* doloop.c (doloop_valid_p): Correct comment.
[official-gcc.git] / gcc / combine.c
blobea12b1309227c9cdf5343b33d3a39ba4df92dc14
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information created by
53 flow.c aren't completely updated:
55 - reg_live_length is not updated
56 - reg_n_refs is not adjusted in the rare case when a register is
57 no longer required in a computation
58 - there are extremely rare cases (see distribute_regnotes) when a
59 REG_DEAD note is lost
60 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
61 removed because there is no way to know which register it was
62 linking
64 To simplify substitution, we combine only when the earlier insn(s)
65 consist of only a single assignment. To simplify updating afterward,
66 we never combine when a subroutine call appears in the middle.
68 Since we do not represent assignments to CC0 explicitly except when that
69 is all an insn does, there is no LOG_LINKS entry in an insn that uses
70 the condition code for the insn that set the condition code.
71 Fortunately, these two insns must be consecutive.
72 Therefore, every JUMP_INSN is taken to have an implicit logical link
73 to the preceding insn. This is not quite right, since non-jumps can
74 also use the condition code; but in practice such insns would not
75 combine anyway. */
77 #include "config.h"
78 #include "system.h"
79 #include "rtl.h"
80 #include "tm_p.h"
81 #include "flags.h"
82 #include "regs.h"
83 #include "hard-reg-set.h"
84 #include "basic-block.h"
85 #include "insn-config.h"
86 #include "function.h"
87 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
88 #include "expr.h"
89 #include "insn-attr.h"
90 #include "recog.h"
91 #include "real.h"
92 #include "toplev.h"
94 /* It is not safe to use ordinary gen_lowpart in combine.
95 Use gen_lowpart_for_combine instead. See comments there. */
96 #define gen_lowpart dont_use_gen_lowpart_you_dummy
98 /* Number of attempts to combine instructions in this function. */
100 static int combine_attempts;
102 /* Number of attempts that got as far as substitution in this function. */
104 static int combine_merges;
106 /* Number of instructions combined with added SETs in this function. */
108 static int combine_extras;
110 /* Number of instructions combined in this function. */
112 static int combine_successes;
114 /* Totals over entire compilation. */
116 static int total_attempts, total_merges, total_extras, total_successes;
119 /* Vector mapping INSN_UIDs to cuids.
120 The cuids are like uids but increase monotonically always.
121 Combine always uses cuids so that it can compare them.
122 But actually renumbering the uids, which we used to do,
123 proves to be a bad idea because it makes it hard to compare
124 the dumps produced by earlier passes with those from later passes. */
126 static int *uid_cuid;
127 static int max_uid_cuid;
129 /* Get the cuid of an insn. */
131 #define INSN_CUID(INSN) \
132 (INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
134 /* In case BITS_PER_WORD == HOST_BITS_PER_WIDE_INT, shifting by
135 BITS_PER_WORD would invoke undefined behavior. Work around it. */
137 #define UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD(val) \
138 (((unsigned HOST_WIDE_INT) (val) << (BITS_PER_WORD - 1)) << 1)
140 /* Maximum register number, which is the size of the tables below. */
142 static unsigned int combine_max_regno;
144 /* Record last point of death of (hard or pseudo) register n. */
146 static rtx *reg_last_death;
148 /* Record last point of modification of (hard or pseudo) register n. */
150 static rtx *reg_last_set;
152 /* Record the cuid of the last insn that invalidated memory
153 (anything that writes memory, and subroutine calls, but not pushes). */
155 static int mem_last_set;
157 /* Record the cuid of the last CALL_INSN
158 so we can tell whether a potential combination crosses any calls. */
160 static int last_call_cuid;
162 /* When `subst' is called, this is the insn that is being modified
163 (by combining in a previous insn). The PATTERN of this insn
164 is still the old pattern partially modified and it should not be
165 looked at, but this may be used to examine the successors of the insn
166 to judge whether a simplification is valid. */
168 static rtx subst_insn;
170 /* This is an insn that belongs before subst_insn, but is not currently
171 on the insn chain. */
173 static rtx subst_prev_insn;
175 /* This is the lowest CUID that `subst' is currently dealing with.
176 get_last_value will not return a value if the register was set at or
177 after this CUID. If not for this mechanism, we could get confused if
178 I2 or I1 in try_combine were an insn that used the old value of a register
179 to obtain a new value. In that case, we might erroneously get the
180 new value of the register when we wanted the old one. */
182 static int subst_low_cuid;
184 /* This contains any hard registers that are used in newpat; reg_dead_at_p
185 must consider all these registers to be always live. */
187 static HARD_REG_SET newpat_used_regs;
189 /* This is an insn to which a LOG_LINKS entry has been added. If this
190 insn is the earlier than I2 or I3, combine should rescan starting at
191 that location. */
193 static rtx added_links_insn;
195 /* Basic block in which we are performing combines. */
196 static basic_block this_basic_block;
198 /* A bitmap indicating which blocks had registers go dead at entry.
199 After combine, we'll need to re-do global life analysis with
200 those blocks as starting points. */
201 static sbitmap refresh_blocks;
202 static int need_refresh;
204 /* The next group of arrays allows the recording of the last value assigned
205 to (hard or pseudo) register n. We use this information to see if a
206 operation being processed is redundant given a prior operation performed
207 on the register. For example, an `and' with a constant is redundant if
208 all the zero bits are already known to be turned off.
210 We use an approach similar to that used by cse, but change it in the
211 following ways:
213 (1) We do not want to reinitialize at each label.
214 (2) It is useful, but not critical, to know the actual value assigned
215 to a register. Often just its form is helpful.
217 Therefore, we maintain the following arrays:
219 reg_last_set_value the last value assigned
220 reg_last_set_label records the value of label_tick when the
221 register was assigned
222 reg_last_set_table_tick records the value of label_tick when a
223 value using the register is assigned
224 reg_last_set_invalid set to non-zero when it is not valid
225 to use the value of this register in some
226 register's value
228 To understand the usage of these tables, it is important to understand
229 the distinction between the value in reg_last_set_value being valid
230 and the register being validly contained in some other expression in the
231 table.
233 Entry I in reg_last_set_value is valid if it is non-zero, and either
234 reg_n_sets[i] is 1 or reg_last_set_label[i] == label_tick.
236 Register I may validly appear in any expression returned for the value
237 of another register if reg_n_sets[i] is 1. It may also appear in the
238 value for register J if reg_last_set_label[i] < reg_last_set_label[j] or
239 reg_last_set_invalid[j] is zero.
241 If an expression is found in the table containing a register which may
242 not validly appear in an expression, the register is replaced by
243 something that won't match, (clobber (const_int 0)).
245 reg_last_set_invalid[i] is set non-zero when register I is being assigned
246 to and reg_last_set_table_tick[i] == label_tick. */
248 /* Record last value assigned to (hard or pseudo) register n. */
250 static rtx *reg_last_set_value;
252 /* Record the value of label_tick when the value for register n is placed in
253 reg_last_set_value[n]. */
255 static int *reg_last_set_label;
257 /* Record the value of label_tick when an expression involving register n
258 is placed in reg_last_set_value. */
260 static int *reg_last_set_table_tick;
262 /* Set non-zero if references to register n in expressions should not be
263 used. */
265 static char *reg_last_set_invalid;
267 /* Incremented for each label. */
269 static int label_tick;
271 /* Some registers that are set more than once and used in more than one
272 basic block are nevertheless always set in similar ways. For example,
273 a QImode register may be loaded from memory in two places on a machine
274 where byte loads zero extend.
276 We record in the following array what we know about the nonzero
277 bits of a register, specifically which bits are known to be zero.
279 If an entry is zero, it means that we don't know anything special. */
281 static unsigned HOST_WIDE_INT *reg_nonzero_bits;
283 /* Mode used to compute significance in reg_nonzero_bits. It is the largest
284 integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
286 static enum machine_mode nonzero_bits_mode;
288 /* Nonzero if we know that a register has some leading bits that are always
289 equal to the sign bit. */
291 static unsigned char *reg_sign_bit_copies;
293 /* Nonzero when reg_nonzero_bits and reg_sign_bit_copies can be safely used.
294 It is zero while computing them and after combine has completed. This
295 former test prevents propagating values based on previously set values,
296 which can be incorrect if a variable is modified in a loop. */
298 static int nonzero_sign_valid;
300 /* These arrays are maintained in parallel with reg_last_set_value
301 and are used to store the mode in which the register was last set,
302 the bits that were known to be zero when it was last set, and the
303 number of sign bits copies it was known to have when it was last set. */
305 static enum machine_mode *reg_last_set_mode;
306 static unsigned HOST_WIDE_INT *reg_last_set_nonzero_bits;
307 static char *reg_last_set_sign_bit_copies;
309 /* Record one modification to rtl structure
310 to be undone by storing old_contents into *where.
311 is_int is 1 if the contents are an int. */
313 struct undo
315 struct undo *next;
316 int is_int;
317 union {rtx r; unsigned int i;} old_contents;
318 union {rtx *r; unsigned int *i;} where;
321 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
322 num_undo says how many are currently recorded.
324 other_insn is nonzero if we have modified some other insn in the process
325 of working on subst_insn. It must be verified too. */
327 struct undobuf
329 struct undo *undos;
330 struct undo *frees;
331 rtx other_insn;
334 static struct undobuf undobuf;
336 /* Number of times the pseudo being substituted for
337 was found and replaced. */
339 static int n_occurrences;
341 static void do_SUBST PARAMS ((rtx *, rtx));
342 static void do_SUBST_INT PARAMS ((unsigned int *,
343 unsigned int));
344 static void init_reg_last_arrays PARAMS ((void));
345 static void setup_incoming_promotions PARAMS ((void));
346 static void set_nonzero_bits_and_sign_copies PARAMS ((rtx, rtx, void *));
347 static int cant_combine_insn_p PARAMS ((rtx));
348 static int can_combine_p PARAMS ((rtx, rtx, rtx, rtx, rtx *, rtx *));
349 static int sets_function_arg_p PARAMS ((rtx));
350 static int combinable_i3pat PARAMS ((rtx, rtx *, rtx, rtx, int, rtx *));
351 static int contains_muldiv PARAMS ((rtx));
352 static rtx try_combine PARAMS ((rtx, rtx, rtx, int *));
353 static void undo_all PARAMS ((void));
354 static void undo_commit PARAMS ((void));
355 static rtx *find_split_point PARAMS ((rtx *, rtx));
356 static rtx subst PARAMS ((rtx, rtx, rtx, int, int));
357 static rtx combine_simplify_rtx PARAMS ((rtx, enum machine_mode, int, int));
358 static rtx simplify_if_then_else PARAMS ((rtx));
359 static rtx simplify_set PARAMS ((rtx));
360 static rtx simplify_logical PARAMS ((rtx, int));
361 static rtx expand_compound_operation PARAMS ((rtx));
362 static rtx expand_field_assignment PARAMS ((rtx));
363 static rtx make_extraction PARAMS ((enum machine_mode, rtx, HOST_WIDE_INT,
364 rtx, unsigned HOST_WIDE_INT, int,
365 int, int));
366 static rtx extract_left_shift PARAMS ((rtx, int));
367 static rtx make_compound_operation PARAMS ((rtx, enum rtx_code));
368 static int get_pos_from_mask PARAMS ((unsigned HOST_WIDE_INT,
369 unsigned HOST_WIDE_INT *));
370 static rtx force_to_mode PARAMS ((rtx, enum machine_mode,
371 unsigned HOST_WIDE_INT, rtx, int));
372 static rtx if_then_else_cond PARAMS ((rtx, rtx *, rtx *));
373 static rtx known_cond PARAMS ((rtx, enum rtx_code, rtx, rtx));
374 static int rtx_equal_for_field_assignment_p PARAMS ((rtx, rtx));
375 static rtx make_field_assignment PARAMS ((rtx));
376 static rtx apply_distributive_law PARAMS ((rtx));
377 static rtx simplify_and_const_int PARAMS ((rtx, enum machine_mode, rtx,
378 unsigned HOST_WIDE_INT));
379 static unsigned HOST_WIDE_INT nonzero_bits PARAMS ((rtx, enum machine_mode));
380 static unsigned int num_sign_bit_copies PARAMS ((rtx, enum machine_mode));
381 static int merge_outer_ops PARAMS ((enum rtx_code *, HOST_WIDE_INT *,
382 enum rtx_code, HOST_WIDE_INT,
383 enum machine_mode, int *));
384 static rtx simplify_shift_const PARAMS ((rtx, enum rtx_code, enum machine_mode,
385 rtx, int));
386 static int recog_for_combine PARAMS ((rtx *, rtx, rtx *));
387 static rtx gen_lowpart_for_combine PARAMS ((enum machine_mode, rtx));
388 static rtx gen_binary PARAMS ((enum rtx_code, enum machine_mode,
389 rtx, rtx));
390 static enum rtx_code simplify_comparison PARAMS ((enum rtx_code, rtx *, rtx *));
391 static void update_table_tick PARAMS ((rtx));
392 static void record_value_for_reg PARAMS ((rtx, rtx, rtx));
393 static void check_promoted_subreg PARAMS ((rtx, rtx));
394 static void record_dead_and_set_regs_1 PARAMS ((rtx, rtx, void *));
395 static void record_dead_and_set_regs PARAMS ((rtx));
396 static int get_last_value_validate PARAMS ((rtx *, rtx, int, int));
397 static rtx get_last_value PARAMS ((rtx));
398 static int use_crosses_set_p PARAMS ((rtx, int));
399 static void reg_dead_at_p_1 PARAMS ((rtx, rtx, void *));
400 static int reg_dead_at_p PARAMS ((rtx, rtx));
401 static void move_deaths PARAMS ((rtx, rtx, int, rtx, rtx *));
402 static int reg_bitfield_target_p PARAMS ((rtx, rtx));
403 static void distribute_notes PARAMS ((rtx, rtx, rtx, rtx, rtx, rtx));
404 static void distribute_links PARAMS ((rtx));
405 static void mark_used_regs_combine PARAMS ((rtx));
406 static int insn_cuid PARAMS ((rtx));
407 static void record_promoted_value PARAMS ((rtx, rtx));
408 static rtx reversed_comparison PARAMS ((rtx, enum machine_mode, rtx, rtx));
409 static enum rtx_code combine_reversed_comparison_code PARAMS ((rtx));
411 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
412 insn. The substitution can be undone by undo_all. If INTO is already
413 set to NEWVAL, do not record this change. Because computing NEWVAL might
414 also call SUBST, we have to compute it before we put anything into
415 the undo table. */
417 static void
418 do_SUBST (into, newval)
419 rtx *into, newval;
421 struct undo *buf;
422 rtx oldval = *into;
424 if (oldval == newval)
425 return;
427 /* We'd like to catch as many invalid transformations here as
428 possible. Unfortunately, there are way too many mode changes
429 that are perfectly valid, so we'd waste too much effort for
430 little gain doing the checks here. Focus on catching invalid
431 transformations involving integer constants. */
432 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
433 && GET_CODE (newval) == CONST_INT)
435 /* Sanity check that we're replacing oldval with a CONST_INT
436 that is a valid sign-extension for the original mode. */
437 if (INTVAL (newval) != trunc_int_for_mode (INTVAL (newval),
438 GET_MODE (oldval)))
439 abort ();
441 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
442 CONST_INT is not valid, because after the replacement, the
443 original mode would be gone. Unfortunately, we can't tell
444 when do_SUBST is called to replace the operand thereof, so we
445 perform this test on oldval instead, checking whether an
446 invalid replacement took place before we got here. */
447 if ((GET_CODE (oldval) == SUBREG
448 && GET_CODE (SUBREG_REG (oldval)) == CONST_INT)
449 || (GET_CODE (oldval) == ZERO_EXTEND
450 && GET_CODE (XEXP (oldval, 0)) == CONST_INT))
451 abort ();
454 if (undobuf.frees)
455 buf = undobuf.frees, undobuf.frees = buf->next;
456 else
457 buf = (struct undo *) xmalloc (sizeof (struct undo));
459 buf->is_int = 0;
460 buf->where.r = into;
461 buf->old_contents.r = oldval;
462 *into = newval;
464 buf->next = undobuf.undos, undobuf.undos = buf;
467 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
469 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
470 for the value of a HOST_WIDE_INT value (including CONST_INT) is
471 not safe. */
473 static void
474 do_SUBST_INT (into, newval)
475 unsigned int *into, newval;
477 struct undo *buf;
478 unsigned int oldval = *into;
480 if (oldval == newval)
481 return;
483 if (undobuf.frees)
484 buf = undobuf.frees, undobuf.frees = buf->next;
485 else
486 buf = (struct undo *) xmalloc (sizeof (struct undo));
488 buf->is_int = 1;
489 buf->where.i = into;
490 buf->old_contents.i = oldval;
491 *into = newval;
493 buf->next = undobuf.undos, undobuf.undos = buf;
496 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
498 /* Main entry point for combiner. F is the first insn of the function.
499 NREGS is the first unused pseudo-reg number.
501 Return non-zero if the combiner has turned an indirect jump
502 instruction into a direct jump. */
504 combine_instructions (f, nregs)
505 rtx f;
506 unsigned int nregs;
508 rtx insn, next;
509 #ifdef HAVE_cc0
510 rtx prev;
511 #endif
512 int i;
513 rtx links, nextlinks;
515 int new_direct_jump_p = 0;
517 combine_attempts = 0;
518 combine_merges = 0;
519 combine_extras = 0;
520 combine_successes = 0;
522 combine_max_regno = nregs;
524 reg_nonzero_bits = ((unsigned HOST_WIDE_INT *)
525 xcalloc (nregs, sizeof (unsigned HOST_WIDE_INT)));
526 reg_sign_bit_copies
527 = (unsigned char *) xcalloc (nregs, sizeof (unsigned char));
529 reg_last_death = (rtx *) xmalloc (nregs * sizeof (rtx));
530 reg_last_set = (rtx *) xmalloc (nregs * sizeof (rtx));
531 reg_last_set_value = (rtx *) xmalloc (nregs * sizeof (rtx));
532 reg_last_set_table_tick = (int *) xmalloc (nregs * sizeof (int));
533 reg_last_set_label = (int *) xmalloc (nregs * sizeof (int));
534 reg_last_set_invalid = (char *) xmalloc (nregs * sizeof (char));
535 reg_last_set_mode
536 = (enum machine_mode *) xmalloc (nregs * sizeof (enum machine_mode));
537 reg_last_set_nonzero_bits
538 = (unsigned HOST_WIDE_INT *) xmalloc (nregs * sizeof (HOST_WIDE_INT));
539 reg_last_set_sign_bit_copies
540 = (char *) xmalloc (nregs * sizeof (char));
542 init_reg_last_arrays ();
544 init_recog_no_volatile ();
546 /* Compute maximum uid value so uid_cuid can be allocated. */
548 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
549 if (INSN_UID (insn) > i)
550 i = INSN_UID (insn);
552 uid_cuid = (int *) xmalloc ((i + 1) * sizeof (int));
553 max_uid_cuid = i;
555 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
557 /* Don't use reg_nonzero_bits when computing it. This can cause problems
558 when, for example, we have j <<= 1 in a loop. */
560 nonzero_sign_valid = 0;
562 /* Compute the mapping from uids to cuids.
563 Cuids are numbers assigned to insns, like uids,
564 except that cuids increase monotonically through the code.
566 Scan all SETs and see if we can deduce anything about what
567 bits are known to be zero for some registers and how many copies
568 of the sign bit are known to exist for those registers.
570 Also set any known values so that we can use it while searching
571 for what bits are known to be set. */
573 label_tick = 1;
575 /* We need to initialize it here, because record_dead_and_set_regs may call
576 get_last_value. */
577 subst_prev_insn = NULL_RTX;
579 setup_incoming_promotions ();
581 refresh_blocks = sbitmap_alloc (last_basic_block);
582 sbitmap_zero (refresh_blocks);
583 need_refresh = 0;
585 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
587 uid_cuid[INSN_UID (insn)] = ++i;
588 subst_low_cuid = i;
589 subst_insn = insn;
591 if (INSN_P (insn))
593 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
594 NULL);
595 record_dead_and_set_regs (insn);
597 #ifdef AUTO_INC_DEC
598 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
599 if (REG_NOTE_KIND (links) == REG_INC)
600 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
601 NULL);
602 #endif
605 if (GET_CODE (insn) == CODE_LABEL)
606 label_tick++;
609 nonzero_sign_valid = 1;
611 /* Now scan all the insns in forward order. */
613 label_tick = 1;
614 last_call_cuid = 0;
615 mem_last_set = 0;
616 init_reg_last_arrays ();
617 setup_incoming_promotions ();
619 FOR_EACH_BB (this_basic_block)
621 for (insn = this_basic_block->head;
622 insn != NEXT_INSN (this_basic_block->end);
623 insn = next ? next : NEXT_INSN (insn))
625 next = 0;
627 if (GET_CODE (insn) == CODE_LABEL)
628 label_tick++;
630 else if (INSN_P (insn))
632 /* See if we know about function return values before this
633 insn based upon SUBREG flags. */
634 check_promoted_subreg (insn, PATTERN (insn));
636 /* Try this insn with each insn it links back to. */
638 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
639 if ((next = try_combine (insn, XEXP (links, 0),
640 NULL_RTX, &new_direct_jump_p)) != 0)
641 goto retry;
643 /* Try each sequence of three linked insns ending with this one. */
645 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
647 rtx link = XEXP (links, 0);
649 /* If the linked insn has been replaced by a note, then there
650 is no point in pursuing this chain any further. */
651 if (GET_CODE (link) == NOTE)
652 continue;
654 for (nextlinks = LOG_LINKS (link);
655 nextlinks;
656 nextlinks = XEXP (nextlinks, 1))
657 if ((next = try_combine (insn, link,
658 XEXP (nextlinks, 0),
659 &new_direct_jump_p)) != 0)
660 goto retry;
663 #ifdef HAVE_cc0
664 /* Try to combine a jump insn that uses CC0
665 with a preceding insn that sets CC0, and maybe with its
666 logical predecessor as well.
667 This is how we make decrement-and-branch insns.
668 We need this special code because data flow connections
669 via CC0 do not get entered in LOG_LINKS. */
671 if (GET_CODE (insn) == JUMP_INSN
672 && (prev = prev_nonnote_insn (insn)) != 0
673 && GET_CODE (prev) == INSN
674 && sets_cc0_p (PATTERN (prev)))
676 if ((next = try_combine (insn, prev,
677 NULL_RTX, &new_direct_jump_p)) != 0)
678 goto retry;
680 for (nextlinks = LOG_LINKS (prev); nextlinks;
681 nextlinks = XEXP (nextlinks, 1))
682 if ((next = try_combine (insn, prev,
683 XEXP (nextlinks, 0),
684 &new_direct_jump_p)) != 0)
685 goto retry;
688 /* Do the same for an insn that explicitly references CC0. */
689 if (GET_CODE (insn) == INSN
690 && (prev = prev_nonnote_insn (insn)) != 0
691 && GET_CODE (prev) == INSN
692 && sets_cc0_p (PATTERN (prev))
693 && GET_CODE (PATTERN (insn)) == SET
694 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
696 if ((next = try_combine (insn, prev,
697 NULL_RTX, &new_direct_jump_p)) != 0)
698 goto retry;
700 for (nextlinks = LOG_LINKS (prev); nextlinks;
701 nextlinks = XEXP (nextlinks, 1))
702 if ((next = try_combine (insn, prev,
703 XEXP (nextlinks, 0),
704 &new_direct_jump_p)) != 0)
705 goto retry;
708 /* Finally, see if any of the insns that this insn links to
709 explicitly references CC0. If so, try this insn, that insn,
710 and its predecessor if it sets CC0. */
711 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
712 if (GET_CODE (XEXP (links, 0)) == INSN
713 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
714 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
715 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
716 && GET_CODE (prev) == INSN
717 && sets_cc0_p (PATTERN (prev))
718 && (next = try_combine (insn, XEXP (links, 0),
719 prev, &new_direct_jump_p)) != 0)
720 goto retry;
721 #endif
723 /* Try combining an insn with two different insns whose results it
724 uses. */
725 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
726 for (nextlinks = XEXP (links, 1); nextlinks;
727 nextlinks = XEXP (nextlinks, 1))
728 if ((next = try_combine (insn, XEXP (links, 0),
729 XEXP (nextlinks, 0),
730 &new_direct_jump_p)) != 0)
731 goto retry;
733 if (GET_CODE (insn) != NOTE)
734 record_dead_and_set_regs (insn);
736 retry:
741 clear_bb_flags ();
743 EXECUTE_IF_SET_IN_SBITMAP (refresh_blocks, 0, i,
744 BASIC_BLOCK (i)->flags |= BB_DIRTY);
745 new_direct_jump_p |= purge_all_dead_edges (0);
746 delete_noop_moves (f);
748 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
749 PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
750 | PROP_KILL_DEAD_CODE);
752 /* Clean up. */
753 sbitmap_free (refresh_blocks);
754 free (reg_nonzero_bits);
755 free (reg_sign_bit_copies);
756 free (reg_last_death);
757 free (reg_last_set);
758 free (reg_last_set_value);
759 free (reg_last_set_table_tick);
760 free (reg_last_set_label);
761 free (reg_last_set_invalid);
762 free (reg_last_set_mode);
763 free (reg_last_set_nonzero_bits);
764 free (reg_last_set_sign_bit_copies);
765 free (uid_cuid);
768 struct undo *undo, *next;
769 for (undo = undobuf.frees; undo; undo = next)
771 next = undo->next;
772 free (undo);
774 undobuf.frees = 0;
777 total_attempts += combine_attempts;
778 total_merges += combine_merges;
779 total_extras += combine_extras;
780 total_successes += combine_successes;
782 nonzero_sign_valid = 0;
784 /* Make recognizer allow volatile MEMs again. */
785 init_recog ();
787 return new_direct_jump_p;
790 /* Wipe the reg_last_xxx arrays in preparation for another pass. */
792 static void
793 init_reg_last_arrays ()
795 unsigned int nregs = combine_max_regno;
797 memset ((char *) reg_last_death, 0, nregs * sizeof (rtx));
798 memset ((char *) reg_last_set, 0, nregs * sizeof (rtx));
799 memset ((char *) reg_last_set_value, 0, nregs * sizeof (rtx));
800 memset ((char *) reg_last_set_table_tick, 0, nregs * sizeof (int));
801 memset ((char *) reg_last_set_label, 0, nregs * sizeof (int));
802 memset (reg_last_set_invalid, 0, nregs * sizeof (char));
803 memset ((char *) reg_last_set_mode, 0, nregs * sizeof (enum machine_mode));
804 memset ((char *) reg_last_set_nonzero_bits, 0, nregs * sizeof (HOST_WIDE_INT));
805 memset (reg_last_set_sign_bit_copies, 0, nregs * sizeof (char));
808 /* Set up any promoted values for incoming argument registers. */
810 static void
811 setup_incoming_promotions ()
813 #ifdef PROMOTE_FUNCTION_ARGS
814 unsigned int regno;
815 rtx reg;
816 enum machine_mode mode;
817 int unsignedp;
818 rtx first = get_insns ();
820 #ifndef OUTGOING_REGNO
821 #define OUTGOING_REGNO(N) N
822 #endif
823 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
824 /* Check whether this register can hold an incoming pointer
825 argument. FUNCTION_ARG_REGNO_P tests outgoing register
826 numbers, so translate if necessary due to register windows. */
827 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno))
828 && (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
830 record_value_for_reg
831 (reg, first, gen_rtx_fmt_e ((unsignedp ? ZERO_EXTEND
832 : SIGN_EXTEND),
833 GET_MODE (reg),
834 gen_rtx_CLOBBER (mode, const0_rtx)));
836 #endif
839 /* Called via note_stores. If X is a pseudo that is narrower than
840 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
842 If we are setting only a portion of X and we can't figure out what
843 portion, assume all bits will be used since we don't know what will
844 be happening.
846 Similarly, set how many bits of X are known to be copies of the sign bit
847 at all locations in the function. This is the smallest number implied
848 by any set of X. */
850 static void
851 set_nonzero_bits_and_sign_copies (x, set, data)
852 rtx x;
853 rtx set;
854 void *data ATTRIBUTE_UNUSED;
856 unsigned int num;
858 if (GET_CODE (x) == REG
859 && REGNO (x) >= FIRST_PSEUDO_REGISTER
860 /* If this register is undefined at the start of the file, we can't
861 say what its contents were. */
862 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, REGNO (x))
863 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
865 if (set == 0 || GET_CODE (set) == CLOBBER)
867 reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
868 reg_sign_bit_copies[REGNO (x)] = 1;
869 return;
872 /* If this is a complex assignment, see if we can convert it into a
873 simple assignment. */
874 set = expand_field_assignment (set);
876 /* If this is a simple assignment, or we have a paradoxical SUBREG,
877 set what we know about X. */
879 if (SET_DEST (set) == x
880 || (GET_CODE (SET_DEST (set)) == SUBREG
881 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
882 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
883 && SUBREG_REG (SET_DEST (set)) == x))
885 rtx src = SET_SRC (set);
887 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
888 /* If X is narrower than a word and SRC is a non-negative
889 constant that would appear negative in the mode of X,
890 sign-extend it for use in reg_nonzero_bits because some
891 machines (maybe most) will actually do the sign-extension
892 and this is the conservative approach.
894 ??? For 2.5, try to tighten up the MD files in this regard
895 instead of this kludge. */
897 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
898 && GET_CODE (src) == CONST_INT
899 && INTVAL (src) > 0
900 && 0 != (INTVAL (src)
901 & ((HOST_WIDE_INT) 1
902 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
903 src = GEN_INT (INTVAL (src)
904 | ((HOST_WIDE_INT) (-1)
905 << GET_MODE_BITSIZE (GET_MODE (x))));
906 #endif
908 /* Don't call nonzero_bits if it cannot change anything. */
909 if (reg_nonzero_bits[REGNO (x)] != ~(unsigned HOST_WIDE_INT) 0)
910 reg_nonzero_bits[REGNO (x)]
911 |= nonzero_bits (src, nonzero_bits_mode);
912 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
913 if (reg_sign_bit_copies[REGNO (x)] == 0
914 || reg_sign_bit_copies[REGNO (x)] > num)
915 reg_sign_bit_copies[REGNO (x)] = num;
917 else
919 reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
920 reg_sign_bit_copies[REGNO (x)] = 1;
925 /* See if INSN can be combined into I3. PRED and SUCC are optionally
926 insns that were previously combined into I3 or that will be combined
927 into the merger of INSN and I3.
929 Return 0 if the combination is not allowed for any reason.
931 If the combination is allowed, *PDEST will be set to the single
932 destination of INSN and *PSRC to the single source, and this function
933 will return 1. */
935 static int
936 can_combine_p (insn, i3, pred, succ, pdest, psrc)
937 rtx insn;
938 rtx i3;
939 rtx pred ATTRIBUTE_UNUSED;
940 rtx succ;
941 rtx *pdest, *psrc;
943 int i;
944 rtx set = 0, src, dest;
945 rtx p;
946 #ifdef AUTO_INC_DEC
947 rtx link;
948 #endif
949 int all_adjacent = (succ ? (next_active_insn (insn) == succ
950 && next_active_insn (succ) == i3)
951 : next_active_insn (insn) == i3);
953 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
954 or a PARALLEL consisting of such a SET and CLOBBERs.
956 If INSN has CLOBBER parallel parts, ignore them for our processing.
957 By definition, these happen during the execution of the insn. When it
958 is merged with another insn, all bets are off. If they are, in fact,
959 needed and aren't also supplied in I3, they may be added by
960 recog_for_combine. Otherwise, it won't match.
962 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
963 note.
965 Get the source and destination of INSN. If more than one, can't
966 combine. */
968 if (GET_CODE (PATTERN (insn)) == SET)
969 set = PATTERN (insn);
970 else if (GET_CODE (PATTERN (insn)) == PARALLEL
971 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
973 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
975 rtx elt = XVECEXP (PATTERN (insn), 0, i);
977 switch (GET_CODE (elt))
979 /* This is important to combine floating point insns
980 for the SH4 port. */
981 case USE:
982 /* Combining an isolated USE doesn't make sense.
983 We depend here on combinable_i3pat to reject them. */
984 /* The code below this loop only verifies that the inputs of
985 the SET in INSN do not change. We call reg_set_between_p
986 to verify that the REG in the USE does not change between
987 I3 and INSN.
988 If the USE in INSN was for a pseudo register, the matching
989 insn pattern will likely match any register; combining this
990 with any other USE would only be safe if we knew that the
991 used registers have identical values, or if there was
992 something to tell them apart, e.g. different modes. For
993 now, we forgo such complicated tests and simply disallow
994 combining of USES of pseudo registers with any other USE. */
995 if (GET_CODE (XEXP (elt, 0)) == REG
996 && GET_CODE (PATTERN (i3)) == PARALLEL)
998 rtx i3pat = PATTERN (i3);
999 int i = XVECLEN (i3pat, 0) - 1;
1000 unsigned int regno = REGNO (XEXP (elt, 0));
1004 rtx i3elt = XVECEXP (i3pat, 0, i);
1006 if (GET_CODE (i3elt) == USE
1007 && GET_CODE (XEXP (i3elt, 0)) == REG
1008 && (REGNO (XEXP (i3elt, 0)) == regno
1009 ? reg_set_between_p (XEXP (elt, 0),
1010 PREV_INSN (insn), i3)
1011 : regno >= FIRST_PSEUDO_REGISTER))
1012 return 0;
1014 while (--i >= 0);
1016 break;
1018 /* We can ignore CLOBBERs. */
1019 case CLOBBER:
1020 break;
1022 case SET:
1023 /* Ignore SETs whose result isn't used but not those that
1024 have side-effects. */
1025 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1026 && ! side_effects_p (elt))
1027 break;
1029 /* If we have already found a SET, this is a second one and
1030 so we cannot combine with this insn. */
1031 if (set)
1032 return 0;
1034 set = elt;
1035 break;
1037 default:
1038 /* Anything else means we can't combine. */
1039 return 0;
1043 if (set == 0
1044 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1045 so don't do anything with it. */
1046 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1047 return 0;
1049 else
1050 return 0;
1052 if (set == 0)
1053 return 0;
1055 set = expand_field_assignment (set);
1056 src = SET_SRC (set), dest = SET_DEST (set);
1058 /* Don't eliminate a store in the stack pointer. */
1059 if (dest == stack_pointer_rtx
1060 /* If we couldn't eliminate a field assignment, we can't combine. */
1061 || GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == STRICT_LOW_PART
1062 /* Don't combine with an insn that sets a register to itself if it has
1063 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
1064 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1065 /* Can't merge an ASM_OPERANDS. */
1066 || GET_CODE (src) == ASM_OPERANDS
1067 /* Can't merge a function call. */
1068 || GET_CODE (src) == CALL
1069 /* Don't eliminate a function call argument. */
1070 || (GET_CODE (i3) == CALL_INSN
1071 && (find_reg_fusage (i3, USE, dest)
1072 || (GET_CODE (dest) == REG
1073 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1074 && global_regs[REGNO (dest)])))
1075 /* Don't substitute into an incremented register. */
1076 || FIND_REG_INC_NOTE (i3, dest)
1077 || (succ && FIND_REG_INC_NOTE (succ, dest))
1078 #if 0
1079 /* Don't combine the end of a libcall into anything. */
1080 /* ??? This gives worse code, and appears to be unnecessary, since no
1081 pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
1082 use REG_RETVAL notes for noconflict blocks, but other code here
1083 makes sure that those insns don't disappear. */
1084 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1085 #endif
1086 /* Make sure that DEST is not used after SUCC but before I3. */
1087 || (succ && ! all_adjacent
1088 && reg_used_between_p (dest, succ, i3))
1089 /* Make sure that the value that is to be substituted for the register
1090 does not use any registers whose values alter in between. However,
1091 If the insns are adjacent, a use can't cross a set even though we
1092 think it might (this can happen for a sequence of insns each setting
1093 the same destination; reg_last_set of that register might point to
1094 a NOTE). If INSN has a REG_EQUIV note, the register is always
1095 equivalent to the memory so the substitution is valid even if there
1096 are intervening stores. Also, don't move a volatile asm or
1097 UNSPEC_VOLATILE across any other insns. */
1098 || (! all_adjacent
1099 && (((GET_CODE (src) != MEM
1100 || ! find_reg_note (insn, REG_EQUIV, src))
1101 && use_crosses_set_p (src, INSN_CUID (insn)))
1102 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1103 || GET_CODE (src) == UNSPEC_VOLATILE))
1104 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1105 better register allocation by not doing the combine. */
1106 || find_reg_note (i3, REG_NO_CONFLICT, dest)
1107 || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
1108 /* Don't combine across a CALL_INSN, because that would possibly
1109 change whether the life span of some REGs crosses calls or not,
1110 and it is a pain to update that information.
1111 Exception: if source is a constant, moving it later can't hurt.
1112 Accept that special case, because it helps -fforce-addr a lot. */
1113 || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
1114 return 0;
1116 /* DEST must either be a REG or CC0. */
1117 if (GET_CODE (dest) == REG)
1119 /* If register alignment is being enforced for multi-word items in all
1120 cases except for parameters, it is possible to have a register copy
1121 insn referencing a hard register that is not allowed to contain the
1122 mode being copied and which would not be valid as an operand of most
1123 insns. Eliminate this problem by not combining with such an insn.
1125 Also, on some machines we don't want to extend the life of a hard
1126 register. */
1128 if (GET_CODE (src) == REG
1129 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1130 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1131 /* Don't extend the life of a hard register unless it is
1132 user variable (if we have few registers) or it can't
1133 fit into the desired register (meaning something special
1134 is going on).
1135 Also avoid substituting a return register into I3, because
1136 reload can't handle a conflict with constraints of other
1137 inputs. */
1138 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1139 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1140 return 0;
1142 else if (GET_CODE (dest) != CC0)
1143 return 0;
1145 /* Don't substitute for a register intended as a clobberable operand.
1146 Similarly, don't substitute an expression containing a register that
1147 will be clobbered in I3. */
1148 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1149 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1150 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER
1151 && (reg_overlap_mentioned_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0),
1152 src)
1153 || rtx_equal_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0), dest)))
1154 return 0;
1156 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1157 or not), reject, unless nothing volatile comes between it and I3 */
1159 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1161 /* Make sure succ doesn't contain a volatile reference. */
1162 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1163 return 0;
1165 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1166 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1167 return 0;
1170 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1171 to be an explicit register variable, and was chosen for a reason. */
1173 if (GET_CODE (src) == ASM_OPERANDS
1174 && GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1175 return 0;
1177 /* If there are any volatile insns between INSN and I3, reject, because
1178 they might affect machine state. */
1180 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1181 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1182 return 0;
1184 /* If INSN or I2 contains an autoincrement or autodecrement,
1185 make sure that register is not used between there and I3,
1186 and not already used in I3 either.
1187 Also insist that I3 not be a jump; if it were one
1188 and the incremented register were spilled, we would lose. */
1190 #ifdef AUTO_INC_DEC
1191 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1192 if (REG_NOTE_KIND (link) == REG_INC
1193 && (GET_CODE (i3) == JUMP_INSN
1194 || reg_used_between_p (XEXP (link, 0), insn, i3)
1195 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1196 return 0;
1197 #endif
1199 #ifdef HAVE_cc0
1200 /* Don't combine an insn that follows a CC0-setting insn.
1201 An insn that uses CC0 must not be separated from the one that sets it.
1202 We do, however, allow I2 to follow a CC0-setting insn if that insn
1203 is passed as I1; in that case it will be deleted also.
1204 We also allow combining in this case if all the insns are adjacent
1205 because that would leave the two CC0 insns adjacent as well.
1206 It would be more logical to test whether CC0 occurs inside I1 or I2,
1207 but that would be much slower, and this ought to be equivalent. */
1209 p = prev_nonnote_insn (insn);
1210 if (p && p != pred && GET_CODE (p) == INSN && sets_cc0_p (PATTERN (p))
1211 && ! all_adjacent)
1212 return 0;
1213 #endif
1215 /* If we get here, we have passed all the tests and the combination is
1216 to be allowed. */
1218 *pdest = dest;
1219 *psrc = src;
1221 return 1;
1224 /* Check if PAT is an insn - or a part of it - used to set up an
1225 argument for a function in a hard register. */
1227 static int
1228 sets_function_arg_p (pat)
1229 rtx pat;
1231 int i;
1232 rtx inner_dest;
1234 switch (GET_CODE (pat))
1236 case INSN:
1237 return sets_function_arg_p (PATTERN (pat));
1239 case PARALLEL:
1240 for (i = XVECLEN (pat, 0); --i >= 0;)
1241 if (sets_function_arg_p (XVECEXP (pat, 0, i)))
1242 return 1;
1244 break;
1246 case SET:
1247 inner_dest = SET_DEST (pat);
1248 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1249 || GET_CODE (inner_dest) == SUBREG
1250 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1251 inner_dest = XEXP (inner_dest, 0);
1253 return (GET_CODE (inner_dest) == REG
1254 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1255 && FUNCTION_ARG_REGNO_P (REGNO (inner_dest)));
1257 default:
1258 break;
1261 return 0;
1264 /* LOC is the location within I3 that contains its pattern or the component
1265 of a PARALLEL of the pattern. We validate that it is valid for combining.
1267 One problem is if I3 modifies its output, as opposed to replacing it
1268 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1269 so would produce an insn that is not equivalent to the original insns.
1271 Consider:
1273 (set (reg:DI 101) (reg:DI 100))
1274 (set (subreg:SI (reg:DI 101) 0) <foo>)
1276 This is NOT equivalent to:
1278 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1279 (set (reg:DI 101) (reg:DI 100))])
1281 Not only does this modify 100 (in which case it might still be valid
1282 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1284 We can also run into a problem if I2 sets a register that I1
1285 uses and I1 gets directly substituted into I3 (not via I2). In that
1286 case, we would be getting the wrong value of I2DEST into I3, so we
1287 must reject the combination. This case occurs when I2 and I1 both
1288 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1289 If I1_NOT_IN_SRC is non-zero, it means that finding I1 in the source
1290 of a SET must prevent combination from occurring.
1292 Before doing the above check, we first try to expand a field assignment
1293 into a set of logical operations.
1295 If PI3_DEST_KILLED is non-zero, it is a pointer to a location in which
1296 we place a register that is both set and used within I3. If more than one
1297 such register is detected, we fail.
1299 Return 1 if the combination is valid, zero otherwise. */
1301 static int
1302 combinable_i3pat (i3, loc, i2dest, i1dest, i1_not_in_src, pi3dest_killed)
1303 rtx i3;
1304 rtx *loc;
1305 rtx i2dest;
1306 rtx i1dest;
1307 int i1_not_in_src;
1308 rtx *pi3dest_killed;
1310 rtx x = *loc;
1312 if (GET_CODE (x) == SET)
1314 rtx set = expand_field_assignment (x);
1315 rtx dest = SET_DEST (set);
1316 rtx src = SET_SRC (set);
1317 rtx inner_dest = dest;
1319 #if 0
1320 rtx inner_src = src;
1321 #endif
1323 SUBST (*loc, set);
1325 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1326 || GET_CODE (inner_dest) == SUBREG
1327 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1328 inner_dest = XEXP (inner_dest, 0);
1330 /* We probably don't need this any more now that LIMIT_RELOAD_CLASS
1331 was added. */
1332 #if 0
1333 while (GET_CODE (inner_src) == STRICT_LOW_PART
1334 || GET_CODE (inner_src) == SUBREG
1335 || GET_CODE (inner_src) == ZERO_EXTRACT)
1336 inner_src = XEXP (inner_src, 0);
1338 /* If it is better that two different modes keep two different pseudos,
1339 avoid combining them. This avoids producing the following pattern
1340 on a 386:
1341 (set (subreg:SI (reg/v:QI 21) 0)
1342 (lshiftrt:SI (reg/v:SI 20)
1343 (const_int 24)))
1344 If that were made, reload could not handle the pair of
1345 reg 20/21, since it would try to get any GENERAL_REGS
1346 but some of them don't handle QImode. */
1348 if (rtx_equal_p (inner_src, i2dest)
1349 && GET_CODE (inner_dest) == REG
1350 && ! MODES_TIEABLE_P (GET_MODE (i2dest), GET_MODE (inner_dest)))
1351 return 0;
1352 #endif
1354 /* Check for the case where I3 modifies its output, as
1355 discussed above. */
1356 if ((inner_dest != dest
1357 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1358 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1360 /* This is the same test done in can_combine_p except we can't test
1361 all_adjacent; we don't have to, since this instruction will stay
1362 in place, thus we are not considering increasing the lifetime of
1363 INNER_DEST.
1365 Also, if this insn sets a function argument, combining it with
1366 something that might need a spill could clobber a previous
1367 function argument; the all_adjacent test in can_combine_p also
1368 checks this; here, we do a more specific test for this case. */
1370 || (GET_CODE (inner_dest) == REG
1371 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1372 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1373 GET_MODE (inner_dest))))
1374 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1375 return 0;
1377 /* If DEST is used in I3, it is being killed in this insn,
1378 so record that for later.
1379 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1380 STACK_POINTER_REGNUM, since these are always considered to be
1381 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1382 if (pi3dest_killed && GET_CODE (dest) == REG
1383 && reg_referenced_p (dest, PATTERN (i3))
1384 && REGNO (dest) != FRAME_POINTER_REGNUM
1385 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1386 && REGNO (dest) != HARD_FRAME_POINTER_REGNUM
1387 #endif
1388 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1389 && (REGNO (dest) != ARG_POINTER_REGNUM
1390 || ! fixed_regs [REGNO (dest)])
1391 #endif
1392 && REGNO (dest) != STACK_POINTER_REGNUM)
1394 if (*pi3dest_killed)
1395 return 0;
1397 *pi3dest_killed = dest;
1401 else if (GET_CODE (x) == PARALLEL)
1403 int i;
1405 for (i = 0; i < XVECLEN (x, 0); i++)
1406 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1407 i1_not_in_src, pi3dest_killed))
1408 return 0;
1411 return 1;
1414 /* Return 1 if X is an arithmetic expression that contains a multiplication
1415 and division. We don't count multiplications by powers of two here. */
1417 static int
1418 contains_muldiv (x)
1419 rtx x;
1421 switch (GET_CODE (x))
1423 case MOD: case DIV: case UMOD: case UDIV:
1424 return 1;
1426 case MULT:
1427 return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1428 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1429 default:
1430 switch (GET_RTX_CLASS (GET_CODE (x)))
1432 case 'c': case '<': case '2':
1433 return contains_muldiv (XEXP (x, 0))
1434 || contains_muldiv (XEXP (x, 1));
1436 case '1':
1437 return contains_muldiv (XEXP (x, 0));
1439 default:
1440 return 0;
1445 /* Determine whether INSN can be used in a combination. Return nonzero if
1446 not. This is used in try_combine to detect early some cases where we
1447 can't perform combinations. */
1449 static int
1450 cant_combine_insn_p (insn)
1451 rtx insn;
1453 rtx set;
1454 rtx src, dest;
1456 /* If this isn't really an insn, we can't do anything.
1457 This can occur when flow deletes an insn that it has merged into an
1458 auto-increment address. */
1459 if (! INSN_P (insn))
1460 return 1;
1462 /* Never combine loads and stores involving hard regs. The register
1463 allocator can usually handle such reg-reg moves by tying. If we allow
1464 the combiner to make substitutions of hard regs, we risk aborting in
1465 reload on machines that have SMALL_REGISTER_CLASSES.
1466 As an exception, we allow combinations involving fixed regs; these are
1467 not available to the register allocator so there's no risk involved. */
1469 set = single_set (insn);
1470 if (! set)
1471 return 0;
1472 src = SET_SRC (set);
1473 dest = SET_DEST (set);
1474 if (GET_CODE (src) == SUBREG)
1475 src = SUBREG_REG (src);
1476 if (GET_CODE (dest) == SUBREG)
1477 dest = SUBREG_REG (dest);
1478 if (REG_P (src) && REG_P (dest)
1479 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
1480 && ! fixed_regs[REGNO (src)])
1481 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
1482 && ! fixed_regs[REGNO (dest)])))
1483 return 1;
1485 return 0;
1488 /* Try to combine the insns I1 and I2 into I3.
1489 Here I1 and I2 appear earlier than I3.
1490 I1 can be zero; then we combine just I2 into I3.
1492 If we are combining three insns and the resulting insn is not recognized,
1493 try splitting it into two insns. If that happens, I2 and I3 are retained
1494 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1495 are pseudo-deleted.
1497 Return 0 if the combination does not work. Then nothing is changed.
1498 If we did the combination, return the insn at which combine should
1499 resume scanning.
1501 Set NEW_DIRECT_JUMP_P to a non-zero value if try_combine creates a
1502 new direct jump instruction. */
1504 static rtx
1505 try_combine (i3, i2, i1, new_direct_jump_p)
1506 rtx i3, i2, i1;
1507 int *new_direct_jump_p;
1509 /* New patterns for I3 and I2, respectively. */
1510 rtx newpat, newi2pat = 0;
1511 int substed_i2 = 0, substed_i1 = 0;
1512 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1513 int added_sets_1, added_sets_2;
1514 /* Total number of SETs to put into I3. */
1515 int total_sets;
1516 /* Nonzero is I2's body now appears in I3. */
1517 int i2_is_used;
1518 /* INSN_CODEs for new I3, new I2, and user of condition code. */
1519 int insn_code_number, i2_code_number = 0, other_code_number = 0;
1520 /* Contains I3 if the destination of I3 is used in its source, which means
1521 that the old life of I3 is being killed. If that usage is placed into
1522 I2 and not in I3, a REG_DEAD note must be made. */
1523 rtx i3dest_killed = 0;
1524 /* SET_DEST and SET_SRC of I2 and I1. */
1525 rtx i2dest, i2src, i1dest = 0, i1src = 0;
1526 /* PATTERN (I2), or a copy of it in certain cases. */
1527 rtx i2pat;
1528 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
1529 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
1530 int i1_feeds_i3 = 0;
1531 /* Notes that must be added to REG_NOTES in I3 and I2. */
1532 rtx new_i3_notes, new_i2_notes;
1533 /* Notes that we substituted I3 into I2 instead of the normal case. */
1534 int i3_subst_into_i2 = 0;
1535 /* Notes that I1, I2 or I3 is a MULT operation. */
1536 int have_mult = 0;
1538 int maxreg;
1539 rtx temp;
1540 rtx link;
1541 int i;
1543 /* Exit early if one of the insns involved can't be used for
1544 combinations. */
1545 if (cant_combine_insn_p (i3)
1546 || cant_combine_insn_p (i2)
1547 || (i1 && cant_combine_insn_p (i1))
1548 /* We also can't do anything if I3 has a
1549 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1550 libcall. */
1551 #if 0
1552 /* ??? This gives worse code, and appears to be unnecessary, since no
1553 pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
1554 || find_reg_note (i3, REG_LIBCALL, NULL_RTX)
1555 #endif
1557 return 0;
1559 combine_attempts++;
1560 undobuf.other_insn = 0;
1562 /* Reset the hard register usage information. */
1563 CLEAR_HARD_REG_SET (newpat_used_regs);
1565 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1566 code below, set I1 to be the earlier of the two insns. */
1567 if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1568 temp = i1, i1 = i2, i2 = temp;
1570 added_links_insn = 0;
1572 /* First check for one important special-case that the code below will
1573 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
1574 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1575 we may be able to replace that destination with the destination of I3.
