d: Add testcase from PR108962
[official-gcc.git] / gcc / combine.cc
blob304c020ec79b1c0cf28f362a69e84a40f1becefd
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987-2023 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This module is essentially the "combiner" phase of the U. of Arizona
21 Portable Optimizer, but redone to work on our list-structured
22 representation for RTL instead of their string representation.
24 The LOG_LINKS of each insn identify the most recent assignment
25 to each REG used in the insn. It is a list of previous insns,
26 each of which contains a SET for a REG that is used in this insn
27 and not used or set in between. LOG_LINKs never cross basic blocks.
28 They were set up by the preceding pass (lifetime analysis).
30 We try to combine each pair of insns joined by a logical link.
31 We also try to combine triplets of insns A, B and C when C has
32 a link back to B and B has a link back to A. Likewise for a
33 small number of quadruplets of insns A, B, C and D for which
34 there's high likelihood of success.
36 We check (with modified_between_p) to avoid combining in such a way
37 as to move a computation to a place where its value would be different.
39 Combination is done by mathematically substituting the previous
40 insn(s) values for the regs they set into the expressions in
41 the later insns that refer to these regs. If the result is a valid insn
42 for our target machine, according to the machine description,
43 we install it, delete the earlier insns, and update the data flow
44 information (LOG_LINKS and REG_NOTES) for what we did.
46 There are a few exceptions where the dataflow information isn't
47 completely updated (however this is only a local issue since it is
48 regenerated before the next pass that uses it):
50 - reg_live_length is not updated
51 - reg_n_refs is not adjusted in the rare case when a register is
52 no longer required in a computation
53 - there are extremely rare cases (see distribute_notes) when a
54 REG_DEAD note is lost
55 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
56 removed because there is no way to know which register it was
57 linking
59 To simplify substitution, we combine only when the earlier insn(s)
60 consist of only a single assignment. To simplify updating afterward,
61 we never combine when a subroutine call appears in the middle. */
63 #include "config.h"
64 #include "system.h"
65 #include "coretypes.h"
66 #include "backend.h"
67 #include "target.h"
68 #include "rtl.h"
69 #include "tree.h"
70 #include "cfghooks.h"
71 #include "predict.h"
72 #include "df.h"
73 #include "memmodel.h"
74 #include "tm_p.h"
75 #include "optabs.h"
76 #include "regs.h"
77 #include "emit-rtl.h"
78 #include "recog.h"
79 #include "cgraph.h"
80 #include "stor-layout.h"
81 #include "cfgrtl.h"
82 #include "cfgcleanup.h"
83 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
84 #include "explow.h"
85 #include "insn-attr.h"
86 #include "rtlhooks-def.h"
87 #include "expr.h"
88 #include "tree-pass.h"
89 #include "valtrack.h"
90 #include "rtl-iter.h"
91 #include "print-rtl.h"
92 #include "function-abi.h"
93 #include "rtlanal.h"
95 /* Number of attempts to combine instructions in this function. */
97 static int combine_attempts;
99 /* Number of attempts that got as far as substitution in this function. */
101 static int combine_merges;
103 /* Number of instructions combined with added SETs in this function. */
105 static int combine_extras;
107 /* Number of instructions combined in this function. */
109 static int combine_successes;
111 /* Totals over entire compilation. */
113 static int total_attempts, total_merges, total_extras, total_successes;
115 /* combine_instructions may try to replace the right hand side of the
116 second instruction with the value of an associated REG_EQUAL note
117 before throwing it at try_combine. That is problematic when there
118 is a REG_DEAD note for a register used in the old right hand side
119 and can cause distribute_notes to do wrong things. This is the
120 second instruction if it has been so modified, null otherwise. */
122 static rtx_insn *i2mod;
124 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
126 static rtx i2mod_old_rhs;
128 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
130 static rtx i2mod_new_rhs;
132 struct reg_stat_type {
133 /* Record last point of death of (hard or pseudo) register n. */
134 rtx_insn *last_death;
136 /* Record last point of modification of (hard or pseudo) register n. */
137 rtx_insn *last_set;
139 /* The next group of fields allows the recording of the last value assigned
140 to (hard or pseudo) register n. We use this information to see if an
141 operation being processed is redundant given a prior operation performed
142 on the register. For example, an `and' with a constant is redundant if
143 all the zero bits are already known to be turned off.
145 We use an approach similar to that used by cse, but change it in the
146 following ways:
148 (1) We do not want to reinitialize at each label.
149 (2) It is useful, but not critical, to know the actual value assigned
150 to a register. Often just its form is helpful.
152 Therefore, we maintain the following fields:
154 last_set_value the last value assigned
155 last_set_label records the value of label_tick when the
156 register was assigned
157 last_set_table_tick records the value of label_tick when a
158 value using the register is assigned
159 last_set_invalid set to nonzero when it is not valid
160 to use the value of this register in some
161 register's value
163 To understand the usage of these tables, it is important to understand
164 the distinction between the value in last_set_value being valid and
165 the register being validly contained in some other expression in the
166 table.
168 (The next two parameters are out of date).
170 reg_stat[i].last_set_value is valid if it is nonzero, and either
171 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
173 Register I may validly appear in any expression returned for the value
174 of another register if reg_n_sets[i] is 1. It may also appear in the
175 value for register J if reg_stat[j].last_set_invalid is zero, or
176 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
178 If an expression is found in the table containing a register which may
179 not validly appear in an expression, the register is replaced by
180 something that won't match, (clobber (const_int 0)). */
182 /* Record last value assigned to (hard or pseudo) register n. */
184 rtx last_set_value;
186 /* Record the value of label_tick when an expression involving register n
187 is placed in last_set_value. */
189 int last_set_table_tick;
191 /* Record the value of label_tick when the value for register n is placed in
192 last_set_value. */
194 int last_set_label;
196 /* These fields are maintained in parallel with last_set_value and are
197 used to store the mode in which the register was last set, the bits
198 that were known to be zero when it was last set, and the number of
199 sign bits copies it was known to have when it was last set. */
201 unsigned HOST_WIDE_INT last_set_nonzero_bits;
202 char last_set_sign_bit_copies;
203 ENUM_BITFIELD(machine_mode) last_set_mode : MACHINE_MODE_BITSIZE;
205 /* Set nonzero if references to register n in expressions should not be
206 used. last_set_invalid is set nonzero when this register is being
207 assigned to and last_set_table_tick == label_tick. */
209 char last_set_invalid;
211 /* Some registers that are set more than once and used in more than one
212 basic block are nevertheless always set in similar ways. For example,
213 a QImode register may be loaded from memory in two places on a machine
214 where byte loads zero extend.
216 We record in the following fields if a register has some leading bits
217 that are always equal to the sign bit, and what we know about the
218 nonzero bits of a register, specifically which bits are known to be
219 zero.
221 If an entry is zero, it means that we don't know anything special. */
223 unsigned char sign_bit_copies;
225 unsigned HOST_WIDE_INT nonzero_bits;
227 /* Record the value of the label_tick when the last truncation
228 happened. The field truncated_to_mode is only valid if
229 truncation_label == label_tick. */
231 int truncation_label;
233 /* Record the last truncation seen for this register. If truncation
234 is not a nop to this mode we might be able to save an explicit
235 truncation if we know that value already contains a truncated
236 value. */
238 ENUM_BITFIELD(machine_mode) truncated_to_mode : MACHINE_MODE_BITSIZE;
242 static vec<reg_stat_type> reg_stat;
244 /* One plus the highest pseudo for which we track REG_N_SETS.
245 regstat_init_n_sets_and_refs allocates the array for REG_N_SETS just once,
246 but during combine_split_insns new pseudos can be created. As we don't have
247 updated DF information in that case, it is hard to initialize the array
248 after growing. The combiner only cares about REG_N_SETS (regno) == 1,
249 so instead of growing the arrays, just assume all newly created pseudos
250 during combine might be set multiple times. */
252 static unsigned int reg_n_sets_max;
254 /* Record the luid of the last insn that invalidated memory
255 (anything that writes memory, and subroutine calls, but not pushes). */
257 static int mem_last_set;
259 /* Record the luid of the last CALL_INSN
260 so we can tell whether a potential combination crosses any calls. */
262 static int last_call_luid;
264 /* When `subst' is called, this is the insn that is being modified
265 (by combining in a previous insn). The PATTERN of this insn
266 is still the old pattern partially modified and it should not be
267 looked at, but this may be used to examine the successors of the insn
268 to judge whether a simplification is valid. */
270 static rtx_insn *subst_insn;
272 /* This is the lowest LUID that `subst' is currently dealing with.
273 get_last_value will not return a value if the register was set at or
274 after this LUID. If not for this mechanism, we could get confused if
275 I2 or I1 in try_combine were an insn that used the old value of a register
276 to obtain a new value. In that case, we might erroneously get the
277 new value of the register when we wanted the old one. */
279 static int subst_low_luid;
281 /* This contains any hard registers that are used in newpat; reg_dead_at_p
282 must consider all these registers to be always live. */
284 static HARD_REG_SET newpat_used_regs;
286 /* This is an insn to which a LOG_LINKS entry has been added. If this
287 insn is the earlier than I2 or I3, combine should rescan starting at
288 that location. */
290 static rtx_insn *added_links_insn;
292 /* And similarly, for notes. */
294 static rtx_insn *added_notes_insn;
296 /* Basic block in which we are performing combines. */
297 static basic_block this_basic_block;
298 static bool optimize_this_for_speed_p;
301 /* Length of the currently allocated uid_insn_cost array. */
303 static int max_uid_known;
305 /* The following array records the insn_cost for every insn
306 in the instruction stream. */
308 static int *uid_insn_cost;
310 /* The following array records the LOG_LINKS for every insn in the
311 instruction stream as struct insn_link pointers. */
313 struct insn_link {
314 rtx_insn *insn;
315 unsigned int regno;
316 struct insn_link *next;
319 static struct insn_link **uid_log_links;
321 static inline int
322 insn_uid_check (const_rtx insn)
324 int uid = INSN_UID (insn);
325 gcc_checking_assert (uid <= max_uid_known);
326 return uid;
329 #define INSN_COST(INSN) (uid_insn_cost[insn_uid_check (INSN)])
330 #define LOG_LINKS(INSN) (uid_log_links[insn_uid_check (INSN)])
332 #define FOR_EACH_LOG_LINK(L, INSN) \
333 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
335 /* Links for LOG_LINKS are allocated from this obstack. */
337 static struct obstack insn_link_obstack;
339 /* Allocate a link. */
341 static inline struct insn_link *
342 alloc_insn_link (rtx_insn *insn, unsigned int regno, struct insn_link *next)
344 struct insn_link *l
345 = (struct insn_link *) obstack_alloc (&insn_link_obstack,
346 sizeof (struct insn_link));
347 l->insn = insn;
348 l->regno = regno;
349 l->next = next;
350 return l;
353 /* Incremented for each basic block. */
355 static int label_tick;
357 /* Reset to label_tick for each extended basic block in scanning order. */
359 static int label_tick_ebb_start;
361 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
362 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
364 static scalar_int_mode nonzero_bits_mode;
366 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
367 be safely used. It is zero while computing them and after combine has
368 completed. This former test prevents propagating values based on
369 previously set values, which can be incorrect if a variable is modified
370 in a loop. */
372 static int nonzero_sign_valid;
375 /* Record one modification to rtl structure
376 to be undone by storing old_contents into *where. */
378 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE, UNDO_LINKS };
380 struct undo
382 struct undo *next;
383 enum undo_kind kind;
384 union { rtx r; int i; machine_mode m; struct insn_link *l; } old_contents;
385 union { rtx *r; int *i; int regno; struct insn_link **l; } where;
388 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
389 num_undo says how many are currently recorded.
