gcc/ChangeLog
[official-gcc.git] / gcc / tree-ssa-uninit.c
blobec6d6f5a747e3356ab1cdf99509fba159433589b
1 /* Predicate aware uninitialized variable warning.
2 Copyright (C) 2001-2015 Free Software Foundation, Inc.
3 Contributed by Xinliang David Li <davidxl@google.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "hard-reg-set.h"
28 #include "ssa.h"
29 #include "alias.h"
30 #include "fold-const.h"
31 #include "flags.h"
32 #include "tm_p.h"
33 #include "gimple-pretty-print.h"
34 #include "internal-fn.h"
35 #include "gimple-iterator.h"
36 #include "tree-ssa.h"
37 #include "tree-inline.h"
38 #include "tree-pass.h"
39 #include "diagnostic-core.h"
40 #include "params.h"
41 #include "tree-cfg.h"
43 /* This implements the pass that does predicate aware warning on uses of
44 possibly uninitialized variables. The pass first collects the set of
45 possibly uninitialized SSA names. For each such name, it walks through
46 all its immediate uses. For each immediate use, it rebuilds the condition
47 expression (the predicate) that guards the use. The predicate is then
48 examined to see if the variable is always defined under that same condition.
49 This is done either by pruning the unrealizable paths that lead to the
50 default definitions or by checking if the predicate set that guards the
51 defining paths is a superset of the use predicate. */
54 /* Pointer set of potentially undefined ssa names, i.e.,
55 ssa names that are defined by phi with operands that
56 are not defined or potentially undefined. */
57 static hash_set<tree> *possibly_undefined_names = 0;
59 /* Bit mask handling macros. */
60 #define MASK_SET_BIT(mask, pos) mask |= (1 << pos)
61 #define MASK_TEST_BIT(mask, pos) (mask & (1 << pos))
62 #define MASK_EMPTY(mask) (mask == 0)
64 /* Returns the first bit position (starting from LSB)
65 in mask that is non zero. Returns -1 if the mask is empty. */
66 static int
67 get_mask_first_set_bit (unsigned mask)
69 int pos = 0;
70 if (mask == 0)
71 return -1;
73 while ((mask & (1 << pos)) == 0)
74 pos++;
76 return pos;
78 #define MASK_FIRST_SET_BIT(mask) get_mask_first_set_bit (mask)
80 /* Return true if T, an SSA_NAME, has an undefined value. */
81 static bool
82 has_undefined_value_p (tree t)
84 return (ssa_undefined_value_p (t)
85 || (possibly_undefined_names
86 && possibly_undefined_names->contains (t)));
91 /* Like has_undefined_value_p, but don't return true if TREE_NO_WARNING
92 is set on SSA_NAME_VAR. */
94 static inline bool
95 uninit_undefined_value_p (tree t) {
96 if (!has_undefined_value_p (t))
97 return false;
98 if (SSA_NAME_VAR (t) && TREE_NO_WARNING (SSA_NAME_VAR (t)))
99 return false;
100 return true;
103 /* Emit warnings for uninitialized variables. This is done in two passes.
105 The first pass notices real uses of SSA names with undefined values.
106 Such uses are unconditionally uninitialized, and we can be certain that
107 such a use is a mistake. This pass is run before most optimizations,
108 so that we catch as many as we can.
110 The second pass follows PHI nodes to find uses that are potentially
111 uninitialized. In this case we can't necessarily prove that the use
112 is really uninitialized. This pass is run after most optimizations,
113 so that we thread as many jumps and possible, and delete as much dead
114 code as possible, in order to reduce false positives. We also look
115 again for plain uninitialized variables, since optimization may have
116 changed conditionally uninitialized to unconditionally uninitialized. */
118 /* Emit a warning for EXPR based on variable VAR at the point in the
119 program T, an SSA_NAME, is used being uninitialized. The exact
120 warning text is in MSGID and DATA is the gimple stmt with info about
121 the location in source code. When DATA is a GIMPLE_PHI, PHIARG_IDX
122 gives which argument of the phi node to take the location from. WC
123 is the warning code. */
125 static void
126 warn_uninit (enum opt_code wc, tree t, tree expr, tree var,
127 const char *gmsgid, void *data, location_t phiarg_loc)
129 gimple context = (gimple) data;
130 location_t location, cfun_loc;
131 expanded_location xloc, floc;
133 /* Ignore COMPLEX_EXPR as initializing only a part of a complex
134 turns in a COMPLEX_EXPR with the not initialized part being
135 set to its previous (undefined) value. */
136 if (is_gimple_assign (context)
137 && gimple_assign_rhs_code (context) == COMPLEX_EXPR)
138 return;
139 if (!has_undefined_value_p (t))
140 return;
142 /* TREE_NO_WARNING either means we already warned, or the front end
143 wishes to suppress the warning. */
144 if ((context
145 && (gimple_no_warning_p (context)
146 || (gimple_assign_single_p (context)
147 && TREE_NO_WARNING (gimple_assign_rhs1 (context)))))
148 || TREE_NO_WARNING (expr))
149 return;
151 if (context != NULL && gimple_has_location (context))
152 location = gimple_location (context);
153 else if (phiarg_loc != UNKNOWN_LOCATION)
154 location = phiarg_loc;
155 else
156 location = DECL_SOURCE_LOCATION (var);
157 location = linemap_resolve_location (line_table, location,
158 LRK_SPELLING_LOCATION,
159 NULL);
160 cfun_loc = DECL_SOURCE_LOCATION (cfun->decl);
161 xloc = expand_location (location);
162 floc = expand_location (cfun_loc);
163 if (warning_at (location, wc, gmsgid, expr))
165 TREE_NO_WARNING (expr) = 1;
167 if (location == DECL_SOURCE_LOCATION (var))
168 return;
169 if (xloc.file != floc.file
170 || linemap_location_before_p (line_table,
171 location, cfun_loc)
172 || linemap_location_before_p (line_table,
173 cfun->function_end_locus,
174 location))
175 inform (DECL_SOURCE_LOCATION (var), "%qD was declared here", var);
179 static unsigned int
180 warn_uninitialized_vars (bool warn_possibly_uninitialized)
182 gimple_stmt_iterator gsi;
183 basic_block bb;
185 FOR_EACH_BB_FN (bb, cfun)
187 bool always_executed = dominated_by_p (CDI_POST_DOMINATORS,
188 single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)), bb);
189 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
191 gimple stmt = gsi_stmt (gsi);
192 use_operand_p use_p;
193 ssa_op_iter op_iter;
194 tree use;
196 if (is_gimple_debug (stmt))
197 continue;
199 /* We only do data flow with SSA_NAMEs, so that's all we
200 can warn about. */
201 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, op_iter, SSA_OP_USE)
203 use = USE_FROM_PTR (use_p);
204 if (always_executed)
205 warn_uninit (OPT_Wuninitialized, use,
206 SSA_NAME_VAR (use), SSA_NAME_VAR (use),
207 "%qD is used uninitialized in this function",
208 stmt, UNKNOWN_LOCATION);
209 else if (warn_possibly_uninitialized)
210 warn_uninit (OPT_Wmaybe_uninitialized, use,
211 SSA_NAME_VAR (use), SSA_NAME_VAR (use),
212 "%qD may be used uninitialized in this function",
213 stmt, UNKNOWN_LOCATION);
216 /* For memory the only cheap thing we can do is see if we
217 have a use of the default def of the virtual operand.