1576 This occurs in the common code where we compute both a quotient and
1577 remainder into a structure, in which case we want to do the computation
1578 directly into the structure to avoid register-register copies.
1580 Note that this case handles both multiple sets in I2 and also
1581 cases where I2 has a number of CLOBBER or PARALLELs.
1583 We make very conservative checks below and only try to handle the
1584 most common cases of this. For example, we only handle the case
1585 where I2 and I3 are adjacent to avoid making difficult register
1586 usage tests. */
1588 if (i1 == 0 && GET_CODE (i3) == INSN && GET_CODE (PATTERN (i3)) == SET
1589 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1590 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1591 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1592 && GET_CODE (PATTERN (i2)) == PARALLEL
1593 && ! side_effects_p (SET_DEST (PATTERN (i3)))
1594 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1595 below would need to check what is inside (and reg_overlap_mentioned_p
1596 doesn't support those codes anyway). Don't allow those destinations;
1597 the resulting insn isn't likely to be recognized anyway. */
1598 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1599 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
1600 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1601 SET_DEST (PATTERN (i3)))
1602 && next_real_insn (i2) == i3)
1604 rtx p2 = PATTERN (i2);
1606 /* Make sure that the destination of I3,
1607 which we are going to substitute into one output of I2,
1608 is not used within another output of I2. We must avoid making this:
1609 (parallel [(set (mem (reg 69)) ...)
1610 (set (reg 69) ...)])
1611 which is not well-defined as to order of actions.
1612 (Besides, reload can't handle output reloads for this.)
1614 The problem can also happen if the dest of I3 is a memory ref,
1615 if another dest in I2 is an indirect memory ref. */
1616 for (i = 0; i < XVECLEN (p2, 0); i++)
1617 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1618 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1619 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1620 SET_DEST (XVECEXP (p2, 0, i))))
1621 break;
1623 if (i == XVECLEN (p2, 0))
1624 for (i = 0; i < XVECLEN (p2, 0); i++)
1625 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1626 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1627 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
1629 combine_merges++;
1631 subst_insn = i3;
1632 subst_low_cuid = INSN_CUID (i2);
1634 added_sets_2 = added_sets_1 = 0;
1635 i2dest = SET_SRC (PATTERN (i3));
1637 /* Replace the dest in I2 with our dest and make the resulting
1638 insn the new pattern for I3. Then skip to where we
1639 validate the pattern. Everything was set up above. */
1640 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
1641 SET_DEST (PATTERN (i3)));
1643 newpat = p2;
1644 i3_subst_into_i2 = 1;
1645 goto validate_replacement;
1649 /* If I2 is setting a double-word pseudo to a constant and I3 is setting
1650 one of those words to another constant, merge them by making a new
1651 constant. */
1652 if (i1 == 0
1653 && (temp = single_set (i2)) != 0
1654 && (GET_CODE (SET_SRC (temp)) == CONST_INT
1655 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
1656 && GET_CODE (SET_DEST (temp)) == REG
1657 && GET_MODE_CLASS (GET_MODE (SET_DEST (temp))) == MODE_INT
1658 && GET_MODE_SIZE (GET_MODE (SET_DEST (temp))) == 2 * UNITS_PER_WORD
1659 && GET_CODE (PATTERN (i3)) == SET
1660 && GET_CODE (SET_DEST (PATTERN (i3))) == SUBREG
1661 && SUBREG_REG (SET_DEST (PATTERN (i3))) == SET_DEST (temp)
1662 && GET_MODE_CLASS (GET_MODE (SET_DEST (PATTERN (i3)))) == MODE_INT
1663 && GET_MODE_SIZE (GET_MODE (SET_DEST (PATTERN (i3)))) == UNITS_PER_WORD
1664 && GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT)
1666 HOST_WIDE_INT lo, hi;
1668 if (GET_CODE (SET_SRC (temp)) == CONST_INT)
1669 lo = INTVAL (SET_SRC (temp)), hi = lo < 0 ? -1 : 0;
1670 else
1672 lo = CONST_DOUBLE_LOW (SET_SRC (temp));
1673 hi = CONST_DOUBLE_HIGH (SET_SRC (temp));
1676 if (subreg_lowpart_p (SET_DEST (PATTERN (i3))))
1678 /* We don't handle the case of the target word being wider
1679 than a host wide int. */
1680 if (HOST_BITS_PER_WIDE_INT < BITS_PER_WORD)
1681 abort ();
1683 lo &= ~(UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1);
1684 lo |= (INTVAL (SET_SRC (PATTERN (i3)))
1685 & (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1687 else if (HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1688 hi = INTVAL (SET_SRC (PATTERN (i3)));
1689 else if (HOST_BITS_PER_WIDE_INT >= 2 * BITS_PER_WORD)
1691 int sign = -(int) ((unsigned HOST_WIDE_INT) lo
1692 >> (HOST_BITS_PER_WIDE_INT - 1));
1694 lo &= ~ (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1695 (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1696 lo |= (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1697 (INTVAL (SET_SRC (PATTERN (i3)))));
1698 if (hi == sign)
1699 hi = lo < 0 ? -1 : 0;
1701 else
1702 /* We don't handle the case of the higher word not fitting
1703 entirely in either hi or lo. */
1704 abort ();
1706 combine_merges++;
1707 subst_insn = i3;
1708 subst_low_cuid = INSN_CUID (i2);
1709 added_sets_2 = added_sets_1 = 0;
1710 i2dest = SET_DEST (temp);
1712 SUBST (SET_SRC (temp),
1713 immed_double_const (lo, hi, GET_MODE (SET_DEST (temp))));
1715 newpat = PATTERN (i2);
1716 goto validate_replacement;
1719 #ifndef HAVE_cc0
1720 /* If we have no I1 and I2 looks like:
1721 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
1722 (set Y OP)])
1723 make up a dummy I1 that is
1724 (set Y OP)
1725 and change I2 to be
1726 (set (reg:CC X) (compare:CC Y (const_int 0)))
1728 (We can ignore any trailing CLOBBERs.)
1730 This undoes a previous combination and allows us to match a branch-and-
1731 decrement insn. */
1733 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
1734 && XVECLEN (PATTERN (i2), 0) >= 2
1735 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
1736 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
1737 == MODE_CC)
1738 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
1739 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
1740 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
1741 && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 1))) == REG
1742 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
1743 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
1745 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
1746 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
1747 break;
1749 if (i == 1)
1751 /* We make I1 with the same INSN_UID as I2. This gives it
1752 the same INSN_CUID for value tracking. Our fake I1 will
1753 never appear in the insn stream so giving it the same INSN_UID
1754 as I2 will not cause a problem. */
1756 subst_prev_insn = i1
1757 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
1758 BLOCK_FOR_INSN (i2), INSN_SCOPE (i2),
1759 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX,
1760 NULL_RTX);
1762 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
1763 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
1764 SET_DEST (PATTERN (i1)));
1767 #endif
1769 /* Verify that I2 and I1 are valid for combining. */
1770 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
1771 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
1773 undo_all ();
1774 return 0;
1777 /* Record whether I2DEST is used in I2SRC and similarly for the other
1778 cases. Knowing this will help in register status updating below. */
1779 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
1780 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
1781 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
1783 /* See if I1 directly feeds into I3. It does if I1DEST is not used
1784 in I2SRC. */
1785 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
1787 /* Ensure that I3's pattern can be the destination of combines. */
1788 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
1789 i1 && i2dest_in_i1src && i1_feeds_i3,
1790 &i3dest_killed))
1792 undo_all ();
1793 return 0;
1796 /* See if any of the insns is a MULT operation. Unless one is, we will
1797 reject a combination that is, since it must be slower. Be conservative
1798 here. */
1799 if (GET_CODE (i2src) == MULT
1800 || (i1 != 0 && GET_CODE (i1src) == MULT)
1801 || (GET_CODE (PATTERN (i3)) == SET
1802 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
1803 have_mult = 1;
1805 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
1806 We used to do this EXCEPT in one case: I3 has a post-inc in an
1807 output operand. However, that exception can give rise to insns like
1808 mov r3,(r3)+
1809 which is a famous insn on the PDP-11 where the value of r3 used as the
1810 source was model-dependent. Avoid this sort of thing. */
1812 #if 0
1813 if (!(GET_CODE (PATTERN (i3)) == SET
1814 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1815 && GET_CODE (SET_DEST (PATTERN (i3))) == MEM
1816 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
1817 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
1818 /* It's not the exception. */
1819 #endif
1820 #ifdef AUTO_INC_DEC
1821 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
1822 if (REG_NOTE_KIND (link) == REG_INC
1823 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
1824 || (i1 != 0
1825 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
1827 undo_all ();
1828 return 0;
1830 #endif
1832 /* See if the SETs in I1 or I2 need to be kept around in the merged
1833 instruction: whenever the value set there is still needed past I3.
1834 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
1836 For the SET in I1, we have two cases: If I1 and I2 independently
1837 feed into I3, the set in I1 needs to be kept around if I1DEST dies
1838 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
1839 in I1 needs to be kept around unless I1DEST dies or is set in either
1840 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
1841 I1DEST. If so, we know I1 feeds into I2. */
1843 added_sets_2 = ! dead_or_set_p (i3, i2dest);
1845 added_sets_1
1846 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
1847 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
1849 /* If the set in I2 needs to be kept around, we must make a copy of
1850 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
1851 PATTERN (I2), we are only substituting for the original I1DEST, not into
1852 an already-substituted copy. This also prevents making self-referential
1853 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
1854 I2DEST. */
1856 i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
1857 ? gen_rtx_SET (VOIDmode, i2dest, i2src)
1858 : PATTERN (i2));
1860 if (added_sets_2)
1861 i2pat = copy_rtx (i2pat);
1863 combine_merges++;
1865 /* Substitute in the latest insn for the regs set by the earlier ones. */
1867 maxreg = max_reg_num ();
1869 subst_insn = i3;
1871 /* It is possible that the source of I2 or I1 may be performing an
1872 unneeded operation, such as a ZERO_EXTEND of something that is known
1873 to have the high part zero. Handle that case by letting subst look at
1874 the innermost one of them.
1876 Another way to do this would be to have a function that tries to
1877 simplify a single insn instead of merging two or more insns. We don't
1878 do this because of the potential of infinite loops and because
1879 of the potential extra memory required. However, doing it the way
1880 we are is a bit of a kludge and doesn't catch all cases.
1882 But only do this if -fexpensive-optimizations since it slows things down
1883 and doesn't usually win. */
1885 if (flag_expensive_optimizations)
1887 /* Pass pc_rtx so no substitutions are done, just simplifications.
1888 The cases that we are interested in here do not involve the few
1889 cases were is_replaced is checked. */
1890 if (i1)
1892 subst_low_cuid = INSN_CUID (i1);
1893 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
1895 else
1897 subst_low_cuid = INSN_CUID (i2);
1898 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
1902 #ifndef HAVE_cc0
1903 /* Many machines that don't use CC0 have insns that can both perform an
1904 arithmetic operation and set the condition code. These operations will
1905 be represented as a PARALLEL with the first element of the vector
1906 being a COMPARE of an arithmetic operation with the constant zero.
1907 The second element of the vector will set some pseudo to the result
1908 of the same arithmetic operation. If we simplify the COMPARE, we won't
1909 match such a pattern and so will generate an extra insn. Here we test
1910 for this case, where both the comparison and the operation result are
1911 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
1912 I2SRC. Later we will make the PARALLEL that contains I2. */
1914 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
1915 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
1916 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
1917 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
1919 #ifdef EXTRA_CC_MODES
1920 rtx *cc_use;
1921 enum machine_mode compare_mode;
1922 #endif
1924 newpat = PATTERN (i3);
1925 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
1927 i2_is_used = 1;
1929 #ifdef EXTRA_CC_MODES
1930 /* See if a COMPARE with the operand we substituted in should be done
1931 with the mode that is currently being used. If not, do the same
1932 processing we do in `subst' for a SET; namely, if the destination
1933 is used only once, try to replace it with a register of the proper
1934 mode and also replace the COMPARE. */
1935 if (undobuf.other_insn == 0
1936 && (cc_use = find_single_use (SET_DEST (newpat), i3,
1937 &undobuf.other_insn))
1938 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
1939 i2src, const0_rtx))
1940 != GET_MODE (SET_DEST (newpat))))
1942 unsigned int regno = REGNO (SET_DEST (newpat));
1943 rtx new_dest = gen_rtx_REG (compare_mode, regno);
1945 if (regno < FIRST_PSEUDO_REGISTER
1946 || (REG_N_SETS (regno) == 1 && ! added_sets_2
1947 && ! REG_USERVAR_P (SET_DEST (newpat))))
1949 if (regno >= FIRST_PSEUDO_REGISTER)
1950 SUBST (regno_reg_rtx[regno], new_dest);
1952 SUBST (SET_DEST (newpat), new_dest);
1953 SUBST (XEXP (*cc_use, 0), new_dest);
1954 SUBST (SET_SRC (newpat),
1955 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
1957 else
1958 undobuf.other_insn = 0;
1960 #endif
1962 else
1963 #endif
1965 n_occurrences = 0; /* `subst' counts here */
1967 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
1968 need to make a unique copy of I2SRC each time we substitute it
1969 to avoid self-referential rtl. */
1971 subst_low_cuid = INSN_CUID (i2);
1972 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
1973 ! i1_feeds_i3 && i1dest_in_i1src);
1974 substed_i2 = 1;
1976 /* Record whether i2's body now appears within i3's body. */
1977 i2_is_used = n_occurrences;
1980 /* If we already got a failure, don't try to do more. Otherwise,
1981 try to substitute in I1 if we have it. */
1983 if (i1 && GET_CODE (newpat) != CLOBBER)
1985 /* Before we can do this substitution, we must redo the test done
1986 above (see detailed comments there) that ensures that I1DEST
1987 isn't mentioned in any SETs in NEWPAT that are field assignments. */
1989 if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
1990 0, (rtx*) 0))
1992 undo_all ();
1993 return 0;
1996 n_occurrences = 0;
1997 subst_low_cuid = INSN_CUID (i1);
1998 newpat = subst (newpat, i1dest, i1src, 0, 0);
1999 substed_i1 = 1;
2002 /* Fail if an autoincrement side-effect has been duplicated. Be careful
2003 to count all the ways that I2SRC and I1SRC can be used. */
2004 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
2005 && i2_is_used + added_sets_2 > 1)
2006 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2007 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
2008 > 1))
2009 /* Fail if we tried to make a new register (we used to abort, but there's
2010 really no reason to). */
2011 || max_reg_num () != maxreg
2012 /* Fail if we couldn't do something and have a CLOBBER. */
2013 || GET_CODE (newpat) == CLOBBER
2014 /* Fail if this new pattern is a MULT and we didn't have one before
2015 at the outer level. */
2016 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
2017 && ! have_mult))
2019 undo_all ();
2020 return 0;
2023 /* If the actions of the earlier insns must be kept
2024 in addition to substituting them into the latest one,
2025 we must make a new PARALLEL for the latest insn
2026 to hold additional the SETs. */
2028 if (added_sets_1 || added_sets_2)
2030 combine_extras++;
2032 if (GET_CODE (newpat) == PARALLEL)
2034 rtvec old = XVEC (newpat, 0);
2035 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
2036 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2037 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
2038 sizeof (old->elem[0]) * old->num_elem);
2040 else
2042 rtx old = newpat;
2043 total_sets = 1 + added_sets_1 + added_sets_2;
2044 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2045 XVECEXP (newpat, 0, 0) = old;
2048 if (added_sets_1)
2049 XVECEXP (newpat, 0, --total_sets)
2050 = (GET_CODE (PATTERN (i1)) == PARALLEL
2051 ? gen_rtx_SET (VOIDmode, i1dest, i1src) : PATTERN (i1));
2053 if (added_sets_2)
2055 /* If there is no I1, use I2's body as is. We used to also not do
2056 the subst call below if I2 was substituted into I3,
2057 but that could lose a simplification. */
2058 if (i1 == 0)
2059 XVECEXP (newpat, 0, --total_sets) = i2pat;
2060 else
2061 /* See comment where i2pat is assigned. */
2062 XVECEXP (newpat, 0, --total_sets)
2063 = subst (i2pat, i1dest, i1src, 0, 0);
2067 /* We come here when we are replacing a destination in I2 with the
2068 destination of I3. */
2069 validate_replacement:
2071 /* Note which hard regs this insn has as inputs. */
2072 mark_used_regs_combine (newpat);
2074 /* Is the result of combination a valid instruction? */
2075 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2077 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2078 the second SET's destination is a register that is unused. In that case,
2079 we just need the first SET. This can occur when simplifying a divmod
2080 insn. We *must* test for this case here because the code below that
2081 splits two independent SETs doesn't handle this case correctly when it
2082 updates the register status. Also check the case where the first
2083 SET's destination is unused. That would not cause incorrect code, but
2084 does cause an unneeded insn to remain. */
2086 if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
2087 && XVECLEN (newpat, 0) == 2
2088 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2089 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2090 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == REG
2091 && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 1)))
2092 && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 1)))
2093 && asm_noperands (newpat) < 0)
2095 newpat = XVECEXP (newpat, 0, 0);
2096 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2099 else if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
2100 && XVECLEN (newpat, 0) == 2
2101 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2102 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2103 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) == REG
2104 && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 0)))
2105 && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 0)))
2106 && asm_noperands (newpat) < 0)
2108 newpat = XVECEXP (newpat, 0, 1);
2109 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2112 /* If we were combining three insns and the result is a simple SET
2113 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2114 insns. There are two ways to do this. It can be split using a
2115 machine-specific method (like when you have an addition of a large
2116 constant) or by combine in the function find_split_point. */
2118 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2119 && asm_noperands (newpat) < 0)
2121 rtx m_split, *split;
2122 rtx ni2dest = i2dest;
2124 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2125 use I2DEST as a scratch register will help. In the latter case,
2126 convert I2DEST to the mode of the source of NEWPAT if we can. */
2128 m_split = split_insns (newpat, i3);
2130 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2131 inputs of NEWPAT. */
2133 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2134 possible to try that as a scratch reg. This would require adding
2135 more code to make it work though. */
2137 if (m_split == 0 && ! reg_overlap_mentioned_p (ni2dest, newpat))
2139 /* If I2DEST is a hard register or the only use of a pseudo,
2140 we can change its mode. */
2141 if (GET_MODE (SET_DEST (newpat)) != GET_MODE (i2dest)
2142 && GET_MODE (SET_DEST (newpat)) != VOIDmode
2143 && GET_CODE (i2dest) == REG
2144 && (REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2145 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2146 && ! REG_USERVAR_P (i2dest))))
2147 ni2dest = gen_rtx_REG (GET_MODE (SET_DEST (newpat)),
2148 REGNO (i2dest));
2150 m_split = split_insns (gen_rtx_PARALLEL
2151 (VOIDmode,
2152 gen_rtvec (2, newpat,
2153 gen_rtx_CLOBBER (VOIDmode,
2154 ni2dest))),
2155 i3);
2156 /* If the split with the mode-changed register didn't work, try
2157 the original register. */
2158 if (! m_split && ni2dest != i2dest)
2160 ni2dest = i2dest;
2161 m_split = split_insns (gen_rtx_PARALLEL
2162 (VOIDmode,
2163 gen_rtvec (2, newpat,
2164 gen_rtx_CLOBBER (VOIDmode,
2165 i2dest))),
2166 i3);
2170 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
2172 m_split = PATTERN (m_split);
2173 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
2174 if (insn_code_number >= 0)
2175 newpat = m_split;
2177 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
2178 && (next_real_insn (i2) == i3
2179 || ! use_crosses_set_p (PATTERN (m_split), INSN_CUID (i2))))
2181 rtx i2set, i3set;
2182 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
2183 newi2pat = PATTERN (m_split);
2185 i3set = single_set (NEXT_INSN (m_split));
2186 i2set = single_set (m_split);
2188 /* In case we changed the mode of I2DEST, replace it in the
2189 pseudo-register table here. We can't do it above in case this
2190 code doesn't get executed and we do a split the other way. */
2192 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2193 SUBST (regno_reg_rtx[REGNO (i2dest)], ni2dest);
2195 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2197 /* If I2 or I3 has multiple SETs, we won't know how to track
2198 register status, so don't use these insns. If I2's destination
2199 is used between I2 and I3, we also can't use these insns. */
2201 if (i2_code_number >= 0 && i2set && i3set
2202 && (next_real_insn (i2) == i3
2203 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
2204 insn_code_number = recog_for_combine (&newi3pat, i3,
2205 &new_i3_notes);
2206 if (insn_code_number >= 0)
2207 newpat = newi3pat;
2209 /* It is possible that both insns now set the destination of I3.
2210 If so, we must show an extra use of it. */
2212 if (insn_code_number >= 0)
2214 rtx new_i3_dest = SET_DEST (i3set);
2215 rtx new_i2_dest = SET_DEST (i2set);
2217 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
2218 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
2219 || GET_CODE (new_i3_dest) == SUBREG)
2220 new_i3_dest = XEXP (new_i3_dest, 0);
2222 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
2223 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
2224 || GET_CODE (new_i2_dest) == SUBREG)
2225 new_i2_dest = XEXP (new_i2_dest, 0);
2227 if (GET_CODE (new_i3_dest) == REG
2228 && GET_CODE (new_i2_dest) == REG
2229 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
2230 REG_N_SETS (REGNO (new_i2_dest))++;
2234 /* If we can split it and use I2DEST, go ahead and see if that
2235 helps things be recognized. Verify that none of the registers
2236 are set between I2 and I3. */
2237 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
2238 #ifdef HAVE_cc0
2239 && GET_CODE (i2dest) == REG
2240 #endif
2241 /* We need I2DEST in the proper mode. If it is a hard register
2242 or the only use of a pseudo, we can change its mode. */
2243 && (GET_MODE (*split) == GET_MODE (i2dest)
2244 || GET_MODE (*split) == VOIDmode
2245 || REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2246 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2247 && ! REG_USERVAR_P (i2dest)))
2248 && (next_real_insn (i2) == i3
2249 || ! use_crosses_set_p (*split, INSN_CUID (i2)))
2250 /* We can't overwrite I2DEST if its value is still used by
2251 NEWPAT. */
2252 && ! reg_referenced_p (i2dest, newpat))
2254 rtx newdest = i2dest;
2255 enum rtx_code split_code = GET_CODE (*split);
2256 enum machine_mode split_mode = GET_MODE (*split);
2258 /* Get NEWDEST as a register in the proper mode. We have already
2259 validated that we can do this. */
2260 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
2262 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
2264 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2265 SUBST (regno_reg_rtx[REGNO (i2dest)], newdest);
2268 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2269 an ASHIFT. This can occur if it was inside a PLUS and hence
2270 appeared to be a memory address. This is a kludge. */
2271 if (split_code == MULT
2272 && GET_CODE (XEXP (*split, 1)) == CONST_INT
2273 && INTVAL (XEXP (*split, 1)) > 0
2274 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
2276 SUBST (*split, gen_rtx_ASHIFT (split_mode,
2277 XEXP (*split, 0), GEN_INT (i)));
2278 /* Update split_code because we may not have a multiply
2279 anymore. */
2280 split_code = GET_CODE (*split);
2283 #ifdef INSN_SCHEDULING
2284 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2285 be written as a ZERO_EXTEND. */
2286 if (split_code == SUBREG && GET_CODE (SUBREG_REG (*split)) == MEM)
2287 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
2288 SUBREG_REG (*split)));
2289 #endif
2291 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
2292 SUBST (*split, newdest);
2293 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2295 /* If the split point was a MULT and we didn't have one before,
2296 don't use one now. */
2297 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
2298 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2302 /* Check for a case where we loaded from memory in a narrow mode and
2303 then sign extended it, but we need both registers. In that case,
2304 we have a PARALLEL with both loads from the same memory location.
2305 We can split this into a load from memory followed by a register-register
2306 copy. This saves at least one insn, more if register allocation can
2307 eliminate the copy.
2309 We cannot do this if the destination of the second assignment is
2310 a register that we have already assumed is zero-extended. Similarly
2311 for a SUBREG of such a register. */
2313 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2314 && GET_CODE (newpat) == PARALLEL
2315 && XVECLEN (newpat, 0) == 2
2316 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2317 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
2318 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2319 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2320 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
2321 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2322 INSN_CUID (i2))
2323 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2324 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2325 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
2326 (GET_CODE (temp) == REG
2327 && reg_nonzero_bits[REGNO (temp)] != 0
2328 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2329 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2330 && (reg_nonzero_bits[REGNO (temp)]
2331 != GET_MODE_MASK (word_mode))))
2332 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
2333 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
2334 (GET_CODE (temp) == REG
2335 && reg_nonzero_bits[REGNO (temp)] != 0
2336 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2337 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2338 && (reg_nonzero_bits[REGNO (temp)]
2339 != GET_MODE_MASK (word_mode)))))
2340 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2341 SET_SRC (XVECEXP (newpat, 0, 1)))
2342 && ! find_reg_note (i3, REG_UNUSED,
2343 SET_DEST (XVECEXP (newpat, 0, 0))))
2345 rtx ni2dest;
2347 newi2pat = XVECEXP (newpat, 0, 0);
2348 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
2349 newpat = XVECEXP (newpat, 0, 1);
2350 SUBST (SET_SRC (newpat),
2351 gen_lowpart_for_combine (GET_MODE (SET_SRC (newpat)), ni2dest));
2352 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2354 if (i2_code_number >= 0)
2355 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2357 if (insn_code_number >= 0)
2359 rtx insn;
2360 rtx link;
2362 /* If we will be able to accept this, we have made a change to the
2363 destination of I3. This can invalidate a LOG_LINKS pointing
2364 to I3. No other part of combine.c makes such a transformation.
2366 The new I3 will have a destination that was previously the
2367 destination of I1 or I2 and which was used in i2 or I3. Call
2368 distribute_links to make a LOG_LINK from the next use of
2369 that destination. */
2371 PATTERN (i3) = newpat;
2372 distribute_links (gen_rtx_INSN_LIST (VOIDmode, i3, NULL_RTX));
2374 /* I3 now uses what used to be its destination and which is
2375 now I2's destination. That means we need a LOG_LINK from
2376 I3 to I2. But we used to have one, so we still will.
2378 However, some later insn might be using I2's dest and have
2379 a LOG_LINK pointing at I3. We must remove this link.
2380 The simplest way to remove the link is to point it at I1,
2381 which we know will be a NOTE. */
2383 for (insn = NEXT_INSN (i3);
2384 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2385 || insn != this_basic_block->next_bb->head);
2386 insn = NEXT_INSN (insn))
2388 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
2390 for (link = LOG_LINKS (insn); link;
2391 link = XEXP (link, 1))
2392 if (XEXP (link, 0) == i3)
2393 XEXP (link, 0) = i1;
2395 break;
2401 /* Similarly, check for a case where we have a PARALLEL of two independent
2402 SETs but we started with three insns. In this case, we can do the sets
2403 as two separate insns. This case occurs when some SET allows two
2404 other insns to combine, but the destination of that SET is still live. */
2406 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2407 && GET_CODE (newpat) == PARALLEL
2408 && XVECLEN (newpat, 0) == 2
2409 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2410 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
2411 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
2412 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2413 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2414 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2415 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2416 INSN_CUID (i2))
2417 /* Don't pass sets with (USE (MEM ...)) dests to the following. */
2418 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != USE
2419 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != USE
2420 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2421 XVECEXP (newpat, 0, 0))
2422 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
2423 XVECEXP (newpat, 0, 1))
2424 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
2425 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
2427 /* Normally, it doesn't matter which of the two is done first,
2428 but it does if one references cc0. In that case, it has to
2429 be first. */
2430 #ifdef HAVE_cc0
2431 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
2433 newi2pat = XVECEXP (newpat, 0, 0);
2434 newpat = XVECEXP (newpat, 0, 1);
2436 else
2437 #endif
2439 newi2pat = XVECEXP (newpat, 0, 1);
2440 newpat = XVECEXP (newpat, 0, 0);
2443 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2445 if (i2_code_number >= 0)
2446 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2449 /* If it still isn't recognized, fail and change things back the way they
2450 were. */
2451 if ((insn_code_number < 0
2452 /* Is the result a reasonable ASM_OPERANDS? */
2453 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
2455 undo_all ();
2456 return 0;
2459 /* If we had to change another insn, make sure it is valid also. */
2460 if (undobuf.other_insn)
2462 rtx other_pat = PATTERN (undobuf.other_insn);
2463 rtx new_other_notes;
2464 rtx note, next;
2466 CLEAR_HARD_REG_SET (newpat_used_regs);
2468 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
2469 &new_other_notes);
2471 if (other_code_number < 0 && ! check_asm_operands (other_pat))
2473 undo_all ();
2474 return 0;
2477 PATTERN (undobuf.other_insn) = other_pat;
2479 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2480 are still valid. Then add any non-duplicate notes added by
2481 recog_for_combine. */
2482 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
2484 next = XEXP (note, 1);
2486 if (REG_NOTE_KIND (note) == REG_UNUSED
2487 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
2489 if (GET_CODE (XEXP (note, 0)) == REG)
2490 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
2492 remove_note (undobuf.other_insn, note);
2496 for (note = new_other_notes; note; note = XEXP (note, 1))
2497 if (GET_CODE (XEXP (note, 0)) == REG)
2498 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
2500 distribute_notes (new_other_notes, undobuf.other_insn,
2501 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX);
2503 #ifdef HAVE_cc0
2504 /* If I2 is the setter CC0 and I3 is the user CC0 then check whether
2505 they are adjacent to each other or not. */
2507 rtx p = prev_nonnote_insn (i3);
2508 if (p && p != i2 && GET_CODE (p) == INSN && newi2pat
2509 && sets_cc0_p (newi2pat))
2511 undo_all ();
2512 return 0;
2515 #endif
2517 /* We now know that we can do this combination. Merge the insns and
2518 update the status of registers and LOG_LINKS. */
2521 rtx i3notes, i2notes, i1notes = 0;
2522 rtx i3links, i2links, i1links = 0;
2523 rtx midnotes = 0;
2524 unsigned int regno;
2525 /* Compute which registers we expect to eliminate. newi2pat may be setting
2526 either i3dest or i2dest, so we must check it. Also, i1dest may be the
2527 same as i3dest, in which case newi2pat may be setting i1dest. */
2528 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
2529 || i2dest_in_i2src || i2dest_in_i1src
2530 ? 0 : i2dest);
2531 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src
2532 || (newi2pat && reg_set_p (i1dest, newi2pat))
2533 ? 0 : i1dest);
2535 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
2536 clear them. */
2537 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
2538 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
2539 if (i1)
2540 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
2542 /* Ensure that we do not have something that should not be shared but
2543 occurs multiple times in the new insns. Check this by first
2544 resetting all the `used' flags and then copying anything is shared. */
2546 reset_used_flags (i3notes);
2547 reset_used_flags (i2notes);
2548 reset_used_flags (i1notes);
2549 reset_used_flags (newpat);
2550 reset_used_flags (newi2pat);
2551 if (undobuf.other_insn)
2552 reset_used_flags (PATTERN (undobuf.other_insn));
2554 i3notes = copy_rtx_if_shared (i3notes);
2555 i2notes = copy_rtx_if_shared (i2notes);
2556 i1notes = copy_rtx_if_shared (i1notes);
2557 newpat = copy_rtx_if_shared (newpat);
2558 newi2pat = copy_rtx_if_shared (newi2pat);
2559 if (undobuf.other_insn)
2560 reset_used_flags (PATTERN (undobuf.other_insn));
2562 INSN_CODE (i3) = insn_code_number;
2563 PATTERN (i3) = newpat;
2565 if (GET_CODE (i3) == CALL_INSN && CALL_INSN_FUNCTION_USAGE (i3))
2567 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
2569 reset_used_flags (call_usage);
2570 call_usage = copy_rtx (call_usage);
2572 if (substed_i2)
2573 replace_rtx (call_usage, i2dest, i2src);
2575 if (substed_i1)
2576 replace_rtx (call_usage, i1dest, i1src);
2578 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
2581 if (undobuf.other_insn)
2582 INSN_CODE (undobuf.other_insn) = other_code_number;
2584 /* We had one special case above where I2 had more than one set and
2585 we replaced a destination of one of those sets with the destination
2586 of I3. In that case, we have to update LOG_LINKS of insns later
2587 in this basic block. Note that this (expensive) case is rare.
2589 Also, in this case, we must pretend that all REG_NOTEs for I2
2590 actually came from I3, so that REG_UNUSED notes from I2 will be
2591 properly handled. */
2593 if (i3_subst_into_i2)
2595 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
2596 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != USE
2597 && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, i))) == REG
2598 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
2599 && ! find_reg_note (i2, REG_UNUSED,
2600 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
2601 for (temp = NEXT_INSN (i2);
2602 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2603 || this_basic_block->head != temp);
2604 temp = NEXT_INSN (temp))
2605 if (temp != i3 && INSN_P (temp))
2606 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
2607 if (XEXP (link, 0) == i2)
2608 XEXP (link, 0) = i3;
2610 if (i3notes)
2612 rtx link = i3notes;
2613 while (XEXP (link, 1))
2614 link = XEXP (link, 1);
2615 XEXP (link, 1) = i2notes;
2617 else
2618 i3notes = i2notes;
2619 i2notes = 0;
2622 LOG_LINKS (i3) = 0;
2623 REG_NOTES (i3) = 0;
2624 LOG_LINKS (i2) = 0;
2625 REG_NOTES (i2) = 0;
2627 if (newi2pat)
2629 INSN_CODE (i2) = i2_code_number;
2630 PATTERN (i2) = newi2pat;
2632 else
2634 PUT_CODE (i2, NOTE);
2635 NOTE_LINE_NUMBER (i2) = NOTE_INSN_DELETED;
2636 NOTE_SOURCE_FILE (i2) = 0;
2639 if (i1)
2641 LOG_LINKS (i1) = 0;
2642 REG_NOTES (i1) = 0;
2643 PUT_CODE (i1, NOTE);
2644 NOTE_LINE_NUMBER (i1) = NOTE_INSN_DELETED;
2645 NOTE_SOURCE_FILE (i1) = 0;
2648 /* Get death notes for everything that is now used in either I3 or
2649 I2 and used to die in a previous insn. If we built two new
2650 patterns, move from I1 to I2 then I2 to I3 so that we get the
2651 proper movement on registers that I2 modifies. */
2653 if (newi2pat)
2655 move_deaths (newi2pat, NULL_RTX, INSN_CUID (i1), i2, &midnotes);
2656 move_deaths (newpat, newi2pat, INSN_CUID (i1), i3, &midnotes);
2658 else
2659 move_deaths (newpat, NULL_RTX, i1 ? INSN_CUID (i1) : INSN_CUID (i2),
2660 i3, &midnotes);
2662 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
2663 if (i3notes)
2664 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
2665 elim_i2, elim_i1);
2666 if (i2notes)
2667 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
2668 elim_i2, elim_i1);
2669 if (i1notes)
2670 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
2671 elim_i2, elim_i1);
2672 if (midnotes)
2673 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2674 elim_i2, elim_i1);
2676 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
2677 know these are REG_UNUSED and want them to go to the desired insn,
2678 so we always pass it as i3. We have not counted the notes in
2679 reg_n_deaths yet, so we need to do so now. */
2681 if (newi2pat && new_i2_notes)
2683 for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
2684 if (GET_CODE (XEXP (temp, 0)) == REG)
2685 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2687 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2690 if (new_i3_notes)
2692 for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
2693 if (GET_CODE (XEXP (temp, 0)) == REG)
2694 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2696 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX);
2699 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
2700 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
2701 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
2702 in that case, it might delete I2. Similarly for I2 and I1.
2703 Show an additional death due to the REG_DEAD note we make here. If
2704 we discard it in distribute_notes, we will decrement it again. */
2706 if (i3dest_killed)
2708 if (GET_CODE (i3dest_killed) == REG)
2709 REG_N_DEATHS (REGNO (i3dest_killed))++;
2711 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
2712 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2713 NULL_RTX),
2714 NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1);
2715 else
2716 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2717 NULL_RTX),
2718 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2719 elim_i2, elim_i1);
2722 if (i2dest_in_i2src)
2724 if (GET_CODE (i2dest) == REG)
2725 REG_N_DEATHS (REGNO (i2dest))++;
2727 if (newi2pat && reg_set_p (i2dest, newi2pat))
2728 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2729 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2730 else
2731 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2732 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2733 NULL_RTX, NULL_RTX);
2736 if (i1dest_in_i1src)
2738 if (GET_CODE (i1dest) == REG)
2739 REG_N_DEATHS (REGNO (i1dest))++;
2741 if (newi2pat && reg_set_p (i1dest, newi2pat))
2742 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2743 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2744 else
2745 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2746 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2747 NULL_RTX, NULL_RTX);
2750 distribute_links (i3links);
2751 distribute_links (i2links);
2752 distribute_links (i1links);
2754 if (GET_CODE (i2dest) == REG)
2756 rtx link;
2757 rtx i2_insn = 0, i2_val = 0, set;
2759 /* The insn that used to set this register doesn't exist, and
2760 this life of the register may not exist either. See if one of
2761 I3's links points to an insn that sets I2DEST. If it does,
2762 that is now the last known value for I2DEST. If we don't update
2763 this and I2 set the register to a value that depended on its old
2764 contents, we will get confused. If this insn is used, thing
2765 will be set correctly in combine_instructions. */
2767 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2768 if ((set = single_set (XEXP (link, 0))) != 0
2769 && rtx_equal_p (i2dest, SET_DEST (set)))
2770 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
2772 record_value_for_reg (i2dest, i2_insn, i2_val);
2774 /* If the reg formerly set in I2 died only once and that was in I3,
2775 zero its use count so it won't make `reload' do any work. */
2776 if (! added_sets_2
2777 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
2778 && ! i2dest_in_i2src)
2780 regno = REGNO (i2dest);
2781 REG_N_SETS (regno)--;
2785 if (i1 && GET_CODE (i1dest) == REG)
2787 rtx link;
2788 rtx i1_insn = 0, i1_val = 0, set;
2790 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2791 if ((set = single_set (XEXP (link, 0))) != 0
2792 && rtx_equal_p (i1dest, SET_DEST (set)))
2793 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
2795 record_value_for_reg (i1dest, i1_insn, i1_val);
2797 regno = REGNO (i1dest);
2798 if (! added_sets_1 && ! i1dest_in_i1src)
2799 REG_N_SETS (regno)--;
2802 /* Update reg_nonzero_bits et al for any changes that may have been made
2803 to this insn. The order of set_nonzero_bits_and_sign_copies() is
2804 important. Because newi2pat can affect nonzero_bits of newpat */
2805 if (newi2pat)
2806 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
2807 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
2809 /* Set new_direct_jump_p if a new return or simple jump instruction
2810 has been created.
2812 If I3 is now an unconditional jump, ensure that it has a
2813 BARRIER following it since it may have initially been a
2814 conditional jump. It may also be the last nonnote insn. */
2816 if (GET_CODE (newpat) == RETURN || any_uncondjump_p (i3))
2818 *new_direct_jump_p = 1;
2820 if ((temp = next_nonnote_insn (i3)) == NULL_RTX
2821 || GET_CODE (temp) != BARRIER)
2822 emit_barrier_after (i3);
2824 /* An NOOP jump does not need barrier, but it does need cleaning up
2825 of CFG. */
2826 if (GET_CODE (newpat) == SET
2827 && SET_SRC (newpat) == pc_rtx
2828 && SET_DEST (newpat) == pc_rtx)
2829 *new_direct_jump_p = 1;
2832 combine_successes++;
2833 undo_commit ();
2835 /* Clear this here, so that subsequent get_last_value calls are not
2836 affected. */
2837 subst_prev_insn = NULL_RTX;
2839 if (added_links_insn
2840 && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
2841 && INSN_CUID (added_links_insn) < INSN_CUID (i3))
2842 return added_links_insn;
2843 else
2844 return newi2pat ? i2 : i3;
2847 /* Undo all the modifications recorded in undobuf. */
2849 static void
2850 undo_all ()
2852 struct undo *undo, *next;
2854 for (undo = undobuf.undos; undo; undo = next)
2856 next = undo->next;
2857 if (undo->is_int)
2858 *undo->where.i = undo->old_contents.i;
2859 else
2860 *undo->where.r = undo->old_contents.r;
2862 undo->next = undobuf.frees;
2863 undobuf.frees = undo;
2866 undobuf.undos = 0;
2868 /* Clear this here, so that subsequent get_last_value calls are not
2869 affected. */
2870 subst_prev_insn = NULL_RTX;
2873 /* We've committed to accepting the changes we made. Move all
2874 of the undos to the free list. */
2876 static void
2877 undo_commit ()
2879 struct undo *undo, *next;
2881 for (undo = undobuf.undos; undo; undo = next)
2883 next = undo->next;
2884 undo->next = undobuf.frees;
2885 undobuf.frees = undo;
2887 undobuf.undos = 0;
2891 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
2892 where we have an arithmetic expression and return that point. LOC will
2893 be inside INSN.
2895 try_combine will call this function to see if an insn can be split into
2896 two insns. */
2898 static rtx *
2899 find_split_point (loc, insn)
2900 rtx *loc;
2901 rtx insn;
2903 rtx x = *loc;
2904 enum rtx_code code = GET_CODE (x);
2905 rtx *split;
2906 unsigned HOST_WIDE_INT len = 0;
2907 HOST_WIDE_INT pos = 0;
2908 int unsignedp = 0;
2909 rtx inner = NULL_RTX;
2911 /* First special-case some codes. */
2912 switch (code)
2914 case SUBREG:
2915 #ifdef INSN_SCHEDULING
2916 /* If we are making a paradoxical SUBREG invalid, it becomes a split
2917 point. */
2918 if (GET_CODE (SUBREG_REG (x)) == MEM)
2919 return loc;
2920 #endif
2921 return find_split_point (&SUBREG_REG (x), insn);
2923 case MEM:
2924 #ifdef HAVE_lo_sum
2925 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
2926 using LO_SUM and HIGH. */
2927 if (GET_CODE (XEXP (x, 0)) == CONST
2928 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
2930 SUBST (XEXP (x, 0),
2931 gen_rtx_LO_SUM (Pmode,
2932 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
2933 XEXP (x, 0)));
2934 return &XEXP (XEXP (x, 0), 0);
2936 #endif
2938 /* If we have a PLUS whose second operand is a constant and the
2939 address is not valid, perhaps will can split it up using
2940 the machine-specific way to split large constants. We use
2941 the first pseudo-reg (one of the virtual regs) as a placeholder;
2942 it will not remain in the result. */
2943 if (GET_CODE (XEXP (x, 0)) == PLUS
2944 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
2945 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
2947 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
2948 rtx seq = split_insns (gen_rtx_SET (VOIDmode, reg, XEXP (x, 0)),
2949 subst_insn);
2951 /* This should have produced two insns, each of which sets our
2952 placeholder. If the source of the second is a valid address,
2953 we can make put both sources together and make a split point
2954 in the middle. */
2956 if (seq
2957 && NEXT_INSN (seq) != NULL_RTX
2958 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
2959 && GET_CODE (seq) == INSN
2960 && GET_CODE (PATTERN (seq)) == SET
2961 && SET_DEST (PATTERN (seq)) == reg
2962 && ! reg_mentioned_p (reg,
2963 SET_SRC (PATTERN (seq)))
2964 && GET_CODE (NEXT_INSN (seq)) == INSN
2965 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
2966 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
2967 && memory_address_p (GET_MODE (x),
2968 SET_SRC (PATTERN (NEXT_INSN (seq)))))
2970 rtx src1 = SET_SRC (PATTERN (seq));
2971 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
2973 /* Replace the placeholder in SRC2 with SRC1. If we can
2974 find where in SRC2 it was placed, that can become our
2975 split point and we can replace this address with SRC2.
2976 Just try two obvious places. */
2978 src2 = replace_rtx (src2, reg, src1);
2979 split = 0;
2980 if (XEXP (src2, 0) == src1)
2981 split = &XEXP (src2, 0);
2982 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
2983 && XEXP (XEXP (src2, 0), 0) == src1)
2984 split = &XEXP (XEXP (src2, 0), 0);
2986 if (split)
2988 SUBST (XEXP (x, 0), src2);
2989 return split;
2993 /* If that didn't work, perhaps the first operand is complex and
2994 needs to be computed separately, so make a split point there.
2995 This will occur on machines that just support REG + CONST
2996 and have a constant moved through some previous computation. */
2998 else if (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) != 'o'
2999 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
3000 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (XEXP (x, 0), 0))))
3001 == 'o')))
3002 return &XEXP (XEXP (x, 0), 0);
3004 break;
3006 case SET:
3007 #ifdef HAVE_cc0
3008 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
3009 ZERO_EXTRACT, the most likely reason why this doesn't match is that
3010 we need to put the operand into a register. So split at that
3011 point. */
3013 if (SET_DEST (x) == cc0_rtx
3014 && GET_CODE (SET_SRC (x)) != COMPARE
3015 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
3016 && GET_RTX_CLASS (GET_CODE (SET_SRC (x))) != 'o'
3017 && ! (GET_CODE (SET_SRC (x)) == SUBREG
3018 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (SET_SRC (x)))) == 'o'))
3019 return &SET_SRC (x);
3020 #endif
3022 /* See if we can split SET_SRC as it stands. */
3023 split = find_split_point (&SET_SRC (x), insn);
3024 if (split && split != &SET_SRC (x))
3025 return split;
3027 /* See if we can split SET_DEST as it stands. */
3028 split = find_split_point (&SET_DEST (x), insn);
3029 if (split && split != &SET_DEST (x))
3030 return split;
3032 /* See if this is a bitfield assignment with everything constant. If
3033 so, this is an IOR of an AND, so split it into that. */
3034 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
3035 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
3036 <= HOST_BITS_PER_WIDE_INT)
3037 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
3038 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
3039 && GET_CODE (SET_SRC (x)) == CONST_INT
3040 && ((INTVAL (XEXP (SET_DEST (x), 1))
3041 + INTVAL (XEXP (SET_DEST (x), 2)))
3042 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
3043 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
3045 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
3046 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
3047 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
3048 rtx dest = XEXP (SET_DEST (x), 0);
3049 enum machine_mode mode = GET_MODE (dest);
3050 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
3052 if (BITS_BIG_ENDIAN)
3053 pos = GET_MODE_BITSIZE (mode) - len - pos;
3055 if (src == mask)
3056 SUBST (SET_SRC (x),
3057 gen_binary (IOR, mode, dest, GEN_INT (src << pos)));
3058 else
3059 SUBST (SET_SRC (x),
3060 gen_binary (IOR, mode,
3061 gen_binary (AND, mode, dest,
3062 gen_int_mode (~(mask << pos),
3063 mode)),
3064 GEN_INT (src << pos)));
3066 SUBST (SET_DEST (x), dest);
3068 split = find_split_point (&SET_SRC (x), insn);
3069 if (split && split != &SET_SRC (x))
3070 return split;
3073 /* Otherwise, see if this is an operation that we can split into two.
3074 If so, try to split that. */
3075 code = GET_CODE (SET_SRC (x));
3077 switch (code)
3079 case AND:
3080 /* If we are AND'ing with a large constant that is only a single
3081 bit and the result is only being used in a context where we
3082 need to know if it is zero or non-zero, replace it with a bit
3083 extraction. This will avoid the large constant, which might
3084 have taken more than one insn to make. If the constant were
3085 not a valid argument to the AND but took only one insn to make,
3086 this is no worse, but if it took more than one insn, it will
3087 be better. */
3089 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3090 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
3091 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
3092 && GET_CODE (SET_DEST (x)) == REG
3093 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
3094 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
3095 && XEXP (*split, 0) == SET_DEST (x)
3096 && XEXP (*split, 1) == const0_rtx)
3098 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
3099 XEXP (SET_SRC (x), 0),
3100 pos, NULL_RTX, 1, 1, 0, 0);
3101 if (extraction != 0)
3103 SUBST (SET_SRC (x), extraction);
3104 return find_split_point (loc, insn);
3107 break;
3109 case NE:
3110 /* if STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
3111 is known to be on, this can be converted into a NEG of a shift. */
3112 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
3113 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
3114 && 1 <= (pos = exact_log2
3115 (nonzero_bits (XEXP (SET_SRC (x), 0),
3116 GET_MODE (XEXP (SET_SRC (x), 0))))))
3118 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
3120 SUBST (SET_SRC (x),
3121 gen_rtx_NEG (mode,
3122 gen_rtx_LSHIFTRT (mode,
3123 XEXP (SET_SRC (x), 0),
3124 GEN_INT (pos))));
3126 split = find_split_point (&SET_SRC (x), insn);
3127 if (split && split != &SET_SRC (x))
3128 return split;
3130 break;
3132 case SIGN_EXTEND:
3133 inner = XEXP (SET_SRC (x), 0);
3135 /* We can't optimize if either mode is a partial integer
3136 mode as we don't know how many bits are significant
3137 in those modes. */
3138 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
3139 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
3140 break;
3142 pos = 0;
3143 len = GET_MODE_BITSIZE (GET_MODE (inner));
3144 unsignedp = 0;
3145 break;
3147 case SIGN_EXTRACT:
3148 case ZERO_EXTRACT:
3149 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3150 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
3152 inner = XEXP (SET_SRC (x), 0);
3153 len = INTVAL (XEXP (SET_SRC (x), 1));
3154 pos = INTVAL (XEXP (SET_SRC (x), 2));
3156 if (BITS_BIG_ENDIAN)
3157 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
3158 unsignedp = (code == ZERO_EXTRACT);
3160 break;
3162 default:
3163 break;
3166 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
3168 enum machine_mode mode = GET_MODE (SET_SRC (x));
3170 /* For unsigned, we have a choice of a shift followed by an
3171 AND or two shifts. Use two shifts for field sizes where the
3172 constant might be too large. We assume here that we can
3173 always at least get 8-bit constants in an AND insn, which is
3174 true for every current RISC. */
3176 if (unsignedp && len <= 8)
3178 SUBST (SET_SRC (x),
3179 gen_rtx_AND (mode,
3180 gen_rtx_LSHIFTRT
3181 (mode, gen_lowpart_for_combine (mode, inner),
3182 GEN_INT (pos)),
3183 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
3185 split = find_split_point (&SET_SRC (x), insn);
3186 if (split && split != &SET_SRC (x))
3187 return split;
3189 else
3191 SUBST (SET_SRC (x),
3192 gen_rtx_fmt_ee
3193 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
3194 gen_rtx_ASHIFT (mode,
3195 gen_lowpart_for_combine (mode, inner),
3196 GEN_INT (GET_MODE_BITSIZE (mode)
3197 - len - pos)),
3198 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
3200 split = find_split_point (&SET_SRC (x), insn);
3201 if (split && split != &SET_SRC (x))
3202 return split;
3206 /* See if this is a simple operation with a constant as the second
3207 operand. It might be that this constant is out of range and hence
3208 could be used as a split point. */
3209 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
3210 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
3211 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<')
3212 && CONSTANT_P (XEXP (SET_SRC (x), 1))
3213 && (GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (x), 0))) == 'o'
3214 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
3215 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (SET_SRC (x), 0))))
3216 == 'o'))))
3217 return &XEXP (SET_SRC (x), 1);
3219 /* Finally, see if this is a simple operation with its first operand
3220 not in a register. The operation might require this operand in a
3221 register, so return it as a split point. We can always do this
3222 because if the first operand were another operation, we would have
3223 already found it as a split point. */
3224 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
3225 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
3226 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<'
3227 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '1')
3228 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
3229 return &XEXP (SET_SRC (x), 0);
3231 return 0;
3233 case AND:
3234 case IOR:
3235 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
3236 it is better to write this as (not (ior A B)) so we can split it.
