Try to calculate the final value of the giv, the value it will have at
3258 the end of the loop. If we can do it, return that value. */
3261 final_giv_value (loop, v)
3262 const struct loop *loop;
3263 struct induction *v;
3265 struct loop_ivs *ivs = LOOP_IVS (loop);
3266 struct iv_class *bl;
3267 rtx insn;
3268 rtx increment, tem;
3269 rtx seq;
3270 rtx loop_end = loop->end;
3271 unsigned HOST_WIDE_INT n_iterations = LOOP_INFO (loop)->n_iterations;
3273 bl = REG_IV_CLASS (ivs, REGNO (v->src_reg));
3275 /* The final value for givs which depend on reversed bivs must be calculated
3276 differently than for ordinary givs. In this case, there is already an
3277 insn after the loop which sets this giv's final value (if necessary),
3278 and there are no other loop exits, so we can return any value. */
3279 if (bl->reversed)
3281 if (loop_dump_stream)
3282 fprintf (loop_dump_stream,
3283 "Final giv value for %d, depends on reversed biv\n",
3284 REGNO (v->dest_reg));
3285 return const0_rtx;
3288 /* Try to calculate the final value as a function of the biv it depends
3289 upon. The only exit from the loop must be the fall through at the bottom
3290 (otherwise it may not have its final value when the loop exits). */
3292 /* ??? Can calculate the final giv value by subtracting off the
3293 extra biv increments times the giv's mult_val. The loop must have
3294 only one exit for this to work, but the loop iterations does not need
3295 to be known. */
3297 if (n_iterations != 0
3298 && ! loop->exit_count)
3300 /* ?? It is tempting to use the biv's value here since these insns will
3301 be put after the loop, and hence the biv will have its final value
3302 then. However, this fails if the biv is subsequently eliminated.
3303 Perhaps determine whether biv's are eliminable before trying to
3304 determine whether giv's are replaceable so that we can use the
3305 biv value here if it is not eliminable. */
3307 /* We are emitting code after the end of the loop, so we must make
3308 sure that bl->initial_value is still valid then. It will still
3309 be valid if it is invariant. */
3311 increment = biv_total_increment (bl);
3313 if (increment && loop_invariant_p (loop, increment)
3314 && loop_invariant_p (loop, bl->initial_value))
3316 /* Can calculate the loop exit value of its biv as
3317 (n_iterations * increment) + initial_value */
3319 /* The loop exit value of the giv is then
3320 (final_biv_value - extra increments) * mult_val + add_val.
3321 The extra increments are any increments to the biv which
3322 occur in the loop after the giv's value is calculated.
3323 We must search from the insn that sets the giv to the end
3324 of the loop to calculate this value. */
3326 /* Put the final biv value in tem. */
3327 tem = gen_reg_rtx (v->mode);
3328 record_base_value (REGNO (tem), bl->biv->add_val, 0);
3329 loop_iv_add_mult_sink (loop, extend_value_for_giv (v, increment),
3330 GEN_INT (n_iterations),
3331 extend_value_for_giv (v, bl->initial_value),
3332 tem);
3334 /* Subtract off extra increments as we find them. */
3335 for (insn = NEXT_INSN (v->insn); insn != loop_end;
3336 insn = NEXT_INSN (insn))
3338 struct induction *biv;
3340 for (biv = bl->biv; biv; biv = biv->next_iv)
3341 if (biv->insn == insn)
3343 start_sequence ();
3344 tem = expand_simple_binop (GET_MODE (tem), MINUS, tem,
3345 biv->add_val, NULL_RTX, 0,
3346 OPTAB_LIB_WIDEN);
3347 seq = gen_sequence ();
3348 end_sequence ();
3349 loop_insn_sink (loop, seq);
3353 /* Now calculate the giv's final value. */
3354 loop_iv_add_mult_sink (loop, tem, v->mult_val, v->add_val, tem);
3356 if (loop_dump_stream)
3357 fprintf (loop_dump_stream,
3358 "Final giv value for %d, calc from biv's value.\n",
3359 REGNO (v->dest_reg));
3361 return tem;
3365 /* Replaceable giv's should never reach here. */
3366 if (v->replaceable)
3367 abort ();
3369 /* Check to see if the biv is dead at all loop exits. */
3370 if (reg_dead_after_loop (loop, v->dest_reg))
3372 if (loop_dump_stream)
3373 fprintf (loop_dump_stream,
3374 "Final giv value for %d, giv dead after loop exit.\n",
3375 REGNO (v->dest_reg));
3377 return const0_rtx;
3380 return 0;
3383 /* Look back before LOOP->START for the insn that sets REG and return
3384 the equivalent constant if there is a REG_EQUAL note otherwise just
3385 the SET_SRC of REG. */
3387 static rtx
3388 loop_find_equiv_value (loop, reg)
3389 const struct loop *loop;
3390 rtx reg;
3392 rtx loop_start = loop->start;
3393 rtx insn, set;
3394 rtx ret;
3396 ret = reg;
3397 for (insn = PREV_INSN (loop_start); insn; insn = PREV_INSN (insn))
3399 if (GET_CODE (insn) == CODE_LABEL)
3400 break;
3402 else if (INSN_P (insn) && reg_set_p (reg, insn))
3404 /* We found the last insn before the loop that sets the register.