391 other_insn is nonzero if we have modified some other insn in the process
392 of working on subst_insn. It must be verified too. */
394 struct undobuf
396 struct undo *undos;
397 struct undo *frees;
398 rtx_insn *other_insn;
401 static struct undobuf undobuf;
403 /* Number of times the pseudo being substituted for
404 was found and replaced. */
406 static int n_occurrences;
408 static rtx reg_nonzero_bits_for_combine (const_rtx, scalar_int_mode,
409 scalar_int_mode,
410 unsigned HOST_WIDE_INT *);
411 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, scalar_int_mode,
412 scalar_int_mode,
413 unsigned int *);
414 static void do_SUBST (rtx *, rtx);
415 static void do_SUBST_INT (int *, int);
416 static void init_reg_last (void);
417 static void setup_incoming_promotions (rtx_insn *);
418 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
419 static int cant_combine_insn_p (rtx_insn *);
420 static int can_combine_p (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
421 rtx_insn *, rtx_insn *, rtx *, rtx *);
422 static int combinable_i3pat (rtx_insn *, rtx *, rtx, rtx, rtx, int, int, rtx *);
423 static int contains_muldiv (rtx);
424 static rtx_insn *try_combine (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
425 int *, rtx_insn *);
426 static void undo_all (void);
427 static void undo_commit (void);
428 static rtx *find_split_point (rtx *, rtx_insn *, bool);
429 static rtx subst (rtx, rtx, rtx, int, int, int);
430 static rtx combine_simplify_rtx (rtx, machine_mode, int, int);
431 static rtx simplify_if_then_else (rtx);
432 static rtx simplify_set (rtx);
433 static rtx simplify_logical (rtx);
434 static rtx expand_compound_operation (rtx);
435 static const_rtx expand_field_assignment (const_rtx);
436 static rtx make_extraction (machine_mode, rtx, HOST_WIDE_INT,
437 rtx, unsigned HOST_WIDE_INT, int, int, int);
438 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
439 unsigned HOST_WIDE_INT *);
440 static rtx canon_reg_for_combine (rtx, rtx);
441 static rtx force_int_to_mode (rtx, scalar_int_mode, scalar_int_mode,
442 scalar_int_mode, unsigned HOST_WIDE_INT, int);
443 static rtx force_to_mode (rtx, machine_mode,
444 unsigned HOST_WIDE_INT, int);
445 static rtx if_then_else_cond (rtx, rtx *, rtx *);
446 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
447 static int rtx_equal_for_field_assignment_p (rtx, rtx, bool = false);
448 static rtx make_field_assignment (rtx);
449 static rtx apply_distributive_law (rtx);
450 static rtx distribute_and_simplify_rtx (rtx, int);
451 static rtx simplify_and_const_int_1 (scalar_int_mode, rtx,
452 unsigned HOST_WIDE_INT);
453 static rtx simplify_and_const_int (rtx, scalar_int_mode, rtx,
454 unsigned HOST_WIDE_INT);
455 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
456 HOST_WIDE_INT, machine_mode, int *);
457 static rtx simplify_shift_const_1 (enum rtx_code, machine_mode, rtx, int);
458 static rtx simplify_shift_const (rtx, enum rtx_code, machine_mode, rtx,
459 int);
460 static int recog_for_combine (rtx *, rtx_insn *, rtx *);
461 static rtx gen_lowpart_for_combine (machine_mode, rtx);
462 static enum rtx_code simplify_compare_const (enum rtx_code, machine_mode,
463 rtx, rtx *);
464 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
465 static void update_table_tick (rtx);
466 static void record_value_for_reg (rtx, rtx_insn *, rtx);
467 static void check_promoted_subreg (rtx_insn *, rtx);
468 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
469 static void record_dead_and_set_regs (rtx_insn *);
470 static int get_last_value_validate (rtx *, rtx_insn *, int, int);
471 static rtx get_last_value (const_rtx);
472 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
473 static int reg_dead_at_p (rtx, rtx_insn *);
474 static void move_deaths (rtx, rtx, int, rtx_insn *, rtx *);
475 static int reg_bitfield_target_p (rtx, rtx);
476 static void distribute_notes (rtx, rtx_insn *, rtx_insn *, rtx_insn *, rtx, rtx, rtx);
477 static void distribute_links (struct insn_link *);
478 static void mark_used_regs_combine (rtx);
479 static void record_promoted_value (rtx_insn *, rtx);
480 static bool unmentioned_reg_p (rtx, rtx);
481 static void record_truncated_values (rtx *, void *);
482 static bool reg_truncated_to_mode (machine_mode, const_rtx);
483 static rtx gen_lowpart_or_truncate (machine_mode, rtx);
486 /* It is not safe to use ordinary gen_lowpart in combine.
487 See comments in gen_lowpart_for_combine. */
488 #undef RTL_HOOKS_GEN_LOWPART
489 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
491 /* Our implementation of gen_lowpart never emits a new pseudo. */
492 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
493 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
495 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
496 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
498 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
499 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
501 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
502 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
504 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
507 /* Convenience wrapper for the canonicalize_comparison target hook.
508 Target hooks cannot use enum rtx_code. */
509 static inline void
510 target_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1,
511 bool op0_preserve_value)
513 int code_int = (int)*code;
514 targetm.canonicalize_comparison (&code_int, op0, op1, op0_preserve_value);
515 *code = (enum rtx_code)code_int;
518 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
519 PATTERN cannot be split. Otherwise, it returns an insn sequence.
520 This is a wrapper around split_insns which ensures that the
521 reg_stat vector is made larger if the splitter creates a new
522 register. */
524 static rtx_insn *
525 combine_split_insns (rtx pattern, rtx_insn *insn)
527 rtx_insn *ret;
528 unsigned int nregs;
530 ret = split_insns (pattern, insn);
531 nregs = max_reg_num ();
532 if (nregs > reg_stat.length ())
533 reg_stat.safe_grow_cleared (nregs, true);
534 return ret;
537 /* This is used by find_single_use to locate an rtx in LOC that
538 contains exactly one use of DEST, which is typically a REG.
539 It returns a pointer to the innermost rtx expression
540 containing DEST. Appearances of DEST that are being used to
541 totally replace it are not counted. */
543 static rtx *
544 find_single_use_1 (rtx dest, rtx *loc)
546 rtx x = *loc;
547 enum rtx_code code = GET_CODE (x);
548 rtx *result = NULL;
549 rtx *this_result;
550 int i;
551 const char *fmt;
553 switch (code)
555 case CONST:
556 case LABEL_REF:
557 case SYMBOL_REF:
558 CASE_CONST_ANY:
559 case CLOBBER:
560 return 0;
562 case SET:
563 /* If the destination is anything other than PC, a REG or a SUBREG
564 of a REG that occupies all of the REG, the insn uses DEST if
565 it is mentioned in the destination or the source. Otherwise, we
566 need just check the source. */
567 if (GET_CODE (SET_DEST (x)) != PC
568 && !REG_P (SET_DEST (x))
569 && ! (GET_CODE (SET_DEST (x)) == SUBREG
570 && REG_P (SUBREG_REG (SET_DEST (x)))
571 && !read_modify_subreg_p (SET_DEST (x))))
572 break;
574 return find_single_use_1 (dest, &SET_SRC (x));
576 case MEM:
577 case SUBREG:
578 return find_single_use_1 (dest, &XEXP (x, 0));
580 default:
581 break;
584 /* If it wasn't one of the common cases above, check each expression and
585 vector of this code. Look for a unique usage of DEST. */
587 fmt = GET_RTX_FORMAT (code);
588 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
590 if (fmt[i] == 'e')
592 if (dest == XEXP (x, i)
593 || (REG_P (dest) && REG_P (XEXP (x, i))
594 && REGNO (dest) == REGNO (XEXP (x, i))))
595 this_result = loc;
596 else
597 this_result = find_single_use_1 (dest, &XEXP (x, i));
599 if (result == NULL)
600 result = this_result;
601 else if (this_result)
602 /* Duplicate usage. */
603 return NULL;
605 else if (fmt[i] == 'E')
607 int j;
609 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
611 if (XVECEXP (x, i, j) == dest
612 || (REG_P (dest)
613 && REG_P (XVECEXP (x, i, j))
614 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
615 this_result = loc;
616 else
617 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
619 if (result == NULL)
620 result = this_result;
621 else if (this_result)
622 return NULL;
627 return result;
631 /* See if DEST, produced in INSN, is used only a single time in the
632 sequel. If so, return a pointer to the innermost rtx expression in which
633 it is used.