3237 Similarly for IOR. */
3238 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
3240 SUBST (*loc,
3241 gen_rtx_NOT (GET_MODE (x),
3242 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
3243 GET_MODE (x),
3244 XEXP (XEXP (x, 0), 0),
3245 XEXP (XEXP (x, 1), 0))));
3246 return find_split_point (loc, insn);
3249 /* Many RISC machines have a large set of logical insns. If the
3250 second operand is a NOT, put it first so we will try to split the
3251 other operand first. */
3252 if (GET_CODE (XEXP (x, 1)) == NOT)
3254 rtx tem = XEXP (x, 0);
3255 SUBST (XEXP (x, 0), XEXP (x, 1));
3256 SUBST (XEXP (x, 1), tem);
3258 break;
3260 default:
3261 break;
3264 /* Otherwise, select our actions depending on our rtx class. */
3265 switch (GET_RTX_CLASS (code))
3267 case 'b': /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
3268 case '3':
3269 split = find_split_point (&XEXP (x, 2), insn);
3270 if (split)
3271 return split;
3272 /* ... fall through ... */
3273 case '2':
3274 case 'c':
3275 case '<':
3276 split = find_split_point (&XEXP (x, 1), insn);
3277 if (split)
3278 return split;
3279 /* ... fall through ... */
3280 case '1':
3281 /* Some machines have (and (shift ...) ...) insns. If X is not
3282 an AND, but XEXP (X, 0) is, use it as our split point. */
3283 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
3284 return &XEXP (x, 0);
3286 split = find_split_point (&XEXP (x, 0), insn);
3287 if (split)
3288 return split;
3289 return loc;
3292 /* Otherwise, we don't have a split point. */
3293 return 0;
3296 /* Throughout X, replace FROM with TO, and return the result.
3297 The result is TO if X is FROM;
3298 otherwise the result is X, but its contents may have been modified.
3299 If they were modified, a record was made in undobuf so that
3300 undo_all will (among other things) return X to its original state.
3302 If the number of changes necessary is too much to record to undo,
3303 the excess changes are not made, so the result is invalid.
3304 The changes already made can still be undone.
3305 undobuf.num_undo is incremented for such changes, so by testing that
3306 the caller can tell whether the result is valid.
3308 `n_occurrences' is incremented each time FROM is replaced.
3310 IN_DEST is non-zero if we are processing the SET_DEST of a SET.
3312 UNIQUE_COPY is non-zero if each substitution must be unique. We do this
3313 by copying if `n_occurrences' is non-zero. */
3315 static rtx
3316 subst (x, from, to, in_dest, unique_copy)
3317 rtx x, from, to;
3318 int in_dest;
3319 int unique_copy;
3321 enum rtx_code code = GET_CODE (x);
3322 enum machine_mode op0_mode = VOIDmode;
3323 const char *fmt;
3324 int len, i;
3325 rtx new;
3327 /* Two expressions are equal if they are identical copies of a shared
3328 RTX or if they are both registers with the same register number
3329 and mode. */
3331 #define COMBINE_RTX_EQUAL_P(X,Y) \
3332 ((X) == (Y) \
3333 || (GET_CODE (X) == REG && GET_CODE (Y) == REG \
3334 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3336 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
3338 n_occurrences++;
3339 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
3342 /* If X and FROM are the same register but different modes, they will
3343 not have been seen as equal above. However, flow.c will make a
3344 LOG_LINKS entry for that case. If we do nothing, we will try to
3345 rerecognize our original insn and, when it succeeds, we will
3346 delete the feeding insn, which is incorrect.
3348 So force this insn not to match in this (rare) case. */
3349 if (! in_dest && code == REG && GET_CODE (from) == REG
3350 && REGNO (x) == REGNO (from))
3351 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
3353 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3354 of which may contain things that can be combined. */
3355 if (code != MEM && code != LO_SUM && GET_RTX_CLASS (code) == 'o')
3356 return x;
3358 /* It is possible to have a subexpression appear twice in the insn.
3359 Suppose that FROM is a register that appears within TO.
3360 Then, after that subexpression has been scanned once by `subst',
3361 the second time it is scanned, TO may be found. If we were
3362 to scan TO here, we would find FROM within it and create a
3363 self-referent rtl structure which is completely wrong. */
3364 if (COMBINE_RTX_EQUAL_P (x, to))
3365 return to;
3367 /* Parallel asm_operands need special attention because all of the
3368 inputs are shared across the arms. Furthermore, unsharing the
3369 rtl results in recognition failures. Failure to handle this case
3370 specially can result in circular rtl.
3372 Solve this by doing a normal pass across the first entry of the
3373 parallel, and only processing the SET_DESTs of the subsequent
3374 entries. Ug. */
3376 if (code == PARALLEL
3377 && GET_CODE (XVECEXP (x, 0, 0)) == SET
3378 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
3380 new = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
3382 /* If this substitution failed, this whole thing fails. */
3383 if (GET_CODE (new) == CLOBBER
3384 && XEXP (new, 0) == const0_rtx)
3385 return new;
3387 SUBST (XVECEXP (x, 0, 0), new);
3389 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
3391 rtx dest = SET_DEST (XVECEXP (x, 0, i));
3393 if (GET_CODE (dest) != REG
3394 && GET_CODE (dest) != CC0
3395 && GET_CODE (dest) != PC)
3397 new = subst (dest, from, to, 0, unique_copy);
3399 /* If this substitution failed, this whole thing fails. */
3400 if (GET_CODE (new) == CLOBBER
3401 && XEXP (new, 0) == const0_rtx)
3402 return new;
3404 SUBST (SET_DEST (XVECEXP (x, 0, i)), new);
3408 else
3410 len = GET_RTX_LENGTH (code);
3411 fmt = GET_RTX_FORMAT (code);
3413 /* We don't need to process a SET_DEST that is a register, CC0,
3414 or PC, so set up to skip this common case. All other cases
3415 where we want to suppress replacing something inside a
3416 SET_SRC are handled via the IN_DEST operand. */
3417 if (code == SET
3418 && (GET_CODE (SET_DEST (x)) == REG
3419 || GET_CODE (SET_DEST (x)) == CC0
3420 || GET_CODE (SET_DEST (x)) == PC))
3421 fmt = "ie";
3423 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3424 constant. */
3425 if (fmt[0] == 'e')
3426 op0_mode = GET_MODE (XEXP (x, 0));
3428 for (i = 0; i < len; i++)
3430 if (fmt[i] == 'E')
3432 int j;
3433 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3435 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
3437 new = (unique_copy && n_occurrences
3438 ? copy_rtx (to) : to);
3439 n_occurrences++;
3441 else
3443 new = subst (XVECEXP (x, i, j), from, to, 0,
3444 unique_copy);
3446 /* If this substitution failed, this whole thing
3447 fails. */
3448 if (GET_CODE (new) == CLOBBER
3449 && XEXP (new, 0) == const0_rtx)
3450 return new;
3453 SUBST (XVECEXP (x, i, j), new);
3456 else if (fmt[i] == 'e')
3458 /* If this is a register being set, ignore it. */
3459 new = XEXP (x, i);
3460 if (in_dest
3461 && (code == SUBREG || code == STRICT_LOW_PART
3462 || code == ZERO_EXTRACT)
3463 && i == 0
3464 && GET_CODE (new) == REG)
3467 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
3469 /* In general, don't install a subreg involving two
3470 modes not tieable. It can worsen register
3471 allocation, and can even make invalid reload
3472 insns, since the reg inside may need to be copied
3473 from in the outside mode, and that may be invalid
3474 if it is an fp reg copied in integer mode.
3476 We allow two exceptions to this: It is valid if
3477 it is inside another SUBREG and the mode of that
3478 SUBREG and the mode of the inside of TO is
3479 tieable and it is valid if X is a SET that copies
3480 FROM to CC0. */
3482 if (GET_CODE (to) == SUBREG
3483 && ! MODES_TIEABLE_P (GET_MODE (to),
3484 GET_MODE (SUBREG_REG (to)))
3485 && ! (code == SUBREG
3486 && MODES_TIEABLE_P (GET_MODE (x),
3487 GET_MODE (SUBREG_REG (to))))
3488 #ifdef HAVE_cc0
3489 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
3490 #endif
3492 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3494 #ifdef CLASS_CANNOT_CHANGE_MODE
3495 if (code == SUBREG
3496 && GET_CODE (to) == REG
3497 && REGNO (to) < FIRST_PSEUDO_REGISTER
3498 && (TEST_HARD_REG_BIT
3499 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
3500 REGNO (to)))
3501 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (to),
3502 GET_MODE (x)))
3503 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3504 #endif
3506 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
3507 n_occurrences++;
3509 else
3510 /* If we are in a SET_DEST, suppress most cases unless we
3511 have gone inside a MEM, in which case we want to
3512 simplify the address. We assume here that things that
3513 are actually part of the destination have their inner
3514 parts in the first expression. This is true for SUBREG,
3515 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
3516 things aside from REG and MEM that should appear in a
3517 SET_DEST. */
3518 new = subst (XEXP (x, i), from, to,
3519 (((in_dest
3520 && (code == SUBREG || code == STRICT_LOW_PART
3521 || code == ZERO_EXTRACT))
3522 || code == SET)
3523 && i == 0), unique_copy);
3525 /* If we found that we will have to reject this combination,
3526 indicate that by returning the CLOBBER ourselves, rather than
3527 an expression containing it. This will speed things up as
3528 well as prevent accidents where two CLOBBERs are considered
3529 to be equal, thus producing an incorrect simplification. */
3531 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
3532 return new;
3534 if (GET_CODE (new) == CONST_INT && GET_CODE (x) == SUBREG)
3536 enum machine_mode mode = GET_MODE (x);
3538 x = simplify_subreg (GET_MODE (x), new,
3539 GET_MODE (SUBREG_REG (x)),
3540 SUBREG_BYTE (x));
3541 if (! x)
3542 x = gen_rtx_CLOBBER (mode, const0_rtx);
3544 else if (GET_CODE (new) == CONST_INT
3545 && GET_CODE (x) == ZERO_EXTEND)
3547 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
3548 new, GET_MODE (XEXP (x, 0)));
3549 if (! x)
3550 abort ();
3552 else
3553 SUBST (XEXP (x, i), new);
3558 /* Try to simplify X. If the simplification changed the code, it is likely
3559 that further simplification will help, so loop, but limit the number
3560 of repetitions that will be performed. */
3562 for (i = 0; i < 4; i++)
3564 /* If X is sufficiently simple, don't bother trying to do anything
3565 with it. */
3566 if (code != CONST_INT && code != REG && code != CLOBBER)
3567 x = combine_simplify_rtx (x, op0_mode, i == 3, in_dest);
3569 if (GET_CODE (x) == code)
3570 break;
3572 code = GET_CODE (x);
3574 /* We no longer know the original mode of operand 0 since we
3575 have changed the form of X) */
3576 op0_mode = VOIDmode;
3579 return x;
3582 /* Simplify X, a piece of RTL. We just operate on the expression at the
3583 outer level; call `subst' to simplify recursively. Return the new
3584 expression.
3586 OP0_MODE is the original mode of XEXP (x, 0); LAST is nonzero if this
3587 will be the iteration even if an expression with a code different from
3588 X is returned; IN_DEST is nonzero if we are inside a SET_DEST. */
3590 static rtx
3591 combine_simplify_rtx (x, op0_mode, last, in_dest)
3592 rtx x;
3593 enum machine_mode op0_mode;
3594 int last;
3595 int in_dest;
3597 enum rtx_code code = GET_CODE (x);
3598 enum machine_mode mode = GET_MODE (x);
3599 rtx temp;
3600 rtx reversed;
3601 int i;
3603 /* If this is a commutative operation, put a constant last and a complex
3604 expression first. We don't need to do this for comparisons here. */
3605 if (GET_RTX_CLASS (code) == 'c'
3606 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
3608 temp = XEXP (x, 0);
3609 SUBST (XEXP (x, 0), XEXP (x, 1));
3610 SUBST (XEXP (x, 1), temp);
3613 /* If this is a PLUS, MINUS, or MULT, and the first operand is the
3614 sign extension of a PLUS with a constant, reverse the order of the sign
3615 extension and the addition. Note that this not the same as the original
3616 code, but overflow is undefined for signed values. Also note that the
3617 PLUS will have been partially moved "inside" the sign-extension, so that
3618 the first operand of X will really look like:
3619 (ashiftrt (plus (ashift A C4) C5) C4).
3620 We convert this to
3621 (plus (ashiftrt (ashift A C4) C2) C4)
3622 and replace the first operand of X with that expression. Later parts
3623 of this function may simplify the expression further.
3625 For example, if we start with (mult (sign_extend (plus A C1)) C2),
3626 we swap the SIGN_EXTEND and PLUS. Later code will apply the
3627 distributive law to produce (plus (mult (sign_extend X) C1) C3).
3629 We do this to simplify address expressions. */
3631 if ((code == PLUS || code == MINUS || code == MULT)
3632 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3633 && GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
3634 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == ASHIFT
3635 && GET_CODE (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1)) == CONST_INT
3636 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3637 && XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1) == XEXP (XEXP (x, 0), 1)
3638 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
3639 && (temp = simplify_binary_operation (ASHIFTRT, mode,
3640 XEXP (XEXP (XEXP (x, 0), 0), 1),
3641 XEXP (XEXP (x, 0), 1))) != 0)
3643 rtx new
3644 = simplify_shift_const (NULL_RTX, ASHIFT, mode,
3645 XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 0),
3646 INTVAL (XEXP (XEXP (x, 0), 1)));
3648 new = simplify_shift_const (NULL_RTX, ASHIFTRT, mode, new,
3649 INTVAL (XEXP (XEXP (x, 0), 1)));
3651 SUBST (XEXP (x, 0), gen_binary (PLUS, mode, new, temp));
3654 /* If this is a simple operation applied to an IF_THEN_ELSE, try
3655 applying it to the arms of the IF_THEN_ELSE. This often simplifies
3656 things. Check for cases where both arms are testing the same
3657 condition.
3659 Don't do anything if all operands are very simple. */
3661 if (((GET_RTX_CLASS (code) == '2' || GET_RTX_CLASS (code) == 'c'
3662 || GET_RTX_CLASS (code) == '<')
3663 && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
3664 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3665 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
3666 == 'o')))
3667 || (GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o'
3668 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
3669 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 1))))
3670 == 'o')))))
3671 || (GET_RTX_CLASS (code) == '1'
3672 && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
3673 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3674 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
3675 == 'o'))))))
3677 rtx cond, true_rtx, false_rtx;
3679 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
3680 if (cond != 0
3681 /* If everything is a comparison, what we have is highly unlikely
3682 to be simpler, so don't use it. */
3683 && ! (GET_RTX_CLASS (code) == '<'
3684 && (GET_RTX_CLASS (GET_CODE (true_rtx)) == '<'
3685 || GET_RTX_CLASS (GET_CODE (false_rtx)) == '<')))
3687 rtx cop1 = const0_rtx;
3688 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
3690 if (cond_code == NE && GET_RTX_CLASS (GET_CODE (cond)) == '<')
3691 return x;
3693 /* Simplify the alternative arms; this may collapse the true and
3694 false arms to store-flag values. */
3695 true_rtx = subst (true_rtx, pc_rtx, pc_rtx, 0, 0);
3696 false_rtx = subst (false_rtx, pc_rtx, pc_rtx, 0, 0);
3698 /* If true_rtx and false_rtx are not general_operands, an if_then_else
3699 is unlikely to be simpler. */
3700 if (general_operand (true_rtx, VOIDmode)
3701 && general_operand (false_rtx, VOIDmode))
3703 /* Restarting if we generate a store-flag expression will cause
3704 us to loop. Just drop through in this case. */
3706 /* If the result values are STORE_FLAG_VALUE and zero, we can
3707 just make the comparison operation. */
3708 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
3709 x = gen_binary (cond_code, mode, cond, cop1);
3710 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
3711 && reverse_condition (cond_code) != UNKNOWN)
3712 x = gen_binary (reverse_condition (cond_code),
3713 mode, cond, cop1);
3715 /* Likewise, we can make the negate of a comparison operation
3716 if the result values are - STORE_FLAG_VALUE and zero. */
3717 else if (GET_CODE (true_rtx) == CONST_INT
3718 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
3719 && false_rtx == const0_rtx)
3720 x = simplify_gen_unary (NEG, mode,
3721 gen_binary (cond_code, mode, cond,
3722 cop1),
3723 mode);
3724 else if (GET_CODE (false_rtx) == CONST_INT
3725 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
3726 && true_rtx == const0_rtx)
3727 x = simplify_gen_unary (NEG, mode,
3728 gen_binary (reverse_condition
3729 (cond_code),
3730 mode, cond, cop1),
3731 mode);
3732 else
3733 return gen_rtx_IF_THEN_ELSE (mode,
3734 gen_binary (cond_code, VOIDmode,
3735 cond, cop1),
3736 true_rtx, false_rtx);
3738 code = GET_CODE (x);
3739 op0_mode = VOIDmode;
3744 /* Try to fold this expression in case we have constants that weren't
3745 present before. */
3746 temp = 0;
3747 switch (GET_RTX_CLASS (code))
3749 case '1':
3750 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
3751 break;
3752 case '<':
3754 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
3755 if (cmp_mode == VOIDmode)
3757 cmp_mode = GET_MODE (XEXP (x, 1));
3758 if (cmp_mode == VOIDmode)
3759 cmp_mode = op0_mode;
3761 temp = simplify_relational_operation (code, cmp_mode,
3762 XEXP (x, 0), XEXP (x, 1));
3764 #ifdef FLOAT_STORE_FLAG_VALUE
3765 if (temp != 0 && GET_MODE_CLASS (mode) == MODE_FLOAT)
3767 if (temp == const0_rtx)
3768 temp = CONST0_RTX (mode);
3769 else
3770 temp = CONST_DOUBLE_FROM_REAL_VALUE (FLOAT_STORE_FLAG_VALUE (mode),
3771 mode);
3773 #endif
3774 break;
3775 case 'c':
3776 case '2':
3777 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
3778 break;
3779 case 'b':
3780 case '3':
3781 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
3782 XEXP (x, 1), XEXP (x, 2));
3783 break;
3786 if (temp)
3788 x = temp;
3789 code = GET_CODE (temp);
3790 op0_mode = VOIDmode;
3791 mode = GET_MODE (temp);
3794 /* First see if we can apply the inverse distributive law. */
3795 if (code == PLUS || code == MINUS
3796 || code == AND || code == IOR || code == XOR)
3798 x = apply_distributive_law (x);
3799 code = GET_CODE (x);
3800 op0_mode = VOIDmode;
3803 /* If CODE is an associative operation not otherwise handled, see if we
3804 can associate some operands. This can win if they are constants or
3805 if they are logically related (i.e. (a & b) & a). */
3806 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
3807 || code == AND || code == IOR || code == XOR
3808 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
3809 && ((INTEGRAL_MODE_P (mode) && code != DIV)
3810 || (flag_unsafe_math_optimizations && FLOAT_MODE_P (mode))))
3812 if (GET_CODE (XEXP (x, 0)) == code)
3814 rtx other = XEXP (XEXP (x, 0), 0);
3815 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
3816 rtx inner_op1 = XEXP (x, 1);
3817 rtx inner;
3819 /* Make sure we pass the constant operand if any as the second
3820 one if this is a commutative operation. */
3821 if (CONSTANT_P (inner_op0) && GET_RTX_CLASS (code) == 'c')
3823 rtx tem = inner_op0;
3824 inner_op0 = inner_op1;
3825 inner_op1 = tem;
3827 inner = simplify_binary_operation (code == MINUS ? PLUS
3828 : code == DIV ? MULT
3829 : code,
3830 mode, inner_op0, inner_op1);
3832 /* For commutative operations, try the other pair if that one
3833 didn't simplify. */
3834 if (inner == 0 && GET_RTX_CLASS (code) == 'c')
3836 other = XEXP (XEXP (x, 0), 1);
3837 inner = simplify_binary_operation (code, mode,
3838 XEXP (XEXP (x, 0), 0),
3839 XEXP (x, 1));
3842 if (inner)
3843 return gen_binary (code, mode, other, inner);
3847 /* A little bit of algebraic simplification here. */
3848 switch (code)
3850 case MEM:
3851 /* Ensure that our address has any ASHIFTs converted to MULT in case
3852 address-recognizing predicates are called later. */
3853 temp = make_compound_operation (XEXP (x, 0), MEM);
3854 SUBST (XEXP (x, 0), temp);
3855 break;
3857 case SUBREG:
3858 if (op0_mode == VOIDmode)
3859 op0_mode = GET_MODE (SUBREG_REG (x));
3861 /* simplify_subreg can't use gen_lowpart_for_combine. */
3862 if (CONSTANT_P (SUBREG_REG (x))
3863 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
3864 /* Don't call gen_lowpart_for_combine if the inner mode
3865 is VOIDmode and we cannot simplify it, as SUBREG without
3866 inner mode is invalid. */
3867 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
3868 || gen_lowpart_common (mode, SUBREG_REG (x))))
3869 return gen_lowpart_for_combine (mode, SUBREG_REG (x));
3871 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
3872 break;
3874 rtx temp;
3875 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
3876 SUBREG_BYTE (x));
3877 if (temp)
3878 return temp;
3881 /* Don't change the mode of the MEM if that would change the meaning
3882 of the address. */
3883 if (GET_CODE (SUBREG_REG (x)) == MEM
3884 && (MEM_VOLATILE_P (SUBREG_REG (x))
3885 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
3886 return gen_rtx_CLOBBER (mode, const0_rtx);
3888 /* Note that we cannot do any narrowing for non-constants since
3889 we might have been counting on using the fact that some bits were
3890 zero. We now do this in the SET. */
3892 break;
3894 case NOT:
3895 /* (not (plus X -1)) can become (neg X). */
3896 if (GET_CODE (XEXP (x, 0)) == PLUS
3897 && XEXP (XEXP (x, 0), 1) == constm1_rtx)
3898 return gen_rtx_NEG (mode, XEXP (XEXP (x, 0), 0));
3900 /* Similarly, (not (neg X)) is (plus X -1). */
3901 if (GET_CODE (XEXP (x, 0)) == NEG)
3902 return gen_rtx_PLUS (mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
3904 /* (not (xor X C)) for C constant is (xor X D) with D = ~C. */
3905 if (GET_CODE (XEXP (x, 0)) == XOR
3906 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3907 && (temp = simplify_unary_operation (NOT, mode,
3908 XEXP (XEXP (x, 0), 1),
3909 mode)) != 0)
3910 return gen_binary (XOR, mode, XEXP (XEXP (x, 0), 0), temp);
3912 /* (not (ashift 1 X)) is (rotate ~1 X). We used to do this for operands
3913 other than 1, but that is not valid. We could do a similar
3914 simplification for (not (lshiftrt C X)) where C is just the sign bit,
3915 but this doesn't seem common enough to bother with. */
3916 if (GET_CODE (XEXP (x, 0)) == ASHIFT
3917 && XEXP (XEXP (x, 0), 0) == const1_rtx)
3918 return gen_rtx_ROTATE (mode, simplify_gen_unary (NOT, mode,
3919 const1_rtx, mode),
3920 XEXP (XEXP (x, 0), 1));
3922 if (GET_CODE (XEXP (x, 0)) == SUBREG
3923 && subreg_lowpart_p (XEXP (x, 0))
3924 && (GET_MODE_SIZE (GET_MODE (XEXP (x, 0)))
3925 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x, 0)))))
3926 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == ASHIFT
3927 && XEXP (SUBREG_REG (XEXP (x, 0)), 0) == const1_rtx)
3929 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (XEXP (x, 0)));
3931 x = gen_rtx_ROTATE (inner_mode,
3932 simplify_gen_unary (NOT, inner_mode, const1_rtx,
3933 inner_mode),
3934 XEXP (SUBREG_REG (XEXP (x, 0)), 1));
3935 return gen_lowpart_for_combine (mode, x);
3938 /* If STORE_FLAG_VALUE is -1, (not (comparison foo bar)) can be done by
3939 reversing the comparison code if valid. */
3940 if (STORE_FLAG_VALUE == -1
3941 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
3942 && (reversed = reversed_comparison (x, mode, XEXP (XEXP (x, 0), 0),
3943 XEXP (XEXP (x, 0), 1))))
3944 return reversed;
3946 /* (not (ashiftrt foo C)) where C is the number of bits in FOO minus 1
3947 is (ge foo (const_int 0)) if STORE_FLAG_VALUE is -1, so we can
3948 perform the above simplification. */
3950 if (STORE_FLAG_VALUE == -1
3951 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3952 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3953 && INTVAL (XEXP (XEXP (x, 0), 1)) == GET_MODE_BITSIZE (mode) - 1)
3954 return gen_rtx_GE (mode, XEXP (XEXP (x, 0), 0), const0_rtx);
3956 /* Apply De Morgan's laws to reduce number of patterns for machines
3957 with negating logical insns (and-not, nand, etc.). If result has
3958 only one NOT, put it first, since that is how the patterns are
3959 coded. */
3961 if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == AND)
3963 rtx in1 = XEXP (XEXP (x, 0), 0), in2 = XEXP (XEXP (x, 0), 1);
3964 enum machine_mode op_mode;
3966 op_mode = GET_MODE (in1);
3967 in1 = simplify_gen_unary (NOT, op_mode, in1, op_mode);
3969 op_mode = GET_MODE (in2);
3970 if (op_mode == VOIDmode)
3971 op_mode = mode;
3972 in2 = simplify_gen_unary (NOT, op_mode, in2, op_mode);
3974 if (GET_CODE (in2) == NOT && GET_CODE (in1) != NOT)
3976 rtx tem = in2;
3977 in2 = in1; in1 = tem;
3980 return gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)) == IOR ? AND : IOR,
3981 mode, in1, in2);
3983 break;
3985 case NEG:
3986 /* (neg (plus X 1)) can become (not X). */
3987 if (GET_CODE (XEXP (x, 0)) == PLUS
3988 && XEXP (XEXP (x, 0), 1) == const1_rtx)
3989 return gen_rtx_NOT (mode, XEXP (XEXP (x, 0), 0));
3991 /* Similarly, (neg (not X)) is (plus X 1). */
3992 if (GET_CODE (XEXP (x, 0)) == NOT)
3993 return plus_constant (XEXP (XEXP (x, 0), 0), 1);
3995 /* (neg (minus X Y)) can become (minus Y X). This transformation
3996 isn't safe for modes with signed zeros, since if X and Y are
3997 both +0, (minus Y X) is the same as (minus X Y). If the rounding
3998 mode is towards +infinity (or -infinity) then the two expressions
3999 will be rounded differently. */
4000 if (GET_CODE (XEXP (x, 0)) == MINUS
4001 && !HONOR_SIGNED_ZEROS (mode)
4002 && !HONOR_SIGN_DEPENDENT_ROUNDING (mode))
4003 return gen_binary (MINUS, mode, XEXP (XEXP (x, 0), 1),
4004 XEXP (XEXP (x, 0), 0));
4006 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
4007 if (GET_CODE (XEXP (x, 0)) == XOR && XEXP (XEXP (x, 0), 1) == const1_rtx
4008 && nonzero_bits (XEXP (XEXP (x, 0), 0), mode) == 1)
4009 return gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
4011 /* NEG commutes with ASHIFT since it is multiplication. Only do this
4012 if we can then eliminate the NEG (e.g.,
4013 if the operand is a constant). */
4015 if (GET_CODE (XEXP (x, 0)) == ASHIFT)
4017 temp = simplify_unary_operation (NEG, mode,
4018 XEXP (XEXP (x, 0), 0), mode);
4019 if (temp)
4020 return gen_binary (ASHIFT, mode, temp, XEXP (XEXP (x, 0), 1));
4023 temp = expand_compound_operation (XEXP (x, 0));
4025 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
4026 replaced by (lshiftrt X C). This will convert
4027 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
4029 if (GET_CODE (temp) == ASHIFTRT
4030 && GET_CODE (XEXP (temp, 1)) == CONST_INT
4031 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
4032 return simplify_shift_const (temp, LSHIFTRT, mode, XEXP (temp, 0),
4033 INTVAL (XEXP (temp, 1)));
4035 /* If X has only a single bit that might be nonzero, say, bit I, convert
4036 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
4037 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
4038 (sign_extract X 1 Y). But only do this if TEMP isn't a register
4039 or a SUBREG of one since we'd be making the expression more
4040 complex if it was just a register. */
4042 if (GET_CODE (temp) != REG
4043 && ! (GET_CODE (temp) == SUBREG
4044 && GET_CODE (SUBREG_REG (temp)) == REG)
4045 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
4047 rtx temp1 = simplify_shift_const
4048 (NULL_RTX, ASHIFTRT, mode,
4049 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
4050 GET_MODE_BITSIZE (mode) - 1 - i),
4051 GET_MODE_BITSIZE (mode) - 1 - i);
4053 /* If all we did was surround TEMP with the two shifts, we
4054 haven't improved anything, so don't use it. Otherwise,
4055 we are better off with TEMP1. */
4056 if (GET_CODE (temp1) != ASHIFTRT
4057 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
4058 || XEXP (XEXP (temp1, 0), 0) != temp)
4059 return temp1;
4061 break;
4063 case TRUNCATE:
4064 /* We can't handle truncation to a partial integer mode here
4065 because we don't know the real bitsize of the partial
4066 integer mode. */
4067 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
4068 break;
4070 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4071 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4072 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
4073 SUBST (XEXP (x, 0),
4074 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
4075 GET_MODE_MASK (mode), NULL_RTX, 0));
4077 /* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI. */
4078 if ((GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4079 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4080 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4081 return XEXP (XEXP (x, 0), 0);
4083 /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
4084 (OP:SI foo:SI) if OP is NEG or ABS. */
4085 if ((GET_CODE (XEXP (x, 0)) == ABS
4086 || GET_CODE (XEXP (x, 0)) == NEG)
4087 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == SIGN_EXTEND
4088 || GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND)
4089 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4090 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4091 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4093 /* (truncate:SI (subreg:DI (truncate:SI X) 0)) is
4094 (truncate:SI x). */
4095 if (GET_CODE (XEXP (x, 0)) == SUBREG
4096 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == TRUNCATE
4097 && subreg_lowpart_p (XEXP (x, 0)))
4098 return SUBREG_REG (XEXP (x, 0));
4100 /* If we know that the value is already truncated, we can
4101 replace the TRUNCATE with a SUBREG if TRULY_NOOP_TRUNCATION
4102 is nonzero for the corresponding modes. But don't do this
4103 for an (LSHIFTRT (MULT ...)) since this will cause problems
4104 with the umulXi3_highpart patterns. */
4105 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4106 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
4107 && num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4108 >= GET_MODE_BITSIZE (mode) + 1
4109 && ! (GET_CODE (XEXP (x, 0)) == LSHIFTRT
4110 && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT))
4111 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4113 /* A truncate of a comparison can be replaced with a subreg if
4114 STORE_FLAG_VALUE permits. This is like the previous test,
4115 but it works even if the comparison is done in a mode larger
4116 than HOST_BITS_PER_WIDE_INT. */
4117 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4118 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
4119 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0)
4120 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4122 /* Similarly, a truncate of a register whose value is a
4123 comparison can be replaced with a subreg if STORE_FLAG_VALUE
4124 permits. */
4125 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4126 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
4127 && (temp = get_last_value (XEXP (x, 0)))
4128 && GET_RTX_CLASS (GET_CODE (temp)) == '<')
4129 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4131 break;
4133 case FLOAT_TRUNCATE:
4134 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
4135 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4136 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4137 return XEXP (XEXP (x, 0), 0);
4139 /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
4140 (OP:SF foo:SF) if OP is NEG or ABS. */
4141 if ((GET_CODE (XEXP (x, 0)) == ABS
4142 || GET_CODE (XEXP (x, 0)) == NEG)
4143 && GET_CODE (XEXP (XEXP (x, 0), 0)) == FLOAT_EXTEND
4144 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4145 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4146 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4148 /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
4149 is (float_truncate:SF x). */
4150 if (GET_CODE (XEXP (x, 0)) == SUBREG
4151 && subreg_lowpart_p (XEXP (x, 0))
4152 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == FLOAT_TRUNCATE)
4153 return SUBREG_REG (XEXP (x, 0));
4154 break;
4156 #ifdef HAVE_cc0
4157 case COMPARE:
4158 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4159 using cc0, in which case we want to leave it as a COMPARE
4160 so we can distinguish it from a register-register-copy. */
4161 if (XEXP (x, 1) == const0_rtx)
4162 return XEXP (x, 0);
4164 /* x - 0 is the same as x unless x's mode has signed zeros and
4165 allows rounding towards -infinity. Under those conditions,
4166 0 - 0 is -0. */
4167 if (!(HONOR_SIGNED_ZEROS (GET_MODE (XEXP (x, 0)))
4168 && HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (XEXP (x, 0))))
4169 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4170 return XEXP (x, 0);
4171 break;
4172 #endif
4174 case CONST:
4175 /* (const (const X)) can become (const X). Do it this way rather than
4176 returning the inner CONST since CONST can be shared with a
4177 REG_EQUAL note. */
4178 if (GET_CODE (XEXP (x, 0)) == CONST)
4179 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4180 break;
4182 #ifdef HAVE_lo_sum
4183 case LO_SUM:
4184 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4185 can add in an offset. find_split_point will split this address up
4186 again if it doesn't match. */
4187 if (GET_CODE (XEXP (x, 0)) == HIGH
4188 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4189 return XEXP (x, 1);
4190 break;
4191 #endif
4193 case PLUS:
4194 /* If we have (plus (plus (A const) B)), associate it so that CONST is
4195 outermost. That's because that's the way indexed addresses are
4196 supposed to appear. This code used to check many more cases, but
4197 they are now checked elsewhere. */
4198 if (GET_CODE (XEXP (x, 0)) == PLUS
4199 && CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
4200 return gen_binary (PLUS, mode,
4201 gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0),
4202 XEXP (x, 1)),
4203 XEXP (XEXP (x, 0), 1));
4205 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4206 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4207 bit-field and can be replaced by either a sign_extend or a
4208 sign_extract. The `and' may be a zero_extend and the two
4209 <c>, -<c> constants may be reversed. */
4210 if (GET_CODE (XEXP (x, 0)) == XOR
4211 && GET_CODE (XEXP (x, 1)) == CONST_INT
4212 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4213 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4214 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4215 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4216 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4217 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4218 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4219 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4220 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4221 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4222 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4223 == (unsigned int) i + 1))))
4224 return simplify_shift_const
4225 (NULL_RTX, ASHIFTRT, mode,
4226 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4227 XEXP (XEXP (XEXP (x, 0), 0), 0),
4228 GET_MODE_BITSIZE (mode) - (i + 1)),
4229 GET_MODE_BITSIZE (mode) - (i + 1));
4231 /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
4232 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
4233 is 1. This produces better code than the alternative immediately
4234 below. */
4235 if (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
4236 && ((STORE_FLAG_VALUE == -1 && XEXP (x, 1) == const1_rtx)
4237 || (STORE_FLAG_VALUE == 1 && XEXP (x, 1) == constm1_rtx))
4238 && (reversed = reversed_comparison (XEXP (x, 0), mode,
4239 XEXP (XEXP (x, 0), 0),
4240 XEXP (XEXP (x, 0), 1))))
4241 return
4242 simplify_gen_unary (NEG, mode, reversed, mode);
4244 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4245 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4246 the bitsize of the mode - 1. This allows simplification of
4247 "a = (b & 8) == 0;" */
4248 if (XEXP (x, 1) == constm1_rtx
4249 && GET_CODE (XEXP (x, 0)) != REG
4250 && ! (GET_CODE (XEXP (x,0)) == SUBREG
4251 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == REG)
4252 && nonzero_bits (XEXP (x, 0), mode) == 1)
4253 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4254 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4255 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
4256 GET_MODE_BITSIZE (mode) - 1),
4257 GET_MODE_BITSIZE (mode) - 1);
4259 /* If we are adding two things that have no bits in common, convert
4260 the addition into an IOR. This will often be further simplified,
4261 for example in cases like ((a & 1) + (a & 2)), which can
4262 become a & 3. */
4264 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4265 && (nonzero_bits (XEXP (x, 0), mode)
4266 & nonzero_bits (XEXP (x, 1), mode)) == 0)
4268 /* Try to simplify the expression further. */
4269 rtx tor = gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4270 temp = combine_simplify_rtx (tor, mode, last, in_dest);
4272 /* If we could, great. If not, do not go ahead with the IOR
4273 replacement, since PLUS appears in many special purpose
4274 address arithmetic instructions. */
4275 if (GET_CODE (temp) != CLOBBER && temp != tor)
4276 return temp;
4278 break;
4280 case MINUS:
4281 /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
4282 by reversing the comparison code if valid. */
4283 if (STORE_FLAG_VALUE == 1
4284 && XEXP (x, 0) == const1_rtx
4285 && GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) == '<'
4286 && (reversed = reversed_comparison (XEXP (x, 1), mode,
4287 XEXP (XEXP (x, 1), 0),
4288 XEXP (XEXP (x, 1), 1))))
4289 return reversed;
4291 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4292 (and <foo> (const_int pow2-1)) */
4293 if (GET_CODE (XEXP (x, 1)) == AND
4294 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4295 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
4296 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4297 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
4298 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
4300 /* Canonicalize (minus A (plus B C)) to (minus (minus A B) C) for
4301 integers. */
4302 if (GET_CODE (XEXP (x, 1)) == PLUS && INTEGRAL_MODE_P (mode))
4303 return gen_binary (MINUS, mode,
4304 gen_binary (MINUS, mode, XEXP (x, 0),
4305 XEXP (XEXP (x, 1), 0)),
4306 XEXP (XEXP (x, 1), 1));
4307 break;
4309 case MULT:
4310 /* If we have (mult (plus A B) C), apply the distributive law and then
4311 the inverse distributive law to see if things simplify. This
4312 occurs mostly in addresses, often when unrolling loops. */
4314 if (GET_CODE (XEXP (x, 0)) == PLUS)
4316 x = apply_distributive_law
4317 (gen_binary (PLUS, mode,
4318 gen_binary (MULT, mode,
4319 XEXP (XEXP (x, 0), 0), XEXP (x, 1)),
4320 gen_binary (MULT, mode,
4321 XEXP (XEXP (x, 0), 1),
4322 copy_rtx (XEXP (x, 1)))));
4324 if (GET_CODE (x) != MULT)
4325 return x;
4327 /* Try simplify a*(b/c) as (a*b)/c. */
4328 if (FLOAT_MODE_P (mode) && flag_unsafe_math_optimizations
4329 && GET_CODE (XEXP (x, 0)) == DIV)
4331 rtx tem = simplify_binary_operation (MULT, mode,
4332 XEXP (XEXP (x, 0), 0),
4333 XEXP (x, 1));
4334 if (tem)
4335 return gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
4337 break;
4339 case UDIV:
4340 /* If this is a divide by a power of two, treat it as a shift if
4341 its first operand is a shift. */
4342 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4343 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
4344 && (GET_CODE (XEXP (x, 0)) == ASHIFT
4345 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
4346 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
4347 || GET_CODE (XEXP (x, 0)) == ROTATE
4348 || GET_CODE (XEXP (x, 0)) == ROTATERT))
4349 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
4350 break;
4352 case EQ: case NE:
4353 case GT: case GTU: case GE: case GEU:
4354 case LT: case LTU: case LE: case LEU:
4355 case UNEQ: case LTGT:
4356 case UNGT: case UNGE:
4357 case UNLT: case UNLE:
4358 case UNORDERED: case ORDERED:
4359 /* If the first operand is a condition code, we can't do anything
4360 with it. */
4361 if (GET_CODE (XEXP (x, 0)) == COMPARE
4362 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
4363 #ifdef HAVE_cc0
4364 && XEXP (x, 0) != cc0_rtx
4365 #endif
4368 rtx op0 = XEXP (x, 0);
4369 rtx op1 = XEXP (x, 1);
4370 enum rtx_code new_code;
4372 if (GET_CODE (op0) == COMPARE)
4373 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4375 /* Simplify our comparison, if possible. */
4376 new_code = simplify_comparison (code, &op0, &op1);
4378 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
4379 if only the low-order bit is possibly nonzero in X (such as when
4380 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
4381 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
4382 known to be either 0 or -1, NE becomes a NEG and EQ becomes
4383 (plus X 1).
4385 Remove any ZERO_EXTRACT we made when thinking this was a
4386 comparison. It may now be simpler to use, e.g., an AND. If a
4387 ZERO_EXTRACT is indeed appropriate, it will be placed back by
4388 the call to make_compound_operation in the SET case. */
4390 if (STORE_FLAG_VALUE == 1
4391 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4392 && op1 == const0_rtx
4393 && mode == GET_MODE (op0)
4394 && nonzero_bits (op0, mode) == 1)
4395 return gen_lowpart_for_combine (mode,
4396 expand_compound_operation (op0));
4398 else if (STORE_FLAG_VALUE == 1
4399 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4400 && op1 == const0_rtx
4401 && mode == GET_MODE (op0)
4402 && (num_sign_bit_copies (op0, mode)
4403 == GET_MODE_BITSIZE (mode)))
4405 op0 = expand_compound_operation (op0);
4406 return simplify_gen_unary (NEG, mode,
4407 gen_lowpart_for_combine (mode, op0),
4408 mode);
4411 else if (STORE_FLAG_VALUE == 1
4412 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4413 && op1 == const0_rtx
4414 && mode == GET_MODE (op0)
4415 && nonzero_bits (op0, mode) == 1)
4417 op0 = expand_compound_operation (op0);
4418 return gen_binary (XOR, mode,
4419 gen_lowpart_for_combine (mode, op0),
4420 const1_rtx);
4423 else if (STORE_FLAG_VALUE == 1
4424 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4425 && op1 == const0_rtx
4426 && mode == GET_MODE (op0)
4427 && (num_sign_bit_copies (op0, mode)
4428 == GET_MODE_BITSIZE (mode)))
4430 op0 = expand_compound_operation (op0);
4431 return plus_constant (gen_lowpart_for_combine (mode, op0), 1);
4434 /* If STORE_FLAG_VALUE is -1, we have cases similar to
4435 those above. */
4436 if (STORE_FLAG_VALUE == -1
4437 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4438 && op1 == const0_rtx
4439 && (num_sign_bit_copies (op0, mode)
4440 == GET_MODE_BITSIZE (mode)))
4441 return gen_lowpart_for_combine (mode,
4442 expand_compound_operation (op0));
4444 else if (STORE_FLAG_VALUE == -1
4445 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4446 && op1 == const0_rtx
4447 && mode == GET_MODE (op0)
4448 && nonzero_bits (op0, mode) == 1)
4450 op0 = expand_compound_operation (op0);
4451 return simplify_gen_unary (NEG, mode,
4452 gen_lowpart_for_combine (mode, op0),
4453 mode);
4456 else if (STORE_FLAG_VALUE == -1
4457 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4458 && op1 == const0_rtx
4459 && mode == GET_MODE (op0)
4460 && (num_sign_bit_copies (op0, mode)
4461 == GET_MODE_BITSIZE (mode)))
4463 op0 = expand_compound_operation (op0);
4464 return simplify_gen_unary (NOT, mode,
4465 gen_lowpart_for_combine (mode, op0),
4466 mode);
4469 /* If X is 0/1, (eq X 0) is X-1. */
4470 else if (STORE_FLAG_VALUE == -1
4471 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4472 && op1 == const0_rtx
4473 && mode == GET_MODE (op0)
4474 && nonzero_bits (op0, mode) == 1)
4476 op0 = expand_compound_operation (op0);
4477 return plus_constant (gen_lowpart_for_combine (mode, op0), -1);
4480 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
4481 one bit that might be nonzero, we can convert (ne x 0) to
4482 (ashift x c) where C puts the bit in the sign bit. Remove any
4483 AND with STORE_FLAG_VALUE when we are done, since we are only
4484 going to test the sign bit. */
4485 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4486 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4487 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
4488 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE(mode)-1))
4489 && op1 == const0_rtx
4490 && mode == GET_MODE (op0)
4491 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
4493 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
4494 expand_compound_operation (op0),
4495 GET_MODE_BITSIZE (mode) - 1 - i);
4496 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
4497 return XEXP (x, 0);
4498 else
4499 return x;
4502 /* If the code changed, return a whole new comparison. */
4503 if (new_code != code)
4504 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
4506 /* Otherwise, keep this operation, but maybe change its operands.