218 ??? Not so cheap would be to use the alias oracle via
219 walk_aliased_vdefs, if we don't find any aliasing vdef
220 warn as is-used-uninitialized, if we don't find an aliasing
221 vdef that kills our use (stmt_kills_ref_p), warn as
222 may-be-used-uninitialized. But this walk is quadratic and
223 so must be limited which means we would miss warning
224 opportunities. */
225 use = gimple_vuse (stmt);
226 if (use
227 && gimple_assign_single_p (stmt)
228 && !gimple_vdef (stmt)
229 && SSA_NAME_IS_DEFAULT_DEF (use))
231 tree rhs = gimple_assign_rhs1 (stmt);
232 tree base = get_base_address (rhs);
234 /* Do not warn if it can be initialized outside this function. */
235 if (TREE_CODE (base) != VAR_DECL
236 || DECL_HARD_REGISTER (base)
237 || is_global_var (base))
238 continue;
240 if (always_executed)
241 warn_uninit (OPT_Wuninitialized, use,
242 gimple_assign_rhs1 (stmt), base,
243 "%qE is used uninitialized in this function",
244 stmt, UNKNOWN_LOCATION);
245 else if (warn_possibly_uninitialized)
246 warn_uninit (OPT_Wmaybe_uninitialized, use,
247 gimple_assign_rhs1 (stmt), base,
248 "%qE may be used uninitialized in this function",
249 stmt, UNKNOWN_LOCATION);
254 return 0;
257 /* Checks if the operand OPND of PHI is defined by
258 another phi with one operand defined by this PHI,
259 but the rest operands are all defined. If yes,
260 returns true to skip this operand as being
261 redundant. Can be enhanced to be more general. */
263 static bool
264 can_skip_redundant_opnd (tree opnd, gimple phi)
266 gimple op_def;
267 tree phi_def;
268 int i, n;
270 phi_def = gimple_phi_result (phi);
271 op_def = SSA_NAME_DEF_STMT (opnd);
272 if (gimple_code (op_def) != GIMPLE_PHI)
273 return false;
274 n = gimple_phi_num_args (op_def);
275 for (i = 0; i < n; ++i)
277 tree op = gimple_phi_arg_def (op_def, i);
278 if (TREE_CODE (op) != SSA_NAME)
279 continue;
280 if (op != phi_def && uninit_undefined_value_p (op))
281 return false;
284 return true;
287 /* Returns a bit mask holding the positions of arguments in PHI
288 that have empty (or possibly empty) definitions. */
290 static unsigned
291 compute_uninit_opnds_pos (gphi *phi)
293 size_t i, n;
294 unsigned uninit_opnds = 0;
296 n = gimple_phi_num_args (phi);
297 /* Bail out for phi with too many args. */
298 if (n > 32)
299 return 0;
301 for (i = 0; i < n; ++i)
303 tree op = gimple_phi_arg_def (phi, i);
304 if (TREE_CODE (op) == SSA_NAME
305 && uninit_undefined_value_p (op)
306 && !can_skip_redundant_opnd (op, phi))
308 if (cfun->has_nonlocal_label || cfun->calls_setjmp)
310 /* Ignore SSA_NAMEs that appear on abnormal edges
311 somewhere. */
312 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
313 continue;
315 MASK_SET_BIT (uninit_opnds, i);
318 return uninit_opnds;
321 /* Find the immediate postdominator PDOM of the specified
322 basic block BLOCK. */
324 static inline basic_block
325 find_pdom (basic_block block)
327 if (block == EXIT_BLOCK_PTR_FOR_FN (cfun))
328 return EXIT_BLOCK_PTR_FOR_FN (cfun);
329 else
331 basic_block bb
332 = get_immediate_dominator (CDI_POST_DOMINATORS, block);
333 if (! bb)
334 return EXIT_BLOCK_PTR_FOR_FN (cfun);
335 return bb;
339 /* Find the immediate DOM of the specified
340 basic block BLOCK. */
342 static inline basic_block
343 find_dom (basic_block block)
345 if (block == ENTRY_BLOCK_PTR_FOR_FN (cfun))
346 return ENTRY_BLOCK_PTR_FOR_FN (cfun);
347 else
349 basic_block bb = get_immediate_dominator (CDI_DOMINATORS, block);
350 if (! bb)
351 return ENTRY_BLOCK_PTR_FOR_FN (cfun);
352 return bb;
356 /* Returns true if BB1 is postdominating BB2 and BB1 is
357 not a loop exit bb. The loop exit bb check is simple and does
358 not cover all cases. */
360 static bool
361 is_non_loop_exit_postdominating (basic_block bb1, basic_block bb2)
363 if (!dominated_by_p (CDI_POST_DOMINATORS, bb2, bb1))
364 return false;
366 if (single_pred_p (bb1) && !single_succ_p (bb2))
367 return false;
369 return true;
372 /* Find the closest postdominator of a specified BB, which is control
373 equivalent to BB. */
375 static inline basic_block
376 find_control_equiv_block (basic_block bb)
378 basic_block pdom;
380 pdom = find_pdom (bb);
382 /* Skip the postdominating bb that is also loop exit. */
383 if (!is_non_loop_exit_postdominating (pdom, bb))
384 return NULL;
386 if (dominated_by_p (CDI_DOMINATORS, pdom, bb))
387 return pdom;
389 return NULL;
392 #define MAX_NUM_CHAINS 8
393 #define MAX_CHAIN_LEN 5
394 #define MAX_POSTDOM_CHECK 8
395 #define MAX_SWITCH_CASES 40
397 /* Computes the control dependence chains (paths of edges)
398 for DEP_BB up to the dominating basic block BB (the head node of a
399 chain should be dominated by it). CD_CHAINS is pointer to an
400 array holding the result chains. CUR_CD_CHAIN is the current
401 chain being computed. *NUM_CHAINS is total number of chains. The
402 function returns true if the information is successfully computed,
403 return false if there is no control dependence or not computed. */
405 static bool
406 compute_control_dep_chain (basic_block bb, basic_block dep_bb,
407 vec<edge> *cd_chains,
408 size_t *num_chains,
409 vec<edge> *cur_cd_chain,
410 int *num_calls)
412 edge_iterator ei;
413 edge e;
414 size_t i;
415 bool found_cd_chain = false;
416 size_t cur_chain_len = 0;
418 if (EDGE_COUNT (bb->succs) < 2)
419 return false;
421 if (*num_calls > PARAM_VALUE (PARAM_UNINIT_CONTROL_DEP_ATTEMPTS))
422 return false;
423 ++*num_calls;
425 /* Could use a set instead. */
426 cur_chain_len = cur_cd_chain->length ();
427 if (cur_chain_len > MAX_CHAIN_LEN)
428 return false;
430 for (i = 0; i < cur_chain_len; i++)
432 edge e = (*cur_cd_chain)[i];
433 /* Cycle detected. */
434 if (e->src == bb)
435 return false;
438 FOR_EACH_EDGE (e, ei, bb->succs)
440 basic_block cd_bb;
441 int post_dom_check = 0;
442 if (e->flags & (EDGE_FAKE | EDGE_ABNORMAL))
443 continue;
445 cd_bb = e->dest;
446 cur_cd_chain->safe_push (e);
447 while (!is_non_loop_exit_postdominating (cd_bb, bb))
449 if (cd_bb == dep_bb)
451 /* Found a direct control dependence. */
452 if (*num_chains < MAX_NUM_CHAINS)
454 cd_chains[*num_chains] = cur_cd_chain->copy ();
455 (*num_chains)++;
457 found_cd_chain = true;
458 /* Check path from next edge. */
459 break;
462 /* Now check if DEP_BB is indirectly control dependent on BB. */
463 if (compute_control_dep_chain (cd_bb, dep_bb, cd_chains,
464 num_chains, cur_cd_chain, num_calls))
466 found_cd_chain = true;
467 break;
470 cd_bb = find_pdom (cd_bb);
471 post_dom_check++;
472 if (cd_bb == EXIT_BLOCK_PTR_FOR_FN (cfun) || post_dom_check >
473 MAX_POSTDOM_CHECK)
474 break;
476 cur_cd_chain->pop ();
477 gcc_assert (cur_cd_chain->length () == cur_chain_len);
479 gcc_assert (cur_cd_chain->length () == cur_chain_len);
481 return found_cd_chain;
484 /* The type to represent a simple predicate */
486 struct pred_info
488 tree pred_lhs;
489 tree pred_rhs;
490 enum tree_code cond_code;
491 bool invert;
494 /* The type to represent a sequence of predicates grouped
495 with .AND. operation. */
497 typedef vec<pred_info, va_heap, vl_ptr> pred_chain;
499 /* The type to represent a sequence of pred_chains grouped
500 with .OR. operation. */
502 typedef vec<pred_chain, va_heap, vl_ptr> pred_chain_union;
504 /* Converts the chains of control dependence edges into a set of
505 predicates. A control dependence chain is represented by a vector
506 edges. DEP_CHAINS points to an array of dependence chains.
507 NUM_CHAINS is the size of the chain array. One edge in a dependence
508 chain is mapped to predicate expression represented by pred_info
509 type. One dependence chain is converted to a composite predicate that
510 is the result of AND operation of pred_info mapped to each edge.
511 A composite predicate is presented by a vector of pred_info. On
512 return, *PREDS points to the resulting array of composite predicates.
513 *NUM_PREDS is the number of composite predictes. */
515 static bool
516 convert_control_dep_chain_into_preds (vec<edge> *dep_chains,
517 size_t num_chains,
518 pred_chain_union *preds)
520 bool has_valid_pred = false;
521 size_t i, j;
522 if (num_chains == 0 || num_chains >= MAX_NUM_CHAINS)
523 return false;
525 /* Now convert the control dep chain into a set
526 of predicates. */
527 preds->reserve (num_chains);
529 for (i = 0; i < num_chains; i++)
531 vec<edge> one_cd_chain = dep_chains[i];
533 has_valid_pred = false;
534 pred_chain t_chain = vNULL;
535 for (j = 0; j < one_cd_chain.length (); j++)
537 gimple cond_stmt;
538 gimple_stmt_iterator gsi;
539 basic_block guard_bb;
540 pred_info one_pred;
541 edge e;
543 e = one_cd_chain[j];
544 guard_bb = e->src;
545 gsi = gsi_last_bb (guard_bb);
546 if (gsi_end_p (gsi))
548 has_valid_pred = false;
549 break;
551 cond_stmt = gsi_stmt (gsi);
552 if (is_gimple_call (cond_stmt)
553 && EDGE_COUNT (e->src->succs) >= 2)
555 /* Ignore EH edge. Can add assertion
556 on the other edge's flag. */
557 continue;
559 /* Skip if there is essentially one succesor. */
560 if (EDGE_COUNT (e->src->succs) == 2)
562 edge e1;
563 edge_iterator ei1;
564 bool skip = false;