635 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
637 Otherwise, we find the single use by finding an insn that has a
638 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
639 only referenced once in that insn, we know that it must be the first
640 and last insn referencing DEST. */
642 static rtx *
643 find_single_use (rtx dest, rtx_insn *insn, rtx_insn **ploc)
645 basic_block bb;
646 rtx_insn *next;
647 rtx *result;
648 struct insn_link *link;
650 if (!REG_P (dest))
651 return 0;
653 bb = BLOCK_FOR_INSN (insn);
654 for (next = NEXT_INSN (insn);
655 next && BLOCK_FOR_INSN (next) == bb;
656 next = NEXT_INSN (next))
657 if (NONDEBUG_INSN_P (next) && dead_or_set_p (next, dest))
659 FOR_EACH_LOG_LINK (link, next)
660 if (link->insn == insn && link->regno == REGNO (dest))
661 break;
663 if (link)
665 result = find_single_use_1 (dest, &PATTERN (next));
666 if (ploc)
667 *ploc = next;
668 return result;
672 return 0;
675 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
676 insn. The substitution can be undone by undo_all. If INTO is already
677 set to NEWVAL, do not record this change. Because computing NEWVAL might
678 also call SUBST, we have to compute it before we put anything into
679 the undo table. */
681 static void
682 do_SUBST (rtx *into, rtx newval)
684 struct undo *buf;
685 rtx oldval = *into;
687 if (oldval == newval)
688 return;
690 /* We'd like to catch as many invalid transformations here as
691 possible. Unfortunately, there are way too many mode changes
692 that are perfectly valid, so we'd waste too much effort for
693 little gain doing the checks here. Focus on catching invalid
694 transformations involving integer constants. */
695 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
696 && CONST_INT_P (newval))
698 /* Sanity check that we're replacing oldval with a CONST_INT
699 that is a valid sign-extension for the original mode. */
700 gcc_assert (INTVAL (newval)
701 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
703 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
704 CONST_INT is not valid, because after the replacement, the
705 original mode would be gone. Unfortunately, we can't tell
706 when do_SUBST is called to replace the operand thereof, so we
707 perform this test on oldval instead, checking whether an
708 invalid replacement took place before we got here. */
709 gcc_assert (!(GET_CODE (oldval) == SUBREG
710 && CONST_INT_P (SUBREG_REG (oldval))));
711 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
712 && CONST_INT_P (XEXP (oldval, 0))));
715 if (undobuf.frees)
716 buf = undobuf.frees, undobuf.frees = buf->next;
717 else
718 buf = XNEW (struct undo);
720 buf->kind = UNDO_RTX;
721 buf->where.r = into;
722 buf->old_contents.r = oldval;
723 *into = newval;
725 buf->next = undobuf.undos, undobuf.undos = buf;
728 #define SUBST(INTO, NEWVAL) do_SUBST (&(INTO), (NEWVAL))
730 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
731 for the value of a HOST_WIDE_INT value (including CONST_INT) is
732 not safe. */
734 static void
735 do_SUBST_INT (int *into, int newval)
737 struct undo *buf;
738 int oldval = *into;
740 if (oldval == newval)
741 return;
743 if (undobuf.frees)
744 buf = undobuf.frees, undobuf.frees = buf->next;
745 else
746 buf = XNEW (struct undo);
748 buf->kind = UNDO_INT;
749 buf->where.i = into;
750 buf->old_contents.i = oldval;
751 *into = newval;
753 buf->next = undobuf.undos, undobuf.undos = buf;
756 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT (&(INTO), (NEWVAL))
758 /* Similar to SUBST, but just substitute the mode. This is used when
759 changing the mode of a pseudo-register, so that any other
760 references to the entry in the regno_reg_rtx array will change as
761 well. */
763 static void
764 subst_mode (int regno, machine_mode newval)
766 struct undo *buf;
767 rtx reg = regno_reg_rtx[regno];
768 machine_mode oldval = GET_MODE (reg);
770 if (oldval == newval)
771 return;
773 if (undobuf.frees)
774 buf = undobuf.frees, undobuf.frees = buf->next;
775 else
776 buf = XNEW (struct undo);
778 buf->kind = UNDO_MODE;
779 buf->where.regno = regno;
780 buf->old_contents.m = oldval;
781 adjust_reg_mode (reg, newval);
783 buf->next = undobuf.undos, undobuf.undos = buf;
786 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
788 static void
789 do_SUBST_LINK (struct insn_link **into, struct insn_link *newval)
791 struct undo *buf;
792 struct insn_link * oldval = *into;
794 if (oldval == newval)
795 return;
797 if (undobuf.frees)
798 buf = undobuf.frees, undobuf.frees = buf->next;
799 else
800 buf = XNEW (struct undo);
802 buf->kind = UNDO_LINKS;
803 buf->where.l = into;
804 buf->old_contents.l = oldval;
805 *into = newval;
807 buf->next = undobuf.undos, undobuf.undos = buf;
810 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
812 /* Subroutine of try_combine. Determine whether the replacement patterns
813 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_cost
814 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
815 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
816 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
817 of all the instructions can be estimated and the replacements are more
818 expensive than the original sequence. */
820 static bool
821 combine_validate_cost (rtx_insn *i0, rtx_insn *i1, rtx_insn *i2, rtx_insn *i3,
822 rtx newpat, rtx newi2pat, rtx newotherpat)
824 int i0_cost, i1_cost, i2_cost, i3_cost;
825 int new_i2_cost, new_i3_cost;
826 int old_cost, new_cost;
828 /* Lookup the original insn_costs. */
829 i2_cost = INSN_COST (i2);
830 i3_cost = INSN_COST (i3);
832 if (i1)
834 i1_cost = INSN_COST (i1);
835 if (i0)
837 i0_cost = INSN_COST (i0);
838 old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
839 ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
841 else
843 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
844 ? i1_cost + i2_cost + i3_cost : 0);
845 i0_cost = 0;
848 else
850 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
851 i1_cost = i0_cost = 0;
854 /* If we have split a PARALLEL I2 to I1,I2, we have counted its cost twice;
855 correct that. */
856 if (old_cost && i1 && INSN_UID (i1) == INSN_UID (i2))
857 old_cost -= i1_cost;
860 /* Calculate the replacement insn_costs. */
861 rtx tmp = PATTERN (i3);
862 PATTERN (i3) = newpat;
863 int tmpi = INSN_CODE (i3);
864 INSN_CODE (i3) = -1;
865 new_i3_cost = insn_cost (i3, optimize_this_for_speed_p);
866 PATTERN (i3) = tmp;
867 INSN_CODE (i3) = tmpi;
868 if (newi2pat)
870 tmp = PATTERN (i2);
871 PATTERN (i2) = newi2pat;
872 tmpi = INSN_CODE (i2);
873 INSN_CODE (i2) = -1;
874 new_i2_cost = insn_cost (i2, optimize_this_for_speed_p);
875 PATTERN (i2) = tmp;
876 INSN_CODE (i2) = tmpi;
877 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
878 ? new_i2_cost + new_i3_cost : 0;
880 else
882 new_cost = new_i3_cost;
883 new_i2_cost = 0;
886 if (undobuf.other_insn)
888 int old_other_cost, new_other_cost;
890 old_other_cost = INSN_COST (undobuf.other_insn);
891 tmp = PATTERN (undobuf.other_insn);
892 PATTERN (undobuf.other_insn) = newotherpat;
893 tmpi = INSN_CODE (undobuf.other_insn);
894 INSN_CODE (undobuf.other_insn) = -1;
895 new_other_cost = insn_cost (undobuf.other_insn,
896 optimize_this_for_speed_p);
897 PATTERN (undobuf.other_insn) = tmp;
898 INSN_CODE (undobuf.other_insn) = tmpi;
899 if (old_other_cost > 0 && new_other_cost > 0)
901 old_cost += old_other_cost;
902 new_cost += new_other_cost;
904 else
905 old_cost = 0;
908 /* Disallow this combination if both new_cost and old_cost are greater than
909 zero, and new_cost is greater than old cost. */
910 int reject = old_cost > 0 && new_cost > old_cost;
912 if (dump_file)
914 fprintf (dump_file, "%s combination of insns ",
915 reject ? "rejecting" : "allowing");
916 if (i0)
917 fprintf (dump_file, "%d, ", INSN_UID (i0));
918 if (i1 && INSN_UID (i1) != INSN_UID (i2))
919 fprintf (dump_file, "%d, ", INSN_UID (i1));
920 fprintf (dump_file, "%d and %d\n", INSN_UID (i2), INSN_UID (i3));
922 fprintf (dump_file, "original costs ");
923 if (i0)
924 fprintf (dump_file, "%d + ", i0_cost);
925 if (i1 && INSN_UID (i1) != INSN_UID (i2))
926 fprintf (dump_file, "%d + ", i1_cost);
927 fprintf (dump_file, "%d + %d = %d\n", i2_cost, i3_cost, old_cost);
929 if (newi2pat)
930 fprintf (dump_file, "replacement costs %d + %d = %d\n",
931 new_i2_cost, new_i3_cost, new_cost);
932 else
933 fprintf (dump_file, "replacement cost %d\n", new_cost);
936 if (reject)
937 return false;
939 /* Update the uid_insn_cost array with the replacement costs. */
940 INSN_COST (i2) = new_i2_cost;
941 INSN_COST (i3) = new_i3_cost;
942 if (i1)
944 INSN_COST (i1) = 0;
945 if (i0)
946 INSN_COST (i0) = 0;
949 return true;
953 /* Delete any insns that copy a register to itself.
954 Return true if the CFG was changed. */
956 static bool
957 delete_noop_moves (void)
959 rtx_insn *insn, *next;
960 basic_block bb;
962 bool edges_deleted = false;
964 FOR_EACH_BB_FN (bb, cfun)
966 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
968 next = NEXT_INSN (insn);
969 if (INSN_P (insn) && noop_move_p (insn))
971 if (dump_file)
972 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
974 edges_deleted |= delete_insn_and_edges (insn);
979 return edges_deleted;
983 /* Return false if we do not want to (or cannot) combine DEF. */
984 static bool
985 can_combine_def_p (df_ref def)
987 /* Do not consider if it is pre/post modification in MEM. */
988 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
989 return false;
991 unsigned int regno = DF_REF_REGNO (def);
993 /* Do not combine frame pointer adjustments. */
994 if ((regno == FRAME_POINTER_REGNUM
995 && (!reload_completed || frame_pointer_needed))
996 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
997 && regno == HARD_FRAME_POINTER_REGNUM
998 && (!reload_completed || frame_pointer_needed))
999 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1000 && regno == ARG_POINTER_REGNUM && fixed_regs[regno]))
1001 return false;
1003 return true;
1006 /* Return false if we do not want to (or cannot) combine USE. */
1007 static bool
1008 can_combine_use_p (df_ref use)
1010 /* Do not consider the usage of the stack pointer by function call. */
1011 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1012 return false;
1014 return true;
1017 /* Fill in log links field for all insns. */
1019 static void
1020 create_log_links (void)
1022 basic_block bb;
1023 rtx_insn **next_use;
1024 rtx_insn *insn;
1025 df_ref def, use;
1027 next_use = XCNEWVEC (rtx_insn *, max_reg_num ());
1029 /* Pass through each block from the end, recording the uses of each
1030 register and establishing log links when def is encountered.
1031 Note that we do not clear next_use array in order to save time,
1032 so we have to test whether the use is in the same basic block as def.
1034 There are a few cases below when we do not consider the definition or
1035 usage -- these are taken from original flow.c did. Don't ask me why it is
1036 done this way; I don't know and if it works, I don't want to know. */
1038 FOR_EACH_BB_FN (bb, cfun)
1040 FOR_BB_INSNS_REVERSE (bb, insn)
1042 if (!NONDEBUG_INSN_P (insn))
1043 continue;
1045 /* Log links are created only once. */
1046 gcc_assert (!LOG_LINKS (insn));
1048 FOR_EACH_INSN_DEF (def, insn)
1050 unsigned int regno = DF_REF_REGNO (def);
1051 rtx_insn *use_insn;
1053 if (!next_use[regno])
1054 continue;
1056 if (!can_combine_def_p (def))
1057 continue;
1059 use_insn = next_use[regno];
1060 next_use[regno] = NULL;
1062 if (BLOCK_FOR_INSN (use_insn) != bb)
1063 continue;
1065 /* flow.c claimed:
1067 We don't build a LOG_LINK for hard registers contained
1068 in ASM_OPERANDs. If these registers get replaced,
1069 we might wind up changing the semantics of the insn,
1070 even if reload can make what appear to be valid
1071 assignments later. */
1072 if (regno < FIRST_PSEUDO_REGISTER
1073 && asm_noperands (PATTERN (use_insn)) >= 0)
1074 continue;
1076 /* Don't add duplicate links between instructions. */
1077 struct insn_link *links;
1078 FOR_EACH_LOG_LINK (links, use_insn)
1079 if (insn == links->insn && regno == links->regno)
1080 break;
1082 if (!links)
1083 LOG_LINKS (use_insn)
1084 = alloc_insn_link (insn, regno, LOG_LINKS (use_insn));
1087 FOR_EACH_INSN_USE (use, insn)
1088 if (can_combine_use_p (use))
1089 next_use[DF_REF_REGNO (use)] = insn;
1093 free (next_use);
1096 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1097 true if we found a LOG_LINK that proves that A feeds B. This only works
1098 if there are no instructions between A and B which could have a link
1099 depending on A, since in that case we would not record a link for B. */
1101 static bool
1102 insn_a_feeds_b (rtx_insn *a, rtx_insn *b)
1104 struct insn_link *links;
1105 FOR_EACH_LOG_LINK (links, b)
1106 if (links->insn == a)
1107 return true;
1108 return false;
1111 /* Main entry point for combiner. F is the first insn of the function.
