Import final gcc2 snapshot (990109)
[official-gcc.git] / gcc / config / mips / mips.h
blob0e5123dd32772d6fcbd71f1b385cad2a3e0e247b
1 /* Definitions of target machine for GNU compiler. MIPS version.
2 Copyright (C) 1989, 90-97, 1998 Free Software Foundation, Inc.
3 Contributed by A. Lichnewsky (lich@inria.inria.fr).
4 Changed by Michael Meissner (meissner@osf.org).
5 64 bit r4000 support by Ian Lance Taylor (ian@cygnus.com) and
6 Brendan Eich (brendan@microunity.com).
8 This file is part of GNU CC.
10 GNU CC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2, or (at your option)
13 any later version.
15 GNU CC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with GNU CC; see the file COPYING. If not, write to
22 the Free Software Foundation, 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
26 /* Standard GCC variables that we reference. */
28 extern char *asm_file_name;
29 extern char call_used_regs[];
30 extern int current_function_calls_alloca;
31 extern char *language_string;
32 extern int may_call_alloca;
33 extern char **save_argv;
34 extern int target_flags;
35 extern char *version_string;
37 /* MIPS external variables defined in mips.c. */
39 /* comparison type */
40 enum cmp_type {
41 CMP_SI, /* compare four byte integers */
42 CMP_DI, /* compare eight byte integers */
43 CMP_SF, /* compare single precision floats */
44 CMP_DF, /* compare double precision floats */
45 CMP_MAX /* max comparison type */
48 /* types of delay slot */
49 enum delay_type {
50 DELAY_NONE, /* no delay slot */
51 DELAY_LOAD, /* load from memory delay */
52 DELAY_HILO, /* move from/to hi/lo registers */
53 DELAY_FCMP /* delay after doing c.<xx>.{d,s} */
56 /* Which processor to schedule for. Since there is no difference between
57 a R2000 and R3000 in terms of the scheduler, we collapse them into
58 just an R3000. The elements of the enumeration must match exactly
59 the cpu attribute in the mips.md machine description. */
61 enum processor_type {
62 PROCESSOR_DEFAULT,
63 PROCESSOR_R3000,
64 PROCESSOR_R3900,
65 PROCESSOR_R6000,
66 PROCESSOR_R4000,
67 PROCESSOR_R4100,
68 PROCESSOR_R4300,
69 PROCESSOR_R4600,
70 PROCESSOR_R4650,
71 PROCESSOR_R5000,
72 PROCESSOR_R8000
75 /* Recast the cpu class to be the cpu attribute. */
76 #define mips_cpu_attr ((enum attr_cpu)mips_cpu)
78 /* Which ABI to use. These are constants because abi64.h must check their
79 value at preprocessing time. */
81 #define ABI_32 0
82 #define ABI_N32 1
83 #define ABI_64 2
84 #define ABI_EABI 3
86 #ifndef MIPS_ABI_DEFAULT
87 /* We define this away so that there is no extra runtime cost if the target
88 doesn't support multiple ABIs. */
89 #define mips_abi ABI_32
90 #else
91 extern int mips_abi;
92 #endif
94 /* Whether to emit abicalls code sequences or not. */
96 enum mips_abicalls_type {
97 MIPS_ABICALLS_NO,
98 MIPS_ABICALLS_YES
101 /* Recast the abicalls class to be the abicalls attribute. */
102 #define mips_abicalls_attr ((enum attr_abicalls)mips_abicalls)
104 /* Which type of block move to do (whether or not the last store is
105 split out so it can fill a branch delay slot). */
107 enum block_move_type {
108 BLOCK_MOVE_NORMAL, /* generate complete block move */
109 BLOCK_MOVE_NOT_LAST, /* generate all but last store */
110 BLOCK_MOVE_LAST /* generate just the last store */
113 extern char mips_reg_names[][8]; /* register names (a0 vs. $4). */
114 extern char mips_print_operand_punct[]; /* print_operand punctuation chars */
115 extern char *current_function_file; /* filename current function is in */
116 extern int num_source_filenames; /* current .file # */
117 extern int inside_function; /* != 0 if inside of a function */
118 extern int ignore_line_number; /* != 0 if we are to ignore next .loc */
119 extern int file_in_function_warning; /* warning given about .file in func */
120 extern int sdb_label_count; /* block start/end next label # */
121 extern int sdb_begin_function_line; /* Starting Line of current function */
122 extern int mips_section_threshold; /* # bytes of data/sdata cutoff */
123 extern int g_switch_value; /* value of the -G xx switch */
124 extern int g_switch_set; /* whether -G xx was passed. */
125 extern int sym_lineno; /* sgi next label # for each stmt */
126 extern int set_noreorder; /* # of nested .set noreorder's */
127 extern int set_nomacro; /* # of nested .set nomacro's */
128 extern int set_noat; /* # of nested .set noat's */
129 extern int set_volatile; /* # of nested .set volatile's */
130 extern int mips_branch_likely; /* emit 'l' after br (branch likely) */
131 extern int mips_dbx_regno[]; /* Map register # to debug register # */
132 extern struct rtx_def *branch_cmp[2]; /* operands for compare */
133 extern enum cmp_type branch_type; /* what type of branch to use */
134 extern enum processor_type mips_cpu; /* which cpu are we scheduling for */
135 extern enum mips_abicalls_type mips_abicalls;/* for svr4 abi pic calls */
136 extern int mips_isa; /* architectural level */
137 extern char *mips_cpu_string; /* for -mcpu=<xxx> */
138 extern char *mips_isa_string; /* for -mips{1,2,3,4} */
139 extern char *mips_abi_string; /* for -misa={32,n32,64} */
140 extern int mips_split_addresses; /* perform high/lo_sum support */
141 extern int dslots_load_total; /* total # load related delay slots */
142 extern int dslots_load_filled; /* # filled load delay slots */
143 extern int dslots_jump_total; /* total # jump related delay slots */
144 extern int dslots_jump_filled; /* # filled jump delay slots */
145 extern int dslots_number_nops; /* # of nops needed by previous insn */
146 extern int num_refs[3]; /* # 1/2/3 word references */
147 extern struct rtx_def *mips_load_reg; /* register to check for load delay */
148 extern struct rtx_def *mips_load_reg2; /* 2nd reg to check for load delay */
149 extern struct rtx_def *mips_load_reg3; /* 3rd reg to check for load delay */
150 extern struct rtx_def *mips_load_reg4; /* 4th reg to check for load delay */
151 extern struct rtx_def *embedded_pic_fnaddr_rtx; /* function address */
153 /* Functions within mips.c that we reference. Some of these return type
154 HOST_WIDE_INT, so define that here. This is a copy of code in machmode.h.
156 ??? It would be good to try to put this as common code someplace. */
158 #ifndef HOST_BITS_PER_WIDE_INT
160 #if HOST_BITS_PER_LONG > HOST_BITS_PER_INT
161 #define HOST_BITS_PER_WIDE_INT HOST_BITS_PER_LONG
162 #define HOST_WIDE_INT long
163 #else
164 #define HOST_BITS_PER_WIDE_INT HOST_BITS_PER_INT
165 #define HOST_WIDE_INT int
166 #endif
168 #endif
170 extern void abort_with_insn ();
171 extern int arith32_operand ();
172 extern int arith_operand ();
173 extern int cmp_op ();
174 extern HOST_WIDE_INT compute_frame_size ();
175 extern int epilogue_reg_mentioned_p ();
176 extern void expand_block_move ();
177 extern int equality_op ();
178 extern void final_prescan_insn ();
179 extern struct rtx_def * function_arg ();
180 extern void function_arg_advance ();
181 extern int function_arg_partial_nregs ();
182 extern int function_arg_pass_by_reference ();
183 extern void function_epilogue ();
184 extern void function_prologue ();
185 extern void gen_conditional_branch ();
186 extern void gen_conditional_move ();
187 extern struct rtx_def * gen_int_relational ();
188 extern void init_cumulative_args ();
189 extern int large_int ();
190 extern int mips_address_cost ();
191 extern void mips_asm_file_end ();
192 extern void mips_asm_file_start ();
193 extern int mips_const_double_ok ();
194 extern void mips_count_memory_refs ();
195 extern HOST_WIDE_INT mips_debugger_offset ();
196 extern void mips_declare_object ();
197 extern int mips_epilogue_delay_slots ();
198 extern void mips_expand_epilogue ();
199 extern void mips_expand_prologue ();
200 extern int mips_check_split ();
201 extern char *mips_fill_delay_slot ();
202 extern char *mips_move_1word ();
203 extern char *mips_move_2words ();
204 extern void mips_output_double ();
205 extern int mips_output_external ();
206 extern void mips_output_float ();
207 extern void mips_output_filename ();
208 extern void mips_output_lineno ();
209 extern char *output_block_move ();
210 extern void override_options ();
211 extern int pc_or_label_operand ();
212 extern void print_operand_address ();
213 extern void print_operand ();
214 extern void print_options ();
215 extern int reg_or_0_operand ();
216 extern int simple_epilogue_p ();
217 extern int simple_memory_operand ();
218 extern int small_int ();
219 extern void trace ();
220 extern int uns_arith_operand ();
221 extern struct rtx_def * embedded_pic_offset ();
223 /* Recognition functions that return if a condition is true. */
224 extern int address_operand ();
225 extern int const_double_operand ();
226 extern int const_int_operand ();
227 extern int general_operand ();
228 extern int immediate_operand ();
229 extern int memory_address_p ();
230 extern int memory_operand ();
231 extern int nonimmediate_operand ();
232 extern int nonmemory_operand ();
233 extern int register_operand ();
234 extern int scratch_operand ();
235 extern int move_operand ();
236 extern int movdi_operand ();
237 extern int se_register_operand ();
238 extern int se_reg_or_0_operand ();
239 extern int se_uns_arith_operand ();
240 extern int se_arith_operand ();
241 extern int se_nonmemory_operand ();
242 extern int se_nonimmediate_operand ();
244 /* Functions to change what output section we are using. */
245 extern void data_section ();
246 extern void rdata_section ();
247 extern void readonly_data_section ();
248 extern void sdata_section ();
249 extern void text_section ();
251 /* Stubs for half-pic support if not OSF/1 reference platform. */
253 #ifndef HALF_PIC_P
254 #define HALF_PIC_P() 0
255 #define HALF_PIC_NUMBER_PTRS 0
256 #define HALF_PIC_NUMBER_REFS 0
257 #define HALF_PIC_ENCODE(DECL)
258 #define HALF_PIC_DECLARE(NAME)
259 #define HALF_PIC_INIT() error ("half-pic init called on systems that don't support it.")
260 #define HALF_PIC_ADDRESS_P(X) 0
261 #define HALF_PIC_PTR(X) X
262 #define HALF_PIC_FINISH(STREAM)
263 #endif
266 /* Run-time compilation parameters selecting different hardware subsets. */
268 /* Macros used in the machine description to test the flags. */
270 /* Bits for real switches */
271 #define MASK_INT64 0x00000001 /* ints are 64 bits */
272 #define MASK_LONG64 0x00000002 /* longs and pointers are 64 bits */
273 #define MASK_SPLIT_ADDR 0x00000004 /* Address splitting is enabled. */
274 #define MASK_GPOPT 0x00000008 /* Optimize for global pointer */
275 #define MASK_GAS 0x00000010 /* Gas used instead of MIPS as */
276 #define MASK_NAME_REGS 0x00000020 /* Use MIPS s/w reg name convention */
277 #define MASK_STATS 0x00000040 /* print statistics to stderr */
278 #define MASK_MEMCPY 0x00000080 /* call memcpy instead of inline code*/
279 #define MASK_SOFT_FLOAT 0x00000100 /* software floating point */
280 #define MASK_FLOAT64 0x00000200 /* fp registers are 64 bits */
281 #define MASK_ABICALLS 0x00000400 /* emit .abicalls/.cprestore/.cpload */
282 #define MASK_HALF_PIC 0x00000800 /* Emit OSF-style pic refs to externs*/
283 #define MASK_LONG_CALLS 0x00001000 /* Always call through a register */
284 #define MASK_64BIT 0x00002000 /* Use 64 bit GP registers and insns */
285 #define MASK_EMBEDDED_PIC 0x00004000 /* Generate embedded PIC code */
286 #define MASK_EMBEDDED_DATA 0x00008000 /* Reduce RAM usage, not fast code */
287 #define MASK_BIG_ENDIAN 0x00010000 /* Generate big endian code */
288 #define MASK_SINGLE_FLOAT 0x00020000 /* Only single precision FPU. */
289 #define MASK_MAD 0x00040000 /* Generate mad/madu as on 4650. */
290 #define MASK_4300_MUL_FIX 0x00080000 /* Work-around early Vr4300 CPU bug */
291 #define MASK_MIPS3900 0x00100000 /* like -mips1 only 3900 */
293 /* Dummy switches used only in spec's*/
294 #define MASK_MIPS_TFILE 0x00000000 /* flag for mips-tfile usage */
296 /* Debug switches, not documented */
297 #define MASK_DEBUG 0x40000000 /* Eliminate version # in .s file */
298 #define MASK_DEBUG_A 0x20000000 /* don't allow <label>($reg) addrs */
299 #define MASK_DEBUG_B 0x10000000 /* GO_IF_LEGITIMATE_ADDRESS debug */
300 #define MASK_DEBUG_C 0x08000000 /* don't expand seq, etc. */
301 #define MASK_DEBUG_D 0x04000000 /* don't do define_split's */
302 #define MASK_DEBUG_E 0x02000000 /* function_arg debug */
303 #define MASK_DEBUG_F 0x01000000 /* don't try to suppress load nop's */
304 #define MASK_DEBUG_G 0x00800000 /* don't support 64 bit arithmetic */
305 #define MASK_DEBUG_H 0x00400000 /* allow ints in FP registers */
306 #define MASK_DEBUG_I 0x00200000 /* unused */
308 /* r4000 64 bit sizes */
309 #define TARGET_INT64 (target_flags & MASK_INT64)
310 #define TARGET_LONG64 (target_flags & MASK_LONG64)
311 #define TARGET_FLOAT64 (target_flags & MASK_FLOAT64)
312 #define TARGET_64BIT (target_flags & MASK_64BIT)
314 /* Mips vs. GNU linker */
315 #define TARGET_SPLIT_ADDRESSES (target_flags & MASK_SPLIT_ADDR)
317 /* generate mips 3900 insns */
318 #define TARGET_MIPS3900 (target_flags & MASK_MIPS3900)
320 /* Mips vs. GNU assembler */
321 #define TARGET_GAS (target_flags & MASK_GAS)
322 #define TARGET_UNIX_ASM (!TARGET_GAS)
323 #define TARGET_MIPS_AS TARGET_UNIX_ASM
325 /* Debug Mode */
326 #define TARGET_DEBUG_MODE (target_flags & MASK_DEBUG)
327 #define TARGET_DEBUG_A_MODE (target_flags & MASK_DEBUG_A)
328 #define TARGET_DEBUG_B_MODE (target_flags & MASK_DEBUG_B)
329 #define TARGET_DEBUG_C_MODE (target_flags & MASK_DEBUG_C)
330 #define TARGET_DEBUG_D_MODE (target_flags & MASK_DEBUG_D)
331 #define TARGET_DEBUG_E_MODE (target_flags & MASK_DEBUG_E)
332 #define TARGET_DEBUG_F_MODE (target_flags & MASK_DEBUG_F)
333 #define TARGET_DEBUG_G_MODE (target_flags & MASK_DEBUG_G)
334 #define TARGET_DEBUG_H_MODE (target_flags & MASK_DEBUG_H)
335 #define TARGET_DEBUG_I_MODE (target_flags & MASK_DEBUG_I)
337 /* Reg. Naming in .s ($21 vs. $a0) */
338 #define TARGET_NAME_REGS (target_flags & MASK_NAME_REGS)
340 /* Optimize for Sdata/Sbss */
341 #define TARGET_GP_OPT (target_flags & MASK_GPOPT)
343 /* print program statistics */
344 #define TARGET_STATS (target_flags & MASK_STATS)
346 /* call memcpy instead of inline code */
347 #define TARGET_MEMCPY (target_flags & MASK_MEMCPY)
349 /* .abicalls, etc from Pyramid V.4 */
350 #define TARGET_ABICALLS (target_flags & MASK_ABICALLS)
352 /* OSF pic references to externs */
353 #define TARGET_HALF_PIC (target_flags & MASK_HALF_PIC)
355 /* software floating point */
356 #define TARGET_SOFT_FLOAT (target_flags & MASK_SOFT_FLOAT)
357 #define TARGET_HARD_FLOAT (! TARGET_SOFT_FLOAT)
359 /* always call through a register */
360 #define TARGET_LONG_CALLS (target_flags & MASK_LONG_CALLS)
362 /* generate embedded PIC code;
363 requires gas. */
364 #define TARGET_EMBEDDED_PIC (target_flags & MASK_EMBEDDED_PIC)
366 /* for embedded systems, optimize for
367 reduced RAM space instead of for
368 fastest code. */
369 #define TARGET_EMBEDDED_DATA (target_flags & MASK_EMBEDDED_DATA)
371 /* generate big endian code. */
372 #define TARGET_BIG_ENDIAN (target_flags & MASK_BIG_ENDIAN)
374 #define TARGET_SINGLE_FLOAT (target_flags & MASK_SINGLE_FLOAT)
375 #define TARGET_DOUBLE_FLOAT (! TARGET_SINGLE_FLOAT)
377 #define TARGET_MAD (target_flags & MASK_MAD)
379 #define TARGET_4300_MUL_FIX (target_flags & MASK_4300_MUL_FIX)
381 /* This is true if we must enable the assembly language file switching
382 code. */
384 #define TARGET_FILE_SWITCHING (TARGET_GP_OPT && ! TARGET_GAS)
386 /* We must disable the function end stabs when doing the file switching trick,
387 because the Lscope stabs end up in the wrong place, making it impossible
388 to debug the resulting code. */
389 #define NO_DBX_FUNCTION_END TARGET_FILE_SWITCHING
391 /* Macro to define tables used to set the flags.
392 This is a list in braces of pairs in braces,
393 each pair being { "NAME", VALUE }
394 where VALUE is the bits to set or minus the bits to clear.
395 An empty string NAME is used to identify the default VALUE. */
397 #define TARGET_SWITCHES \
399 {"int64", MASK_INT64 | MASK_LONG64}, \
400 {"long64", MASK_LONG64}, \
401 {"split-addresses", MASK_SPLIT_ADDR}, \
402 {"no-split-addresses", -MASK_SPLIT_ADDR}, \
403 {"mips-as", -MASK_GAS}, \
404 {"gas", MASK_GAS}, \
405 {"rnames", MASK_NAME_REGS}, \
406 {"no-rnames", -MASK_NAME_REGS}, \
407 {"gpOPT", MASK_GPOPT}, \
408 {"gpopt", MASK_GPOPT}, \
409 {"no-gpOPT", -MASK_GPOPT}, \
410 {"no-gpopt", -MASK_GPOPT}, \
411 {"stats", MASK_STATS}, \
412 {"no-stats", -MASK_STATS}, \
413 {"memcpy", MASK_MEMCPY}, \
414 {"no-memcpy", -MASK_MEMCPY}, \
415 {"mips-tfile", MASK_MIPS_TFILE}, \
416 {"no-mips-tfile", -MASK_MIPS_TFILE}, \
417 {"soft-float", MASK_SOFT_FLOAT}, \
418 {"hard-float", -MASK_SOFT_FLOAT}, \
419 {"fp64", MASK_FLOAT64}, \
420 {"fp32", -MASK_FLOAT64}, \
421 {"gp64", MASK_64BIT}, \
422 {"gp32", -MASK_64BIT}, \
423 {"abicalls", MASK_ABICALLS}, \
424 {"no-abicalls", -MASK_ABICALLS}, \
425 {"half-pic", MASK_HALF_PIC}, \
426 {"no-half-pic", -MASK_HALF_PIC}, \
427 {"long-calls", MASK_LONG_CALLS}, \
428 {"no-long-calls", -MASK_LONG_CALLS}, \
429 {"embedded-pic", MASK_EMBEDDED_PIC}, \
430 {"no-embedded-pic", -MASK_EMBEDDED_PIC}, \
431 {"embedded-data", MASK_EMBEDDED_DATA}, \
432 {"no-embedded-data", -MASK_EMBEDDED_DATA}, \
433 {"eb", MASK_BIG_ENDIAN}, \
434 {"el", -MASK_BIG_ENDIAN}, \
435 {"single-float", MASK_SINGLE_FLOAT}, \
436 {"double-float", -MASK_SINGLE_FLOAT}, \
437 {"mad", MASK_MAD}, \
438 {"no-mad", -MASK_MAD}, \
439 {"fix4300", MASK_4300_MUL_FIX}, \
440 {"no-fix4300", -MASK_4300_MUL_FIX}, \
441 {"4650", MASK_MAD | MASK_SINGLE_FLOAT}, \
442 {"3900", MASK_MIPS3900}, \
443 {"debug", MASK_DEBUG}, \
444 {"debuga", MASK_DEBUG_A}, \
445 {"debugb", MASK_DEBUG_B}, \
446 {"debugc", MASK_DEBUG_C}, \
447 {"debugd", MASK_DEBUG_D}, \
448 {"debuge", MASK_DEBUG_E}, \
449 {"debugf", MASK_DEBUG_F}, \
450 {"debugg", MASK_DEBUG_G}, \
451 {"debugh", MASK_DEBUG_H}, \
452 {"debugi", MASK_DEBUG_I}, \
453 {"", (TARGET_DEFAULT \
454 | TARGET_CPU_DEFAULT \
455 | TARGET_ENDIAN_DEFAULT)} \
458 /* Default target_flags if no switches are specified */
460 #ifndef TARGET_DEFAULT
461 #define TARGET_DEFAULT 0
462 #endif
464 #ifndef TARGET_CPU_DEFAULT
465 #define TARGET_CPU_DEFAULT 0
466 #endif
468 #ifndef TARGET_ENDIAN_DEFAULT
469 #ifndef DECSTATION
470 #define TARGET_ENDIAN_DEFAULT MASK_BIG_ENDIAN
471 #else
472 #define TARGET_ENDIAN_DEFAULT 0
473 #endif
474 #endif
476 #ifndef MULTILIB_DEFAULTS
477 #if TARGET_ENDIAN_DEFAULT == 0
478 #define MULTILIB_DEFAULTS { "EL", "mips1" }
479 #else
480 #define MULTILIB_DEFAULTS { "EB", "mips1" }
481 #endif
482 #endif
484 /* We must pass -EL to the linker by default for little endian embedded
485 targets using linker scripts with a OUTPUT_FORMAT line. Otherwise, the
486 linker will default to using big-endian output files. The OUTPUT_FORMAT
487 line must be in the linker script, otherwise -EB/-EL will not work. */
489 #ifndef LINKER_ENDIAN_SPEC
490 #if TARGET_ENDIAN_DEFAULT == 0
491 #define LINKER_ENDIAN_SPEC "%{!EB:%{!meb:-EL}}"
492 #else
493 #define LINKER_ENDIAN_SPEC ""
494 #endif
495 #endif
497 /* This macro is similar to `TARGET_SWITCHES' but defines names of
498 command options that have values. Its definition is an
499 initializer with a subgrouping for each command option.