566 FOR_EACH_EDGE (e1, ei1, e->src->succs)
568 if (EDGE_COUNT (e1->dest->succs) == 0)
570 skip = true;
571 break;
574 if (skip)
575 continue;
577 if (gimple_code (cond_stmt) == GIMPLE_COND)
579 one_pred.pred_lhs = gimple_cond_lhs (cond_stmt);
580 one_pred.pred_rhs = gimple_cond_rhs (cond_stmt);
581 one_pred.cond_code = gimple_cond_code (cond_stmt);
582 one_pred.invert = !!(e->flags & EDGE_FALSE_VALUE);
583 t_chain.safe_push (one_pred);
584 has_valid_pred = true;
586 else if (gswitch *gs = dyn_cast <gswitch *> (cond_stmt))
588 /* Avoid quadratic behavior. */
589 if (gimple_switch_num_labels (gs) > MAX_SWITCH_CASES)
591 has_valid_pred = false;
592 break;
594 /* Find the case label. */
595 tree l = NULL_TREE;
596 unsigned idx;
597 for (idx = 0; idx < gimple_switch_num_labels (gs); ++idx)
599 tree tl = gimple_switch_label (gs, idx);
600 if (e->dest == label_to_block (CASE_LABEL (tl)))
602 if (!l)
603 l = tl;
604 else
606 l = NULL_TREE;
607 break;
611 /* If more than one label reaches this block or the case
612 label doesn't have a single value (like the default one)
613 fail. */
614 if (!l
615 || !CASE_LOW (l)
616 || (CASE_HIGH (l) && !operand_equal_p (CASE_LOW (l),
617 CASE_HIGH (l), 0)))
619 has_valid_pred = false;
620 break;
622 one_pred.pred_lhs = gimple_switch_index (gs);
623 one_pred.pred_rhs = CASE_LOW (l);
624 one_pred.cond_code = EQ_EXPR;
625 one_pred.invert = false;
626 t_chain.safe_push (one_pred);
627 has_valid_pred = true;
629 else
631 has_valid_pred = false;
632 break;
636 if (!has_valid_pred)
637 break;
638 else
639 preds->safe_push (t_chain);
641 return has_valid_pred;
644 /* Computes all control dependence chains for USE_BB. The control
645 dependence chains are then converted to an array of composite
646 predicates pointed to by PREDS. PHI_BB is the basic block of
647 the phi whose result is used in USE_BB. */
649 static bool
650 find_predicates (pred_chain_union *preds,
651 basic_block phi_bb,
652 basic_block use_bb)
654 size_t num_chains = 0, i;
655 int num_calls = 0;
656 vec<edge> dep_chains[MAX_NUM_CHAINS];
657 auto_vec<edge, MAX_CHAIN_LEN + 1> cur_chain;
658 bool has_valid_pred = false;
659 basic_block cd_root = 0;
661 /* First find the closest bb that is control equivalent to PHI_BB
662 that also dominates USE_BB. */
663 cd_root = phi_bb;
664 while (dominated_by_p (CDI_DOMINATORS, use_bb, cd_root))
666 basic_block ctrl_eq_bb = find_control_equiv_block (cd_root);
667 if (ctrl_eq_bb && dominated_by_p (CDI_DOMINATORS, use_bb, ctrl_eq_bb))
668 cd_root = ctrl_eq_bb;
669 else
670 break;
673 compute_control_dep_chain (cd_root, use_bb, dep_chains, &num_chains,
674 &cur_chain, &num_calls);
676 has_valid_pred
677 = convert_control_dep_chain_into_preds (dep_chains, num_chains, preds);
678 for (i = 0; i < num_chains; i++)
679 dep_chains[i].release ();
680 return has_valid_pred;
683 /* Computes the set of incoming edges of PHI that have non empty
684 definitions of a phi chain. The collection will be done
685 recursively on operands that are defined by phis. CD_ROOT
686 is the control dependence root. *EDGES holds the result, and
687 VISITED_PHIS is a pointer set for detecting cycles. */
689 static void
690 collect_phi_def_edges (gphi *phi, basic_block cd_root,
691 vec<edge> *edges,
692 hash_set<gimple> *visited_phis)
694 size_t i, n;
695 edge opnd_edge;
696 tree opnd;
698 if (visited_phis->add (phi))
699 return;
701 n = gimple_phi_num_args (phi);
702 for (i = 0; i < n; i++)
704 opnd_edge = gimple_phi_arg_edge (phi, i);
705 opnd = gimple_phi_arg_def (phi, i);
707 if (TREE_CODE (opnd) != SSA_NAME)
709 if (dump_file && (dump_flags & TDF_DETAILS))
711 fprintf (dump_file, "\n[CHECK] Found def edge %d in ", (int)i);
712 print_gimple_stmt (dump_file, phi, 0, 0);
714 edges->safe_push (opnd_edge);
716 else
718 gimple def = SSA_NAME_DEF_STMT (opnd);
720 if (gimple_code (def) == GIMPLE_PHI
721 && dominated_by_p (CDI_DOMINATORS,
722 gimple_bb (def), cd_root))
723 collect_phi_def_edges (as_a <gphi *> (def), cd_root, edges,
724 visited_phis);
725 else if (!uninit_undefined_value_p (opnd))
727 if (dump_file && (dump_flags & TDF_DETAILS))
729 fprintf (dump_file, "\n[CHECK] Found def edge %d in ", (int)i);
730 print_gimple_stmt (dump_file, phi, 0, 0);
732 edges->safe_push (opnd_edge);
738 /* For each use edge of PHI, computes all control dependence chains.
739 The control dependence chains are then converted to an array of
740 composite predicates pointed to by PREDS. */
742 static bool
743 find_def_preds (pred_chain_union *preds, gphi *phi)
745 size_t num_chains = 0, i, n;
746 vec<edge> dep_chains[MAX_NUM_CHAINS];
747 auto_vec<edge, MAX_CHAIN_LEN + 1> cur_chain;
748 vec<edge> def_edges = vNULL;
749 bool has_valid_pred = false;
750 basic_block phi_bb, cd_root = 0;
752 phi_bb = gimple_bb (phi);
753 /* First find the closest dominating bb to be
754 the control dependence root */
755 cd_root = find_dom (phi_bb);
756 if (!cd_root)
757 return false;
759 hash_set<gimple> visited_phis;
760 collect_phi_def_edges (phi, cd_root, &def_edges, &visited_phis);
762 n = def_edges.length ();
763 if (n == 0)
764 return false;
766 for (i = 0; i < n; i++)
768 size_t prev_nc, j;
769 int num_calls = 0;
770 edge opnd_edge;
772 opnd_edge = def_edges[i];
773 prev_nc = num_chains;
774 compute_control_dep_chain (cd_root, opnd_edge->src, dep_chains,
775 &num_chains, &cur_chain, &num_calls);
777 /* Now update the newly added chains with
778 the phi operand edge: */
779 if (EDGE_COUNT (opnd_edge->src->succs) > 1)
781 if (prev_nc == num_chains && num_chains < MAX_NUM_CHAINS)
782 dep_chains[num_chains++] = vNULL;
783 for (j = prev_nc; j < num_chains; j++)
784 dep_chains[j].safe_push (opnd_edge);
788 has_valid_pred
789 = convert_control_dep_chain_into_preds (dep_chains, num_chains, preds);
790 for (i = 0; i < num_chains; i++)
791 dep_chains[i].release ();
792 return has_valid_pred;
795 /* Dumps the predicates (PREDS) for USESTMT. */
797 static void
798 dump_predicates (gimple usestmt, pred_chain_union preds,
799 const char* msg)
801 size_t i, j;
802 pred_chain one_pred_chain = vNULL;
803 fprintf (dump_file, "%s", msg);
804 print_gimple_stmt (dump_file, usestmt, 0, 0);
805 fprintf (dump_file, "is guarded by :\n\n");
806 size_t num_preds = preds.length ();
807 /* Do some dumping here: */
808 for (i = 0; i < num_preds; i++)
810 size_t np;
812 one_pred_chain = preds[i];
813 np = one_pred_chain.length ();
815 for (j = 0; j < np; j++)
817 pred_info one_pred = one_pred_chain[j];
818 if (one_pred.invert)
819 fprintf (dump_file, " (.NOT.) ");
820 print_generic_expr (dump_file, one_pred.pred_lhs, 0);
821 fprintf (dump_file, " %s ", op_symbol_code (one_pred.cond_code));
822 print_generic_expr (dump_file, one_pred.pred_rhs, 0);
823 if (j < np - 1)
824 fprintf (dump_file, " (.AND.) ");
825 else
826 fprintf (dump_file, "\n");
828 if (i < num_preds - 1)
829 fprintf (dump_file, "(.OR.)\n");
830 else
831 fprintf (dump_file, "\n\n");
835 /* Destroys the predicate set *PREDS. */
837 static void
838 destroy_predicate_vecs (pred_chain_union preds)
840 size_t i;
842 size_t n = preds.length ();
843 for (i = 0; i < n; i++)
844 preds[i].release ();
845 preds.release ();
849 /* Computes the 'normalized' conditional code with operand
850 swapping and condition inversion. */
852 static enum tree_code
853 get_cmp_code (enum tree_code orig_cmp_code,
854 bool swap_cond, bool invert)
856 enum tree_code tc = orig_cmp_code;
858 if (swap_cond)
859 tc = swap_tree_comparison (orig_cmp_code);
860 if (invert)
861 tc = invert_tree_comparison (tc, false);
863 switch (tc)
865 case LT_EXPR:
866 case LE_EXPR:
867 case GT_EXPR:
868 case GE_EXPR:
869 case EQ_EXPR:
870 case NE_EXPR:
871 break;
872 default:
873 return ERROR_MARK;
875 return tc;
878 /* Returns true if VAL falls in the range defined by BOUNDARY and CMPC, i.e.
879 all values in the range satisfies (x CMPC BOUNDARY) == true. */
881 static bool
882 is_value_included_in (tree val, tree boundary, enum tree_code cmpc)
884 bool inverted = false;
885 bool is_unsigned;
886 bool result;
888 /* Only handle integer constant here. */
889 if (TREE_CODE (val) != INTEGER_CST
890 || TREE_CODE (boundary) != INTEGER_CST)
891 return true;
893 is_unsigned = TYPE_UNSIGNED (TREE_TYPE (val));
895 if (cmpc == GE_EXPR || cmpc == GT_EXPR
896 || cmpc == NE_EXPR)
898 cmpc = invert_tree_comparison (cmpc, false);
899 inverted = true;
902 if (is_unsigned)
904 if (cmpc == EQ_EXPR)
905 result = tree_int_cst_equal (val, boundary);
906 else if (cmpc == LT_EXPR)
907 result = tree_int_cst_lt (val, boundary);
908 else
910 gcc_assert (cmpc == LE_EXPR);
911 result = tree_int_cst_le (val, boundary);
914 else
916 if (cmpc == EQ_EXPR)
917 result = tree_int_cst_equal (val, boundary);
918 else if (cmpc == LT_EXPR)
919 result = tree_int_cst_lt (val, boundary);
920 else
922 gcc_assert (cmpc == LE_EXPR);
923 result = (tree_int_cst_equal (val, boundary)
924 || tree_int_cst_lt (val, boundary));
928 if (inverted)
929 result ^= 1;
931 return result;
934 /* Returns true if PRED is common among all the predicate
935 chains (PREDS) (and therefore can be factored out).