3405 If it sets the entire register, and has a REG_EQUAL note,
3406 then use the value of the REG_EQUAL note. */
3407 if ((set = single_set (insn))
3408 && (SET_DEST (set) == reg))
3410 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3412 /* Only use the REG_EQUAL note if it is a constant.
3413 Other things, divide in particular, will cause
3414 problems later if we use them. */
3415 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST
3416 && CONSTANT_P (XEXP (note, 0)))
3417 ret = XEXP (note, 0);
3418 else
3419 ret = SET_SRC (set);
3421 /* We cannot do this if it changes between the
3422 assignment and loop start though. */
3423 if (modified_between_p (ret, insn, loop_start))
3424 ret = reg;
3426 break;
3429 return ret;
3432 /* Return a simplified rtx for the expression OP - REG.
3434 REG must appear in OP, and OP must be a register or the sum of a register
3435 and a second term.
3437 Thus, the return value must be const0_rtx or the second term.
3439 The caller is responsible for verifying that REG appears in OP and OP has
3440 the proper form. */
3442 static rtx
3443 subtract_reg_term (op, reg)
3444 rtx op, reg;
3446 if (op == reg)
3447 return const0_rtx;
3448 if (GET_CODE (op) == PLUS)
3450 if (XEXP (op, 0) == reg)
3451 return XEXP (op, 1);
3452 else if (XEXP (op, 1) == reg)
3453 return XEXP (op, 0);
3455 /* OP does not contain REG as a term. */
3456 abort ();
3459 /* Find and return register term common to both expressions OP0 and
3460 OP1 or NULL_RTX if no such term exists. Each expression must be a
3461 REG or a PLUS of a REG. */
3463 static rtx
3464 find_common_reg_term (op0, op1)
3465 rtx op0, op1;
3467 if ((GET_CODE (op0) == REG || GET_CODE (op0) == PLUS)
3468 && (GET_CODE (op1) == REG || GET_CODE (op1) == PLUS))
3470 rtx op00;
3471 rtx op01;
3472 rtx op10;
3473 rtx op11;
3475 if (GET_CODE (op0) == PLUS)
3476 op01 = XEXP (op0, 1), op00 = XEXP (op0, 0);
3477 else
3478 op01 = const0_rtx, op00 = op0;
3480 if (GET_CODE (op1) == PLUS)
3481 op11 = XEXP (op1, 1), op10 = XEXP (op1, 0);
3482 else
3483 op11 = const0_rtx, op10 = op1;
3485 /* Find and return common register term if present. */
3486 if (REG_P (op00) && (op00 == op10 || op00 == op11))
3487 return op00;
3488 else if (REG_P (op01) && (op01 == op10 || op01 == op11))
3489 return op01;
3492 /* No common register term found. */
3493 return NULL_RTX;
3496 /* Determine the loop iterator and calculate the number of loop
3497 iterations. Returns the exact number of loop iterations if it can
3498 be calculated, otherwise returns zero. */
3500 unsigned HOST_WIDE_INT
3501 loop_iterations (loop)
3502 struct loop *loop;
3504 struct loop_info *loop_info = LOOP_INFO (loop);
3505 struct loop_ivs *ivs = LOOP_IVS (loop);
3506 rtx comparison, comparison_value;
3507 rtx iteration_var, initial_value, increment, final_value;
3508 enum rtx_code comparison_code;
3509 HOST_WIDE_INT inc;
3510 unsigned HOST_WIDE_INT abs_inc;
3511 unsigned HOST_WIDE_INT abs_diff;
3512 int off_by_one;
3513 int increment_dir;
3514 int unsigned_p, compare_dir, final_larger;
3515 rtx last_loop_insn;
3516 rtx reg_term;
3517 struct iv_class *bl;
3519 loop_info->n_iterations = 0;
3520 loop_info->initial_value = 0;
3521 loop_info->initial_equiv_value = 0;
3522 loop_info->comparison_value = 0;