4507 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
4508 SUBST (XEXP (x, 0), op0);
4509 SUBST (XEXP (x, 1), op1);
4511 break;
4513 case IF_THEN_ELSE:
4514 return simplify_if_then_else (x);
4516 case ZERO_EXTRACT:
4517 case SIGN_EXTRACT:
4518 case ZERO_EXTEND:
4519 case SIGN_EXTEND:
4520 /* If we are processing SET_DEST, we are done. */
4521 if (in_dest)
4522 return x;
4524 return expand_compound_operation (x);
4526 case SET:
4527 return simplify_set (x);
4529 case AND:
4530 case IOR:
4531 case XOR:
4532 return simplify_logical (x, last);
4534 case ABS:
4535 /* (abs (neg <foo>)) -> (abs <foo>) */
4536 if (GET_CODE (XEXP (x, 0)) == NEG)
4537 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4539 /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
4540 do nothing. */
4541 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
4542 break;
4544 /* If operand is something known to be positive, ignore the ABS. */
4545 if (GET_CODE (XEXP (x, 0)) == FFS || GET_CODE (XEXP (x, 0)) == ABS
4546 || ((GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4547 <= HOST_BITS_PER_WIDE_INT)
4548 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4549 & ((HOST_WIDE_INT) 1
4550 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1)))
4551 == 0)))
4552 return XEXP (x, 0);
4554 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
4555 if (num_sign_bit_copies (XEXP (x, 0), mode) == GET_MODE_BITSIZE (mode))
4556 return gen_rtx_NEG (mode, XEXP (x, 0));
4558 break;
4560 case FFS:
4561 /* (ffs (*_extend <X>)) = (ffs <X>) */
4562 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4563 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4564 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4565 break;
4567 case FLOAT:
4568 /* (float (sign_extend <X>)) = (float <X>). */
4569 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
4570 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4571 break;
4573 case ASHIFT:
4574 case LSHIFTRT:
4575 case ASHIFTRT:
4576 case ROTATE:
4577 case ROTATERT:
4578 /* If this is a shift by a constant amount, simplify it. */
4579 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4580 return simplify_shift_const (x, code, mode, XEXP (x, 0),
4581 INTVAL (XEXP (x, 1)));
4583 #ifdef SHIFT_COUNT_TRUNCATED
4584 else if (SHIFT_COUNT_TRUNCATED && GET_CODE (XEXP (x, 1)) != REG)
4585 SUBST (XEXP (x, 1),
4586 force_to_mode (XEXP (x, 1), GET_MODE (x),
4587 ((HOST_WIDE_INT) 1
4588 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
4589 - 1,
4590 NULL_RTX, 0));
4591 #endif
4593 break;
4595 case VEC_SELECT:
4597 rtx op0 = XEXP (x, 0);
4598 rtx op1 = XEXP (x, 1);
4599 int len;
4601 if (GET_CODE (op1) != PARALLEL)
4602 abort ();
4603 len = XVECLEN (op1, 0);
4604 if (len == 1
4605 && GET_CODE (XVECEXP (op1, 0, 0)) == CONST_INT
4606 && GET_CODE (op0) == VEC_CONCAT)
4608 int offset = INTVAL (XVECEXP (op1, 0, 0)) * GET_MODE_SIZE (GET_MODE (x));
4610 /* Try to find the element in the VEC_CONCAT. */
4611 for (;;)
4613 if (GET_MODE (op0) == GET_MODE (x))
4614 return op0;
4615 if (GET_CODE (op0) == VEC_CONCAT)
4617 HOST_WIDE_INT op0_size = GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)));
4618 if (op0_size < offset)
4619 op0 = XEXP (op0, 0);
4620 else
4622 offset -= op0_size;
4623 op0 = XEXP (op0, 1);
4626 else
4627 break;
4632 break;
4634 default:
4635 break;
4638 return x;
4641 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
4643 static rtx
4644 simplify_if_then_else (x)
4645 rtx x;
4647 enum machine_mode mode = GET_MODE (x);
4648 rtx cond = XEXP (x, 0);
4649 rtx true_rtx = XEXP (x, 1);
4650 rtx false_rtx = XEXP (x, 2);
4651 enum rtx_code true_code = GET_CODE (cond);
4652 int comparison_p = GET_RTX_CLASS (true_code) == '<';
4653 rtx temp;
4654 int i;
4655 enum rtx_code false_code;
4656 rtx reversed;
4658 /* Simplify storing of the truth value. */
4659 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
4660 return gen_binary (true_code, mode, XEXP (cond, 0), XEXP (cond, 1));
4662 /* Also when the truth value has to be reversed. */
4663 if (comparison_p
4664 && true_rtx == const0_rtx && false_rtx == const_true_rtx
4665 && (reversed = reversed_comparison (cond, mode, XEXP (cond, 0),
4666 XEXP (cond, 1))))
4667 return reversed;
4669 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4670 in it is being compared against certain values. Get the true and false
4671 comparisons and see if that says anything about the value of each arm. */
4673 if (comparison_p
4674 && ((false_code = combine_reversed_comparison_code (cond))
4675 != UNKNOWN)
4676 && GET_CODE (XEXP (cond, 0)) == REG)
4678 HOST_WIDE_INT nzb;
4679 rtx from = XEXP (cond, 0);
4680 rtx true_val = XEXP (cond, 1);
4681 rtx false_val = true_val;
4682 int swapped = 0;
4684 /* If FALSE_CODE is EQ, swap the codes and arms. */
4686 if (false_code == EQ)
4688 swapped = 1, true_code = EQ, false_code = NE;
4689 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4692 /* If we are comparing against zero and the expression being tested has
4693 only a single bit that might be nonzero, that is its value when it is
4694 not equal to zero. Similarly if it is known to be -1 or 0. */
4696 if (true_code == EQ && true_val == const0_rtx
4697 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
4698 false_code = EQ, false_val = GEN_INT (nzb);
4699 else if (true_code == EQ && true_val == const0_rtx
4700 && (num_sign_bit_copies (from, GET_MODE (from))
4701 == GET_MODE_BITSIZE (GET_MODE (from))))
4702 false_code = EQ, false_val = constm1_rtx;
4704 /* Now simplify an arm if we know the value of the register in the
4705 branch and it is used in the arm. Be careful due to the potential
4706 of locally-shared RTL. */
4708 if (reg_mentioned_p (from, true_rtx))
4709 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
4710 from, true_val),
4711 pc_rtx, pc_rtx, 0, 0);
4712 if (reg_mentioned_p (from, false_rtx))
4713 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
4714 from, false_val),
4715 pc_rtx, pc_rtx, 0, 0);
4717 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
4718 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
4720 true_rtx = XEXP (x, 1);
4721 false_rtx = XEXP (x, 2);
4722 true_code = GET_CODE (cond);
4725 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4726 reversed, do so to avoid needing two sets of patterns for
4727 subtract-and-branch insns. Similarly if we have a constant in the true
4728 arm, the false arm is the same as the first operand of the comparison, or
4729 the false arm is more complicated than the true arm. */
4731 if (comparison_p
4732 && combine_reversed_comparison_code (cond) != UNKNOWN
4733 && (true_rtx == pc_rtx
4734 || (CONSTANT_P (true_rtx)
4735 && GET_CODE (false_rtx) != CONST_INT && false_rtx != pc_rtx)
4736 || true_rtx == const0_rtx
4737 || (GET_RTX_CLASS (GET_CODE (true_rtx)) == 'o'
4738 && GET_RTX_CLASS (GET_CODE (false_rtx)) != 'o')
4739 || (GET_CODE (true_rtx) == SUBREG
4740 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (true_rtx))) == 'o'
4741 && GET_RTX_CLASS (GET_CODE (false_rtx)) != 'o')
4742 || reg_mentioned_p (true_rtx, false_rtx)
4743 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
4745 true_code = reversed_comparison_code (cond, NULL);
4746 SUBST (XEXP (x, 0),
4747 reversed_comparison (cond, GET_MODE (cond), XEXP (cond, 0),
4748 XEXP (cond, 1)));
4750 SUBST (XEXP (x, 1), false_rtx);
4751 SUBST (XEXP (x, 2), true_rtx);
4753 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4754 cond = XEXP (x, 0);
4756 /* It is possible that the conditional has been simplified out. */
4757 true_code = GET_CODE (cond);
4758 comparison_p = GET_RTX_CLASS (true_code) == '<';
4761 /* If the two arms are identical, we don't need the comparison. */
4763 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
4764 return true_rtx;
4766 /* Convert a == b ? b : a to "a". */
4767 if (true_code == EQ && ! side_effects_p (cond)
4768 && (! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4769 && rtx_equal_p (XEXP (cond, 0), false_rtx)
4770 && rtx_equal_p (XEXP (cond, 1), true_rtx))
4771 return false_rtx;
4772 else if (true_code == NE && ! side_effects_p (cond)
4773 && (! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4774 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4775 && rtx_equal_p (XEXP (cond, 1), false_rtx))
4776 return true_rtx;
4778 /* Look for cases where we have (abs x) or (neg (abs X)). */
4780 if (GET_MODE_CLASS (mode) == MODE_INT
4781 && GET_CODE (false_rtx) == NEG
4782 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
4783 && comparison_p
4784 && rtx_equal_p (true_rtx, XEXP (cond, 0))
4785 && ! side_effects_p (true_rtx))
4786 switch (true_code)
4788 case GT:
4789 case GE:
4790 return simplify_gen_unary (ABS, mode, true_rtx, mode);
4791 case LT:
4792 case LE:
4793 return
4794 simplify_gen_unary (NEG, mode,
4795 simplify_gen_unary (ABS, mode, true_rtx, mode),
4796 mode);
4797 default:
4798 break;
4801 /* Look for MIN or MAX. */
4803 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4804 && comparison_p
4805 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4806 && rtx_equal_p (XEXP (cond, 1), false_rtx)
4807 && ! side_effects_p (cond))
4808 switch (true_code)
4810 case GE:
4811 case GT:
4812 return gen_binary (SMAX, mode, true_rtx, false_rtx);
4813 case LE:
4814 case LT:
4815 return gen_binary (SMIN, mode, true_rtx, false_rtx);
4816 case GEU:
4817 case GTU:
4818 return gen_binary (UMAX, mode, true_rtx, false_rtx);
4819 case LEU:
4820 case LTU:
4821 return gen_binary (UMIN, mode, true_rtx, false_rtx);
4822 default:
4823 break;
4826 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
4827 second operand is zero, this can be done as (OP Z (mult COND C2)) where
4828 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
4829 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
4830 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
4831 neither 1 or -1, but it isn't worth checking for. */
4833 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
4834 && comparison_p && mode != VOIDmode && ! side_effects_p (x))
4836 rtx t = make_compound_operation (true_rtx, SET);
4837 rtx f = make_compound_operation (false_rtx, SET);
4838 rtx cond_op0 = XEXP (cond, 0);
4839 rtx cond_op1 = XEXP (cond, 1);
4840 enum rtx_code op = NIL, extend_op = NIL;
4841 enum machine_mode m = mode;
4842 rtx z = 0, c1 = NULL_RTX;
4844 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
4845 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
4846 || GET_CODE (t) == ASHIFT
4847 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
4848 && rtx_equal_p (XEXP (t, 0), f))
4849 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
4851 /* If an identity-zero op is commutative, check whether there
4852 would be a match if we swapped the operands. */
4853 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
4854 || GET_CODE (t) == XOR)
4855 && rtx_equal_p (XEXP (t, 1), f))
4856 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
4857 else if (GET_CODE (t) == SIGN_EXTEND
4858 && (GET_CODE (XEXP (t, 0)) == PLUS
4859 || GET_CODE (XEXP (t, 0)) == MINUS
4860 || GET_CODE (XEXP (t, 0)) == IOR
4861 || GET_CODE (XEXP (t, 0)) == XOR
4862 || GET_CODE (XEXP (t, 0)) == ASHIFT
4863 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4864 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4865 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4866 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4867 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4868 && (num_sign_bit_copies (f, GET_MODE (f))
4869 > (GET_MODE_BITSIZE (mode)
4870 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
4872 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4873 extend_op = SIGN_EXTEND;
4874 m = GET_MODE (XEXP (t, 0));
4876 else if (GET_CODE (t) == SIGN_EXTEND
4877 && (GET_CODE (XEXP (t, 0)) == PLUS
4878 || GET_CODE (XEXP (t, 0)) == IOR
4879 || GET_CODE (XEXP (t, 0)) == XOR)
4880 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4881 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4882 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4883 && (num_sign_bit_copies (f, GET_MODE (f))
4884 > (GET_MODE_BITSIZE (mode)
4885 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
4887 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4888 extend_op = SIGN_EXTEND;
4889 m = GET_MODE (XEXP (t, 0));
4891 else if (GET_CODE (t) == ZERO_EXTEND
4892 && (GET_CODE (XEXP (t, 0)) == PLUS
4893 || GET_CODE (XEXP (t, 0)) == MINUS
4894 || GET_CODE (XEXP (t, 0)) == IOR
4895 || GET_CODE (XEXP (t, 0)) == XOR
4896 || GET_CODE (XEXP (t, 0)) == ASHIFT
4897 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4898 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4899 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4900 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4901 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4902 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4903 && ((nonzero_bits (f, GET_MODE (f))
4904 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
4905 == 0))
4907 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4908 extend_op = ZERO_EXTEND;
4909 m = GET_MODE (XEXP (t, 0));
4911 else if (GET_CODE (t) == ZERO_EXTEND
4912 && (GET_CODE (XEXP (t, 0)) == PLUS
4913 || GET_CODE (XEXP (t, 0)) == IOR
4914 || GET_CODE (XEXP (t, 0)) == XOR)
4915 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4916 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4917 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4918 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4919 && ((nonzero_bits (f, GET_MODE (f))
4920 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
4921 == 0))
4923 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4924 extend_op = ZERO_EXTEND;
4925 m = GET_MODE (XEXP (t, 0));
4928 if (z)
4930 temp = subst (gen_binary (true_code, m, cond_op0, cond_op1),
4931 pc_rtx, pc_rtx, 0, 0);
4932 temp = gen_binary (MULT, m, temp,
4933 gen_binary (MULT, m, c1, const_true_rtx));
4934 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
4935 temp = gen_binary (op, m, gen_lowpart_for_combine (m, z), temp);
4937 if (extend_op != NIL)
4938 temp = simplify_gen_unary (extend_op, mode, temp, m);
4940 return temp;
4944 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
4945 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
4946 negation of a single bit, we can convert this operation to a shift. We
4947 can actually do this more generally, but it doesn't seem worth it. */
4949 if (true_code == NE && XEXP (cond, 1) == const0_rtx
4950 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
4951 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
4952 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
4953 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
4954 == GET_MODE_BITSIZE (mode))
4955 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
4956 return
4957 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4958 gen_lowpart_for_combine (mode, XEXP (cond, 0)), i);
4960 return x;
4963 /* Simplify X, a SET expression. Return the new expression. */
4965 static rtx
4966 simplify_set (x)
4967 rtx x;
4969 rtx src = SET_SRC (x);
4970 rtx dest = SET_DEST (x);
4971 enum machine_mode mode
4972 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
4973 rtx other_insn;
4974 rtx *cc_use;
4976 /* (set (pc) (return)) gets written as (return). */
4977 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
4978 return src;
4980 /* Now that we know for sure which bits of SRC we are using, see if we can
4981 simplify the expression for the object knowing that we only need the
4982 low-order bits. */
4984 if (GET_MODE_CLASS (mode) == MODE_INT)
4986 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, NULL_RTX, 0);
4987 SUBST (SET_SRC (x), src);
4990 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
4991 the comparison result and try to simplify it unless we already have used
4992 undobuf.other_insn. */
4993 if ((GET_CODE (src) == COMPARE
4994 #ifdef HAVE_cc0
4995 || dest == cc0_rtx
4996 #endif
4998 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
4999 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
5000 && GET_RTX_CLASS (GET_CODE (*cc_use)) == '<'
5001 && rtx_equal_p (XEXP (*cc_use, 0), dest))
5003 enum rtx_code old_code = GET_CODE (*cc_use);
5004 enum rtx_code new_code;
5005 rtx op0, op1;
5006 int other_changed = 0;
5007 enum machine_mode compare_mode = GET_MODE (dest);
5009 if (GET_CODE (src) == COMPARE)
5010 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
5011 else
5012 op0 = src, op1 = const0_rtx;
5014 /* Simplify our comparison, if possible. */
5015 new_code = simplify_comparison (old_code, &op0, &op1);
5017 #ifdef EXTRA_CC_MODES
5018 /* If this machine has CC modes other than CCmode, check to see if we
5019 need to use a different CC mode here. */
5020 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
5021 #endif /* EXTRA_CC_MODES */
5023 #if !defined (HAVE_cc0) && defined (EXTRA_CC_MODES)
5024 /* If the mode changed, we have to change SET_DEST, the mode in the
5025 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5026 a hard register, just build new versions with the proper mode. If it
5027 is a pseudo, we lose unless it is only time we set the pseudo, in
5028 which case we can safely change its mode. */
5029 if (compare_mode != GET_MODE (dest))
5031 unsigned int regno = REGNO (dest);
5032 rtx new_dest = gen_rtx_REG (compare_mode, regno);
5034 if (regno < FIRST_PSEUDO_REGISTER
5035 || (REG_N_SETS (regno) == 1 && ! REG_USERVAR_P (dest)))
5037 if (regno >= FIRST_PSEUDO_REGISTER)
5038 SUBST (regno_reg_rtx[regno], new_dest);
5040 SUBST (SET_DEST (x), new_dest);
5041 SUBST (XEXP (*cc_use, 0), new_dest);
5042 other_changed = 1;
5044 dest = new_dest;
5047 #endif
5049 /* If the code changed, we have to build a new comparison in
5050 undobuf.other_insn. */
5051 if (new_code != old_code)
5053 unsigned HOST_WIDE_INT mask;
5055 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5056 dest, const0_rtx));
5058 /* If the only change we made was to change an EQ into an NE or
5059 vice versa, OP0 has only one bit that might be nonzero, and OP1
5060 is zero, check if changing the user of the condition code will
5061 produce a valid insn. If it won't, we can keep the original code
5062 in that insn by surrounding our operation with an XOR. */
5064 if (((old_code == NE && new_code == EQ)
5065 || (old_code == EQ && new_code == NE))
5066 && ! other_changed && op1 == const0_rtx
5067 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
5068 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
5070 rtx pat = PATTERN (other_insn), note = 0;
5072 if ((recog_for_combine (&pat, other_insn, &note) < 0
5073 && ! check_asm_operands (pat)))
5075 PUT_CODE (*cc_use, old_code);
5076 other_insn = 0;
5078 op0 = gen_binary (XOR, GET_MODE (op0), op0, GEN_INT (mask));
5082 other_changed = 1;
5085 if (other_changed)
5086 undobuf.other_insn = other_insn;
5088 #ifdef HAVE_cc0
5089 /* If we are now comparing against zero, change our source if
5090 needed. If we do not use cc0, we always have a COMPARE. */
5091 if (op1 == const0_rtx && dest == cc0_rtx)
5093 SUBST (SET_SRC (x), op0);
5094 src = op0;
5096 else
5097 #endif
5099 /* Otherwise, if we didn't previously have a COMPARE in the
5100 correct mode, we need one. */
5101 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5103 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5104 src = SET_SRC (x);
5106 else
5108 /* Otherwise, update the COMPARE if needed. */
5109 SUBST (XEXP (src, 0), op0);
5110 SUBST (XEXP (src, 1), op1);
5113 else
5115 /* Get SET_SRC in a form where we have placed back any
5116 compound expressions. Then do the checks below. */
5117 src = make_compound_operation (src, SET);
5118 SUBST (SET_SRC (x), src);
5121 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5122 and X being a REG or (subreg (reg)), we may be able to convert this to
5123 (set (subreg:m2 x) (op)).
5125 We can always do this if M1 is narrower than M2 because that means that
5126 we only care about the low bits of the result.
5128 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5129 perform a narrower operation than requested since the high-order bits will
5130 be undefined. On machine where it is defined, this transformation is safe
5131 as long as M1 and M2 have the same number of words. */
5133 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5134 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (src))) != 'o'
5135 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5136 / UNITS_PER_WORD)
5137 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5138 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5139 #ifndef WORD_REGISTER_OPERATIONS
5140 && (GET_MODE_SIZE (GET_MODE (src))
5141 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5142 #endif
5143 #ifdef CLASS_CANNOT_CHANGE_MODE
5144 && ! (GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER
5145 && (TEST_HARD_REG_BIT
5146 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
5147 REGNO (dest)))
5148 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (src),
5149 GET_MODE (SUBREG_REG (src))))
5150 #endif
5151 && (GET_CODE (dest) == REG
5152 || (GET_CODE (dest) == SUBREG
5153 && GET_CODE (SUBREG_REG (dest)) == REG)))
5155 SUBST (SET_DEST (x),
5156 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (src)),
5157 dest));
5158 SUBST (SET_SRC (x), SUBREG_REG (src));
5160 src = SET_SRC (x), dest = SET_DEST (x);
5163 #ifdef HAVE_cc0
5164 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
5165 in SRC. */
5166 if (dest == cc0_rtx
5167 && GET_CODE (src) == SUBREG
5168 && subreg_lowpart_p (src)
5169 && (GET_MODE_BITSIZE (GET_MODE (src))
5170 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
5172 rtx inner = SUBREG_REG (src);
5173 enum machine_mode inner_mode = GET_MODE (inner);
5175 /* Here we make sure that we don't have a sign bit on. */
5176 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
5177 && (nonzero_bits (inner, inner_mode)
5178 < ((unsigned HOST_WIDE_INT) 1
5179 << (GET_MODE_BITSIZE (inner_mode) - 1))))
5181 SUBST (SET_SRC (x), inner);
5182 src = SET_SRC (x);
5185 #endif
5187 #ifdef LOAD_EXTEND_OP
5188 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5189 would require a paradoxical subreg. Replace the subreg with a
5190 zero_extend to avoid the reload that would otherwise be required. */
5192 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5193 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != NIL
5194 && SUBREG_BYTE (src) == 0
5195 && (GET_MODE_SIZE (GET_MODE (src))
5196 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5197 && GET_CODE (SUBREG_REG (src)) == MEM)
5199 SUBST (SET_SRC (x),
5200 gen_rtx (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5201 GET_MODE (src), SUBREG_REG (src)));
5203 src = SET_SRC (x);
5205 #endif
5207 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5208 are comparing an item known to be 0 or -1 against 0, use a logical
5209 operation instead. Check for one of the arms being an IOR of the other
5210 arm with some value. We compute three terms to be IOR'ed together. In
5211 practice, at most two will be nonzero. Then we do the IOR's. */
5213 if (GET_CODE (dest) != PC
5214 && GET_CODE (src) == IF_THEN_ELSE
5215 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5216 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5217 && XEXP (XEXP (src, 0), 1) == const0_rtx
5218 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5219 #ifdef HAVE_conditional_move
5220 && ! can_conditionally_move_p (GET_MODE (src))
5221 #endif
5222 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5223 GET_MODE (XEXP (XEXP (src, 0), 0)))
5224 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5225 && ! side_effects_p (src))
5227 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
5228 ? XEXP (src, 1) : XEXP (src, 2));
5229 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
5230 ? XEXP (src, 2) : XEXP (src, 1));
5231 rtx term1 = const0_rtx, term2, term3;
5233 if (GET_CODE (true_rtx) == IOR
5234 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5235 term1 = false_rtx, true_rtx = XEXP(true_rtx, 1), false_rtx = const0_rtx;
5236 else if (GET_CODE (true_rtx) == IOR
5237 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5238 term1 = false_rtx, true_rtx = XEXP(true_rtx, 0), false_rtx = const0_rtx;
5239 else if (GET_CODE (false_rtx) == IOR
5240 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5241 term1 = true_rtx, false_rtx = XEXP(false_rtx, 1), true_rtx = const0_rtx;
5242 else if (GET_CODE (false_rtx) == IOR
5243 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5244 term1 = true_rtx, false_rtx = XEXP(false_rtx, 0), true_rtx = const0_rtx;
5246 term2 = gen_binary (AND, GET_MODE (src),
5247 XEXP (XEXP (src, 0), 0), true_rtx);
5248 term3 = gen_binary (AND, GET_MODE (src),
5249 simplify_gen_unary (NOT, GET_MODE (src),
5250 XEXP (XEXP (src, 0), 0),
5251 GET_MODE (src)),
5252 false_rtx);
5254 SUBST (SET_SRC (x),
5255 gen_binary (IOR, GET_MODE (src),
5256 gen_binary (IOR, GET_MODE (src), term1, term2),
5257 term3));
5259 src = SET_SRC (x);
5262 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5263 whole thing fail. */
5264 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5265 return src;
5266 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5267 return dest;
5268 else
5269 /* Convert this into a field assignment operation, if possible. */
5270 return make_field_assignment (x);
5273 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5274 result. LAST is nonzero if this is the last retry. */
5276 static rtx
5277 simplify_logical (x, last)
5278 rtx x;
5279 int last;
5281 enum machine_mode mode = GET_MODE (x);
5282 rtx op0 = XEXP (x, 0);
5283 rtx op1 = XEXP (x, 1);
5284 rtx reversed;
5286 switch (GET_CODE (x))
5288 case AND:
5289 /* Convert (A ^ B) & A to A & (~B) since the latter is often a single
5290 insn (and may simplify more). */
5291 if (GET_CODE (op0) == XOR
5292 && rtx_equal_p (XEXP (op0, 0), op1)
5293 && ! side_effects_p (op1))
5294 x = gen_binary (AND, mode,
5295 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5296 op1);
5298 if (GET_CODE (op0) == XOR
5299 && rtx_equal_p (XEXP (op0, 1), op1)
5300 && ! side_effects_p (op1))
5301 x = gen_binary (AND, mode,
5302 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5303 op1);
5305 /* Similarly for (~(A ^ B)) & A. */
5306 if (GET_CODE (op0) == NOT
5307 && GET_CODE (XEXP (op0, 0)) == XOR
5308 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
5309 && ! side_effects_p (op1))
5310 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
5312 if (GET_CODE (op0) == NOT
5313 && GET_CODE (XEXP (op0, 0)) == XOR
5314 && rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
5315 && ! side_effects_p (op1))
5316 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
5318 /* We can call simplify_and_const_int only if we don't lose
5319 any (sign) bits when converting INTVAL (op1) to
5320 "unsigned HOST_WIDE_INT". */
5321 if (GET_CODE (op1) == CONST_INT
5322 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5323 || INTVAL (op1) > 0))
5325 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5327 /* If we have (ior (and (X C1) C2)) and the next restart would be
5328 the last, simplify this by making C1 as small as possible
5329 and then exit. */
5330 if (last
5331 && GET_CODE (x) == IOR && GET_CODE (op0) == AND
5332 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5333 && GET_CODE (op1) == CONST_INT)
5334 return gen_binary (IOR, mode,
5335 gen_binary (AND, mode, XEXP (op0, 0),
5336 GEN_INT (INTVAL (XEXP (op0, 1))
5337 & ~INTVAL (op1))), op1);
5339 if (GET_CODE (x) != AND)
5340 return x;
5342 if (GET_RTX_CLASS (GET_CODE (x)) == 'c'
5343 || GET_RTX_CLASS (GET_CODE (x)) == '2')
5344 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5347 /* Convert (A | B) & A to A. */
5348 if (GET_CODE (op0) == IOR
5349 && (rtx_equal_p (XEXP (op0, 0), op1)
5350 || rtx_equal_p (XEXP (op0, 1), op1))
5351 && ! side_effects_p (XEXP (op0, 0))
5352 && ! side_effects_p (XEXP (op0, 1)))
5353 return op1;
5355 /* In the following group of tests (and those in case IOR below),
5356 we start with some combination of logical operations and apply
5357 the distributive law followed by the inverse distributive law.
5358 Most of the time, this results in no change. However, if some of
5359 the operands are the same or inverses of each other, simplifications
5360 will result.
5362 For example, (and (ior A B) (not B)) can occur as the result of
5363 expanding a bit field assignment. When we apply the distributive
5364 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
5365 which then simplifies to (and (A (not B))).
5367 If we have (and (ior A B) C), apply the distributive law and then
5368 the inverse distributive law to see if things simplify. */
5370 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5372 x = apply_distributive_law
5373 (gen_binary (GET_CODE (op0), mode,
5374 gen_binary (AND, mode, XEXP (op0, 0), op1),
5375 gen_binary (AND, mode, XEXP (op0, 1),
5376 copy_rtx (op1))));
5377 if (GET_CODE (x) != AND)
5378 return x;
5381 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5382 return apply_distributive_law
5383 (gen_binary (GET_CODE (op1), mode,
5384 gen_binary (AND, mode, XEXP (op1, 0), op0),
5385 gen_binary (AND, mode, XEXP (op1, 1),
5386 copy_rtx (op0))));
5388 /* Similarly, taking advantage of the fact that
5389 (and (not A) (xor B C)) == (xor (ior A B) (ior A C)) */
5391 if (GET_CODE (op0) == NOT && GET_CODE (op1) == XOR)
5392 return apply_distributive_law
5393 (gen_binary (XOR, mode,
5394 gen_binary (IOR, mode, XEXP (op0, 0), XEXP (op1, 0)),
5395 gen_binary (IOR, mode, copy_rtx (XEXP (op0, 0)),
5396 XEXP (op1, 1))));
5398 else if (GET_CODE (op1) == NOT && GET_CODE (op0) == XOR)
5399 return apply_distributive_law
5400 (gen_binary (XOR, mode,
5401 gen_binary (IOR, mode, XEXP (op1, 0), XEXP (op0, 0)),
5402 gen_binary (IOR, mode, copy_rtx (XEXP (op1, 0)), XEXP (op0, 1))));
5403 break;
5405 case IOR:
5406 /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
5407 if (GET_CODE (op1) == CONST_INT
5408 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5409 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
5410 return op1;
5412 /* Convert (A & B) | A to A. */
5413 if (GET_CODE (op0) == AND
5414 && (rtx_equal_p (XEXP (op0, 0), op1)
5415 || rtx_equal_p (XEXP (op0, 1), op1))
5416 && ! side_effects_p (XEXP (op0, 0))
5417 && ! side_effects_p (XEXP (op0, 1)))
5418 return op1;
5420 /* If we have (ior (and A B) C), apply the distributive law and then
5421 the inverse distributive law to see if things simplify. */
5423 if (GET_CODE (op0) == AND)
5425 x = apply_distributive_law
5426 (gen_binary (AND, mode,
5427 gen_binary (IOR, mode, XEXP (op0, 0), op1),
5428 gen_binary (IOR, mode, XEXP (op0, 1),
5429 copy_rtx (op1))));
5431 if (GET_CODE (x) != IOR)
5432 return x;
5435 if (GET_CODE (op1) == AND)
5437 x = apply_distributive_law
5438 (gen_binary (AND, mode,
5439 gen_binary (IOR, mode, XEXP (op1, 0), op0),
5440 gen_binary (IOR, mode, XEXP (op1, 1),
5441 copy_rtx (op0))));
5443 if (GET_CODE (x) != IOR)
5444 return x;
5447 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
5448 mode size to (rotate A CX). */
5450 if (((GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT)
5451 || (GET_CODE (op1) == ASHIFT && GET_CODE (op0) == LSHIFTRT))
5452 && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
5453 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5454 && GET_CODE (XEXP (op1, 1)) == CONST_INT
5455 && (INTVAL (XEXP (op0, 1)) + INTVAL (XEXP (op1, 1))
5456 == GET_MODE_BITSIZE (mode)))
5457 return gen_rtx_ROTATE (mode, XEXP (op0, 0),
5458 (GET_CODE (op0) == ASHIFT
5459 ? XEXP (op0, 1) : XEXP (op1, 1)));
5461 /* If OP0 is (ashiftrt (plus ...) C), it might actually be
5462 a (sign_extend (plus ...)). If so, OP1 is a CONST_INT, and the PLUS
5463 does not affect any of the bits in OP1, it can really be done
5464 as a PLUS and we can associate. We do this by seeing if OP1
5465 can be safely shifted left C bits. */
5466 if (GET_CODE (op1) == CONST_INT && GET_CODE (op0) == ASHIFTRT
5467 && GET_CODE (XEXP (op0, 0)) == PLUS
5468 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
5469 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5470 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
5472 int count = INTVAL (XEXP (op0, 1));
5473 HOST_WIDE_INT mask = INTVAL (op1) << count;
5475 if (mask >> count == INTVAL (op1)
5476 && (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
5478 SUBST (XEXP (XEXP (op0, 0), 1),
5479 GEN_INT (INTVAL (XEXP (XEXP (op0, 0), 1)) | mask));
5480 return op0;
5483 break;
5485 case XOR:
5486 /* If we are XORing two things that have no bits in common,
5487 convert them into an IOR. This helps to detect rotation encoded
5488 using those methods and possibly other simplifications. */
5490 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5491 && (nonzero_bits (op0, mode)
5492 & nonzero_bits (op1, mode)) == 0)
5493 return (gen_binary (IOR, mode, op0, op1));
5495 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
5496 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
5497 (NOT y). */
5499 int num_negated = 0;
5501 if (GET_CODE (op0) == NOT)
5502 num_negated++, op0 = XEXP (op0, 0);
5503 if (GET_CODE (op1) == NOT)
5504 num_negated++, op1 = XEXP (op1, 0);
5506 if (num_negated == 2)
5508 SUBST (XEXP (x, 0), op0);
5509 SUBST (XEXP (x, 1), op1);
5511 else if (num_negated == 1)
5512 return
5513 simplify_gen_unary (NOT, mode, gen_binary (XOR, mode, op0, op1),
5514 mode);
5517 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
5518 correspond to a machine insn or result in further simplifications
5519 if B is a constant. */
5521 if (GET_CODE (op0) == AND
5522 && rtx_equal_p (XEXP (op0, 1), op1)
5523 && ! side_effects_p (op1))
5524 return gen_binary (AND, mode,
5525 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5526 op1);
5528 else if (GET_CODE (op0) == AND
5529 && rtx_equal_p (XEXP (op0, 0), op1)
5530 && ! side_effects_p (op1))
5531 return gen_binary (AND, mode,
5532 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5533 op1);
5535 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
5536 comparison if STORE_FLAG_VALUE is 1. */
5537 if (STORE_FLAG_VALUE == 1
5538 && op1 == const1_rtx
5539 && GET_RTX_CLASS (GET_CODE (op0)) == '<'
5540 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5541 XEXP (op0, 1))))
5542 return reversed;
5544 /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
5545 is (lt foo (const_int 0)), so we can perform the above
5546 simplification if STORE_FLAG_VALUE is 1. */
5548 if (STORE_FLAG_VALUE == 1
5549 && op1 == const1_rtx
5550 && GET_CODE (op0) == LSHIFTRT
5551 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5552 && INTVAL (XEXP (op0, 1)) == GET_MODE_BITSIZE (mode) - 1)
5553 return gen_rtx_GE (mode, XEXP (op0, 0), const0_rtx);
5555 /* (xor (comparison foo bar) (const_int sign-bit))
5556 when STORE_FLAG_VALUE is the sign bit. */
5557 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5558 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5559 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5560 && op1 == const_true_rtx
5561 && GET_RTX_CLASS (GET_CODE (op0)) == '<'
5562 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5563 XEXP (op0, 1))))
5564 return reversed;
5566 break;
5568 default:
5569 abort ();
5572 return x;
5575 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5576 operations" because they can be replaced with two more basic operations.
5577 ZERO_EXTEND is also considered "compound" because it can be replaced with
5578 an AND operation, which is simpler, though only one operation.
5580 The function expand_compound_operation is called with an rtx expression
5581 and will convert it to the appropriate shifts and AND operations,
5582 simplifying at each stage.
5584 The function make_compound_operation is called to convert an expression
5585 consisting of shifts and ANDs into the equivalent compound expression.
5586 It is the inverse of this function, loosely speaking. */
5588 static rtx
5589 expand_compound_operation (x)
5590 rtx x;
5592 unsigned HOST_WIDE_INT pos = 0, len;
5593 int unsignedp = 0;
5594 unsigned int modewidth;
5595 rtx tem;
5597 switch (GET_CODE (x))
5599 case ZERO_EXTEND:
5600 unsignedp = 1;
5601 case SIGN_EXTEND:
5602 /* We can't necessarily use a const_int for a multiword mode;
5603 it depends on implicitly extending the value.
5604 Since we don't know the right way to extend it,
5605 we can't tell whether the implicit way is right.
5607 Even for a mode that is no wider than a const_int,
5608 we can't win, because we need to sign extend one of its bits through
5609 the rest of it, and we don't know which bit. */
5610 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
5611 return x;
5613 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5614 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
5615 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5616 reloaded. If not for that, MEM's would very rarely be safe.
5618 Reject MODEs bigger than a word, because we might not be able
5619 to reference a two-register group starting with an arbitrary register
5620 (and currently gen_lowpart might crash for a SUBREG). */
5622 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
5623 return x;
5625 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
5626 /* If the inner object has VOIDmode (the only way this can happen
5627 is if it is an ASM_OPERANDS), we can't do anything since we don't
5628 know how much masking to do. */
5629 if (len == 0)
5630 return x;
5632 break;
5634 case ZERO_EXTRACT:
5635 unsignedp = 1;
5636 case SIGN_EXTRACT:
5637 /* If the operand is a CLOBBER, just return it. */
5638 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
5639 return XEXP (x, 0);
5641 if (GET_CODE (XEXP (x, 1)) != CONST_INT
5642 || GET_CODE (XEXP (x, 2)) != CONST_INT
5643 || GET_MODE (XEXP (x, 0)) == VOIDmode)
5644 return x;
5646 len = INTVAL (XEXP (x, 1));
5647 pos = INTVAL (XEXP (x, 2));
5649 /* If this goes outside the object being extracted, replace the object
5650 with a (use (mem ...)) construct that only combine understands
5651 and is used only for this purpose. */
5652 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
5653 SUBST (XEXP (x, 0), gen_rtx_USE (GET_MODE (x), XEXP (x, 0)));
5655 if (BITS_BIG_ENDIAN)
5656 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
5658 break;
5660 default:
5661 return x;
5663 /* Convert sign extension to zero extension, if we know that the high
5664 bit is not set, as this is easier to optimize. It will be converted
5665 back to cheaper alternative in make_extraction. */
5666 if (GET_CODE (x) == SIGN_EXTEND
5667 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5668 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
5669 & ~(((unsigned HOST_WIDE_INT)
5670 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
5671 >> 1))
5672 == 0)))
5674 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
5675 return expand_compound_operation (temp);
5678 /* We can optimize some special cases of ZERO_EXTEND. */
5679 if (GET_CODE (x) == ZERO_EXTEND)
5681 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5682 know that the last value didn't have any inappropriate bits
5683 set. */
5684 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5685 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5686 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5687 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
5688 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5689 return XEXP (XEXP (x, 0), 0);
5691 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5692 if (GET_CODE (XEXP (x, 0)) == SUBREG
5693 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5694 && subreg_lowpart_p (XEXP (x, 0))
5695 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5696 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
5697 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5698 return SUBREG_REG (XEXP (x, 0));
5700 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5701 is a comparison and STORE_FLAG_VALUE permits. This is like
5702 the first case, but it works even when GET_MODE (x) is larger
5703 than HOST_WIDE_INT. */
5704 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5705 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5706 && GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) == '<'
5707 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5708 <= HOST_BITS_PER_WIDE_INT)
5709 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5710 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5711 return XEXP (XEXP (x, 0), 0);
5713 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5714 if (GET_CODE (XEXP (x, 0)) == SUBREG
5715 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5716 && subreg_lowpart_p (XEXP (x, 0))
5717 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0)))) == '<'
5718 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5719 <= HOST_BITS_PER_WIDE_INT)
5720 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5721 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5722 return SUBREG_REG (XEXP (x, 0));
5726 /* If we reach here, we want to return a pair of shifts. The inner
5727 shift is a left shift of BITSIZE - POS - LEN bits. The outer
5728 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
5729 logical depending on the value of UNSIGNEDP.
5731 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
5732 converted into an AND of a shift.
5734 We must check for the case where the left shift would have a negative
5735 count. This can happen in a case like (x >> 31) & 255 on machines
5736 that can't shift by a constant. On those machines, we would first
5737 combine the shift with the AND to produce a variable-position
5738 extraction. Then the constant of 31 would be substituted in to produce
5739 a such a position. */
5741 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
5742 if (modewidth + len >= pos)
5743 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
5744 GET_MODE (x),
5745 simplify_shift_const (NULL_RTX, ASHIFT,
5746 GET_MODE (x),
5747 XEXP (x, 0),
5748 modewidth - pos - len),
5749 modewidth - len);
5751 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
5752 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
5753 simplify_shift_const (NULL_RTX, LSHIFTRT,
5754 GET_MODE (x),
5755 XEXP (x, 0), pos),
5756 ((HOST_WIDE_INT) 1 << len) - 1);
5757 else
5758 /* Any other cases we can't handle. */
5759 return x;
5761 /* If we couldn't do this for some reason, return the original
5762 expression. */
5763 if (GET_CODE (tem) == CLOBBER)
5764 return x;
5766 return tem;
5769 /* X is a SET which contains an assignment of one object into
5770 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
5771 or certain SUBREGS). If possible, convert it into a series of
5772 logical operations.
5774 We half-heartedly support variable positions, but do not at all
5775 support variable lengths. */
5777 static rtx
5778 expand_field_assignment (x)
5779 rtx x;
5781 rtx inner;
5782 rtx pos; /* Always counts from low bit. */
5783 int len;
5784 rtx mask;
5785 enum machine_mode compute_mode;
5787 /* Loop until we find something we can't simplify. */
5788 while (1)
5790 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
5791 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
5793 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
5794 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
5795 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
5797 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5798 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
5800 inner = XEXP (SET_DEST (x), 0);
5801 len = INTVAL (XEXP (SET_DEST (x), 1));
5802 pos = XEXP (SET_DEST (x), 2);
5804 /* If the position is constant and spans the width of INNER,
5805 surround INNER with a USE to indicate this. */
5806 if (GET_CODE (pos) == CONST_INT
5807 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
5808 inner = gen_rtx_USE (GET_MODE (SET_DEST (x)), inner);
5810 if (BITS_BIG_ENDIAN)
5812 if (GET_CODE (pos) == CONST_INT)
5813 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
5814 - INTVAL (pos));
5815 else if (GET_CODE (pos) == MINUS
5816 && GET_CODE (XEXP (pos, 1)) == CONST_INT
5817 && (INTVAL (XEXP (pos, 1))
5818 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
5819 /* If position is ADJUST - X, new position is X. */
5820 pos = XEXP (pos, 0);
5821 else
5822 pos = gen_binary (MINUS, GET_MODE (pos),
5823 GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner))
5824 - len),
5825 pos);
5829 /* A SUBREG between two modes that occupy the same numbers of words
5830 can be done by moving the SUBREG to the source. */
5831 else if (GET_CODE (SET_DEST (x)) == SUBREG
5832 /* We need SUBREGs to compute nonzero_bits properly. */
5833 && nonzero_sign_valid
5834 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
5835 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
5836 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
5837 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
5839 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
5840 gen_lowpart_for_combine
5841 (GET_MODE (SUBREG_REG (SET_DEST (x))),
5842 SET_SRC (x)));
5843 continue;
5845 else
5846 break;
5848 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5849 inner = SUBREG_REG (inner);
5851 compute_mode = GET_MODE (inner);
5853 /* Don't attempt bitwise arithmetic on non-integral modes. */
5854 if (! INTEGRAL_MODE_P (compute_mode))
5856 enum machine_mode imode;
5858 /* Something is probably seriously wrong if this matches. */
5859 if (! FLOAT_MODE_P (compute_mode))
5860 break;
5862 /* Try to find an integral mode to pun with. */
5863 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
5864 if (imode == BLKmode)
5865 break;
5867 compute_mode = imode;
5868 inner = gen_lowpart_for_combine (imode, inner);
5871 /* Compute a mask of LEN bits, if we can do this on the host machine. */
5872 if (len < HOST_BITS_PER_WIDE_INT)
5873 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
5874 else
5875 break;
5877 /* Now compute the equivalent expression. Make a copy of INNER
5878 for the SET_DEST in case it is a MEM into which we will substitute;
5879 we don't want shared RTL in that case. */
5880 x = gen_rtx_SET
5881 (VOIDmode, copy_rtx (inner),
5882 gen_binary (IOR, compute_mode,
5883 gen_binary (AND, compute_mode,
5884 simplify_gen_unary (NOT, compute_mode,
5885 gen_binary (ASHIFT,
5886 compute_mode,
5887 mask, pos),
5888 compute_mode),
5889 inner),
5890 gen_binary (ASHIFT, compute_mode,
5891 gen_binary (AND, compute_mode,
5892 gen_lowpart_for_combine
5893 (compute_mode, SET_SRC (x)),
5894 mask),
5895 pos)));
5898 return x;
5901 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
5902 it is an RTX that represents a variable starting position; otherwise,
5903 POS is the (constant) starting bit position (counted from the LSB).
5905 INNER may be a USE. This will occur when we started with a bitfield
5906 that went outside the boundary of the object in memory, which is
5907 allowed on most machines. To isolate this case, we produce a USE
5908 whose mode is wide enough and surround the MEM with it. The only
5909 code that understands the USE is this routine. If it is not removed,
5910 it will cause the resulting insn not to match.
5912 UNSIGNEDP is non-zero for an unsigned reference and zero for a
5913 signed reference.
5915 IN_DEST is non-zero if this is a reference in the destination of a
5916 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If non-zero,
5917 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
5918 be used.
5920 IN_COMPARE is non-zero if we are in a COMPARE. This means that a
5921 ZERO_EXTRACT should be built even for bits starting at bit 0.
5923 MODE is the desired mode of the result (if IN_DEST == 0).
5925 The result is an RTX for the extraction or NULL_RTX if the target
5926 can't handle it. */
5928 static rtx
5929 make_extraction (mode, inner, pos, pos_rtx, len,
5930 unsignedp, in_dest, in_compare)
5931 enum machine_mode mode;
5932 rtx inner;
5933 HOST_WIDE_INT pos;
5934 rtx pos_rtx;
5935 unsigned HOST_WIDE_INT len;
5936 int unsignedp;
5937 int in_dest, in_compare;
5939 /* This mode describes the size of the storage area
5940 to fetch the overall value from. Within that, we
5941 ignore the POS lowest bits, etc. */
5942 enum machine_mode is_mode = GET_MODE (inner);
5943 enum machine_mode inner_mode;
5944 enum machine_mode wanted_inner_mode = byte_mode;
5945 enum machine_mode wanted_inner_reg_mode = word_mode;
5946 enum machine_mode pos_mode = word_mode;
5947 enum machine_mode extraction_mode = word_mode;
5948 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
5949 int spans_byte = 0;
5950 rtx new = 0;
5951 rtx orig_pos_rtx = pos_rtx;
5952 HOST_WIDE_INT orig_pos;
5954 /* Get some information about INNER and get the innermost object. */
5955 if (GET_CODE (inner) == USE)
5956 /* (use:SI (mem:QI foo)) stands for (mem:SI foo). */
5957 /* We don't need to adjust the position because we set up the USE
5958 to pretend that it was a full-word object. */
5959 spans_byte = 1, inner = XEXP (inner, 0);
5960 else if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5962 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
5963 consider just the QI as the memory to extract from.
5964 The subreg adds or removes high bits; its mode is
5965 irrelevant to the meaning of this extraction,
5966 since POS and LEN count from the lsb. */
5967 if (GET_CODE (SUBREG_REG (inner)) == MEM)
5968 is_mode = GET_MODE (SUBREG_REG (inner));
5969 inner = SUBREG_REG (inner);
5971 else if (GET_CODE (inner) == ASHIFT
5972 && GET_CODE (XEXP (inner, 1)) == CONST_INT
5973 && pos_rtx == 0 && pos == 0
5974 && len > INTVAL (XEXP (inner, 1)))
5976 /* We're extracting the least significant bits of an rtx
5977 (ashift X (const_int C)), where LEN > C. Extract the
5978 least significant (LEN - C) bits of X, giving an rtx
5979 whose mode is MODE, then shift it left C times. */
5980 new = make_extraction (mode, XEXP (inner, 0),
5981 0, 0, len - INTVAL (XEXP (inner, 1)),
5982 unsignedp, in_dest, in_compare);
5983 if (new != 0)
5984 return gen_rtx_ASHIFT (mode, new, XEXP (inner, 1));
5987 inner_mode = GET_MODE (inner);
5989 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
5990 pos = INTVAL (pos_rtx), pos_rtx = 0;
5992 /* See if this can be done without an extraction. We never can if the
5993 width of the field is not the same as that of some integer mode. For
5994 registers, we can only avoid the extraction if the position is at the
5995 low-order bit and this is either not in the destination or we have the
5996 appropriate STRICT_LOW_PART operation available.
5998 For MEM, we can avoid an extract if the field starts on an appropriate
5999 boundary and we can change the mode of the memory reference. However,
6000 we cannot directly access the MEM if we have a USE and the underlying
6001 MEM is not TMODE. This combination means that MEM was being used in a
6002 context where bits outside its mode were being referenced; that is only
6003 valid in bit-field insns. */
6005 if (tmode != BLKmode
6006 && ! (spans_byte && inner_mode != tmode)
6007 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
6008 && GET_CODE (inner) != MEM
6009 && (! in_dest
6010 || (GET_CODE (inner) == REG
6011 && have_insn_for (STRICT_LOW_PART, tmode))))
6012 || (GET_CODE (inner) == MEM && pos_rtx == 0
6013 && (pos
6014 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
6015 : BITS_PER_UNIT)) == 0
6016 /* We can't do this if we are widening INNER_MODE (it
6017 may not be aligned, for one thing). */
6018 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
6019 && (inner_mode == tmode
6020 || (! mode_dependent_address_p (XEXP (inner, 0))
6021 && ! MEM_VOLATILE_P (inner))))))
6023 /* If INNER is a MEM, make a new MEM that encompasses just the desired
6024 field. If the original and current mode are the same, we need not
6025 adjust the offset. Otherwise, we do if bytes big endian.
6027 If INNER is not a MEM, get a piece consisting of just the field
6028 of interest (in this case POS % BITS_PER_WORD must be 0). */
6030 if (GET_CODE (inner) == MEM)
6032 HOST_WIDE_INT offset;
6034 /* POS counts from lsb, but make OFFSET count in memory order. */
6035 if (BYTES_BIG_ENDIAN)
6036 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
6037 else
6038 offset = pos / BITS_PER_UNIT;
6040 new = adjust_address_nv (inner, tmode, offset);
6042 else if (GET_CODE (inner) == REG)
6044 /* We can't call gen_lowpart_for_combine here since we always want
6045 a SUBREG and it would sometimes return a new hard register. */
6046 if (tmode != inner_mode)
6048 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
6050 if (WORDS_BIG_ENDIAN
6051 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
6052 final_word = ((GET_MODE_SIZE (inner_mode)
6053 - GET_MODE_SIZE (tmode))
6054 / UNITS_PER_WORD) - final_word;
6056 final_word *= UNITS_PER_WORD;
6057 if (BYTES_BIG_ENDIAN &&
6058 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
6059 final_word += (GET_MODE_SIZE (inner_mode)
6060 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
6062 new = gen_rtx_SUBREG (tmode, inner, final_word);
6064 else
6065 new = inner;
6067 else
6068 new = force_to_mode (inner, tmode,
6069 len >= HOST_BITS_PER_WIDE_INT
6070 ? ~(unsigned HOST_WIDE_INT) 0
6071 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
6072 NULL_RTX, 0);
6074 /* If this extraction is going into the destination of a SET,
6075 make a STRICT_LOW_PART unless we made a MEM. */
6077 if (in_dest)
6078 return (GET_CODE (new) == MEM ? new
6079 : (GET_CODE (new) != SUBREG
6080 ? gen_rtx_CLOBBER (tmode, const0_rtx)
6081 : gen_rtx_STRICT_LOW_PART (VOIDmode, new)));
6083 if (mode == tmode)
6084 return new;
6086 if (GET_CODE (new) == CONST_INT)
6087 return gen_int_mode (INTVAL (new), mode);
6089 /* If we know that no extraneous bits are set, and that the high
6090 bit is not set, convert the extraction to the cheaper of
6091 sign and zero extension, that are equivalent in these cases. */
6092 if (flag_expensive_optimizations
6093 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6094 && ((nonzero_bits (new, tmode)
6095 & ~(((unsigned HOST_WIDE_INT)
6096 GET_MODE_MASK (tmode))
6097 >> 1))
6098 == 0)))
6100 rtx temp = gen_rtx_ZERO_EXTEND (mode, new);
6101 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new);
6103 /* Prefer ZERO_EXTENSION, since it gives more information to
6104 backends. */
6105 if (rtx_cost (temp, SET) <= rtx_cost (temp1, SET))
6106 return temp;
6107 return temp1;
6110 /* Otherwise, sign- or zero-extend unless we already are in the
6111 proper mode. */
6113 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6114 mode, new));
6117 /* Unless this is a COMPARE or we have a funny memory reference,
6118 don't do anything with zero-extending field extracts starting at
6119 the low-order bit since they are simple AND operations. */
6120 if (pos_rtx == 0 && pos == 0 && ! in_dest
6121 && ! in_compare && ! spans_byte && unsignedp)
6122 return 0;
6124 /* Unless we are allowed to span bytes or INNER is not MEM, reject this if
6125 we would be spanning bytes or if the position is not a constant and the
6126 length is not 1. In all other cases, we would only be going outside
6127 our object in cases when an original shift would have been
6128 undefined. */
6129 if (! spans_byte && GET_CODE (inner) == MEM
6130 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6131 || (pos_rtx != 0 && len != 1)))
6132 return 0;
6134 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6135 and the mode for the result. */
6136 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
6138 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6139 pos_mode = mode_for_extraction (EP_insv, 2);
6140 extraction_mode = mode_for_extraction (EP_insv, 3);
6143 if (! in_dest && unsignedp
6144 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6146 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6147 pos_mode = mode_for_extraction (EP_extzv, 3);
6148 extraction_mode = mode_for_extraction (EP_extzv, 0);
6151 if (! in_dest && ! unsignedp
6152 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6154 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6155 pos_mode = mode_for_extraction (EP_extv, 3);
6156 extraction_mode = mode_for_extraction (EP_extv, 0);
6159 /* Never narrow an object, since that might not be safe. */
6161 if (mode != VOIDmode
6162 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6163 extraction_mode = mode;
6165 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6166 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6167 pos_mode = GET_MODE (pos_rtx);
6169 /* If this is not from memory, the desired mode is wanted_inner_reg_mode;
6170 if we have to change the mode of memory and cannot, the desired mode is
6171 EXTRACTION_MODE. */
6172 if (GET_CODE (inner) != MEM)
6173 wanted_inner_mode = wanted_inner_reg_mode;
6174 else if (inner_mode != wanted_inner_mode
6175 && (mode_dependent_address_p (XEXP (inner, 0))
6176 || MEM_VOLATILE_P (inner)))
6177 wanted_inner_mode = extraction_mode;
6179 orig_pos = pos;
6181 if (BITS_BIG_ENDIAN)
6183 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6184 BITS_BIG_ENDIAN style. If position is constant, compute new
6185 position. Otherwise, build subtraction.