936 NUM_PRED_CHAIN is the size of array PREDS. */
938 static bool
939 find_matching_predicate_in_rest_chains (pred_info pred,
940 pred_chain_union preds,
941 size_t num_pred_chains)
943 size_t i, j, n;
945 /* Trival case. */
946 if (num_pred_chains == 1)
947 return true;
949 for (i = 1; i < num_pred_chains; i++)
951 bool found = false;
952 pred_chain one_chain = preds[i];
953 n = one_chain.length ();
954 for (j = 0; j < n; j++)
956 pred_info pred2 = one_chain[j];
957 /* Can relax the condition comparison to not
958 use address comparison. However, the most common
959 case is that multiple control dependent paths share
960 a common path prefix, so address comparison should
961 be ok. */
963 if (operand_equal_p (pred2.pred_lhs, pred.pred_lhs, 0)
964 && operand_equal_p (pred2.pred_rhs, pred.pred_rhs, 0)
965 && pred2.invert == pred.invert)
967 found = true;
968 break;
971 if (!found)
972 return false;
974 return true;
977 /* Forward declaration. */
978 static bool
979 is_use_properly_guarded (gimple use_stmt,
980 basic_block use_bb,
981 gphi *phi,
982 unsigned uninit_opnds,
983 pred_chain_union *def_preds,
984 hash_set<gphi *> *visited_phis);
986 /* Returns true if all uninitialized opnds are pruned. Returns false
987 otherwise. PHI is the phi node with uninitialized operands,
988 UNINIT_OPNDS is the bitmap of the uninitialize operand positions,
989 FLAG_DEF is the statement defining the flag guarding the use of the
990 PHI output, BOUNDARY_CST is the const value used in the predicate
991 associated with the flag, CMP_CODE is the comparison code used in
992 the predicate, VISITED_PHIS is the pointer set of phis visited, and
993 VISITED_FLAG_PHIS is the pointer to the pointer set of flag definitions
994 that are also phis.
996 Example scenario:
998 BB1:
999 flag_1 = phi <0, 1> // (1)
1000 var_1 = phi <undef, some_val>
1003 BB2:
1004 flag_2 = phi <0, flag_1, flag_1> // (2)
1005 var_2 = phi <undef, var_1, var_1>
1006 if (flag_2 == 1)
1007 goto BB3;
1009 BB3:
1010 use of var_2 // (3)
1012 Because some flag arg in (1) is not constant, if we do not look into the
1013 flag phis recursively, it is conservatively treated as unknown and var_1
1014 is thought to be flowed into use at (3). Since var_1 is potentially uninitialized
1015 a false warning will be emitted. Checking recursively into (1), the compiler can
1016 find out that only some_val (which is defined) can flow into (3) which is OK.
1020 static bool
1021 prune_uninit_phi_opnds_in_unrealizable_paths (gphi *phi,
1022 unsigned uninit_opnds,
1023 gphi *flag_def,
1024 tree boundary_cst,
1025 enum tree_code cmp_code,
1026 hash_set<gphi *> *visited_phis,
1027 bitmap *visited_flag_phis)
1029 unsigned i;
1031 for (i = 0; i < MIN (32, gimple_phi_num_args (flag_def)); i++)
1033 tree flag_arg;
1035 if (!MASK_TEST_BIT (uninit_opnds, i))
1036 continue;
1038 flag_arg = gimple_phi_arg_def (flag_def, i);
1039 if (!is_gimple_constant (flag_arg))
1041 gphi *flag_arg_def, *phi_arg_def;
1042 tree phi_arg;
1043 unsigned uninit_opnds_arg_phi;
1045 if (TREE_CODE (flag_arg) != SSA_NAME)
1046 return false;
1047 flag_arg_def = dyn_cast <gphi *> (SSA_NAME_DEF_STMT (flag_arg));
1048 if (!flag_arg_def)
1049 return false;
1051 phi_arg = gimple_phi_arg_def (phi, i);
1052 if (TREE_CODE (phi_arg) != SSA_NAME)
1053 return false;
1055 phi_arg_def = dyn_cast <gphi *> (SSA_NAME_DEF_STMT (phi_arg));
1056 if (!phi_arg_def)
1057 return false;
1059 if (gimple_bb (phi_arg_def) != gimple_bb (flag_arg_def))
1060 return false;
1062 if (!*visited_flag_phis)
1063 *visited_flag_phis = BITMAP_ALLOC (NULL);
1065 if (bitmap_bit_p (*visited_flag_phis,
1066 SSA_NAME_VERSION (gimple_phi_result (flag_arg_def))))
1067 return false;
1069 bitmap_set_bit (*visited_flag_phis,
1070 SSA_NAME_VERSION (gimple_phi_result (flag_arg_def)));
1072 /* Now recursively prune the uninitialized phi args. */
1073 uninit_opnds_arg_phi = compute_uninit_opnds_pos (phi_arg_def);
1074 if (!prune_uninit_phi_opnds_in_unrealizable_paths
1075 (phi_arg_def, uninit_opnds_arg_phi, flag_arg_def,
1076 boundary_cst, cmp_code, visited_phis, visited_flag_phis))
1077 return false;
1079 bitmap_clear_bit (*visited_flag_phis,
1080 SSA_NAME_VERSION (gimple_phi_result (flag_arg_def)));
1081 continue;
1084 /* Now check if the constant is in the guarded range. */
1085 if (is_value_included_in (flag_arg, boundary_cst, cmp_code))
1087 tree opnd;
1088 gimple opnd_def;
1090 /* Now that we know that this undefined edge is not
1091 pruned. If the operand is defined by another phi,
1092 we can further prune the incoming edges of that
1093 phi by checking the predicates of this operands. */
1095 opnd = gimple_phi_arg_def (phi, i);
1096 opnd_def = SSA_NAME_DEF_STMT (opnd);
1097 if (gphi *opnd_def_phi = dyn_cast <gphi *> (opnd_def))
1099 edge opnd_edge;
1100 unsigned uninit_opnds2
1101 = compute_uninit_opnds_pos (opnd_def_phi);
1102 pred_chain_union def_preds = vNULL;
1103 bool ok;
1104 gcc_assert (!MASK_EMPTY (uninit_opnds2));
1105 opnd_edge = gimple_phi_arg_edge (phi, i);
1106 ok = is_use_properly_guarded (phi,
1107 opnd_edge->src,
1108 opnd_def_phi,
1109 uninit_opnds2,
1110 &def_preds,
1111 visited_phis);
1112 destroy_predicate_vecs (def_preds);
1113 if (!ok)
1114 return false;
1116 else
1117 return false;
1121 return true;
1124 /* A helper function that determines if the predicate set
1125 of the use is not overlapping with that of the uninit paths.
1126 The most common senario of guarded use is in Example 1:
1127 Example 1:
1128 if (some_cond)
1130 x = ...;
1131 flag = true;
1134 ... some code ...
1136 if (flag)
1137 use (x);
1139 The real world examples are usually more complicated, but similar
1140 and usually result from inlining:
1142 bool init_func (int * x)
1144 if (some_cond)
1145 return false;
1146 *x = ..
1147 return true;
1150 void foo(..)
1152 int x;
1154 if (!init_func(&x))
1155 return;
1157 .. some_code ...
1158 use (x);
1161 Another possible use scenario is in the following trivial example:
1163 Example 2:
1164 if (n > 0)
1165 x = 1;
1167 if (n > 0)
1169 if (m < 2)
1170 .. = x;
1173 Predicate analysis needs to compute the composite predicate:
1175 1) 'x' use predicate: (n > 0) .AND. (m < 2)
1176 2) 'x' default value (non-def) predicate: .NOT. (n > 0)
1177 (the predicate chain for phi operand defs can be computed
1178 starting from a bb that is control equivalent to the phi's
1179 bb and is dominating the operand def.)
1181 and check overlapping:
1182 (n > 0) .AND. (m < 2) .AND. (.NOT. (n > 0))
1183 <==> false
1185 This implementation provides framework that can handle
1186 scenarios. (Note that many simple cases are handled properly
1187 without the predicate analysis -- this is due to jump threading
1188 transformation which eliminates the merge point thus makes
1189 path sensitive analysis unnecessary.)