3523 loop_info->final_value = 0;
3524 loop_info->final_equiv_value = 0;
3525 loop_info->increment = 0;
3526 loop_info->iteration_var = 0;
3527 loop_info->unroll_number = 1;
3528 loop_info->iv = 0;
3530 /* We used to use prev_nonnote_insn here, but that fails because it might
3531 accidentally get the branch for a contained loop if the branch for this
3532 loop was deleted. We can only trust branches immediately before the
3533 loop_end. */
3534 last_loop_insn = PREV_INSN (loop->end);
3536 /* ??? We should probably try harder to find the jump insn
3537 at the end of the loop. The following code assumes that
3538 the last loop insn is a jump to the top of the loop. */
3539 if (GET_CODE (last_loop_insn) != JUMP_INSN)
3541 if (loop_dump_stream)
3542 fprintf (loop_dump_stream,
3543 "Loop iterations: No final conditional branch found.\n");
3544 return 0;
3547 /* If there is a more than a single jump to the top of the loop
3548 we cannot (easily) determine the iteration count. */
3549 if (LABEL_NUSES (JUMP_LABEL (last_loop_insn)) > 1)
3551 if (loop_dump_stream)
3552 fprintf (loop_dump_stream,
3553 "Loop iterations: Loop has multiple back edges.\n");
3554 return 0;
3557 /* If there are multiple conditionalized loop exit tests, they may jump
3558 back to differing CODE_LABELs. */
3559 if (loop->top && loop->cont)
3561 rtx temp = PREV_INSN (last_loop_insn);
3565 if (GET_CODE (temp) == JUMP_INSN)
3567 /* There are some kinds of jumps we can't deal with easily. */
3568 if (JUMP_LABEL (temp) == 0)
3570 if (loop_dump_stream)
3571 fprintf
3572 (loop_dump_stream,
3573 "Loop iterations: Jump insn has null JUMP_LABEL.\n");
3574 return 0;
3577 if (/* Previous unrolling may have generated new insns not
3578 covered by the uid_luid array. */
3579 INSN_UID (JUMP_LABEL (temp)) < max_uid_for_loop
3580 /* Check if we jump back into the loop body. */
3581 && INSN_LUID (JUMP_LABEL (temp)) > INSN_LUID (loop->top)
3582 && INSN_LUID (JUMP_LABEL (temp)) < INSN_LUID (loop->cont))
3584 if (loop_dump_stream)
3585 fprintf
3586 (loop_dump_stream,
3587 "Loop iterations: Loop has multiple back edges.\n");
3588 return 0;
3592 while ((temp = PREV_INSN (temp)) != loop->cont);
3595 /* Find the iteration variable. If the last insn is a conditional
3596 branch, and the insn before tests a register value, make that the
3597 iteration variable. */
3599 comparison = get_condition_for_loop (loop, last_loop_insn);
3600 if (comparison == 0)
3602 if (loop_dump_stream)
3603 fprintf (loop_dump_stream,
3604 "Loop iterations: No final comparison found.\n");
3605 return 0;
3608 /* ??? Get_condition may switch position of induction variable and
3609 invariant register when it canonicalizes the comparison. */
3611 comparison_code = GET_CODE (comparison);
3612 iteration_var = XEXP (comparison, 0);
3613 comparison_value = XEXP (comparison, 1);
3615 if (GET_CODE (iteration_var) != REG)
3617 if (loop_dump_stream)
3618 fprintf (loop_dump_stream,
3619 "Loop iterations: Comparison not against register.\n");
3620 return 0;
3623 /* The only new registers that are created before loop iterations
3624 are givs made from biv increments or registers created by
3625 load_mems. In the latter case, it is possible that try_copy_prop
3626 will propagate a new pseudo into the old iteration register but