501 Each subgrouping contains a string constant, that defines the
502 fixed part of the option name, and the address of a variable.
503 The variable, type `char *', is set to the variable part of the
504 given option if the fixed part matches. The actual option name
505 is made by appending `-m' to the specified name.
507 Here is an example which defines `-mshort-data-NUMBER'. If the
508 given option is `-mshort-data-512', the variable `m88k_short_data'
509 will be set to the string `"512"'.
511 extern char *m88k_short_data;
512 #define TARGET_OPTIONS { { "short-data-", &m88k_short_data } } */
514 #define TARGET_OPTIONS \
516 SUBTARGET_TARGET_OPTIONS \
517 { "cpu=", &mips_cpu_string }, \
518 { "ips", &mips_isa_string } \
521 /* This is meant to be redefined in the host dependent files. */
522 #define SUBTARGET_TARGET_OPTIONS
524 #define GENERATE_BRANCHLIKELY (TARGET_MIPS3900 || (mips_isa >= 2))
525 #define GENERATE_MULT3 (TARGET_MIPS3900)
526 #define GENERATE_MADD (TARGET_MIPS3900)
530 /* Macros to decide whether certain features are available or not,
531 depending on the instruction set architecture level. */
533 #define BRANCH_LIKELY_P() GENERATE_BRANCHLIKELY
534 #define HAVE_SQRT_P() (mips_isa >= 2)
536 /* CC1_SPEC causes -mips3 and -mips4 to set -mfp64 and -mgp64; -mips1 or
537 -mips2 sets -mfp32 and -mgp32. This can be overridden by an explicit
538 -mfp32, -mfp64, -mgp32 or -mgp64. -mfp64 sets MASK_FLOAT64 in
539 target_flags, and -mgp64 sets MASK_64BIT.
541 Setting MASK_64BIT in target_flags will cause gcc to assume that
542 registers are 64 bits wide. int, long and void * will be 32 bit;
543 this may be changed with -mint64 or -mlong64.
545 The gen* programs link code that refers to MASK_64BIT. They don't
546 actually use the information in target_flags; they just refer to
547 it. */
549 /* Switch Recognition by gcc.c. Add -G xx support */
551 #ifdef SWITCH_TAKES_ARG
552 #undef SWITCH_TAKES_ARG
553 #endif
555 #define SWITCH_TAKES_ARG(CHAR) \
556 (DEFAULT_SWITCH_TAKES_ARG (CHAR) || (CHAR) == 'G')
558 /* Sometimes certain combinations of command options do not make sense
559 on a particular target machine. You can define a macro
560 `OVERRIDE_OPTIONS' to take account of this. This macro, if
561 defined, is executed once just after all the command options have
562 been parsed.
564 On the MIPS, it is used to handle -G. We also use it to set up all
565 of the tables referenced in the other macros. */
567 #define OVERRIDE_OPTIONS override_options ()
569 /* Zero or more C statements that may conditionally modify two
570 variables `fixed_regs' and `call_used_regs' (both of type `char
571 []') after they have been initialized from the two preceding
572 macros.
574 This is necessary in case the fixed or call-clobbered registers
575 depend on target flags.
577 You need not define this macro if it has no work to do.
579 If the usage of an entire class of registers depends on the target
580 flags, you may indicate this to GCC by using this macro to modify
581 `fixed_regs' and `call_used_regs' to 1 for each of the registers in
582 the classes which should not be used by GCC. Also define the macro
583 `REG_CLASS_FROM_LETTER' to return `NO_REGS' if it is called with a
584 letter for a class that shouldn't be used.
586 (However, if this class is not included in `GENERAL_REGS' and all
587 of the insn patterns whose constraints permit this class are
588 controlled by target switches, then GCC will automatically avoid
589 using these registers when the target switches are opposed to
590 them.) */
592 #define CONDITIONAL_REGISTER_USAGE \
593 do \
595 if (!TARGET_HARD_FLOAT) \
597 int regno; \
599 for (regno = FP_REG_FIRST; regno <= FP_REG_LAST; regno++) \
600 fixed_regs[regno] = call_used_regs[regno] = 1; \
601 for (regno = ST_REG_FIRST; regno <= ST_REG_LAST; regno++) \
602 fixed_regs[regno] = call_used_regs[regno] = 1; \
604 else if (mips_isa < 4) \
606 int regno; \
608 /* We only have a single condition code register. We \
609 implement this by hiding all the condition code registers, \
610 and generating RTL that refers directly to ST_REG_FIRST. */ \
611 for (regno = ST_REG_FIRST; regno <= ST_REG_LAST; regno++) \
612 fixed_regs[regno] = call_used_regs[regno] = 1; \
614 SUBTARGET_CONDITIONAL_REGISTER_USAGE \
616 while (0)
618 /* This is meant to be redefined in the host dependent files. */
619 #define SUBTARGET_CONDITIONAL_REGISTER_USAGE
621 /* Show we can debug even without a frame pointer. */
622 #define CAN_DEBUG_WITHOUT_FP
624 /* Complain about missing specs and predefines that should be defined in each
625 of the target tm files to override the defaults. This is mostly a place-
626 holder until I can get each of the files updated [mm]. */
628 #if defined(OSF_OS) \
629 || defined(DECSTATION) \
630 || defined(SGI_TARGET) \
631 || defined(MIPS_NEWS) \
632 || defined(MIPS_SYSV) \
633 || defined(MIPS_SVR4) \
634 || defined(MIPS_BSD43)
636 #ifndef CPP_PREDEFINES
637 #error "Define CPP_PREDEFINES in the appropriate tm.h file"
638 #endif
640 #ifndef LIB_SPEC
641 #error "Define LIB_SPEC in the appropriate tm.h file"
642 #endif
644 #ifndef STARTFILE_SPEC
645 #error "Define STARTFILE_SPEC in the appropriate tm.h file"
646 #endif
648 #ifndef MACHINE_TYPE
649 #error "Define MACHINE_TYPE in the appropriate tm.h file"
650 #endif
651 #endif
653 /* Tell collect what flags to pass to nm. */
654 #ifndef NM_FLAGS
655 #define NM_FLAGS "-Bp"
656 #endif
659 /* Names to predefine in the preprocessor for this target machine. */
661 #ifndef CPP_PREDEFINES
662 #define CPP_PREDEFINES "-Dmips -Dunix -Dhost_mips -DMIPSEB -DR3000 -DSYSTYPE_BSD43 \
663 -D_mips -D_unix -D_host_mips -D_MIPSEB -D_R3000 -D_SYSTYPE_BSD43 \
664 -Asystem(unix) -Asystem(bsd) -Acpu(mips) -Amachine(mips)"
665 #endif
667 /* Assembler specs. */
669 /* MIPS_AS_ASM_SPEC is passed when using the MIPS assembler rather
670 than gas. */
672 #define MIPS_AS_ASM_SPEC "\
673 %{!.s:-nocpp} %{.s: %{cpp} %{nocpp}} \
674 %{pipe: %e-pipe is not supported.} \
675 %{K} %(subtarget_mips_as_asm_spec)"
677 /* SUBTARGET_MIPS_AS_ASM_SPEC is passed when using the MIPS assembler
678 rather than gas. It may be overridden by subtargets. */
680 #ifndef SUBTARGET_MIPS_AS_ASM_SPEC
681 #define SUBTARGET_MIPS_AS_ASM_SPEC "%{v}"
682 #endif
684 /* GAS_ASM_SPEC is passed when using gas, rather than the MIPS
685 assembler. */
687 #define GAS_ASM_SPEC "%{mcpu=*} %{m4650} %{mmad:-m4650} %{m3900} %{v}"
689 /* TARGET_ASM_SPEC is used to select either MIPS_AS_ASM_SPEC or
690 GAS_ASM_SPEC as the default, depending upon the value of
691 TARGET_DEFAULT. */
693 #if ((TARGET_CPU_DEFAULT | TARGET_DEFAULT) & MASK_GAS) != 0
694 /* GAS */
696 #define TARGET_ASM_SPEC "\
697 %{mmips-as: %(mips_as_asm_spec)} \
698 %{!mmips-as: %(gas_asm_spec)}"
700 #else /* not GAS */
702 #define TARGET_ASM_SPEC "\
703 %{!mgas: %(mips_as_asm_spec)} \
704 %{mgas: %(gas_asm_spec)}"
706 #endif /* not GAS */
708 /* SUBTARGET_ASM_OPTIMIZING_SPEC handles passing optimization options
709 to the assembler. It may be overridden by subtargets. */
710 #ifndef SUBTARGET_ASM_OPTIMIZING_SPEC
711 #define SUBTARGET_ASM_OPTIMIZING_SPEC "\
712 %{noasmopt:-O0} \
713 %{!noasmopt:%{O:-O2} %{O1:-O2} %{O2:-O2} %{O3:-O3}}"
714 #endif
716 /* SUBTARGET_ASM_DEBUGGING_SPEC handles passing debugging options to
717 the assembler. It may be overridden by subtargets. */
718 #ifndef SUBTARGET_ASM_DEBUGGING_SPEC
719 #define SUBTARGET_ASM_DEBUGGING_SPEC "\
720 %{g} %{g0} %{g1} %{g2} %{g3} \
721 %{ggdb:-g} %{ggdb0:-g0} %{ggdb1:-g1} %{ggdb2:-g2} %{ggdb3:-g3} \
722 %{gstabs:-g} %{gstabs0:-g0} %{gstabs1:-g1} %{gstabs2:-g2} %{gstabs3:-g3} \
723 %{gstabs+:-g} %{gstabs+0:-g0} %{gstabs+1:-g1} %{gstabs+2:-g2} %{gstabs+3:-g3} \
724 %{gcoff:-g} %{gcoff0:-g0} %{gcoff1:-g1} %{gcoff2:-g2} %{gcoff3:-g3}"
725 #endif
727 /* SUBTARGET_ASM_SPEC is always passed to the assembler. It may be
728 overridden by subtargets. */
730 #ifndef SUBTARGET_ASM_SPEC
731 #define SUBTARGET_ASM_SPEC ""
732 #endif
734 /* ASM_SPEC is the set of arguments to pass to the assembler. */
736 #define ASM_SPEC "\
737 %{G*} %{EB} %{EL} %{mips1} %{mips2} %{mips3} %{mips4} \
738 %(subtarget_asm_optimizing_spec) \
739 %(subtarget_asm_debugging_spec) \
740 %{membedded-pic} \
741 %{mabi=32:-32}%{mabi=o32:-32}%{mabi=n32:-n32}%{mabi=64:-64}%{mabi=n64:-64} \
742 %(target_asm_spec) \
743 %(subtarget_asm_spec)"
745 /* Specify to run a post-processor, mips-tfile after the assembler
746 has run to stuff the mips debug information into the object file.
747 This is needed because the $#!%^ MIPS assembler provides no way
748 of specifying such information in the assembly file. If we are
749 cross compiling, disable mips-tfile unless the user specifies
750 -mmips-tfile. */
752 #ifndef ASM_FINAL_SPEC
753 #if ((TARGET_CPU_DEFAULT | TARGET_DEFAULT) & MASK_GAS) != 0
754 /* GAS */
755 #define ASM_FINAL_SPEC "\
756 %{mmips-as: %{!mno-mips-tfile: \
757 \n mips-tfile %{v*: -v} \
758 %{K: -I %b.o~} \
759 %{!K: %{save-temps: -I %b.o~}} \
760 %{c:%W{o*}%{!o*:-o %b.o}}%{!c:-o %U.o} \
761 %{.s:%i} %{!.s:%g.s}}}"
763 #else
764 /* not GAS */
765 #define ASM_FINAL_SPEC "\
766 %{!mgas: %{!mno-mips-tfile: \
767 \n mips-tfile %{v*: -v} \
768 %{K: -I %b.o~} \
769 %{!K: %{save-temps: -I %b.o~}} \
770 %{c:%W{o*}%{!o*:-o %b.o}}%{!c:-o %U.o} \
771 %{.s:%i} %{!.s:%g.s}}}"
773 #endif
774 #endif /* ASM_FINAL_SPEC */
776 /* Redefinition of libraries used. Mips doesn't support normal
777 UNIX style profiling via calling _mcount. It does offer
778 profiling that samples the PC, so do what we can... */
780 #ifndef LIB_SPEC
781 #define LIB_SPEC "%{pg:-lprof1} %{p:-lprof1} -lc"
782 #endif
784 /* Extra switches sometimes passed to the linker. */
785 /* ??? The bestGnum will never be passed to the linker, because the gcc driver
786 will interpret it as a -b option. */
788 #ifndef LINK_SPEC
789 #define LINK_SPEC "\
790 %{G*} %{EB} %{EL} %{mips1} %{mips2} %{mips3} %{mips4} \
791 %{bestGnum} %{shared} %{non_shared} \
792 %(linker_endian_spec)"
793 #endif /* LINK_SPEC defined */
795 /* Specs for the compiler proper */
797 /* SUBTARGET_CC1_SPEC is passed to the compiler proper. It may be
798 overridden by subtargets. */
799 #ifndef SUBTARGET_CC1_SPEC
800 #define SUBTARGET_CC1_SPEC ""
801 #endif
803 /* CC1_SPEC is the set of arguments to pass to the compiler proper. */
805 #ifndef CC1_SPEC
806 #define CC1_SPEC "\
807 %{gline:%{!g:%{!g0:%{!g1:%{!g2: -g1}}}}} \
808 %{mips1:-mfp32 -mgp32} %{mips2:-mfp32 -mgp32}\
809 %{mips3:%{!msingle-float:%{!m4650:-mfp64}} -mgp64} \
810 %{mips4:%{!msingle-float:%{!m4650:-mfp64}} -mgp64} \
811 %{mfp64:%{msingle-float:%emay not use both -mfp64 and -msingle-float}} \
812 %{mfp64:%{m4650:%emay not use both -mfp64 and -m4650}} \
813 %{m4650:-mcpu=r4650} \
814 %{m3900:-mips1 -mcpu=r3900 -mfp32 -mgp32} \
815 %{G*} %{EB:-meb} %{EL:-mel} %{EB:%{EL:%emay not use both -EB and -EL}} \
816 %{pic-none: -mno-half-pic} \
817 %{pic-lib: -mhalf-pic} \
818 %{pic-extern: -mhalf-pic} \
819 %{pic-calls: -mhalf-pic} \
820 %{save-temps: } \
821 %(subtarget_cc1_spec) "
822 #endif
824 /* Preprocessor specs. */
826 /* SUBTARGET_CPP_SIZE_SPEC defines SIZE_TYPE and PTRDIFF_TYPE. It may
827 be overridden by subtargets. */
829 #ifndef SUBTARGET_CPP_SIZE_SPEC
830 #define SUBTARGET_CPP_SIZE_SPEC "\
831 %{mlong64:-D__SIZE_TYPE__=long\\ unsigned\\ int -D__PTRDIFF_TYPE__=long\\ int} \
832 %{!mlong64:-D__SIZE_TYPE__=unsigned\\ int -D__PTRDIFF_TYPE__=int}"
833 #endif
835 /* SUBTARGET_CPP_SPEC is passed to the preprocessor. It may be
836 overridden by subtargets. */
837 #ifndef SUBTARGET_CPP_SPEC
838 #define SUBTARGET_CPP_SPEC ""
839 #endif
841 /* If we're using 64bit longs, then we have to define __LONG_MAX__
842 correctly. Similarly for 64bit ints and __INT_MAX__. */
843 #ifndef LONG_MAX_SPEC
844 #if ((TARGET_DEFAULT | TARGET_CPU_DEFAULT) & MASK_LONG64)
845 #define LONG_MAX_SPEC "%{!mno-long64:-D__LONG_MAX__=9223372036854775807L}"
846 #else
847 #define LONG_MAX_SPEC "%{mlong64:-D__LONG_MAX__=9223372036854775807L}"
848 #endif
849 #endif
851 /* CPP_SPEC is the set of arguments to pass to the preprocessor. */
853 #ifndef CPP_SPEC
854 #define CPP_SPEC "\
855 %{.cc: -D__LANGUAGE_C_PLUS_PLUS -D_LANGUAGE_C_PLUS_PLUS} \
856 %{.cxx: -D__LANGUAGE_C_PLUS_PLUS -D_LANGUAGE_C_PLUS_PLUS} \
857 %{.C: -D__LANGUAGE_C_PLUS_PLUS -D_LANGUAGE_C_PLUS_PLUS} \
858 %{.m: -D__LANGUAGE_OBJECTIVE_C -D_LANGUAGE_OBJECTIVE_C -D__LANGUAGE_C -D_LANGUAGE_C} \
859 %{.S: -D__LANGUAGE_ASSEMBLY -D_LANGUAGE_ASSEMBLY %{!ansi:-DLANGUAGE_ASSEMBLY}} \
860 %{.s: -D__LANGUAGE_ASSEMBLY -D_LANGUAGE_ASSEMBLY %{!ansi:-DLANGUAGE_ASSEMBLY}} \
861 %{!.S: %{!.s: %{!.cc: %{!.cxx: %{!.C: %{!.m: -D__LANGUAGE_C -D_LANGUAGE_C %{!ansi:-DLANGUAGE_C}}}}}}} \
862 %(subtarget_cpp_size_spec) \
863 %{mips3:-U__mips -D__mips=3 -D__mips64} \
864 %{mips4:-U__mips -D__mips=4 -D__mips64} \
865 %{mgp32:-U__mips64} %{mgp64:-D__mips64} \
866 %{msingle-float:%{!msoft-float:-D__mips_single_float}} \
867 %{m4650:%{!msoft-float:-D__mips_single_float}} \
868 %{msoft-float:-D__mips_soft_float} \
869 %{mabi=eabi:-D__mips_eabi} \
870 %{EB:-UMIPSEL -U_MIPSEL -U__MIPSEL -U__MIPSEL__ -D_MIPSEB -D__MIPSEB -D__MIPSEB__ %{!ansi:-DMIPSEB}} \
871 %{EL:-UMIPSEB -U_MIPSEB -U__MIPSEB -U__MIPSEB__ -D_MIPSEL -D__MIPSEL -D__MIPSEL__ %{!ansi:-DMIPSEL}} \
872 %(long_max_spec) \
873 %(subtarget_cpp_spec) "
874 #endif
876 /* This macro defines names of additional specifications to put in the specs
877 that can be used in various specifications like CC1_SPEC. Its definition
878 is an initializer with a subgrouping for each command option.
880 Each subgrouping contains a string constant, that defines the
881 specification name, and a string constant that used by the GNU CC driver
882 program.