1112 NREGS is the first unused pseudo-reg number.
1114 Return nonzero if the CFG was changed (e.g. if the combiner has
1115 turned an indirect jump instruction into a direct jump). */
1116 static int
1117 combine_instructions (rtx_insn *f, unsigned int nregs)
1119 rtx_insn *insn, *next;
1120 struct insn_link *links, *nextlinks;
1121 rtx_insn *first;
1122 basic_block last_bb;
1124 int new_direct_jump_p = 0;
1126 for (first = f; first && !NONDEBUG_INSN_P (first); )
1127 first = NEXT_INSN (first);
1128 if (!first)
1129 return 0;
1131 combine_attempts = 0;
1132 combine_merges = 0;
1133 combine_extras = 0;
1134 combine_successes = 0;
1136 rtl_hooks = combine_rtl_hooks;
1138 reg_stat.safe_grow_cleared (nregs, true);
1140 init_recog_no_volatile ();
1142 /* Allocate array for insn info. */
1143 max_uid_known = get_max_uid ();
1144 uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1);
1145 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1146 gcc_obstack_init (&insn_link_obstack);
1148 nonzero_bits_mode = int_mode_for_size (HOST_BITS_PER_WIDE_INT, 0).require ();
1150 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1151 problems when, for example, we have j <<= 1 in a loop. */
1153 nonzero_sign_valid = 0;
1154 label_tick = label_tick_ebb_start = 1;
1156 /* Scan all SETs and see if we can deduce anything about what
1157 bits are known to be zero for some registers and how many copies
1158 of the sign bit are known to exist for those registers.
1160 Also set any known values so that we can use it while searching
1161 for what bits are known to be set. */
1163 setup_incoming_promotions (first);
1164 /* Allow the entry block and the first block to fall into the same EBB.
1165 Conceptually the incoming promotions are assigned to the entry block. */
1166 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1168 create_log_links ();
1169 FOR_EACH_BB_FN (this_basic_block, cfun)
1171 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1172 last_call_luid = 0;
1173 mem_last_set = -1;
1175 label_tick++;
1176 if (!single_pred_p (this_basic_block)
1177 || single_pred (this_basic_block) != last_bb)
1178 label_tick_ebb_start = label_tick;
1179 last_bb = this_basic_block;
1181 FOR_BB_INSNS (this_basic_block, insn)
1182 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1184 rtx links;
1186 subst_low_luid = DF_INSN_LUID (insn);
1187 subst_insn = insn;
1189 note_stores (insn, set_nonzero_bits_and_sign_copies, insn);
1190 record_dead_and_set_regs (insn);
1192 if (AUTO_INC_DEC)
1193 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1194 if (REG_NOTE_KIND (links) == REG_INC)
1195 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1196 insn);
1198 /* Record the current insn_cost of this instruction. */
1199 INSN_COST (insn) = insn_cost (insn, optimize_this_for_speed_p);
1200 if (dump_file)
1202 fprintf (dump_file, "insn_cost %d for ", INSN_COST (insn));
1203 dump_insn_slim (dump_file, insn);
1208 nonzero_sign_valid = 1;
1210 /* Now scan all the insns in forward order. */
1211 label_tick = label_tick_ebb_start = 1;
1212 init_reg_last ();
1213 setup_incoming_promotions (first);
1214 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1215 int max_combine = param_max_combine_insns;
1217 FOR_EACH_BB_FN (this_basic_block, cfun)
1219 rtx_insn *last_combined_insn = NULL;
1221 /* Ignore instruction combination in basic blocks that are going to
1222 be removed as unreachable anyway. See PR82386. */
1223 if (EDGE_COUNT (this_basic_block->preds) == 0)
1224 continue;
1226 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1227 last_call_luid = 0;
1228 mem_last_set = -1;
1230 label_tick++;
1231 if (!single_pred_p (this_basic_block)
1232 || single_pred (this_basic_block) != last_bb)
1233 label_tick_ebb_start = label_tick;
1234 last_bb = this_basic_block;
1236 rtl_profile_for_bb (this_basic_block);
1237 for (insn = BB_HEAD (this_basic_block);
1238 insn != NEXT_INSN (BB_END (this_basic_block));
1239 insn = next ? next : NEXT_INSN (insn))
1241 next = 0;
1242 if (!NONDEBUG_INSN_P (insn))
1243 continue;
1245 while (last_combined_insn
1246 && (!NONDEBUG_INSN_P (last_combined_insn)
1247 || last_combined_insn->deleted ()))
1248 last_combined_insn = PREV_INSN (last_combined_insn);
1249 if (last_combined_insn == NULL_RTX
1250 || BLOCK_FOR_INSN (last_combined_insn) != this_basic_block
1251 || DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn))
1252 last_combined_insn = insn;
1254 /* See if we know about function return values before this
1255 insn based upon SUBREG flags. */
1256 check_promoted_subreg (insn, PATTERN (insn));
1258 /* See if we can find hardregs and subreg of pseudos in
1259 narrower modes. This could help turning TRUNCATEs
1260 into SUBREGs. */
1261 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1263 /* Try this insn with each insn it links back to. */
1265 FOR_EACH_LOG_LINK (links, insn)
1266 if ((next = try_combine (insn, links->insn, NULL,
1267 NULL, &new_direct_jump_p,
1268 last_combined_insn)) != 0)
1270 statistics_counter_event (cfun, "two-insn combine", 1);
1271 goto retry;
1274 /* Try each sequence of three linked insns ending with this one. */
1276 if (max_combine >= 3)
1277 FOR_EACH_LOG_LINK (links, insn)
1279 rtx_insn *link = links->insn;
1281 /* If the linked insn has been replaced by a note, then there
1282 is no point in pursuing this chain any further. */
1283 if (NOTE_P (link))
1284 continue;
1286 FOR_EACH_LOG_LINK (nextlinks, link)
1287 if ((next = try_combine (insn, link, nextlinks->insn,
1288 NULL, &new_direct_jump_p,
1289 last_combined_insn)) != 0)
1291 statistics_counter_event (cfun, "three-insn combine", 1);
1292 goto retry;
1296 /* Try combining an insn with two different insns whose results it
1297 uses. */
1298 if (max_combine >= 3)
1299 FOR_EACH_LOG_LINK (links, insn)
1300 for (nextlinks = links->next; nextlinks;
1301 nextlinks = nextlinks->next)
1302 if ((next = try_combine (insn, links->insn,
1303 nextlinks->insn, NULL,
1304 &new_direct_jump_p,
1305 last_combined_insn)) != 0)
1308 statistics_counter_event (cfun, "three-insn combine", 1);
1309 goto retry;
1312 /* Try four-instruction combinations. */
1313 if (max_combine >= 4)
1314 FOR_EACH_LOG_LINK (links, insn)
1316 struct insn_link *next1;
1317 rtx_insn *link = links->insn;
1319 /* If the linked insn has been replaced by a note, then there
1320 is no point in pursuing this chain any further. */
1321 if (NOTE_P (link))
1322 continue;
1324 FOR_EACH_LOG_LINK (next1, link)
1326 rtx_insn *link1 = next1->insn;
1327 if (NOTE_P (link1))
1328 continue;
1329 /* I0 -> I1 -> I2 -> I3. */
1330 FOR_EACH_LOG_LINK (nextlinks, link1)
1331 if ((next = try_combine (insn, link, link1,
1332 nextlinks->insn,
1333 &new_direct_jump_p,
1334 last_combined_insn)) != 0)
1336 statistics_counter_event (cfun, "four-insn combine", 1);
1337 goto retry;
1339 /* I0, I1 -> I2, I2 -> I3. */
1340 for (nextlinks = next1->next; nextlinks;
1341 nextlinks = nextlinks->next)
1342 if ((next = try_combine (insn, link, link1,
1343 nextlinks->insn,
1344 &new_direct_jump_p,
1345 last_combined_insn)) != 0)
1347 statistics_counter_event (cfun, "four-insn combine", 1);
1348 goto retry;
1352 for (next1 = links->next; next1; next1 = next1->next)
1354 rtx_insn *link1 = next1->insn;
1355 if (NOTE_P (link1))
1356 continue;
1357 /* I0 -> I2; I1, I2 -> I3. */
1358 FOR_EACH_LOG_LINK (nextlinks, link)
1359 if ((next = try_combine (insn, link, link1,
1360 nextlinks->insn,
1361 &new_direct_jump_p,
1362 last_combined_insn)) != 0)
1364 statistics_counter_event (cfun, "four-insn combine", 1);
1365 goto retry;
1367 /* I0 -> I1; I1, I2 -> I3. */
1368 FOR_EACH_LOG_LINK (nextlinks, link1)
1369 if ((next = try_combine (insn, link, link1,
1370 nextlinks->insn,
1371 &new_direct_jump_p,
1372 last_combined_insn)) != 0)
1374 statistics_counter_event (cfun, "four-insn combine", 1);
1375 goto retry;
1380 /* Try this insn with each REG_EQUAL note it links back to. */
1381 FOR_EACH_LOG_LINK (links, insn)
1383 rtx set, note;
1384 rtx_insn *temp = links->insn;
1385 if ((set = single_set (temp)) != 0
1386 && (note = find_reg_equal_equiv_note (temp)) != 0
1387 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1388 && ! side_effects_p (SET_SRC (set))
1389 /* Avoid using a register that may already been marked
1390 dead by an earlier instruction. */
1391 && ! unmentioned_reg_p (note, SET_SRC (set))
1392 && (GET_MODE (note) == VOIDmode
1393 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1394 : (GET_MODE (SET_DEST (set)) == GET_MODE (note)
1395 && (GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
1396 || (GET_MODE (XEXP (SET_DEST (set), 0))
1397 == GET_MODE (note))))))
1399 /* Temporarily replace the set's source with the
1400 contents of the REG_EQUAL note. The insn will
1401 be deleted or recognized by try_combine. */
1402 rtx orig_src = SET_SRC (set);
1403 rtx orig_dest = SET_DEST (set);
1404 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT)
1405 SET_DEST (set) = XEXP (SET_DEST (set), 0);
1406 SET_SRC (set) = note;
1407 i2mod = temp;
1408 i2mod_old_rhs = copy_rtx (orig_src);
1409 i2mod_new_rhs = copy_rtx (note);
1410 next = try_combine (insn, i2mod, NULL, NULL,
1411 &new_direct_jump_p,
1412 last_combined_insn);
1413 i2mod = NULL;
1414 if (next)
1416 statistics_counter_event (cfun, "insn-with-note combine", 1);
1417 goto retry;
1419 INSN_CODE (temp) = -1;
1420 SET_SRC (set) = orig_src;
1421 SET_DEST (set) = orig_dest;
1425 if (!NOTE_P (insn))
1426 record_dead_and_set_regs (insn);
1428 retry:
1433 default_rtl_profile ();
1434 clear_bb_flags ();
1435 new_direct_jump_p |= purge_all_dead_edges ();
1436 new_direct_jump_p |= delete_noop_moves ();
1438 /* Clean up. */
1439 obstack_free (&insn_link_obstack, NULL);
1440 free (uid_log_links);
1441 free (uid_insn_cost);
1442 reg_stat.release ();
1445 struct undo *undo, *next;
1446 for (undo = undobuf.frees; undo; undo = next)
1448 next = undo->next;
1449 free (undo);
1451 undobuf.frees = 0;
1454 total_attempts += combine_attempts;
1455 total_merges += combine_merges;
1456 total_extras += combine_extras;
1457 total_successes += combine_successes;