1191 NUM_PREDS is the number is the number predicate chains, PREDS is
1192 the array of chains, PHI is the phi node whose incoming (undefined)
1193 paths need to be pruned, and UNINIT_OPNDS is the bitmap holding
1194 uninit operand positions. VISITED_PHIS is the pointer set of phi
1195 stmts being checked. */
1198 static bool
1199 use_pred_not_overlap_with_undef_path_pred (pred_chain_union preds,
1200 gphi *phi, unsigned uninit_opnds,
1201 hash_set<gphi *> *visited_phis)
1203 unsigned int i, n;
1204 gimple flag_def = 0;
1205 tree boundary_cst = 0;
1206 enum tree_code cmp_code;
1207 bool swap_cond = false;
1208 bool invert = false;
1209 pred_chain the_pred_chain = vNULL;
1210 bitmap visited_flag_phis = NULL;
1211 bool all_pruned = false;
1212 size_t num_preds = preds.length ();
1214 gcc_assert (num_preds > 0);
1215 /* Find within the common prefix of multiple predicate chains
1216 a predicate that is a comparison of a flag variable against
1217 a constant. */
1218 the_pred_chain = preds[0];
1219 n = the_pred_chain.length ();
1220 for (i = 0; i < n; i++)
1222 tree cond_lhs, cond_rhs, flag = 0;
1224 pred_info the_pred = the_pred_chain[i];
1226 invert = the_pred.invert;
1227 cond_lhs = the_pred.pred_lhs;
1228 cond_rhs = the_pred.pred_rhs;
1229 cmp_code = the_pred.cond_code;
1231 if (cond_lhs != NULL_TREE && TREE_CODE (cond_lhs) == SSA_NAME
1232 && cond_rhs != NULL_TREE && is_gimple_constant (cond_rhs))
1234 boundary_cst = cond_rhs;
1235 flag = cond_lhs;
1237 else if (cond_rhs != NULL_TREE && TREE_CODE (cond_rhs) == SSA_NAME
1238 && cond_lhs != NULL_TREE && is_gimple_constant (cond_lhs))
1240 boundary_cst = cond_lhs;
1241 flag = cond_rhs;
1242 swap_cond = true;
1245 if (!flag)
1246 continue;
1248 flag_def = SSA_NAME_DEF_STMT (flag);
1250 if (!flag_def)
1251 continue;
1253 if ((gimple_code (flag_def) == GIMPLE_PHI)
1254 && (gimple_bb (flag_def) == gimple_bb (phi))
1255 && find_matching_predicate_in_rest_chains (the_pred, preds,
1256 num_preds))
1257 break;
1259 flag_def = 0;
1262 if (!flag_def)
1263 return false;
1265 /* Now check all the uninit incoming edge has a constant flag value
1266 that is in conflict with the use guard/predicate. */
1267 cmp_code = get_cmp_code (cmp_code, swap_cond, invert);
1269 if (cmp_code == ERROR_MARK)
1270 return false;
1272 all_pruned = prune_uninit_phi_opnds_in_unrealizable_paths (phi,
1273 uninit_opnds,
1274 as_a <gphi *> (flag_def),
1275 boundary_cst,
1276 cmp_code,
1277 visited_phis,
1278 &visited_flag_phis);
1280 if (visited_flag_phis)
1281 BITMAP_FREE (visited_flag_phis);
1283 return all_pruned;
1286 /* The helper function returns true if two predicates X1 and X2
1287 are equivalent. It assumes the expressions have already
1288 properly re-associated. */
1290 static inline bool
1291 pred_equal_p (pred_info x1, pred_info x2)
1293 enum tree_code c1, c2;
1294 if (!operand_equal_p (x1.pred_lhs, x2.pred_lhs, 0)
1295 || !operand_equal_p (x1.pred_rhs, x2.pred_rhs, 0))
1296 return false;
1298 c1 = x1.cond_code;
1299 if (x1.invert != x2.invert)
1300 c2 = invert_tree_comparison (x2.cond_code, false);
1301 else
1302 c2 = x2.cond_code;
1304 return c1 == c2;
1307 /* Returns true if the predication is testing !=. */
1309 static inline bool
1310 is_neq_relop_p (pred_info pred)
1313 return (pred.cond_code == NE_EXPR && !pred.invert)
1314 || (pred.cond_code == EQ_EXPR && pred.invert);
1317 /* Returns true if pred is of the form X != 0. */
1319 static inline bool
1320 is_neq_zero_form_p (pred_info pred)
1322 if (!is_neq_relop_p (pred) || !integer_zerop (pred.pred_rhs)
1323 || TREE_CODE (pred.pred_lhs) != SSA_NAME)
1324 return false;
1325 return true;
1328 /* The helper function returns true if two predicates X1
1329 is equivalent to X2 != 0. */
1331 static inline bool
1332 pred_expr_equal_p (pred_info x1, tree x2)
1334 if (!is_neq_zero_form_p (x1))
1335 return false;
1337 return operand_equal_p (x1.pred_lhs, x2, 0);
1340 /* Returns true of the domain of single predicate expression
1341 EXPR1 is a subset of that of EXPR2. Returns false if it
1342 can not be proved. */
1344 static bool
1345 is_pred_expr_subset_of (pred_info expr1, pred_info expr2)
1347 enum tree_code code1, code2;
1349 if (pred_equal_p (expr1, expr2))
1350 return true;
1352 if ((TREE_CODE (expr1.pred_rhs) != INTEGER_CST)
1353 || (TREE_CODE (expr2.pred_rhs) != INTEGER_CST))
1354 return false;
1356 if (!operand_equal_p (expr1.pred_lhs, expr2.pred_lhs, 0))
1357 return false;
1359 code1 = expr1.cond_code;
1360 if (expr1.invert)
1361 code1 = invert_tree_comparison (code1, false);
1362 code2 = expr2.cond_code;
1363 if (expr2.invert)
1364 code2 = invert_tree_comparison (code2, false);
1366 if ((code1 == EQ_EXPR || code1 == BIT_AND_EXPR)
1367 && code2 == BIT_AND_EXPR)
1368 return wi::eq_p (expr1.pred_rhs,
1369 wi::bit_and (expr1.pred_rhs, expr2.pred_rhs));
1371 if (code1 != code2 && code2 != NE_EXPR)
1372 return false;
1374 if (is_value_included_in (expr1.pred_rhs, expr2.pred_rhs, code2))
1375 return true;
1377 return false;
1380 /* Returns true if the domain of PRED1 is a subset
1381 of that of PRED2. Returns false if it can not be proved so. */
1383 static bool
1384 is_pred_chain_subset_of (pred_chain pred1,
1385 pred_chain pred2)
1387 size_t np1, np2, i1, i2;
1389 np1 = pred1.length ();
1390 np2 = pred2.length ();
1392 for (i2 = 0; i2 < np2; i2++)
1394 bool found = false;
1395 pred_info info2 = pred2[i2];
1396 for (i1 = 0; i1 < np1; i1++)
1398 pred_info info1 = pred1[i1];
1399 if (is_pred_expr_subset_of (info1, info2))
1401 found = true;
1402 break;
1405 if (!found)
1406 return false;
1408 return true;
1411 /* Returns true if the domain defined by
1412 one pred chain ONE_PRED is a subset of the domain
1413 of *PREDS. It returns false if ONE_PRED's domain is
1414 not a subset of any of the sub-domains of PREDS
1415 (corresponding to each individual chains in it), even
1416 though it may be still be a subset of whole domain
1417 of PREDS which is the union (ORed) of all its subdomains.
1418 In other words, the result is conservative. */
1420 static bool
1421 is_included_in (pred_chain one_pred, pred_chain_union preds)
1423 size_t i;
1424 size_t n = preds.length ();
1426 for (i = 0; i < n; i++)
1428 if (is_pred_chain_subset_of (one_pred, preds[i]))
1429 return true;
1432 return false;
1435 /* Compares two predicate sets PREDS1 and PREDS2 and returns
1436 true if the domain defined by PREDS1 is a superset
1437 of PREDS2's domain. N1 and N2 are array sizes of PREDS1 and
1438 PREDS2 respectively. The implementation chooses not to build
1439 generic trees (and relying on the folding capability of the
1440 compiler), but instead performs brute force comparison of
1441 individual predicate chains (won't be a compile time problem
1442 as the chains are pretty short). When the function returns
1443 false, it does not necessarily mean *PREDS1 is not a superset
1444 of *PREDS2, but mean it may not be so since the analysis can
1445 not prove it. In such cases, false warnings may still be
1446 emitted. */
1448 static bool
1449 is_superset_of (pred_chain_union preds1, pred_chain_union preds2)
1451 size_t i, n2;
1452 pred_chain one_pred_chain = vNULL;
1454 n2 = preds2.length ();
1456 for (i = 0; i < n2; i++)
1458 one_pred_chain = preds2[i];
1459 if (!is_included_in (one_pred_chain, preds1))
1460 return false;
1463 return true;
1466 /* Returns true if TC is AND or OR. */
1468 static inline bool
1469 is_and_or_or_p (enum tree_code tc, tree type)
1471 return (tc == BIT_IOR_EXPR
1472 || (tc == BIT_AND_EXPR
1473 && (type == 0 || TREE_CODE (type) == BOOLEAN_TYPE)));
1476 /* Returns true if X1 is the negate of X2. */
1478 static inline bool
1479 pred_neg_p (pred_info x1, pred_info x2)
1481 enum tree_code c1, c2;
1482 if (!operand_equal_p (x1.pred_lhs, x2.pred_lhs, 0)
1483 || !operand_equal_p (x1.pred_rhs, x2.pred_rhs, 0))
1484 return false;
1486 c1 = x1.cond_code;
1487 if (x1.invert == x2.invert)
1488 c2 = invert_tree_comparison (x2.cond_code, false);
1489 else
1490 c2 = x2.cond_code;
1492 return c1 == c2;
1495 /* 1) ((x IOR y) != 0) AND (x != 0) is equivalent to (x != 0);
1496 2) (X AND Y) OR (!X AND Y) is equivalent to Y;
1497 3) X OR (!X AND Y) is equivalent to (X OR Y);
1498 4) ((x IAND y) != 0) || (x != 0 AND y != 0)) is equivalent to
1499 (x != 0 AND y != 0)
1500 5) (X AND Y) OR (!X AND Z) OR (!Y AND Z) is equivalent to
1501 (X AND Y) OR Z
1503 PREDS is the predicate chains, and N is the number of chains. */
1505 /* Helper function to implement rule 1 above. ONE_CHAIN is
1506 the AND predication to be simplified. */
1508 static void
1509 simplify_pred (pred_chain *one_chain)
1511 size_t i, j, n;
1512 bool simplified = false;
1513 pred_chain s_chain = vNULL;
1515 n = one_chain->length ();
1517 for (i = 0; i < n; i++)
1519 pred_info *a_pred = &(*one_chain)[i];
1521 if (!a_pred->pred_lhs)
1522 continue;
1523 if (!is_neq_zero_form_p (*a_pred))
1524 continue;
1526 gimple def_stmt = SSA_NAME_DEF_STMT (a_pred->pred_lhs);
1527 if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
1528 continue;
1529 if (gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR)
1531 for (j = 0; j < n; j++)
1533 pred_info *b_pred = &(*one_chain)[j];
1535 if (!b_pred->pred_lhs)
1536 continue;
1537 if (!is_neq_zero_form_p (*b_pred))
1538 continue;
1540 if (pred_expr_equal_p (*b_pred, gimple_assign_rhs1 (def_stmt))
1541 || pred_expr_equal_p (*b_pred, gimple_assign_rhs2 (def_stmt)))
1543 /* Mark a_pred for removal. */
1544 a_pred->pred_lhs = NULL;
1545 a_pred->pred_rhs = NULL;
1546 simplified = true;
1547 break;
1553 if (!simplified)
1554 return;
1556 for (i = 0; i < n; i++)
1558 pred_info *a_pred = &(*one_chain)[i];
1559 if (!a_pred->pred_lhs)
1560 continue;
1561 s_chain.safe_push (*a_pred);
1564 one_chain->release ();
1565 *one_chain = s_chain;
1568 /* The helper function implements the rule 2 for the
1569 OR predicate PREDS.
1571 2) (X AND Y) OR (!X AND Y) is equivalent to Y. */
1573 static bool
1574 simplify_preds_2 (pred_chain_union *preds)
1576 size_t i, j, n;
1577 bool simplified = false;
1578 pred_chain_union s_preds = vNULL;
1580 /* (X AND Y) OR (!X AND Y) is equivalent to Y.