884 Do not define this macro if it does not need to do anything. */
886 #define EXTRA_SPECS \
887 { "subtarget_cc1_spec", SUBTARGET_CC1_SPEC }, \
888 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
889 { "subtarget_cpp_size_spec", SUBTARGET_CPP_SIZE_SPEC }, \
890 { "long_max_spec", LONG_MAX_SPEC }, \
891 { "mips_as_asm_spec", MIPS_AS_ASM_SPEC }, \
892 { "gas_asm_spec", GAS_ASM_SPEC }, \
893 { "target_asm_spec", TARGET_ASM_SPEC }, \
894 { "subtarget_mips_as_asm_spec", SUBTARGET_MIPS_AS_ASM_SPEC }, \
895 { "subtarget_asm_optimizing_spec", SUBTARGET_ASM_OPTIMIZING_SPEC }, \
896 { "subtarget_asm_debugging_spec", SUBTARGET_ASM_DEBUGGING_SPEC }, \
897 { "subtarget_asm_spec", SUBTARGET_ASM_SPEC }, \
898 { "linker_endian_spec", LINKER_ENDIAN_SPEC }, \
899 SUBTARGET_EXTRA_SPECS
901 #ifndef SUBTARGET_EXTRA_SPECS
902 #define SUBTARGET_EXTRA_SPECS
903 #endif
905 /* If defined, this macro is an additional prefix to try after
906 `STANDARD_EXEC_PREFIX'. */
908 #ifndef MD_EXEC_PREFIX
909 #define MD_EXEC_PREFIX "/usr/lib/cmplrs/cc/"
910 #endif
912 #ifndef MD_STARTFILE_PREFIX
913 #define MD_STARTFILE_PREFIX "/usr/lib/cmplrs/cc/"
914 #endif
917 /* Print subsidiary information on the compiler version in use. */
919 #define MIPS_VERSION "[AL 1.1, MM 40]"
921 #ifndef MACHINE_TYPE
922 #define MACHINE_TYPE "BSD Mips"
923 #endif
925 #ifndef TARGET_VERSION_INTERNAL
926 #define TARGET_VERSION_INTERNAL(STREAM) \
927 fprintf (STREAM, " %s %s", MIPS_VERSION, MACHINE_TYPE)
928 #endif
930 #ifndef TARGET_VERSION
931 #define TARGET_VERSION TARGET_VERSION_INTERNAL (stderr)
932 #endif
935 #define SDB_DEBUGGING_INFO /* generate info for mips-tfile */
936 #define DBX_DEBUGGING_INFO /* generate stabs (OSF/rose) */
937 #define MIPS_DEBUGGING_INFO /* MIPS specific debugging info */
939 #ifndef PREFERRED_DEBUGGING_TYPE /* assume SDB_DEBUGGING_INFO */
940 #define PREFERRED_DEBUGGING_TYPE SDB_DEBUG
941 #endif
943 /* By default, turn on GDB extensions. */
944 #define DEFAULT_GDB_EXTENSIONS 1
946 /* If we are passing smuggling stabs through the MIPS ECOFF object
947 format, put a comment in front of the .stab<x> operation so
948 that the MIPS assembler does not choke. The mips-tfile program
949 will correctly put the stab into the object file. */
951 #define ASM_STABS_OP ((TARGET_GAS) ? ".stabs" : " #.stabs")
952 #define ASM_STABN_OP ((TARGET_GAS) ? ".stabn" : " #.stabn")
953 #define ASM_STABD_OP ((TARGET_GAS) ? ".stabd" : " #.stabd")
955 /* Local compiler-generated symbols must have a prefix that the assembler
956 understands. By default, this is $, although some targets (e.g.,
957 NetBSD-ELF) need to override this. */
959 #ifndef LOCAL_LABEL_PREFIX
960 #define LOCAL_LABEL_PREFIX "$"
961 #endif
963 /* By default on the mips, external symbols do not have an underscore
964 prepended, but some targets (e.g., NetBSD) require this. */
966 #ifndef USER_LABEL_PREFIX
967 #define USER_LABEL_PREFIX ""
968 #endif
970 /* Forward references to tags are allowed. */
971 #define SDB_ALLOW_FORWARD_REFERENCES
973 /* Unknown tags are also allowed. */
974 #define SDB_ALLOW_UNKNOWN_REFERENCES
976 /* On Sun 4, this limit is 2048. We use 1500 to be safe,
977 since the length can run past this up to a continuation point. */
978 #define DBX_CONTIN_LENGTH 1500
980 /* How to renumber registers for dbx and gdb. */
981 #define DBX_REGISTER_NUMBER(REGNO) mips_dbx_regno[ (REGNO) ]
983 /* The mapping from gcc register number to DWARF 2 CFA column number.
984 This mapping does not allow for tracking register 0, since SGI's broken
985 dwarf reader thinks column 0 is used for the frame address, but since
986 register 0 is fixed this is not a problem. */
987 #define DWARF_FRAME_REGNUM(REG) \
988 (REG == GP_REG_FIRST + 31 ? DWARF_FRAME_RETURN_COLUMN : REG)
990 /* The DWARF 2 CFA column which tracks the return address. */
991 #define DWARF_FRAME_RETURN_COLUMN (FP_REG_LAST + 1)
993 /* Before the prologue, RA lives in r31. */
994 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, GP_REG_FIRST + 31)
996 /* Overrides for the COFF debug format. */
997 #define PUT_SDB_SCL(a) \
998 do { \
999 extern FILE *asm_out_text_file; \
1000 fprintf (asm_out_text_file, "\t.scl\t%d;", (a)); \
1001 } while (0)
1003 #define PUT_SDB_INT_VAL(a) \
1004 do { \
1005 extern FILE *asm_out_text_file; \
1006 fprintf (asm_out_text_file, "\t.val\t%d;", (a)); \
1007 } while (0)
1009 #define PUT_SDB_VAL(a) \
1010 do { \
1011 extern FILE *asm_out_text_file; \
1012 fputs ("\t.val\t", asm_out_text_file); \
1013 output_addr_const (asm_out_text_file, (a)); \
1014 fputc (';', asm_out_text_file); \
1015 } while (0)
1017 #define PUT_SDB_DEF(a) \
1018 do { \
1019 extern FILE *asm_out_text_file; \
1020 fprintf (asm_out_text_file, "\t%s.def\t", \
1021 (TARGET_GAS) ? "" : "#"); \
1022 ASM_OUTPUT_LABELREF (asm_out_text_file, a); \
1023 fputc (';', asm_out_text_file); \
1024 } while (0)
1026 #define PUT_SDB_PLAIN_DEF(a) \
1027 do { \
1028 extern FILE *asm_out_text_file; \
1029 fprintf (asm_out_text_file, "\t%s.def\t.%s;", \
1030 (TARGET_GAS) ? "" : "#", (a)); \
1031 } while (0)
1033 #define PUT_SDB_ENDEF \
1034 do { \
1035 extern FILE *asm_out_text_file; \
1036 fprintf (asm_out_text_file, "\t.endef\n"); \
1037 } while (0)
1039 #define PUT_SDB_TYPE(a) \
1040 do { \
1041 extern FILE *asm_out_text_file; \
1042 fprintf (asm_out_text_file, "\t.type\t0x%x;", (a)); \
1043 } while (0)
1045 #define PUT_SDB_SIZE(a) \
1046 do { \
1047 extern FILE *asm_out_text_file; \
1048 fprintf (asm_out_text_file, "\t.size\t%d;", (a)); \
1049 } while (0)
1051 #define PUT_SDB_DIM(a) \
1052 do { \
1053 extern FILE *asm_out_text_file; \
1054 fprintf (asm_out_text_file, "\t.dim\t%d;", (a)); \
1055 } while (0)
1057 #ifndef PUT_SDB_START_DIM
1058 #define PUT_SDB_START_DIM \
1059 do { \
1060 extern FILE *asm_out_text_file; \
1061 fprintf (asm_out_text_file, "\t.dim\t"); \
1062 } while (0)
1063 #endif
1065 #ifndef PUT_SDB_NEXT_DIM
1066 #define PUT_SDB_NEXT_DIM(a) \
1067 do { \
1068 extern FILE *asm_out_text_file; \
1069 fprintf (asm_out_text_file, "%d,", a); \
1070 } while (0)
1071 #endif
1073 #ifndef PUT_SDB_LAST_DIM
1074 #define PUT_SDB_LAST_DIM(a) \
1075 do { \
1076 extern FILE *asm_out_text_file; \
1077 fprintf (asm_out_text_file, "%d;", a); \
1078 } while (0)
1079 #endif
1081 #define PUT_SDB_TAG(a) \
1082 do { \
1083 extern FILE *asm_out_text_file; \
1084 fprintf (asm_out_text_file, "\t.tag\t"); \
1085 ASM_OUTPUT_LABELREF (asm_out_text_file, a); \
1086 fputc (';', asm_out_text_file); \
1087 } while (0)
1089 /* For block start and end, we create labels, so that
1090 later we can figure out where the correct offset is.
1091 The normal .ent/.end serve well enough for functions,
1092 so those are just commented out. */
1094 #define PUT_SDB_BLOCK_START(LINE) \
1095 do { \
1096 extern FILE *asm_out_text_file; \
1097 fprintf (asm_out_text_file, \
1098 "%sLb%d:\n\t%s.begin\t%sLb%d\t%d\n", \
1099 LOCAL_LABEL_PREFIX, \
1100 sdb_label_count, \
1101 (TARGET_GAS) ? "" : "#", \
1102 LOCAL_LABEL_PREFIX, \
1103 sdb_label_count, \
1104 (LINE)); \
1105 sdb_label_count++; \
1106 } while (0)
1108 #define PUT_SDB_BLOCK_END(LINE) \
1109 do { \
1110 extern FILE *asm_out_text_file; \
1111 fprintf (asm_out_text_file, \
1112 "%sLe%d:\n\t%s.bend\t%sLe%d\t%d\n", \
1113 LOCAL_LABEL_PREFIX, \
1114 sdb_label_count, \
1115 (TARGET_GAS) ? "" : "#", \
1116 LOCAL_LABEL_PREFIX, \
1117 sdb_label_count, \
1118 (LINE)); \
1119 sdb_label_count++; \
1120 } while (0)
1122 #define PUT_SDB_FUNCTION_START(LINE)
1124 #define PUT_SDB_FUNCTION_END(LINE) \
1125 do { \
1126 extern FILE *asm_out_text_file; \
1127 ASM_OUTPUT_SOURCE_LINE (asm_out_text_file, LINE + sdb_begin_function_line); \
1128 } while (0)
1130 #define PUT_SDB_EPILOGUE_END(NAME)
1132 #define PUT_SDB_SRC_FILE(FILENAME) \
1133 do { \
1134 extern FILE *asm_out_text_file; \
1135 output_file_directive (asm_out_text_file, (FILENAME)); \
1136 } while (0)
1138 #define SDB_GENERATE_FAKE(BUFFER, NUMBER) \
1139 sprintf ((BUFFER), ".%dfake", (NUMBER));
1141 /* Correct the offset of automatic variables and arguments. Note that
1142 the MIPS debug format wants all automatic variables and arguments
1143 to be in terms of the virtual frame pointer (stack pointer before
1144 any adjustment in the function), while the MIPS 3.0 linker wants
1145 the frame pointer to be the stack pointer after the initial
1146 adjustment. */
1148 #define DEBUGGER_AUTO_OFFSET(X) \
1149 mips_debugger_offset (X, (HOST_WIDE_INT) 0)
1150 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \
1151 mips_debugger_offset (X, (HOST_WIDE_INT) OFFSET)
1153 /* Tell collect that the object format is ECOFF */
1154 #ifndef OBJECT_FORMAT_ROSE
1155 #define OBJECT_FORMAT_COFF /* Object file looks like COFF */
1156 #define EXTENDED_COFF /* ECOFF, not normal coff */
1157 #endif
1159 #if 0 /* These definitions normally have no effect because
1160 MIPS systems define USE_COLLECT2, so
1161 assemble_constructor does nothing anyway. */
1163 /* Don't use the default definitions, because we don't have gld.
1164 Also, we don't want stabs when generating ECOFF output.
1165 Instead we depend on collect to handle these. */
1167 #define ASM_OUTPUT_CONSTRUCTOR(file, name)
1168 #define ASM_OUTPUT_DESTRUCTOR(file, name)
1170 #endif /* 0 */
1172 /* Target machine storage layout */
1174 /* Define in order to support both big and little endian float formats
1175 in the same gcc binary. */
1176 #define REAL_ARITHMETIC
1178 /* Define this if most significant bit is lowest numbered
1179 in instructions that operate on numbered bit-fields.
1181 #define BITS_BIG_ENDIAN 0
1183 /* Define this if most significant byte of a word is the lowest numbered. */
1184 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
1186 /* Define this if most significant word of a multiword number is the lowest. */
1187 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
1189 /* Define this to set the endianness to use in libgcc2.c, which can
1190 not depend on target_flags. */
1191 #if !defined(MIPSEL) && !defined(__MIPSEL__)
1192 #define LIBGCC2_WORDS_BIG_ENDIAN 1
1193 #else
1194 #define LIBGCC2_WORDS_BIG_ENDIAN 0
1195 #endif
1197 /* Number of bits in an addressable storage unit */
1198 #define BITS_PER_UNIT 8
1200 /* Width in bits of a "word", which is the contents of a machine register.
1201 Note that this is not necessarily the width of data type `int';
1202 if using 16-bit ints on a 68000, this would still be 32.
1203 But on a machine with 16-bit registers, this would be 16. */
1204 #define BITS_PER_WORD (TARGET_64BIT ? 64 : 32)
1205 #define MAX_BITS_PER_WORD 64
1207 /* Width of a word, in units (bytes). */
1208 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
1209 #define MIN_UNITS_PER_WORD 4
1211 /* For MIPS, width of a floating point register. */
1212 #define UNITS_PER_FPREG (TARGET_FLOAT64 ? 8 : 4)
1214 /* A C expression for the size in bits of the type `int' on the
1215 target machine. If you don't define this, the default is one
1216 word. */
1217 #define INT_TYPE_SIZE (TARGET_INT64 ? 64 : 32)
1218 #define MAX_INT_TYPE_SIZE 64
1220 /* Tell the preprocessor the maximum size of wchar_t. */
1221 #ifndef MAX_WCHAR_TYPE_SIZE
1222 #ifndef WCHAR_TYPE_SIZE
1223 #define MAX_WCHAR_TYPE_SIZE MAX_INT_TYPE_SIZE
1224 #endif
1225 #endif
1227 /* A C expression for the size in bits of the type `short' on the
1228 target machine. If you don't define this, the default is half a
1229 word. (If this would be less than one storage unit, it is
1230 rounded up to one unit.) */
1231 #define SHORT_TYPE_SIZE 16
1233 /* A C expression for the size in bits of the type `long' on the
1234 target machine. If you don't define this, the default is one
1235 word. */
1236 #define LONG_TYPE_SIZE (TARGET_LONG64 ? 64 : 32)
1237 #define MAX_LONG_TYPE_SIZE 64
1239 /* A C expression for the size in bits of the type `long long' on the
1240 target machine. If you don't define this, the default is two
1241 words. */
1242 #define LONG_LONG_TYPE_SIZE 64
1244 /* A C expression for the size in bits of the type `char' on the
1245 target machine. If you don't define this, the default is one
1246 quarter of a word. (If this would be less than one storage unit,
1247 it is rounded up to one unit.) */
1248 #define CHAR_TYPE_SIZE BITS_PER_UNIT
1250 /* A C expression for the size in bits of the type `float' on the
1251 target machine. If you don't define this, the default is one
1252 word. */
1253 #define FLOAT_TYPE_SIZE 32
1255 /* A C expression for the size in bits of the type `double' on the
1256 target machine. If you don't define this, the default is two
1257 words. */
1258 #define DOUBLE_TYPE_SIZE 64
1260 /* A C expression for the size in bits of the type `long double' on
1261 the target machine. If you don't define this, the default is two
1262 words. */
1263 #define LONG_DOUBLE_TYPE_SIZE 64
1265 /* Width in bits of a pointer.
1266 See also the macro `Pmode' defined below. */
1267 #define POINTER_SIZE (TARGET_LONG64 ? 64 : 32)
1269 /* Allocation boundary (in *bits*) for storing pointers in memory. */
1270 #define POINTER_BOUNDARY (TARGET_LONG64 ? 64 : 32)
1272 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
1273 #define PARM_BOUNDARY (TARGET_64BIT ? 64 : 32)
1275 /* Allocation boundary (in *bits*) for the code of a function. */
1276 #define FUNCTION_BOUNDARY 32
1278 /* Alignment of field after `int : 0' in a structure. */
1279 #define EMPTY_FIELD_BOUNDARY 32
1281 /* Every structure's size must be a multiple of this. */
1282 /* 8 is observed right on a DECstation and on riscos 4.02. */
1283 #define STRUCTURE_SIZE_BOUNDARY 8
1285 /* There is no point aligning anything to a rounder boundary than this. */
1286 #define BIGGEST_ALIGNMENT 64
1288 /* Set this nonzero if move instructions will actually fail to work
1289 when given unaligned data. */
1290 #define STRICT_ALIGNMENT 1
1292 /* Define this if you wish to imitate the way many other C compilers
1293 handle alignment of bitfields and the structures that contain
1294 them.
1296 The behavior is that the type written for a bitfield (`int',
1297 `short', or other integer type) imposes an alignment for the
1298 entire structure, as if the structure really did contain an
1299 ordinary field of that type. In addition, the bitfield is placed
1300 within the structure so that it would fit within such a field,
1301 not crossing a boundary for it.
1303 Thus, on most machines, a bitfield whose type is written as `int'
1304 would not cross a four-byte boundary, and would force four-byte
1305 alignment for the whole structure. (The alignment used may not
1306 be four bytes; it is controlled by the other alignment
1307 parameters.)
1309 If the macro is defined, its definition should be a C expression;
1310 a nonzero value for the expression enables this behavior. */
1312 #define PCC_BITFIELD_TYPE_MATTERS 1
1314 /* If defined, a C expression to compute the alignment given to a
1315 constant that is being placed in memory. CONSTANT is the constant
1316 and ALIGN is the alignment that the object would ordinarily have.
1317 The value of this macro is used instead of that alignment to align
1318 the object.
1320 If this macro is not defined, then ALIGN is used.
1322 The typical use of this macro is to increase alignment for string
1323 constants to be word aligned so that `strcpy' calls that copy
1324 constants can be done inline. */
1326 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
1327 ((TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR) \
1328 && (ALIGN) < BITS_PER_WORD \
1329 ? BITS_PER_WORD \
1330 : (ALIGN))
1332 /* If defined, a C expression to compute the alignment for a static
1333 variable. TYPE is the data type, and ALIGN is the alignment that
1334 the object would ordinarily have. The value of this macro is used
1335 instead of that alignment to align the object.
1337 If this macro is not defined, then ALIGN is used.
1339 One use of this macro is to increase alignment of medium-size
1340 data to make it all fit in fewer cache lines. Another is to
1341 cause character arrays to be word-aligned so that `strcpy' calls
1342 that copy constants to character arrays can be done inline. */
1344 #undef DATA_ALIGNMENT
1345 #define DATA_ALIGNMENT(TYPE, ALIGN) \
1346 ((((ALIGN) < BITS_PER_WORD) \
1347 && (TREE_CODE (TYPE) == ARRAY_TYPE \
1348 || TREE_CODE (TYPE) == UNION_TYPE \
1349 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
1351 /* Define this macro if an argument declared as `char' or `short' in a
1352 prototype should actually be passed as an `int'. In addition to
1353 avoiding errors in certain cases of mismatch, it also makes for
1354 better code on certain machines. */
1356 #define PROMOTE_PROTOTYPES
1358 /* Define if operations between registers always perform the operation
1359 on the full register even if a narrower mode is specified. */
1360 #define WORD_REGISTER_OPERATIONS
1362 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1363 will either zero-extend or sign-extend. The value of this macro should
1364 be the code that says which one of the two operations is implicitly
1365 done, NIL if none. */
1366 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1368 /* Standard register usage. */
1370 /* Number of actual hardware registers.
1371 The hardware registers are assigned numbers for the compiler
1372 from 0 to just below FIRST_PSEUDO_REGISTER.
1373 All registers that the compiler knows about must be given numbers,
1374 even those that are not normally considered general registers.
1376 On the Mips, we have 32 integer registers, 32 floating point
1377 registers, 8 condition code registers, and the special registers
1378 hi, lo, hilo, and rap. The 8 condition code registers are only
1379 used if mips_isa >= 4. The hilo register is only used in 64 bit
1380 mode. It represents a 64 bit value stored as two 32 bit values in
1381 the hi and lo registers; this is the result of the mult
1382 instruction. rap is a pointer to the stack where the return
1383 address reg ($31) was stored. This is needed for C++ exception
1384 handling. */
1386 #define FIRST_PSEUDO_REGISTER 76
1388 /* 1 for registers that have pervasive standard uses
1389 and are not available for the register allocator.
1391 On the MIPS, see conventions, page D-2 */
1393 #define FIXED_REGISTERS \
1395 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1396 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, \
1397 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1398 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1399 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 \
1403 /* 1 for registers not available across function calls.
1404 These must include the FIXED_REGISTERS and also any
1405 registers that can be used without being saved.
1406 The latter must include the registers where values are returned
1407 and the register where structure-value addresses are passed.
1408 Aside from that, you can include as many other registers as you like. */
1410 #define CALL_USED_REGISTERS \
1412 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1413 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, \
1414 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1415 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1416 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
1420 /* Internal macros to classify a register number as to whether it's a
1421 general purpose register, a floating point register, a
1422 multiply/divide register, or a status register. */
1424 #define GP_REG_FIRST 0
1425 #define GP_REG_LAST 31
1426 #define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
1427 #define GP_DBX_FIRST 0
1429 #define FP_REG_FIRST 32
1430 #define FP_REG_LAST 63
1431 #define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
1432 #define FP_DBX_FIRST ((write_symbols == DBX_DEBUG) ? 38 : 32)
1434 #define MD_REG_FIRST 64
1435 #define MD_REG_LAST 66
1436 #define MD_REG_NUM (MD_REG_LAST - MD_REG_FIRST + 1)
1438 #define ST_REG_FIRST 67
1439 #define ST_REG_LAST 74
1440 #define ST_REG_NUM (ST_REG_LAST - ST_REG_FIRST + 1)
1442 #define RAP_REG_NUM 75
1444 #define AT_REGNUM (GP_REG_FIRST + 1)
1445 #define HI_REGNUM (MD_REG_FIRST + 0)
1446 #define LO_REGNUM (MD_REG_FIRST + 1)
1447 #define HILO_REGNUM (MD_REG_FIRST + 2)
1449 /* FPSW_REGNUM is the single condition code used if mips_isa < 4. If
1450 mips_isa >= 4, it should not be used, and an arbitrary ST_REG
1451 should be used instead. */
1452 #define FPSW_REGNUM ST_REG_FIRST
1454 #define GP_REG_P(REGNO) ((unsigned) ((REGNO) - GP_REG_FIRST) < GP_REG_NUM)
1455 #define FP_REG_P(REGNO) ((unsigned) ((REGNO) - FP_REG_FIRST) < FP_REG_NUM)
1456 #define MD_REG_P(REGNO) ((unsigned) ((REGNO) - MD_REG_FIRST) < MD_REG_NUM)
1457 #define ST_REG_P(REGNO) ((unsigned) ((REGNO) - ST_REG_FIRST) < ST_REG_NUM)
1459 /* Return number of consecutive hard regs needed starting at reg REGNO
1460 to hold something of mode MODE.
1461 This is ordinarily the length in words of a value of mode MODE
1462 but can be less for certain modes in special long registers.
1464 On the MIPS, all general registers are one word long. Except on
1465 the R4000 with the FR bit set, the floating point uses register
1466 pairs, with the second register not being allocable. */
1468 #define HARD_REGNO_NREGS(REGNO, MODE) \
1469 (! FP_REG_P (REGNO) \
1470 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) \
1471 : ((GET_MODE_SIZE (MODE) + UNITS_PER_FPREG - 1) / UNITS_PER_FPREG))
1473 /* Value is 1 if hard register REGNO can hold a value of machine-mode
1474 MODE. In 32 bit mode, require that DImode and DFmode be in even
1475 registers. For DImode, this makes some of the insns easier to
1476 write, since you don't have to worry about a DImode value in
1477 registers 3 & 4, producing a result in 4 & 5.