1459 nonzero_sign_valid = 0;
1460 rtl_hooks = general_rtl_hooks;
1462 /* Make recognizer allow volatile MEMs again. */
1463 init_recog ();
1465 return new_direct_jump_p;
1468 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1470 static void
1471 init_reg_last (void)
1473 unsigned int i;
1474 reg_stat_type *p;
1476 FOR_EACH_VEC_ELT (reg_stat, i, p)
1477 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1480 /* Set up any promoted values for incoming argument registers. */
1482 static void
1483 setup_incoming_promotions (rtx_insn *first)
1485 tree arg;
1486 bool strictly_local = false;
1488 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1489 arg = DECL_CHAIN (arg))
1491 rtx x, reg = DECL_INCOMING_RTL (arg);
1492 int uns1, uns3;
1493 machine_mode mode1, mode2, mode3, mode4;
1495 /* Only continue if the incoming argument is in a register. */
1496 if (!REG_P (reg))
1497 continue;
1499 /* Determine, if possible, whether all call sites of the current
1500 function lie within the current compilation unit. (This does
1501 take into account the exporting of a function via taking its
1502 address, and so forth.) */
1503 strictly_local
1504 = cgraph_node::local_info_node (current_function_decl)->local;
1506 /* The mode and signedness of the argument before any promotions happen
1507 (equal to the mode of the pseudo holding it at that stage). */
1508 mode1 = TYPE_MODE (TREE_TYPE (arg));
1509 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1511 /* The mode and signedness of the argument after any source language and
1512 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1513 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1514 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1516 /* The mode and signedness of the argument as it is actually passed,
1517 see assign_parm_setup_reg in function.cc. */
1518 mode3 = promote_function_mode (TREE_TYPE (arg), mode1, &uns3,
1519 TREE_TYPE (cfun->decl), 0);
1521 /* The mode of the register in which the argument is being passed. */
1522 mode4 = GET_MODE (reg);
1524 /* Eliminate sign extensions in the callee when:
1525 (a) A mode promotion has occurred; */
1526 if (mode1 == mode3)
1527 continue;
1528 /* (b) The mode of the register is the same as the mode of
1529 the argument as it is passed; */
1530 if (mode3 != mode4)
1531 continue;
1532 /* (c) There's no language level extension; */
1533 if (mode1 == mode2)
1535 /* (c.1) All callers are from the current compilation unit. If that's
1536 the case we don't have to rely on an ABI, we only have to know
1537 what we're generating right now, and we know that we will do the
1538 mode1 to mode2 promotion with the given sign. */
1539 else if (!strictly_local)
1540 continue;
1541 /* (c.2) The combination of the two promotions is useful. This is
1542 true when the signs match, or if the first promotion is unsigned.
1543 In the later case, (sign_extend (zero_extend x)) is the same as
1544 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1545 else if (uns1)
1546 uns3 = true;
1547 else if (uns3)
1548 continue;
1550 /* Record that the value was promoted from mode1 to mode3,
1551 so that any sign extension at the head of the current
1552 function may be eliminated. */
1553 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1554 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1555 record_value_for_reg (reg, first, x);
1559 /* If MODE has a precision lower than PREC and SRC is a non-negative constant
1560 that would appear negative in MODE, sign-extend SRC for use in nonzero_bits
1561 because some machines (maybe most) will actually do the sign-extension and
1562 this is the conservative approach.
1564 ??? For 2.5, try to tighten up the MD files in this regard instead of this
1565 kludge. */
1567 static rtx
1568 sign_extend_short_imm (rtx src, machine_mode mode, unsigned int prec)
1570 scalar_int_mode int_mode;
1571 if (CONST_INT_P (src)
1572 && is_a <scalar_int_mode> (mode, &int_mode)
1573 && GET_MODE_PRECISION (int_mode) < prec
1574 && INTVAL (src) > 0
1575 && val_signbit_known_set_p (int_mode, INTVAL (src)))
1576 src = GEN_INT (INTVAL (src) | ~GET_MODE_MASK (int_mode));
1578 return src;
1581 /* Update RSP for pseudo-register X from INSN's REG_EQUAL note (if one exists)
1582 and SET. */
1584 static void
1585 update_rsp_from_reg_equal (reg_stat_type *rsp, rtx_insn *insn, const_rtx set,
1586 rtx x)
1588 rtx reg_equal_note = insn ? find_reg_equal_equiv_note (insn) : NULL_RTX;
1589 unsigned HOST_WIDE_INT bits = 0;
1590 rtx reg_equal = NULL, src = SET_SRC (set);
1591 unsigned int num = 0;
1593 if (reg_equal_note)
1594 reg_equal = XEXP (reg_equal_note, 0);
1596 if (SHORT_IMMEDIATES_SIGN_EXTEND)
1598 src = sign_extend_short_imm (src, GET_MODE (x), BITS_PER_WORD);
1599 if (reg_equal)
1600 reg_equal = sign_extend_short_imm (reg_equal, GET_MODE (x), BITS_PER_WORD);
1603 /* Don't call nonzero_bits if it cannot change anything. */
1604 if (rsp->nonzero_bits != HOST_WIDE_INT_M1U)
1606 machine_mode mode = GET_MODE (x);
1607 if (GET_MODE_CLASS (mode) == MODE_INT
1608 && HWI_COMPUTABLE_MODE_P (mode))
1609 mode = nonzero_bits_mode;
1610 bits = nonzero_bits (src, mode);
1611 if (reg_equal && bits)
1612 bits &= nonzero_bits (reg_equal, mode);
1613 rsp->nonzero_bits |= bits;
1616 /* Don't call num_sign_bit_copies if it cannot change anything. */
1617 if (rsp->sign_bit_copies != 1)
1619 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1620 if (reg_equal && maybe_ne (num, GET_MODE_PRECISION (GET_MODE (x))))
1622 unsigned int numeq = num_sign_bit_copies (reg_equal, GET_MODE (x));
1623 if (num == 0 || numeq > num)
1624 num = numeq;
1626 if (rsp->sign_bit_copies == 0 || num < rsp->sign_bit_copies)
1627 rsp->sign_bit_copies = num;
1631 /* Called via note_stores. If X is a pseudo that is narrower than
1632 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1634 If we are setting only a portion of X and we can't figure out what
1635 portion, assume all bits will be used since we don't know what will
1636 be happening.
1638 Similarly, set how many bits of X are known to be copies of the sign bit
1639 at all locations in the function. This is the smallest number implied
1640 by any set of X. */
1642 static void
1643 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1645 rtx_insn *insn = (rtx_insn *) data;
1646 scalar_int_mode mode;
1648 if (REG_P (x)
1649 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1650 /* If this register is undefined at the start of the file, we can't
1651 say what its contents were. */
1652 && ! REGNO_REG_SET_P
1653 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), REGNO (x))
1654 && is_a <scalar_int_mode> (GET_MODE (x), &mode)
1655 && HWI_COMPUTABLE_MODE_P (mode))
1657 reg_stat_type *rsp = &reg_stat[REGNO (x)];
1659 if (set == 0 || GET_CODE (set) == CLOBBER)
1661 rsp->nonzero_bits = GET_MODE_MASK (mode);
1662 rsp->sign_bit_copies = 1;
1663 return;
1666 /* If this register is being initialized using itself, and the
1667 register is uninitialized in this basic block, and there are
1668 no LOG_LINKS which set the register, then part of the
1669 register is uninitialized. In that case we can't assume
1670 anything about the number of nonzero bits.
1672 ??? We could do better if we checked this in
1673 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1674 could avoid making assumptions about the insn which initially
1675 sets the register, while still using the information in other
1676 insns. We would have to be careful to check every insn
1677 involved in the combination. */
1679 if (insn
1680 && reg_referenced_p (x, PATTERN (insn))
1681 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1682 REGNO (x)))
1684 struct insn_link *link;
1686 FOR_EACH_LOG_LINK (link, insn)
1687 if (dead_or_set_p (link->insn, x))
1688 break;
1689 if (!link)
1691 rsp->nonzero_bits = GET_MODE_MASK (mode);
1692 rsp->sign_bit_copies = 1;
1693 return;
1697 /* If this is a complex assignment, see if we can convert it into a
1698 simple assignment. */
1699 set = expand_field_assignment (set);
1701 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1702 set what we know about X. */
1704 if (SET_DEST (set) == x
1705 || (paradoxical_subreg_p (SET_DEST (set))
1706 && SUBREG_REG (SET_DEST (set)) == x))
1707 update_rsp_from_reg_equal (rsp, insn, set, x);
1708 else
1710 rsp->nonzero_bits = GET_MODE_MASK (mode);
1711 rsp->sign_bit_copies = 1;
1716 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1717 optionally insns that were previously combined into I3 or that will be
1718 combined into the merger of INSN and I3. The order is PRED, PRED2,
1719 INSN, SUCC, SUCC2, I3.
1721 Return 0 if the combination is not allowed for any reason.
1723 If the combination is allowed, *PDEST will be set to the single
1724 destination of INSN and *PSRC to the single source, and this function
1725 will return 1. */
1727 static int
1728 can_combine_p (rtx_insn *insn, rtx_insn *i3, rtx_insn *pred ATTRIBUTE_UNUSED,
1729 rtx_insn *pred2 ATTRIBUTE_UNUSED, rtx_insn *succ, rtx_insn *succ2,
1730 rtx *pdest, rtx *psrc)
1732 int i;
1733 const_rtx set = 0;
1734 rtx src, dest;
1735 rtx_insn *p;
1736 rtx link;
1737 bool all_adjacent = true;
1738 bool (*is_volatile_p) (const_rtx);
1740 if (succ)
1742 if (succ2)
1744 if (next_active_insn (succ2) != i3)
1745 all_adjacent = false;
1746 if (next_active_insn (succ) != succ2)
1747 all_adjacent = false;
1749 else if (next_active_insn (succ) != i3)
1750 all_adjacent = false;
1751 if (next_active_insn (insn) != succ)
1752 all_adjacent = false;
1754 else if (next_active_insn (insn) != i3)
1755 all_adjacent = false;
1757 /* Can combine only if previous insn is a SET of a REG or a SUBREG,
1758 or a PARALLEL consisting of such a SET and CLOBBERs.
1760 If INSN has CLOBBER parallel parts, ignore them for our processing.
1761 By definition, these happen during the execution of the insn. When it
1762 is merged with another insn, all bets are off. If they are, in fact,
1763 needed and aren't also supplied in I3, they may be added by
1764 recog_for_combine. Otherwise, it won't match.