6186 Note that POS is relative to the mode of the original argument.
6187 If it's a MEM we need to recompute POS relative to that.
6188 However, if we're extracting from (or inserting into) a register,
6189 we want to recompute POS relative to wanted_inner_mode. */
6190 int width = (GET_CODE (inner) == MEM
6191 ? GET_MODE_BITSIZE (is_mode)
6192 : GET_MODE_BITSIZE (wanted_inner_mode));
6194 if (pos_rtx == 0)
6195 pos = width - len - pos;
6196 else
6197 pos_rtx
6198 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6199 /* POS may be less than 0 now, but we check for that below.
6200 Note that it can only be less than 0 if GET_CODE (inner) != MEM. */
6203 /* If INNER has a wider mode, make it smaller. If this is a constant
6204 extract, try to adjust the byte to point to the byte containing
6205 the value. */
6206 if (wanted_inner_mode != VOIDmode
6207 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6208 && ((GET_CODE (inner) == MEM
6209 && (inner_mode == wanted_inner_mode
6210 || (! mode_dependent_address_p (XEXP (inner, 0))
6211 && ! MEM_VOLATILE_P (inner))))))
6213 int offset = 0;
6215 /* The computations below will be correct if the machine is big
6216 endian in both bits and bytes or little endian in bits and bytes.
6217 If it is mixed, we must adjust. */
6219 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6220 adjust OFFSET to compensate. */
6221 if (BYTES_BIG_ENDIAN
6222 && ! spans_byte
6223 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6224 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6226 /* If this is a constant position, we can move to the desired byte. */
6227 if (pos_rtx == 0)
6229 offset += pos / BITS_PER_UNIT;
6230 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
6233 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6234 && ! spans_byte
6235 && is_mode != wanted_inner_mode)
6236 offset = (GET_MODE_SIZE (is_mode)
6237 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6239 if (offset != 0 || inner_mode != wanted_inner_mode)
6240 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6243 /* If INNER is not memory, we can always get it into the proper mode. If we
6244 are changing its mode, POS must be a constant and smaller than the size
6245 of the new mode. */
6246 else if (GET_CODE (inner) != MEM)
6248 if (GET_MODE (inner) != wanted_inner_mode
6249 && (pos_rtx != 0
6250 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6251 return 0;
6253 inner = force_to_mode (inner, wanted_inner_mode,
6254 pos_rtx
6255 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6256 ? ~(unsigned HOST_WIDE_INT) 0
6257 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6258 << orig_pos),
6259 NULL_RTX, 0);
6262 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6263 have to zero extend. Otherwise, we can just use a SUBREG. */
6264 if (pos_rtx != 0
6265 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6267 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6269 /* If we know that no extraneous bits are set, and that the high
6270 bit is not set, convert extraction to cheaper one - either
6271 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6272 cases. */
6273 if (flag_expensive_optimizations
6274 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6275 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6276 & ~(((unsigned HOST_WIDE_INT)
6277 GET_MODE_MASK (GET_MODE (pos_rtx)))
6278 >> 1))
6279 == 0)))
6281 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6283 /* Prefer ZERO_EXTENSION, since it gives more information to
6284 backends. */
6285 if (rtx_cost (temp1, SET) < rtx_cost (temp, SET))
6286 temp = temp1;
6288 pos_rtx = temp;
6290 else if (pos_rtx != 0
6291 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6292 pos_rtx = gen_lowpart_for_combine (pos_mode, pos_rtx);
6294 /* Make POS_RTX unless we already have it and it is correct. If we don't
6295 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6296 be a CONST_INT. */
6297 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6298 pos_rtx = orig_pos_rtx;
6300 else if (pos_rtx == 0)
6301 pos_rtx = GEN_INT (pos);
6303 /* Make the required operation. See if we can use existing rtx. */
6304 new = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6305 extraction_mode, inner, GEN_INT (len), pos_rtx);
6306 if (! in_dest)
6307 new = gen_lowpart_for_combine (mode, new);
6309 return new;
6312 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6313 with any other operations in X. Return X without that shift if so. */
6315 static rtx
6316 extract_left_shift (x, count)
6317 rtx x;
6318 int count;
6320 enum rtx_code code = GET_CODE (x);
6321 enum machine_mode mode = GET_MODE (x);
6322 rtx tem;
6324 switch (code)
6326 case ASHIFT:
6327 /* This is the shift itself. If it is wide enough, we will return
6328 either the value being shifted if the shift count is equal to
6329 COUNT or a shift for the difference. */
6330 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6331 && INTVAL (XEXP (x, 1)) >= count)
6332 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6333 INTVAL (XEXP (x, 1)) - count);
6334 break;
6336 case NEG: case NOT:
6337 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6338 return simplify_gen_unary (code, mode, tem, mode);
6340 break;
6342 case PLUS: case IOR: case XOR: case AND:
6343 /* If we can safely shift this constant and we find the inner shift,
6344 make a new operation. */
6345 if (GET_CODE (XEXP (x,1)) == CONST_INT
6346 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6347 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6348 return gen_binary (code, mode, tem,
6349 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6351 break;
6353 default:
6354 break;
6357 return 0;
6360 /* Look at the expression rooted at X. Look for expressions
6361 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6362 Form these expressions.
6364 Return the new rtx, usually just X.
6366 Also, for machines like the VAX that don't have logical shift insns,
6367 try to convert logical to arithmetic shift operations in cases where
6368 they are equivalent. This undoes the canonicalizations to logical
6369 shifts done elsewhere.
6371 We try, as much as possible, to re-use rtl expressions to save memory.
6373 IN_CODE says what kind of expression we are processing. Normally, it is
6374 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6375 being kludges), it is MEM. When processing the arguments of a comparison
6376 or a COMPARE against zero, it is COMPARE. */
6378 static rtx
6379 make_compound_operation (x, in_code)
6380 rtx x;
6381 enum rtx_code in_code;
6383 enum rtx_code code = GET_CODE (x);
6384 enum machine_mode mode = GET_MODE (x);
6385 int mode_width = GET_MODE_BITSIZE (mode);
6386 rtx rhs, lhs;
6387 enum rtx_code next_code;
6388 int i;
6389 rtx new = 0;
6390 rtx tem;
6391 const char *fmt;
6393 /* Select the code to be used in recursive calls. Once we are inside an
6394 address, we stay there. If we have a comparison, set to COMPARE,
6395 but once inside, go back to our default of SET. */
6397 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6398 : ((code == COMPARE || GET_RTX_CLASS (code) == '<')
6399 && XEXP (x, 1) == const0_rtx) ? COMPARE
6400 : in_code == COMPARE ? SET : in_code);
6402 /* Process depending on the code of this operation. If NEW is set
6403 non-zero, it will be returned. */
6405 switch (code)
6407 case ASHIFT:
6408 /* Convert shifts by constants into multiplications if inside
6409 an address. */
6410 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
6411 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6412 && INTVAL (XEXP (x, 1)) >= 0)
6414 new = make_compound_operation (XEXP (x, 0), next_code);
6415 new = gen_rtx_MULT (mode, new,
6416 GEN_INT ((HOST_WIDE_INT) 1
6417 << INTVAL (XEXP (x, 1))));
6419 break;
6421 case AND:
6422 /* If the second operand is not a constant, we can't do anything
6423 with it. */
6424 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6425 break;
6427 /* If the constant is a power of two minus one and the first operand
6428 is a logical right shift, make an extraction. */
6429 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6430 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6432 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6433 new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
6434 0, in_code == COMPARE);
6437 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6438 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6439 && subreg_lowpart_p (XEXP (x, 0))
6440 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6441 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6443 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6444 next_code);
6445 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
6446 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6447 0, in_code == COMPARE);
6449 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6450 else if ((GET_CODE (XEXP (x, 0)) == XOR
6451 || GET_CODE (XEXP (x, 0)) == IOR)
6452 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6453 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6454 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6456 /* Apply the distributive law, and then try to make extractions. */
6457 new = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6458 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6459 XEXP (x, 1)),
6460 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6461 XEXP (x, 1)));
6462 new = make_compound_operation (new, in_code);
6465 /* If we are have (and (rotate X C) M) and C is larger than the number
6466 of bits in M, this is an extraction. */
6468 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6469 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6470 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6471 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6473 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6474 new = make_extraction (mode, new,
6475 (GET_MODE_BITSIZE (mode)
6476 - INTVAL (XEXP (XEXP (x, 0), 1))),
6477 NULL_RTX, i, 1, 0, in_code == COMPARE);
6480 /* On machines without logical shifts, if the operand of the AND is
6481 a logical shift and our mask turns off all the propagated sign
6482 bits, we can replace the logical shift with an arithmetic shift. */
6483 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6484 && !have_insn_for (LSHIFTRT, mode)
6485 && have_insn_for (ASHIFTRT, mode)
6486 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6487 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6488 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6489 && mode_width <= HOST_BITS_PER_WIDE_INT)
6491 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6493 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6494 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6495 SUBST (XEXP (x, 0),
6496 gen_rtx_ASHIFTRT (mode,
6497 make_compound_operation
6498 (XEXP (XEXP (x, 0), 0), next_code),
6499 XEXP (XEXP (x, 0), 1)));
6502 /* If the constant is one less than a power of two, this might be
6503 representable by an extraction even if no shift is present.
6504 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6505 we are in a COMPARE. */
6506 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6507 new = make_extraction (mode,
6508 make_compound_operation (XEXP (x, 0),
6509 next_code),
6510 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6512 /* If we are in a comparison and this is an AND with a power of two,
6513 convert this into the appropriate bit extract. */
6514 else if (in_code == COMPARE
6515 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6516 new = make_extraction (mode,
6517 make_compound_operation (XEXP (x, 0),
6518 next_code),
6519 i, NULL_RTX, 1, 1, 0, 1);
6521 break;
6523 case LSHIFTRT:
6524 /* If the sign bit is known to be zero, replace this with an
6525 arithmetic shift. */
6526 if (have_insn_for (ASHIFTRT, mode)
6527 && ! have_insn_for (LSHIFTRT, mode)
6528 && mode_width <= HOST_BITS_PER_WIDE_INT
6529 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6531 new = gen_rtx_ASHIFTRT (mode,
6532 make_compound_operation (XEXP (x, 0),
6533 next_code),
6534 XEXP (x, 1));
6535 break;
6538 /* ... fall through ... */
6540 case ASHIFTRT:
6541 lhs = XEXP (x, 0);
6542 rhs = XEXP (x, 1);
6544 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6545 this is a SIGN_EXTRACT. */
6546 if (GET_CODE (rhs) == CONST_INT
6547 && GET_CODE (lhs) == ASHIFT
6548 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6549 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
6551 new = make_compound_operation (XEXP (lhs, 0), next_code);
6552 new = make_extraction (mode, new,
6553 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
6554 NULL_RTX, mode_width - INTVAL (rhs),
6555 code == LSHIFTRT, 0, in_code == COMPARE);
6556 break;
6559 /* See if we have operations between an ASHIFTRT and an ASHIFT.
6560 If so, try to merge the shifts into a SIGN_EXTEND. We could
6561 also do this for some cases of SIGN_EXTRACT, but it doesn't
6562 seem worth the effort; the case checked for occurs on Alpha. */
6564 if (GET_RTX_CLASS (GET_CODE (lhs)) != 'o'
6565 && ! (GET_CODE (lhs) == SUBREG
6566 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (lhs))) == 'o'))
6567 && GET_CODE (rhs) == CONST_INT
6568 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
6569 && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
6570 new = make_extraction (mode, make_compound_operation (new, next_code),
6571 0, NULL_RTX, mode_width - INTVAL (rhs),
6572 code == LSHIFTRT, 0, in_code == COMPARE);
6574 break;
6576 case SUBREG:
6577 /* Call ourselves recursively on the inner expression. If we are
6578 narrowing the object and it has a different RTL code from
6579 what it originally did, do this SUBREG as a force_to_mode. */
6581 tem = make_compound_operation (SUBREG_REG (x), in_code);
6582 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
6583 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
6584 && subreg_lowpart_p (x))
6586 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
6587 NULL_RTX, 0);
6589 /* If we have something other than a SUBREG, we might have
6590 done an expansion, so rerun ourselves. */
6591 if (GET_CODE (newer) != SUBREG)
6592 newer = make_compound_operation (newer, in_code);
6594 return newer;
6597 /* If this is a paradoxical subreg, and the new code is a sign or
6598 zero extension, omit the subreg and widen the extension. If it
6599 is a regular subreg, we can still get rid of the subreg by not
6600 widening so much, or in fact removing the extension entirely. */
6601 if ((GET_CODE (tem) == SIGN_EXTEND
6602 || GET_CODE (tem) == ZERO_EXTEND)
6603 && subreg_lowpart_p (x))
6605 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (tem))
6606 || (GET_MODE_SIZE (mode) >
6607 GET_MODE_SIZE (GET_MODE (XEXP (tem, 0)))))
6608 tem = gen_rtx_fmt_e (GET_CODE (tem), mode, XEXP (tem, 0));
6609 else
6610 tem = gen_lowpart_for_combine (mode, XEXP (tem, 0));
6611 return tem;
6613 break;
6615 default:
6616 break;
6619 if (new)
6621 x = gen_lowpart_for_combine (mode, new);
6622 code = GET_CODE (x);
6625 /* Now recursively process each operand of this operation. */
6626 fmt = GET_RTX_FORMAT (code);
6627 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6628 if (fmt[i] == 'e')
6630 new = make_compound_operation (XEXP (x, i), next_code);
6631 SUBST (XEXP (x, i), new);
6634 return x;
6637 /* Given M see if it is a value that would select a field of bits
6638 within an item, but not the entire word. Return -1 if not.
6639 Otherwise, return the starting position of the field, where 0 is the
6640 low-order bit.
6642 *PLEN is set to the length of the field. */
6644 static int
6645 get_pos_from_mask (m, plen)
6646 unsigned HOST_WIDE_INT m;
6647 unsigned HOST_WIDE_INT *plen;
6649 /* Get the bit number of the first 1 bit from the right, -1 if none. */
6650 int pos = exact_log2 (m & -m);
6651 int len;
6653 if (pos < 0)
6654 return -1;
6656 /* Now shift off the low-order zero bits and see if we have a power of
6657 two minus 1. */
6658 len = exact_log2 ((m >> pos) + 1);
6660 if (len <= 0)
6661 return -1;
6663 *plen = len;
6664 return pos;
6667 /* See if X can be simplified knowing that we will only refer to it in
6668 MODE and will only refer to those bits that are nonzero in MASK.
6669 If other bits are being computed or if masking operations are done
6670 that select a superset of the bits in MASK, they can sometimes be
6671 ignored.
6673 Return a possibly simplified expression, but always convert X to
6674 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
6676 Also, if REG is non-zero and X is a register equal in value to REG,
6677 replace X with REG.
6679 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
6680 are all off in X. This is used when X will be complemented, by either
6681 NOT, NEG, or XOR. */
6683 static rtx
6684 force_to_mode (x, mode, mask, reg, just_select)
6685 rtx x;
6686 enum machine_mode mode;
6687 unsigned HOST_WIDE_INT mask;
6688 rtx reg;
6689 int just_select;
6691 enum rtx_code code = GET_CODE (x);
6692 int next_select = just_select || code == XOR || code == NOT || code == NEG;
6693 enum machine_mode op_mode;
6694 unsigned HOST_WIDE_INT fuller_mask, nonzero;
6695 rtx op0, op1, temp;
6697 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
6698 code below will do the wrong thing since the mode of such an
6699 expression is VOIDmode.
6701 Also do nothing if X is a CLOBBER; this can happen if X was
6702 the return value from a call to gen_lowpart_for_combine. */
6703 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
6704 return x;
6706 /* We want to perform the operation is its present mode unless we know
6707 that the operation is valid in MODE, in which case we do the operation
6708 in MODE. */
6709 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
6710 && have_insn_for (code, mode))
6711 ? mode : GET_MODE (x));
6713 /* It is not valid to do a right-shift in a narrower mode
6714 than the one it came in with. */
6715 if ((code == LSHIFTRT || code == ASHIFTRT)
6716 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
6717 op_mode = GET_MODE (x);
6719 /* Truncate MASK to fit OP_MODE. */
6720 if (op_mode)
6721 mask &= GET_MODE_MASK (op_mode);
6723 /* When we have an arithmetic operation, or a shift whose count we
6724 do not know, we need to assume that all bit the up to the highest-order
6725 bit in MASK will be needed. This is how we form such a mask. */
6726 if (op_mode)
6727 fuller_mask = (GET_MODE_BITSIZE (op_mode) >= HOST_BITS_PER_WIDE_INT
6728 ? GET_MODE_MASK (op_mode)
6729 : (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
6730 - 1));
6731 else
6732 fuller_mask = ~(HOST_WIDE_INT) 0;
6734 /* Determine what bits of X are guaranteed to be (non)zero. */
6735 nonzero = nonzero_bits (x, mode);
6737 /* If none of the bits in X are needed, return a zero. */
6738 if (! just_select && (nonzero & mask) == 0)
6739 return const0_rtx;
6741 /* If X is a CONST_INT, return a new one. Do this here since the
6742 test below will fail. */
6743 if (GET_CODE (x) == CONST_INT)
6744 return gen_int_mode (INTVAL (x) & mask, mode);
6746 /* If X is narrower than MODE and we want all the bits in X's mode, just
6747 get X in the proper mode. */
6748 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
6749 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
6750 return gen_lowpart_for_combine (mode, x);
6752 /* If we aren't changing the mode, X is not a SUBREG, and all zero bits in
6753 MASK are already known to be zero in X, we need not do anything. */
6754 if (GET_MODE (x) == mode && code != SUBREG && (~mask & nonzero) == 0)
6755 return x;
6757 switch (code)
6759 case CLOBBER:
6760 /* If X is a (clobber (const_int)), return it since we know we are
6761 generating something that won't match. */
6762 return x;
6764 case USE:
6765 /* X is a (use (mem ..)) that was made from a bit-field extraction that
6766 spanned the boundary of the MEM. If we are now masking so it is
6767 within that boundary, we don't need the USE any more. */
6768 if (! BITS_BIG_ENDIAN
6769 && (mask & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6770 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
6771 break;
6773 case SIGN_EXTEND:
6774 case ZERO_EXTEND:
6775 case ZERO_EXTRACT:
6776 case SIGN_EXTRACT:
6777 x = expand_compound_operation (x);
6778 if (GET_CODE (x) != code)
6779 return force_to_mode (x, mode, mask, reg, next_select);
6780 break;
6782 case REG:
6783 if (reg != 0 && (rtx_equal_p (get_last_value (reg), x)
6784 || rtx_equal_p (reg, get_last_value (x))))
6785 x = reg;
6786 break;
6788 case SUBREG:
6789 if (subreg_lowpart_p (x)
6790 /* We can ignore the effect of this SUBREG if it narrows the mode or
6791 if the constant masks to zero all the bits the mode doesn't
6792 have. */
6793 && ((GET_MODE_SIZE (GET_MODE (x))
6794 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
6795 || (0 == (mask
6796 & GET_MODE_MASK (GET_MODE (x))
6797 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
6798 return force_to_mode (SUBREG_REG (x), mode, mask, reg, next_select);
6799 break;
6801 case AND:
6802 /* If this is an AND with a constant, convert it into an AND
6803 whose constant is the AND of that constant with MASK. If it
6804 remains an AND of MASK, delete it since it is redundant. */
6806 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
6808 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
6809 mask & INTVAL (XEXP (x, 1)));
6811 /* If X is still an AND, see if it is an AND with a mask that
6812 is just some low-order bits. If so, and it is MASK, we don't
6813 need it. */
6815 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6816 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
6817 == (HOST_WIDE_INT) mask))
6818 x = XEXP (x, 0);
6820 /* If it remains an AND, try making another AND with the bits
6821 in the mode mask that aren't in MASK turned on. If the
6822 constant in the AND is wide enough, this might make a
6823 cheaper constant. */
6825 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6826 && GET_MODE_MASK (GET_MODE (x)) != mask
6827 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
6829 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
6830 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
6831 int width = GET_MODE_BITSIZE (GET_MODE (x));
6832 rtx y;
6834 /* If MODE is narrower that HOST_WIDE_INT and CVAL is a negative
6835 number, sign extend it. */
6836 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
6837 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6838 cval |= (HOST_WIDE_INT) -1 << width;
6840 y = gen_binary (AND, GET_MODE (x), XEXP (x, 0), GEN_INT (cval));
6841 if (rtx_cost (y, SET) < rtx_cost (x, SET))
6842 x = y;
6845 break;
6848 goto binop;
6850 case PLUS:
6851 /* In (and (plus FOO C1) M), if M is a mask that just turns off
6852 low-order bits (as in an alignment operation) and FOO is already
6853 aligned to that boundary, mask C1 to that boundary as well.
6854 This may eliminate that PLUS and, later, the AND. */
6857 unsigned int width = GET_MODE_BITSIZE (mode);
6858 unsigned HOST_WIDE_INT smask = mask;
6860 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
6861 number, sign extend it. */
6863 if (width < HOST_BITS_PER_WIDE_INT
6864 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6865 smask |= (HOST_WIDE_INT) -1 << width;
6867 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6868 && exact_log2 (- smask) >= 0
6869 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
6870 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
6871 return force_to_mode (plus_constant (XEXP (x, 0),
6872 (INTVAL (XEXP (x, 1)) & smask)),
6873 mode, smask, reg, next_select);
6876 /* ... fall through ... */
6878 case MULT:
6879 /* For PLUS, MINUS and MULT, we need any bits less significant than the
6880 most significant bit in MASK since carries from those bits will
6881 affect the bits we are interested in. */
6882 mask = fuller_mask;
6883 goto binop;
6885 case MINUS:
6886 /* If X is (minus C Y) where C's least set bit is larger than any bit
6887 in the mask, then we may replace with (neg Y). */
6888 if (GET_CODE (XEXP (x, 0)) == CONST_INT
6889 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
6890 & -INTVAL (XEXP (x, 0))))
6891 > mask))
6893 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
6894 GET_MODE (x));
6895 return force_to_mode (x, mode, mask, reg, next_select);
6898 /* Similarly, if C contains every bit in the mask, then we may
6899 replace with (not Y). */
6900 if (GET_CODE (XEXP (x, 0)) == CONST_INT
6901 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) mask)
6902 == INTVAL (XEXP (x, 0))))
6904 x = simplify_gen_unary (NOT, GET_MODE (x),
6905 XEXP (x, 1), GET_MODE (x));
6906 return force_to_mode (x, mode, mask, reg, next_select);
6909 mask = fuller_mask;
6910 goto binop;
6912 case IOR:
6913 case XOR:
6914 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
6915 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
6916 operation which may be a bitfield extraction. Ensure that the
6917 constant we form is not wider than the mode of X. */
6919 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6920 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6921 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6922 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6923 && GET_CODE (XEXP (x, 1)) == CONST_INT
6924 && ((INTVAL (XEXP (XEXP (x, 0), 1))
6925 + floor_log2 (INTVAL (XEXP (x, 1))))
6926 < GET_MODE_BITSIZE (GET_MODE (x)))
6927 && (INTVAL (XEXP (x, 1))
6928 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
6930 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
6931 << INTVAL (XEXP (XEXP (x, 0), 1)));
6932 temp = gen_binary (GET_CODE (x), GET_MODE (x),
6933 XEXP (XEXP (x, 0), 0), temp);
6934 x = gen_binary (LSHIFTRT, GET_MODE (x), temp,
6935 XEXP (XEXP (x, 0), 1));
6936 return force_to_mode (x, mode, mask, reg, next_select);
6939 binop:
6940 /* For most binary operations, just propagate into the operation and
6941 change the mode if we have an operation of that mode. */
6943 op0 = gen_lowpart_for_combine (op_mode,
6944 force_to_mode (XEXP (x, 0), mode, mask,
6945 reg, next_select));
6946 op1 = gen_lowpart_for_combine (op_mode,
6947 force_to_mode (XEXP (x, 1), mode, mask,
6948 reg, next_select));
6950 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
6951 x = gen_binary (code, op_mode, op0, op1);
6952 break;
6954 case ASHIFT:
6955 /* For left shifts, do the same, but just for the first operand.
6956 However, we cannot do anything with shifts where we cannot
6957 guarantee that the counts are smaller than the size of the mode
6958 because such a count will have a different meaning in a
6959 wider mode. */
6961 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
6962 && INTVAL (XEXP (x, 1)) >= 0
6963 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
6964 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
6965 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
6966 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
6967 break;
6969 /* If the shift count is a constant and we can do arithmetic in
6970 the mode of the shift, refine which bits we need. Otherwise, use the
6971 conservative form of the mask. */
6972 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6973 && INTVAL (XEXP (x, 1)) >= 0
6974 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
6975 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
6976 mask >>= INTVAL (XEXP (x, 1));
6977 else
6978 mask = fuller_mask;
6980 op0 = gen_lowpart_for_combine (op_mode,
6981 force_to_mode (XEXP (x, 0), op_mode,
6982 mask, reg, next_select));
6984 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
6985 x = gen_binary (code, op_mode, op0, XEXP (x, 1));
6986 break;
6988 case LSHIFTRT:
6989 /* Here we can only do something if the shift count is a constant,
6990 this shift constant is valid for the host, and we can do arithmetic
6991 in OP_MODE. */
6993 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6994 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6995 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
6997 rtx inner = XEXP (x, 0);
6998 unsigned HOST_WIDE_INT inner_mask;
7000 /* Select the mask of the bits we need for the shift operand. */
7001 inner_mask = mask << INTVAL (XEXP (x, 1));
7003 /* We can only change the mode of the shift if we can do arithmetic
7004 in the mode of the shift and INNER_MASK is no wider than the
7005 width of OP_MODE. */
7006 if (GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT
7007 || (inner_mask & ~GET_MODE_MASK (op_mode)) != 0)
7008 op_mode = GET_MODE (x);
7010 inner = force_to_mode (inner, op_mode, inner_mask, reg, next_select);
7012 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
7013 x = gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
7016 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7017 shift and AND produces only copies of the sign bit (C2 is one less
7018 than a power of two), we can do this with just a shift. */
7020 if (GET_CODE (x) == LSHIFTRT
7021 && GET_CODE (XEXP (x, 1)) == CONST_INT
7022 /* The shift puts one of the sign bit copies in the least significant
7023 bit. */
7024 && ((INTVAL (XEXP (x, 1))
7025 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7026 >= GET_MODE_BITSIZE (GET_MODE (x)))
7027 && exact_log2 (mask + 1) >= 0
7028 /* Number of bits left after the shift must be more than the mask
7029 needs. */
7030 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7031 <= GET_MODE_BITSIZE (GET_MODE (x)))
7032 /* Must be more sign bit copies than the mask needs. */
7033 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7034 >= exact_log2 (mask + 1)))
7035 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7036 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7037 - exact_log2 (mask + 1)));
7039 goto shiftrt;
7041 case ASHIFTRT:
7042 /* If we are just looking for the sign bit, we don't need this shift at
7043 all, even if it has a variable count. */
7044 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7045 && (mask == ((unsigned HOST_WIDE_INT) 1
7046 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7047 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7049 /* If this is a shift by a constant, get a mask that contains those bits
7050 that are not copies of the sign bit. We then have two cases: If
7051 MASK only includes those bits, this can be a logical shift, which may
7052 allow simplifications. If MASK is a single-bit field not within
7053 those bits, we are requesting a copy of the sign bit and hence can
7054 shift the sign bit to the appropriate location. */
7056 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
7057 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7059 int i = -1;
7061 /* If the considered data is wider than HOST_WIDE_INT, we can't
7062 represent a mask for all its bits in a single scalar.
7063 But we only care about the lower bits, so calculate these. */
7065 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7067 nonzero = ~(HOST_WIDE_INT) 0;
7069 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7070 is the number of bits a full-width mask would have set.
7071 We need only shift if these are fewer than nonzero can
7072 hold. If not, we must keep all bits set in nonzero. */
7074 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7075 < HOST_BITS_PER_WIDE_INT)
7076 nonzero >>= INTVAL (XEXP (x, 1))
7077 + HOST_BITS_PER_WIDE_INT
7078 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7080 else
7082 nonzero = GET_MODE_MASK (GET_MODE (x));
7083 nonzero >>= INTVAL (XEXP (x, 1));
7086 if ((mask & ~nonzero) == 0
7087 || (i = exact_log2 (mask)) >= 0)
7089 x = simplify_shift_const
7090 (x, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7091 i < 0 ? INTVAL (XEXP (x, 1))
7092 : GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7094 if (GET_CODE (x) != ASHIFTRT)
7095 return force_to_mode (x, mode, mask, reg, next_select);
7099 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
7100 even if the shift count isn't a constant. */
7101 if (mask == 1)
7102 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0), XEXP (x, 1));
7104 shiftrt:
7106 /* If this is a zero- or sign-extension operation that just affects bits
7107 we don't care about, remove it. Be sure the call above returned
7108 something that is still a shift. */
7110 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7111 && GET_CODE (XEXP (x, 1)) == CONST_INT
7112 && INTVAL (XEXP (x, 1)) >= 0
7113 && (INTVAL (XEXP (x, 1))
7114 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7115 && GET_CODE (XEXP (x, 0)) == ASHIFT
7116 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7117 && INTVAL (XEXP (XEXP (x, 0), 1)) == INTVAL (XEXP (x, 1)))
7118 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7119 reg, next_select);
7121 break;
7123 case ROTATE:
7124 case ROTATERT:
7125 /* If the shift count is constant and we can do computations
7126 in the mode of X, compute where the bits we care about are.
7127 Otherwise, we can't do anything. Don't change the mode of
7128 the shift or propagate MODE into the shift, though. */
7129 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7130 && INTVAL (XEXP (x, 1)) >= 0)
7132 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7133 GET_MODE (x), GEN_INT (mask),
7134 XEXP (x, 1));
7135 if (temp && GET_CODE(temp) == CONST_INT)
7136 SUBST (XEXP (x, 0),
7137 force_to_mode (XEXP (x, 0), GET_MODE (x),
7138 INTVAL (temp), reg, next_select));
7140 break;
7142 case NEG:
7143 /* If we just want the low-order bit, the NEG isn't needed since it
7144 won't change the low-order bit. */
7145 if (mask == 1)
7146 return force_to_mode (XEXP (x, 0), mode, mask, reg, just_select);
7148 /* We need any bits less significant than the most significant bit in
7149 MASK since carries from those bits will affect the bits we are
7150 interested in. */
7151 mask = fuller_mask;
7152 goto unop;
7154 case NOT:
7155 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7156 same as the XOR case above. Ensure that the constant we form is not
7157 wider than the mode of X. */
7159 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7160 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7161 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7162 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7163 < GET_MODE_BITSIZE (GET_MODE (x)))
7164 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7166 temp = GEN_INT (mask << INTVAL (XEXP (XEXP (x, 0), 1)));
7167 temp = gen_binary (XOR, GET_MODE (x), XEXP (XEXP (x, 0), 0), temp);
7168 x = gen_binary (LSHIFTRT, GET_MODE (x), temp, XEXP (XEXP (x, 0), 1));
7170 return force_to_mode (x, mode, mask, reg, next_select);
7173 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7174 use the full mask inside the NOT. */
7175 mask = fuller_mask;
7177 unop:
7178 op0 = gen_lowpart_for_combine (op_mode,
7179 force_to_mode (XEXP (x, 0), mode, mask,
7180 reg, next_select));
7181 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7182 x = simplify_gen_unary (code, op_mode, op0, op_mode);
7183 break;
7185 case NE:
7186 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7187 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7188 which is equal to STORE_FLAG_VALUE. */
7189 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7190 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7191 && nonzero_bits (XEXP (x, 0), mode) == STORE_FLAG_VALUE)
7192 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7194 break;
7196 case IF_THEN_ELSE:
7197 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7198 written in a narrower mode. We play it safe and do not do so. */
7200 SUBST (XEXP (x, 1),
7201 gen_lowpart_for_combine (GET_MODE (x),
7202 force_to_mode (XEXP (x, 1), mode,
7203 mask, reg, next_select)));
7204 SUBST (XEXP (x, 2),
7205 gen_lowpart_for_combine (GET_MODE (x),
7206 force_to_mode (XEXP (x, 2), mode,
7207 mask, reg,next_select)));
7208 break;
7210 default:
7211 break;
7214 /* Ensure we return a value of the proper mode. */
7215 return gen_lowpart_for_combine (mode, x);
7218 /* Return nonzero if X is an expression that has one of two values depending on
7219 whether some other value is zero or nonzero. In that case, we return the
7220 value that is being tested, *PTRUE is set to the value if the rtx being
7221 returned has a nonzero value, and *PFALSE is set to the other alternative.
7223 If we return zero, we set *PTRUE and *PFALSE to X. */
7225 static rtx
7226 if_then_else_cond (x, ptrue, pfalse)
7227 rtx x;
7228 rtx *ptrue, *pfalse;
7230 enum machine_mode mode = GET_MODE (x);
7231 enum rtx_code code = GET_CODE (x);
7232 rtx cond0, cond1, true0, true1, false0, false1;
7233 unsigned HOST_WIDE_INT nz;
7235 /* If we are comparing a value against zero, we are done. */
7236 if ((code == NE || code == EQ)
7237 && GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) == 0)
7239 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7240 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7241 return XEXP (x, 0);
7244 /* If this is a unary operation whose operand has one of two values, apply
7245 our opcode to compute those values. */
7246 else if (GET_RTX_CLASS (code) == '1'
7247 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7249 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7250 *pfalse = simplify_gen_unary (code, mode, false0,
7251 GET_MODE (XEXP (x, 0)));
7252 return cond0;
7255 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7256 make can't possibly match and would suppress other optimizations. */
7257 else if (code == COMPARE)
7260 /* If this is a binary operation, see if either side has only one of two
7261 values. If either one does or if both do and they are conditional on
7262 the same value, compute the new true and false values. */
7263 else if (GET_RTX_CLASS (code) == 'c' || GET_RTX_CLASS (code) == '2'
7264 || GET_RTX_CLASS (code) == '<')
7266 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7267 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7269 if ((cond0 != 0 || cond1 != 0)
7270 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7272 /* If if_then_else_cond returned zero, then true/false are the
7273 same rtl. We must copy one of them to prevent invalid rtl
7274 sharing. */
7275 if (cond0 == 0)
7276 true0 = copy_rtx (true0);
7277 else if (cond1 == 0)
7278 true1 = copy_rtx (true1);
7280 *ptrue = gen_binary (code, mode, true0, true1);
7281 *pfalse = gen_binary (code, mode, false0, false1);
7282 return cond0 ? cond0 : cond1;
7285 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7286 operands is zero when the other is non-zero, and vice-versa,
7287 and STORE_FLAG_VALUE is 1 or -1. */
7289 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7290 && (code == PLUS || code == IOR || code == XOR || code == MINUS
7291 || code == UMAX)
7292 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7294 rtx op0 = XEXP (XEXP (x, 0), 1);
7295 rtx op1 = XEXP (XEXP (x, 1), 1);
7297 cond0 = XEXP (XEXP (x, 0), 0);
7298 cond1 = XEXP (XEXP (x, 1), 0);
7300 if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
7301 && GET_RTX_CLASS (GET_CODE (cond1)) == '<'
7302 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7303 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7304 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7305 || ((swap_condition (GET_CODE (cond0))
7306 == combine_reversed_comparison_code (cond1))
7307 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7308 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7309 && ! side_effects_p (x))
7311 *ptrue = gen_binary (MULT, mode, op0, const_true_rtx);
7312 *pfalse = gen_binary (MULT, mode,
7313 (code == MINUS
7314 ? simplify_gen_unary (NEG, mode, op1,
7315 mode)
7316 : op1),
7317 const_true_rtx);
7318 return cond0;
7322 /* Similarly for MULT, AND and UMIN, except that for these the result
7323 is always zero. */
7324 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7325 && (code == MULT || code == AND || code == UMIN)
7326 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7328 cond0 = XEXP (XEXP (x, 0), 0);
7329 cond1 = XEXP (XEXP (x, 1), 0);
7331 if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
7332 && GET_RTX_CLASS (GET_CODE (cond1)) == '<'
7333 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7334 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7335 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7336 || ((swap_condition (GET_CODE (cond0))
7337 == combine_reversed_comparison_code (cond1))
7338 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7339 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7340 && ! side_effects_p (x))
7342 *ptrue = *pfalse = const0_rtx;
7343 return cond0;
7348 else if (code == IF_THEN_ELSE)
7350 /* If we have IF_THEN_ELSE already, extract the condition and
7351 canonicalize it if it is NE or EQ. */
7352 cond0 = XEXP (x, 0);
7353 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7354 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7355 return XEXP (cond0, 0);
7356 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7358 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7359 return XEXP (cond0, 0);
7361 else
7362 return cond0;
7365 /* If X is a SUBREG, we can narrow both the true and false values
7366 if the inner expression, if there is a condition. */
7367 else if (code == SUBREG
7368 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7369 &true0, &false0)))
7371 *ptrue = simplify_gen_subreg (mode, true0,
7372 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7373 *pfalse = simplify_gen_subreg (mode, false0,
7374 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7376 return cond0;
7379 /* If X is a constant, this isn't special and will cause confusions
7380 if we treat it as such. Likewise if it is equivalent to a constant. */
7381 else if (CONSTANT_P (x)
7382 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7385 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7386 will be least confusing to the rest of the compiler. */
7387 else if (mode == BImode)
7389 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7390 return x;
7393 /* If X is known to be either 0 or -1, those are the true and
7394 false values when testing X. */
7395 else if (x == constm1_rtx || x == const0_rtx
7396 || (mode != VOIDmode
7397 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
7399 *ptrue = constm1_rtx, *pfalse = const0_rtx;
7400 return x;
7403 /* Likewise for 0 or a single bit. */
7404 else if (mode != VOIDmode
7405 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7406 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
7408 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
7409 return x;
7412 /* Otherwise fail; show no condition with true and false values the same. */
7413 *ptrue = *pfalse = x;
7414 return 0;
7417 /* Return the value of expression X given the fact that condition COND
7418 is known to be true when applied to REG as its first operand and VAL
7419 as its second. X is known to not be shared and so can be modified in
7420 place.
7422 We only handle the simplest cases, and specifically those cases that
7423 arise with IF_THEN_ELSE expressions. */
7425 static rtx
7426 known_cond (x, cond, reg, val)
7427 rtx x;
7428 enum rtx_code cond;
7429 rtx reg, val;
7431 enum rtx_code code = GET_CODE (x);
7432 rtx temp;
7433 const char *fmt;
7434 int i, j;
7436 if (side_effects_p (x))
7437 return x;
7439 /* If either operand of the condition is a floating point value,
7440 then we have to avoid collapsing an EQ comparison. */
7441 if (cond == EQ
7442 && rtx_equal_p (x, reg)
7443 && ! FLOAT_MODE_P (GET_MODE (x))
7444 && ! FLOAT_MODE_P (GET_MODE (val)))
7445 return val;
7447 if (cond == UNEQ && rtx_equal_p (x, reg))
7448 return val;
7450 /* If X is (abs REG) and we know something about REG's relationship
7451 with zero, we may be able to simplify this. */
7453 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
7454 switch (cond)
7456 case GE: case GT: case EQ:
7457 return XEXP (x, 0);
7458 case LT: case LE:
7459 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
7460 XEXP (x, 0),
7461 GET_MODE (XEXP (x, 0)));
7462 default:
7463 break;
7466 /* The only other cases we handle are MIN, MAX, and comparisons if the
7467 operands are the same as REG and VAL. */
7469 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == 'c')
7471 if (rtx_equal_p (XEXP (x, 0), val))
7472 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
7474 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
7476 if (GET_RTX_CLASS (code) == '<')
7478 if (comparison_dominates_p (cond, code))
7479 return const_true_rtx;
7481 code = combine_reversed_comparison_code (x);
7482 if (code != UNKNOWN
7483 && comparison_dominates_p (cond, code))
7484 return const0_rtx;
7485 else
7486 return x;
7488 else if (code == SMAX || code == SMIN
7489 || code == UMIN || code == UMAX)
7491 int unsignedp = (code == UMIN || code == UMAX);
7493 /* Do not reverse the condition when it is NE or EQ.
7494 This is because we cannot conclude anything about
7495 the value of 'SMAX (x, y)' when x is not equal to y,
7496 but we can when x equals y. */
7497 if ((code == SMAX || code == UMAX)
7498 && ! (cond == EQ || cond == NE))
7499 cond = reverse_condition (cond);
7501 switch (cond)
7503 case GE: case GT:
7504 return unsignedp ? x : XEXP (x, 1);
7505 case LE: case LT:
7506 return unsignedp ? x : XEXP (x, 0);
7507 case GEU: case GTU:
7508 return unsignedp ? XEXP (x, 1) : x;
7509 case LEU: case LTU:
7510 return unsignedp ? XEXP (x, 0) : x;
7511 default:
7512 break;
7517 else if (code == SUBREG)
7519 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
7520 rtx new, r = known_cond (SUBREG_REG (x), cond, reg, val);
7522 if (SUBREG_REG (x) != r)
7524 /* We must simplify subreg here, before we lose track of the
7525 original inner_mode. */
7526 new = simplify_subreg (GET_MODE (x), r,
7527 inner_mode, SUBREG_BYTE (x));
7528 if (new)
7529 return new;
7530 else
7531 SUBST (SUBREG_REG (x), r);
7534 return x;
7536 /* We don't have to handle SIGN_EXTEND here, because even in the
7537 case of replacing something with a modeless CONST_INT, a
7538 CONST_INT is already (supposed to be) a valid sign extension for
7539 its narrower mode, which implies it's already properly
7540 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
7541 story is different. */
7542 else if (code == ZERO_EXTEND)
7544 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
7545 rtx new, r = known_cond (XEXP (x, 0), cond, reg, val);
7547 if (XEXP (x, 0) != r)
7549 /* We must simplify the zero_extend here, before we lose
7550 track of the original inner_mode. */
7551 new = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
7552 r, inner_mode);
7553 if (new)
7554 return new;
7555 else
7556 SUBST (XEXP (x, 0), r);
7559 return x;
7562 fmt = GET_RTX_FORMAT (code);
7563 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7565 if (fmt[i] == 'e')
7566 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
7567 else if (fmt[i] == 'E')
7568 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7569 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
7570 cond, reg, val));
7573 return x;
7576 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
7577 assignment as a field assignment. */
7579 static int
7580 rtx_equal_for_field_assignment_p (x, y)
7581 rtx x;
7582 rtx y;
7584 if (x == y || rtx_equal_p (x, y))
7585 return 1;
7587 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
7588 return 0;
7590 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
7591 Note that all SUBREGs of MEM are paradoxical; otherwise they
7592 would have been rewritten. */
7593 if (GET_CODE (x) == MEM && GET_CODE (y) == SUBREG
7594 && GET_CODE (SUBREG_REG (y)) == MEM
7595 && rtx_equal_p (SUBREG_REG (y),
7596 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (y)), x)))
7597 return 1;
7599 if (GET_CODE (y) == MEM && GET_CODE (x) == SUBREG
7600 && GET_CODE (SUBREG_REG (x)) == MEM
7601 && rtx_equal_p (SUBREG_REG (x),
7602 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (x)), y)))
7603 return 1;
7605 /* We used to see if get_last_value of X and Y were the same but that's
7606 not correct. In one direction, we'll cause the assignment to have
7607 the wrong destination and in the case, we'll import a register into this
7608 insn that might have already have been dead. So fail if none of the
7609 above cases are true. */
7610 return 0;
7613 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
7614 Return that assignment if so.
7616 We only handle the most common cases. */
7618 static rtx
7619 make_field_assignment (x)
7620 rtx x;
7622 rtx dest = SET_DEST (x);
7623 rtx src = SET_SRC (x);
7624 rtx assign;
7625 rtx rhs, lhs;
7626 HOST_WIDE_INT c1;
7627 HOST_WIDE_INT pos;
7628 unsigned HOST_WIDE_INT len;
7629 rtx other;
7630 enum machine_mode mode;
7632 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7633 a clear of a one-bit field. We will have changed it to
7634 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
7635 for a SUBREG. */
7637 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
7638 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
7639 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
7640 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7642 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7643 1, 1, 1, 0);
7644 if (assign != 0)
7645 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7646 return x;
7649 else if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
7650 && subreg_lowpart_p (XEXP (src, 0))
7651 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
7652 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
7653 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
7654 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
7655 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7657 assign = make_extraction (VOIDmode, dest, 0,
7658 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
7659 1, 1, 1, 0);
7660 if (assign != 0)
7661 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7662 return x;
7665 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
7666 one-bit field. */
7667 else if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
7668 && XEXP (XEXP (src, 0), 0) == const1_rtx
7669 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7671 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7672 1, 1, 1, 0);
7673 if (assign != 0)
7674 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
7675 return x;
7678 /* The other case we handle is assignments into a constant-position
7679 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
7680 a mask that has all one bits except for a group of zero bits and
7681 OTHER is known to have zeros where C1 has ones, this is such an
7682 assignment. Compute the position and length from C1. Shift OTHER
7683 to the appropriate position, force it to the required mode, and
7684 make the extraction. Check for the AND in both operands. */
7686 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
7687 return x;
7689 rhs = expand_compound_operation (XEXP (src, 0));
7690 lhs = expand_compound_operation (XEXP (src, 1));
7692 if (GET_CODE (rhs) == AND
7693 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
7694 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
7695 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
7696 else if (GET_CODE (lhs) == AND
7697 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
7698 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
7699 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
7700 else
7701 return x;
7703 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
7704 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
7705 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
7706 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
7707 return x;
7709 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
7710 if (assign == 0)
7711 return x;
7713 /* The mode to use for the source is the mode of the assignment, or of
7714 what is inside a possible STRICT_LOW_PART. */
7715 mode = (GET_CODE (assign) == STRICT_LOW_PART
7716 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
7718 /* Shift OTHER right POS places and make it the source, restricting it
7719 to the proper length and mode. */
7721 src = force_to_mode (simplify_shift_const (NULL_RTX, LSHIFTRT,
7722 GET_MODE (src), other, pos),
7723 mode,
7724 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
7725 ? ~(unsigned HOST_WIDE_INT) 0
7726 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7727 dest, 0);
7729 return gen_rtx_SET (VOIDmode, assign, src);
7732 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
7733 if so. */
7735 static rtx
7736 apply_distributive_law (x)
7737 rtx x;
7739 enum rtx_code code = GET_CODE (x);
7740 rtx lhs, rhs, other;
7741 rtx tem;
7742 enum rtx_code inner_code;
7744 /* Distributivity is not true for floating point.
7745 It can change the value. So don't do it.
7746 -- rms and moshier@world.std.com. */
7747 if (FLOAT_MODE_P (GET_MODE (x)))
7748 return x;
7750 /* The outer operation can only be one of the following: */
7751 if (code != IOR && code != AND && code != XOR
7752 && code != PLUS && code != MINUS)
7753 return x;
7755 lhs = XEXP (x, 0), rhs = XEXP (x, 1);
7757 /* If either operand is a primitive we can't do anything, so get out
7758 fast. */
7759 if (GET_RTX_CLASS (GET_CODE (lhs)) == 'o'
7760 || GET_RTX_CLASS (GET_CODE (rhs)) == 'o')
7761 return x;
7763 lhs = expand_compound_operation (lhs);
7764 rhs = expand_compound_operation (rhs);
7765 inner_code = GET_CODE (lhs);
7766 if (inner_code != GET_CODE (rhs))
7767 return x;
7769 /* See if the inner and outer operations distribute. */
7770 switch (inner_code)
7772 case LSHIFTRT:
7773 case ASHIFTRT:
7774 case AND:
7775 case IOR:
7776 /* These all distribute except over PLUS. */
7777 if (code == PLUS || code == MINUS)
7778 return x;
7779 break;
7781 case MULT:
7782 if (code != PLUS && code != MINUS)
7783 return x;
7784 break;
7786 case ASHIFT:
7787 /* This is also a multiply, so it distributes over everything. */
7788 break;
7790 case SUBREG:
7791 /* Non-paradoxical SUBREGs distributes over all operations, provided
7792 the inner modes and byte offsets are the same, this is an extraction
7793 of a low-order part, we don't convert an fp operation to int or
7794 vice versa, and we would not be converting a single-word
7795 operation into a multi-word operation. The latter test is not
7796 required, but it prevents generating unneeded multi-word operations.
7797 Some of the previous tests are redundant given the latter test, but
7798 are retained because they are required for correctness.
7800 We produce the result slightly differently in this case. */
7802 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
7803 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
7804 || ! subreg_lowpart_p (lhs)
7805 || (GET_MODE_CLASS (GET_MODE (lhs))
7806 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
7807 || (GET_MODE_SIZE (GET_MODE (lhs))
7808 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
7809 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD)
7810 return x;
7812 tem = gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
7813 SUBREG_REG (lhs), SUBREG_REG (rhs));
7814 return gen_lowpart_for_combine (GET_MODE (x), tem);
7816 default:
7817 return x;
7820 /* Set LHS and RHS to the inner operands (A and B in the example
7821 above) and set OTHER to the common operand (C in the example).
7822 These is only one way to do this unless the inner operation is
7823 commutative. */
7824 if (GET_RTX_CLASS (inner_code) == 'c'
7825 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
7826 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
7827 else if (GET_RTX_CLASS (inner_code) == 'c'
7828 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
7829 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
7830 else if (GET_RTX_CLASS (inner_code) == 'c'
7831 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
7832 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
7833 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
7834 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
7835 else
7836 return x;
7838 /* Form the new inner operation, seeing if it simplifies first. */
7839 tem = gen_binary (code, GET_MODE (x), lhs, rhs);
7841 /* There is one exception to the general way of distributing:
7842 (a ^ b) | (a ^ c) -> (~a) & (b ^ c) */
7843 if (code == XOR && inner_code == IOR)
7845 inner_code = AND;
7846 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
7849 /* We may be able to continuing distributing the result, so call
7850 ourselves recursively on the inner operation before forming the
7851 outer operation, which we return. */
7852 return gen_binary (inner_code, GET_MODE (x),
7853 apply_distributive_law (tem), other);
7856 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
7857 in MODE.
7859 Return an equivalent form, if different from X. Otherwise, return X. If
7860 X is zero, we are to always construct the equivalent form. */
7862 static rtx
7863 simplify_and_const_int (x, mode, varop, constop)
7864 rtx x;
7865 enum machine_mode mode;
7866 rtx varop;
7867 unsigned HOST_WIDE_INT constop;
7869 unsigned HOST_WIDE_INT nonzero;
7870 int i;
7872 /* Simplify VAROP knowing that we will be only looking at some of the
7873 bits in it.