1479 To make the code simpler HARD_REGNO_MODE_OK now just references an
1480 array built in override_options. Because machmodes.h is not yet
1481 included before this file is processed, the MODE bound can't be
1482 expressed here. */
1484 extern char mips_hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER];
1486 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1487 mips_hard_regno_mode_ok[ (int)(MODE) ][ (REGNO) ]
1489 /* Value is 1 if it is a good idea to tie two pseudo registers
1490 when one has mode MODE1 and one has mode MODE2.
1491 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1492 for any hard reg, then this must be 0 for correct output. */
1493 #define MODES_TIEABLE_P(MODE1, MODE2) \
1494 ((GET_MODE_CLASS (MODE1) == MODE_FLOAT || \
1495 GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT) \
1496 == (GET_MODE_CLASS (MODE2) == MODE_FLOAT || \
1497 GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT))
1499 /* MIPS pc is not overloaded on a register. */
1500 /* #define PC_REGNUM xx */
1502 /* Register to use for pushing function arguments. */
1503 #define STACK_POINTER_REGNUM (GP_REG_FIRST + 29)
1505 /* Offset from the stack pointer to the first available location. Use
1506 the default value zero. */
1507 /* #define STACK_POINTER_OFFSET 0 */
1509 /* Base register for access to local variables of the function. */
1510 #define FRAME_POINTER_REGNUM (GP_REG_FIRST + 30)
1512 /* Value should be nonzero if functions must have frame pointers.
1513 Zero means the frame pointer need not be set up (and parms
1514 may be accessed via the stack pointer) in functions that seem suitable.
1515 This is computed in `reload', in reload1.c. */
1516 #define FRAME_POINTER_REQUIRED (current_function_calls_alloca)
1518 /* Base register for access to arguments of the function. */
1519 #define ARG_POINTER_REGNUM GP_REG_FIRST
1521 /* Fake register that holds the address on the stack of the
1522 current function's return address. */
1523 #define RETURN_ADDRESS_POINTER_REGNUM RAP_REG_NUM
1525 /* Register in which static-chain is passed to a function. */
1526 #define STATIC_CHAIN_REGNUM (GP_REG_FIRST + 2)
1528 /* If the structure value address is passed in a register, then
1529 `STRUCT_VALUE_REGNUM' should be the number of that register. */
1530 /* #define STRUCT_VALUE_REGNUM (GP_REG_FIRST + 4) */
1532 /* If the structure value address is not passed in a register, define
1533 `STRUCT_VALUE' as an expression returning an RTX for the place
1534 where the address is passed. If it returns 0, the address is
1535 passed as an "invisible" first argument. */
1536 #define STRUCT_VALUE 0
1538 /* Mips registers used in prologue/epilogue code when the stack frame
1539 is larger than 32K bytes. These registers must come from the
1540 scratch register set, and not used for passing and returning
1541 arguments and any other information used in the calling sequence
1542 (such as pic). Must start at 12, since t0/t3 are parameter passing
1543 registers in the 64 bit ABI. */
1545 #define MIPS_TEMP1_REGNUM (GP_REG_FIRST + 12)
1546 #define MIPS_TEMP2_REGNUM (GP_REG_FIRST + 13)
1548 /* Define this macro if it is as good or better to call a constant
1549 function address than to call an address kept in a register. */
1550 #define NO_FUNCTION_CSE 1
1552 /* Define this macro if it is as good or better for a function to
1553 call itself with an explicit address than to call an address
1554 kept in a register. */
1555 #define NO_RECURSIVE_FUNCTION_CSE 1
1557 /* The register number of the register used to address a table of
1558 static data addresses in memory. In some cases this register is
1559 defined by a processor's "application binary interface" (ABI).
1560 When this macro is defined, RTL is generated for this register
1561 once, as with the stack pointer and frame pointer registers. If
1562 this macro is not defined, it is up to the machine-dependent
1563 files to allocate such a register (if necessary). */
1564 #define PIC_OFFSET_TABLE_REGNUM (GP_REG_FIRST + 28)
1566 #define PIC_FUNCTION_ADDR_REGNUM (GP_REG_FIRST + 25)
1568 /* Initialize embedded_pic_fnaddr_rtx before RTL generation for
1569 each function. We used to do this in FINALIZE_PIC, but FINALIZE_PIC
1570 isn't always called for static inline functions. */
1571 #define INIT_EXPANDERS embedded_pic_fnaddr_rtx = NULL;
1573 /* Define the classes of registers for register constraints in the
1574 machine description. Also define ranges of constants.
1576 One of the classes must always be named ALL_REGS and include all hard regs.
1577 If there is more than one class, another class must be named NO_REGS
1578 and contain no registers.
1580 The name GENERAL_REGS must be the name of a class (or an alias for
1581 another name such as ALL_REGS). This is the class of registers
1582 that is allowed by "g" or "r" in a register constraint.
1583 Also, registers outside this class are allocated only when
1584 instructions express preferences for them.
1586 The classes must be numbered in nondecreasing order; that is,
1587 a larger-numbered class must never be contained completely
1588 in a smaller-numbered class.
1590 For any two classes, it is very desirable that there be another
1591 class that represents their union. */
1593 enum reg_class
1595 NO_REGS, /* no registers in set */
1596 GR_REGS, /* integer registers */
1597 FP_REGS, /* floating point registers */
1598 HI_REG, /* hi register */
1599 LO_REG, /* lo register */
1600 HILO_REG, /* hilo register pair for 64 bit mode mult */
1601 MD_REGS, /* multiply/divide registers (hi/lo) */
1602 ST_REGS, /* status registers (fp status) */
1603 ALL_REGS, /* all registers */
1604 LIM_REG_CLASSES /* max value + 1 */
1607 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1609 #define GENERAL_REGS GR_REGS
1611 /* An initializer containing the names of the register classes as C
1612 string constants. These names are used in writing some of the
1613 debugging dumps. */
1615 #define REG_CLASS_NAMES \
1617 "NO_REGS", \
1618 "GR_REGS", \
1619 "FP_REGS", \
1620 "HI_REG", \
1621 "LO_REG", \
1622 "HILO_REG", \
1623 "MD_REGS", \
1624 "ST_REGS", \
1625 "ALL_REGS" \
1628 /* An initializer containing the contents of the register classes,
1629 as integers which are bit masks. The Nth integer specifies the
1630 contents of class N. The way the integer MASK is interpreted is
1631 that register R is in the class if `MASK & (1 << R)' is 1.
1633 When the machine has more than 32 registers, an integer does not
1634 suffice. Then the integers are replaced by sub-initializers,
1635 braced groupings containing several integers. Each
1636 sub-initializer must be suitable as an initializer for the type
1637 `HARD_REG_SET' which is defined in `hard-reg-set.h'. */
1639 #define REG_CLASS_CONTENTS \
1641 { 0x00000000, 0x00000000, 0x00000000 }, /* no registers */ \
1642 { 0xffffffff, 0x00000000, 0x00000000 }, /* integer registers */ \
1643 { 0x00000000, 0xffffffff, 0x00000000 }, /* floating registers*/ \
1644 { 0x00000000, 0x00000000, 0x00000001 }, /* hi register */ \
1645 { 0x00000000, 0x00000000, 0x00000002 }, /* lo register */ \
1646 { 0x00000000, 0x00000000, 0x00000004 }, /* hilo register */ \
1647 { 0x00000000, 0x00000000, 0x00000003 }, /* mul/div registers */ \
1648 { 0x00000000, 0x00000000, 0x000007f8 }, /* status registers */ \
1649 { 0xffffffff, 0xffffffff, 0x000007ff } /* all registers */ \
1653 /* A C expression whose value is a register class containing hard
1654 register REGNO. In general there is more that one such class;
1655 choose a class which is "minimal", meaning that no smaller class
1656 also contains the register. */
1658 extern enum reg_class mips_regno_to_class[];
1660 #define REGNO_REG_CLASS(REGNO) mips_regno_to_class[ (REGNO) ]
1662 /* A macro whose definition is the name of the class to which a
1663 valid base register must belong. A base register is one used in
1664 an address which is the register value plus a displacement. */
1666 #define BASE_REG_CLASS GR_REGS
1668 /* A macro whose definition is the name of the class to which a
1669 valid index register must belong. An index register is one used
1670 in an address where its value is either multiplied by a scale
1671 factor or added to another register (as well as added to a
1672 displacement). */
1674 #define INDEX_REG_CLASS NO_REGS
1677 /* REGISTER AND CONSTANT CLASSES */
1679 /* Get reg_class from a letter such as appears in the machine
1680 description.
1682 DEFINED REGISTER CLASSES:
1684 'd' General (aka integer) registers
1685 'f' Floating point registers
1686 'h' Hi register
1687 'l' Lo register
1688 'x' Multiply/divide registers
1689 'a' HILO_REG
1690 'z' FP Status register
1691 'b' All registers */
1693 extern enum reg_class mips_char_to_class[];
1695 #define REG_CLASS_FROM_LETTER(C) mips_char_to_class[ (C) ]
1697 /* The letters I, J, K, L, M, N, O, and P in a register constraint
1698 string can be used to stand for particular ranges of immediate
1699 operands. This macro defines what the ranges are. C is the
1700 letter, and VALUE is a constant value. Return 1 if VALUE is
1701 in the range specified by C. */
1703 /* For MIPS:
1705 `I' is used for the range of constants an arithmetic insn can
1706 actually contain (16 bits signed integers).
1708 `J' is used for the range which is just zero (ie, $r0).
1710 `K' is used for the range of constants a logical insn can actually
1711 contain (16 bit zero-extended integers).
1713 `L' is used for the range of constants that be loaded with lui
1714 (ie, the bottom 16 bits are zero).
1716 `M' is used for the range of constants that take two words to load
1717 (ie, not matched by `I', `K', and `L').
1719 `N' is used for negative 16 bit constants.
1721 `O' is an exact power of 2 (not yet used in the md file).
1723 `P' is used for positive 16 bit constants. */
1725 #define SMALL_INT(X) ((unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
1726 #define SMALL_INT_UNSIGNED(X) ((unsigned HOST_WIDE_INT) (INTVAL (X)) < 0x10000)
1728 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1729 ((C) == 'I' ? ((unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000) \
1730 : (C) == 'J' ? ((VALUE) == 0) \
1731 : (C) == 'K' ? ((unsigned HOST_WIDE_INT) (VALUE) < 0x10000) \
1732 : (C) == 'L' ? (((VALUE) & 0x0000ffff) == 0 \
1733 && (((VALUE) & ~2147483647) == 0 \
1734 || ((VALUE) & ~2147483647) == ~2147483647)) \
1735 : (C) == 'M' ? ((((VALUE) & ~0x0000ffff) != 0) \
1736 && (((VALUE) & ~0x0000ffff) != ~0x0000ffff) \
1737 && (((VALUE) & 0x0000ffff) != 0 \
1738 || (((VALUE) & ~2147483647) != 0 \
1739 && ((VALUE) & ~2147483647) != ~2147483647))) \
1740 : (C) == 'N' ? (((VALUE) & ~0x0000ffff) == ~0x0000ffff) \
1741 : (C) == 'O' ? (exact_log2 (VALUE) >= 0) \
1742 : (C) == 'P' ? ((VALUE) != 0 && (((VALUE) & ~0x0000ffff) == 0)) \
1743 : 0)
1745 /* Similar, but for floating constants, and defining letters G and H.
1746 Here VALUE is the CONST_DOUBLE rtx itself. */
1748 /* For Mips
1750 'G' : Floating point 0 */
1752 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1753 ((C) == 'G' \
1754 && (VALUE) == CONST0_RTX (GET_MODE (VALUE)))
1756 /* Letters in the range `Q' through `U' may be defined in a
1757 machine-dependent fashion to stand for arbitrary operand types.
1758 The machine description macro `EXTRA_CONSTRAINT' is passed the
1759 operand as its first argument and the constraint letter as its
1760 second operand.
1762 `Q' is for memory references which take more than 1 instruction.
1763 `R' is for memory references which take 1 word for the instruction.
1764 `S' is for references to extern items which are PIC for OSF/rose. */
1766 #define EXTRA_CONSTRAINT(OP,CODE) \
1767 ((GET_CODE (OP) != MEM) ? FALSE \
1768 : ((CODE) == 'Q') ? !simple_memory_operand (OP, GET_MODE (OP)) \
1769 : ((CODE) == 'R') ? simple_memory_operand (OP, GET_MODE (OP)) \
1770 : ((CODE) == 'S') ? (HALF_PIC_P () && CONSTANT_P (OP) \
1771 && HALF_PIC_ADDRESS_P (OP)) \
1772 : FALSE)
1774 /* Given an rtx X being reloaded into a reg required to be
1775 in class CLASS, return the class of reg to actually use.
1776 In general this is just CLASS; but on some machines
1777 in some cases it is preferable to use a more restrictive class. */
1779 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
1780 ((CLASS) != ALL_REGS \
1781 ? (CLASS) \
1782 : ((GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
1783 || GET_MODE_CLASS (GET_MODE (X)) == MODE_COMPLEX_FLOAT) \
1784 ? (TARGET_SOFT_FLOAT ? GR_REGS : FP_REGS) \
1785 : ((GET_MODE_CLASS (GET_MODE (X)) == MODE_INT \
1786 || GET_MODE (X) == VOIDmode) \
1787 ? GR_REGS \
1788 : (CLASS))))
1790 /* Certain machines have the property that some registers cannot be
1791 copied to some other registers without using memory. Define this
1792 macro on those machines to be a C expression that is non-zero if
1793 objects of mode MODE in registers of CLASS1 can only be copied to
1794 registers of class CLASS2 by storing a register of CLASS1 into
1795 memory and loading that memory location into a register of CLASS2.
1797 Do not define this macro if its value would always be zero. */
1799 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1800 ((!TARGET_DEBUG_H_MODE \
1801 && GET_MODE_CLASS (MODE) == MODE_INT \
1802 && ((CLASS1 == FP_REGS && CLASS2 == GR_REGS) \
1803 || (CLASS1 == GR_REGS && CLASS2 == FP_REGS))) \
1804 || (TARGET_FLOAT64 && !TARGET_64BIT && (MODE) == DFmode \
1805 && ((CLASS1 == GR_REGS && CLASS2 == FP_REGS) \
1806 || (CLASS2 == GR_REGS && CLASS1 == FP_REGS))))
1808 /* The HI and LO registers can only be reloaded via the general
1809 registers. Condition code registers can only be loaded to the
1810 general registers, and from the floating point registers. */
1812 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
1813 mips_secondary_reload_class (CLASS, MODE, X, 1)
1814 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
1815 mips_secondary_reload_class (CLASS, MODE, X, 0)
1817 /* Not declared above, with the other functions, because enum
1818 reg_class is not declared yet. */
1819 extern enum reg_class mips_secondary_reload_class ();
1821 /* Return the maximum number of consecutive registers
1822 needed to represent mode MODE in a register of class CLASS. */
1824 #define CLASS_UNITS(mode, size) \
1825 ((GET_MODE_SIZE (mode) + (size) - 1) / (size))
1827 #define CLASS_MAX_NREGS(CLASS, MODE) \
1828 ((CLASS) == FP_REGS \
1829 ? (TARGET_FLOAT64 \
1830 ? CLASS_UNITS (MODE, 8) \
1831 : 2 * CLASS_UNITS (MODE, 8)) \
1832 : CLASS_UNITS (MODE, UNITS_PER_WORD))
1834 /* If defined, this is a C expression whose value should be
1835 nonzero if the insn INSN has the effect of mysteriously
1836 clobbering the contents of hard register number REGNO. By
1837 "mysterious" we mean that the insn's RTL expression doesn't
1838 describe such an effect.
1840 If this macro is not defined, it means that no insn clobbers
1841 registers mysteriously. This is the usual situation; all else
1842 being equal, it is best for the RTL expression to show all the
1843 activity. */
1845 /* #define INSN_CLOBBERS_REGNO_P(INSN, REGNO) */
1848 /* Stack layout; function entry, exit and calling. */
1850 /* Define this if pushing a word on the stack
1851 makes the stack pointer a smaller address. */
1852 #define STACK_GROWS_DOWNWARD
1854 /* Define this if the nominal address of the stack frame
1855 is at the high-address end of the local variables;
1856 that is, each additional local variable allocated
1857 goes at a more negative offset in the frame. */
1858 /* #define FRAME_GROWS_DOWNWARD */
1860 /* Offset within stack frame to start allocating local variables at.
1861 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1862 first local allocated. Otherwise, it is the offset to the BEGINNING
1863 of the first local allocated. */
1864 #define STARTING_FRAME_OFFSET \
1865 (current_function_outgoing_args_size \
1866 + (TARGET_ABICALLS ? MIPS_STACK_ALIGN (UNITS_PER_WORD) : 0))
1868 /* Offset from the stack pointer register to an item dynamically
1869 allocated on the stack, e.g., by `alloca'.
1871 The default value for this macro is `STACK_POINTER_OFFSET' plus the
1872 length of the outgoing arguments. The default is correct for most
1873 machines. See `function.c' for details.
1875 The MIPS ABI states that functions which dynamically allocate the
1876 stack must not have 0 for STACK_DYNAMIC_OFFSET, since it looks like
1877 we are trying to create a second frame pointer to the function, so
1878 allocate some stack space to make it happy.
1880 However, the linker currently complains about linking any code that
1881 dynamically allocates stack space, and there seems to be a bug in
1882 STACK_DYNAMIC_OFFSET, so don't define this right now. */
1884 #if 0
1885 #define STACK_DYNAMIC_OFFSET(FUNDECL) \
1886 ((current_function_outgoing_args_size == 0 && current_function_calls_alloca) \
1887 ? 4*UNITS_PER_WORD \
1888 : current_function_outgoing_args_size)
1889 #endif
1891 /* The return address for the current frame is in r31 is this is a leaf
1892 function. Otherwise, it is on the stack. It is at a variable offset
1893 from sp/fp/ap, so we define a fake hard register rap which is a
1894 poiner to the return address on the stack. This always gets eliminated
1895 during reload to be either the frame pointer or the stack pointer plus
1896 an offset. */
1898 /* ??? This definition fails for leaf functions. There is currently no
1899 general solution for this problem. */
1901 /* ??? There appears to be no way to get the return address of any previous
1902 frame except by disassembling instructions in the prologue/epilogue.
1903 So currently we support only the current frame. */
1905 #define RETURN_ADDR_RTX(count, frame) \
1906 ((count == 0) \
1907 ? gen_rtx_MEM (Pmode, gen_rtx_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM))\
1908 : (rtx) 0)
1910 /* Structure to be filled in by compute_frame_size with register
1911 save masks, and offsets for the current function. */
1913 struct mips_frame_info
1915 long total_size; /* # bytes that the entire frame takes up */
1916 long var_size; /* # bytes that variables take up */
1917 long args_size; /* # bytes that outgoing arguments take up */
1918 long extra_size; /* # bytes of extra gunk */
1919 int gp_reg_size; /* # bytes needed to store gp regs */
1920 int fp_reg_size; /* # bytes needed to store fp regs */
1921 long mask; /* mask of saved gp registers */
1922 long fmask; /* mask of saved fp registers */
1923 long gp_save_offset; /* offset from vfp to store gp registers */
1924 long fp_save_offset; /* offset from vfp to store fp registers */
1925 long gp_sp_offset; /* offset from new sp to store gp registers */
1926 long fp_sp_offset; /* offset from new sp to store fp registers */
1927 int initialized; /* != 0 if frame size already calculated */
1928 int num_gp; /* number of gp registers saved */
1929 int num_fp; /* number of fp registers saved */
1932 extern struct mips_frame_info current_frame_info;
1934 /* If defined, this macro specifies a table of register pairs used to
1935 eliminate unneeded registers that point into the stack frame. If
1936 it is not defined, the only elimination attempted by the compiler
1937 is to replace references to the frame pointer with references to
1938 the stack pointer.
1940 The definition of this macro is a list of structure
1941 initializations, each of which specifies an original and
1942 replacement register.
1944 On some machines, the position of the argument pointer is not
1945 known until the compilation is completed. In such a case, a
1946 separate hard register must be used for the argument pointer.
1947 This register can be eliminated by replacing it with either the
1948 frame pointer or the argument pointer, depending on whether or not
1949 the frame pointer has been eliminated.
1951 In this case, you might specify:
1952 #define ELIMINABLE_REGS \
1953 {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1954 {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1955 {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
1957 Note that the elimination of the argument pointer with the stack
1958 pointer is specified first since that is the preferred elimination. */
1960 #define ELIMINABLE_REGS \
1961 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1962 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1963 { RETURN_ADDRESS_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1964 { RETURN_ADDRESS_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1965 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
1967 /* A C expression that returns non-zero if the compiler is allowed to
1968 try to replace register number FROM-REG with register number
1969 TO-REG. This macro need only be defined if `ELIMINABLE_REGS' is
1970 defined, and will usually be the constant 1, since most of the
1971 cases preventing register elimination are things that the compiler
1972 already knows about. */
1974 #define CAN_ELIMINATE(FROM, TO) \
1975 (!frame_pointer_needed \
1976 || ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \
1977 || ((FROM) == RETURN_ADDRESS_POINTER_REGNUM \
1978 && (TO) == FRAME_POINTER_REGNUM))
1980 /* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It
1981 specifies the initial difference between the specified pair of
1982 registers. This macro must be defined if `ELIMINABLE_REGS' is
1983 defined. */
1985 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1986 { compute_frame_size (get_frame_size ()); \
1987 if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
1988 (OFFSET) = 0; \
1989 else if ((FROM) == ARG_POINTER_REGNUM \
1990 && ((TO) == FRAME_POINTER_REGNUM \
1991 || (TO) == STACK_POINTER_REGNUM)) \
1992 (OFFSET) = (current_frame_info.total_size \
1993 - ((mips_abi != ABI_32 && mips_abi != ABI_EABI) \
1994 ? current_function_pretend_args_size \
1995 : 0)); \
1996 else if ((FROM) == RETURN_ADDRESS_POINTER_REGNUM \
1997 && ((TO) == FRAME_POINTER_REGNUM \
1998 || (TO) == STACK_POINTER_REGNUM)) \
1999 (OFFSET) = current_frame_info.gp_sp_offset \
2000 + ((UNITS_PER_WORD - (POINTER_SIZE / BITS_PER_UNIT)) \
2001 * (BYTES_BIG_ENDIAN != 0)); \
2002 else \
2003 abort (); \
2006 /* If we generate an insn to push BYTES bytes,
2007 this says how many the stack pointer really advances by.