1581 (X AND Y) OR (X AND !Y) is equivalent to X. */
1583 n = preds->length ();
1584 for (i = 0; i < n; i++)
1586 pred_info x, y;
1587 pred_chain *a_chain = &(*preds)[i];
1589 if (a_chain->length () != 2)
1590 continue;
1592 x = (*a_chain)[0];
1593 y = (*a_chain)[1];
1595 for (j = 0; j < n; j++)
1597 pred_chain *b_chain;
1598 pred_info x2, y2;
1600 if (j == i)
1601 continue;
1603 b_chain = &(*preds)[j];
1604 if (b_chain->length () != 2)
1605 continue;
1607 x2 = (*b_chain)[0];
1608 y2 = (*b_chain)[1];
1610 if (pred_equal_p (x, x2) && pred_neg_p (y, y2))
1612 /* Kill a_chain. */
1613 a_chain->release ();
1614 b_chain->release ();
1615 b_chain->safe_push (x);
1616 simplified = true;
1617 break;
1619 if (pred_neg_p (x, x2) && pred_equal_p (y, y2))
1621 /* Kill a_chain. */
1622 a_chain->release ();
1623 b_chain->release ();
1624 b_chain->safe_push (y);
1625 simplified = true;
1626 break;
1630 /* Now clean up the chain. */
1631 if (simplified)
1633 for (i = 0; i < n; i++)
1635 if ((*preds)[i].is_empty ())
1636 continue;
1637 s_preds.safe_push ((*preds)[i]);
1639 preds->release ();
1640 (*preds) = s_preds;
1641 s_preds = vNULL;
1644 return simplified;
1647 /* The helper function implements the rule 2 for the
1648 OR predicate PREDS.
1650 3) x OR (!x AND y) is equivalent to x OR y. */
1652 static bool
1653 simplify_preds_3 (pred_chain_union *preds)
1655 size_t i, j, n;
1656 bool simplified = false;
1658 /* Now iteratively simplify X OR (!X AND Z ..)
1659 into X OR (Z ...). */
1661 n = preds->length ();
1662 if (n < 2)
1663 return false;
1665 for (i = 0; i < n; i++)
1667 pred_info x;
1668 pred_chain *a_chain = &(*preds)[i];
1670 if (a_chain->length () != 1)
1671 continue;
1673 x = (*a_chain)[0];
1675 for (j = 0; j < n; j++)
1677 pred_chain *b_chain;
1678 pred_info x2;
1679 size_t k;
1681 if (j == i)
1682 continue;
1684 b_chain = &(*preds)[j];
1685 if (b_chain->length () < 2)
1686 continue;
1688 for (k = 0; k < b_chain->length (); k++)
1690 x2 = (*b_chain)[k];
1691 if (pred_neg_p (x, x2))
1693 b_chain->unordered_remove (k);
1694 simplified = true;
1695 break;
1700 return simplified;
1703 /* The helper function implements the rule 4 for the
1704 OR predicate PREDS.
1706 2) ((x AND y) != 0) OR (x != 0 AND y != 0) is equivalent to
1707 (x != 0 ANd y != 0). */
1709 static bool
1710 simplify_preds_4 (pred_chain_union *preds)
1712 size_t i, j, n;
1713 bool simplified = false;
1714 pred_chain_union s_preds = vNULL;
1715 gimple def_stmt;
1717 n = preds->length ();
1718 for (i = 0; i < n; i++)
1720 pred_info z;
1721 pred_chain *a_chain = &(*preds)[i];
1723 if (a_chain->length () != 1)
1724 continue;
1726 z = (*a_chain)[0];
1728 if (!is_neq_zero_form_p (z))
1729 continue;
1731 def_stmt = SSA_NAME_DEF_STMT (z.pred_lhs);
1732 if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
1733 continue;
1735 if (gimple_assign_rhs_code (def_stmt) != BIT_AND_EXPR)
1736 continue;
1738 for (j = 0; j < n; j++)
1740 pred_chain *b_chain;
1741 pred_info x2, y2;
1743 if (j == i)
1744 continue;
1746 b_chain = &(*preds)[j];
1747 if (b_chain->length () != 2)
1748 continue;
1750 x2 = (*b_chain)[0];
1751 y2 = (*b_chain)[1];
1752 if (!is_neq_zero_form_p (x2)
1753 || !is_neq_zero_form_p (y2))
1754 continue;
1756 if ((pred_expr_equal_p (x2, gimple_assign_rhs1 (def_stmt))
1757 && pred_expr_equal_p (y2, gimple_assign_rhs2 (def_stmt)))
1758 || (pred_expr_equal_p (x2, gimple_assign_rhs2 (def_stmt))
1759 && pred_expr_equal_p (y2, gimple_assign_rhs1 (def_stmt))))
1761 /* Kill a_chain. */
1762 a_chain->release ();
1763 simplified = true;
1764 break;
1768 /* Now clean up the chain. */
1769 if (simplified)
1771 for (i = 0; i < n; i++)
1773 if ((*preds)[i].is_empty ())
1774 continue;
1775 s_preds.safe_push ((*preds)[i]);
1777 preds->release ();
1778 (*preds) = s_preds;
1779 s_preds = vNULL;
1782 return simplified;
1786 /* This function simplifies predicates in PREDS. */
1788 static void
1789 simplify_preds (pred_chain_union *preds, gimple use_or_def, bool is_use)
1791 size_t i, n;
1792 bool changed = false;
1794 if (dump_file && dump_flags & TDF_DETAILS)
1796 fprintf (dump_file, "[BEFORE SIMPLICATION -- ");
1797 dump_predicates (use_or_def, *preds, is_use ? "[USE]:\n" : "[DEF]:\n");
1800 for (i = 0; i < preds->length (); i++)
1801 simplify_pred (&(*preds)[i]);
1803 n = preds->length ();
1804 if (n < 2)
1805 return;
1809 changed = false;
1810 if (simplify_preds_2 (preds))
1811 changed = true;
1813 /* Now iteratively simplify X OR (!X AND Z ..)
1814 into X OR (Z ...). */
1815 if (simplify_preds_3 (preds))
1816 changed = true;
1818 if (simplify_preds_4 (preds))
1819 changed = true;
1821 } while (changed);
1823 return;
1826 /* This is a helper function which attempts to normalize predicate chains
1827 by following UD chains. It basically builds up a big tree of either IOR
1828 operations or AND operations, and convert the IOR tree into a
1829 pred_chain_union or BIT_AND tree into a pred_chain.
1830 Example:
1832 _3 = _2 RELOP1 _1;
1833 _6 = _5 RELOP2 _4;
1834 _9 = _8 RELOP3 _7;
1835 _10 = _3 | _6;
1836 _12 = _9 | _0;
1837 _t = _10 | _12;
1839 then _t != 0 will be normalized into a pred_chain_union
1841 (_2 RELOP1 _1) OR (_5 RELOP2 _4) OR (_8 RELOP3 _7) OR (_0 != 0)
1843 Similarly given,
1845 _3 = _2 RELOP1 _1;
1846 _6 = _5 RELOP2 _4;
1847 _9 = _8 RELOP3 _7;
1848 _10 = _3 & _6;
1849 _12 = _9 & _0;
1851 then _t != 0 will be normalized into a pred_chain:
1852 (_2 RELOP1 _1) AND (_5 RELOP2 _4) AND (_8 RELOP3 _7) AND (_0 != 0)
1856 /* This is a helper function that stores a PRED into NORM_PREDS. */
1858 inline static void
1859 push_pred (pred_chain_union *norm_preds, pred_info pred)
1861 pred_chain pred_chain = vNULL;
1862 pred_chain.safe_push (pred);
1863 norm_preds->safe_push (pred_chain);
1866 /* A helper function that creates a predicate of the form
1867 OP != 0 and push it WORK_LIST. */
1869 inline static void
1870 push_to_worklist (tree op, vec<pred_info, va_heap, vl_ptr> *work_list,
1871 hash_set<tree> *mark_set)
1873 if (mark_set->contains (op))
1874 return;
1875 mark_set->add (op);
1877 pred_info arg_pred;
1878 arg_pred.pred_lhs = op;
1879 arg_pred.pred_rhs = integer_zero_node;
1880 arg_pred.cond_code = NE_EXPR;
1881 arg_pred.invert = false;
1882 work_list->safe_push (arg_pred);
1885 /* A helper that generates a pred_info from a gimple assignment
1886 CMP_ASSIGN with comparison rhs. */
1888 static pred_info
1889 get_pred_info_from_cmp (gimple cmp_assign)
1891 pred_info n_pred;
1892 n_pred.pred_lhs = gimple_assign_rhs1 (cmp_assign);
1893 n_pred.pred_rhs = gimple_assign_rhs2 (cmp_assign);
1894 n_pred.cond_code = gimple_assign_rhs_code (cmp_assign);
1895 n_pred.invert = false;
1896 return n_pred;
1899 /* Returns true if the PHI is a degenerated phi with
1900 all args with the same value (relop). In that case, *PRED
1901 will be updated to that value. */
1903 static bool
1904 is_degenerated_phi (gimple phi, pred_info *pred_p)
1906 int i, n;
1907 tree op0;
1908 gimple def0;
1909 pred_info pred0;
1911 n = gimple_phi_num_args (phi);
1912 op0 = gimple_phi_arg_def (phi, 0);
1914 if (TREE_CODE (op0) != SSA_NAME)
1915 return false;
1917 def0 = SSA_NAME_DEF_STMT (op0);
1918 if (gimple_code (def0) != GIMPLE_ASSIGN)
1919 return false;
1920 if (TREE_CODE_CLASS (gimple_assign_rhs_code (def0))
1921 != tcc_comparison)
1922 return false;
1923 pred0 = get_pred_info_from_cmp (def0);
1925 for (i = 1; i < n; ++i)
1927 gimple def;
1928 pred_info pred;
1929 tree op = gimple_phi_arg_def (phi, i);
1931 if (TREE_CODE (op) != SSA_NAME)
1932 return false;
1934 def = SSA_NAME_DEF_STMT (op);
1935 if (gimple_code (def) != GIMPLE_ASSIGN)
1936 return false;
1937 if (TREE_CODE_CLASS (gimple_assign_rhs_code (def))
1938 != tcc_comparison)
1939 return false;
1940 pred = get_pred_info_from_cmp (def);
1941 if (!pred_equal_p (pred, pred0))
1942 return false;
1945 *pred_p = pred0;
1946 return true;
1949 /* Normalize one predicate PRED
1950 1) if PRED can no longer be normlized, put it into NORM_PREDS.