3627 this will be marked by having the REG_USERVAR_P bit set. */
3629 if ((unsigned) REGNO (iteration_var) >= ivs->n_regs
3630 && ! REG_USERVAR_P (iteration_var))
3631 abort ();
3633 /* Determine the initial value of the iteration variable, and the amount
3634 that it is incremented each loop. Use the tables constructed by
3635 the strength reduction pass to calculate these values. */
3637 /* Clear the result values, in case no answer can be found. */
3638 initial_value = 0;
3639 increment = 0;
3641 /* The iteration variable can be either a giv or a biv. Check to see
3642 which it is, and compute the variable's initial value, and increment
3643 value if possible. */
3645 /* If this is a new register, can't handle it since we don't have any
3646 reg_iv_type entry for it. */
3647 if ((unsigned) REGNO (iteration_var) >= ivs->n_regs)
3649 if (loop_dump_stream)
3650 fprintf (loop_dump_stream,
3651 "Loop iterations: No reg_iv_type entry for iteration var.\n");
3652 return 0;
3655 /* Reject iteration variables larger than the host wide int size, since they
3656 could result in a number of iterations greater than the range of our
3657 `unsigned HOST_WIDE_INT' variable loop_info->n_iterations. */
3658 else if ((GET_MODE_BITSIZE (GET_MODE (iteration_var))
3659 > HOST_BITS_PER_WIDE_INT))
3661 if (loop_dump_stream)
3662 fprintf (loop_dump_stream,
3663 "Loop iterations: Iteration var rejected because mode too large.\n");
3664 return 0;
3666 else if (GET_MODE_CLASS (GET_MODE (iteration_var)) != MODE_INT)
3668 if (loop_dump_stream)
3669 fprintf (loop_dump_stream,
3670 "Loop iterations: Iteration var not an integer.\n");
3671 return 0;
3673 else if (REG_IV_TYPE (ivs, REGNO (iteration_var)) == BASIC_INDUCT)
3675 if (REGNO (iteration_var) >= ivs->n_regs)
3676 abort ();
3678 /* Grab initial value, only useful if it is a constant. */
3679 bl = REG_IV_CLASS (ivs, REGNO (iteration_var));
3680 initial_value = bl->initial_value;
3681 if (!bl->biv->always_executed || bl->biv->maybe_multiple)
3683 if (loop_dump_stream)
3684 fprintf (loop_dump_stream,
3685 "Loop iterations: Basic induction var not set once in each iteration.\n");
3686 return 0;
3689 increment = biv_total_increment (bl);
3691 else if (REG_IV_TYPE (ivs, REGNO (iteration_var)) == GENERAL_INDUCT)
3693 HOST_WIDE_INT offset = 0;
3694 struct induction *v = REG_IV_INFO (ivs, REGNO (iteration_var));
3695 rtx biv_initial_value;
3697 if (REGNO (v->src_reg) >= ivs->n_regs)
3698 abort ();
3700 if (!v->always_executed || v->maybe_multiple)
3702 if (loop_dump_stream)
3703 fprintf (loop_dump_stream,
3704 "Loop iterations: General induction var not set once in each iteration.\n");
3705 return 0;
3708 bl = REG_IV_CLASS (ivs, REGNO (v->src_reg));
3710 /* Increment value is mult_val times the increment value of the biv. */
3712 increment = biv_total_increment (bl);
3713 if (increment)
3715 struct induction *biv_inc;
3717 increment = fold_rtx_mult_add (v->mult_val,
3718 extend_value_for_giv (v, increment),
3719 const0_rtx, v->mode);
3720 /* The caller assumes that one full increment has occurred at the
3721 first loop test. But that's not true when the biv is incremented
3722 after the giv is set (which is the usual case), e.g.:
3723 i = 6; do {;} while (i++ < 9) .