2008 On the vax, sp@- in a byte insn really pushes a word. */
2010 /* #define PUSH_ROUNDING(BYTES) 0 */
2012 /* If defined, the maximum amount of space required for outgoing
2013 arguments will be computed and placed into the variable
2014 `current_function_outgoing_args_size'. No space will be pushed
2015 onto the stack for each call; instead, the function prologue
2016 should increase the stack frame size by this amount.
2018 It is not proper to define both `PUSH_ROUNDING' and
2019 `ACCUMULATE_OUTGOING_ARGS'. */
2020 #define ACCUMULATE_OUTGOING_ARGS
2022 /* Offset from the argument pointer register to the first argument's
2023 address. On some machines it may depend on the data type of the
2024 function.
2026 If `ARGS_GROW_DOWNWARD', this is the offset to the location above
2027 the first argument's address.
2029 On the MIPS, we must skip the first argument position if we are
2030 returning a structure or a union, to account for its address being
2031 passed in $4. However, at the current time, this produces a compiler
2032 that can't bootstrap, so comment it out for now. */
2034 #if 0
2035 #define FIRST_PARM_OFFSET(FNDECL) \
2036 (FNDECL != 0 \
2037 && TREE_TYPE (FNDECL) != 0 \
2038 && TREE_TYPE (TREE_TYPE (FNDECL)) != 0 \
2039 && (TREE_CODE (TREE_TYPE (TREE_TYPE (FNDECL))) == RECORD_TYPE \
2040 || TREE_CODE (TREE_TYPE (TREE_TYPE (FNDECL))) == UNION_TYPE) \
2041 ? UNITS_PER_WORD \
2042 : 0)
2043 #else
2044 #define FIRST_PARM_OFFSET(FNDECL) 0
2045 #endif
2047 /* When a parameter is passed in a register, stack space is still
2048 allocated for it. For the MIPS, stack space must be allocated, cf
2049 Asm Lang Prog Guide page 7-8.
2051 BEWARE that some space is also allocated for non existing arguments
2052 in register. In case an argument list is of form GF used registers
2053 are a0 (a2,a3), but we should push over a1... */
2055 #define REG_PARM_STACK_SPACE(FNDECL) \
2056 ((MAX_ARGS_IN_REGISTERS*UNITS_PER_WORD) - FIRST_PARM_OFFSET (FNDECL))
2058 /* Define this if it is the responsibility of the caller to
2059 allocate the area reserved for arguments passed in registers.
2060 If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect
2061 of this macro is to determine whether the space is included in
2062 `current_function_outgoing_args_size'. */
2063 #define OUTGOING_REG_PARM_STACK_SPACE
2065 /* Align stack frames on 64 bits (Double Word ). */
2066 #define STACK_BOUNDARY 64
2068 /* Make sure 4 words are always allocated on the stack. */
2070 #ifndef STACK_ARGS_ADJUST
2071 #define STACK_ARGS_ADJUST(SIZE) \
2073 if (SIZE.constant < 4 * UNITS_PER_WORD) \
2074 SIZE.constant = 4 * UNITS_PER_WORD; \
2076 #endif
2079 /* A C expression that should indicate the number of bytes of its
2080 own arguments that a function function pops on returning, or 0
2081 if the function pops no arguments and the caller must therefore
2082 pop them all after the function returns.
2084 FUNDECL is the declaration node of the function (as a tree).
2086 FUNTYPE is a C variable whose value is a tree node that
2087 describes the function in question. Normally it is a node of
2088 type `FUNCTION_TYPE' that describes the data type of the function.
2089 From this it is possible to obtain the data types of the value
2090 and arguments (if known).
2092 When a call to a library function is being considered, FUNTYPE
2093 will contain an identifier node for the library function. Thus,
2094 if you need to distinguish among various library functions, you
2095 can do so by their names. Note that "library function" in this
2096 context means a function used to perform arithmetic, whose name
2097 is known specially in the compiler and was not mentioned in the
2098 C code being compiled.
2100 STACK-SIZE is the number of bytes of arguments passed on the
2101 stack. If a variable number of bytes is passed, it is zero, and
2102 argument popping will always be the responsibility of the
2103 calling function. */
2105 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
2108 /* Symbolic macros for the registers used to return integer and floating
2109 point values. */
2111 #define GP_RETURN (GP_REG_FIRST + 2)
2112 #define FP_RETURN ((TARGET_SOFT_FLOAT) ? GP_RETURN : (FP_REG_FIRST + 0))
2114 /* Symbolic macros for the first/last argument registers. */
2116 #define GP_ARG_FIRST (GP_REG_FIRST + 4)
2117 #define GP_ARG_LAST (GP_REG_FIRST + 7)
2118 #define FP_ARG_FIRST (FP_REG_FIRST + 12)
2119 #define FP_ARG_LAST (FP_REG_FIRST + 15)
2121 #define MAX_ARGS_IN_REGISTERS 4
2123 /* Define how to find the value returned by a library function
2124 assuming the value has mode MODE. */
2126 #define LIBCALL_VALUE(MODE) \
2127 gen_rtx_REG (MODE, \
2128 ((GET_MODE_CLASS (MODE) == MODE_FLOAT \
2129 && (! TARGET_SINGLE_FLOAT \
2130 || GET_MODE_SIZE (MODE) <= 4)) \
2131 ? FP_RETURN \
2132 : GP_RETURN))
2134 /* Define how to find the value returned by a function.
2135 VALTYPE is the data type of the value (as a tree).
2136 If the precise function being called is known, FUNC is its FUNCTION_DECL;
2137 otherwise, FUNC is 0. */
2139 #define FUNCTION_VALUE(VALTYPE, FUNC) LIBCALL_VALUE (TYPE_MODE (VALTYPE))
2142 /* 1 if N is a possible register number for a function value.
2143 On the MIPS, R2 R3 and F0 F2 are the only register thus used.
2144 Currently, R2 and F0 are only implemented here (C has no complex type) */
2146 #define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_RETURN || (N) == FP_RETURN)
2148 /* 1 if N is a possible register number for function argument passing.
2149 We have no FP argument registers when soft-float. When FP registers
2150 are 32 bits, we can't directly reference the odd numbered ones. */
2152 #define FUNCTION_ARG_REGNO_P(N) \
2153 (((N) >= GP_ARG_FIRST && (N) <= GP_ARG_LAST) \
2154 || (! TARGET_SOFT_FLOAT \
2155 && ((N) >= FP_ARG_FIRST && (N) <= FP_ARG_LAST) \
2156 && (TARGET_FLOAT64 || (0 == (N) % 2))))
2158 /* A C expression which can inhibit the returning of certain function
2159 values in registers, based on the type of value. A nonzero value says
2160 to return the function value in memory, just as large structures are
2161 always returned. Here TYPE will be a C expression of type
2162 `tree', representing the data type of the value.
2164 Note that values of mode `BLKmode' must be explicitly
2165 handled by this macro. Also, the option `-fpcc-struct-return'
2166 takes effect regardless of this macro. On most systems, it is
2167 possible to leave the macro undefined; this causes a default
2168 definition to be used, whose value is the constant 1 for BLKmode
2169 values, and 0 otherwise.
2171 GCC normally converts 1 byte structures into chars, 2 byte
2172 structs into shorts, and 4 byte structs into ints, and returns
2173 them this way. Defining the following macro overrides this,
2174 to give us MIPS cc compatibility. */
2176 #define RETURN_IN_MEMORY(TYPE) \
2177 (TYPE_MODE (TYPE) == BLKmode)
2179 /* A code distinguishing the floating point format of the target
2180 machine. There are three defined values: IEEE_FLOAT_FORMAT,
2181 VAX_FLOAT_FORMAT, and UNKNOWN_FLOAT_FORMAT. */
2183 #define TARGET_FLOAT_FORMAT IEEE_FLOAT_FORMAT
2186 /* Define a data type for recording info about an argument list
2187 during the scan of that argument list. This data type should
2188 hold all necessary information about the function itself
2189 and about the args processed so far, enough to enable macros
2190 such as FUNCTION_ARG to determine where the next arg should go.
2193 typedef struct mips_args {
2194 int gp_reg_found; /* whether a gp register was found yet */
2195 int arg_number; /* argument number */
2196 int arg_words; /* # total words the arguments take */
2197 int fp_arg_words; /* # words for FP args (MIPS_EABI only) */
2198 int last_arg_fp; /* nonzero if last arg was FP (EABI only) */
2199 int num_adjusts; /* number of adjustments made */
2200 /* Adjustments made to args pass in regs. */
2201 /* ??? The size is doubled to work around a
2202 bug in the code that sets the adjustments
2203 in function_arg. */
2204 struct rtx_def *adjust[MAX_ARGS_IN_REGISTERS*2];
2205 } CUMULATIVE_ARGS;
2207 /* Initialize a variable CUM of type CUMULATIVE_ARGS
2208 for a call to a function whose data type is FNTYPE.
2209 For a library call, FNTYPE is 0.
2213 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
2214 init_cumulative_args (&CUM, FNTYPE, LIBNAME) \
2216 /* Update the data in CUM to advance over an argument
2217 of mode MODE and data type TYPE.
2218 (TYPE is null for libcalls where that information may not be available.) */
2220 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
2221 function_arg_advance (&CUM, MODE, TYPE, NAMED)
2223 /* Determine where to put an argument to a function.
2224 Value is zero to push the argument on the stack,
2225 or a hard register in which to store the argument.
2227 MODE is the argument's machine mode.
2228 TYPE is the data type of the argument (as a tree).
2229 This is null for libcalls where that information may
2230 not be available.
2231 CUM is a variable of type CUMULATIVE_ARGS which gives info about
2232 the preceding args and about the function being called.
2233 NAMED is nonzero if this argument is a named parameter
2234 (otherwise it is an extra parameter matching an ellipsis). */
2236 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
2237 function_arg( &CUM, MODE, TYPE, NAMED)
2239 /* For an arg passed partly in registers and partly in memory,
2240 this is the number of registers used.
2241 For args passed entirely in registers or entirely in memory, zero. */
2243 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
2244 function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
2246 /* If defined, a C expression that gives the alignment boundary, in
2247 bits, of an argument with the specified mode and type. If it is
2248 not defined, `PARM_BOUNDARY' is used for all arguments. */
2250 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
2251 (((TYPE) != 0) \
2252 ? ((TYPE_ALIGN(TYPE) <= PARM_BOUNDARY) \
2253 ? PARM_BOUNDARY \
2254 : TYPE_ALIGN(TYPE)) \
2255 : ((GET_MODE_ALIGNMENT(MODE) <= PARM_BOUNDARY) \
2256 ? PARM_BOUNDARY \
2257 : GET_MODE_ALIGNMENT(MODE)))
2260 /* This macro generates the assembly code for function entry.
2261 FILE is a stdio stream to output the code to.
2262 SIZE is an int: how many units of temporary storage to allocate.
2263 Refer to the array `regs_ever_live' to determine which registers
2264 to save; `regs_ever_live[I]' is nonzero if register number I
2265 is ever used in the function. This macro is responsible for
2266 knowing which registers should not be saved even if used. */
2268 #define FUNCTION_PROLOGUE(FILE, SIZE) function_prologue(FILE, SIZE)
2270 /* This macro generates the assembly code for function exit,
2271 on machines that need it. If FUNCTION_EPILOGUE is not defined
2272 then individual return instructions are generated for each
2273 return statement. Args are same as for FUNCTION_PROLOGUE. */
2275 #define FUNCTION_EPILOGUE(FILE, SIZE) function_epilogue(FILE, SIZE)
2277 /* Tell prologue and epilogue if register REGNO should be saved / restored. */
2279 #define MUST_SAVE_REGISTER(regno) \
2280 ((regs_ever_live[regno] && !call_used_regs[regno]) \
2281 || (regno == FRAME_POINTER_REGNUM && frame_pointer_needed) \
2282 || (regno == (GP_REG_FIRST + 31) && regs_ever_live[GP_REG_FIRST + 31]))
2284 /* ALIGN FRAMES on double word boundaries */
2286 #define MIPS_STACK_ALIGN(LOC) (((LOC)+7) & ~7)
2289 /* Output assembler code to FILE to increment profiler label # LABELNO
2290 for profiling a function entry. */
2292 #define FUNCTION_PROFILER(FILE, LABELNO) \
2294 fprintf (FILE, "\t.set\tnoreorder\n"); \
2295 fprintf (FILE, "\t.set\tnoat\n"); \
2296 fprintf (FILE, "\tmove\t%s,%s\t\t# save current return address\n", \
2297 reg_names[GP_REG_FIRST + 1], reg_names[GP_REG_FIRST + 31]); \
2298 fprintf (FILE, "\tjal\t_mcount\n"); \
2299 fprintf (FILE, \
2300 "\t%s\t%s,%s,%d\t\t# _mcount pops 2 words from stack\n", \
2301 TARGET_64BIT ? "dsubu" : "subu", \
2302 reg_names[STACK_POINTER_REGNUM], \
2303 reg_names[STACK_POINTER_REGNUM], \
2304 TARGET_LONG64 ? 16 : 8); \
2305 fprintf (FILE, "\t.set\treorder\n"); \
2306 fprintf (FILE, "\t.set\tat\n"); \
2309 /* Define this macro if the code for function profiling should come
2310 before the function prologue. Normally, the profiling code comes
2311 after. */
2313 /* #define PROFILE_BEFORE_PROLOGUE */
2315 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
2316 the stack pointer does not matter. The value is tested only in
2317 functions that have frame pointers.
2318 No definition is equivalent to always zero. */
2320 #define EXIT_IGNORE_STACK 1
2323 /* A C statement to output, on the stream FILE, assembler code for a
2324 block of data that contains the constant parts of a trampoline.
2325 This code should not include a label--the label is taken care of
2326 automatically. */
2328 #define TRAMPOLINE_TEMPLATE(STREAM) \
2330 fprintf (STREAM, "\t.word\t0x03e00821\t\t# move $1,$31\n"); \
2331 fprintf (STREAM, "\t.word\t0x04110001\t\t# bgezal $0,.+8\n"); \
2332 fprintf (STREAM, "\t.word\t0x00000000\t\t# nop\n"); \
2333 if (TARGET_LONG64) \
2335 fprintf (STREAM, "\t.word\t0xdfe30014\t\t# ld $3,20($31)\n"); \
2336 fprintf (STREAM, "\t.word\t0xdfe2001c\t\t# ld $2,28($31)\n"); \
2338 else \
2340 fprintf (STREAM, "\t.word\t0x8fe30014\t\t# lw $3,20($31)\n"); \
2341 fprintf (STREAM, "\t.word\t0x8fe20018\t\t# lw $2,24($31)\n"); \
2343 fprintf (STREAM, "\t.word\t0x0060c821\t\t# move $25,$3 (abicalls)\n"); \
2344 fprintf (STREAM, "\t.word\t0x00600008\t\t# jr $3\n"); \
2345 fprintf (STREAM, "\t.word\t0x0020f821\t\t# move $31,$1\n"); \
2346 if (TARGET_LONG64) \
2348 fprintf (STREAM, "\t.dword\t0x00000000\t\t# <function address>\n"); \
2349 fprintf (STREAM, "\t.dword\t0x00000000\t\t# <static chain value>\n"); \
2351 else \
2353 fprintf (STREAM, "\t.word\t0x00000000\t\t# <function address>\n"); \
2354 fprintf (STREAM, "\t.word\t0x00000000\t\t# <static chain value>\n"); \
2358 /* A C expression for the size in bytes of the trampoline, as an
2359 integer. */
2361 #define TRAMPOLINE_SIZE (32 + (TARGET_LONG64 ? 16 : 8))
2363 /* Alignment required for trampolines, in bits. */
2365 #define TRAMPOLINE_ALIGNMENT (TARGET_LONG64 ? 64 : 32)
2367 /* INITIALIZE_TRAMPOLINE calls this library function to flush
2368 program and data caches. */
2370 #ifndef CACHE_FLUSH_FUNC
2371 #define CACHE_FLUSH_FUNC "_flush_cache"
2372 #endif
2374 /* A C statement to initialize the variable parts of a trampoline.
2375 ADDR is an RTX for the address of the trampoline; FNADDR is an
2376 RTX for the address of the nested function; STATIC_CHAIN is an
2377 RTX for the static chain value that should be passed to the
2378 function when it is called. */
2380 #define INITIALIZE_TRAMPOLINE(ADDR, FUNC, CHAIN) \
2382 rtx addr = ADDR; \
2383 if (TARGET_LONG64) \
2385 emit_move_insn (gen_rtx_MEM (DImode, plus_constant (addr, 32)), FUNC); \
2386 emit_move_insn (gen_rtx_MEM (DImode, plus_constant (addr, 40)), CHAIN);\
2388 else \
2390 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (addr, 32)), FUNC); \
2391 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (addr, 36)), CHAIN);\
2394 /* Flush both caches. We need to flush the data cache in case \
2395 the system has a write-back cache. */ \
2396 /* ??? Should check the return value for errors. */ \
2397 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, CACHE_FLUSH_FUNC), \
2398 0, VOIDmode, 3, addr, Pmode, \
2399 GEN_INT (TRAMPOLINE_SIZE), TYPE_MODE (integer_type_node),\
2400 GEN_INT (3), TYPE_MODE (integer_type_node)); \
2403 /* Addressing modes, and classification of registers for them. */
2405 /* #define HAVE_POST_INCREMENT */
2406 /* #define HAVE_POST_DECREMENT */
2408 /* #define HAVE_PRE_DECREMENT */
2409 /* #define HAVE_PRE_INCREMENT */
2411 /* These assume that REGNO is a hard or pseudo reg number.
2412 They give nonzero only if REGNO is a hard reg of the suitable class
2413 or a pseudo reg currently allocated to a suitable hard reg.
2414 These definitions are NOT overridden anywhere. */
2416 #define GP_REG_OR_PSEUDO_STRICT_P(regno) \
2417 GP_REG_P((regno < FIRST_PSEUDO_REGISTER) ? regno : reg_renumber[regno])
2419 #define GP_REG_OR_PSEUDO_NONSTRICT_P(regno) \
2420 (((regno) >= FIRST_PSEUDO_REGISTER) || (GP_REG_P (regno)))
2422 #define REGNO_OK_FOR_INDEX_P(regno) 0
2423 #define REGNO_OK_FOR_BASE_P(regno) GP_REG_OR_PSEUDO_STRICT_P (regno)
2425 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
2426 and check its validity for a certain class.
2427 We have two alternate definitions for each of them.
2428 The usual definition accepts all pseudo regs; the other rejects them all.
2429 The symbol REG_OK_STRICT causes the latter definition to be used.
2431 Most source files want to accept pseudo regs in the hope that
2432 they will get allocated to the class that the insn wants them to be in.
2433 Some source files that are used after register allocation
2434 need to be strict. */
2436 #ifndef REG_OK_STRICT
2438 #define REG_OK_STRICT_P 0
2439 #define REG_OK_FOR_INDEX_P(X) 0
2440 #define REG_OK_FOR_BASE_P(X) GP_REG_OR_PSEUDO_NONSTRICT_P (REGNO (X))
2442 #else
2444 #define REG_OK_STRICT_P 1
2445 #define REG_OK_FOR_INDEX_P(X) 0
2446 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
2448 #endif
2451 /* Maximum number of registers that can appear in a valid memory address. */
2453 #define MAX_REGS_PER_ADDRESS 1
2455 /* A C compound statement with a conditional `goto LABEL;' executed
2456 if X (an RTX) is a legitimate memory address on the target
2457 machine for a memory operand of mode MODE.
2459 It usually pays to define several simpler macros to serve as
2460 subroutines for this one. Otherwise it may be too complicated
2461 to understand.
2463 This macro must exist in two variants: a strict variant and a
2464 non-strict one. The strict variant is used in the reload pass.
2465 It must be defined so that any pseudo-register that has not been
2466 allocated a hard register is considered a memory reference. In
2467 contexts where some kind of register is required, a
2468 pseudo-register with no hard register must be rejected.
2470 The non-strict variant is used in other passes. It must be
2471 defined to accept all pseudo-registers in every context where
2472 some kind of register is required.
2474 Compiler source files that want to use the strict variant of
2475 this macro define the macro `REG_OK_STRICT'. You should use an
2476 `#ifdef REG_OK_STRICT' conditional to define the strict variant
2477 in that case and the non-strict variant otherwise.
2479 Typically among the subroutines used to define
2480 `GO_IF_LEGITIMATE_ADDRESS' are subroutines to check for
2481 acceptable registers for various purposes (one for base
2482 registers, one for index registers, and so on). Then only these
2483 subroutine macros need have two variants; the higher levels of
2484 macros may be the same whether strict or not.
2486 Normally, constant addresses which are the sum of a `symbol_ref'
2487 and an integer are stored inside a `const' RTX to mark them as
2488 constant. Therefore, there is no need to recognize such sums
2489 specifically as legitimate addresses. Normally you would simply
2490 recognize any `const' as legitimate.
2492 Usually `PRINT_OPERAND_ADDRESS' is not prepared to handle
2493 constant sums that are not marked with `const'. It assumes
2494 that a naked `plus' indicates indexing. If so, then you *must*
2495 reject such naked constant sums as illegitimate addresses, so
2496 that none of them will be given to `PRINT_OPERAND_ADDRESS'.