7875 Note by passing in CONSTOP, we guarantee that the bits not set in
7876 CONSTOP are not significant and will never be examined. We must
7877 ensure that is the case by explicitly masking out those bits
7878 before returning. */
7879 varop = force_to_mode (varop, mode, constop, NULL_RTX, 0);
7881 /* If VAROP is a CLOBBER, we will fail so return it. */
7882 if (GET_CODE (varop) == CLOBBER)
7883 return varop;
7885 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
7886 to VAROP and return the new constant. */
7887 if (GET_CODE (varop) == CONST_INT)
7888 return GEN_INT (trunc_int_for_mode (INTVAL (varop) & constop, mode));
7890 /* See what bits may be nonzero in VAROP. Unlike the general case of
7891 a call to nonzero_bits, here we don't care about bits outside
7892 MODE. */
7894 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
7896 /* Turn off all bits in the constant that are known to already be zero.
7897 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
7898 which is tested below. */
7900 constop &= nonzero;
7902 /* If we don't have any bits left, return zero. */
7903 if (constop == 0)
7904 return const0_rtx;
7906 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
7907 a power of two, we can replace this with an ASHIFT. */
7908 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
7909 && (i = exact_log2 (constop)) >= 0)
7910 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
7912 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
7913 or XOR, then try to apply the distributive law. This may eliminate
7914 operations if either branch can be simplified because of the AND.
7915 It may also make some cases more complex, but those cases probably
7916 won't match a pattern either with or without this. */
7918 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
7919 return
7920 gen_lowpart_for_combine
7921 (mode,
7922 apply_distributive_law
7923 (gen_binary (GET_CODE (varop), GET_MODE (varop),
7924 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
7925 XEXP (varop, 0), constop),
7926 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
7927 XEXP (varop, 1), constop))));
7929 /* If VAROP is PLUS, and the constant is a mask of low bite, distribute
7930 the AND and see if one of the operands simplifies to zero. If so, we
7931 may eliminate it. */
7933 if (GET_CODE (varop) == PLUS
7934 && exact_log2 (constop + 1) >= 0)
7936 rtx o0, o1;
7938 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
7939 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
7940 if (o0 == const0_rtx)
7941 return o1;
7942 if (o1 == const0_rtx)
7943 return o0;
7946 /* Get VAROP in MODE. Try to get a SUBREG if not. Don't make a new SUBREG
7947 if we already had one (just check for the simplest cases). */
7948 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
7949 && GET_MODE (XEXP (x, 0)) == mode
7950 && SUBREG_REG (XEXP (x, 0)) == varop)
7951 varop = XEXP (x, 0);
7952 else
7953 varop = gen_lowpart_for_combine (mode, varop);
7955 /* If we can't make the SUBREG, try to return what we were given. */
7956 if (GET_CODE (varop) == CLOBBER)
7957 return x ? x : varop;
7959 /* If we are only masking insignificant bits, return VAROP. */
7960 if (constop == nonzero)
7961 x = varop;
7962 else
7964 /* Otherwise, return an AND. */
7965 constop = trunc_int_for_mode (constop, mode);
7966 /* See how much, if any, of X we can use. */
7967 if (x == 0 || GET_CODE (x) != AND || GET_MODE (x) != mode)
7968 x = gen_binary (AND, mode, varop, GEN_INT (constop));
7970 else
7972 if (GET_CODE (XEXP (x, 1)) != CONST_INT
7973 || (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) != constop)
7974 SUBST (XEXP (x, 1), GEN_INT (constop));
7976 SUBST (XEXP (x, 0), varop);
7980 return x;
7983 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
7984 We don't let nonzero_bits recur into num_sign_bit_copies, because that
7985 is less useful. We can't allow both, because that results in exponential
7986 run time recursion. There is a nullstone testcase that triggered
7987 this. This macro avoids accidental uses of num_sign_bit_copies. */
7988 #define num_sign_bit_copies()
7990 /* Given an expression, X, compute which bits in X can be non-zero.
7991 We don't care about bits outside of those defined in MODE.
7993 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
7994 a shift, AND, or zero_extract, we can do better. */
7996 static unsigned HOST_WIDE_INT
7997 nonzero_bits (x, mode)
7998 rtx x;
7999 enum machine_mode mode;
8001 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
8002 unsigned HOST_WIDE_INT inner_nz;
8003 enum rtx_code code;
8004 unsigned int mode_width = GET_MODE_BITSIZE (mode);
8005 rtx tem;
8007 /* For floating-point values, assume all bits are needed. */
8008 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode))
8009 return nonzero;
8011 /* If X is wider than MODE, use its mode instead. */
8012 if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
8014 mode = GET_MODE (x);
8015 nonzero = GET_MODE_MASK (mode);
8016 mode_width = GET_MODE_BITSIZE (mode);
8019 if (mode_width > HOST_BITS_PER_WIDE_INT)
8020 /* Our only callers in this case look for single bit values. So
8021 just return the mode mask. Those tests will then be false. */
8022 return nonzero;
8024 #ifndef WORD_REGISTER_OPERATIONS
8025 /* If MODE is wider than X, but both are a single word for both the host
8026 and target machines, we can compute this from which bits of the
8027 object might be nonzero in its own mode, taking into account the fact
8028 that on many CISC machines, accessing an object in a wider mode
8029 causes the high-order bits to become undefined. So they are
8030 not known to be zero. */
8032 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
8033 && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
8034 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
8035 && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
8037 nonzero &= nonzero_bits (x, GET_MODE (x));
8038 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
8039 return nonzero;
8041 #endif
8043 code = GET_CODE (x);
8044 switch (code)
8046 case REG:
8047 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
8048 /* If pointers extend unsigned and this is a pointer in Pmode, say that
8049 all the bits above ptr_mode are known to be zero. */
8050 if (POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
8051 && REG_POINTER (x))
8052 nonzero &= GET_MODE_MASK (ptr_mode);
8053 #endif
8055 /* Include declared information about alignment of pointers. */
8056 /* ??? We don't properly preserve REG_POINTER changes across
8057 pointer-to-integer casts, so we can't trust it except for
8058 things that we know must be pointers. See execute/960116-1.c. */
8059 if ((x == stack_pointer_rtx
8060 || x == frame_pointer_rtx
8061 || x == arg_pointer_rtx)
8062 && REGNO_POINTER_ALIGN (REGNO (x)))
8064 unsigned HOST_WIDE_INT alignment
8065 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
8067 #ifdef PUSH_ROUNDING
8068 /* If PUSH_ROUNDING is defined, it is possible for the
8069 stack to be momentarily aligned only to that amount,
8070 so we pick the least alignment. */
8071 if (x == stack_pointer_rtx && PUSH_ARGS)
8072 alignment = MIN (PUSH_ROUNDING (1), alignment);
8073 #endif
8075 nonzero &= ~(alignment - 1);
8078 /* If X is a register whose nonzero bits value is current, use it.
8079 Otherwise, if X is a register whose value we can find, use that
8080 value. Otherwise, use the previously-computed global nonzero bits
8081 for this register. */
8083 if (reg_last_set_value[REGNO (x)] != 0
8084 && (reg_last_set_mode[REGNO (x)] == mode
8085 || (GET_MODE_CLASS (reg_last_set_mode[REGNO (x)]) == MODE_INT
8086 && GET_MODE_CLASS (mode) == MODE_INT))
8087 && (reg_last_set_label[REGNO (x)] == label_tick
8088 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8089 && REG_N_SETS (REGNO (x)) == 1
8090 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start,
8091 REGNO (x))))
8092 && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
8093 return reg_last_set_nonzero_bits[REGNO (x)] & nonzero;
8095 tem = get_last_value (x);
8097 if (tem)
8099 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8100 /* If X is narrower than MODE and TEM is a non-negative
8101 constant that would appear negative in the mode of X,
8102 sign-extend it for use in reg_nonzero_bits because some
8103 machines (maybe most) will actually do the sign-extension
8104 and this is the conservative approach.
8106 ??? For 2.5, try to tighten up the MD files in this regard
8107 instead of this kludge. */
8109 if (GET_MODE_BITSIZE (GET_MODE (x)) < mode_width
8110 && GET_CODE (tem) == CONST_INT
8111 && INTVAL (tem) > 0
8112 && 0 != (INTVAL (tem)
8113 & ((HOST_WIDE_INT) 1
8114 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8115 tem = GEN_INT (INTVAL (tem)
8116 | ((HOST_WIDE_INT) (-1)
8117 << GET_MODE_BITSIZE (GET_MODE (x))));
8118 #endif
8119 return nonzero_bits (tem, mode) & nonzero;
8121 else if (nonzero_sign_valid && reg_nonzero_bits[REGNO (x)])
8123 unsigned HOST_WIDE_INT mask = reg_nonzero_bits[REGNO (x)];
8125 if (GET_MODE_BITSIZE (GET_MODE (x)) < mode_width)
8126 /* We don't know anything about the upper bits. */
8127 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
8128 return nonzero & mask;
8130 else
8131 return nonzero;
8133 case CONST_INT:
8134 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8135 /* If X is negative in MODE, sign-extend the value. */
8136 if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
8137 && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
8138 return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
8139 #endif
8141 return INTVAL (x);
8143 case MEM:
8144 #ifdef LOAD_EXTEND_OP
8145 /* In many, if not most, RISC machines, reading a byte from memory
8146 zeros the rest of the register. Noticing that fact saves a lot
8147 of extra zero-extends. */
8148 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
8149 nonzero &= GET_MODE_MASK (GET_MODE (x));
8150 #endif
8151 break;
8153 case EQ: case NE:
8154 case UNEQ: case LTGT:
8155 case GT: case GTU: case UNGT:
8156 case LT: case LTU: case UNLT:
8157 case GE: case GEU: case UNGE:
8158 case LE: case LEU: case UNLE:
8159 case UNORDERED: case ORDERED:
8161 /* If this produces an integer result, we know which bits are set.
8162 Code here used to clear bits outside the mode of X, but that is
8163 now done above. */
8165 if (GET_MODE_CLASS (mode) == MODE_INT
8166 && mode_width <= HOST_BITS_PER_WIDE_INT)
8167 nonzero = STORE_FLAG_VALUE;
8168 break;
8170 case NEG:
8171 #if 0
8172 /* Disabled to avoid exponential mutual recursion between nonzero_bits
8173 and num_sign_bit_copies. */
8174 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
8175 == GET_MODE_BITSIZE (GET_MODE (x)))
8176 nonzero = 1;
8177 #endif
8179 if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
8180 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
8181 break;
8183 case ABS:
8184 #if 0
8185 /* Disabled to avoid exponential mutual recursion between nonzero_bits
8186 and num_sign_bit_copies. */
8187 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
8188 == GET_MODE_BITSIZE (GET_MODE (x)))
8189 nonzero = 1;
8190 #endif
8191 break;
8193 case TRUNCATE:
8194 nonzero &= (nonzero_bits (XEXP (x, 0), mode) & GET_MODE_MASK (mode));
8195 break;
8197 case ZERO_EXTEND:
8198 nonzero &= nonzero_bits (XEXP (x, 0), mode);
8199 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
8200 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
8201 break;
8203 case SIGN_EXTEND:
8204 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
8205 Otherwise, show all the bits in the outer mode but not the inner
8206 may be non-zero. */
8207 inner_nz = nonzero_bits (XEXP (x, 0), mode);
8208 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
8210 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
8211 if (inner_nz
8212 & (((HOST_WIDE_INT) 1
8213 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
8214 inner_nz |= (GET_MODE_MASK (mode)
8215 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
8218 nonzero &= inner_nz;
8219 break;
8221 case AND:
8222 nonzero &= (nonzero_bits (XEXP (x, 0), mode)
8223 & nonzero_bits (XEXP (x, 1), mode));
8224 break;
8226 case XOR: case IOR:
8227 case UMIN: case UMAX: case SMIN: case SMAX:
8229 unsigned HOST_WIDE_INT nonzero0 = nonzero_bits (XEXP (x, 0), mode);
8231 /* Don't call nonzero_bits for the second time if it cannot change
8232 anything. */
8233 if ((nonzero & nonzero0) != nonzero)
8234 nonzero &= (nonzero0 | nonzero_bits (XEXP (x, 1), mode));
8236 break;
8238 case PLUS: case MINUS:
8239 case MULT:
8240 case DIV: case UDIV:
8241 case MOD: case UMOD:
8242 /* We can apply the rules of arithmetic to compute the number of
8243 high- and low-order zero bits of these operations. We start by
8244 computing the width (position of the highest-order non-zero bit)
8245 and the number of low-order zero bits for each value. */
8247 unsigned HOST_WIDE_INT nz0 = nonzero_bits (XEXP (x, 0), mode);
8248 unsigned HOST_WIDE_INT nz1 = nonzero_bits (XEXP (x, 1), mode);
8249 int width0 = floor_log2 (nz0) + 1;
8250 int width1 = floor_log2 (nz1) + 1;
8251 int low0 = floor_log2 (nz0 & -nz0);
8252 int low1 = floor_log2 (nz1 & -nz1);
8253 HOST_WIDE_INT op0_maybe_minusp
8254 = (nz0 & ((HOST_WIDE_INT) 1 << (mode_width - 1)));
8255 HOST_WIDE_INT op1_maybe_minusp
8256 = (nz1 & ((HOST_WIDE_INT) 1 << (mode_width - 1)));
8257 unsigned int result_width = mode_width;
8258 int result_low = 0;
8260 switch (code)
8262 case PLUS:
8263 result_width = MAX (width0, width1) + 1;
8264 result_low = MIN (low0, low1);
8265 break;
8266 case MINUS:
8267 result_low = MIN (low0, low1);
8268 break;
8269 case MULT:
8270 result_width = width0 + width1;
8271 result_low = low0 + low1;
8272 break;
8273 case DIV:
8274 if (width1 == 0)
8275 break;
8276 if (! op0_maybe_minusp && ! op1_maybe_minusp)
8277 result_width = width0;
8278 break;
8279 case UDIV:
8280 if (width1 == 0)
8281 break;
8282 result_width = width0;
8283 break;
8284 case MOD:
8285 if (width1 == 0)
8286 break;
8287 if (! op0_maybe_minusp && ! op1_maybe_minusp)
8288 result_width = MIN (width0, width1);
8289 result_low = MIN (low0, low1);
8290 break;
8291 case UMOD:
8292 if (width1 == 0)
8293 break;
8294 result_width = MIN (width0, width1);
8295 result_low = MIN (low0, low1);
8296 break;
8297 default:
8298 abort ();
8301 if (result_width < mode_width)
8302 nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
8304 if (result_low > 0)
8305 nonzero &= ~(((HOST_WIDE_INT) 1 << result_low) - 1);
8307 #ifdef POINTERS_EXTEND_UNSIGNED
8308 /* If pointers extend unsigned and this is an addition or subtraction
8309 to a pointer in Pmode, all the bits above ptr_mode are known to be
8310 zero. */
8311 if (POINTERS_EXTEND_UNSIGNED > 0 && GET_MODE (x) == Pmode
8312 && (code == PLUS || code == MINUS)
8313 && GET_CODE (XEXP (x, 0)) == REG && REG_POINTER (XEXP (x, 0)))
8314 nonzero &= GET_MODE_MASK (ptr_mode);
8315 #endif
8317 break;
8319 case ZERO_EXTRACT:
8320 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8321 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8322 nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
8323 break;
8325 case SUBREG:
8326 /* If this is a SUBREG formed for a promoted variable that has
8327 been zero-extended, we know that at least the high-order bits
8328 are zero, though others might be too. */
8330 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
8331 nonzero = (GET_MODE_MASK (GET_MODE (x))
8332 & nonzero_bits (SUBREG_REG (x), GET_MODE (x)));
8334 /* If the inner mode is a single word for both the host and target
8335 machines, we can compute this from which bits of the inner
8336 object might be nonzero. */
8337 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
8338 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
8339 <= HOST_BITS_PER_WIDE_INT))
8341 nonzero &= nonzero_bits (SUBREG_REG (x), mode);
8343 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
8344 /* If this is a typical RISC machine, we only have to worry
8345 about the way loads are extended. */
8346 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
8347 ? (((nonzero
8348 & (((unsigned HOST_WIDE_INT) 1
8349 << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1))))
8350 != 0))
8351 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
8352 #endif
8354 /* On many CISC machines, accessing an object in a wider mode
8355 causes the high-order bits to become undefined. So they are
8356 not known to be zero. */
8357 if (GET_MODE_SIZE (GET_MODE (x))
8358 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8359 nonzero |= (GET_MODE_MASK (GET_MODE (x))
8360 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
8363 break;
8365 case ASHIFTRT:
8366 case LSHIFTRT:
8367 case ASHIFT:
8368 case ROTATE:
8369 /* The nonzero bits are in two classes: any bits within MODE
8370 that aren't in GET_MODE (x) are always significant. The rest of the
8371 nonzero bits are those that are significant in the operand of
8372 the shift when shifted the appropriate number of bits. This
8373 shows that high-order bits are cleared by the right shift and
8374 low-order bits by left shifts. */
8375 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8376 && INTVAL (XEXP (x, 1)) >= 0
8377 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8379 enum machine_mode inner_mode = GET_MODE (x);
8380 unsigned int width = GET_MODE_BITSIZE (inner_mode);
8381 int count = INTVAL (XEXP (x, 1));
8382 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
8383 unsigned HOST_WIDE_INT op_nonzero = nonzero_bits (XEXP (x, 0), mode);
8384 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
8385 unsigned HOST_WIDE_INT outer = 0;
8387 if (mode_width > width)
8388 outer = (op_nonzero & nonzero & ~mode_mask);
8390 if (code == LSHIFTRT)
8391 inner >>= count;
8392 else if (code == ASHIFTRT)
8394 inner >>= count;
8396 /* If the sign bit may have been nonzero before the shift, we
8397 need to mark all the places it could have been copied to
8398 by the shift as possibly nonzero. */
8399 if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
8400 inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
8402 else if (code == ASHIFT)
8403 inner <<= count;
8404 else
8405 inner = ((inner << (count % width)
8406 | (inner >> (width - (count % width)))) & mode_mask);
8408 nonzero &= (outer | inner);
8410 break;
8412 case FFS:
8413 /* This is at most the number of bits in the mode. */
8414 nonzero = ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width) + 1)) - 1;
8415 break;
8417 case IF_THEN_ELSE:
8418 nonzero &= (nonzero_bits (XEXP (x, 1), mode)
8419 | nonzero_bits (XEXP (x, 2), mode));
8420 break;
8422 default:
8423 break;
8426 return nonzero;
8429 /* See the macro definition above. */
8430 #undef num_sign_bit_copies
8432 /* Return the number of bits at the high-order end of X that are known to
8433 be equal to the sign bit. X will be used in mode MODE; if MODE is
8434 VOIDmode, X will be used in its own mode. The returned value will always
8435 be between 1 and the number of bits in MODE. */
8437 static unsigned int
8438 num_sign_bit_copies (x, mode)
8439 rtx x;
8440 enum machine_mode mode;
8442 enum rtx_code code = GET_CODE (x);
8443 unsigned int bitwidth;
8444 int num0, num1, result;
8445 unsigned HOST_WIDE_INT nonzero;
8446 rtx tem;
8448 /* If we weren't given a mode, use the mode of X. If the mode is still
8449 VOIDmode, we don't know anything. Likewise if one of the modes is
8450 floating-point. */
8452 if (mode == VOIDmode)
8453 mode = GET_MODE (x);
8455 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x)))
8456 return 1;
8458 bitwidth = GET_MODE_BITSIZE (mode);
8460 /* For a smaller object, just ignore the high bits. */
8461 if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
8463 num0 = num_sign_bit_copies (x, GET_MODE (x));
8464 return MAX (1,
8465 num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
8468 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
8470 #ifndef WORD_REGISTER_OPERATIONS
8471 /* If this machine does not do all register operations on the entire
8472 register and MODE is wider than the mode of X, we can say nothing
8473 at all about the high-order bits. */
8474 return 1;
8475 #else
8476 /* Likewise on machines that do, if the mode of the object is smaller
8477 than a word and loads of that size don't sign extend, we can say
8478 nothing about the high order bits. */
8479 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
8480 #ifdef LOAD_EXTEND_OP
8481 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
8482 #endif
8484 return 1;
8485 #endif
8488 switch (code)
8490 case REG:
8492 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
8493 /* If pointers extend signed and this is a pointer in Pmode, say that
8494 all the bits above ptr_mode are known to be sign bit copies. */
8495 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode && mode == Pmode
8496 && REG_POINTER (x))
8497 return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
8498 #endif
8500 if (reg_last_set_value[REGNO (x)] != 0
8501 && reg_last_set_mode[REGNO (x)] == mode
8502 && (reg_last_set_label[REGNO (x)] == label_tick
8503 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8504 && REG_N_SETS (REGNO (x)) == 1
8505 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start,
8506 REGNO (x))))
8507 && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
8508 return reg_last_set_sign_bit_copies[REGNO (x)];
8510 tem = get_last_value (x);
8511 if (tem != 0)
8512 return num_sign_bit_copies (tem, mode);
8514 if (nonzero_sign_valid && reg_sign_bit_copies[REGNO (x)] != 0
8515 && GET_MODE_BITSIZE (GET_MODE (x)) == bitwidth)
8516 return reg_sign_bit_copies[REGNO (x)];
8517 break;
8519 case MEM:
8520 #ifdef LOAD_EXTEND_OP
8521 /* Some RISC machines sign-extend all loads of smaller than a word. */
8522 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
8523 return MAX (1, ((int) bitwidth
8524 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1));
8525 #endif
8526 break;
8528 case CONST_INT:
8529 /* If the constant is negative, take its 1's complement and remask.
8530 Then see how many zero bits we have. */
8531 nonzero = INTVAL (x) & GET_MODE_MASK (mode);
8532 if (bitwidth <= HOST_BITS_PER_WIDE_INT
8533 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8534 nonzero = (~nonzero) & GET_MODE_MASK (mode);
8536 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
8538 case SUBREG:
8539 /* If this is a SUBREG for a promoted object that is sign-extended
8540 and we are looking at it in a wider mode, we know that at least the
8541 high-order bits are known to be sign bit copies. */
8543 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
8545 num0 = num_sign_bit_copies (SUBREG_REG (x), mode);
8546 return MAX ((int) bitwidth
8547 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
8548 num0);
8551 /* For a smaller object, just ignore the high bits. */
8552 if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
8554 num0 = num_sign_bit_copies (SUBREG_REG (x), VOIDmode);
8555 return MAX (1, (num0
8556 - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
8557 - bitwidth)));
8560 #ifdef WORD_REGISTER_OPERATIONS
8561 #ifdef LOAD_EXTEND_OP
8562 /* For paradoxical SUBREGs on machines where all register operations
8563 affect the entire register, just look inside. Note that we are
8564 passing MODE to the recursive call, so the number of sign bit copies
8565 will remain relative to that mode, not the inner mode. */
8567 /* This works only if loads sign extend. Otherwise, if we get a
8568 reload for the inner part, it may be loaded from the stack, and
8569 then we lose all sign bit copies that existed before the store
8570 to the stack. */
8572 if ((GET_MODE_SIZE (GET_MODE (x))
8573 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8574 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND)
8575 return num_sign_bit_copies (SUBREG_REG (x), mode);
8576 #endif
8577 #endif
8578 break;
8580 case SIGN_EXTRACT:
8581 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
8582 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
8583 break;
8585 case SIGN_EXTEND:
8586 return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
8587 + num_sign_bit_copies (XEXP (x, 0), VOIDmode));
8589 case TRUNCATE:
8590 /* For a smaller object, just ignore the high bits. */
8591 num0 = num_sign_bit_copies (XEXP (x, 0), VOIDmode);
8592 return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
8593 - bitwidth)));
8595 case NOT:
8596 return num_sign_bit_copies (XEXP (x, 0), mode);
8598 case ROTATE: case ROTATERT:
8599 /* If we are rotating left by a number of bits less than the number
8600 of sign bit copies, we can just subtract that amount from the
8601 number. */
8602 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8603 && INTVAL (XEXP (x, 1)) >= 0
8604 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
8606 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8607 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
8608 : (int) bitwidth - INTVAL (XEXP (x, 1))));
8610 break;
8612 case NEG:
8613 /* In general, this subtracts one sign bit copy. But if the value
8614 is known to be positive, the number of sign bit copies is the
8615 same as that of the input. Finally, if the input has just one bit
8616 that might be nonzero, all the bits are copies of the sign bit. */
8617 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8618 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8619 return num0 > 1 ? num0 - 1 : 1;
8621 nonzero = nonzero_bits (XEXP (x, 0), mode);
8622 if (nonzero == 1)
8623 return bitwidth;
8625 if (num0 > 1
8626 && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
8627 num0--;
8629 return num0;
8631 case IOR: case AND: case XOR:
8632 case SMIN: case SMAX: case UMIN: case UMAX:
8633 /* Logical operations will preserve the number of sign-bit copies.
8634 MIN and MAX operations always return one of the operands. */
8635 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8636 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
8637 return MIN (num0, num1);
8639 case PLUS: case MINUS:
8640 /* For addition and subtraction, we can have a 1-bit carry. However,
8641 if we are subtracting 1 from a positive number, there will not
8642 be such a carry. Furthermore, if the positive number is known to
8643 be 0 or 1, we know the result is either -1 or 0. */
8645 if (code == PLUS && XEXP (x, 1) == constm1_rtx
8646 && bitwidth <= HOST_BITS_PER_WIDE_INT)
8648 nonzero = nonzero_bits (XEXP (x, 0), mode);
8649 if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
8650 return (nonzero == 1 || nonzero == 0 ? bitwidth
8651 : bitwidth - floor_log2 (nonzero) - 1);
8654 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8655 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
8656 result = MAX (1, MIN (num0, num1) - 1);
8658 #ifdef POINTERS_EXTEND_UNSIGNED
8659 /* If pointers extend signed and this is an addition or subtraction
8660 to a pointer in Pmode, all the bits above ptr_mode are known to be
8661 sign bit copies. */
8662 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
8663 && (code == PLUS || code == MINUS)
8664 && GET_CODE (XEXP (x, 0)) == REG && REG_POINTER (XEXP (x, 0)))
8665 result = MAX ((int) (GET_MODE_BITSIZE (Pmode)
8666 - GET_MODE_BITSIZE (ptr_mode) + 1),
8667 result);
8668 #endif
8669 return result;
8671 case MULT:
8672 /* The number of bits of the product is the sum of the number of
8673 bits of both terms. However, unless one of the terms if known
8674 to be positive, we must allow for an additional bit since negating
8675 a negative number can remove one sign bit copy. */
8677 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8678 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
8680 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
8681 if (result > 0
8682 && (bitwidth > HOST_BITS_PER_WIDE_INT
8683 || (((nonzero_bits (XEXP (x, 0), mode)
8684 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8685 && ((nonzero_bits (XEXP (x, 1), mode)
8686 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))))
8687 result--;
8689 return MAX (1, result);
8691 case UDIV:
8692 /* The result must be <= the first operand. If the first operand
8693 has the high bit set, we know nothing about the number of sign
8694 bit copies. */
8695 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8696 return 1;
8697 else if ((nonzero_bits (XEXP (x, 0), mode)
8698 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8699 return 1;
8700 else
8701 return num_sign_bit_copies (XEXP (x, 0), mode);
8703 case UMOD:
8704 /* The result must be <= the second operand. */
8705 return num_sign_bit_copies (XEXP (x, 1), mode);
8707 case DIV:
8708 /* Similar to unsigned division, except that we have to worry about
8709 the case where the divisor is negative, in which case we have
8710 to add 1. */
8711 result = num_sign_bit_copies (XEXP (x, 0), mode);
8712 if (result > 1
8713 && (bitwidth > HOST_BITS_PER_WIDE_INT
8714 || (nonzero_bits (XEXP (x, 1), mode)
8715 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
8716 result--;
8718 return result;
8720 case MOD:
8721 result = num_sign_bit_copies (XEXP (x, 1), mode);
8722 if (result > 1
8723 && (bitwidth > HOST_BITS_PER_WIDE_INT
8724 || (nonzero_bits (XEXP (x, 1), mode)
8725 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
8726 result--;
8728 return result;
8730 case ASHIFTRT:
8731 /* Shifts by a constant add to the number of bits equal to the
8732 sign bit. */
8733 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8734 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8735 && INTVAL (XEXP (x, 1)) > 0)
8736 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
8738 return num0;
8740 case ASHIFT:
8741 /* Left shifts destroy copies. */
8742 if (GET_CODE (XEXP (x, 1)) != CONST_INT
8743 || INTVAL (XEXP (x, 1)) < 0
8744 || INTVAL (XEXP (x, 1)) >= (int) bitwidth)
8745 return 1;
8747 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8748 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
8750 case IF_THEN_ELSE:
8751 num0 = num_sign_bit_copies (XEXP (x, 1), mode);
8752 num1 = num_sign_bit_copies (XEXP (x, 2), mode);
8753 return MIN (num0, num1);
8755 case EQ: case NE: case GE: case GT: case LE: case LT:
8756 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
8757 case GEU: case GTU: case LEU: case LTU:
8758 case UNORDERED: case ORDERED:
8759 /* If the constant is negative, take its 1's complement and remask.
8760 Then see how many zero bits we have. */
8761 nonzero = STORE_FLAG_VALUE;
8762 if (bitwidth <= HOST_BITS_PER_WIDE_INT
8763 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8764 nonzero = (~nonzero) & GET_MODE_MASK (mode);
8766 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
8767 break;
8769 default:
8770 break;
8773 /* If we haven't been able to figure it out by one of the above rules,
8774 see if some of the high-order bits are known to be zero. If so,
8775 count those bits and return one less than that amount. If we can't
8776 safely compute the mask for this mode, always return BITWIDTH. */
8778 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8779 return 1;
8781 nonzero = nonzero_bits (x, mode);
8782 return (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
8783 ? 1 : bitwidth - floor_log2 (nonzero) - 1);
8786 /* Return the number of "extended" bits there are in X, when interpreted
8787 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8788 unsigned quantities, this is the number of high-order zero bits.
8789 For signed quantities, this is the number of copies of the sign bit
8790 minus 1. In both case, this function returns the number of "spare"
8791 bits. For example, if two quantities for which this function returns
8792 at least 1 are added, the addition is known not to overflow.
8794 This function will always return 0 unless called during combine, which
8795 implies that it must be called from a define_split. */
8797 unsigned int
8798 extended_count (x, mode, unsignedp)
8799 rtx x;
8800 enum machine_mode mode;
8801 int unsignedp;
8803 if (nonzero_sign_valid == 0)
8804 return 0;
8806 return (unsignedp
8807 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8808 ? (GET_MODE_BITSIZE (mode) - 1
8809 - floor_log2 (nonzero_bits (x, mode)))
8810 : 0)
8811 : num_sign_bit_copies (x, mode) - 1);
8814 /* This function is called from `simplify_shift_const' to merge two
8815 outer operations. Specifically, we have already found that we need
8816 to perform operation *POP0 with constant *PCONST0 at the outermost
8817 position. We would now like to also perform OP1 with constant CONST1
8818 (with *POP0 being done last).
8820 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8821 the resulting operation. *PCOMP_P is set to 1 if we would need to
8822 complement the innermost operand, otherwise it is unchanged.
8824 MODE is the mode in which the operation will be done. No bits outside
8825 the width of this mode matter. It is assumed that the width of this mode
8826 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8828 If *POP0 or OP1 are NIL, it means no operation is required. Only NEG, PLUS,
8829 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8830 result is simply *PCONST0.
8832 If the resulting operation cannot be expressed as one operation, we
8833 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8835 static int
8836 merge_outer_ops (pop0, pconst0, op1, const1, mode, pcomp_p)
8837 enum rtx_code *pop0;
8838 HOST_WIDE_INT *pconst0;
8839 enum rtx_code op1;
8840 HOST_WIDE_INT const1;
8841 enum machine_mode mode;
8842 int *pcomp_p;
8844 enum rtx_code op0 = *pop0;
8845 HOST_WIDE_INT const0 = *pconst0;
8847 const0 &= GET_MODE_MASK (mode);
8848 const1 &= GET_MODE_MASK (mode);
8850 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8851 if (op0 == AND)
8852 const1 &= const0;
8854 /* If OP0 or OP1 is NIL, this is easy. Similarly if they are the same or
8855 if OP0 is SET. */
8857 if (op1 == NIL || op0 == SET)
8858 return 1;
8860 else if (op0 == NIL)
8861 op0 = op1, const0 = const1;
8863 else if (op0 == op1)
8865 switch (op0)
8867 case AND:
8868 const0 &= const1;
8869 break;
8870 case IOR:
8871 const0 |= const1;
8872 break;
8873 case XOR:
8874 const0 ^= const1;
8875 break;
8876 case PLUS:
8877 const0 += const1;
8878 break;
8879 case NEG:
8880 op0 = NIL;
8881 break;
8882 default:
8883 break;
8887 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
8888 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
8889 return 0;
8891 /* If the two constants aren't the same, we can't do anything. The
8892 remaining six cases can all be done. */
8893 else if (const0 != const1)
8894 return 0;
8896 else
8897 switch (op0)
8899 case IOR:
8900 if (op1 == AND)
8901 /* (a & b) | b == b */
8902 op0 = SET;
8903 else /* op1 == XOR */
8904 /* (a ^ b) | b == a | b */
8906 break;
8908 case XOR:
8909 if (op1 == AND)
8910 /* (a & b) ^ b == (~a) & b */
8911 op0 = AND, *pcomp_p = 1;
8912 else /* op1 == IOR */
8913 /* (a | b) ^ b == a & ~b */
8914 op0 = AND, *pconst0 = ~const0;
8915 break;
8917 case AND:
8918 if (op1 == IOR)
8919 /* (a | b) & b == b */
8920 op0 = SET;
8921 else /* op1 == XOR */
8922 /* (a ^ b) & b) == (~a) & b */
8923 *pcomp_p = 1;
8924 break;
8925 default:
8926 break;
8929 /* Check for NO-OP cases. */
8930 const0 &= GET_MODE_MASK (mode);
8931 if (const0 == 0
8932 && (op0 == IOR || op0 == XOR || op0 == PLUS))
8933 op0 = NIL;
8934 else if (const0 == 0 && op0 == AND)
8935 op0 = SET;
8936 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
8937 && op0 == AND)
8938 op0 = NIL;
8940 /* ??? Slightly redundant with the above mask, but not entirely.
8941 Moving this above means we'd have to sign-extend the mode mask
8942 for the final test. */
8943 const0 = trunc_int_for_mode (const0, mode);
8945 *pop0 = op0;
8946 *pconst0 = const0;
8948 return 1;
8951 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
8952 The result of the shift is RESULT_MODE. X, if non-zero, is an expression
8953 that we started with.
8955 The shift is normally computed in the widest mode we find in VAROP, as
8956 long as it isn't a different number of words than RESULT_MODE. Exceptions
8957 are ASHIFTRT and ROTATE, which are always done in their original mode, */
8959 static rtx
8960 simplify_shift_const (x, code, result_mode, varop, orig_count)
8961 rtx x;
8962 enum rtx_code code;
8963 enum machine_mode result_mode;
8964 rtx varop;
8965 int orig_count;
8967 enum rtx_code orig_code = code;
8968 unsigned int count;
8969 int signed_count;
8970 enum machine_mode mode = result_mode;
8971 enum machine_mode shift_mode, tmode;
8972 unsigned int mode_words
8973 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
8974 /* We form (outer_op (code varop count) (outer_const)). */
8975 enum rtx_code outer_op = NIL;
8976 HOST_WIDE_INT outer_const = 0;
8977 rtx const_rtx;
8978 int complement_p = 0;
8979 rtx new;
8981 /* Make sure and truncate the "natural" shift on the way in. We don't
8982 want to do this inside the loop as it makes it more difficult to
8983 combine shifts. */
8984 #ifdef SHIFT_COUNT_TRUNCATED
8985 if (SHIFT_COUNT_TRUNCATED)
8986 orig_count &= GET_MODE_BITSIZE (mode) - 1;
8987 #endif
8989 /* If we were given an invalid count, don't do anything except exactly
8990 what was requested. */
8992 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
8994 if (x)
8995 return x;
8997 return gen_rtx_fmt_ee (code, mode, varop, GEN_INT (orig_count));
9000 count = orig_count;
9002 /* Unless one of the branches of the `if' in this loop does a `continue',
9003 we will `break' the loop after the `if'. */
9005 while (count != 0)
9007 /* If we have an operand of (clobber (const_int 0)), just return that
9008 value. */
9009 if (GET_CODE (varop) == CLOBBER)
9010 return varop;
9012 /* If we discovered we had to complement VAROP, leave. Making a NOT
9013 here would cause an infinite loop. */
9014 if (complement_p)
9015 break;
9017 /* Convert ROTATERT to ROTATE. */
9018 if (code == ROTATERT)
9019 code = ROTATE, count = GET_MODE_BITSIZE (result_mode) - count;
9021 /* We need to determine what mode we will do the shift in. If the
9022 shift is a right shift or a ROTATE, we must always do it in the mode
9023 it was originally done in. Otherwise, we can do it in MODE, the
9024 widest mode encountered. */
9025 shift_mode
9026 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9027 ? result_mode : mode);
9029 /* Handle cases where the count is greater than the size of the mode
9030 minus 1. For ASHIFT, use the size minus one as the count (this can
9031 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
9032 take the count modulo the size. For other shifts, the result is
9033 zero.
9035 Since these shifts are being produced by the compiler by combining
9036 multiple operations, each of which are defined, we know what the
9037 result is supposed to be. */
9039 if (count > GET_MODE_BITSIZE (shift_mode) - 1)
9041 if (code == ASHIFTRT)
9042 count = GET_MODE_BITSIZE (shift_mode) - 1;
9043 else if (code == ROTATE || code == ROTATERT)
9044 count %= GET_MODE_BITSIZE (shift_mode);
9045 else
9047 /* We can't simply return zero because there may be an
9048 outer op. */
9049 varop = const0_rtx;
9050 count = 0;
9051 break;
9055 /* An arithmetic right shift of a quantity known to be -1 or 0
9056 is a no-op. */
9057 if (code == ASHIFTRT
9058 && (num_sign_bit_copies (varop, shift_mode)
9059 == GET_MODE_BITSIZE (shift_mode)))
9061 count = 0;
9062 break;
9065 /* If we are doing an arithmetic right shift and discarding all but
9066 the sign bit copies, this is equivalent to doing a shift by the
9067 bitsize minus one. Convert it into that shift because it will often
9068 allow other simplifications. */
9070 if (code == ASHIFTRT
9071 && (count + num_sign_bit_copies (varop, shift_mode)
9072 >= GET_MODE_BITSIZE (shift_mode)))
9073 count = GET_MODE_BITSIZE (shift_mode) - 1;
9075 /* We simplify the tests below and elsewhere by converting
9076 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
9077 `make_compound_operation' will convert it to an ASHIFTRT for
9078 those machines (such as VAX) that don't have an LSHIFTRT. */
9079 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9080 && code == ASHIFTRT
9081 && ((nonzero_bits (varop, shift_mode)
9082 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
9083 == 0))
9084 code = LSHIFTRT;
9086 switch (GET_CODE (varop))
9088 case SIGN_EXTEND:
9089 case ZERO_EXTEND:
9090 case SIGN_EXTRACT:
9091 case ZERO_EXTRACT:
9092 new = expand_compound_operation (varop);
9093 if (new != varop)
9095 varop = new;
9096 continue;
9098 break;
9100 case MEM:
9101 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
9102 minus the width of a smaller mode, we can do this with a
9103 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
9104 if ((code == ASHIFTRT || code == LSHIFTRT)
9105 && ! mode_dependent_address_p (XEXP (varop, 0))
9106 && ! MEM_VOLATILE_P (varop)
9107 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9108 MODE_INT, 1)) != BLKmode)
9110 new = adjust_address_nv (varop, tmode,
9111 BYTES_BIG_ENDIAN ? 0
9112 : count / BITS_PER_UNIT);
9114 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9115 : ZERO_EXTEND, mode, new);
9116 count = 0;
9117 continue;
9119 break;
9121 case USE:
9122 /* Similar to the case above, except that we can only do this if
9123 the resulting mode is the same as that of the underlying
9124 MEM and adjust the address depending on the *bits* endianness
9125 because of the way that bit-field extract insns are defined. */
9126 if ((code == ASHIFTRT || code == LSHIFTRT)
9127 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9128 MODE_INT, 1)) != BLKmode
9129 && tmode == GET_MODE (XEXP (varop, 0)))
9131 if (BITS_BIG_ENDIAN)
9132 new = XEXP (varop, 0);
9133 else
9135 new = copy_rtx (XEXP (varop, 0));
9136 SUBST (XEXP (new, 0),
9137 plus_constant (XEXP (new, 0),
9138 count / BITS_PER_UNIT));
9141 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9142 : ZERO_EXTEND, mode, new);
9143 count = 0;
9144 continue;
9146 break;
9148 case SUBREG:
9149 /* If VAROP is a SUBREG, strip it as long as the inner operand has
9150 the same number of words as what we've seen so far. Then store
9151 the widest mode in MODE. */
9152 if (subreg_lowpart_p (varop)
9153 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9154 > GET_MODE_SIZE (GET_MODE (varop)))
9155 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9156 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
9157 == mode_words))
9159 varop = SUBREG_REG (varop);
9160 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
9161 mode = GET_MODE (varop);
9162 continue;
9164 break;
9166 case MULT:
9167 /* Some machines use MULT instead of ASHIFT because MULT
9168 is cheaper. But it is still better on those machines to
9169 merge two shifts into one. */
9170 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9171 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9173 varop
9174 = gen_binary (ASHIFT, GET_MODE (varop), XEXP (varop, 0),
9175 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
9176 continue;
9178 break;
9180 case UDIV:
9181 /* Similar, for when divides are cheaper. */
9182 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9183 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9185 varop
9186 = gen_binary (LSHIFTRT, GET_MODE (varop), XEXP (varop, 0),
9187 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
9188 continue;
9190 break;
9192 case ASHIFTRT:
9193 /* If we are extracting just the sign bit of an arithmetic
9194 right shift, that shift is not needed. However, the sign
9195 bit of a wider mode may be different from what would be
9196 interpreted as the sign bit in a narrower mode, so, if
9197 the result is narrower, don't discard the shift. */
9198 if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1
9199 && (GET_MODE_BITSIZE (result_mode)
9200 >= GET_MODE_BITSIZE (GET_MODE (varop))))
9202 varop = XEXP (varop, 0);
9203 continue;
9206 /* ... fall through ... */
9208 case LSHIFTRT:
9209 case ASHIFT:
9210 case ROTATE:
9211 /* Here we have two nested shifts. The result is usually the
9212 AND of a new shift with a mask. We compute the result below. */
9213 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9214 && INTVAL (XEXP (varop, 1)) >= 0
9215 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
9216 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9217 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
9219 enum rtx_code first_code = GET_CODE (varop);
9220 unsigned int first_count = INTVAL (XEXP (varop, 1));
9221 unsigned HOST_WIDE_INT mask;
9222 rtx mask_rtx;
9224 /* We have one common special case. We can't do any merging if
9225 the inner code is an ASHIFTRT of a smaller mode. However, if
9226 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
9227 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
9228 we can convert it to
9229 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
9230 This simplifies certain SIGN_EXTEND operations. */
9231 if (code == ASHIFT && first_code == ASHIFTRT
9232 && (GET_MODE_BITSIZE (result_mode)
9233 - GET_MODE_BITSIZE (GET_MODE (varop))) == count)
9235 /* C3 has the low-order C1 bits zero. */
9237 mask = (GET_MODE_MASK (mode)
9238 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
9240 varop = simplify_and_const_int (NULL_RTX, result_mode,
9241 XEXP (varop, 0), mask);
9242 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
9243 varop, count);
9244 count = first_count;
9245 code = ASHIFTRT;
9246 continue;
9249 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
9250 than C1 high-order bits equal to the sign bit, we can convert
9251 this to either an ASHIFT or an ASHIFTRT depending on the
9252 two counts.
9254 We cannot do this if VAROP's mode is not SHIFT_MODE. */
9256 if (code == ASHIFTRT && first_code == ASHIFT
9257 && GET_MODE (varop) == shift_mode
9258 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
9259 > first_count))
9261 varop = XEXP (varop, 0);
9263 signed_count = count - first_count;
9264 if (signed_count < 0)
9265 count = -signed_count, code = ASHIFT;
9266 else
9267 count = signed_count;
9269 continue;
9272 /* There are some cases we can't do. If CODE is ASHIFTRT,
9273 we can only do this if FIRST_CODE is also ASHIFTRT.
9275 We can't do the case when CODE is ROTATE and FIRST_CODE is
9276 ASHIFTRT.
9278 If the mode of this shift is not the mode of the outer shift,
9279 we can't do this if either shift is a right shift or ROTATE.
9281 Finally, we can't do any of these if the mode is too wide
9282 unless the codes are the same.
9284 Handle the case where the shift codes are the same
9285 first. */
9287 if (code == first_code)
9289 if (GET_MODE (varop) != result_mode
9290 && (code == ASHIFTRT || code == LSHIFTRT
9291 || code == ROTATE))
9292 break;
9294 count += first_count;
9295 varop = XEXP (varop, 0);
9296 continue;
9299 if (code == ASHIFTRT
9300 || (code == ROTATE && first_code == ASHIFTRT)
9301 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
9302 || (GET_MODE (varop) != result_mode
9303 && (first_code == ASHIFTRT || first_code == LSHIFTRT
9304 || first_code == ROTATE
9305 || code == ROTATE)))
9306 break;
9308 /* To compute the mask to apply after the shift, shift the
9309 nonzero bits of the inner shift the same way the
9310 outer shift will. */
9312 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
9314 mask_rtx
9315 = simplify_binary_operation (code, result_mode, mask_rtx,
9316 GEN_INT (count));
9318 /* Give up if we can't compute an outer operation to use. */
9319 if (mask_rtx == 0
9320 || GET_CODE (mask_rtx) != CONST_INT
9321 || ! merge_outer_ops (&outer_op, &outer_const, AND,
9322 INTVAL (mask_rtx),
9323 result_mode, &complement_p))
9324 break;
9326 /* If the shifts are in the same direction, we add the
9327 counts. Otherwise, we subtract them. */
9328 signed_count = count;
9329 if ((code == ASHIFTRT || code == LSHIFTRT)
9330 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
9331 signed_count += first_count;
9332 else
9333 signed_count -= first_count;
9335 /* If COUNT is positive, the new shift is usually CODE,
9336 except for the two exceptions below, in which case it is
9337 FIRST_CODE. If the count is negative, FIRST_CODE should
9338 always be used */
9339 if (signed_count > 0
9340 && ((first_code == ROTATE && code == ASHIFT)
9341 || (first_code == ASHIFTRT && code == LSHIFTRT)))
9342 code = first_code, count = signed_count;
9343 else if (signed_count < 0)
9344 code = first_code, count = -signed_count;
9345 else
9346 count = signed_count;
9348 varop = XEXP (varop, 0);
9349 continue;
9352 /* If we have (A << B << C) for any shift, we can convert this to
9353 (A << C << B). This wins if A is a constant. Only try this if
9354 B is not a constant. */
9356 else if (GET_CODE (varop) == code
9357 && GET_CODE (XEXP (varop, 1)) != CONST_INT
9358 && 0 != (new
9359 = simplify_binary_operation (code, mode,
9360 XEXP (varop, 0),
9361 GEN_INT (count))))
9363 varop = gen_rtx_fmt_ee (code, mode, new, XEXP (varop, 1));
9364 count = 0;
9365 continue;
9367 break;
9369 case NOT:
9370 /* Make this fit the case below. */
9371 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
9372 GEN_INT (GET_MODE_MASK (mode)));
9373 continue;
9375 case IOR:
9376 case AND:
9377 case XOR:
9378 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
9379 with C the size of VAROP - 1 and the shift is logical if
9380 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9381 we have an (le X 0) operation. If we have an arithmetic shift
9382 and STORE_FLAG_VALUE is 1 or we have a logical shift with
9383 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
9385 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
9386 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
9387 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9388 && (code == LSHIFTRT || code == ASHIFTRT)
9389 && count == GET_MODE_BITSIZE (GET_MODE (varop)) - 1
9390 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9392 count = 0;
9393 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
9394 const0_rtx);
9396 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9397 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9399 continue;
9402 /* If we have (shift (logical)), move the logical to the outside
9403 to allow it to possibly combine with another logical and the
9404 shift to combine with another shift. This also canonicalizes to
9405 what a ZERO_EXTRACT looks like. Also, some machines have
9406 (and (shift)) insns. */
9408 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9409 && (new = simplify_binary_operation (code, result_mode,
9410 XEXP (varop, 1),
9411 GEN_INT (count))) != 0
9412 && GET_CODE (new) == CONST_INT
9413 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
9414 INTVAL (new), result_mode, &complement_p))
9416 varop = XEXP (varop, 0);
9417 continue;
9420 /* If we can't do that, try to simplify the shift in each arm of the
9421 logical expression, make a new logical expression, and apply
9422 the inverse distributive law. */
9424 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9425 XEXP (varop, 0), count);
9426 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9427 XEXP (varop, 1), count);
9429 varop = gen_binary (GET_CODE (varop), shift_mode, lhs, rhs);
9430 varop = apply_distributive_law (varop);
9432 count = 0;
9434 break;
9436 case EQ:
9437 /* convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
9438 says that the sign bit can be tested, FOO has mode MODE, C is
9439 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
9440 that may be nonzero. */
9441 if (code == LSHIFTRT
9442 && XEXP (varop, 1) == const0_rtx
9443 && GET_MODE (XEXP (varop, 0)) == result_mode
9444 && count == GET_MODE_BITSIZE (result_mode) - 1
9445 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9446 && ((STORE_FLAG_VALUE
9447 & ((HOST_WIDE_INT) 1
9448 < (GET_MODE_BITSIZE (result_mode) - 1))))
9449 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9450 && merge_outer_ops (&outer_op, &outer_const, XOR,
9451 (HOST_WIDE_INT) 1, result_mode,
9452 &complement_p))
9454 varop = XEXP (varop, 0);
9455 count = 0;
9456 continue;
9458 break;
9460 case NEG:
9461 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
9462 than the number of bits in the mode is equivalent to A. */
9463 if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1
9464 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
9466 varop = XEXP (varop, 0);
9467 count = 0;
9468 continue;
9471 /* NEG commutes with ASHIFT since it is multiplication. Move the
9472 NEG outside to allow shifts to combine. */
9473 if (code == ASHIFT
9474 && merge_outer_ops (&outer_op, &outer_const, NEG,
9475 (HOST_WIDE_INT) 0, result_mode,
9476 &complement_p))
9478 varop = XEXP (varop, 0);
9479 continue;
9481 break;
9483 case PLUS:
9484 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9485 is one less than the number of bits in the mode is
9486 equivalent to (xor A 1). */
9487 if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1
9488 && XEXP (varop, 1) == constm1_rtx
9489 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9490 && merge_outer_ops (&outer_op, &outer_const, XOR,
9491 (HOST_WIDE_INT) 1, result_mode,
9492 &complement_p))
9494 count = 0;
9495 varop = XEXP (varop, 0);
9496 continue;
9499 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9500 that might be nonzero in BAR are those being shifted out and those
9501 bits are known zero in FOO, we can replace the PLUS with FOO.