1766 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1767 note.
1769 Get the source and destination of INSN. If more than one, can't
1770 combine. */
1772 if (GET_CODE (PATTERN (insn)) == SET)
1773 set = PATTERN (insn);
1774 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1775 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1777 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1779 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1781 switch (GET_CODE (elt))
1783 /* This is important to combine floating point insns
1784 for the SH4 port. */
1785 case USE:
1786 /* Combining an isolated USE doesn't make sense.
1787 We depend here on combinable_i3pat to reject them. */
1788 /* The code below this loop only verifies that the inputs of
1789 the SET in INSN do not change. We call reg_set_between_p
1790 to verify that the REG in the USE does not change between
1791 I3 and INSN.
1792 If the USE in INSN was for a pseudo register, the matching
1793 insn pattern will likely match any register; combining this
1794 with any other USE would only be safe if we knew that the
1795 used registers have identical values, or if there was
1796 something to tell them apart, e.g. different modes. For
1797 now, we forgo such complicated tests and simply disallow
1798 combining of USES of pseudo registers with any other USE. */
1799 if (REG_P (XEXP (elt, 0))
1800 && GET_CODE (PATTERN (i3)) == PARALLEL)
1802 rtx i3pat = PATTERN (i3);
1803 int i = XVECLEN (i3pat, 0) - 1;
1804 unsigned int regno = REGNO (XEXP (elt, 0));
1808 rtx i3elt = XVECEXP (i3pat, 0, i);
1810 if (GET_CODE (i3elt) == USE
1811 && REG_P (XEXP (i3elt, 0))
1812 && (REGNO (XEXP (i3elt, 0)) == regno
1813 ? reg_set_between_p (XEXP (elt, 0),
1814 PREV_INSN (insn), i3)
1815 : regno >= FIRST_PSEUDO_REGISTER))
1816 return 0;
1818 while (--i >= 0);
1820 break;
1822 /* We can ignore CLOBBERs. */
1823 case CLOBBER:
1824 break;
1826 case SET:
1827 /* Ignore SETs whose result isn't used but not those that
1828 have side-effects. */
1829 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1830 && insn_nothrow_p (insn)
1831 && !side_effects_p (elt))
1832 break;
1834 /* If we have already found a SET, this is a second one and
1835 so we cannot combine with this insn. */
1836 if (set)
1837 return 0;
1839 set = elt;
1840 break;
1842 default:
1843 /* Anything else means we can't combine. */
1844 return 0;
1848 if (set == 0
1849 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1850 so don't do anything with it. */
1851 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1852 return 0;
1854 else
1855 return 0;
1857 if (set == 0)
1858 return 0;
1860 /* The simplification in expand_field_assignment may call back to
1861 get_last_value, so set safe guard here. */
1862 subst_low_luid = DF_INSN_LUID (insn);
1864 set = expand_field_assignment (set);
1865 src = SET_SRC (set), dest = SET_DEST (set);
1867 /* Do not eliminate user-specified register if it is in an
1868 asm input because we may break the register asm usage defined
1869 in GCC manual if allow to do so.
1870 Be aware that this may cover more cases than we expect but this
1871 should be harmless. */
1872 if (REG_P (dest) && REG_USERVAR_P (dest) && HARD_REGISTER_P (dest)
1873 && extract_asm_operands (PATTERN (i3)))
1874 return 0;
1876 /* Don't eliminate a store in the stack pointer. */
1877 if (dest == stack_pointer_rtx
1878 /* Don't combine with an insn that sets a register to itself if it has
1879 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1880 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1881 /* Can't merge an ASM_OPERANDS. */
1882 || GET_CODE (src) == ASM_OPERANDS
1883 /* Can't merge a function call. */
1884 || GET_CODE (src) == CALL
1885 /* Don't eliminate a function call argument. */
1886 || (CALL_P (i3)
1887 && (find_reg_fusage (i3, USE, dest)
1888 || (REG_P (dest)
1889 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1890 && global_regs[REGNO (dest)])))
1891 /* Don't substitute into an incremented register. */
1892 || FIND_REG_INC_NOTE (i3, dest)
1893 || (succ && FIND_REG_INC_NOTE (succ, dest))
1894 || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1895 /* Don't substitute into a non-local goto, this confuses CFG. */
1896 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1897 /* Make sure that DEST is not used after INSN but before SUCC, or
1898 after SUCC and before SUCC2, or after SUCC2 but before I3. */
1899 || (!all_adjacent
1900 && ((succ2
1901 && (reg_used_between_p (dest, succ2, i3)
1902 || reg_used_between_p (dest, succ, succ2)))
1903 || (!succ2 && succ && reg_used_between_p (dest, succ, i3))
1904 || (!succ2 && !succ && reg_used_between_p (dest, insn, i3))
1905 || (succ
1906 /* SUCC and SUCC2 can be split halves from a PARALLEL; in
1907 that case SUCC is not in the insn stream, so use SUCC2
1908 instead for this test. */
1909 && reg_used_between_p (dest, insn,
1910 succ2
1911 && INSN_UID (succ) == INSN_UID (succ2)
1912 ? succ2 : succ))))
1913 /* Make sure that the value that is to be substituted for the register
1914 does not use any registers whose values alter in between. However,
1915 If the insns are adjacent, a use can't cross a set even though we
1916 think it might (this can happen for a sequence of insns each setting
1917 the same destination; last_set of that register might point to
1918 a NOTE). If INSN has a REG_EQUIV note, the register is always
1919 equivalent to the memory so the substitution is valid even if there
1920 are intervening stores. Also, don't move a volatile asm or
1921 UNSPEC_VOLATILE across any other insns. */
1922 || (! all_adjacent
1923 && (((!MEM_P (src)
1924 || ! find_reg_note (insn, REG_EQUIV, src))
1925 && modified_between_p (src, insn, i3))
1926 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1927 || GET_CODE (src) == UNSPEC_VOLATILE))
1928 /* Don't combine across a CALL_INSN, because that would possibly
1929 change whether the life span of some REGs crosses calls or not,
1930 and it is a pain to update that information.
1931 Exception: if source is a constant, moving it later can't hurt.
1932 Accept that as a special case. */
1933 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
1934 return 0;
1936 /* DEST must be a REG. */
1937 if (REG_P (dest))
1939 /* If register alignment is being enforced for multi-word items in all
1940 cases except for parameters, it is possible to have a register copy
1941 insn referencing a hard register that is not allowed to contain the
1942 mode being copied and which would not be valid as an operand of most
1943 insns. Eliminate this problem by not combining with such an insn.
1945 Also, on some machines we don't want to extend the life of a hard
1946 register. */
1948 if (REG_P (src)
1949 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1950 && !targetm.hard_regno_mode_ok (REGNO (dest), GET_MODE (dest)))
1951 /* Don't extend the life of a hard register unless it is
1952 user variable (if we have few registers) or it can't
1953 fit into the desired register (meaning something special
1954 is going on).
1955 Also avoid substituting a return register into I3, because
1956 reload can't handle a conflict with constraints of other
1957 inputs. */
1958 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1959 && !targetm.hard_regno_mode_ok (REGNO (src),
1960 GET_MODE (src)))))
1961 return 0;
1963 else
1964 return 0;
1967 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1968 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1969 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1971 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1973 /* If the clobber represents an earlyclobber operand, we must not
1974 substitute an expression containing the clobbered register.
1975 As we do not analyze the constraint strings here, we have to
1976 make the conservative assumption. However, if the register is
1977 a fixed hard reg, the clobber cannot represent any operand;
1978 we leave it up to the machine description to either accept or
1979 reject use-and-clobber patterns. */
1980 if (!REG_P (reg)
1981 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1982 || !fixed_regs[REGNO (reg)])
1983 if (reg_overlap_mentioned_p (reg, src))
1984 return 0;
1987 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1988 or not), reject, unless nothing volatile comes between it and I3 */
1990 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1992 /* Make sure neither succ nor succ2 contains a volatile reference. */
1993 if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
1994 return 0;
1995 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1996 return 0;
1997 /* We'll check insns between INSN and I3 below. */
2000 /* If INSN is an asm, and DEST is a hard register, reject, since it has
2001 to be an explicit register variable, and was chosen for a reason. */
2003 if (GET_CODE (src) == ASM_OPERANDS
2004 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
2005 return 0;
2007 /* If INSN contains volatile references (specifically volatile MEMs),
2008 we cannot combine across any other volatile references.
2009 Even if INSN doesn't contain volatile references, any intervening
2010 volatile insn might affect machine state. */
2012 is_volatile_p = volatile_refs_p (PATTERN (insn))
2013 ? volatile_refs_p
2014 : volatile_insn_p;
2016 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
2017 if (INSN_P (p) && p != succ && p != succ2 && is_volatile_p (PATTERN (p)))
2018 return 0;
2020 /* If INSN contains an autoincrement or autodecrement, make sure that
2021 register is not used between there and I3, and not already used in
2022 I3 either. Neither must it be used in PRED or SUCC, if they exist.
2023 Also insist that I3 not be a jump if using LRA; if it were one
2024 and the incremented register were spilled, we would lose.
2025 Reload handles this correctly. */
2027 if (AUTO_INC_DEC)
2028 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2029 if (REG_NOTE_KIND (link) == REG_INC
2030 && ((JUMP_P (i3) && targetm.lra_p ())
2031 || reg_used_between_p (XEXP (link, 0), insn, i3)
2032 || (pred != NULL_RTX
2033 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
2034 || (pred2 != NULL_RTX
2035 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
2036 || (succ != NULL_RTX
2037 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
2038 || (succ2 != NULL_RTX
2039 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
2040 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
2041 return 0;
2043 /* If we get here, we have passed all the tests and the combination is
2044 to be allowed. */
2046 *pdest = dest;
2047 *psrc = src;
2049 return 1;
2052 /* LOC is the location within I3 that contains its pattern or the component
2053 of a PARALLEL of the pattern. We validate that it is valid for combining.
2055 One problem is if I3 modifies its output, as opposed to replacing it
2056 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2057 doing so would produce an insn that is not equivalent to the original insns.
2059 Consider:
2061 (set (reg:DI 101) (reg:DI 100))
2062 (set (subreg:SI (reg:DI 101) 0) <foo>)
2064 This is NOT equivalent to:
2066 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2067 (set (reg:DI 101) (reg:DI 100))])
2069 Not only does this modify 100 (in which case it might still be valid
2070 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2072 We can also run into a problem if I2 sets a register that I1
2073 uses and I1 gets directly substituted into I3 (not via I2). In that
2074 case, we would be getting the wrong value of I2DEST into I3, so we
2075 must reject the combination. This case occurs when I2 and I1 both
2076 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2077 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2078 of a SET must prevent combination from occurring. The same situation
2079 can occur for I0, in which case I0_NOT_IN_SRC is set.
2081 Before doing the above check, we first try to expand a field assignment
2082 into a set of logical operations.
2084 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2085 we place a register that is both set and used within I3. If more than one
2086 such register is detected, we fail.