2498 On some machines, whether a symbolic address is legitimate
2499 depends on the section that the address refers to. On these
2500 machines, define the macro `ENCODE_SECTION_INFO' to store the
2501 information into the `symbol_ref', and then check for it here.
2502 When you see a `const', you will have to look inside it to find
2503 the `symbol_ref' in order to determine the section. */
2505 #if 1
2506 #define GO_PRINTF(x) trace(x)
2507 #define GO_PRINTF2(x,y) trace(x,y)
2508 #define GO_DEBUG_RTX(x) debug_rtx(x)
2510 #else
2511 #define GO_PRINTF(x)
2512 #define GO_PRINTF2(x,y)
2513 #define GO_DEBUG_RTX(x)
2514 #endif
2516 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
2518 register rtx xinsn = (X); \
2520 if (TARGET_DEBUG_B_MODE) \
2522 GO_PRINTF2 ("\n========== GO_IF_LEGITIMATE_ADDRESS, %sstrict\n", \
2523 (REG_OK_STRICT_P) ? "" : "not "); \
2524 GO_DEBUG_RTX (xinsn); \
2527 if (GET_CODE (xinsn) == REG && REG_OK_FOR_BASE_P (xinsn)) \
2528 goto ADDR; \
2530 if (CONSTANT_ADDRESS_P (xinsn) \
2531 && ! (mips_split_addresses && mips_check_split (xinsn, MODE))) \
2532 goto ADDR; \
2534 if (GET_CODE (xinsn) == LO_SUM && mips_split_addresses) \
2536 register rtx xlow0 = XEXP (xinsn, 0); \
2537 register rtx xlow1 = XEXP (xinsn, 1); \
2539 if (GET_CODE (xlow0) == REG && REG_OK_FOR_BASE_P (xlow0) \
2540 && mips_check_split (xlow1, MODE)) \
2541 goto ADDR; \
2544 if (GET_CODE (xinsn) == PLUS) \
2546 register rtx xplus0 = XEXP (xinsn, 0); \
2547 register rtx xplus1 = XEXP (xinsn, 1); \
2548 register enum rtx_code code0 = GET_CODE (xplus0); \
2549 register enum rtx_code code1 = GET_CODE (xplus1); \
2551 if (code0 != REG && code1 == REG) \
2553 xplus0 = XEXP (xinsn, 1); \
2554 xplus1 = XEXP (xinsn, 0); \
2555 code0 = GET_CODE (xplus0); \
2556 code1 = GET_CODE (xplus1); \
2559 if (code0 == REG && REG_OK_FOR_BASE_P (xplus0)) \
2561 if (code1 == CONST_INT \
2562 && INTVAL (xplus1) >= -32768 \
2563 && INTVAL (xplus1) + GET_MODE_SIZE (MODE) - 1 <= 32767) \
2564 goto ADDR; \
2566 /* For some code sequences, you actually get better code by \
2567 pretending that the MIPS supports an address mode of a \
2568 constant address + a register, even though the real \
2569 machine doesn't support it. This is because the \
2570 assembler can use $r1 to load just the high 16 bits, add \
2571 in the register, and fold the low 16 bits into the memory \
2572 reference, whereas the compiler generates a 4 instruction \
2573 sequence. On the other hand, CSE is not as effective. \
2574 It would be a win to generate the lui directly, but the \
2575 MIPS assembler does not have syntax to generate the \
2576 appropriate relocation. */ \
2578 /* Also accept CONST_INT addresses here, so no else. */ \
2579 /* Reject combining an embedded PIC text segment reference \
2580 with a register. That requires an additional \
2581 instruction. */ \
2582 /* ??? Reject combining an address with a register for the MIPS \
2583 64 bit ABI, because the SGI assembler can not handle this. */ \
2584 if (!TARGET_DEBUG_A_MODE \
2585 && (mips_abi == ABI_32 || mips_abi == ABI_EABI) \
2586 && CONSTANT_ADDRESS_P (xplus1) \
2587 && ! mips_split_addresses \
2588 && (!TARGET_EMBEDDED_PIC \
2589 || code1 != CONST \
2590 || GET_CODE (XEXP (xplus1, 0)) != MINUS)) \
2591 goto ADDR; \
2595 if (TARGET_DEBUG_B_MODE) \
2596 GO_PRINTF ("Not a legitimate address\n"); \
2600 /* A C expression that is 1 if the RTX X is a constant which is a
2601 valid address. This is defined to be the same as `CONSTANT_P (X)',
2602 but rejecting CONST_DOUBLE. */
2603 /* When pic, we must reject addresses of the form symbol+large int.
2604 This is because an instruction `sw $4,s+70000' needs to be converted
2605 by the assembler to `lw $at,s($gp);sw $4,70000($at)'. Normally the
2606 assembler would use $at as a temp to load in the large offset. In this
2607 case $at is already in use. We convert such problem addresses to
2608 `la $5,s;sw $4,70000($5)' via LEGITIMIZE_ADDRESS. */
2609 /* ??? SGI Irix 6 assembler fails for CONST address, so reject them. */
2610 #define CONSTANT_ADDRESS_P(X) \
2611 ((GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
2612 || GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH \
2613 || (GET_CODE (X) == CONST \
2614 && ! (flag_pic && pic_address_needs_scratch (X)) \
2615 && (mips_abi == ABI_32 || mips_abi == ABI_EABI))) \
2616 && (!HALF_PIC_P () || !HALF_PIC_ADDRESS_P (X)))
2618 /* Define this, so that when PIC, reload won't try to reload invalid
2619 addresses which require two reload registers. */
2621 #define LEGITIMATE_PIC_OPERAND_P(X) (! pic_address_needs_scratch (X))
2623 /* Nonzero if the constant value X is a legitimate general operand.
2624 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
2626 At present, GAS doesn't understand li.[sd], so don't allow it
2627 to be generated at present. Also, the MIPS assembler does not
2628 grok li.d Infinity. */
2630 /* ??? SGI Irix 6 assembler fails for CONST address, so reject them. */
2631 #define LEGITIMATE_CONSTANT_P(X) \
2632 ((GET_CODE (X) != CONST_DOUBLE \
2633 || mips_const_double_ok (X, GET_MODE (X))) \
2634 && ! (GET_CODE (X) == CONST \
2635 && mips_abi != ABI_32 && mips_abi != ABI_EABI))
2637 /* A C compound statement that attempts to replace X with a valid
2638 memory address for an operand of mode MODE. WIN will be a C
2639 statement label elsewhere in the code; the macro definition may
2642 GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN);
2644 to avoid further processing if the address has become legitimate.
2646 X will always be the result of a call to `break_out_memory_refs',
2647 and OLDX will be the operand that was given to that function to
2648 produce X.
2650 The code generated by this macro should not alter the
2651 substructure of X. If it transforms X into a more legitimate
2652 form, it should assign X (which will always be a C variable) a
2653 new value.
2655 It is not necessary for this macro to come up with a legitimate
2656 address. The compiler has standard ways of doing so in all
2657 cases. In fact, it is safe for this macro to do nothing. But
2658 often a machine-dependent strategy can generate better code.
2660 For the MIPS, transform:
2662 memory(X + <large int>)
2664 into:
2666 Y = <large int> & ~0x7fff;
2667 Z = X + Y
2668 memory (Z + (<large int> & 0x7fff));
2670 This is for CSE to find several similar references, and only use one Z.
2672 When PIC, convert addresses of the form memory (symbol+large int) to
2673 memory (reg+large int). */
2676 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
2678 register rtx xinsn = (X); \
2680 if (TARGET_DEBUG_B_MODE) \
2682 GO_PRINTF ("\n========== LEGITIMIZE_ADDRESS\n"); \
2683 GO_DEBUG_RTX (xinsn); \
2686 if (mips_split_addresses && mips_check_split (X, MODE)) \
2688 /* ??? Is this ever executed? */ \
2689 X = gen_rtx_LO_SUM (Pmode, \
2690 copy_to_mode_reg (Pmode, \
2691 gen_rtx (HIGH, Pmode, X)), \
2692 X); \
2693 goto WIN; \
2696 if (GET_CODE (xinsn) == CONST \
2697 && ((flag_pic && pic_address_needs_scratch (xinsn)) \
2698 /* ??? SGI's Irix 6 assembler can't handle CONST. */ \
2699 || (mips_abi != ABI_32 && mips_abi != ABI_EABI))) \
2701 rtx ptr_reg = gen_reg_rtx (Pmode); \
2702 rtx constant = XEXP (XEXP (xinsn, 0), 1); \
2704 emit_move_insn (ptr_reg, XEXP (XEXP (xinsn, 0), 0)); \
2706 X = gen_rtx_PLUS (Pmode, ptr_reg, constant); \
2707 if (SMALL_INT (constant)) \
2708 goto WIN; \
2709 /* Otherwise we fall through so the code below will fix the \
2710 constant. */ \
2711 xinsn = X; \
2714 if (GET_CODE (xinsn) == PLUS) \
2716 register rtx xplus0 = XEXP (xinsn, 0); \
2717 register rtx xplus1 = XEXP (xinsn, 1); \
2718 register enum rtx_code code0 = GET_CODE (xplus0); \
2719 register enum rtx_code code1 = GET_CODE (xplus1); \
2721 if (code0 != REG && code1 == REG) \
2723 xplus0 = XEXP (xinsn, 1); \
2724 xplus1 = XEXP (xinsn, 0); \
2725 code0 = GET_CODE (xplus0); \
2726 code1 = GET_CODE (xplus1); \
2729 if (code0 == REG && REG_OK_FOR_BASE_P (xplus0) \
2730 && code1 == CONST_INT && !SMALL_INT (xplus1)) \
2732 rtx int_reg = gen_reg_rtx (Pmode); \
2733 rtx ptr_reg = gen_reg_rtx (Pmode); \
2735 emit_move_insn (int_reg, \
2736 GEN_INT (INTVAL (xplus1) & ~ 0x7fff)); \
2738 emit_insn (gen_rtx_SET (VOIDmode, \
2739 ptr_reg, \
2740 gen_rtx_PLUS (Pmode, xplus0, int_reg))); \
2742 X = gen_rtx_PLUS (Pmode, ptr_reg, \
2743 GEN_INT (INTVAL (xplus1) & 0x7fff)); \
2744 goto WIN; \
2748 if (TARGET_DEBUG_B_MODE) \
2749 GO_PRINTF ("LEGITIMIZE_ADDRESS could not fix.\n"); \
2753 /* A C statement or compound statement with a conditional `goto
2754 LABEL;' executed if memory address X (an RTX) can have different
2755 meanings depending on the machine mode of the memory reference it
2756 is used for.
2758 Autoincrement and autodecrement addresses typically have
2759 mode-dependent effects because the amount of the increment or
2760 decrement is the size of the operand being addressed. Some
2761 machines have other mode-dependent addresses. Many RISC machines
2762 have no mode-dependent addresses.
2764 You may assume that ADDR is a valid address for the machine. */
2766 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) {}
2769 /* Define this macro if references to a symbol must be treated
2770 differently depending on something about the variable or
2771 function named by the symbol (such as what section it is in).
2773 The macro definition, if any, is executed immediately after the
2774 rtl for DECL has been created and stored in `DECL_RTL (DECL)'.
2775 The value of the rtl will be a `mem' whose address is a
2776 `symbol_ref'.
2778 The usual thing for this macro to do is to a flag in the
2779 `symbol_ref' (such as `SYMBOL_REF_FLAG') or to store a modified
2780 name string in the `symbol_ref' (if one bit is not enough
2781 information).
2783 The best way to modify the name string is by adding text to the
2784 beginning, with suitable punctuation to prevent any ambiguity.
2785 Allocate the new name in `saveable_obstack'. You will have to
2786 modify `ASM_OUTPUT_LABELREF' to remove and decode the added text
2787 and output the name accordingly.
2789 You can also check the information stored in the `symbol_ref' in
2790 the definition of `GO_IF_LEGITIMATE_ADDRESS' or
2791 `PRINT_OPERAND_ADDRESS'. */
2793 #define ENCODE_SECTION_INFO(DECL) \
2794 do \
2796 if (TARGET_EMBEDDED_PIC) \
2798 if (TREE_CODE (DECL) == VAR_DECL) \
2799 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1; \
2800 else if (TREE_CODE (DECL) == FUNCTION_DECL) \
2801 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 0; \
2802 else if (TREE_CODE (DECL) == STRING_CST \
2803 && ! flag_writable_strings) \
2804 SYMBOL_REF_FLAG (XEXP (TREE_CST_RTL (DECL), 0)) = 0; \
2805 else \
2806 SYMBOL_REF_FLAG (XEXP (TREE_CST_RTL (DECL), 0)) = 1; \
2809 else if (TARGET_GP_OPT && TREE_CODE (DECL) == VAR_DECL) \
2811 int size = int_size_in_bytes (TREE_TYPE (DECL)); \
2813 if (size > 0 && size <= mips_section_threshold) \
2814 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1; \
2817 else if (HALF_PIC_P ()) \
2818 HALF_PIC_ENCODE (DECL); \
2820 while (0)
2823 /* Specify the machine mode that this machine uses
2824 for the index in the tablejump instruction. */
2825 #define CASE_VECTOR_MODE (TARGET_LONG64 ? DImode : SImode)
2827 /* Define this if the tablejump instruction expects the table
2828 to contain offsets from the address of the table.
2829 Do not define this if the table should contain absolute addresses. */
2830 /* #define CASE_VECTOR_PC_RELATIVE */
2832 /* Specify the tree operation to be used to convert reals to integers. */
2833 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
2835 /* This is the kind of divide that is easiest to do in the general case. */
2836 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
2838 /* Define this as 1 if `char' should by default be signed; else as 0. */
2839 #ifndef DEFAULT_SIGNED_CHAR
2840 #define DEFAULT_SIGNED_CHAR 1
2841 #endif
2843 /* Max number of bytes we can move from memory to memory
2844 in one reasonably fast instruction. */
2845 #define MOVE_MAX (TARGET_64BIT ? 8 : 4)
2846 #define MAX_MOVE_MAX 8
2848 /* Define this macro as a C expression which is nonzero if
2849 accessing less than a word of memory (i.e. a `char' or a
2850 `short') is no faster than accessing a word of memory, i.e., if
2851 such access require more than one instruction or if there is no
2852 difference in cost between byte and (aligned) word loads.
2854 On RISC machines, it tends to generate better code to define
2855 this as 1, since it avoids making a QI or HI mode register. */
2856 #define SLOW_BYTE_ACCESS 1
2858 /* We assume that the store-condition-codes instructions store 0 for false
2859 and some other value for true. This is the value stored for true. */
2861 #define STORE_FLAG_VALUE 1
2863 /* Define this if zero-extension is slow (more than one real instruction). */
2864 #define SLOW_ZERO_EXTEND
2866 /* Define this to be nonzero if shift instructions ignore all but the low-order
2867 few bits. */
2868 #define SHIFT_COUNT_TRUNCATED 1
2870 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2871 is done just by pretending it is already truncated. */
2872 /* In 64 bit mode, 32 bit instructions require that register values be properly
2873 sign-extended to 64 bits. As a result, a truncate is not a no-op if it
2874 converts a value >32 bits to a value <32 bits. */
2875 /* ??? This results in inefficient code for 64 bit to 32 conversions.
2876 Something needs to be done about this. Perhaps not use any 32 bit
2877 instructions? Perhaps use PROMOTE_MODE? */
2878 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) \
2879 (TARGET_64BIT ? ((INPREC) <= 32 || (OUTPREC) > 32) : 1)
2881 /* Specify the machine mode that pointers have.
2882 After generation of rtl, the compiler makes no further distinction
2883 between pointers and any other objects of this machine mode. */
2885 #define Pmode (TARGET_LONG64 ? DImode : SImode)
2887 /* A function address in a call instruction
2888 is a word address (for indexing purposes)
2889 so give the MEM rtx a words's mode. */
2891 #define FUNCTION_MODE (TARGET_LONG64 ? DImode : SImode)
2893 /* Define TARGET_MEM_FUNCTIONS if we want to use calls to memcpy and
2894 memset, instead of the BSD functions bcopy and bzero. */
2896 #if defined(MIPS_SYSV) || defined(OSF_OS)
2897 #define TARGET_MEM_FUNCTIONS
2898 #endif
2901 /* A part of a C `switch' statement that describes the relative
2902 costs of constant RTL expressions. It must contain `case'
2903 labels for expression codes `const_int', `const', `symbol_ref',
2904 `label_ref' and `const_double'. Each case must ultimately reach
2905 a `return' statement to return the relative cost of the use of
2906 that kind of constant value in an expression. The cost may
2907 depend on the precise value of the constant, which is available
2908 for examination in X.
2910 CODE is the expression code--redundant, since it can be obtained
2911 with `GET_CODE (X)'. */
2913 #define CONST_COSTS(X,CODE,OUTER_CODE) \
2914 case CONST_INT: \
2915 /* Always return 0, since we don't have different sized \
2916 instructions, hence different costs according to Richard \
2917 Kenner */ \
2918 return 0; \
2920 case LABEL_REF: \
2921 return COSTS_N_INSNS (2); \
2923 case CONST: \
2925 rtx offset = const0_rtx; \
2926 rtx symref = eliminate_constant_term (XEXP (X, 0), &offset); \
2928 if (GET_CODE (symref) == LABEL_REF) \
2929 return COSTS_N_INSNS (2); \
2931 if (GET_CODE (symref) != SYMBOL_REF) \
2932 return COSTS_N_INSNS (4); \
2934 /* let's be paranoid.... */ \
2935 if (INTVAL (offset) < -32768 || INTVAL (offset) > 32767) \
2936 return COSTS_N_INSNS (2); \
2938 return COSTS_N_INSNS (SYMBOL_REF_FLAG (symref) ? 1 : 2); \
2941 case SYMBOL_REF: \
2942 return COSTS_N_INSNS (SYMBOL_REF_FLAG (X) ? 1 : 2); \
2944 case CONST_DOUBLE: \
2946 rtx high, low; \
2947 split_double (X, &high, &low); \
2948 return COSTS_N_INSNS ((high == CONST0_RTX (GET_MODE (high)) \
2949 || low == CONST0_RTX (GET_MODE (low))) \
2950 ? 2 : 4); \
2953 /* Like `CONST_COSTS' but applies to nonconstant RTL expressions.
2954 This can be used, for example, to indicate how costly a multiply
2955 instruction is. In writing this macro, you can use the construct
2956 `COSTS_N_INSNS (N)' to specify a cost equal to N fast instructions.
2958 This macro is optional; do not define it if the default cost
2959 assumptions are adequate for the target machine.
2961 If -mdebugd is used, change the multiply cost to 2, so multiply by
2962 a constant isn't converted to a series of shifts. This helps
2963 strength reduction, and also makes it easier to identify what the
2964 compiler is doing. */
2966 /* ??? Fix this to be right for the R8000. */
2967 #define RTX_COSTS(X,CODE,OUTER_CODE) \
2968 case MEM: \
2970 int num_words = (GET_MODE_SIZE (GET_MODE (X)) > UNITS_PER_WORD) ? 2 : 1; \
2971 if (simple_memory_operand (X, GET_MODE (X))) \
2972 return COSTS_N_INSNS (num_words); \
2974 return COSTS_N_INSNS (2*num_words); \
2977 case FFS: \
2978 return COSTS_N_INSNS (6); \
2980 case NOT: \
2981 return COSTS_N_INSNS ((GET_MODE (X) == DImode && !TARGET_64BIT) ? 2 : 1); \
2983 case AND: \
2984 case IOR: \
2985 case XOR: \
2986 if (GET_MODE (X) == DImode && !TARGET_64BIT) \
2987 return COSTS_N_INSNS (2); \
2989 return COSTS_N_INSNS (1); \
2991 case ASHIFT: \
2992 case ASHIFTRT: \
2993 case LSHIFTRT: \
2994 if (GET_MODE (X) == DImode && !TARGET_64BIT) \
2995 return COSTS_N_INSNS ((GET_CODE (XEXP (X, 1)) == CONST_INT) ? 4 : 12); \
2997 return COSTS_N_INSNS (1); \
2999 case ABS: \
3001 enum machine_mode xmode = GET_MODE (X); \
3002 if (xmode == SFmode || xmode == DFmode) \
3003 return COSTS_N_INSNS (1); \
3005 return COSTS_N_INSNS (4); \
3008 case PLUS: \
3009 case MINUS: \
3011 enum machine_mode xmode = GET_MODE (X); \
3012 if (xmode == SFmode || xmode == DFmode) \
3014 if (mips_cpu == PROCESSOR_R3000 \
3015 || mips_cpu == PROCESSOR_R3900) \
3016 return COSTS_N_INSNS (2); \
3017 else if (mips_cpu == PROCESSOR_R6000) \
3018 return COSTS_N_INSNS (3); \
3019 else \
3020 return COSTS_N_INSNS (6); \
3023 if (xmode == DImode && !TARGET_64BIT) \
3024 return COSTS_N_INSNS (4); \
3026 return COSTS_N_INSNS (1); \
3029 case NEG: \
3030 return COSTS_N_INSNS ((GET_MODE (X) == DImode && !TARGET_64BIT) ? 4 : 1); \
3032 case MULT: \
3034 enum machine_mode xmode = GET_MODE (X); \
3035 if (xmode == SFmode) \
3037 if (mips_cpu == PROCESSOR_R3000 \
3038 || mips_cpu == PROCESSOR_R3900 \
3039 || mips_cpu == PROCESSOR_R5000) \
3040 return COSTS_N_INSNS (4); \
3041 else if (mips_cpu == PROCESSOR_R6000) \
3042 return COSTS_N_INSNS (5); \
3043 else \
3044 return COSTS_N_INSNS (7); \
3047 if (xmode == DFmode) \
3049 if (mips_cpu == PROCESSOR_R3000 \
3050 || mips_cpu == PROCESSOR_R3900 \
3051 || mips_cpu == PROCESSOR_R5000) \
3052 return COSTS_N_INSNS (5); \
3053 else if (mips_cpu == PROCESSOR_R6000) \
3054 return COSTS_N_INSNS (6); \
3055 else \
3056 return COSTS_N_INSNS (8); \
3059 if (mips_cpu == PROCESSOR_R3000) \
3060 return COSTS_N_INSNS (12); \
3061 else if (mips_cpu == PROCESSOR_R3900) \
3062 return COSTS_N_INSNS (2); \
3063 else if (mips_cpu == PROCESSOR_R6000) \
3064 return COSTS_N_INSNS (17); \
3065 else if (mips_cpu == PROCESSOR_R5000) \
3066 return COSTS_N_INSNS (5); \
3067 else \
3068 return COSTS_N_INSNS (10); \
3071 case DIV: \
3072 case MOD: \
3074 enum machine_mode xmode = GET_MODE (X); \
3075 if (xmode == SFmode) \
3077 if (mips_cpu == PROCESSOR_R3000 \
3078 || mips_cpu == PROCESSOR_R3900) \
3079 return COSTS_N_INSNS (12); \
3080 else if (mips_cpu == PROCESSOR_R6000) \
3081 return COSTS_N_INSNS (15); \
3082 else \
3083 return COSTS_N_INSNS (23); \
3086 if (xmode == DFmode) \
3088 if (mips_cpu == PROCESSOR_R3000 \
3089 || mips_cpu == PROCESSOR_R3900) \
3090 return COSTS_N_INSNS (19); \
3091 else if (mips_cpu == PROCESSOR_R6000) \
3092 return COSTS_N_INSNS (16); \
3093 else \
3094 return COSTS_N_INSNS (36); \
3097 /* fall through */ \
3099 case UDIV: \
3100 case UMOD: \
3101 if (mips_cpu == PROCESSOR_R3000 \
3102 || mips_cpu == PROCESSOR_R3900) \
3103 return COSTS_N_INSNS (35); \
3104 else if (mips_cpu == PROCESSOR_R6000) \
3105 return COSTS_N_INSNS (38); \
3106 else if (mips_cpu == PROCESSOR_R5000) \
3107 return COSTS_N_INSNS (36); \
3108 else \
3109 return COSTS_N_INSNS (69); \
3111 case SIGN_EXTEND: \
3112 /* A sign extend from SImode to DImode in 64 bit mode is often \
3113 zero instructions, because the result can often be used \
3114 directly by another instruction; we'll call it one. */ \
3115 if (TARGET_64BIT && GET_MODE (X) == DImode \
3116 && GET_MODE (XEXP (X, 0)) == SImode) \
3117 return COSTS_N_INSNS (1); \
3118 else \
3119 return COSTS_N_INSNS (2); \
3121 case ZERO_EXTEND: \
3122 if (TARGET_64BIT && GET_MODE (X) == DImode \
3123 && GET_MODE (XEXP (X, 0)) == SImode) \
3124 return COSTS_N_INSNS (2); \
3125 else \
3126 return COSTS_N_INSNS (1);
3128 /* An expression giving the cost of an addressing mode that
3129 contains ADDRESS. If not defined, the cost is computed from the
3130 form of the ADDRESS expression and the `CONST_COSTS' values.