3724 Therefore, we bias the initial value by subtracting the amount of
3725 the increment that occurs between the giv set and the giv test. */
3726 for (biv_inc = bl->biv; biv_inc; biv_inc = biv_inc->next_iv)
3728 if (loop_insn_first_p (v->insn, biv_inc->insn))
3729 offset -= INTVAL (biv_inc->add_val);
3732 if (loop_dump_stream)
3733 fprintf (loop_dump_stream,
3734 "Loop iterations: Giv iterator, initial value bias %ld.\n",
3735 (long) offset);
3737 /* Initial value is mult_val times the biv's initial value plus
3738 add_val. Only useful if it is a constant. */
3739 biv_initial_value = extend_value_for_giv (v, bl->initial_value);
3740 initial_value
3741 = fold_rtx_mult_add (v->mult_val,
3742 plus_constant (biv_initial_value, offset),
3743 v->add_val, v->mode);
3745 else
3747 if (loop_dump_stream)
3748 fprintf (loop_dump_stream,
3749 "Loop iterations: Not basic or general induction var.\n");
3750 return 0;
3753 if (initial_value == 0)
3754 return 0;
3756 unsigned_p = 0;
3757 off_by_one = 0;
3758 switch (comparison_code)
3760 case LEU:
3761 unsigned_p = 1;
3762 case LE:
3763 compare_dir = 1;
3764 off_by_one = 1;
3765 break;
3766 case GEU:
3767 unsigned_p = 1;
3768 case GE:
3769 compare_dir = -1;
3770 off_by_one = -1;
3771 break;
3772 case EQ:
3773 /* Cannot determine loop iterations with this case. */
3774 compare_dir = 0;
3775 break;
3776 case LTU:
3777 unsigned_p = 1;
3778 case LT:
3779 compare_dir = 1;
3780 break;
3781 case GTU:
3782 unsigned_p = 1;
3783 case GT:
3784 compare_dir = -1;
3785 case NE:
3786 compare_dir = 0;
3787 break;
3788 default:
3789 abort ();
3792 /* If the comparison value is an invariant register, then try to find
3793 its value from the insns before the start of the loop. */
3795 final_value = comparison_value;
3796 if (GET_CODE (comparison_value) == REG
3797 && loop_invariant_p (loop, comparison_value))
3799 final_value = loop_find_equiv_value (loop, comparison_value);
3801 /* If we don't get an invariant final value, we are better
3802 off with the original register. */
3803 if (! loop_invariant_p (loop, final_value))
3804 final_value = comparison_value;
3807 /* Calculate the approximate final value of the induction variable
3808 (on the last successful iteration). The exact final value
3809 depends on the branch operator, and increment sign. It will be
3810 wrong if the iteration variable is not incremented by one each
3811 time through the loop and (comparison_value + off_by_one -
3812 initial_value) % increment != 0.
3813 ??? Note that the final_value may overflow and thus final_larger
3814 will be bogus. A potentially infinite loop will be classified
3815 as immediate, e.g. for (i = 0x7ffffff0; i <= 0x7fffffff; i++) */
3816 if (off_by_one)
3817 final_value = plus_constant (final_value, off_by_one);
3819 /* Save the calculated values describing this loop's bounds, in case
3820 precondition_loop_p will need them later. These values can not be
3821 recalculated inside precondition_loop_p because strength reduction
3822 optimizations may obscure the loop's structure.
3824 These values are only required by precondition_loop_p and insert_bct
3825 whenever the number of iterations cannot be computed at compile time.
3826 Only the difference between final_value and initial_value is
3827 important. Note that final_value is only approximate. */
3828 loop_info->initial_value = initial_value;
3829 loop_info->comparison_value = comparison_value;
3830 loop_info->final_value = plus_constant (comparison_value, off_by_one);
3831 loop_info->increment = increment;
3832 loop_info->iteration_var = iteration_var;
3833 loop_info->comparison_code = comparison_code;
3834 loop_info->iv = bl;
3836 /* Try to determine the iteration count for loops such
3837 as (for i = init; i < init + const; i++). When running the
3838 loop optimization twice, the first pass often converts simple
3839 loops into this form. */
3841 if (REG_P (initial_value))
3843 rtx reg1;
3844 rtx reg2;
3845 rtx const2;
3847 reg1 = initial_value;
3848 if (GET_CODE (final_value) == PLUS)
3849 reg2 = XEXP (final_value, 0), const2 = XEXP (final_value, 1);
3850 else
3851 reg2 = final_value, const2 = const0_rtx;
3853 /* Check for initial_value = reg1, final_value = reg2 + const2,
3854 where reg1 != reg2. */
3855 if (REG_P (reg2) && reg2 != reg1)
3857 rtx temp;
3859 /* Find what reg1 is equivalent to. Hopefully it will
3860 either be reg2 or reg2 plus a constant. */
3861 temp = loop_find_equiv_value (loop, reg1);
3863 if (find_common_reg_term (temp, reg2))
3864 initial_value = temp;
3865 else
3867 /* Find what reg2 is equivalent to. Hopefully it will
3868 either be reg1 or reg1 plus a constant. Let's ignore
3869 the latter case for now since it is not so common. */
3870 temp = loop_find_equiv_value (loop, reg2);
3872 if (temp == loop_info->iteration_var)
3873 temp = initial_value;
3874 if (temp == reg1)
3875 final_value = (const2 == const0_rtx)
3876 ? reg1 : gen_rtx_PLUS (GET_MODE (reg1), reg1, const2);
3879 else if (loop->vtop && GET_CODE (reg2) == CONST_INT)
3881 rtx temp;
3883 /* When running the loop optimizer twice, check_dbra_loop
3884 further obfuscates reversible loops of the form:
3885 for (i = init; i < init + const; i++). We often end up with
3886 final_value = 0, initial_value = temp, temp = temp2 - init,
3887 where temp2 = init + const. If the loop has a vtop we
3888 can replace initial_value with const. */
3890 temp = loop_find_equiv_value (loop, reg1);
3892 if (GET_CODE (temp) == MINUS && REG_P (XEXP (temp, 0)))
3894 rtx temp2 = loop_find_equiv_value (loop, XEXP (temp, 0));
3896 if (GET_CODE (temp2) == PLUS
3897 && XEXP (temp2, 0) == XEXP (temp, 1))
3898 initial_value = XEXP (temp2, 1);
3903 /* If have initial_value = reg + const1 and final_value = reg +
3904 const2, then replace initial_value with const1 and final_value
3905 with const2. This should be safe since we are protected by the
3906 initial comparison before entering the loop if we have a vtop.