2088 Return 1 if the combination is valid, zero otherwise. */
2090 static int
2091 combinable_i3pat (rtx_insn *i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
2092 int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
2094 rtx x = *loc;
2096 if (GET_CODE (x) == SET)
2098 rtx set = x ;
2099 rtx dest = SET_DEST (set);
2100 rtx src = SET_SRC (set);
2101 rtx inner_dest = dest;
2102 rtx subdest;
2104 while (GET_CODE (inner_dest) == STRICT_LOW_PART
2105 || GET_CODE (inner_dest) == SUBREG
2106 || GET_CODE (inner_dest) == ZERO_EXTRACT)
2107 inner_dest = XEXP (inner_dest, 0);
2109 /* Check for the case where I3 modifies its output, as discussed
2110 above. We don't want to prevent pseudos from being combined
2111 into the address of a MEM, so only prevent the combination if
2112 i1 or i2 set the same MEM. */
2113 if ((inner_dest != dest &&
2114 (!MEM_P (inner_dest)
2115 || rtx_equal_p (i2dest, inner_dest)
2116 || (i1dest && rtx_equal_p (i1dest, inner_dest))
2117 || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2118 && (reg_overlap_mentioned_p (i2dest, inner_dest)
2119 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2120 || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2122 /* This is the same test done in can_combine_p except we can't test
2123 all_adjacent; we don't have to, since this instruction will stay
2124 in place, thus we are not considering increasing the lifetime of
2125 INNER_DEST.
2127 Also, if this insn sets a function argument, combining it with
2128 something that might need a spill could clobber a previous
2129 function argument; the all_adjacent test in can_combine_p also
2130 checks this; here, we do a more specific test for this case. */
2132 || (REG_P (inner_dest)
2133 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2134 && !targetm.hard_regno_mode_ok (REGNO (inner_dest),
2135 GET_MODE (inner_dest)))
2136 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2137 || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2138 return 0;
2140 /* If DEST is used in I3, it is being killed in this insn, so
2141 record that for later. We have to consider paradoxical
2142 subregs here, since they kill the whole register, but we
2143 ignore partial subregs, STRICT_LOW_PART, etc.
2144 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2145 STACK_POINTER_REGNUM, since these are always considered to be
2146 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2147 subdest = dest;
2148 if (GET_CODE (subdest) == SUBREG && !partial_subreg_p (subdest))
2149 subdest = SUBREG_REG (subdest);
2150 if (pi3dest_killed
2151 && REG_P (subdest)
2152 && reg_referenced_p (subdest, PATTERN (i3))
2153 && REGNO (subdest) != FRAME_POINTER_REGNUM
2154 && (HARD_FRAME_POINTER_IS_FRAME_POINTER
2155 || REGNO (subdest) != HARD_FRAME_POINTER_REGNUM)
2156 && (FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
2157 || (REGNO (subdest) != ARG_POINTER_REGNUM
2158 || ! fixed_regs [REGNO (subdest)]))
2159 && REGNO (subdest) != STACK_POINTER_REGNUM)
2161 if (*pi3dest_killed)
2162 return 0;
2164 *pi3dest_killed = subdest;
2168 else if (GET_CODE (x) == PARALLEL)
2170 int i;
2172 for (i = 0; i < XVECLEN (x, 0); i++)
2173 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2174 i1_not_in_src, i0_not_in_src, pi3dest_killed))
2175 return 0;
2178 return 1;
2181 /* Return 1 if X is an arithmetic expression that contains a multiplication
2182 and division. We don't count multiplications by powers of two here. */
2184 static int
2185 contains_muldiv (rtx x)
2187 switch (GET_CODE (x))
2189 case MOD: case DIV: case UMOD: case UDIV:
2190 return 1;
2192 case MULT:
2193 return ! (CONST_INT_P (XEXP (x, 1))
2194 && pow2p_hwi (UINTVAL (XEXP (x, 1))));
2195 default:
2196 if (BINARY_P (x))
2197 return contains_muldiv (XEXP (x, 0))
2198 || contains_muldiv (XEXP (x, 1));
2200 if (UNARY_P (x))
2201 return contains_muldiv (XEXP (x, 0));
2203 return 0;
2207 /* Determine whether INSN can be used in a combination. Return nonzero if
2208 not. This is used in try_combine to detect early some cases where we
2209 can't perform combinations. */
2211 static int
2212 cant_combine_insn_p (rtx_insn *insn)
2214 rtx set;
2215 rtx src, dest;
2217 /* If this isn't really an insn, we can't do anything.
2218 This can occur when flow deletes an insn that it has merged into an
2219 auto-increment address. */
2220 if (!NONDEBUG_INSN_P (insn))
2221 return 1;
2223 /* Never combine loads and stores involving hard regs that are likely
2224 to be spilled. The register allocator can usually handle such
2225 reg-reg moves by tying. If we allow the combiner to make
2226 substitutions of likely-spilled regs, reload might die.
2227 As an exception, we allow combinations involving fixed regs; these are
2228 not available to the register allocator so there's no risk involved. */
2230 set = single_set (insn);
2231 if (! set)
2232 return 0;
2233 src = SET_SRC (set);
2234 dest = SET_DEST (set);
2235 if (GET_CODE (src) == SUBREG)
2236 src = SUBREG_REG (src);
2237 if (GET_CODE (dest) == SUBREG)
2238 dest = SUBREG_REG (dest);
2239 if (REG_P (src) && REG_P (dest)
2240 && ((HARD_REGISTER_P (src)
2241 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2242 #ifdef LEAF_REGISTERS
2243 && ! LEAF_REGISTERS [REGNO (src)])
2244 #else
2246 #endif
2247 || (HARD_REGISTER_P (dest)
2248 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2249 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2250 return 1;
2252 return 0;
2255 struct likely_spilled_retval_info
2257 unsigned regno, nregs;
2258 unsigned mask;
2261 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2262 hard registers that are known to be written to / clobbered in full. */
2263 static void
2264 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2266 struct likely_spilled_retval_info *const info =
2267 (struct likely_spilled_retval_info *) data;
2268 unsigned regno, nregs;
2269 unsigned new_mask;
2271 if (!REG_P (XEXP (set, 0)))
2272 return;
2273 regno = REGNO (x);
2274 if (regno >= info->regno + info->nregs)
2275 return;
2276 nregs = REG_NREGS (x);
2277 if (regno + nregs <= info->regno)
2278 return;
2279 new_mask = (2U << (nregs - 1)) - 1;
2280 if (regno < info->regno)
2281 new_mask >>= info->regno - regno;
2282 else
2283 new_mask <<= regno - info->regno;
2284 info->mask &= ~new_mask;
2287 /* Return nonzero iff part of the return value is live during INSN, and
2288 it is likely spilled. This can happen when more than one insn is needed
2289 to copy the return value, e.g. when we consider to combine into the
2290 second copy insn for a complex value. */
2292 static int
2293 likely_spilled_retval_p (rtx_insn *insn)
2295 rtx_insn *use = BB_END (this_basic_block);
2296 rtx reg;
2297 rtx_insn *p;
2298 unsigned regno, nregs;
2299 /* We assume here that no machine mode needs more than
2300 32 hard registers when the value overlaps with a register
2301 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2302 unsigned mask;
2303 struct likely_spilled_retval_info info;
2305 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2306 return 0;
2307 reg = XEXP (PATTERN (use), 0);
2308 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2309 return 0;
2310 regno = REGNO (reg);
2311 nregs = REG_NREGS (reg);
2312 if (nregs == 1)
2313 return 0;
2314 mask = (2U << (nregs - 1)) - 1;
2316 /* Disregard parts of the return value that are set later. */
2317 info.regno = regno;
2318 info.nregs = nregs;
2319 info.mask = mask;
2320 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2321 if (INSN_P (p))
2322 note_stores (p, likely_spilled_retval_1, &info);
2323 mask = info.mask;
2325 /* Check if any of the (probably) live return value registers is
2326 likely spilled. */
2327 nregs --;
2330 if ((mask & 1 << nregs)
2331 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2332 return 1;
2333 } while (nregs--);
2334 return 0;
2337 /* Adjust INSN after we made a change to its destination.
2339 Changing the destination can invalidate notes that say something about
2340 the results of the insn and a LOG_LINK pointing to the insn. */
2342 static void
2343 adjust_for_new_dest (rtx_insn *insn)
2345 /* For notes, be conservative and simply remove them. */
2346 remove_reg_equal_equiv_notes (insn, true);
2348 /* The new insn will have a destination that was previously the destination
2349 of an insn just above it. Call distribute_links to make a LOG_LINK from
2350 the next use of that destination. */
2352 rtx set = single_set (insn);
2353 gcc_assert (set);
2355 rtx reg = SET_DEST (set);
2357 while (GET_CODE (reg) == ZERO_EXTRACT
2358 || GET_CODE (reg) == STRICT_LOW_PART
2359 || GET_CODE (reg) == SUBREG)
2360 reg = XEXP (reg, 0);
2361 gcc_assert (REG_P (reg));
2363 distribute_links (alloc_insn_link (insn, REGNO (reg), NULL));
2365 df_insn_rescan (insn);
2368 /* Return TRUE if combine can reuse reg X in mode MODE.
2369 ADDED_SETS is nonzero if the original set is still required. */
2370 static bool
2371 can_change_dest_mode (rtx x, int added_sets, machine_mode mode)
2373 unsigned int regno;
2375 if (!REG_P (x))
2376 return false;
2378 /* Don't change between modes with different underlying register sizes,
2379 since this could lead to invalid subregs. */
2380 if (maybe_ne (REGMODE_NATURAL_SIZE (mode),
2381 REGMODE_NATURAL_SIZE (GET_MODE (x))))
2382 return false;
2384 regno = REGNO (x);
2385 /* Allow hard registers if the new mode is legal, and occupies no more
2386 registers than the old mode. */
2387 if (regno < FIRST_PSEUDO_REGISTER)
2388 return (targetm.hard_regno_mode_ok (regno, mode)
2389 && REG_NREGS (x) >= hard_regno_nregs (regno, mode));
2391 /* Or a pseudo that is only used once. */
2392 return (regno < reg_n_sets_max
2393 && REG_N_SETS (regno) == 1
2394 && !added_sets
2395 && !REG_USERVAR_P (x));
2399 /* Check whether X, the destination of a set, refers to part of
2400 the register specified by REG. */
2402 static bool
2403 reg_subword_p (rtx x, rtx reg)
2405 /* Check that reg is an integer mode register. */
2406 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2407 return false;
2409 if (GET_CODE (x) == STRICT_LOW_PART
2410 || GET_CODE (x) == ZERO_EXTRACT)
2411 x = XEXP (x, 0);
2413 return GET_CODE (x) == SUBREG
2414 && !paradoxical_subreg_p (x)
2415 && SUBREG_REG (x) == reg
2416 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2419 /* Return whether PAT is a PARALLEL of exactly N register SETs followed
2420 by an arbitrary number of CLOBBERs. */
2421 static bool
2422 is_parallel_of_n_reg_sets (rtx pat, int n)
2424 if (GET_CODE (pat) != PARALLEL)
2425 return false;
2427 int len = XVECLEN (pat, 0);
2428 if (len < n)
2429 return false;
2431 int i;
2432 for (i = 0; i < n; i++)
2433 if (GET_CODE (XVECEXP (pat, 0, i)) != SET
2434 || !REG_P (SET_DEST (XVECEXP (pat, 0, i))))
2435 return false;
2436 for ( ; i < len; i++)
2437 switch (GET_CODE (XVECEXP (pat, 0, i)))
2439 case CLOBBER:
2440 if (XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
2441 return false;
2442 break;
2443 default:
2444 return false;
2446 return true;
2449 /* Return whether INSN, a PARALLEL of N register SETs (and maybe some
2450 CLOBBERs), can be split into individual SETs in that order, without
2451 changing semantics. */
2452 static bool
2453 can_split_parallel_of_n_reg_sets (rtx_insn *insn, int n)
2455 if (!insn_nothrow_p (insn))
2456 return false;
2458 rtx pat = PATTERN (insn);
2460 int i, j;
2461 for (i = 0; i < n; i++)
2463 if (side_effects_p (SET_SRC (XVECEXP (pat, 0, i))))
2464 return false;
2466 rtx reg = SET_DEST (XVECEXP (pat, 0, i));
2468 for (j = i + 1; j < n; j++)
2469 if (reg_referenced_p (reg, XVECEXP (pat, 0, j)))
2470 return false;
2473 return true;
2476 /* Return whether X is just a single_set, with the source
2477 a general_operand. */
2478 static bool
2479 is_just_move (rtx_insn *x)
2481 rtx set = single_set (x);
2482 if (!set)
2483 return false;
2485 return general_operand (SET_SRC (set), VOIDmode);
2488 /* Callback function to count autoincs. */
2490 static int
2491 count_auto_inc (rtx, rtx, rtx, rtx, rtx, void *arg)
2493 (*((int *) arg))++;
2495 return 0;
2498 /* Try to combine the insns I0, I1 and I2 into I3.