9502 Similarly in the other operand order. This code occurs when
9503 we are computing the size of a variable-size array. */
9505 if ((code == ASHIFTRT || code == LSHIFTRT)
9506 && count < HOST_BITS_PER_WIDE_INT
9507 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9508 && (nonzero_bits (XEXP (varop, 1), result_mode)
9509 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9511 varop = XEXP (varop, 0);
9512 continue;
9514 else if ((code == ASHIFTRT || code == LSHIFTRT)
9515 && count < HOST_BITS_PER_WIDE_INT
9516 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9517 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9518 >> count)
9519 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9520 & nonzero_bits (XEXP (varop, 1),
9521 result_mode)))
9523 varop = XEXP (varop, 1);
9524 continue;
9527 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9528 if (code == ASHIFT
9529 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9530 && (new = simplify_binary_operation (ASHIFT, result_mode,
9531 XEXP (varop, 1),
9532 GEN_INT (count))) != 0
9533 && GET_CODE (new) == CONST_INT
9534 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9535 INTVAL (new), result_mode, &complement_p))
9537 varop = XEXP (varop, 0);
9538 continue;
9540 break;
9542 case MINUS:
9543 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9544 with C the size of VAROP - 1 and the shift is logical if
9545 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9546 we have a (gt X 0) operation. If the shift is arithmetic with
9547 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9548 we have a (neg (gt X 0)) operation. */
9550 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9551 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9552 && count == GET_MODE_BITSIZE (GET_MODE (varop)) - 1
9553 && (code == LSHIFTRT || code == ASHIFTRT)
9554 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9555 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
9556 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9558 count = 0;
9559 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9560 const0_rtx);
9562 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9563 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9565 continue;
9567 break;
9569 case TRUNCATE:
9570 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9571 if the truncate does not affect the value. */
9572 if (code == LSHIFTRT
9573 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9574 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9575 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9576 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9577 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9579 rtx varop_inner = XEXP (varop, 0);
9581 varop_inner
9582 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9583 XEXP (varop_inner, 0),
9584 GEN_INT
9585 (count + INTVAL (XEXP (varop_inner, 1))));
9586 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9587 count = 0;
9588 continue;
9590 break;
9592 default:
9593 break;
9596 break;
9599 /* We need to determine what mode to do the shift in. If the shift is
9600 a right shift or ROTATE, we must always do it in the mode it was
9601 originally done in. Otherwise, we can do it in MODE, the widest mode
9602 encountered. The code we care about is that of the shift that will
9603 actually be done, not the shift that was originally requested. */
9604 shift_mode
9605 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9606 ? result_mode : mode);
9608 /* We have now finished analyzing the shift. The result should be
9609 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9610 OUTER_OP is non-NIL, it is an operation that needs to be applied
9611 to the result of the shift. OUTER_CONST is the relevant constant,
9612 but we must turn off all bits turned off in the shift.
9614 If we were passed a value for X, see if we can use any pieces of
9615 it. If not, make new rtx. */
9617 if (x && GET_RTX_CLASS (GET_CODE (x)) == '2'
9618 && GET_CODE (XEXP (x, 1)) == CONST_INT
9619 && INTVAL (XEXP (x, 1)) == count)
9620 const_rtx = XEXP (x, 1);
9621 else
9622 const_rtx = GEN_INT (count);
9624 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
9625 && GET_MODE (XEXP (x, 0)) == shift_mode
9626 && SUBREG_REG (XEXP (x, 0)) == varop)
9627 varop = XEXP (x, 0);
9628 else if (GET_MODE (varop) != shift_mode)
9629 varop = gen_lowpart_for_combine (shift_mode, varop);
9631 /* If we can't make the SUBREG, try to return what we were given. */
9632 if (GET_CODE (varop) == CLOBBER)
9633 return x ? x : varop;
9635 new = simplify_binary_operation (code, shift_mode, varop, const_rtx);
9636 if (new != 0)
9637 x = new;
9638 else
9639 x = gen_rtx_fmt_ee (code, shift_mode, varop, const_rtx);
9641 /* If we have an outer operation and we just made a shift, it is
9642 possible that we could have simplified the shift were it not
9643 for the outer operation. So try to do the simplification
9644 recursively. */
9646 if (outer_op != NIL && GET_CODE (x) == code
9647 && GET_CODE (XEXP (x, 1)) == CONST_INT)
9648 x = simplify_shift_const (x, code, shift_mode, XEXP (x, 0),
9649 INTVAL (XEXP (x, 1)));
9651 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
9652 turn off all the bits that the shift would have turned off. */
9653 if (orig_code == LSHIFTRT && result_mode != shift_mode)
9654 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9655 GET_MODE_MASK (result_mode) >> orig_count);
9657 /* Do the remainder of the processing in RESULT_MODE. */
9658 x = gen_lowpart_for_combine (result_mode, x);
9660 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9661 operation. */
9662 if (complement_p)
9663 x =simplify_gen_unary (NOT, result_mode, x, result_mode);
9665 if (outer_op != NIL)
9667 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9668 outer_const = trunc_int_for_mode (outer_const, result_mode);
9670 if (outer_op == AND)
9671 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9672 else if (outer_op == SET)
9673 /* This means that we have determined that the result is
9674 equivalent to a constant. This should be rare. */
9675 x = GEN_INT (outer_const);
9676 else if (GET_RTX_CLASS (outer_op) == '1')
9677 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
9678 else
9679 x = gen_binary (outer_op, result_mode, x, GEN_INT (outer_const));
9682 return x;
9685 /* Like recog, but we receive the address of a pointer to a new pattern.
9686 We try to match the rtx that the pointer points to.
9687 If that fails, we may try to modify or replace the pattern,
9688 storing the replacement into the same pointer object.
9690 Modifications include deletion or addition of CLOBBERs.
9692 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9693 the CLOBBERs are placed.
9695 The value is the final insn code from the pattern ultimately matched,
9696 or -1. */
9698 static int
9699 recog_for_combine (pnewpat, insn, pnotes)
9700 rtx *pnewpat;
9701 rtx insn;
9702 rtx *pnotes;
9704 rtx pat = *pnewpat;
9705 int insn_code_number;
9706 int num_clobbers_to_add = 0;
9707 int i;
9708 rtx notes = 0;
9709 rtx dummy_insn;
9711 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9712 we use to indicate that something didn't match. If we find such a
9713 thing, force rejection. */
9714 if (GET_CODE (pat) == PARALLEL)
9715 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9716 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9717 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9718 return -1;
9720 /* *pnewpat does not have to be actual PATTERN (insn), so make a dummy
9721 instruction for pattern recognition. */
9722 dummy_insn = shallow_copy_rtx (insn);
9723 PATTERN (dummy_insn) = pat;
9724 REG_NOTES (dummy_insn) = 0;
9726 insn_code_number = recog (pat, dummy_insn, &num_clobbers_to_add);
9728 /* If it isn't, there is the possibility that we previously had an insn
9729 that clobbered some register as a side effect, but the combined
9730 insn doesn't need to do that. So try once more without the clobbers
9731 unless this represents an ASM insn. */
9733 if (insn_code_number < 0 && ! check_asm_operands (pat)
9734 && GET_CODE (pat) == PARALLEL)
9736 int pos;
9738 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9739 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9741 if (i != pos)
9742 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9743 pos++;
9746 SUBST_INT (XVECLEN (pat, 0), pos);
9748 if (pos == 1)
9749 pat = XVECEXP (pat, 0, 0);
9751 PATTERN (dummy_insn) = pat;
9752 insn_code_number = recog (pat, dummy_insn, &num_clobbers_to_add);
9755 /* Recognize all noop sets, these will be killed by followup pass. */
9756 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
9757 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
9759 /* If we had any clobbers to add, make a new pattern than contains
9760 them. Then check to make sure that all of them are dead. */
9761 if (num_clobbers_to_add)
9763 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9764 rtvec_alloc (GET_CODE (pat) == PARALLEL
9765 ? (XVECLEN (pat, 0)
9766 + num_clobbers_to_add)
9767 : num_clobbers_to_add + 1));
9769 if (GET_CODE (pat) == PARALLEL)
9770 for (i = 0; i < XVECLEN (pat, 0); i++)
9771 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9772 else
9773 XVECEXP (newpat, 0, 0) = pat;
9775 add_clobbers (newpat, insn_code_number);
9777 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9778 i < XVECLEN (newpat, 0); i++)
9780 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) == REG
9781 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9782 return -1;
9783 notes = gen_rtx_EXPR_LIST (REG_UNUSED,
9784 XEXP (XVECEXP (newpat, 0, i), 0), notes);
9786 pat = newpat;
9789 *pnewpat = pat;
9790 *pnotes = notes;
9792 return insn_code_number;
9795 /* Like gen_lowpart but for use by combine. In combine it is not possible
9796 to create any new pseudoregs. However, it is safe to create
9797 invalid memory addresses, because combine will try to recognize
9798 them and all they will do is make the combine attempt fail.
9800 If for some reason this cannot do its job, an rtx
9801 (clobber (const_int 0)) is returned.
9802 An insn containing that will not be recognized. */
9804 #undef gen_lowpart
9806 static rtx
9807 gen_lowpart_for_combine (mode, x)
9808 enum machine_mode mode;
9809 rtx x;
9811 rtx result;
9813 if (GET_MODE (x) == mode)
9814 return x;
9816 /* We can only support MODE being wider than a word if X is a
9817 constant integer or has a mode the same size. */
9819 if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
9820 && ! ((GET_MODE (x) == VOIDmode
9821 && (GET_CODE (x) == CONST_INT
9822 || GET_CODE (x) == CONST_DOUBLE))
9823 || GET_MODE_SIZE (GET_MODE (x)) == GET_MODE_SIZE (mode)))
9824 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9826 /* simplify_gen_subreg does not know how to handle the case where we try
9827 to convert an integer constant to a vector.
9828 ??? We could try to teach it to generate CONST_VECTORs. */
9829 if (GET_MODE (x) == VOIDmode && VECTOR_MODE_P (mode))
9830 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9832 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9833 won't know what to do. So we will strip off the SUBREG here and
9834 process normally. */
9835 if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
9837 x = SUBREG_REG (x);
9838 if (GET_MODE (x) == mode)
9839 return x;
9842 result = gen_lowpart_common (mode, x);
9843 #ifdef CLASS_CANNOT_CHANGE_MODE
9844 if (result != 0
9845 && GET_CODE (result) == SUBREG
9846 && GET_CODE (SUBREG_REG (result)) == REG
9847 && REGNO (SUBREG_REG (result)) >= FIRST_PSEUDO_REGISTER
9848 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (result),
9849 GET_MODE (SUBREG_REG (result))))
9850 REG_CHANGES_MODE (REGNO (SUBREG_REG (result))) = 1;
9851 #endif
9853 if (result)
9854 return result;
9856 if (GET_CODE (x) == MEM)
9858 int offset = 0;
9860 /* Refuse to work on a volatile memory ref or one with a mode-dependent
9861 address. */
9862 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
9863 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9865 /* If we want to refer to something bigger than the original memref,
9866 generate a perverse subreg instead. That will force a reload
9867 of the original memref X. */
9868 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode))
9869 return gen_rtx_SUBREG (mode, x, 0);
9871 if (WORDS_BIG_ENDIAN)
9872 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
9873 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
9875 if (BYTES_BIG_ENDIAN)
9877 /* Adjust the address so that the address-after-the-data is
9878 unchanged. */
9879 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
9880 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
9883 return adjust_address_nv (x, mode, offset);
9886 /* If X is a comparison operator, rewrite it in a new mode. This
9887 probably won't match, but may allow further simplifications. */
9888 else if (GET_RTX_CLASS (GET_CODE (x)) == '<')
9889 return gen_rtx_fmt_ee (GET_CODE (x), mode, XEXP (x, 0), XEXP (x, 1));
9891 /* If we couldn't simplify X any other way, just enclose it in a
9892 SUBREG. Normally, this SUBREG won't match, but some patterns may
9893 include an explicit SUBREG or we may simplify it further in combine. */
9894 else
9896 int offset = 0;
9897 rtx res;
9899 offset = subreg_lowpart_offset (mode, GET_MODE (x));
9900 res = simplify_gen_subreg (mode, x, GET_MODE (x), offset);
9901 if (res)
9902 return res;
9903 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9907 /* These routines make binary and unary operations by first seeing if they
9908 fold; if not, a new expression is allocated. */
9910 static rtx
9911 gen_binary (code, mode, op0, op1)
9912 enum rtx_code code;
9913 enum machine_mode mode;
9914 rtx op0, op1;
9916 rtx result;
9917 rtx tem;
9919 if (GET_RTX_CLASS (code) == 'c'
9920 && swap_commutative_operands_p (op0, op1))
9921 tem = op0, op0 = op1, op1 = tem;
9923 if (GET_RTX_CLASS (code) == '<')
9925 enum machine_mode op_mode = GET_MODE (op0);
9927 /* Strip the COMPARE from (REL_OP (compare X Y) 0) to get
9928 just (REL_OP X Y). */
9929 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
9931 op1 = XEXP (op0, 1);
9932 op0 = XEXP (op0, 0);
9933 op_mode = GET_MODE (op0);
9936 if (op_mode == VOIDmode)
9937 op_mode = GET_MODE (op1);
9938 result = simplify_relational_operation (code, op_mode, op0, op1);
9940 else
9941 result = simplify_binary_operation (code, mode, op0, op1);
9943 if (result)
9944 return result;
9946 /* Put complex operands first and constants second. */
9947 if (GET_RTX_CLASS (code) == 'c'
9948 && swap_commutative_operands_p (op0, op1))
9949 return gen_rtx_fmt_ee (code, mode, op1, op0);
9951 /* If we are turning off bits already known off in OP0, we need not do
9952 an AND. */
9953 else if (code == AND && GET_CODE (op1) == CONST_INT
9954 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9955 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
9956 return op0;
9958 return gen_rtx_fmt_ee (code, mode, op0, op1);
9961 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
9962 comparison code that will be tested.
9964 The result is a possibly different comparison code to use. *POP0 and
9965 *POP1 may be updated.
9967 It is possible that we might detect that a comparison is either always
9968 true or always false. However, we do not perform general constant
9969 folding in combine, so this knowledge isn't useful. Such tautologies
9970 should have been detected earlier. Hence we ignore all such cases. */
9972 static enum rtx_code
9973 simplify_comparison (code, pop0, pop1)
9974 enum rtx_code code;
9975 rtx *pop0;
9976 rtx *pop1;
9978 rtx op0 = *pop0;
9979 rtx op1 = *pop1;
9980 rtx tem, tem1;
9981 int i;
9982 enum machine_mode mode, tmode;
9984 /* Try a few ways of applying the same transformation to both operands. */
9985 while (1)
9987 #ifndef WORD_REGISTER_OPERATIONS
9988 /* The test below this one won't handle SIGN_EXTENDs on these machines,
9989 so check specially. */
9990 if (code != GTU && code != GEU && code != LTU && code != LEU
9991 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
9992 && GET_CODE (XEXP (op0, 0)) == ASHIFT
9993 && GET_CODE (XEXP (op1, 0)) == ASHIFT
9994 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
9995 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
9996 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
9997 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
9998 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9999 && GET_CODE (XEXP (op1, 1)) == CONST_INT
10000 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10001 && GET_CODE (XEXP (XEXP (op1, 0), 1)) == CONST_INT
10002 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (op1, 1))
10003 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (XEXP (op0, 0), 1))
10004 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (XEXP (op1, 0), 1))
10005 && (INTVAL (XEXP (op0, 1))
10006 == (GET_MODE_BITSIZE (GET_MODE (op0))
10007 - (GET_MODE_BITSIZE
10008 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
10010 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
10011 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
10013 #endif
10015 /* If both operands are the same constant shift, see if we can ignore the
10016 shift. We can if the shift is a rotate or if the bits shifted out of
10017 this shift are known to be zero for both inputs and if the type of
10018 comparison is compatible with the shift. */
10019 if (GET_CODE (op0) == GET_CODE (op1)
10020 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10021 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
10022 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
10023 && (code != GT && code != LT && code != GE && code != LE))
10024 || (GET_CODE (op0) == ASHIFTRT
10025 && (code != GTU && code != LTU
10026 && code != GEU && code != LEU)))
10027 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10028 && INTVAL (XEXP (op0, 1)) >= 0
10029 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10030 && XEXP (op0, 1) == XEXP (op1, 1))
10032 enum machine_mode mode = GET_MODE (op0);
10033 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10034 int shift_count = INTVAL (XEXP (op0, 1));
10036 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
10037 mask &= (mask >> shift_count) << shift_count;
10038 else if (GET_CODE (op0) == ASHIFT)
10039 mask = (mask & (mask << shift_count)) >> shift_count;
10041 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
10042 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
10043 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
10044 else
10045 break;
10048 /* If both operands are AND's of a paradoxical SUBREG by constant, the
10049 SUBREGs are of the same mode, and, in both cases, the AND would
10050 be redundant if the comparison was done in the narrower mode,
10051 do the comparison in the narrower mode (e.g., we are AND'ing with 1
10052 and the operand's possibly nonzero bits are 0xffffff01; in that case
10053 if we only care about QImode, we don't need the AND). This case
10054 occurs if the output mode of an scc insn is not SImode and
10055 STORE_FLAG_VALUE == 1 (e.g., the 386).
10057 Similarly, check for a case where the AND's are ZERO_EXTEND
10058 operations from some narrower mode even though a SUBREG is not
10059 present. */
10061 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
10062 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10063 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
10065 rtx inner_op0 = XEXP (op0, 0);
10066 rtx inner_op1 = XEXP (op1, 0);
10067 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
10068 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
10069 int changed = 0;
10071 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
10072 && (GET_MODE_SIZE (GET_MODE (inner_op0))
10073 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
10074 && (GET_MODE (SUBREG_REG (inner_op0))
10075 == GET_MODE (SUBREG_REG (inner_op1)))
10076 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
10077 <= HOST_BITS_PER_WIDE_INT)
10078 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
10079 GET_MODE (SUBREG_REG (inner_op0)))))
10080 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
10081 GET_MODE (SUBREG_REG (inner_op1))))))
10083 op0 = SUBREG_REG (inner_op0);
10084 op1 = SUBREG_REG (inner_op1);
10086 /* The resulting comparison is always unsigned since we masked
10087 off the original sign bit. */
10088 code = unsigned_condition (code);
10090 changed = 1;
10093 else if (c0 == c1)
10094 for (tmode = GET_CLASS_NARROWEST_MODE
10095 (GET_MODE_CLASS (GET_MODE (op0)));
10096 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
10097 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
10099 op0 = gen_lowpart_for_combine (tmode, inner_op0);
10100 op1 = gen_lowpart_for_combine (tmode, inner_op1);
10101 code = unsigned_condition (code);
10102 changed = 1;
10103 break;
10106 if (! changed)
10107 break;
10110 /* If both operands are NOT, we can strip off the outer operation
10111 and adjust the comparison code for swapped operands; similarly for
10112 NEG, except that this must be an equality comparison. */
10113 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
10114 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
10115 && (code == EQ || code == NE)))
10116 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
10118 else
10119 break;
10122 /* If the first operand is a constant, swap the operands and adjust the
10123 comparison code appropriately, but don't do this if the second operand
10124 is already a constant integer. */
10125 if (swap_commutative_operands_p (op0, op1))
10127 tem = op0, op0 = op1, op1 = tem;
10128 code = swap_condition (code);
10131 /* We now enter a loop during which we will try to simplify the comparison.
10132 For the most part, we only are concerned with comparisons with zero,
10133 but some things may really be comparisons with zero but not start
10134 out looking that way. */
10136 while (GET_CODE (op1) == CONST_INT)
10138 enum machine_mode mode = GET_MODE (op0);
10139 unsigned int mode_width = GET_MODE_BITSIZE (mode);
10140 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10141 int equality_comparison_p;
10142 int sign_bit_comparison_p;
10143 int unsigned_comparison_p;
10144 HOST_WIDE_INT const_op;
10146 /* We only want to handle integral modes. This catches VOIDmode,
10147 CCmode, and the floating-point modes. An exception is that we
10148 can handle VOIDmode if OP0 is a COMPARE or a comparison
10149 operation. */
10151 if (GET_MODE_CLASS (mode) != MODE_INT
10152 && ! (mode == VOIDmode
10153 && (GET_CODE (op0) == COMPARE
10154 || GET_RTX_CLASS (GET_CODE (op0)) == '<')))
10155 break;
10157 /* Get the constant we are comparing against and turn off all bits
10158 not on in our mode. */
10159 const_op = trunc_int_for_mode (INTVAL (op1), mode);
10160 op1 = GEN_INT (const_op);
10162 /* If we are comparing against a constant power of two and the value
10163 being compared can only have that single bit nonzero (e.g., it was
10164 `and'ed with that bit), we can replace this with a comparison
10165 with zero. */
10166 if (const_op
10167 && (code == EQ || code == NE || code == GE || code == GEU
10168 || code == LT || code == LTU)
10169 && mode_width <= HOST_BITS_PER_WIDE_INT
10170 && exact_log2 (const_op) >= 0
10171 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
10173 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10174 op1 = const0_rtx, const_op = 0;
10177 /* Similarly, if we are comparing a value known to be either -1 or
10178 0 with -1, change it to the opposite comparison against zero. */
10180 if (const_op == -1
10181 && (code == EQ || code == NE || code == GT || code == LE
10182 || code == GEU || code == LTU)
10183 && num_sign_bit_copies (op0, mode) == mode_width)
10185 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10186 op1 = const0_rtx, const_op = 0;
10189 /* Do some canonicalizations based on the comparison code. We prefer
10190 comparisons against zero and then prefer equality comparisons.
10191 If we can reduce the size of a constant, we will do that too. */
10193 switch (code)
10195 case LT:
10196 /* < C is equivalent to <= (C - 1) */
10197 if (const_op > 0)
10199 const_op -= 1;
10200 op1 = GEN_INT (const_op);
10201 code = LE;
10202 /* ... fall through to LE case below. */
10204 else
10205 break;
10207 case LE:
10208 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10209 if (const_op < 0)
10211 const_op += 1;
10212 op1 = GEN_INT (const_op);
10213 code = LT;
10216 /* If we are doing a <= 0 comparison on a value known to have
10217 a zero sign bit, we can replace this with == 0. */
10218 else if (const_op == 0
10219 && mode_width <= HOST_BITS_PER_WIDE_INT
10220 && (nonzero_bits (op0, mode)
10221 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10222 code = EQ;
10223 break;
10225 case GE:
10226 /* >= C is equivalent to > (C - 1). */
10227 if (const_op > 0)
10229 const_op -= 1;
10230 op1 = GEN_INT (const_op);
10231 code = GT;
10232 /* ... fall through to GT below. */
10234 else
10235 break;
10237 case GT:
10238 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
10239 if (const_op < 0)
10241 const_op += 1;
10242 op1 = GEN_INT (const_op);
10243 code = GE;
10246 /* If we are doing a > 0 comparison on a value known to have
10247 a zero sign bit, we can replace this with != 0. */
10248 else if (const_op == 0
10249 && mode_width <= HOST_BITS_PER_WIDE_INT
10250 && (nonzero_bits (op0, mode)
10251 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10252 code = NE;
10253 break;
10255 case LTU:
10256 /* < C is equivalent to <= (C - 1). */
10257 if (const_op > 0)
10259 const_op -= 1;
10260 op1 = GEN_INT (const_op);
10261 code = LEU;
10262 /* ... fall through ... */
10265 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
10266 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10267 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10269 const_op = 0, op1 = const0_rtx;
10270 code = GE;
10271 break;
10273 else
10274 break;
10276 case LEU:
10277 /* unsigned <= 0 is equivalent to == 0 */
10278 if (const_op == 0)
10279 code = EQ;
10281 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
10282 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10283 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10285 const_op = 0, op1 = const0_rtx;
10286 code = GE;
10288 break;
10290 case GEU:
10291 /* >= C is equivalent to < (C - 1). */
10292 if (const_op > 1)
10294 const_op -= 1;
10295 op1 = GEN_INT (const_op);
10296 code = GTU;
10297 /* ... fall through ... */
10300 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
10301 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10302 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10304 const_op = 0, op1 = const0_rtx;
10305 code = LT;
10306 break;
10308 else
10309 break;
10311 case GTU:
10312 /* unsigned > 0 is equivalent to != 0 */
10313 if (const_op == 0)
10314 code = NE;
10316 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
10317 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10318 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10320 const_op = 0, op1 = const0_rtx;
10321 code = LT;
10323 break;
10325 default:
10326 break;
10329 /* Compute some predicates to simplify code below. */
10331 equality_comparison_p = (code == EQ || code == NE);
10332 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
10333 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
10334 || code == GEU);
10336 /* If this is a sign bit comparison and we can do arithmetic in
10337 MODE, say that we will only be needing the sign bit of OP0. */
10338 if (sign_bit_comparison_p
10339 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10340 op0 = force_to_mode (op0, mode,
10341 ((HOST_WIDE_INT) 1
10342 << (GET_MODE_BITSIZE (mode) - 1)),
10343 NULL_RTX, 0);
10345 /* Now try cases based on the opcode of OP0. If none of the cases
10346 does a "continue", we exit this loop immediately after the
10347 switch. */
10349 switch (GET_CODE (op0))
10351 case ZERO_EXTRACT:
10352 /* If we are extracting a single bit from a variable position in
10353 a constant that has only a single bit set and are comparing it
10354 with zero, we can convert this into an equality comparison
10355 between the position and the location of the single bit. */
10357 if (GET_CODE (XEXP (op0, 0)) == CONST_INT
10358 && XEXP (op0, 1) == const1_rtx
10359 && equality_comparison_p && const_op == 0
10360 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
10362 if (BITS_BIG_ENDIAN)
10364 enum machine_mode new_mode
10365 = mode_for_extraction (EP_extzv, 1);
10366 if (new_mode == MAX_MACHINE_MODE)
10367 i = BITS_PER_WORD - 1 - i;
10368 else
10370 mode = new_mode;
10371 i = (GET_MODE_BITSIZE (mode) - 1 - i);
10375 op0 = XEXP (op0, 2);
10376 op1 = GEN_INT (i);
10377 const_op = i;
10379 /* Result is nonzero iff shift count is equal to I. */
10380 code = reverse_condition (code);
10381 continue;
10384 /* ... fall through ... */
10386 case SIGN_EXTRACT:
10387 tem = expand_compound_operation (op0);
10388 if (tem != op0)
10390 op0 = tem;
10391 continue;
10393 break;
10395 case NOT:
10396 /* If testing for equality, we can take the NOT of the constant. */
10397 if (equality_comparison_p
10398 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
10400 op0 = XEXP (op0, 0);
10401 op1 = tem;
10402 continue;
10405 /* If just looking at the sign bit, reverse the sense of the
10406 comparison. */
10407 if (sign_bit_comparison_p)
10409 op0 = XEXP (op0, 0);
10410 code = (code == GE ? LT : GE);
10411 continue;
10413 break;
10415 case NEG:
10416 /* If testing for equality, we can take the NEG of the constant. */
10417 if (equality_comparison_p
10418 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
10420 op0 = XEXP (op0, 0);
10421 op1 = tem;
10422 continue;
10425 /* The remaining cases only apply to comparisons with zero. */
10426 if (const_op != 0)
10427 break;
10429 /* When X is ABS or is known positive,
10430 (neg X) is < 0 if and only if X != 0. */
10432 if (sign_bit_comparison_p
10433 && (GET_CODE (XEXP (op0, 0)) == ABS
10434 || (mode_width <= HOST_BITS_PER_WIDE_INT
10435 && (nonzero_bits (XEXP (op0, 0), mode)
10436 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
10438 op0 = XEXP (op0, 0);
10439 code = (code == LT ? NE : EQ);
10440 continue;
10443 /* If we have NEG of something whose two high-order bits are the
10444 same, we know that "(-a) < 0" is equivalent to "a > 0". */
10445 if (num_sign_bit_copies (op0, mode) >= 2)
10447 op0 = XEXP (op0, 0);
10448 code = swap_condition (code);
10449 continue;
10451 break;
10453 case ROTATE:
10454 /* If we are testing equality and our count is a constant, we
10455 can perform the inverse operation on our RHS. */
10456 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10457 && (tem = simplify_binary_operation (ROTATERT, mode,
10458 op1, XEXP (op0, 1))) != 0)
10460 op0 = XEXP (op0, 0);
10461 op1 = tem;
10462 continue;
10465 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10466 a particular bit. Convert it to an AND of a constant of that
10467 bit. This will be converted into a ZERO_EXTRACT. */
10468 if (const_op == 0 && sign_bit_comparison_p
10469 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10470 && mode_width <= HOST_BITS_PER_WIDE_INT)
10472 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10473 ((HOST_WIDE_INT) 1
10474 << (mode_width - 1
10475 - INTVAL (XEXP (op0, 1)))));
10476 code = (code == LT ? NE : EQ);
10477 continue;
10480 /* Fall through. */
10482 case ABS:
10483 /* ABS is ignorable inside an equality comparison with zero. */
10484 if (const_op == 0 && equality_comparison_p)
10486 op0 = XEXP (op0, 0);
10487 continue;
10489 break;
10491 case SIGN_EXTEND:
10492 /* Can simplify (compare (zero/sign_extend FOO) CONST)
10493 to (compare FOO CONST) if CONST fits in FOO's mode and we
10494 are either testing inequality or have an unsigned comparison
10495 with ZERO_EXTEND or a signed comparison with SIGN_EXTEND. */
10496 if (! unsigned_comparison_p
10497 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10498 <= HOST_BITS_PER_WIDE_INT)
10499 && ((unsigned HOST_WIDE_INT) const_op
10500 < (((unsigned HOST_WIDE_INT) 1
10501 << (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))) - 1)))))
10503 op0 = XEXP (op0, 0);
10504 continue;
10506 break;
10508 case SUBREG:
10509 /* Check for the case where we are comparing A - C1 with C2,
10510 both constants are smaller than 1/2 the maximum positive
10511 value in MODE, and the comparison is equality or unsigned.
10512 In that case, if A is either zero-extended to MODE or has
10513 sufficient sign bits so that the high-order bit in MODE
10514 is a copy of the sign in the inner mode, we can prove that it is
10515 safe to do the operation in the wider mode. This simplifies
10516 many range checks. */
10518 if (mode_width <= HOST_BITS_PER_WIDE_INT
10519 && subreg_lowpart_p (op0)
10520 && GET_CODE (SUBREG_REG (op0)) == PLUS
10521 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT
10522 && INTVAL (XEXP (SUBREG_REG (op0), 1)) < 0
10523 && (-INTVAL (XEXP (SUBREG_REG (op0), 1))
10524 < (HOST_WIDE_INT) (GET_MODE_MASK (mode) / 2))
10525 && (unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode) / 2
10526 && (0 == (nonzero_bits (XEXP (SUBREG_REG (op0), 0),
10527 GET_MODE (SUBREG_REG (op0)))
10528 & ~GET_MODE_MASK (mode))
10529 || (num_sign_bit_copies (XEXP (SUBREG_REG (op0), 0),
10530 GET_MODE (SUBREG_REG (op0)))
10531 > (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10532 - GET_MODE_BITSIZE (mode)))))
10534 op0 = SUBREG_REG (op0);
10535 continue;
10538 /* If the inner mode is narrower and we are extracting the low part,
10539 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10540 if (subreg_lowpart_p (op0)
10541 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10542 /* Fall through */ ;
10543 else
10544 break;
10546 /* ... fall through ... */
10548 case ZERO_EXTEND:
10549 if ((unsigned_comparison_p || equality_comparison_p)
10550 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10551 <= HOST_BITS_PER_WIDE_INT)
10552 && ((unsigned HOST_WIDE_INT) const_op
10553 < GET_MODE_MASK (GET_MODE (XEXP (op0, 0)))))
10555 op0 = XEXP (op0, 0);
10556 continue;
10558 break;
10560 case PLUS:
10561 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10562 this for equality comparisons due to pathological cases involving
10563 overflows. */
10564 if (equality_comparison_p
10565 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10566 op1, XEXP (op0, 1))))
10568 op0 = XEXP (op0, 0);
10569 op1 = tem;
10570 continue;
10573 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10574 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10575 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10577 op0 = XEXP (XEXP (op0, 0), 0);
10578 code = (code == LT ? EQ : NE);
10579 continue;
10581 break;
10583 case MINUS:
10584 /* We used to optimize signed comparisons against zero, but that
10585 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10586 arrive here as equality comparisons, or (GEU, LTU) are
10587 optimized away. No need to special-case them. */
10589 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10590 (eq B (minus A C)), whichever simplifies. We can only do
10591 this for equality comparisons due to pathological cases involving
10592 overflows. */
10593 if (equality_comparison_p
10594 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10595 XEXP (op0, 1), op1)))
10597 op0 = XEXP (op0, 0);
10598 op1 = tem;
10599 continue;
10602 if (equality_comparison_p
10603 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10604 XEXP (op0, 0), op1)))
10606 op0 = XEXP (op0, 1);
10607 op1 = tem;
10608 continue;
10611 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10612 of bits in X minus 1, is one iff X > 0. */
10613 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10614 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10615 && INTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
10616 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10618 op0 = XEXP (op0, 1);
10619 code = (code == GE ? LE : GT);
10620 continue;
10622 break;
10624 case XOR:
10625 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10626 if C is zero or B is a constant. */
10627 if (equality_comparison_p
10628 && 0 != (tem = simplify_binary_operation (XOR, mode,
10629 XEXP (op0, 1), op1)))
10631 op0 = XEXP (op0, 0);
10632 op1 = tem;
10633 continue;
10635 break;
10637 case EQ: case NE:
10638 case UNEQ: case LTGT:
10639 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
10640 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
10641 case UNORDERED: case ORDERED:
10642 /* We can't do anything if OP0 is a condition code value, rather
10643 than an actual data value. */
10644 if (const_op != 0
10645 #ifdef HAVE_cc0
10646 || XEXP (op0, 0) == cc0_rtx
10647 #endif
10648 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10649 break;
10651 /* Get the two operands being compared. */
10652 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10653 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10654 else
10655 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10657 /* Check for the cases where we simply want the result of the
10658 earlier test or the opposite of that result. */
10659 if (code == NE || code == EQ
10660 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10661 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10662 && (STORE_FLAG_VALUE
10663 & (((HOST_WIDE_INT) 1
10664 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10665 && (code == LT || code == GE)))
10667 enum rtx_code new_code;
10668 if (code == LT || code == NE)
10669 new_code = GET_CODE (op0);
10670 else
10671 new_code = combine_reversed_comparison_code (op0);
10673 if (new_code != UNKNOWN)
10675 code = new_code;
10676 op0 = tem;
10677 op1 = tem1;
10678 continue;
10681 break;
10683 case IOR:
10684 /* The sign bit of (ior (plus X (const_int -1)) X) is non-zero
10685 iff X <= 0. */
10686 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10687 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10688 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10690 op0 = XEXP (op0, 1);
10691 code = (code == GE ? GT : LE);
10692 continue;
10694 break;
10696 case AND:
10697 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10698 will be converted to a ZERO_EXTRACT later. */
10699 if (const_op == 0 && equality_comparison_p
10700 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10701 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10703 op0 = simplify_and_const_int
10704 (op0, mode, gen_rtx_LSHIFTRT (mode,
10705 XEXP (op0, 1),
10706 XEXP (XEXP (op0, 0), 1)),
10707 (HOST_WIDE_INT) 1);
10708 continue;
10711 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10712 zero and X is a comparison and C1 and C2 describe only bits set
10713 in STORE_FLAG_VALUE, we can compare with X. */
10714 if (const_op == 0 && equality_comparison_p
10715 && mode_width <= HOST_BITS_PER_WIDE_INT
10716 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10717 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10718 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10719 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10720 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10722 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10723 << INTVAL (XEXP (XEXP (op0, 0), 1)));
10724 if ((~STORE_FLAG_VALUE & mask) == 0
10725 && (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (op0, 0), 0))) == '<'
10726 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10727 && GET_RTX_CLASS (GET_CODE (tem)) == '<')))
10729 op0 = XEXP (XEXP (op0, 0), 0);
10730 continue;
10734 /* If we are doing an equality comparison of an AND of a bit equal
10735 to the sign bit, replace this with a LT or GE comparison of
10736 the underlying value. */
10737 if (equality_comparison_p
10738 && const_op == 0
10739 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10740 && mode_width <= HOST_BITS_PER_WIDE_INT
10741 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10742 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10744 op0 = XEXP (op0, 0);
10745 code = (code == EQ ? GE : LT);
10746 continue;
10749 /* If this AND operation is really a ZERO_EXTEND from a narrower
10750 mode, the constant fits within that mode, and this is either an
10751 equality or unsigned comparison, try to do this comparison in
10752 the narrower mode. */
10753 if ((equality_comparison_p || unsigned_comparison_p)
10754 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10755 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10756 & GET_MODE_MASK (mode))
10757 + 1)) >= 0
10758 && const_op >> i == 0
10759 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
10761 op0 = gen_lowpart_for_combine (tmode, XEXP (op0, 0));
10762 continue;
10765 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1 fits
10766 in both M1 and M2 and the SUBREG is either paradoxical or
10767 represents the low part, permute the SUBREG and the AND and
10768 try again. */
10769 if (GET_CODE (XEXP (op0, 0)) == SUBREG
10770 && (0
10771 #ifdef WORD_REGISTER_OPERATIONS
10772 || ((mode_width
10773 > (GET_MODE_BITSIZE
10774 (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
10775 && mode_width <= BITS_PER_WORD)
10776 #endif
10777 || ((mode_width
10778 <= (GET_MODE_BITSIZE
10779 (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
10780 && subreg_lowpart_p (XEXP (op0, 0))))
10781 #ifndef WORD_REGISTER_OPERATIONS
10782 /* It is unsafe to commute the AND into the SUBREG if the SUBREG
10783 is paradoxical and WORD_REGISTER_OPERATIONS is not defined.
10784 As originally written the upper bits have a defined value
10785 due to the AND operation. However, if we commute the AND
10786 inside the SUBREG then they no longer have defined values
10787 and the meaning of the code has been changed. */
10788 && (GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)))
10789 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (op0, 0)))))
10790 #endif
10791 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10792 && mode_width <= HOST_BITS_PER_WIDE_INT
10793 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (XEXP (op0, 0))))
10794 <= HOST_BITS_PER_WIDE_INT)
10795 && (INTVAL (XEXP (op0, 1)) & ~mask) == 0
10796 && 0 == (~GET_MODE_MASK (GET_MODE (SUBREG_REG (XEXP (op0, 0))))
10797 & INTVAL (XEXP (op0, 1)))
10798 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1)) != mask
10799 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10800 != GET_MODE_MASK (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
10804 = gen_lowpart_for_combine
10805 (mode,
10806 gen_binary (AND, GET_MODE (SUBREG_REG (XEXP (op0, 0))),
10807 SUBREG_REG (XEXP (op0, 0)), XEXP (op0, 1)));
10808 continue;
10811 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
10812 (eq (and (lshiftrt X) 1) 0). */
10813 if (const_op == 0 && equality_comparison_p
10814 && XEXP (op0, 1) == const1_rtx
10815 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10816 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == NOT)
10818 op0 = simplify_and_const_int
10819 (op0, mode,
10820 gen_rtx_LSHIFTRT (mode, XEXP (XEXP (XEXP (op0, 0), 0), 0),
10821 XEXP (XEXP (op0, 0), 1)),
10822 (HOST_WIDE_INT) 1);
10823 code = (code == NE ? EQ : NE);
10824 continue;
10826 break;
10828 case ASHIFT:
10829 /* If we have (compare (ashift FOO N) (const_int C)) and
10830 the high order N bits of FOO (N+1 if an inequality comparison)
10831 are known to be zero, we can do this by comparing FOO with C
10832 shifted right N bits so long as the low-order N bits of C are
10833 zero. */
10834 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10835 && INTVAL (XEXP (op0, 1)) >= 0
10836 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
10837 < HOST_BITS_PER_WIDE_INT)
10838 && ((const_op
10839 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
10840 && mode_width <= HOST_BITS_PER_WIDE_INT
10841 && (nonzero_bits (XEXP (op0, 0), mode)
10842 & ~(mask >> (INTVAL (XEXP (op0, 1))
10843 + ! equality_comparison_p))) == 0)
10845 /* We must perform a logical shift, not an arithmetic one,
10846 as we want the top N bits of C to be zero. */
10847 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
10849 temp >>= INTVAL (XEXP (op0, 1));
10850 op1 = gen_int_mode (temp, mode);
10851 op0 = XEXP (op0, 0);
10852 continue;
10855 /* If we are doing a sign bit comparison, it means we are testing
10856 a particular bit. Convert it to the appropriate AND. */
10857 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10858 && mode_width <= HOST_BITS_PER_WIDE_INT)
10860 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10861 ((HOST_WIDE_INT) 1
10862 << (mode_width - 1
10863 - INTVAL (XEXP (op0, 1)))));
10864 code = (code == LT ? NE : EQ);
10865 continue;
10868 /* If this an equality comparison with zero and we are shifting
10869 the low bit to the sign bit, we can convert this to an AND of the
10870 low-order bit. */
10871 if (const_op == 0 && equality_comparison_p
10872 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10873 && INTVAL (XEXP (op0, 1)) == mode_width - 1)
10875 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10876 (HOST_WIDE_INT) 1);
10877 continue;
10879 break;
10881 case ASHIFTRT:
10882 /* If this is an equality comparison with zero, we can do this
10883 as a logical shift, which might be much simpler. */
10884 if (equality_comparison_p && const_op == 0
10885 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
10887 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
10888 XEXP (op0, 0),
10889 INTVAL (XEXP (op0, 1)));
10890 continue;
10893 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
10894 do the comparison in a narrower mode. */
10895 if (! unsigned_comparison_p
10896 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10897 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10898 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10899 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10900 MODE_INT, 1)) != BLKmode
10901 && (((unsigned HOST_WIDE_INT) const_op
10902 + (GET_MODE_MASK (tmode) >> 1) + 1)
10903 <= GET_MODE_MASK (tmode)))
10905 op0 = gen_lowpart_for_combine (tmode, XEXP (XEXP (op0, 0), 0));
10906 continue;
10909 /* Likewise if OP0 is a PLUS of a sign extension with a
10910 constant, which is usually represented with the PLUS
10911 between the shifts. */
10912 if (! unsigned_comparison_p
10913 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10914 && GET_CODE (XEXP (op0, 0)) == PLUS
10915 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10916 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
10917 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
10918 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10919 MODE_INT, 1)) != BLKmode
10920 && (((unsigned HOST_WIDE_INT) const_op
10921 + (GET_MODE_MASK (tmode) >> 1) + 1)
10922 <= GET_MODE_MASK (tmode)))
10924 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
10925 rtx add_const = XEXP (XEXP (op0, 0), 1);
10926 rtx new_const = gen_binary (ASHIFTRT, GET_MODE (op0), add_const,
10927 XEXP (op0, 1));
10929 op0 = gen_binary (PLUS, tmode,
10930 gen_lowpart_for_combine (tmode, inner),
10931 new_const);
10932 continue;
10935 /* ... fall through ... */
10936 case LSHIFTRT:
10937 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
10938 the low order N bits of FOO are known to be zero, we can do this
10939 by comparing FOO with C shifted left N bits so long as no
10940 overflow occurs. */
10941 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10942 && INTVAL (XEXP (op0, 1)) >= 0
10943 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10944 && mode_width <= HOST_BITS_PER_WIDE_INT
10945 && (nonzero_bits (XEXP (op0, 0), mode)
10946 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
10947 && (((unsigned HOST_WIDE_INT) const_op
10948 + (GET_CODE (op0) != LSHIFTRT
10949 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
10950 + 1)
10951 : 0))
10952 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
10954 /* If the shift was logical, then we must make the condition
10955 unsigned. */
10956 if (GET_CODE (op0) == LSHIFTRT)
10957 code = unsigned_condition (code);
10959 const_op <<= INTVAL (XEXP (op0, 1));
10960 op1 = GEN_INT (const_op);
10961 op0 = XEXP (op0, 0);
10962 continue;
10965 /* If we are using this shift to extract just the sign bit, we
10966 can replace this with an LT or GE comparison. */
10967 if (const_op == 0
10968 && (equality_comparison_p || sign_bit_comparison_p)
10969 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10970 && INTVAL (XEXP (op0, 1)) == mode_width - 1)
10972 op0 = XEXP (op0, 0);
10973 code = (code == NE || code == GT ? LT : GE);
10974 continue;
10976 break;
10978 default:
10979 break;
10982 break;
10985 /* Now make any compound operations involved in this comparison. Then,
10986 check for an outmost SUBREG on OP0 that is not doing anything or is
10987 paradoxical. The latter transformation must only be performed when
10988 it is known that the "extra" bits will be the same in op0 and op1 or
10989 that they don't matter. There are three cases to consider:
10991 1. SUBREG_REG (op0) is a register. In this case the bits are don't
10992 care bits and we can assume they have any convenient value. So
10993 making the transformation is safe.
10995 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
10996 In this case the upper bits of op0 are undefined. We should not make
10997 the simplification in that case as we do not know the contents of
10998 those bits.
11000 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
11001 NIL. In that case we know those bits are zeros or ones. We must
11002 also be sure that they are the same as the upper bits of op1.
11004 We can never remove a SUBREG for a non-equality comparison because
11005 the sign bit is in a different place in the underlying object. */
11007 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
11008 op1 = make_compound_operation (op1, SET);
11010 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
11011 /* Case 3 above, to sometimes allow (subreg (mem x)), isn't
11012 implemented. */
11013 && GET_CODE (SUBREG_REG (op0)) == REG
11014 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
11015 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
11016 && (code == NE || code == EQ))
11018 if (GET_MODE_SIZE (GET_MODE (op0))
11019 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
11021 op0 = SUBREG_REG (op0);
11022 op1 = gen_lowpart_for_combine (GET_MODE (op0), op1);
11024 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
11025 <= HOST_BITS_PER_WIDE_INT)
11026 && (nonzero_bits (SUBREG_REG (op0),
11027 GET_MODE (SUBREG_REG (op0)))
11028 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11030 tem = gen_lowpart_for_combine (GET_MODE (SUBREG_REG (op0)), op1);
11032 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
11033 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11034 op0 = SUBREG_REG (op0), op1 = tem;
11038 /* We now do the opposite procedure: Some machines don't have compare
11039 insns in all modes. If OP0's mode is an integer mode smaller than a
11040 word and we can't do a compare in that mode, see if there is a larger
11041 mode for which we can do the compare. There are a number of cases in
11042 which we can use the wider mode. */
11044 mode = GET_MODE (op0);
11045 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11046 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
11047 && ! have_insn_for (COMPARE, mode))
11048 for (tmode = GET_MODE_WIDER_MODE (mode);
11049 (tmode != VOIDmode
11050 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
11051 tmode = GET_MODE_WIDER_MODE (tmode))
11052 if (have_insn_for (COMPARE, tmode))
11054 int zero_extended;
11056 /* If the only nonzero bits in OP0 and OP1 are those in the
11057 narrower mode and this is an equality or unsigned comparison,
11058 we can use the wider mode. Similarly for sign-extended
11059 values, in which case it is true for all comparisons. */
11060 zero_extended = ((code == EQ || code == NE
11061 || code == GEU || code == GTU
11062 || code == LEU || code == LTU)
11063 && (nonzero_bits (op0, tmode)
11064 & ~GET_MODE_MASK (mode)) == 0
11065 && ((GET_CODE (op1) == CONST_INT
11066 || (nonzero_bits (op1, tmode)
11067 & ~GET_MODE_MASK (mode)) == 0)));
11069 if (zero_extended
11070 || ((num_sign_bit_copies (op0, tmode)
11071 > GET_MODE_BITSIZE (tmode) - GET_MODE_BITSIZE (mode))
11072 && (num_sign_bit_copies (op1, tmode)
11073 > GET_MODE_BITSIZE (tmode) - GET_MODE_BITSIZE (mode))))
11075 /* If OP0 is an AND and we don't have an AND in MODE either,
11076 make a new AND in the proper mode. */
11077 if (GET_CODE (op0) == AND
11078 && !have_insn_for (AND, mode))
11079 op0 = gen_binary (AND, tmode,
11080 gen_lowpart_for_combine (tmode,
11081 XEXP (op0, 0)),
11082 gen_lowpart_for_combine (tmode,
11083 XEXP (op0, 1)));
11085 op0 = gen_lowpart_for_combine (tmode, op0);
11086 if (zero_extended && GET_CODE (op1) == CONST_INT)
11087 op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (mode));
11088 op1 = gen_lowpart_for_combine (tmode, op1);
11089 break;
11092 /* If this is a test for negative, we can make an explicit
11093 test of the sign bit. */
11095 if (op1 == const0_rtx && (code == LT || code == GE)
11096 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11098 op0 = gen_binary (AND, tmode,
11099 gen_lowpart_for_combine (tmode, op0),
11100 GEN_INT ((HOST_WIDE_INT) 1
11101 << (GET_MODE_BITSIZE (mode) - 1)));
11102 code = (code == LT) ? NE : EQ;
11103 break;
11107 #ifdef CANONICALIZE_COMPARISON
11108 /* If this machine only supports a subset of valid comparisons, see if we
11109 can convert an unsupported one into a supported one. */
11110 CANONICALIZE_COMPARISON (code, op0, op1);
11111 #endif
11113 *pop0 = op0;
11114 *pop1 = op1;
11116 return code;
11119 /* Like jump.c' reversed_comparison_code, but use combine infrastructure for
11120 searching backward. */
11121 static enum rtx_code
11122 combine_reversed_comparison_code (exp)
11123 rtx exp;
11125 enum rtx_code code1 = reversed_comparison_code (exp, NULL);
11126 rtx x;
11128 if (code1 != UNKNOWN
11129 || GET_MODE_CLASS (GET_MODE (XEXP (exp, 0))) != MODE_CC)
11130 return code1;
11131 /* Otherwise try and find where the condition codes were last set and
11132 use that. */
11133 x = get_last_value (XEXP (exp, 0));
11134 if (!x || GET_CODE (x) != COMPARE)
11135 return UNKNOWN;
11136 return reversed_comparison_code_parts (GET_CODE (exp),
11137 XEXP (x, 0), XEXP (x, 1), NULL);
11139 /* Return comparison with reversed code of EXP and operands OP0 and OP1.