1951 2) otherwise if PRED is of the form x != 0, follow x's definition
1952 and put normalized predicates into WORK_LIST. */
1954 static void
1955 normalize_one_pred_1 (pred_chain_union *norm_preds,
1956 pred_chain *norm_chain,
1957 pred_info pred,
1958 enum tree_code and_or_code,
1959 vec<pred_info, va_heap, vl_ptr> *work_list,
1960 hash_set<tree> *mark_set)
1962 if (!is_neq_zero_form_p (pred))
1964 if (and_or_code == BIT_IOR_EXPR)
1965 push_pred (norm_preds, pred);
1966 else
1967 norm_chain->safe_push (pred);
1968 return;
1971 gimple def_stmt = SSA_NAME_DEF_STMT (pred.pred_lhs);
1973 if (gimple_code (def_stmt) == GIMPLE_PHI
1974 && is_degenerated_phi (def_stmt, &pred))
1975 work_list->safe_push (pred);
1976 else if (gimple_code (def_stmt) == GIMPLE_PHI
1977 && and_or_code == BIT_IOR_EXPR)
1979 int i, n;
1980 n = gimple_phi_num_args (def_stmt);
1982 /* If we see non zero constant, we should punt. The predicate
1983 * should be one guarding the phi edge. */
1984 for (i = 0; i < n; ++i)
1986 tree op = gimple_phi_arg_def (def_stmt, i);
1987 if (TREE_CODE (op) == INTEGER_CST && !integer_zerop (op))
1989 push_pred (norm_preds, pred);
1990 return;
1994 for (i = 0; i < n; ++i)
1996 tree op = gimple_phi_arg_def (def_stmt, i);
1997 if (integer_zerop (op))
1998 continue;
2000 push_to_worklist (op, work_list, mark_set);
2003 else if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
2005 if (and_or_code == BIT_IOR_EXPR)
2006 push_pred (norm_preds, pred);
2007 else
2008 norm_chain->safe_push (pred);
2010 else if (gimple_assign_rhs_code (def_stmt) == and_or_code)
2012 /* Avoid splitting up bit manipulations like x & 3 or y | 1. */
2013 if (is_gimple_min_invariant (gimple_assign_rhs2 (def_stmt)))
2015 /* But treat x & 3 as condition. */
2016 if (and_or_code == BIT_AND_EXPR)
2018 pred_info n_pred;
2019 n_pred.pred_lhs = gimple_assign_rhs1 (def_stmt);
2020 n_pred.pred_rhs = gimple_assign_rhs2 (def_stmt);
2021 n_pred.cond_code = and_or_code;
2022 n_pred.invert = false;
2023 norm_chain->safe_push (n_pred);
2026 else
2028 push_to_worklist (gimple_assign_rhs1 (def_stmt), work_list, mark_set);
2029 push_to_worklist (gimple_assign_rhs2 (def_stmt), work_list, mark_set);
2032 else if (TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt))
2033 == tcc_comparison)
2035 pred_info n_pred = get_pred_info_from_cmp (def_stmt);
2036 if (and_or_code == BIT_IOR_EXPR)
2037 push_pred (norm_preds, n_pred);
2038 else
2039 norm_chain->safe_push (n_pred);
2041 else
2043 if (and_or_code == BIT_IOR_EXPR)
2044 push_pred (norm_preds, pred);
2045 else
2046 norm_chain->safe_push (pred);
2050 /* Normalize PRED and store the normalized predicates into NORM_PREDS. */
2052 static void
2053 normalize_one_pred (pred_chain_union *norm_preds,
2054 pred_info pred)
2056 vec<pred_info, va_heap, vl_ptr> work_list = vNULL;
2057 enum tree_code and_or_code = ERROR_MARK;
2058 pred_chain norm_chain = vNULL;
2060 if (!is_neq_zero_form_p (pred))
2062 push_pred (norm_preds, pred);
2063 return;
2066 gimple def_stmt = SSA_NAME_DEF_STMT (pred.pred_lhs);
2067 if (gimple_code (def_stmt) == GIMPLE_ASSIGN)
2068 and_or_code = gimple_assign_rhs_code (def_stmt);
2069 if (and_or_code != BIT_IOR_EXPR
2070 && and_or_code != BIT_AND_EXPR)
2072 if (TREE_CODE_CLASS (and_or_code)
2073 == tcc_comparison)
2075 pred_info n_pred = get_pred_info_from_cmp (def_stmt);
2076 push_pred (norm_preds, n_pred);
2078 else
2079 push_pred (norm_preds, pred);
2080 return;
2083 work_list.safe_push (pred);
2084 hash_set<tree> mark_set;
2086 while (!work_list.is_empty ())
2088 pred_info a_pred = work_list.pop ();
2089 normalize_one_pred_1 (norm_preds, &norm_chain, a_pred,
2090 and_or_code, &work_list, &mark_set);
2092 if (and_or_code == BIT_AND_EXPR)
2093 norm_preds->safe_push (norm_chain);
2095 work_list.release ();
2098 static void
2099 normalize_one_pred_chain (pred_chain_union *norm_preds,
2100 pred_chain one_chain)
2102 vec<pred_info, va_heap, vl_ptr> work_list = vNULL;
2103 hash_set<tree> mark_set;
2104 pred_chain norm_chain = vNULL;
2105 size_t i;
2107 for (i = 0; i < one_chain.length (); i++)
2109 work_list.safe_push (one_chain[i]);
2110 mark_set.add (one_chain[i].pred_lhs);
2113 while (!work_list.is_empty ())
2115 pred_info a_pred = work_list.pop ();
2116 normalize_one_pred_1 (0, &norm_chain, a_pred,
2117 BIT_AND_EXPR, &work_list, &mark_set);
2120 norm_preds->safe_push (norm_chain);
2121 work_list.release ();
2124 /* Normalize predicate chains PREDS and returns the normalized one. */
2126 static pred_chain_union
2127 normalize_preds (pred_chain_union preds, gimple use_or_def, bool is_use)
2129 pred_chain_union norm_preds = vNULL;
2130 size_t n = preds.length ();
2131 size_t i;
2133 if (dump_file && dump_flags & TDF_DETAILS)
2135 fprintf (dump_file, "[BEFORE NORMALIZATION --");
2136 dump_predicates (use_or_def, preds, is_use ? "[USE]:\n" : "[DEF]:\n");
2139 for (i = 0; i < n; i++)
2141 if (preds[i].length () != 1)
2142 normalize_one_pred_chain (&norm_preds, preds[i]);
2143 else
2145 normalize_one_pred (&norm_preds, preds[i][0]);
2146 preds[i].release ();
2150 if (dump_file)
2152 fprintf (dump_file, "[AFTER NORMALIZATION -- ");
2153 dump_predicates (use_or_def, norm_preds, is_use ? "[USE]:\n" : "[DEF]:\n");
2156 preds.release ();
2157 return norm_preds;
2161 /* Computes the predicates that guard the use and checks
2162 if the incoming paths that have empty (or possibly
2163 empty) definition can be pruned/filtered. The function returns
2164 true if it can be determined that the use of PHI's def in
2165 USE_STMT is guarded with a predicate set not overlapping with
2166 predicate sets of all runtime paths that do not have a definition.
2168 Returns false if it is not or it can not be determined. USE_BB is
2169 the bb of the use (for phi operand use, the bb is not the bb of
2170 the phi stmt, but the src bb of the operand edge).
2172 UNINIT_OPNDS is a bit vector. If an operand of PHI is uninitialized, the
2173 corresponding bit in the vector is 1. VISITED_PHIS is a pointer
2174 set of phis being visited.
2176 *DEF_PREDS contains the (memoized) defining predicate chains of PHI.