3907 For example, a + b < a + c is not equivalent to b < c for all a
3908 when using modulo arithmetic.
3910 ??? Without a vtop we could still perform the optimization if we check
3911 the initial and final values carefully. */
3912 if (loop->vtop
3913 && (reg_term = find_common_reg_term (initial_value, final_value)))
3915 initial_value = subtract_reg_term (initial_value, reg_term);
3916 final_value = subtract_reg_term (final_value, reg_term);
3919 loop_info->initial_equiv_value = initial_value;
3920 loop_info->final_equiv_value = final_value;
3922 /* For EQ comparison loops, we don't have a valid final value.
3923 Check this now so that we won't leave an invalid value if we
3924 return early for any other reason. */
3925 if (comparison_code == EQ)
3926 loop_info->final_equiv_value = loop_info->final_value = 0;
3928 if (increment == 0)
3930 if (loop_dump_stream)
3931 fprintf (loop_dump_stream,
3932 "Loop iterations: Increment value can't be calculated.\n");
3933 return 0;
3936 if (GET_CODE (increment) != CONST_INT)
3938 /* If we have a REG, check to see if REG holds a constant value. */
3939 /* ??? Other RTL, such as (neg (reg)) is possible here, but it isn't
3940 clear if it is worthwhile to try to handle such RTL. */
3941 if (GET_CODE (increment) == REG || GET_CODE (increment) == SUBREG)
3942 increment = loop_find_equiv_value (loop, increment);
3944 if (GET_CODE (increment) != CONST_INT)
3946 if (loop_dump_stream)
3948 fprintf (loop_dump_stream,
3949 "Loop iterations: Increment value not constant ");
3950 print_simple_rtl (loop_dump_stream, increment);
3951 fprintf (loop_dump_stream, ".\n");
3953 return 0;
3955 loop_info->increment = increment;
3958 if (GET_CODE (initial_value) != CONST_INT)
3960 if (loop_dump_stream)
3962 fprintf (loop_dump_stream,
3963 "Loop iterations: Initial value not constant ");
3964 print_simple_rtl (loop_dump_stream, initial_value);
3965 fprintf (loop_dump_stream, ".\n");
3967 return 0;
3969 else if (comparison_code == EQ)
3971 if (loop_dump_stream)
3972 fprintf (loop_dump_stream, "Loop iterations: EQ comparison loop.\n");
3973 return 0;
3975 else if (GET_CODE (final_value) != CONST_INT)
3977 if (loop_dump_stream)
3979 fprintf (loop_dump_stream,
3980 "Loop iterations: Final value not constant ");
3981 print_simple_rtl (loop_dump_stream, final_value);
3982 fprintf (loop_dump_stream, ".\n");
3984 return 0;
3987 /* Final_larger is 1 if final larger, 0 if they are equal, otherwise -1. */
3988 if (unsigned_p)
3989 final_larger
3990 = ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3991 > (unsigned HOST_WIDE_INT) INTVAL (initial_value))
3992 - ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3993 < (unsigned HOST_WIDE_INT) INTVAL (initial_value));
3994 else
3995 final_larger = (INTVAL (final_value) > INTVAL (initial_value))
3996 - (INTVAL (final_value) < INTVAL (initial_value));
3998 if (INTVAL (increment) > 0)
3999 increment_dir = 1;
4000 else if (INTVAL (increment) == 0)
4001 increment_dir = 0;
4002 else
4003 increment_dir = -1;
4005 /* There are 27 different cases: compare_dir = -1, 0, 1;
4006 final_larger = -1, 0, 1; increment_dir = -1, 0, 1.