11140 Return NULL_RTX in case we fail to do the reversal. */
11141 static rtx
11142 reversed_comparison (exp, mode, op0, op1)
11143 rtx exp, op0, op1;
11144 enum machine_mode mode;
11146 enum rtx_code reversed_code = combine_reversed_comparison_code (exp);
11147 if (reversed_code == UNKNOWN)
11148 return NULL_RTX;
11149 else
11150 return gen_binary (reversed_code, mode, op0, op1);
11153 /* Utility function for following routine. Called when X is part of a value
11154 being stored into reg_last_set_value. Sets reg_last_set_table_tick
11155 for each register mentioned. Similar to mention_regs in cse.c */
11157 static void
11158 update_table_tick (x)
11159 rtx x;
11161 enum rtx_code code = GET_CODE (x);
11162 const char *fmt = GET_RTX_FORMAT (code);
11163 int i;
11165 if (code == REG)
11167 unsigned int regno = REGNO (x);
11168 unsigned int endregno
11169 = regno + (regno < FIRST_PSEUDO_REGISTER
11170 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11171 unsigned int r;
11173 for (r = regno; r < endregno; r++)
11174 reg_last_set_table_tick[r] = label_tick;
11176 return;
11179 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11180 /* Note that we can't have an "E" in values stored; see
11181 get_last_value_validate. */
11182 if (fmt[i] == 'e')
11183 update_table_tick (XEXP (x, i));
11186 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
11187 are saying that the register is clobbered and we no longer know its
11188 value. If INSN is zero, don't update reg_last_set; this is only permitted
11189 with VALUE also zero and is used to invalidate the register. */
11191 static void
11192 record_value_for_reg (reg, insn, value)
11193 rtx reg;
11194 rtx insn;
11195 rtx value;
11197 unsigned int regno = REGNO (reg);
11198 unsigned int endregno
11199 = regno + (regno < FIRST_PSEUDO_REGISTER
11200 ? HARD_REGNO_NREGS (regno, GET_MODE (reg)) : 1);
11201 unsigned int i;
11203 /* If VALUE contains REG and we have a previous value for REG, substitute
11204 the previous value. */
11205 if (value && insn && reg_overlap_mentioned_p (reg, value))
11207 rtx tem;
11209 /* Set things up so get_last_value is allowed to see anything set up to
11210 our insn. */
11211 subst_low_cuid = INSN_CUID (insn);
11212 tem = get_last_value (reg);
11214 /* If TEM is simply a binary operation with two CLOBBERs as operands,
11215 it isn't going to be useful and will take a lot of time to process,
11216 so just use the CLOBBER. */
11218 if (tem)
11220 if ((GET_RTX_CLASS (GET_CODE (tem)) == '2'
11221 || GET_RTX_CLASS (GET_CODE (tem)) == 'c')
11222 && GET_CODE (XEXP (tem, 0)) == CLOBBER
11223 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
11224 tem = XEXP (tem, 0);
11226 value = replace_rtx (copy_rtx (value), reg, tem);
11230 /* For each register modified, show we don't know its value, that
11231 we don't know about its bitwise content, that its value has been
11232 updated, and that we don't know the location of the death of the
11233 register. */
11234 for (i = regno; i < endregno; i++)
11236 if (insn)
11237 reg_last_set[i] = insn;
11239 reg_last_set_value[i] = 0;
11240 reg_last_set_mode[i] = 0;
11241 reg_last_set_nonzero_bits[i] = 0;
11242 reg_last_set_sign_bit_copies[i] = 0;
11243 reg_last_death[i] = 0;
11246 /* Mark registers that are being referenced in this value. */
11247 if (value)
11248 update_table_tick (value);
11250 /* Now update the status of each register being set.
11251 If someone is using this register in this block, set this register
11252 to invalid since we will get confused between the two lives in this
11253 basic block. This makes using this register always invalid. In cse, we
11254 scan the table to invalidate all entries using this register, but this
11255 is too much work for us. */
11257 for (i = regno; i < endregno; i++)
11259 reg_last_set_label[i] = label_tick;
11260 if (value && reg_last_set_table_tick[i] == label_tick)
11261 reg_last_set_invalid[i] = 1;
11262 else
11263 reg_last_set_invalid[i] = 0;
11266 /* The value being assigned might refer to X (like in "x++;"). In that
11267 case, we must replace it with (clobber (const_int 0)) to prevent
11268 infinite loops. */
11269 if (value && ! get_last_value_validate (&value, insn,
11270 reg_last_set_label[regno], 0))
11272 value = copy_rtx (value);
11273 if (! get_last_value_validate (&value, insn,
11274 reg_last_set_label[regno], 1))
11275 value = 0;
11278 /* For the main register being modified, update the value, the mode, the
11279 nonzero bits, and the number of sign bit copies. */
11281 reg_last_set_value[regno] = value;
11283 if (value)
11285 enum machine_mode mode = GET_MODE (reg);
11286 subst_low_cuid = INSN_CUID (insn);
11287 reg_last_set_mode[regno] = mode;
11288 if (GET_MODE_CLASS (mode) == MODE_INT
11289 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11290 mode = nonzero_bits_mode;
11291 reg_last_set_nonzero_bits[regno] = nonzero_bits (value, mode);
11292 reg_last_set_sign_bit_copies[regno]
11293 = num_sign_bit_copies (value, GET_MODE (reg));
11297 /* Called via note_stores from record_dead_and_set_regs to handle one
11298 SET or CLOBBER in an insn. DATA is the instruction in which the
11299 set is occurring. */
11301 static void
11302 record_dead_and_set_regs_1 (dest, setter, data)
11303 rtx dest, setter;
11304 void *data;
11306 rtx record_dead_insn = (rtx) data;
11308 if (GET_CODE (dest) == SUBREG)
11309 dest = SUBREG_REG (dest);
11311 if (GET_CODE (dest) == REG)
11313 /* If we are setting the whole register, we know its value. Otherwise
11314 show that we don't know the value. We can handle SUBREG in
11315 some cases. */
11316 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
11317 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
11318 else if (GET_CODE (setter) == SET
11319 && GET_CODE (SET_DEST (setter)) == SUBREG
11320 && SUBREG_REG (SET_DEST (setter)) == dest
11321 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
11322 && subreg_lowpart_p (SET_DEST (setter)))
11323 record_value_for_reg (dest, record_dead_insn,
11324 gen_lowpart_for_combine (GET_MODE (dest),
11325 SET_SRC (setter)));
11326 else
11327 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
11329 else if (GET_CODE (dest) == MEM
11330 /* Ignore pushes, they clobber nothing. */
11331 && ! push_operand (dest, GET_MODE (dest)))
11332 mem_last_set = INSN_CUID (record_dead_insn);
11335 /* Update the records of when each REG was most recently set or killed
11336 for the things done by INSN. This is the last thing done in processing
11337 INSN in the combiner loop.
11339 We update reg_last_set, reg_last_set_value, reg_last_set_mode,
11340 reg_last_set_nonzero_bits, reg_last_set_sign_bit_copies, reg_last_death,
11341 and also the similar information mem_last_set (which insn most recently
11342 modified memory) and last_call_cuid (which insn was the most recent
11343 subroutine call). */
11345 static void
11346 record_dead_and_set_regs (insn)
11347 rtx insn;
11349 rtx link;
11350 unsigned int i;
11352 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
11354 if (REG_NOTE_KIND (link) == REG_DEAD
11355 && GET_CODE (XEXP (link, 0)) == REG)
11357 unsigned int regno = REGNO (XEXP (link, 0));
11358 unsigned int endregno
11359 = regno + (regno < FIRST_PSEUDO_REGISTER
11360 ? HARD_REGNO_NREGS (regno, GET_MODE (XEXP (link, 0)))
11361 : 1);
11363 for (i = regno; i < endregno; i++)
11364 reg_last_death[i] = insn;
11366 else if (REG_NOTE_KIND (link) == REG_INC)
11367 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
11370 if (GET_CODE (insn) == CALL_INSN)
11372 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
11373 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
11375 reg_last_set_value[i] = 0;
11376 reg_last_set_mode[i] = 0;
11377 reg_last_set_nonzero_bits[i] = 0;
11378 reg_last_set_sign_bit_copies[i] = 0;
11379 reg_last_death[i] = 0;
11382 last_call_cuid = mem_last_set = INSN_CUID (insn);
11384 /* Don't bother recording what this insn does. It might set the
11385 return value register, but we can't combine into a call
11386 pattern anyway, so there's no point trying (and it may cause
11387 a crash, if e.g. we wind up asking for last_set_value of a
11388 SUBREG of the return value register). */
11389 return;
11392 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
11395 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11396 register present in the SUBREG, so for each such SUBREG go back and
11397 adjust nonzero and sign bit information of the registers that are
11398 known to have some zero/sign bits set.
11400 This is needed because when combine blows the SUBREGs away, the
11401 information on zero/sign bits is lost and further combines can be
11402 missed because of that. */
11404 static void
11405 record_promoted_value (insn, subreg)
11406 rtx insn;
11407 rtx subreg;
11409 rtx links, set;
11410 unsigned int regno = REGNO (SUBREG_REG (subreg));
11411 enum machine_mode mode = GET_MODE (subreg);
11413 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
11414 return;
11416 for (links = LOG_LINKS (insn); links;)
11418 insn = XEXP (links, 0);
11419 set = single_set (insn);
11421 if (! set || GET_CODE (SET_DEST (set)) != REG
11422 || REGNO (SET_DEST (set)) != regno
11423 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11425 links = XEXP (links, 1);
11426 continue;
11429 if (reg_last_set[regno] == insn)
11431 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
11432 reg_last_set_nonzero_bits[regno] &= GET_MODE_MASK (mode);
11435 if (GET_CODE (SET_SRC (set)) == REG)
11437 regno = REGNO (SET_SRC (set));
11438 links = LOG_LINKS (insn);
11440 else
11441 break;
11445 /* Scan X for promoted SUBREGs. For each one found,
11446 note what it implies to the registers used in it. */
11448 static void
11449 check_promoted_subreg (insn, x)
11450 rtx insn;
11451 rtx x;
11453 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
11454 && GET_CODE (SUBREG_REG (x)) == REG)
11455 record_promoted_value (insn, x);
11456 else
11458 const char *format = GET_RTX_FORMAT (GET_CODE (x));
11459 int i, j;
11461 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
11462 switch (format[i])
11464 case 'e':
11465 check_promoted_subreg (insn, XEXP (x, i));
11466 break;
11467 case 'V':
11468 case 'E':
11469 if (XVEC (x, i) != 0)
11470 for (j = 0; j < XVECLEN (x, i); j++)
11471 check_promoted_subreg (insn, XVECEXP (x, i, j));
11472 break;
11477 /* Utility routine for the following function. Verify that all the registers
11478 mentioned in *LOC are valid when *LOC was part of a value set when
11479 label_tick == TICK. Return 0 if some are not.
11481 If REPLACE is non-zero, replace the invalid reference with
11482 (clobber (const_int 0)) and return 1. This replacement is useful because
11483 we often can get useful information about the form of a value (e.g., if
11484 it was produced by a shift that always produces -1 or 0) even though
11485 we don't know exactly what registers it was produced from. */
11487 static int
11488 get_last_value_validate (loc, insn, tick, replace)
11489 rtx *loc;
11490 rtx insn;
11491 int tick;
11492 int replace;
11494 rtx x = *loc;
11495 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11496 int len = GET_RTX_LENGTH (GET_CODE (x));
11497 int i;
11499 if (GET_CODE (x) == REG)
11501 unsigned int regno = REGNO (x);
11502 unsigned int endregno
11503 = regno + (regno < FIRST_PSEUDO_REGISTER
11504 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11505 unsigned int j;
11507 for (j = regno; j < endregno; j++)
11508 if (reg_last_set_invalid[j]
11509 /* If this is a pseudo-register that was only set once and not
11510 live at the beginning of the function, it is always valid. */
11511 || (! (regno >= FIRST_PSEUDO_REGISTER
11512 && REG_N_SETS (regno) == 1
11513 && (! REGNO_REG_SET_P
11514 (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno)))
11515 && reg_last_set_label[j] > tick))
11517 if (replace)
11518 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11519 return replace;
11522 return 1;
11524 /* If this is a memory reference, make sure that there were
11525 no stores after it that might have clobbered the value. We don't
11526 have alias info, so we assume any store invalidates it. */
11527 else if (GET_CODE (x) == MEM && ! RTX_UNCHANGING_P (x)
11528 && INSN_CUID (insn) <= mem_last_set)
11530 if (replace)
11531 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11532 return replace;
11535 for (i = 0; i < len; i++)
11536 if ((fmt[i] == 'e'
11537 && get_last_value_validate (&XEXP (x, i), insn, tick, replace) == 0)
11538 /* Don't bother with these. They shouldn't occur anyway. */
11539 || fmt[i] == 'E')
11540 return 0;
11542 /* If we haven't found a reason for it to be invalid, it is valid. */
11543 return 1;
11546 /* Get the last value assigned to X, if known. Some registers
11547 in the value may be replaced with (clobber (const_int 0)) if their value
11548 is known longer known reliably. */
11550 static rtx
11551 get_last_value (x)
11552 rtx x;
11554 unsigned int regno;
11555 rtx value;
11557 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11558 then convert it to the desired mode. If this is a paradoxical SUBREG,
11559 we cannot predict what values the "extra" bits might have. */
11560 if (GET_CODE (x) == SUBREG
11561 && subreg_lowpart_p (x)
11562 && (GET_MODE_SIZE (GET_MODE (x))
11563 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11564 && (value = get_last_value (SUBREG_REG (x))) != 0)
11565 return gen_lowpart_for_combine (GET_MODE (x), value);
11567 if (GET_CODE (x) != REG)
11568 return 0;
11570 regno = REGNO (x);
11571 value = reg_last_set_value[regno];
11573 /* If we don't have a value, or if it isn't for this basic block and
11574 it's either a hard register, set more than once, or it's a live
11575 at the beginning of the function, return 0.
11577 Because if it's not live at the beginning of the function then the reg
11578 is always set before being used (is never used without being set).
11579 And, if it's set only once, and it's always set before use, then all
11580 uses must have the same last value, even if it's not from this basic
11581 block. */
11583 if (value == 0
11584 || (reg_last_set_label[regno] != label_tick
11585 && (regno < FIRST_PSEUDO_REGISTER
11586 || REG_N_SETS (regno) != 1
11587 || (REGNO_REG_SET_P
11588 (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno)))))
11589 return 0;
11591 /* If the value was set in a later insn than the ones we are processing,
11592 we can't use it even if the register was only set once. */
11593 if (INSN_CUID (reg_last_set[regno]) >= subst_low_cuid)
11594 return 0;
11596 /* If the value has all its registers valid, return it. */
11597 if (get_last_value_validate (&value, reg_last_set[regno],
11598 reg_last_set_label[regno], 0))
11599 return value;
11601 /* Otherwise, make a copy and replace any invalid register with
11602 (clobber (const_int 0)). If that fails for some reason, return 0. */
11604 value = copy_rtx (value);
11605 if (get_last_value_validate (&value, reg_last_set[regno],
11606 reg_last_set_label[regno], 1))
11607 return value;
11609 return 0;
11612 /* Return nonzero if expression X refers to a REG or to memory
11613 that is set in an instruction more recent than FROM_CUID. */
11615 static int
11616 use_crosses_set_p (x, from_cuid)
11617 rtx x;
11618 int from_cuid;
11620 const char *fmt;
11621 int i;
11622 enum rtx_code code = GET_CODE (x);
11624 if (code == REG)
11626 unsigned int regno = REGNO (x);
11627 unsigned endreg = regno + (regno < FIRST_PSEUDO_REGISTER
11628 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11630 #ifdef PUSH_ROUNDING
11631 /* Don't allow uses of the stack pointer to be moved,
11632 because we don't know whether the move crosses a push insn. */
11633 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11634 return 1;
11635 #endif
11636 for (; regno < endreg; regno++)
11637 if (reg_last_set[regno]
11638 && INSN_CUID (reg_last_set[regno]) > from_cuid)
11639 return 1;
11640 return 0;
11643 if (code == MEM && mem_last_set > from_cuid)
11644 return 1;
11646 fmt = GET_RTX_FORMAT (code);
11648 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11650 if (fmt[i] == 'E')
11652 int j;
11653 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11654 if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
11655 return 1;
11657 else if (fmt[i] == 'e'
11658 && use_crosses_set_p (XEXP (x, i), from_cuid))
11659 return 1;
11661 return 0;
11664 /* Define three variables used for communication between the following
11665 routines. */
11667 static unsigned int reg_dead_regno, reg_dead_endregno;
11668 static int reg_dead_flag;
11670 /* Function called via note_stores from reg_dead_at_p.
11672 If DEST is within [reg_dead_regno, reg_dead_endregno), set
11673 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11675 static void
11676 reg_dead_at_p_1 (dest, x, data)
11677 rtx dest;
11678 rtx x;
11679 void *data ATTRIBUTE_UNUSED;
11681 unsigned int regno, endregno;
11683 if (GET_CODE (dest) != REG)
11684 return;
11686 regno = REGNO (dest);
11687 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
11688 ? HARD_REGNO_NREGS (regno, GET_MODE (dest)) : 1);
11690 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
11691 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
11694 /* Return non-zero if REG is known to be dead at INSN.
11696 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
11697 referencing REG, it is dead. If we hit a SET referencing REG, it is
11698 live. Otherwise, see if it is live or dead at the start of the basic
11699 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
11700 must be assumed to be always live. */
11702 static int
11703 reg_dead_at_p (reg, insn)
11704 rtx reg;
11705 rtx insn;
11707 basic_block block;
11708 unsigned int i;
11710 /* Set variables for reg_dead_at_p_1. */
11711 reg_dead_regno = REGNO (reg);
11712 reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
11713 ? HARD_REGNO_NREGS (reg_dead_regno,
11714 GET_MODE (reg))
11715 : 1);
11717 reg_dead_flag = 0;
11719 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. */
11720 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
11722 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11723 if (TEST_HARD_REG_BIT (newpat_used_regs, i))
11724 return 0;
11727 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11728 beginning of function. */
11729 for (; insn && GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != BARRIER;
11730 insn = prev_nonnote_insn (insn))
11732 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
11733 if (reg_dead_flag)
11734 return reg_dead_flag == 1 ? 1 : 0;
11736 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
11737 return 1;
11740 /* Get the basic block that we were in. */
11741 if (insn == 0)
11742 block = ENTRY_BLOCK_PTR->next_bb;
11743 else
11745 FOR_EACH_BB (block)
11746 if (insn == block->head)
11747 break;
11749 if (block == EXIT_BLOCK_PTR)
11750 return 0;
11753 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11754 if (REGNO_REG_SET_P (block->global_live_at_start, i))
11755 return 0;
11757 return 1;
11760 /* Note hard registers in X that are used. This code is similar to
11761 that in flow.c, but much simpler since we don't care about pseudos. */
11763 static void
11764 mark_used_regs_combine (x)
11765 rtx x;
11767 RTX_CODE code = GET_CODE (x);
11768 unsigned int regno;
11769 int i;
11771 switch (code)
11773 case LABEL_REF:
11774 case SYMBOL_REF:
11775 case CONST_INT:
11776 case CONST:
11777 case CONST_DOUBLE:
11778 case CONST_VECTOR:
11779 case PC:
11780 case ADDR_VEC:
11781 case ADDR_DIFF_VEC:
11782 case ASM_INPUT:
11783 #ifdef HAVE_cc0
11784 /* CC0 must die in the insn after it is set, so we don't need to take
11785 special note of it here. */
11786 case CC0:
11787 #endif
11788 return;
11790 case CLOBBER:
11791 /* If we are clobbering a MEM, mark any hard registers inside the
11792 address as used. */
11793 if (GET_CODE (XEXP (x, 0)) == MEM)
11794 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
11795 return;
11797 case REG:
11798 regno = REGNO (x);
11799 /* A hard reg in a wide mode may really be multiple registers.
11800 If so, mark all of them just like the first. */
11801 if (regno < FIRST_PSEUDO_REGISTER)
11803 unsigned int endregno, r;
11805 /* None of this applies to the stack, frame or arg pointers */
11806 if (regno == STACK_POINTER_REGNUM
11807 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
11808 || regno == HARD_FRAME_POINTER_REGNUM
11809 #endif
11810 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
11811 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
11812 #endif
11813 || regno == FRAME_POINTER_REGNUM)
11814 return;
11816 endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
11817 for (r = regno; r < endregno; r++)
11818 SET_HARD_REG_BIT (newpat_used_regs, r);
11820 return;
11822 case SET:
11824 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
11825 the address. */
11826 rtx testreg = SET_DEST (x);
11828 while (GET_CODE (testreg) == SUBREG
11829 || GET_CODE (testreg) == ZERO_EXTRACT
11830 || GET_CODE (testreg) == SIGN_EXTRACT
11831 || GET_CODE (testreg) == STRICT_LOW_PART)
11832 testreg = XEXP (testreg, 0);
11834 if (GET_CODE (testreg) == MEM)
11835 mark_used_regs_combine (XEXP (testreg, 0));
11837 mark_used_regs_combine (SET_SRC (x));
11839 return;
11841 default:
11842 break;
11845 /* Recursively scan the operands of this expression. */
11848 const char *fmt = GET_RTX_FORMAT (code);
11850 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11852 if (fmt[i] == 'e')
11853 mark_used_regs_combine (XEXP (x, i));
11854 else if (fmt[i] == 'E')
11856 int j;
11858 for (j = 0; j < XVECLEN (x, i); j++)
11859 mark_used_regs_combine (XVECEXP (x, i, j));
11865 /* Remove register number REGNO from the dead registers list of INSN.
11867 Return the note used to record the death, if there was one. */
11870 remove_death (regno, insn)
11871 unsigned int regno;
11872 rtx insn;
11874 rtx note = find_regno_note (insn, REG_DEAD, regno);
11876 if (note)
11878 REG_N_DEATHS (regno)--;
11879 remove_note (insn, note);
11882 return note;
11885 /* For each register (hardware or pseudo) used within expression X, if its
11886 death is in an instruction with cuid between FROM_CUID (inclusive) and
11887 TO_INSN (exclusive), put a REG_DEAD note for that register in the
11888 list headed by PNOTES.
11890 That said, don't move registers killed by maybe_kill_insn.
11892 This is done when X is being merged by combination into TO_INSN. These
11893 notes will then be distributed as needed. */
11895 static void
11896 move_deaths (x, maybe_kill_insn, from_cuid, to_insn, pnotes)
11897 rtx x;
11898 rtx maybe_kill_insn;
11899 int from_cuid;
11900 rtx to_insn;
11901 rtx *pnotes;
11903 const char *fmt;
11904 int len, i;
11905 enum rtx_code code = GET_CODE (x);
11907 if (code == REG)
11909 unsigned int regno = REGNO (x);
11910 rtx where_dead = reg_last_death[regno];
11911 rtx before_dead, after_dead;
11913 /* Don't move the register if it gets killed in between from and to */
11914 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
11915 && ! reg_referenced_p (x, maybe_kill_insn))
11916 return;
11918 /* WHERE_DEAD could be a USE insn made by combine, so first we
11919 make sure that we have insns with valid INSN_CUID values. */
11920 before_dead = where_dead;
11921 while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
11922 before_dead = PREV_INSN (before_dead);
11924 after_dead = where_dead;
11925 while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
11926 after_dead = NEXT_INSN (after_dead);
11928 if (before_dead && after_dead
11929 && INSN_CUID (before_dead) >= from_cuid
11930 && (INSN_CUID (after_dead) < INSN_CUID (to_insn)
11931 || (where_dead != after_dead
11932 && INSN_CUID (after_dead) == INSN_CUID (to_insn))))
11934 rtx note = remove_death (regno, where_dead);
11936 /* It is possible for the call above to return 0. This can occur
11937 when reg_last_death points to I2 or I1 that we combined with.
11938 In that case make a new note.
11940 We must also check for the case where X is a hard register
11941 and NOTE is a death note for a range of hard registers
11942 including X. In that case, we must put REG_DEAD notes for
11943 the remaining registers in place of NOTE. */
11945 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
11946 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11947 > GET_MODE_SIZE (GET_MODE (x))))
11949 unsigned int deadregno = REGNO (XEXP (note, 0));
11950 unsigned int deadend
11951 = (deadregno + HARD_REGNO_NREGS (deadregno,
11952 GET_MODE (XEXP (note, 0))));
11953 unsigned int ourend
11954 = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
11955 unsigned int i;
11957 for (i = deadregno; i < deadend; i++)
11958 if (i < regno || i >= ourend)
11959 REG_NOTES (where_dead)
11960 = gen_rtx_EXPR_LIST (REG_DEAD,
11961 regno_reg_rtx[i],
11962 REG_NOTES (where_dead));
11965 /* If we didn't find any note, or if we found a REG_DEAD note that
11966 covers only part of the given reg, and we have a multi-reg hard
11967 register, then to be safe we must check for REG_DEAD notes
11968 for each register other than the first. They could have
11969 their own REG_DEAD notes lying around. */
11970 else if ((note == 0
11971 || (note != 0
11972 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11973 < GET_MODE_SIZE (GET_MODE (x)))))
11974 && regno < FIRST_PSEUDO_REGISTER
11975 && HARD_REGNO_NREGS (regno, GET_MODE (x)) > 1)
11977 unsigned int ourend
11978 = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
11979 unsigned int i, offset;
11980 rtx oldnotes = 0;
11982 if (note)
11983 offset = HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0)));
11984 else
11985 offset = 1;
11987 for (i = regno + offset; i < ourend; i++)
11988 move_deaths (regno_reg_rtx[i],
11989 maybe_kill_insn, from_cuid, to_insn, &oldnotes);
11992 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
11994 XEXP (note, 1) = *pnotes;
11995 *pnotes = note;
11997 else
11998 *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
12000 REG_N_DEATHS (regno)++;
12003 return;
12006 else if (GET_CODE (x) == SET)
12008 rtx dest = SET_DEST (x);
12010 move_deaths (SET_SRC (x), maybe_kill_insn, from_cuid, to_insn, pnotes);
12012 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
12013 that accesses one word of a multi-word item, some
12014 piece of everything register in the expression is used by
12015 this insn, so remove any old death. */
12016 /* ??? So why do we test for equality of the sizes? */
12018 if (GET_CODE (dest) == ZERO_EXTRACT
12019 || GET_CODE (dest) == STRICT_LOW_PART
12020 || (GET_CODE (dest) == SUBREG
12021 && (((GET_MODE_SIZE (GET_MODE (dest))
12022 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
12023 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
12024 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
12026 move_deaths (dest, maybe_kill_insn, from_cuid, to_insn, pnotes);
12027 return;
12030 /* If this is some other SUBREG, we know it replaces the entire
12031 value, so use that as the destination. */
12032 if (GET_CODE (dest) == SUBREG)
12033 dest = SUBREG_REG (dest);
12035 /* If this is a MEM, adjust deaths of anything used in the address.
12036 For a REG (the only other possibility), the entire value is
12037 being replaced so the old value is not used in this insn. */
12039 if (GET_CODE (dest) == MEM)
12040 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_cuid,
12041 to_insn, pnotes);
12042 return;
12045 else if (GET_CODE (x) == CLOBBER)
12046 return;
12048 len = GET_RTX_LENGTH (code);
12049 fmt = GET_RTX_FORMAT (code);
12051 for (i = 0; i < len; i++)
12053 if (fmt[i] == 'E')
12055 int j;
12056 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
12057 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_cuid,
12058 to_insn, pnotes);
12060 else if (fmt[i] == 'e')
12061 move_deaths (XEXP (x, i), maybe_kill_insn, from_cuid, to_insn, pnotes);
12065 /* Return 1 if X is the target of a bit-field assignment in BODY, the
12066 pattern of an insn. X must be a REG. */
12068 static int
12069 reg_bitfield_target_p (x, body)
12070 rtx x;
12071 rtx body;
12073 int i;
12075 if (GET_CODE (body) == SET)
12077 rtx dest = SET_DEST (body);
12078 rtx target;
12079 unsigned int regno, tregno, endregno, endtregno;
12081 if (GET_CODE (dest) == ZERO_EXTRACT)
12082 target = XEXP (dest, 0);
12083 else if (GET_CODE (dest) == STRICT_LOW_PART)
12084 target = SUBREG_REG (XEXP (dest, 0));
12085 else
12086 return 0;
12088 if (GET_CODE (target) == SUBREG)
12089 target = SUBREG_REG (target);
12091 if (GET_CODE (target) != REG)
12092 return 0;
12094 tregno = REGNO (target), regno = REGNO (x);
12095 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
12096 return target == x;
12098 endtregno = tregno + HARD_REGNO_NREGS (tregno, GET_MODE (target));
12099 endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
12101 return endregno > tregno && regno < endtregno;
12104 else if (GET_CODE (body) == PARALLEL)
12105 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
12106 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
12107 return 1;
12109 return 0;
12112 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
12113 as appropriate. I3 and I2 are the insns resulting from the combination
12114 insns including FROM (I2 may be zero).
12116 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
12117 not need REG_DEAD notes because they are being substituted for. This
12118 saves searching in the most common cases.
12120 Each note in the list is either ignored or placed on some insns, depending
12121 on the type of note. */
12123 static void
12124 distribute_notes (notes, from_insn, i3, i2, elim_i2, elim_i1)
12125 rtx notes;
12126 rtx from_insn;
12127 rtx i3, i2;
12128 rtx elim_i2, elim_i1;
12130 rtx note, next_note;
12131 rtx tem;
12133 for (note = notes; note; note = next_note)
12135 rtx place = 0, place2 = 0;
12137 /* If this NOTE references a pseudo register, ensure it references
12138 the latest copy of that register. */
12139 if (XEXP (note, 0) && GET_CODE (XEXP (note, 0)) == REG
12140 && REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER)
12141 XEXP (note, 0) = regno_reg_rtx[REGNO (XEXP (note, 0))];
12143 next_note = XEXP (note, 1);
12144 switch (REG_NOTE_KIND (note))
12146 case REG_BR_PROB:
12147 case REG_BR_PRED:
12148 case REG_EXEC_COUNT:
12149 /* Doesn't matter much where we put this, as long as it's somewhere.
12150 It is preferable to keep these notes on branches, which is most
12151 likely to be i3. */
12152 place = i3;
12153 break;
12155 case REG_VTABLE_REF:
12156 /* ??? Should remain with *a particular* memory load. Given the
12157 nature of vtable data, the last insn seems relatively safe. */
12158 place = i3;
12159 break;
12161 case REG_NON_LOCAL_GOTO:
12162 if (GET_CODE (i3) == JUMP_INSN)
12163 place = i3;
12164 else if (i2 && GET_CODE (i2) == JUMP_INSN)
12165 place = i2;
12166 else
12167 abort ();
12168 break;
12170 case REG_EH_REGION:
12171 /* These notes must remain with the call or trapping instruction. */
12172 if (GET_CODE (i3) == CALL_INSN)
12173 place = i3;
12174 else if (i2 && GET_CODE (i2) == CALL_INSN)
12175 place = i2;
12176 else if (flag_non_call_exceptions)
12178 if (may_trap_p (i3))
12179 place = i3;
12180 else if (i2 && may_trap_p (i2))
12181 place = i2;
12182 /* ??? Otherwise assume we've combined things such that we
12183 can now prove that the instructions can't trap. Drop the
12184 note in this case. */
12186 else
12187 abort ();
12188 break;
12190 case REG_NORETURN:
12191 case REG_SETJMP:
12192 /* These notes must remain with the call. It should not be
12193 possible for both I2 and I3 to be a call. */
12194 if (GET_CODE (i3) == CALL_INSN)
12195 place = i3;
12196 else if (i2 && GET_CODE (i2) == CALL_INSN)
12197 place = i2;
12198 else
12199 abort ();
12200 break;
12202 case REG_UNUSED:
12203 /* Any clobbers for i3 may still exist, and so we must process
12204 REG_UNUSED notes from that insn.
12206 Any clobbers from i2 or i1 can only exist if they were added by
12207 recog_for_combine. In that case, recog_for_combine created the
12208 necessary REG_UNUSED notes. Trying to keep any original
12209 REG_UNUSED notes from these insns can cause incorrect output
12210 if it is for the same register as the original i3 dest.
12211 In that case, we will notice that the register is set in i3,
12212 and then add a REG_UNUSED note for the destination of i3, which
12213 is wrong. However, it is possible to have REG_UNUSED notes from
12214 i2 or i1 for register which were both used and clobbered, so
12215 we keep notes from i2 or i1 if they will turn into REG_DEAD
12216 notes. */
12218 /* If this register is set or clobbered in I3, put the note there
12219 unless there is one already. */
12220 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
12222 if (from_insn != i3)
12223 break;
12225 if (! (GET_CODE (XEXP (note, 0)) == REG
12226 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
12227 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
12228 place = i3;
12230 /* Otherwise, if this register is used by I3, then this register
12231 now dies here, so we must put a REG_DEAD note here unless there
12232 is one already. */
12233 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
12234 && ! (GET_CODE (XEXP (note, 0)) == REG
12235 ? find_regno_note (i3, REG_DEAD,
12236 REGNO (XEXP (note, 0)))
12237 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
12239 PUT_REG_NOTE_KIND (note, REG_DEAD);
12240 place = i3;
12242 break;
12244 case REG_EQUAL:
12245 case REG_EQUIV:
12246 case REG_NOALIAS:
12247 /* These notes say something about results of an insn. We can
12248 only support them if they used to be on I3 in which case they
12249 remain on I3. Otherwise they are ignored.
12251 If the note refers to an expression that is not a constant, we
12252 must also ignore the note since we cannot tell whether the
12253 equivalence is still true. It might be possible to do
12254 slightly better than this (we only have a problem if I2DEST
12255 or I1DEST is present in the expression), but it doesn't
12256 seem worth the trouble. */
12258 if (from_insn == i3
12259 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
12260 place = i3;
12261 break;
12263 case REG_INC:
12264 case REG_NO_CONFLICT:
12265 /* These notes say something about how a register is used. They must
12266 be present on any use of the register in I2 or I3. */
12267 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
12268 place = i3;
12270 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
12272 if (place)
12273 place2 = i2;
12274 else
12275 place = i2;
12277 break;
12279 case REG_LABEL:
12280 /* This can show up in several ways -- either directly in the
12281 pattern, or hidden off in the constant pool with (or without?)
12282 a REG_EQUAL note. */
12283 /* ??? Ignore the without-reg_equal-note problem for now. */
12284 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
12285 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
12286 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12287 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
12288 place = i3;
12290 if (i2
12291 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
12292 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
12293 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12294 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
12296 if (place)
12297 place2 = i2;
12298 else
12299 place = i2;
12302 /* Don't attach REG_LABEL note to a JUMP_INSN which has
12303 JUMP_LABEL already. Instead, decrement LABEL_NUSES. */
12304 if (place && GET_CODE (place) == JUMP_INSN && JUMP_LABEL (place))
12306 if (JUMP_LABEL (place) != XEXP (note, 0))
12307 abort ();
12308 if (GET_CODE (JUMP_LABEL (place)) == CODE_LABEL)
12309 LABEL_NUSES (JUMP_LABEL (place))--;
12310 place = 0;
12312 if (place2 && GET_CODE (place2) == JUMP_INSN && JUMP_LABEL (place2))
12314 if (JUMP_LABEL (place2) != XEXP (note, 0))
12315 abort ();
12316 if (GET_CODE (JUMP_LABEL (place2)) == CODE_LABEL)
12317 LABEL_NUSES (JUMP_LABEL (place2))--;
12318 place2 = 0;
12320 break;
12322 case REG_NONNEG:
12323 case REG_WAS_0:
12324 /* These notes say something about the value of a register prior
12325 to the execution of an insn. It is too much trouble to see
12326 if the note is still correct in all situations. It is better
12327 to simply delete it. */
12328 break;
12330 case REG_RETVAL:
12331 /* If the insn previously containing this note still exists,
12332 put it back where it was. Otherwise move it to the previous
12333 insn. Adjust the corresponding REG_LIBCALL note. */
12334 if (GET_CODE (from_insn) != NOTE)
12335 place = from_insn;
12336 else
12338 tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
12339 place = prev_real_insn (from_insn);
12340 if (tem && place)
12341 XEXP (tem, 0) = place;
12342 /* If we're deleting the last remaining instruction of a
12343 libcall sequence, don't add the notes. */
12344 else if (XEXP (note, 0) == from_insn)
12345 tem = place = 0;
12347 break;
12349 case REG_LIBCALL:
12350 /* This is handled similarly to REG_RETVAL. */
12351 if (GET_CODE (from_insn) != NOTE)
12352 place = from_insn;
12353 else
12355 tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
12356 place = next_real_insn (from_insn);
12357 if (tem && place)
12358 XEXP (tem, 0) = place;
12359 /* If we're deleting the last remaining instruction of a
12360 libcall sequence, don't add the notes. */
12361 else if (XEXP (note, 0) == from_insn)
12362 tem = place = 0;
12364 break;
12366 case REG_DEAD:
12367 /* If the register is used as an input in I3, it dies there.
12368 Similarly for I2, if it is non-zero and adjacent to I3.
12370 If the register is not used as an input in either I3 or I2
12371 and it is not one of the registers we were supposed to eliminate,
12372 there are two possibilities. We might have a non-adjacent I2
12373 or we might have somehow eliminated an additional register
12374 from a computation. For example, we might have had A & B where
12375 we discover that B will always be zero. In this case we will
12376 eliminate the reference to A.
12378 In both cases, we must search to see if we can find a previous
12379 use of A and put the death note there. */
12381 if (from_insn
12382 && GET_CODE (from_insn) == CALL_INSN
12383 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
12384 place = from_insn;
12385 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
12386 place = i3;
12387 else if (i2 != 0 && next_nonnote_insn (i2) == i3
12388 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12389 place = i2;
12391 if (rtx_equal_p (XEXP (note, 0), elim_i2)
12392 || rtx_equal_p (XEXP (note, 0), elim_i1))
12393 break;
12395 if (place == 0)
12397 basic_block bb = this_basic_block;
12399 for (tem = PREV_INSN (i3); place == 0; tem = PREV_INSN (tem))
12401 if (! INSN_P (tem))
12403 if (tem == bb->head)
12404 break;
12405 continue;
12408 /* If the register is being set at TEM, see if that is all
12409 TEM is doing. If so, delete TEM. Otherwise, make this
12410 into a REG_UNUSED note instead. */
12411 if (reg_set_p (XEXP (note, 0), PATTERN (tem)))
12413 rtx set = single_set (tem);
12414 rtx inner_dest = 0;
12415 #ifdef HAVE_cc0
12416 rtx cc0_setter = NULL_RTX;
12417 #endif
12419 if (set != 0)
12420 for (inner_dest = SET_DEST (set);
12421 (GET_CODE (inner_dest) == STRICT_LOW_PART
12422 || GET_CODE (inner_dest) == SUBREG
12423 || GET_CODE (inner_dest) == ZERO_EXTRACT);
12424 inner_dest = XEXP (inner_dest, 0))
12427 /* Verify that it was the set, and not a clobber that
12428 modified the register.
12430 CC0 targets must be careful to maintain setter/user
12431 pairs. If we cannot delete the setter due to side
12432 effects, mark the user with an UNUSED note instead
12433 of deleting it. */
12435 if (set != 0 && ! side_effects_p (SET_SRC (set))
12436 && rtx_equal_p (XEXP (note, 0), inner_dest)
12437 #ifdef HAVE_cc0
12438 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12439 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
12440 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
12441 #endif
12444 /* Move the notes and links of TEM elsewhere.
12445 This might delete other dead insns recursively.
12446 First set the pattern to something that won't use
12447 any register. */
12449 PATTERN (tem) = pc_rtx;
12451 distribute_notes (REG_NOTES (tem), tem, tem,
12452 NULL_RTX, NULL_RTX, NULL_RTX);
12453 distribute_links (LOG_LINKS (tem));
12455 PUT_CODE (tem, NOTE);
12456 NOTE_LINE_NUMBER (tem) = NOTE_INSN_DELETED;
12457 NOTE_SOURCE_FILE (tem) = 0;
12459 #ifdef HAVE_cc0
12460 /* Delete the setter too. */
12461 if (cc0_setter)
12463 PATTERN (cc0_setter) = pc_rtx;
12465 distribute_notes (REG_NOTES (cc0_setter),
12466 cc0_setter, cc0_setter,
12467 NULL_RTX, NULL_RTX, NULL_RTX);
12468 distribute_links (LOG_LINKS (cc0_setter));
12470 PUT_CODE (cc0_setter, NOTE);
12471 NOTE_LINE_NUMBER (cc0_setter)
12472 = NOTE_INSN_DELETED;
12473 NOTE_SOURCE_FILE (cc0_setter) = 0;
12475 #endif
12477 /* If the register is both set and used here, put the
12478 REG_DEAD note here, but place a REG_UNUSED note
12479 here too unless there already is one. */
12480 else if (reg_referenced_p (XEXP (note, 0),
12481 PATTERN (tem)))
12483 place = tem;
12485 if (! find_regno_note (tem, REG_UNUSED,
12486 REGNO (XEXP (note, 0))))
12487 REG_NOTES (tem)
12488 = gen_rtx_EXPR_LIST (REG_UNUSED, XEXP (note, 0),
12489 REG_NOTES (tem));
12491 else
12493 PUT_REG_NOTE_KIND (note, REG_UNUSED);
12495 /* If there isn't already a REG_UNUSED note, put one
12496 here. */
12497 if (! find_regno_note (tem, REG_UNUSED,
12498 REGNO (XEXP (note, 0))))
12499 place = tem;
12500 break;
12503 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12504 || (GET_CODE (tem) == CALL_INSN
12505 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12507 place = tem;
12509 /* If we are doing a 3->2 combination, and we have a
12510 register which formerly died in i3 and was not used
12511 by i2, which now no longer dies in i3 and is used in
12512 i2 but does not die in i2, and place is between i2
12513 and i3, then we may need to move a link from place to
12514 i2. */
12515 if (i2 && INSN_UID (place) <= max_uid_cuid
12516 && INSN_CUID (place) > INSN_CUID (i2)
12517 && from_insn
12518 && INSN_CUID (from_insn) > INSN_CUID (i2)
12519 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12521 rtx links = LOG_LINKS (place);
12522 LOG_LINKS (place) = 0;
12523 distribute_links (links);
12525 break;
12528 if (tem == bb->head)
12529 break;
12532 /* We haven't found an insn for the death note and it
12533 is still a REG_DEAD note, but we have hit the beginning
12534 of the block. If the existing life info says the reg
12535 was dead, there's nothing left to do. Otherwise, we'll
12536 need to do a global life update after combine. */
12537 if (REG_NOTE_KIND (note) == REG_DEAD && place == 0
12538 && REGNO_REG_SET_P (bb->global_live_at_start,
12539 REGNO (XEXP (note, 0))))
12541 SET_BIT (refresh_blocks, this_basic_block->index);
12542 need_refresh = 1;
12546 /* If the register is set or already dead at PLACE, we needn't do
12547 anything with this note if it is still a REG_DEAD note.
12548 We can here if it is set at all, not if is it totally replace,
12549 which is what `dead_or_set_p' checks, so also check for it being
12550 set partially. */
12552 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12554 unsigned int regno = REGNO (XEXP (note, 0));
12556 /* Similarly, if the instruction on which we want to place
12557 the note is a noop, we'll need do a global live update
12558 after we remove them in delete_noop_moves. */
12559 if (noop_move_p (place))
12561 SET_BIT (refresh_blocks, this_basic_block->index);
12562 need_refresh = 1;
12565 if (dead_or_set_p (place, XEXP (note, 0))
12566 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12568 /* Unless the register previously died in PLACE, clear
12569 reg_last_death. [I no longer understand why this is
12570 being done.] */
12571 if (reg_last_death[regno] != place)
12572 reg_last_death[regno] = 0;
12573 place = 0;
12575 else
12576 reg_last_death[regno] = place;
12578 /* If this is a death note for a hard reg that is occupying
12579 multiple registers, ensure that we are still using all
12580 parts of the object. If we find a piece of the object
12581 that is unused, we must arrange for an appropriate REG_DEAD
12582 note to be added for it. However, we can't just emit a USE
12583 and tag the note to it, since the register might actually
12584 be dead; so we recourse, and the recursive call then finds
12585 the previous insn that used this register. */
12587 if (place && regno < FIRST_PSEUDO_REGISTER
12588 && HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0))) > 1)
12590 unsigned int endregno
12591 = regno + HARD_REGNO_NREGS (regno,
12592 GET_MODE (XEXP (note, 0)));
12593 int all_used = 1;
12594 unsigned int i;
12596 for (i = regno; i < endregno; i++)
12597 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12598 && ! find_regno_fusage (place, USE, i))
12599 || dead_or_set_regno_p (place, i))
12600 all_used = 0;
12602 if (! all_used)
12604 /* Put only REG_DEAD notes for pieces that are
12605 not already dead or set. */
12607 for (i = regno; i < endregno;
12608 i += HARD_REGNO_NREGS (i, reg_raw_mode[i]))
12610 rtx piece = regno_reg_rtx[i];
12611 basic_block bb = this_basic_block;
12613 if (! dead_or_set_p (place, piece)
12614 && ! reg_bitfield_target_p (piece,
12615 PATTERN (place)))
12617 rtx new_note
12618 = gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
12620 distribute_notes (new_note, place, place,
12621 NULL_RTX, NULL_RTX, NULL_RTX);
12623 else if (! refers_to_regno_p (i, i + 1,
12624 PATTERN (place), 0)
12625 && ! find_regno_fusage (place, USE, i))
12626 for (tem = PREV_INSN (place); ;
12627 tem = PREV_INSN (tem))
12629 if (! INSN_P (tem))
12631 if (tem == bb->head)
12633 SET_BIT (refresh_blocks,
12634 this_basic_block->index);
12635 need_refresh = 1;
12636 break;
12638 continue;
12640 if (dead_or_set_p (tem, piece)
12641 || reg_bitfield_target_p (piece,
12642 PATTERN (tem)))
12644 REG_NOTES (tem)
12645 = gen_rtx_EXPR_LIST (REG_UNUSED, piece,
12646 REG_NOTES (tem));
12647 break;
12653 place = 0;
12657 break;
12659 default:
12660 /* Any other notes should not be present at this point in the
12661 compilation. */
12662 abort ();
12665 if (place)
12667 XEXP (note, 1) = REG_NOTES (place);
12668 REG_NOTES (place) = note;
12670 else if ((REG_NOTE_KIND (note) == REG_DEAD
12671 || REG_NOTE_KIND (note) == REG_UNUSED)
12672 && GET_CODE (XEXP (note, 0)) == REG)
12673 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
12675 if (place2)
12677 if ((REG_NOTE_KIND (note) == REG_DEAD
12678 || REG_NOTE_KIND (note) == REG_UNUSED)
12679 && GET_CODE (XEXP (note, 0)) == REG)
12680 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
12682 REG_NOTES (place2) = gen_rtx_fmt_ee (GET_CODE (note),
12683 REG_NOTE_KIND (note),
12684 XEXP (note, 0),
12685 REG_NOTES (place2));
12690 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12691 I3, I2, and I1 to new locations. This is also called in one case to
12692 add a link pointing at I3 when I3's destination is changed. */
12694 static void
12695 distribute_links (links)
12696 rtx links;
12698 rtx link, next_link;
12700 for (link = links; link; link = next_link)
12702 rtx place = 0;
12703 rtx insn;
12704 rtx set, reg;
12706 next_link = XEXP (link, 1);
12708 /* If the insn that this link points to is a NOTE or isn't a single
12709 set, ignore it. In the latter case, it isn't clear what we
12710 can do other than ignore the link, since we can't tell which
12711 register it was for. Such links wouldn't be used by combine
12712 anyway.
12714 It is not possible for the destination of the target of the link to
12715 have been changed by combine. The only potential of this is if we
12716 replace I3, I2, and I1 by I3 and I2. But in that case the
12717 destination of I2 also remains unchanged. */
12719 if (GET_CODE (XEXP (link, 0)) == NOTE
12720 || (set = single_set (XEXP (link, 0))) == 0)
12721 continue;
12723 reg = SET_DEST (set);
12724 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
12725 || GET_CODE (reg) == SIGN_EXTRACT
12726 || GET_CODE (reg) == STRICT_LOW_PART)
12727 reg = XEXP (reg, 0);
12729 /* A LOG_LINK is defined as being placed on the first insn that uses
12730 a register and points to the insn that sets the register. Start
12731 searching at the next insn after the target of the link and stop
12732 when we reach a set of the register or the end of the basic block.
12734 Note that this correctly handles the link that used to point from
12735 I3 to I2. Also note that not much searching is typically done here
12736 since most links don't point very far away. */
12738 for (insn = NEXT_INSN (XEXP (link, 0));
12739 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
12740 || this_basic_block->next_bb->head != insn));
12741 insn = NEXT_INSN (insn))
12742 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
12744 if (reg_referenced_p (reg, PATTERN (insn)))
12745 place = insn;
12746 break;
12748 else if (GET_CODE (insn) == CALL_INSN
12749 && find_reg_fusage (insn, USE, reg))
12751 place = insn;
12752 break;
12755 /* If we found a place to put the link, place it there unless there
12756 is already a link to the same insn as LINK at that point. */
12758 if (place)
12760 rtx link2;
12762 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
12763 if (XEXP (link2, 0) == XEXP (link, 0))
12764 break;
12766 if (link2 == 0)
12768 XEXP (link, 1) = LOG_LINKS (place);
12769 LOG_LINKS (place) = link;
12771 /* Set added_links_insn to the earliest insn we added a
12772 link to. */
12773 if (added_links_insn == 0
12774 || INSN_CUID (added_links_insn) > INSN_CUID (place))
12775 added_links_insn = place;
12781 /* Compute INSN_CUID for INSN, which is an insn made by combine. */
12783 static int
12784 insn_cuid (insn)
12785 rtx insn;
12787 while (insn != 0 && INSN_UID (insn) > max_uid_cuid
12788 && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == USE)
12789 insn = NEXT_INSN (insn);
12791 if (INSN_UID (insn) > max_uid_cuid)
12792 abort ();
12794 return INSN_CUID (insn);
12797 void
12798 dump_combine_stats (file)
12799 FILE *file;
12801 fnotice
12802 (file,
12803 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
12804 combine_attempts, combine_merges, combine_extras, combine_successes);
12807 void
12808 dump_combine_total_stats (file)
12809 FILE *file;
12811 fnotice
12812 (file,
12813 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
12814 total_attempts, total_merges, total_extras, total_successes);