2177 If *DEF_PREDS is the empty vector, the defining predicate chains of
2178 PHI will be computed and stored into *DEF_PREDS as needed.
2180 VISITED_PHIS is a pointer set of phis being visited. */
2182 static bool
2183 is_use_properly_guarded (gimple use_stmt,
2184 basic_block use_bb,
2185 gphi *phi,
2186 unsigned uninit_opnds,
2187 pred_chain_union *def_preds,
2188 hash_set<gphi *> *visited_phis)
2190 basic_block phi_bb;
2191 pred_chain_union preds = vNULL;
2192 bool has_valid_preds = false;
2193 bool is_properly_guarded = false;
2195 if (visited_phis->add (phi))
2196 return false;
2198 phi_bb = gimple_bb (phi);
2200 if (is_non_loop_exit_postdominating (use_bb, phi_bb))
2201 return false;
2203 has_valid_preds = find_predicates (&preds, phi_bb, use_bb);
2205 if (!has_valid_preds)
2207 destroy_predicate_vecs (preds);
2208 return false;
2211 /* Try to prune the dead incoming phi edges. */
2212 is_properly_guarded
2213 = use_pred_not_overlap_with_undef_path_pred (preds, phi, uninit_opnds,
2214 visited_phis);
2216 if (is_properly_guarded)
2218 destroy_predicate_vecs (preds);
2219 return true;
2222 if (def_preds->is_empty ())
2224 has_valid_preds = find_def_preds (def_preds, phi);
2226 if (!has_valid_preds)
2228 destroy_predicate_vecs (preds);
2229 return false;
2232 simplify_preds (def_preds, phi, false);
2233 *def_preds = normalize_preds (*def_preds, phi, false);
2236 simplify_preds (&preds, use_stmt, true);
2237 preds = normalize_preds (preds, use_stmt, true);
2239 is_properly_guarded = is_superset_of (*def_preds, preds);
2241 destroy_predicate_vecs (preds);
2242 return is_properly_guarded;
2245 /* Searches through all uses of a potentially
2246 uninitialized variable defined by PHI and returns a use
2247 statement if the use is not properly guarded. It returns
2248 NULL if all uses are guarded. UNINIT_OPNDS is a bitvector
2249 holding the position(s) of uninit PHI operands. WORKLIST
2250 is the vector of candidate phis that may be updated by this
2251 function. ADDED_TO_WORKLIST is the pointer set tracking
2252 if the new phi is already in the worklist. */
2254 static gimple
2255 find_uninit_use (gphi *phi, unsigned uninit_opnds,
2256 vec<gphi *> *worklist,
2257 hash_set<gphi *> *added_to_worklist)
2259 tree phi_result;
2260 use_operand_p use_p;
2261 gimple use_stmt;
2262 imm_use_iterator iter;
2263 pred_chain_union def_preds = vNULL;
2264 gimple ret = NULL;
2266 phi_result = gimple_phi_result (phi);
2268 FOR_EACH_IMM_USE_FAST (use_p, iter, phi_result)
2270 basic_block use_bb;
2272 use_stmt = USE_STMT (use_p);
2273 if (is_gimple_debug (use_stmt))
2274 continue;
2276 if (gphi *use_phi = dyn_cast <gphi *> (use_stmt))
2277 use_bb = gimple_phi_arg_edge (use_phi,
2278 PHI_ARG_INDEX_FROM_USE (use_p))->src;
2279 else
2280 use_bb = gimple_bb (use_stmt);
2282 hash_set<gphi *> visited_phis;
2283 if (is_use_properly_guarded (use_stmt, use_bb, phi, uninit_opnds,
2284 &def_preds, &visited_phis))
2285 continue;
2287 if (dump_file && (dump_flags & TDF_DETAILS))
2289 fprintf (dump_file, "[CHECK]: Found unguarded use: ");
2290 print_gimple_stmt (dump_file, use_stmt, 0, 0);
2292 /* Found one real use, return. */
2293 if (gimple_code (use_stmt) != GIMPLE_PHI)
2295 ret = use_stmt;
2296 break;
2299 /* Found a phi use that is not guarded,
2300 add the phi to the worklist. */
2301 if (!added_to_worklist->add (as_a <gphi *> (use_stmt)))
2303 if (dump_file && (dump_flags & TDF_DETAILS))
2305 fprintf (dump_file, "[WORKLIST]: Update worklist with phi: ");
2306 print_gimple_stmt (dump_file, use_stmt, 0, 0);
2309 worklist->safe_push (as_a <gphi *> (use_stmt));
2310 possibly_undefined_names->add (phi_result);
2314 destroy_predicate_vecs (def_preds);
2315 return ret;
2318 /* Look for inputs to PHI that are SSA_NAMEs that have empty definitions
2319 and gives warning if there exists a runtime path from the entry to a
2320 use of the PHI def that does not contain a definition. In other words,
2321 the warning is on the real use. The more dead paths that can be pruned
2322 by the compiler, the fewer false positives the warning is. WORKLIST
2323 is a vector of candidate phis to be examined. ADDED_TO_WORKLIST is
2324 a pointer set tracking if the new phi is added to the worklist or not. */
2326 static void
2327 warn_uninitialized_phi (gphi *phi, vec<gphi *> *worklist,
2328 hash_set<gphi *> *added_to_worklist)
2330 unsigned uninit_opnds;
2331 gimple uninit_use_stmt = 0;
2332 tree uninit_op;
2333 int phiarg_index;
2334 location_t loc;
2336 /* Don't look at virtual operands. */
2337 if (virtual_operand_p (gimple_phi_result (phi)))
2338 return;
2340 uninit_opnds = compute_uninit_opnds_pos (phi);
2342 if (MASK_EMPTY (uninit_opnds))
2343 return;
2345 if (dump_file && (dump_flags & TDF_DETAILS))
2347 fprintf (dump_file, "[CHECK]: examining phi: ");
2348 print_gimple_stmt (dump_file, phi, 0, 0);
2351 /* Now check if we have any use of the value without proper guard. */
2352 uninit_use_stmt = find_uninit_use (phi, uninit_opnds,
2353 worklist, added_to_worklist);
2355 /* All uses are properly guarded. */
2356 if (!uninit_use_stmt)
2357 return;
2359 phiarg_index = MASK_FIRST_SET_BIT (uninit_opnds);
2360 uninit_op = gimple_phi_arg_def (phi, phiarg_index);
2361 if (SSA_NAME_VAR (uninit_op) == NULL_TREE)
2362 return;
2363 if (gimple_phi_arg_has_location (phi, phiarg_index))
2364 loc = gimple_phi_arg_location (phi, phiarg_index);
2365 else
2366 loc = UNKNOWN_LOCATION;
2367 warn_uninit (OPT_Wmaybe_uninitialized, uninit_op, SSA_NAME_VAR (uninit_op),
2368 SSA_NAME_VAR (uninit_op),
2369 "%qD may be used uninitialized in this function",
2370 uninit_use_stmt, loc);
2374 static bool
2375 gate_warn_uninitialized (void)
2377 return warn_uninitialized || warn_maybe_uninitialized;
2380 namespace {
2382 const pass_data pass_data_late_warn_uninitialized =
2384 GIMPLE_PASS, /* type */
2385 "uninit", /* name */
2386 OPTGROUP_NONE, /* optinfo_flags */
2387 TV_NONE, /* tv_id */
2388 PROP_ssa, /* properties_required */
2389 0, /* properties_provided */
2390 0, /* properties_destroyed */
2391 0, /* todo_flags_start */
2392 0, /* todo_flags_finish */
2395 class pass_late_warn_uninitialized : public gimple_opt_pass
2397 public:
2398 pass_late_warn_uninitialized (gcc::context *ctxt)
2399 : gimple_opt_pass (pass_data_late_warn_uninitialized, ctxt)
2402 /* opt_pass methods: */
2403 opt_pass * clone () { return new pass_late_warn_uninitialized (m_ctxt); }
2404 virtual bool gate (function *) { return gate_warn_uninitialized (); }
2405 virtual unsigned int execute (function *);
2407 }; // class pass_late_warn_uninitialized
2409 unsigned int
2410 pass_late_warn_uninitialized::execute (function *fun)
2412 basic_block bb;
2413 gphi_iterator gsi;
2414 vec<gphi *> worklist = vNULL;
2416 calculate_dominance_info (CDI_DOMINATORS);
2417 calculate_dominance_info (CDI_POST_DOMINATORS);
2418 /* Re-do the plain uninitialized variable check, as optimization may have
2419 straightened control flow. Do this first so that we don't accidentally
2420 get a "may be" warning when we'd have seen an "is" warning later. */
2421 warn_uninitialized_vars (/*warn_possibly_uninitialized=*/1);
2423 timevar_push (TV_TREE_UNINIT);
2425 possibly_undefined_names = new hash_set<tree>;
2426 hash_set<gphi *> added_to_worklist;
2428 /* Initialize worklist */
2429 FOR_EACH_BB_FN (bb, fun)
2430 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2432 gphi *phi = gsi.phi ();
2433 size_t n, i;
2435 n = gimple_phi_num_args (phi);
2437 /* Don't look at virtual operands. */
2438 if (virtual_operand_p (gimple_phi_result (phi)))
2439 continue;
2441 for (i = 0; i < n; ++i)
2443 tree op = gimple_phi_arg_def (phi, i);
2444 if (TREE_CODE (op) == SSA_NAME
2445 && uninit_undefined_value_p (op))
2447 worklist.safe_push (phi);
2448 added_to_worklist.add (phi);
2449 if (dump_file && (dump_flags & TDF_DETAILS))
2451 fprintf (dump_file, "[WORKLIST]: add to initial list: ");
2452 print_gimple_stmt (dump_file, phi, 0, 0);
2454 break;
2459 while (worklist.length () != 0)
2461 gphi *cur_phi = 0;
2462 cur_phi = worklist.pop ();
2463 warn_uninitialized_phi (cur_phi, &worklist, &added_to_worklist);
2466 worklist.release ();
2467 delete possibly_undefined_names;
2468 possibly_undefined_names = NULL;
2469 free_dominance_info (CDI_POST_DOMINATORS);
2470 timevar_pop (TV_TREE_UNINIT);
2471 return 0;
2474 } // anon namespace
2476 gimple_opt_pass *
2477 make_pass_late_warn_uninitialized (gcc::context *ctxt)
2479 return new pass_late_warn_uninitialized (ctxt);
2483 static unsigned int
2484 execute_early_warn_uninitialized (void)
2486 /* Currently, this pass runs always but
2487 execute_late_warn_uninitialized only runs with optimization. With
2488 optimization we want to warn about possible uninitialized as late
2489 as possible, thus don't do it here. However, without
2490 optimization we need to warn here about "may be uninitialized". */
2491 calculate_dominance_info (CDI_POST_DOMINATORS);
2493 warn_uninitialized_vars (/*warn_possibly_uninitialized=*/!optimize);
2495 /* Post-dominator information can not be reliably updated. Free it
2496 after the use. */
2498 free_dominance_info (CDI_POST_DOMINATORS);
2499 return 0;
2503 namespace {
2505 const pass_data pass_data_early_warn_uninitialized =
2507 GIMPLE_PASS, /* type */
2508 "*early_warn_uninitialized", /* name */
2509 OPTGROUP_NONE, /* optinfo_flags */
2510 TV_TREE_UNINIT, /* tv_id */
2511 PROP_ssa, /* properties_required */
2512 0, /* properties_provided */
2513 0, /* properties_destroyed */
2514 0, /* todo_flags_start */
2515 0, /* todo_flags_finish */
2518 class pass_early_warn_uninitialized : public gimple_opt_pass
2520 public:
2521 pass_early_warn_uninitialized (gcc::context *ctxt)
2522 : gimple_opt_pass (pass_data_early_warn_uninitialized, ctxt)
2525 /* opt_pass methods: */
2526 virtual bool gate (function *) { return gate_warn_uninitialized (); }
2527 virtual unsigned int execute (function *)
2529 return execute_early_warn_uninitialized ();
2532 }; // class pass_early_warn_uninitialized
2534 } // anon namespace
2536 gimple_opt_pass *
2537 make_pass_early_warn_uninitialized (gcc::context *ctxt)
2539 return new pass_early_warn_uninitialized (ctxt);