4007 There are 4 normal cases, 4 reverse cases (where the iteration variable
4008 will overflow before the loop exits), 4 infinite loop cases, and 15
4009 immediate exit (0 or 1 iteration depending on loop type) cases.
4010 Only try to optimize the normal cases. */
4012 /* (compare_dir/final_larger/increment_dir)
4013 Normal cases: (0/-1/-1), (0/1/1), (-1/-1/-1), (1/1/1)
4014 Reverse cases: (0/-1/1), (0/1/-1), (-1/-1/1), (1/1/-1)
4015 Infinite loops: (0/-1/0), (0/1/0), (-1/-1/0), (1/1/0)
4016 Immediate exit: (0/0/X), (-1/0/X), (-1/1/X), (1/0/X), (1/-1/X) */
4018 /* ?? If the meaning of reverse loops (where the iteration variable
4019 will overflow before the loop exits) is undefined, then could
4020 eliminate all of these special checks, and just always assume
4021 the loops are normal/immediate/infinite. Note that this means
4022 the sign of increment_dir does not have to be known. Also,
4023 since it does not really hurt if immediate exit loops or infinite loops
4024 are optimized, then that case could be ignored also, and hence all
4025 loops can be optimized.
4027 According to ANSI Spec, the reverse loop case result is undefined,
4028 because the action on overflow is undefined.
4030 See also the special test for NE loops below. */
4032 if (final_larger == increment_dir && final_larger != 0
4033 && (final_larger == compare_dir || compare_dir == 0))
4034 /* Normal case. */
4036 else
4038 if (loop_dump_stream)
4039 fprintf (loop_dump_stream, "Loop iterations: Not normal loop.\n");
4040 return 0;
4043 /* Calculate the number of iterations, final_value is only an approximation,
4044 so correct for that. Note that abs_diff and n_iterations are
4045 unsigned, because they can be as large as 2^n - 1. */
4047 inc = INTVAL (increment);
4048 if (inc > 0)
4050 abs_diff = INTVAL (final_value) - INTVAL (initial_value);
4051 abs_inc = inc;
4053 else if (inc < 0)
4055 abs_diff = INTVAL (initial_value) - INTVAL (final_value);
4056 abs_inc = -inc;
4058 else
4059 abort ();
4061 /* Given that iteration_var is going to iterate over its own mode,
4062 not HOST_WIDE_INT, disregard higher bits that might have come
4063 into the picture due to sign extension of initial and final
4064 values. */
4065 abs_diff &= ((unsigned HOST_WIDE_INT) 1
4066 << (GET_MODE_BITSIZE (GET_MODE (iteration_var)) - 1)
4067 << 1) - 1;
4069 /* For NE tests, make sure that the iteration variable won't miss
4070 the final value. If abs_diff mod abs_incr is not zero, then the
4071 iteration variable will overflow before the loop exits, and we
4072 can not calculate the number of iterations. */
4073 if (compare_dir == 0 && (abs_diff % abs_inc) != 0)
4074 return 0;
4076 /* Note that the number of iterations could be calculated using
4077 (abs_diff + abs_inc - 1) / abs_inc, provided care was taken to
4078 handle potential overflow of the summation. */
4079 loop_info->n_iterations = abs_diff / abs_inc + ((abs_diff % abs_inc) != 0);
4080 return loop_info->n_iterations;
4083 /* Replace uses of split bivs with their split pseudo register. This is
4084 for original instructions which remain after loop unrolling without
4085 copying. */
4087 static rtx
4088 remap_split_bivs (loop, x)
4089 struct loop *loop;
4090 rtx x;
4092 struct loop_ivs *ivs = LOOP_IVS (loop);
4093 enum rtx_code code;
4094 int i;
4095 const char *fmt;
4097 if (x == 0)
4098 return x;
4100 code = GET_CODE (x);
4101 switch (code)
4103 case SCRATCH:
4104 case PC:
4105 case CC0:
4106 case CONST_INT:
4107 case CONST_DOUBLE:
4108 case CONST:
4109 case SYMBOL_REF:
4110 case LABEL_REF:
4111 return x;
4113 case REG:
4114 #if 0
4115 /* If non-reduced/final-value givs were split, then this would also
4116 have to remap those givs also. */
4117 #endif
4118 if (REGNO (x) < ivs->n_regs
4119 && REG_IV_TYPE (ivs, REGNO (x)) == BASIC_INDUCT)
4120 return REG_IV_CLASS (ivs, REGNO (x))->biv->src_reg;
4121 break;
4123 default:
4124 break;
4127 fmt = GET_RTX_FORMAT (code);
4128 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4130 if (fmt[i] == 'e')
4131 XEXP (x, i) = remap_split_bivs (loop, XEXP (x, i));
4132 else if (fmt[i] == 'E')
4134 int j;
4135 for (j = 0; j < XVECLEN (x, i); j++)
4136 XVECEXP (x, i, j) = remap_split_bivs (loop, XVECEXP (x, i, j));
4139 return x;
4142 /* If FIRST_UID is a set of REGNO, and FIRST_UID dominates LAST_UID (e.g.