3132 For most CISC machines, the default cost is a good approximation
3133 of the true cost of the addressing mode. However, on RISC
3134 machines, all instructions normally have the same length and
3135 execution time. Hence all addresses will have equal costs.
3137 In cases where more than one form of an address is known, the
3138 form with the lowest cost will be used. If multiple forms have
3139 the same, lowest, cost, the one that is the most complex will be
3140 used.
3142 For example, suppose an address that is equal to the sum of a
3143 register and a constant is used twice in the same basic block.
3144 When this macro is not defined, the address will be computed in
3145 a register and memory references will be indirect through that
3146 register. On machines where the cost of the addressing mode
3147 containing the sum is no higher than that of a simple indirect
3148 reference, this will produce an additional instruction and
3149 possibly require an additional register. Proper specification
3150 of this macro eliminates this overhead for such machines.
3152 Similar use of this macro is made in strength reduction of loops.
3154 ADDRESS need not be valid as an address. In such a case, the
3155 cost is not relevant and can be any value; invalid addresses
3156 need not be assigned a different cost.
3158 On machines where an address involving more than one register is
3159 as cheap as an address computation involving only one register,
3160 defining `ADDRESS_COST' to reflect this can cause two registers
3161 to be live over a region of code where only one would have been
3162 if `ADDRESS_COST' were not defined in that manner. This effect
3163 should be considered in the definition of this macro.
3164 Equivalent costs should probably only be given to addresses with
3165 different numbers of registers on machines with lots of registers.
3167 This macro will normally either not be defined or be defined as
3168 a constant. */
3170 #define ADDRESS_COST(ADDR) (REG_P (ADDR) ? 1 : mips_address_cost (ADDR))
3172 /* A C expression for the cost of moving data from a register in
3173 class FROM to one in class TO. The classes are expressed using
3174 the enumeration values such as `GENERAL_REGS'. A value of 2 is
3175 the default; other values are interpreted relative to that.
3177 It is not required that the cost always equal 2 when FROM is the
3178 same as TO; on some machines it is expensive to move between
3179 registers if they are not general registers.
3181 If reload sees an insn consisting of a single `set' between two
3182 hard registers, and if `REGISTER_MOVE_COST' applied to their
3183 classes returns a value of 2, reload does not check to ensure
3184 that the constraints of the insn are met. Setting a cost of
3185 other than 2 will allow reload to verify that the constraints are
3186 met. You should do this if the `movM' pattern's constraints do
3187 not allow such copying. */
3189 #define REGISTER_MOVE_COST(FROM, TO) \
3190 ((FROM) == GR_REGS && (TO) == GR_REGS ? 2 \
3191 : (FROM) == FP_REGS && (TO) == FP_REGS ? 2 \
3192 : (FROM) == GR_REGS && (TO) == FP_REGS ? 4 \
3193 : (FROM) == FP_REGS && (TO) == GR_REGS ? 4 \
3194 : (((FROM) == HI_REG || (FROM) == LO_REG \
3195 || (FROM) == MD_REGS || (FROM) == HILO_REG) \
3196 && (TO) == GR_REGS) ? 6 \
3197 : (((TO) == HI_REG || (TO) == LO_REG \
3198 || (TO) == MD_REGS || (FROM) == HILO_REG) \
3199 && (FROM) == GR_REGS) ? 6 \
3200 : (FROM) == ST_REGS && (TO) == GR_REGS ? 4 \
3201 : (FROM) == FP_REGS && (TO) == ST_REGS ? 8 \
3202 : 12)
3204 /* ??? Fix this to be right for the R8000. */
3205 #define MEMORY_MOVE_COST(MODE,CLASS,TO_P) \
3206 (((mips_cpu == PROCESSOR_R4000 || mips_cpu == PROCESSOR_R6000) ? 6 : 4) \
3207 + memory_move_secondary_cost ((MODE), (CLASS), (TO_P)))
3209 /* A C expression for the cost of a branch instruction. A value of
3210 1 is the default; other values are interpreted relative to that. */
3212 /* ??? Fix this to be right for the R8000. */
3213 #define BRANCH_COST \
3214 ((mips_cpu == PROCESSOR_R4000 || mips_cpu == PROCESSOR_R6000) ? 2 : 1)
3216 /* A C statement (sans semicolon) to update the integer variable COST
3217 based on the relationship between INSN that is dependent on
3218 DEP_INSN through the dependence LINK. The default is to make no
3219 adjustment to COST. On the MIPS, ignore the cost of anti- and
3220 output-dependencies. */
3222 #define ADJUST_COST(INSN,LINK,DEP_INSN,COST) \
3223 if (REG_NOTE_KIND (LINK) != 0) \
3224 (COST) = 0; /* Anti or output dependence. */
3226 /* Optionally define this if you have added predicates to
3227 `MACHINE.c'. This macro is called within an initializer of an
3228 array of structures. The first field in the structure is the
3229 name of a predicate and the second field is an array of rtl
3230 codes. For each predicate, list all rtl codes that can be in
3231 expressions matched by the predicate. The list should have a
3232 trailing comma. Here is an example of two entries in the list
3233 for a typical RISC machine:
3235 #define PREDICATE_CODES \
3236 {"gen_reg_rtx_operand", {SUBREG, REG}}, \
3237 {"reg_or_short_cint_operand", {SUBREG, REG, CONST_INT}},
3239 Defining this macro does not affect the generated code (however,
3240 incorrect definitions that omit an rtl code that may be matched
3241 by the predicate can cause the compiler to malfunction).
3242 Instead, it allows the table built by `genrecog' to be more
3243 compact and efficient, thus speeding up the compiler. The most
3244 important predicates to include in the list specified by this
3245 macro are thoses used in the most insn patterns. */
3247 #define PREDICATE_CODES \
3248 {"uns_arith_operand", { REG, CONST_INT, SUBREG }}, \
3249 {"arith_operand", { REG, CONST_INT, SUBREG }}, \
3250 {"arith32_operand", { REG, CONST_INT, SUBREG }}, \
3251 {"reg_or_0_operand", { REG, CONST_INT, SUBREG }}, \
3252 {"small_int", { CONST_INT }}, \
3253 {"large_int", { CONST_INT }}, \
3254 {"mips_const_double_ok", { CONST_DOUBLE }}, \
3255 {"const_float_1_operand", { CONST_DOUBLE }}, \
3256 {"simple_memory_operand", { MEM, SUBREG }}, \
3257 {"equality_op", { EQ, NE }}, \
3258 {"cmp_op", { EQ, NE, GT, GE, GTU, GEU, LT, LE, \
3259 LTU, LEU }}, \
3260 {"pc_or_label_operand", { PC, LABEL_REF }}, \
3261 {"call_insn_operand", { CONST_INT, CONST, SYMBOL_REF, REG}}, \
3262 {"move_operand", { CONST_INT, CONST_DOUBLE, CONST, \
3263 SYMBOL_REF, LABEL_REF, SUBREG, \
3264 REG, MEM}}, \
3265 {"movdi_operand", { CONST_INT, CONST_DOUBLE, CONST, \
3266 SYMBOL_REF, LABEL_REF, SUBREG, REG, \
3267 MEM, SIGN_EXTEND }}, \
3268 {"se_register_operand", { SUBREG, REG, SIGN_EXTEND }}, \
3269 {"se_reg_or_0_operand", { REG, CONST_INT, SUBREG, \
3270 SIGN_EXTEND }}, \
3271 {"se_uns_arith_operand", { REG, CONST_INT, SUBREG, \
3272 SIGN_EXTEND }}, \
3273 {"se_arith_operand", { REG, CONST_INT, SUBREG, \
3274 SIGN_EXTEND }}, \
3275 {"se_nonmemory_operand", { CONST_INT, CONST_DOUBLE, CONST, \
3276 SYMBOL_REF, LABEL_REF, SUBREG, \
3277 REG, SIGN_EXTEND }}, \
3278 {"se_nonimmediate_operand", { SUBREG, REG, MEM, SIGN_EXTEND }},
3281 /* If defined, a C statement to be executed just prior to the
3282 output of assembler code for INSN, to modify the extracted
3283 operands so they will be output differently.
3285 Here the argument OPVEC is the vector containing the operands
3286 extracted from INSN, and NOPERANDS is the number of elements of
3287 the vector which contain meaningful data for this insn. The
3288 contents of this vector are what will be used to convert the
3289 insn template into assembler code, so you can change the
3290 assembler output by changing the contents of the vector.
3292 We use it to check if the current insn needs a nop in front of it
3293 because of load delays, and also to update the delay slot
3294 statistics. */
3296 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
3297 final_prescan_insn (INSN, OPVEC, NOPERANDS)
3300 /* Control the assembler format that we output. */
3302 /* Output at beginning of assembler file.
3303 If we are optimizing to use the global pointer, create a temporary
3304 file to hold all of the text stuff, and write it out to the end.
3305 This is needed because the MIPS assembler is evidently one pass,
3306 and if it hasn't seen the relevant .comm/.lcomm/.extern/.sdata
3307 declaration when the code is processed, it generates a two
3308 instruction sequence. */
3310 #define ASM_FILE_START(STREAM) mips_asm_file_start (STREAM)
3312 /* Output to assembler file text saying following lines
3313 may contain character constants, extra white space, comments, etc. */
3315 #define ASM_APP_ON " #APP\n"
3317 /* Output to assembler file text saying following lines
3318 no longer contain unusual constructs. */
3320 #define ASM_APP_OFF " #NO_APP\n"
3322 /* How to refer to registers in assembler output.
3323 This sequence is indexed by compiler's hard-register-number (see above).
3325 In order to support the two different conventions for register names,
3326 we use the name of a table set up in mips.c, which is overwritten
3327 if -mrnames is used. */
3329 #define REGISTER_NAMES \
3331 &mips_reg_names[ 0][0], \
3332 &mips_reg_names[ 1][0], \
3333 &mips_reg_names[ 2][0], \
3334 &mips_reg_names[ 3][0], \
3335 &mips_reg_names[ 4][0], \
3336 &mips_reg_names[ 5][0], \
3337 &mips_reg_names[ 6][0], \
3338 &mips_reg_names[ 7][0], \
3339 &mips_reg_names[ 8][0], \
3340 &mips_reg_names[ 9][0], \
3341 &mips_reg_names[10][0], \
3342 &mips_reg_names[11][0], \
3343 &mips_reg_names[12][0], \
3344 &mips_reg_names[13][0], \
3345 &mips_reg_names[14][0], \
3346 &mips_reg_names[15][0], \
3347 &mips_reg_names[16][0], \
3348 &mips_reg_names[17][0], \
3349 &mips_reg_names[18][0], \
3350 &mips_reg_names[19][0], \
3351 &mips_reg_names[20][0], \
3352 &mips_reg_names[21][0], \
3353 &mips_reg_names[22][0], \
3354 &mips_reg_names[23][0], \
3355 &mips_reg_names[24][0], \
3356 &mips_reg_names[25][0], \
3357 &mips_reg_names[26][0], \
3358 &mips_reg_names[27][0], \
3359 &mips_reg_names[28][0], \
3360 &mips_reg_names[29][0], \
3361 &mips_reg_names[30][0], \
3362 &mips_reg_names[31][0], \
3363 &mips_reg_names[32][0], \
3364 &mips_reg_names[33][0], \
3365 &mips_reg_names[34][0], \
3366 &mips_reg_names[35][0], \
3367 &mips_reg_names[36][0], \
3368 &mips_reg_names[37][0], \
3369 &mips_reg_names[38][0], \
3370 &mips_reg_names[39][0], \
3371 &mips_reg_names[40][0], \
3372 &mips_reg_names[41][0], \
3373 &mips_reg_names[42][0], \
3374 &mips_reg_names[43][0], \
3375 &mips_reg_names[44][0], \
3376 &mips_reg_names[45][0], \
3377 &mips_reg_names[46][0], \
3378 &mips_reg_names[47][0], \
3379 &mips_reg_names[48][0], \
3380 &mips_reg_names[49][0], \
3381 &mips_reg_names[50][0], \
3382 &mips_reg_names[51][0], \
3383 &mips_reg_names[52][0], \
3384 &mips_reg_names[53][0], \
3385 &mips_reg_names[54][0], \
3386 &mips_reg_names[55][0], \
3387 &mips_reg_names[56][0], \
3388 &mips_reg_names[57][0], \
3389 &mips_reg_names[58][0], \
3390 &mips_reg_names[59][0], \
3391 &mips_reg_names[60][0], \
3392 &mips_reg_names[61][0], \
3393 &mips_reg_names[62][0], \
3394 &mips_reg_names[63][0], \
3395 &mips_reg_names[64][0], \
3396 &mips_reg_names[65][0], \
3397 &mips_reg_names[66][0], \
3398 &mips_reg_names[67][0], \
3399 &mips_reg_names[68][0], \
3400 &mips_reg_names[69][0], \
3401 &mips_reg_names[70][0], \
3402 &mips_reg_names[71][0], \
3403 &mips_reg_names[72][0], \
3404 &mips_reg_names[73][0], \
3405 &mips_reg_names[74][0], \
3406 &mips_reg_names[75][0], \
3409 /* print-rtl.c can't use REGISTER_NAMES, since it depends on mips.c.
3410 So define this for it. */
3411 #define DEBUG_REGISTER_NAMES \
3413 "$0", "at", "v0", "v1", "a0", "a1", "a2", "a3", \
3414 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7", \
3415 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", \
3416 "t8", "t9", "k0", "k1", "gp", "sp", "$fp", "ra", \
3417 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", \
3418 "$f8", "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
3419 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23", \
3420 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31", \
3421 "hi", "lo", "accum","$fcc0","$fcc1","$fcc2","$fcc3","$fcc4", \
3422 "$fcc5","$fcc6","$fcc7","$rap" \
3425 /* If defined, a C initializer for an array of structures
3426 containing a name and a register number. This macro defines
3427 additional names for hard registers, thus allowing the `asm'
3428 option in declarations to refer to registers using alternate
3429 names.
3431 We define both names for the integer registers here. */
3433 #define ADDITIONAL_REGISTER_NAMES \
3435 { "$0", 0 + GP_REG_FIRST }, \
3436 { "$1", 1 + GP_REG_FIRST }, \
3437 { "$2", 2 + GP_REG_FIRST }, \
3438 { "$3", 3 + GP_REG_FIRST }, \
3439 { "$4", 4 + GP_REG_FIRST }, \
3440 { "$5", 5 + GP_REG_FIRST }, \
3441 { "$6", 6 + GP_REG_FIRST }, \
3442 { "$7", 7 + GP_REG_FIRST }, \
3443 { "$8", 8 + GP_REG_FIRST }, \
3444 { "$9", 9 + GP_REG_FIRST }, \
3445 { "$10", 10 + GP_REG_FIRST }, \
3446 { "$11", 11 + GP_REG_FIRST }, \
3447 { "$12", 12 + GP_REG_FIRST }, \
3448 { "$13", 13 + GP_REG_FIRST }, \
3449 { "$14", 14 + GP_REG_FIRST }, \
3450 { "$15", 15 + GP_REG_FIRST }, \
3451 { "$16", 16 + GP_REG_FIRST }, \
3452 { "$17", 17 + GP_REG_FIRST }, \
3453 { "$18", 18 + GP_REG_FIRST }, \
3454 { "$19", 19 + GP_REG_FIRST }, \
3455 { "$20", 20 + GP_REG_FIRST }, \
3456 { "$21", 21 + GP_REG_FIRST }, \
3457 { "$22", 22 + GP_REG_FIRST }, \
3458 { "$23", 23 + GP_REG_FIRST }, \
3459 { "$24", 24 + GP_REG_FIRST }, \
3460 { "$25", 25 + GP_REG_FIRST }, \
3461 { "$26", 26 + GP_REG_FIRST }, \
3462 { "$27", 27 + GP_REG_FIRST }, \
3463 { "$28", 28 + GP_REG_FIRST }, \
3464 { "$29", 29 + GP_REG_FIRST }, \
3465 { "$30", 30 + GP_REG_FIRST }, \
3466 { "$31", 31 + GP_REG_FIRST }, \
3467 { "$sp", 29 + GP_REG_FIRST }, \
3468 { "$fp", 30 + GP_REG_FIRST }, \
3469 { "at", 1 + GP_REG_FIRST }, \
3470 { "v0", 2 + GP_REG_FIRST }, \
3471 { "v1", 3 + GP_REG_FIRST }, \
3472 { "a0", 4 + GP_REG_FIRST }, \
3473 { "a1", 5 + GP_REG_FIRST }, \
3474 { "a2", 6 + GP_REG_FIRST }, \
3475 { "a3", 7 + GP_REG_FIRST }, \
3476 { "t0", 8 + GP_REG_FIRST }, \
3477 { "t1", 9 + GP_REG_FIRST }, \
3478 { "t2", 10 + GP_REG_FIRST }, \
3479 { "t3", 11 + GP_REG_FIRST }, \
3480 { "t4", 12 + GP_REG_FIRST }, \
3481 { "t5", 13 + GP_REG_FIRST }, \
3482 { "t6", 14 + GP_REG_FIRST }, \
3483 { "t7", 15 + GP_REG_FIRST }, \
3484 { "s0", 16 + GP_REG_FIRST }, \
3485 { "s1", 17 + GP_REG_FIRST }, \
3486 { "s2", 18 + GP_REG_FIRST }, \
3487 { "s3", 19 + GP_REG_FIRST }, \
3488 { "s4", 20 + GP_REG_FIRST }, \
3489 { "s5", 21 + GP_REG_FIRST }, \
3490 { "s6", 22 + GP_REG_FIRST }, \
3491 { "s7", 23 + GP_REG_FIRST }, \
3492 { "t8", 24 + GP_REG_FIRST }, \
3493 { "t9", 25 + GP_REG_FIRST }, \
3494 { "k0", 26 + GP_REG_FIRST }, \
3495 { "k1", 27 + GP_REG_FIRST }, \
3496 { "gp", 28 + GP_REG_FIRST }, \
3497 { "sp", 29 + GP_REG_FIRST }, \
3498 { "fp", 30 + GP_REG_FIRST }, \
3499 { "ra", 31 + GP_REG_FIRST }, \
3500 { "$sp", 29 + GP_REG_FIRST }, \
3501 { "$fp", 30 + GP_REG_FIRST } \
3504 /* Define results of standard character escape sequences. */
3505 #define TARGET_BELL 007
3506 #define TARGET_BS 010
3507 #define TARGET_TAB 011
3508 #define TARGET_NEWLINE 012
3509 #define TARGET_VT 013
3510 #define TARGET_FF 014
3511 #define TARGET_CR 015
3513 /* A C compound statement to output to stdio stream STREAM the
3514 assembler syntax for an instruction operand X. X is an RTL
3515 expression.
3517 CODE is a value that can be used to specify one of several ways
3518 of printing the operand. It is used when identical operands
3519 must be printed differently depending on the context. CODE
3520 comes from the `%' specification that was used to request
3521 printing of the operand. If the specification was just `%DIGIT'
3522 then CODE is 0; if the specification was `%LTR DIGIT' then CODE
3523 is the ASCII code for LTR.