4143 FIST_UID is always executed if LAST_UID is), then return 1. Otherwise
4144 return 0. COPY_START is where we can start looking for the insns
4145 FIRST_UID and LAST_UID. COPY_END is where we stop looking for these
4146 insns.
4148 If there is no JUMP_INSN between LOOP_START and FIRST_UID, then FIRST_UID
4149 must dominate LAST_UID.
4151 If there is a CODE_LABEL between FIRST_UID and LAST_UID, then FIRST_UID
4152 may not dominate LAST_UID.
4154 If there is no CODE_LABEL between FIRST_UID and LAST_UID, then FIRST_UID
4155 must dominate LAST_UID. */
4158 set_dominates_use (regno, first_uid, last_uid, copy_start, copy_end)
4159 int regno;
4160 int first_uid;
4161 int last_uid;
4162 rtx copy_start;
4163 rtx copy_end;
4165 int passed_jump = 0;
4166 rtx p = NEXT_INSN (copy_start);
4168 while (INSN_UID (p) != first_uid)
4170 if (GET_CODE (p) == JUMP_INSN)
4171 passed_jump = 1;
4172 /* Could not find FIRST_UID. */
4173 if (p == copy_end)
4174 return 0;
4175 p = NEXT_INSN (p);
4178 /* Verify that FIRST_UID is an insn that entirely sets REGNO. */
4179 if (! INSN_P (p) || ! dead_or_set_regno_p (p, regno))
4180 return 0;
4182 /* FIRST_UID is always executed. */
4183 if (passed_jump == 0)
4184 return 1;
4186 while (INSN_UID (p) != last_uid)
4188 /* If we see a CODE_LABEL between FIRST_UID and LAST_UID, then we
4189 can not be sure that FIRST_UID dominates LAST_UID. */
4190 if (GET_CODE (p) == CODE_LABEL)
4191 return 0;
4192 /* Could not find LAST_UID, but we reached the end of the loop, so
4193 it must be safe. */
4194 else if (p == copy_end)
4195 return 1;
4196 p = NEXT_INSN (p);
4199 /* FIRST_UID is always executed if LAST_UID is executed. */
4200 return 1;
4203 /* This routine is called when the number of iterations for the unrolled
4204 loop is one. The goal is to identify a loop that begins with an
4205 unconditional branch to the loop continuation note (or a label just after).
4206 In this case, the unconditional branch that starts the loop needs to be
4207 deleted so that we execute the single iteration. */
4209 static rtx
4210 ujump_to_loop_cont (loop_start, loop_cont)
4211 rtx loop_start;
4212 rtx loop_cont;
4214 rtx x, label, label_ref;
4216 /* See if loop start, or the next insn is an unconditional jump. */
4217 loop_start = next_nonnote_insn (loop_start);
4219 x = pc_set (loop_start);
4220 if (!x)
4221 return NULL_RTX;
4223 label_ref = SET_SRC (x);
4224 if (!label_ref)
4225 return NULL_RTX;
4227 /* Examine insn after loop continuation note. Return if not a label. */
4228 label = next_nonnote_insn (loop_cont);
4229 if (label == 0 || GET_CODE (label) != CODE_LABEL)
4230 return NULL_RTX;
4232 /* Return the loop start if the branch label matches the code label. */
4233 if (CODE_LABEL_NUMBER (label) == CODE_LABEL_NUMBER (XEXP (label_ref, 0)))
4234 return loop_start;
4235 else
4236 return NULL_RTX;