3525 If X is a register, this macro should print the register's name.
3526 The names can be found in an array `reg_names' whose type is
3527 `char *[]'. `reg_names' is initialized from `REGISTER_NAMES'.
3529 When the machine description has a specification `%PUNCT' (a `%'
3530 followed by a punctuation character), this macro is called with
3531 a null pointer for X and the punctuation character for CODE.
3533 See mips.c for the MIPS specific codes. */
3535 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
3537 /* A C expression which evaluates to true if CODE is a valid
3538 punctuation character for use in the `PRINT_OPERAND' macro. If
3539 `PRINT_OPERAND_PUNCT_VALID_P' is not defined, it means that no
3540 punctuation characters (except for the standard one, `%') are
3541 used in this way. */
3543 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) mips_print_operand_punct[CODE]
3545 /* A C compound statement to output to stdio stream STREAM the
3546 assembler syntax for an instruction operand that is a memory
3547 reference whose address is ADDR. ADDR is an RTL expression.
3549 On some machines, the syntax for a symbolic address depends on
3550 the section that the address refers to. On these machines,
3551 define the macro `ENCODE_SECTION_INFO' to store the information
3552 into the `symbol_ref', and then check for it here. */
3554 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
3557 /* A C statement, to be executed after all slot-filler instructions
3558 have been output. If necessary, call `dbr_sequence_length' to
3559 determine the number of slots filled in a sequence (zero if not
3560 currently outputting a sequence), to decide how many no-ops to
3561 output, or whatever.
3563 Don't define this macro if it has nothing to do, but it is
3564 helpful in reading assembly output if the extent of the delay
3565 sequence is made explicit (e.g. with white space).
3567 Note that output routines for instructions with delay slots must
3568 be prepared to deal with not being output as part of a sequence
3569 (i.e. when the scheduling pass is not run, or when no slot
3570 fillers could be found.) The variable `final_sequence' is null
3571 when not processing a sequence, otherwise it contains the
3572 `sequence' rtx being output. */
3574 #define DBR_OUTPUT_SEQEND(STREAM) \
3575 do \
3577 if (set_nomacro > 0 && --set_nomacro == 0) \
3578 fputs ("\t.set\tmacro\n", STREAM); \
3580 if (set_noreorder > 0 && --set_noreorder == 0) \
3581 fputs ("\t.set\treorder\n", STREAM); \
3583 dslots_jump_filled++; \
3584 fputs ("\n", STREAM); \
3586 while (0)
3589 /* How to tell the debugger about changes of source files. Note, the
3590 mips ECOFF format cannot deal with changes of files inside of
3591 functions, which means the output of parser generators like bison
3592 is generally not debuggable without using the -l switch. Lose,
3593 lose, lose. Silicon graphics seems to want all .file's hardwired
3594 to 1. */
3596 #ifndef SET_FILE_NUMBER
3597 #define SET_FILE_NUMBER() ++num_source_filenames
3598 #endif
3600 #define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME) \
3601 mips_output_filename (STREAM, NAME)
3603 /* This is defined so that it can be overridden in iris6.h. */
3604 #define ASM_OUTPUT_FILENAME(STREAM, NUM_SOURCE_FILENAMES, NAME) \
3605 do \
3607 fprintf (STREAM, "\t.file\t%d ", NUM_SOURCE_FILENAMES); \
3608 output_quoted_string (STREAM, NAME); \
3609 fputs ("\n", STREAM); \
3611 while (0)
3613 /* This is how to output a note the debugger telling it the line number
3614 to which the following sequence of instructions corresponds.
3615 Silicon graphics puts a label after each .loc. */
3617 #ifndef LABEL_AFTER_LOC
3618 #define LABEL_AFTER_LOC(STREAM)
3619 #endif
3621 #define ASM_OUTPUT_SOURCE_LINE(STREAM, LINE) \
3622 mips_output_lineno (STREAM, LINE)
3624 /* The MIPS implementation uses some labels for its own purpose. The
3625 following lists what labels are created, and are all formed by the
3626 pattern $L[a-z].*. The machine independent portion of GCC creates
3627 labels matching: $L[A-Z][0-9]+ and $L[0-9]+.
3629 LM[0-9]+ Silicon Graphics/ECOFF stabs label before each stmt.
3630 $Lb[0-9]+ Begin blocks for MIPS debug support
3631 $Lc[0-9]+ Label for use in s<xx> operation.
3632 $Le[0-9]+ End blocks for MIPS debug support
3633 $Lp\..+ Half-pic labels. */
3635 /* This is how to output the definition of a user-level label named NAME,
3636 such as the label on a static function or variable NAME.
3638 If we are optimizing the gp, remember that this label has been put
3639 out, so we know not to emit an .extern for it in mips_asm_file_end.
3640 We use one of the common bits in the IDENTIFIER tree node for this,
3641 since those bits seem to be unused, and we don't have any method
3642 of getting the decl nodes from the name. */
3644 #define ASM_OUTPUT_LABEL(STREAM,NAME) \
3645 do { \
3646 assemble_name (STREAM, NAME); \
3647 fputs (":\n", STREAM); \
3648 } while (0)
3651 /* A C statement (sans semicolon) to output to the stdio stream
3652 STREAM any text necessary for declaring the name NAME of an
3653 initialized variable which is being defined. This macro must
3654 output the label definition (perhaps using `ASM_OUTPUT_LABEL').
3655 The argument DECL is the `VAR_DECL' tree node representing the
3656 variable.
3658 If this macro is not defined, then the variable name is defined
3659 in the usual manner as a label (by means of `ASM_OUTPUT_LABEL'). */
3661 #define ASM_DECLARE_OBJECT_NAME(STREAM, NAME, DECL) \
3662 do \
3664 mips_declare_object (STREAM, NAME, "", ":\n", 0); \
3665 HALF_PIC_DECLARE (NAME); \
3667 while (0)
3670 /* This is how to output a command to make the user-level label named NAME
3671 defined for reference from other files. */
3673 #define ASM_GLOBALIZE_LABEL(STREAM,NAME) \
3674 do { \
3675 fputs ("\t.globl\t", STREAM); \
3676 assemble_name (STREAM, NAME); \
3677 fputs ("\n", STREAM); \
3678 } while (0)
3680 /* This says how to define a global common symbol. */
3682 #define ASM_OUTPUT_COMMON(STREAM, NAME, SIZE, ROUNDED) \
3683 mips_declare_object (STREAM, NAME, "\n\t.comm\t", ",%u\n", (SIZE))
3685 /* This says how to define a local common symbol (ie, not visible to
3686 linker). */
3688 #define ASM_OUTPUT_LOCAL(STREAM, NAME, SIZE, ROUNDED) \
3689 mips_declare_object (STREAM, NAME, "\n\t.lcomm\t", ",%u\n", (SIZE))
3692 /* This says how to output an external. It would be possible not to
3693 output anything and let undefined symbol become external. However
3694 the assembler uses length information on externals to allocate in
3695 data/sdata bss/sbss, thereby saving exec time. */
3697 #define ASM_OUTPUT_EXTERNAL(STREAM,DECL,NAME) \
3698 mips_output_external(STREAM,DECL,NAME)
3700 /* This says what to print at the end of the assembly file */
3701 #define ASM_FILE_END(STREAM) mips_asm_file_end(STREAM)
3704 /* This is how to declare a function name. The actual work of
3705 emitting the label is moved to function_prologue, so that we can
3706 get the line number correctly emitted before the .ent directive,
3707 and after any .file directives.
3709 Also, switch files if we are optimizing the global pointer. */
3711 #define ASM_DECLARE_FUNCTION_NAME(STREAM,NAME,DECL) \
3713 extern FILE *asm_out_text_file; \
3714 if (TARGET_GP_OPT) \
3716 STREAM = asm_out_text_file; \
3717 /* ??? text_section gets called too soon. If the previous \
3718 function is in a special section and we're not, we have \
3719 to switch back to the text section. We can't call \
3720 text_section again as gcc thinks we're already there. */ \
3721 /* ??? See varasm.c. There are other things that get output \
3722 too early, like alignment (before we've switched STREAM). */ \
3723 if (DECL_SECTION_NAME (DECL) == NULL_TREE) \
3724 fprintf (STREAM, "%s\n", TEXT_SECTION_ASM_OP); \
3727 HALF_PIC_DECLARE (NAME); \
3730 /* This is how to output an internal numbered label where
3731 PREFIX is the class of label and NUM is the number within the class. */
3733 #define ASM_OUTPUT_INTERNAL_LABEL(STREAM,PREFIX,NUM) \
3734 fprintf (STREAM, "%s%s%d:\n", LOCAL_LABEL_PREFIX, PREFIX, NUM)
3736 /* This is how to store into the string LABEL
3737 the symbol_ref name of an internal numbered label where
3738 PREFIX is the class of label and NUM is the number within the class.
3739 This is suitable for output with `assemble_name'. */
3741 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
3742 sprintf (LABEL, "*%s%s%d", LOCAL_LABEL_PREFIX, PREFIX, NUM)
3744 /* This is how to output an assembler line defining a `double' constant. */
3746 #define ASM_OUTPUT_DOUBLE(STREAM,VALUE) \
3747 mips_output_double (STREAM, VALUE)
3750 /* This is how to output an assembler line defining a `float' constant. */
3752 #define ASM_OUTPUT_FLOAT(STREAM,VALUE) \
3753 mips_output_float (STREAM, VALUE)
3756 /* This is how to output an assembler line defining an `int' constant. */
3758 #define ASM_OUTPUT_INT(STREAM,VALUE) \
3759 do { \
3760 fprintf (STREAM, "\t.word\t"); \
3761 output_addr_const (STREAM, (VALUE)); \
3762 fprintf (STREAM, "\n"); \
3763 } while (0)
3765 /* Likewise for 64 bit, `char' and `short' constants. */
3767 #define ASM_OUTPUT_DOUBLE_INT(STREAM,VALUE) \
3768 do { \
3769 if (TARGET_64BIT) \
3771 fprintf (STREAM, "\t.dword\t"); \
3772 if (HOST_BITS_PER_WIDE_INT < 64 || GET_CODE (VALUE) != CONST_INT) \
3773 /* We can't use 'X' for negative numbers, because then we won't \
3774 get the right value for the upper 32 bits. */ \
3775 output_addr_const (STREAM, VALUE); \
3776 else \
3777 /* We must use 'X', because otherwise LONG_MIN will print as \
3778 a number that the Irix 6 assembler won't accept. */ \
3779 print_operand (STREAM, VALUE, 'X'); \
3780 fprintf (STREAM, "\n"); \
3782 else \
3784 assemble_integer (operand_subword ((VALUE), 0, 0, DImode), \
3785 UNITS_PER_WORD, 1); \
3786 assemble_integer (operand_subword ((VALUE), 1, 0, DImode), \
3787 UNITS_PER_WORD, 1); \
3789 } while (0)
3791 #define ASM_OUTPUT_SHORT(STREAM,VALUE) \
3793 fprintf (STREAM, "\t.half\t"); \
3794 output_addr_const (STREAM, (VALUE)); \
3795 fprintf (STREAM, "\n"); \
3798 #define ASM_OUTPUT_CHAR(STREAM,VALUE) \
3800 fprintf (STREAM, "\t.byte\t"); \
3801 output_addr_const (STREAM, (VALUE)); \
3802 fprintf (STREAM, "\n"); \
3805 /* This is how to output an assembler line for a numeric constant byte. */
3807 #define ASM_OUTPUT_BYTE(STREAM,VALUE) \
3808 fprintf (STREAM, "\t.byte\t0x%x\n", (VALUE))
3810 /* This is how to output an element of a case-vector that is absolute. */
3812 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
3813 fprintf (STREAM, "\t%s\t%sL%d\n", \
3814 TARGET_LONG64 ? ".dword" : ".word", \
3815 LOCAL_LABEL_PREFIX, \
3816 VALUE)
3818 /* This is how to output an element of a case-vector that is relative.
3819 This is used for pc-relative code (e.g. when TARGET_ABICALLS or
3820 TARGET_EMBEDDED_PIC). */
3822 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, VALUE, REL) \
3823 do { \
3824 if (TARGET_EMBEDDED_PIC) \
3825 fprintf (STREAM, "\t%s\t%sL%d-%sLS%d\n", \
3826 TARGET_LONG64 ? ".dword" : ".word", \
3827 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL); \
3828 else if (mips_abi == ABI_32) \
3829 fprintf (STREAM, "\t%s\t%sL%d\n", \
3830 TARGET_LONG64 ? ".gpdword" : ".gpword", \
3831 LOCAL_LABEL_PREFIX, VALUE); \
3832 else \
3833 fprintf (STREAM, "\t%s\t%sL%d\n", \
3834 TARGET_LONG64 ? ".dword" : ".word", \
3835 LOCAL_LABEL_PREFIX, VALUE); \
3836 } while (0)
3838 /* When generating embedded PIC code we want to put the jump table in
3839 the .text section. In all other cases, we want to put the jump
3840 table in the .rdata section. Unfortunately, we can't use
3841 JUMP_TABLES_IN_TEXT_SECTION, because it is not conditional.
3842 Instead, we use ASM_OUTPUT_CASE_LABEL to switch back to the .text
3843 section if appropriate. */
3844 #define ASM_OUTPUT_CASE_LABEL(FILE, PREFIX, NUM, INSN) \
3845 do { \
3846 if (TARGET_EMBEDDED_PIC) \
3847 text_section (); \
3848 ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); \
3849 } while (0)
3851 /* This is how to output an assembler line
3852 that says to advance the location counter
3853 to a multiple of 2**LOG bytes. */
3855 #define ASM_OUTPUT_ALIGN(STREAM,LOG) \
3857 int mask = (1 << (LOG)) - 1; \
3858 fprintf (STREAM, "\t.align\t%d\n", (LOG)); \
3861 /* This is how to output an assembler line to to advance the location
3862 counter by SIZE bytes. */
3864 #define ASM_OUTPUT_SKIP(STREAM,SIZE) \
3865 fprintf (STREAM, "\t.space\t%u\n", (SIZE))
3867 /* This is how to output a string. */
3868 #define ASM_OUTPUT_ASCII(STREAM, STRING, LEN) \
3869 do { \
3870 register int i, c, len = (LEN), cur_pos = 17; \
3871 register unsigned char *string = (unsigned char *)(STRING); \
3872 fprintf ((STREAM), "\t.ascii\t\""); \
3873 for (i = 0; i < len; i++) \
3875 register int c = string[i]; \
3877 switch (c) \
3879 case '\"': \
3880 case '\\': \
3881 putc ('\\', (STREAM)); \
3882 putc (c, (STREAM)); \
3883 cur_pos += 2; \
3884 break; \
3886 case TARGET_NEWLINE: \
3887 fputs ("\\n", (STREAM)); \
3888 if (i+1 < len \
3889 && (((c = string[i+1]) >= '\040' && c <= '~') \
3890 || c == TARGET_TAB)) \
3891 cur_pos = 32767; /* break right here */ \
3892 else \
3893 cur_pos += 2; \
3894 break; \
3896 case TARGET_TAB: \
3897 fputs ("\\t", (STREAM)); \
3898 cur_pos += 2; \
3899 break; \
3901 case TARGET_FF: \
3902 fputs ("\\f", (STREAM)); \
3903 cur_pos += 2; \
3904 break; \
3906 case TARGET_BS: \
3907 fputs ("\\b", (STREAM)); \
3908 cur_pos += 2; \
3909 break; \
3911 case TARGET_CR: \
3912 fputs ("\\r", (STREAM)); \
3913 cur_pos += 2; \
3914 break; \
3916 default: \
3917 if (c >= ' ' && c < 0177) \
3919 putc (c, (STREAM)); \
3920 cur_pos++; \
3922 else \
3924 fprintf ((STREAM), "\\%03o", c); \
3925 cur_pos += 4; \
3929 if (cur_pos > 72 && i+1 < len) \
3931 cur_pos = 17; \
3932 fprintf ((STREAM), "\"\n\t.ascii\t\""); \
3935 fprintf ((STREAM), "\"\n"); \
3936 } while (0)
3938 /* Handle certain cpp directives used in header files on sysV. */
3939 #define SCCS_DIRECTIVE
3941 /* Output #ident as a in the read-only data section. */
3942 #define ASM_OUTPUT_IDENT(FILE, STRING) \
3944 char *p = STRING; \
3945 int size = strlen (p) + 1; \
3946 rdata_section (); \
3947 assemble_string (p, size); \
3950 /* Default to -G 8 */
3951 #ifndef MIPS_DEFAULT_GVALUE
3952 #define MIPS_DEFAULT_GVALUE 8
3953 #endif
3955 /* Define the strings to put out for each section in the object file. */
3956 #define TEXT_SECTION_ASM_OP "\t.text" /* instructions */
3957 #define DATA_SECTION_ASM_OP "\t.data" /* large data */
3958 #define SDATA_SECTION_ASM_OP "\t.sdata" /* small data */
3959 #define RDATA_SECTION_ASM_OP "\t.rdata" /* read-only data */
3960 #define READONLY_DATA_SECTION rdata_section
3961 #define SMALL_DATA_SECTION sdata_section
3963 /* What other sections we support other than the normal .data/.text. */
3965 #define EXTRA_SECTIONS in_sdata, in_rdata
3967 /* Define the additional functions to select our additional sections. */
3969 /* on the MIPS it is not a good idea to put constants in the text
3970 section, since this defeats the sdata/data mechanism. This is
3971 especially true when -O is used. In this case an effort is made to
3972 address with faster (gp) register relative addressing, which can
3973 only get at sdata and sbss items (there is no stext !!) However,
3974 if the constant is too large for sdata, and it's readonly, it
3975 will go into the .rdata section. */
3977 #define EXTRA_SECTION_FUNCTIONS \
3978 void \
3979 sdata_section () \
3981 if (in_section != in_sdata) \
3983 fprintf (asm_out_file, "%s\n", SDATA_SECTION_ASM_OP); \
3984 in_section = in_sdata; \
3988 void \
3989 rdata_section () \
3991 if (in_section != in_rdata) \
3993 fprintf (asm_out_file, "%s\n", RDATA_SECTION_ASM_OP); \
3994 in_section = in_rdata; \
3998 /* Given a decl node or constant node, choose the section to output it in
3999 and select that section. */
4001 #define SELECT_RTX_SECTION(MODE,RTX) mips_select_rtx_section (MODE, RTX)
4003 #define SELECT_SECTION(DECL, RELOC) mips_select_section (DECL, RELOC)
4006 /* Store in OUTPUT a string (made with alloca) containing
4007 an assembler-name for a local static variable named NAME.
4008 LABELNO is an integer which is different for each call. */
4010 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
4011 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
4012 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
4014 #define ASM_OUTPUT_REG_PUSH(STREAM,REGNO) \
4015 do \
4017 fprintf (STREAM, "\t%s\t%s,%s,8\n\t%s\t%s,0(%s)\n", \
4018 TARGET_64BIT ? "dsubu" : "subu", \
4019 reg_names[STACK_POINTER_REGNUM], \
4020 reg_names[STACK_POINTER_REGNUM], \
4021 TARGET_64BIT ? "sd" : "sw", \
4022 reg_names[REGNO], \
4023 reg_names[STACK_POINTER_REGNUM]); \
4025 while (0)
4027 #define ASM_OUTPUT_REG_POP(STREAM,REGNO) \
4028 do \
4030 if (! set_noreorder) \
4031 fprintf (STREAM, "\t.set\tnoreorder\n"); \
4033 dslots_load_total++; \
4034 dslots_load_filled++; \
4035 fprintf (STREAM, "\t%s\t%s,0(%s)\n\t%s\t%s,%s,8\n", \
4036 TARGET_64BIT ? "ld" : "lw", \
4037 reg_names[REGNO], \
4038 reg_names[STACK_POINTER_REGNUM], \
4039 TARGET_64BIT ? "daddu" : "addu", \
4040 reg_names[STACK_POINTER_REGNUM], \
4041 reg_names[STACK_POINTER_REGNUM]); \
4043 if (! set_noreorder) \
4044 fprintf (STREAM, "\t.set\treorder\n"); \
4046 while (0)
4048 /* Define the parentheses used to group arithmetic operations
4049 in assembler code. */
4051 #define ASM_OPEN_PAREN "("
4052 #define ASM_CLOSE_PAREN ")"
4054 /* How to start an assembler comment.
4055 The leading space is important (the mips native assembler requires it). */
4056 #ifndef ASM_COMMENT_START
4057 #define ASM_COMMENT_START " #"
4058 #endif
4061 /* Macros for mips-tfile.c to encapsulate stabs in ECOFF, and for
4062 and mips-tdump.c to print them out.
4064 These must match the corresponding definitions in gdb/mipsread.c.
4065 Unfortunately, gcc and gdb do not currently share any directories. */
4067 #define CODE_MASK 0x8F300
4068 #define MIPS_IS_STAB(sym) (((sym)->index & 0xFFF00) == CODE_MASK)
4069 #define MIPS_MARK_STAB(code) ((code)+CODE_MASK)
4070 #define MIPS_UNMARK_STAB(code) ((code)-CODE_MASK)
4073 /* Default definitions for size_t and ptrdiff_t. */
4075 #ifndef SIZE_TYPE
4076 #define NO_BUILTIN_SIZE_TYPE
4077 #define SIZE_TYPE (TARGET_LONG64 ? "long unsigned int" : "unsigned int")
4078 #endif
4080 #ifndef PTRDIFF_TYPE
4081 #define NO_BUILTIN_PTRDIFF_TYPE
4082 #define PTRDIFF_TYPE (TARGET_LONG64 ? "long int" : "int")
4083 #endif
4085 /* See mips_expand_prologue's use of loadgp for when this should be
4086 true. */
4088 #define DONT_ACCESS_GBLS_AFTER_EPILOGUE (TARGET_ABICALLS && mips_abi != ABI_32)