2499 Here I0, I1 and I2 appear earlier than I3.
2500 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2503 If we are combining more than two insns and the resulting insn is not
2504 recognized, try splitting it into two insns. If that happens, I2 and I3
2505 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2506 Otherwise, I0, I1 and I2 are pseudo-deleted.
2508 Return 0 if the combination does not work. Then nothing is changed.
2509 If we did the combination, return the insn at which combine should
2510 resume scanning.
2512 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2513 new direct jump instruction.
2515 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2516 been I3 passed to an earlier try_combine within the same basic
2517 block. */
2519 static rtx_insn *
2520 try_combine (rtx_insn *i3, rtx_insn *i2, rtx_insn *i1, rtx_insn *i0,
2521 int *new_direct_jump_p, rtx_insn *last_combined_insn)
2523 /* New patterns for I3 and I2, respectively. */
2524 rtx newpat, newi2pat = 0;
2525 rtvec newpat_vec_with_clobbers = 0;
2526 int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2527 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2528 dead. */
2529 int added_sets_0, added_sets_1, added_sets_2;
2530 /* Total number of SETs to put into I3. */
2531 int total_sets;
2532 /* Nonzero if I2's or I1's body now appears in I3. */
2533 int i2_is_used = 0, i1_is_used = 0;
2534 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2535 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2536 /* Contains I3 if the destination of I3 is used in its source, which means
2537 that the old life of I3 is being killed. If that usage is placed into
2538 I2 and not in I3, a REG_DEAD note must be made. */
2539 rtx i3dest_killed = 0;
2540 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2541 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2542 /* Copy of SET_SRC of I1 and I0, if needed. */
2543 rtx i1src_copy = 0, i0src_copy = 0, i0src_copy2 = 0;
2544 /* Set if I2DEST was reused as a scratch register. */
2545 bool i2scratch = false;
2546 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2547 rtx i0pat = 0, i1pat = 0, i2pat = 0;
2548 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2549 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2550 int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2551 int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2552 int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2553 /* Notes that must be added to REG_NOTES in I3 and I2. */
2554 rtx new_i3_notes, new_i2_notes;
2555 /* Notes that we substituted I3 into I2 instead of the normal case. */
2556 int i3_subst_into_i2 = 0;
2557 /* Notes that I1, I2 or I3 is a MULT operation. */
2558 int have_mult = 0;
2559 int swap_i2i3 = 0;
2560 int split_i2i3 = 0;
2561 int changed_i3_dest = 0;
2562 bool i2_was_move = false, i3_was_move = false;
2563 int n_auto_inc = 0;
2565 int maxreg;
2566 rtx_insn *temp_insn;
2567 rtx temp_expr;
2568 struct insn_link *link;
2569 rtx other_pat = 0;
2570 rtx new_other_notes;
2571 int i;
2572 scalar_int_mode dest_mode, temp_mode;
2573 bool has_non_call_exception = false;
2575 /* Immediately return if any of I0,I1,I2 are the same insn (I3 can
2576 never be). */
2577 if (i1 == i2 || i0 == i2 || (i0 && i0 == i1))
2578 return 0;
2580 /* Only try four-insn combinations when there's high likelihood of
2581 success. Look for simple insns, such as loads of constants or
2582 binary operations involving a constant. */
2583 if (i0)
2585 int i;
2586 int ngood = 0;
2587 int nshift = 0;
2588 rtx set0, set3;
2590 if (!flag_expensive_optimizations)
2591 return 0;
2593 for (i = 0; i < 4; i++)
2595 rtx_insn *insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2596 rtx set = single_set (insn);
2597 rtx src;
2598 if (!set)
2599 continue;
2600 src = SET_SRC (set);
2601 if (CONSTANT_P (src))
2603 ngood += 2;
2604 break;
2606 else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2607 ngood++;
2608 else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2609 || GET_CODE (src) == LSHIFTRT)
2610 nshift++;
2613 /* If I0 loads a memory and I3 sets the same memory, then I1 and I2
2614 are likely manipulating its value. Ideally we'll be able to combine
2615 all four insns into a bitfield insertion of some kind.
2617 Note the source in I0 might be inside a sign/zero extension and the
2618 memory modes in I0 and I3 might be different. So extract the address
2619 from the destination of I3 and search for it in the source of I0.
2621 In the event that there's a match but the source/dest do not actually
2622 refer to the same memory, the worst that happens is we try some
2623 combinations that we wouldn't have otherwise. */
2624 if ((set0 = single_set (i0))
2625 /* Ensure the source of SET0 is a MEM, possibly buried inside
2626 an extension. */
2627 && (GET_CODE (SET_SRC (set0)) == MEM
2628 || ((GET_CODE (SET_SRC (set0)) == ZERO_EXTEND
2629 || GET_CODE (SET_SRC (set0)) == SIGN_EXTEND)
2630 && GET_CODE (XEXP (SET_SRC (set0), 0)) == MEM))
2631 && (set3 = single_set (i3))
2632 /* Ensure the destination of SET3 is a MEM. */
2633 && GET_CODE (SET_DEST (set3)) == MEM
2634 /* Would it be better to extract the base address for the MEM
2635 in SET3 and look for that? I don't have cases where it matters
2636 but I could envision such cases. */
2637 && rtx_referenced_p (XEXP (SET_DEST (set3), 0), SET_SRC (set0)))
2638 ngood += 2;
2640 if (ngood < 2 && nshift < 2)
2641 return 0;
2644 /* Exit early if one of the insns involved can't be used for
2645 combinations. */
2646 if (CALL_P (i2)
2647 || (i1 && CALL_P (i1))
2648 || (i0 && CALL_P (i0))
2649 || cant_combine_insn_p (i3)
2650 || cant_combine_insn_p (i2)
2651 || (i1 && cant_combine_insn_p (i1))
2652 || (i0 && cant_combine_insn_p (i0))
2653 || likely_spilled_retval_p (i3))
2654 return 0;
2656 combine_attempts++;
2657 undobuf.other_insn = 0;
2659 /* Reset the hard register usage information. */
2660 CLEAR_HARD_REG_SET (newpat_used_regs);
2662 if (dump_file && (dump_flags & TDF_DETAILS))
2664 if (i0)
2665 fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2666 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2667 else if (i1)
2668 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2669 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2670 else
2671 fprintf (dump_file, "\nTrying %d -> %d:\n",
2672 INSN_UID (i2), INSN_UID (i3));
2674 if (i0)
2675 dump_insn_slim (dump_file, i0);
2676 if (i1)
2677 dump_insn_slim (dump_file, i1);
2678 dump_insn_slim (dump_file, i2);
2679 dump_insn_slim (dump_file, i3);
2682 /* If multiple insns feed into one of I2 or I3, they can be in any
2683 order. To simplify the code below, reorder them in sequence. */
2684 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2685 std::swap (i0, i2);
2686 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2687 std::swap (i0, i1);
2688 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2689 std::swap (i1, i2);
2691 added_links_insn = 0;
2692 added_notes_insn = 0;
2694 /* First check for one important special case that the code below will
2695 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2696 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2697 we may be able to replace that destination with the destination of I3.
2698 This occurs in the common code where we compute both a quotient and
2699 remainder into a structure, in which case we want to do the computation
2700 directly into the structure to avoid register-register copies.
2702 Note that this case handles both multiple sets in I2 and also cases
2703 where I2 has a number of CLOBBERs inside the PARALLEL.
2705 We make very conservative checks below and only try to handle the
2706 most common cases of this. For example, we only handle the case
2707 where I2 and I3 are adjacent to avoid making difficult register
2708 usage tests. */
2710 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2711 && REG_P (SET_SRC (PATTERN (i3)))
2712 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2713 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2714 && GET_CODE (PATTERN (i2)) == PARALLEL
2715 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2716 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2717 below would need to check what is inside (and reg_overlap_mentioned_p
2718 doesn't support those codes anyway). Don't allow those destinations;
2719 the resulting insn isn't likely to be recognized anyway. */
2720 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2721 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2722 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2723 SET_DEST (PATTERN (i3)))
2724 && next_active_insn (i2) == i3)
2726 rtx p2 = PATTERN (i2);
2728 /* Make sure that the destination of I3,
2729 which we are going to substitute into one output of I2,
2730 is not used within another output of I2. We must avoid making this:
2731 (parallel [(set (mem (reg 69)) ...)
2732 (set (reg 69) ...)])
2733 which is not well-defined as to order of actions.
2734 (Besides, reload can't handle output reloads for this.)
2736 The problem can also happen if the dest of I3 is a memory ref,
2737 if another dest in I2 is an indirect memory ref.
2739 Neither can this PARALLEL be an asm. We do not allow combining
2740 that usually (see can_combine_p), so do not here either. */
2741 bool ok = true;
2742 for (i = 0; ok && i < XVECLEN (p2, 0); i++)
2744 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2745 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2746 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2747 SET_DEST (XVECEXP (p2, 0, i))))
2748 ok = false;
2749 else if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2750 && GET_CODE (SET_SRC (XVECEXP (p2, 0, i))) == ASM_OPERANDS)
2751 ok = false;
2754 if (ok)
2755 for (i = 0; i < XVECLEN (p2, 0); i++)
2756 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2757 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2759 combine_merges++;
2761 subst_insn = i3;
2762 subst_low_luid = DF_INSN_LUID (i2);
2764 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2765 i2src = SET_SRC (XVECEXP (p2, 0, i));
2766 i2dest = SET_DEST (XVECEXP (p2, 0, i));
2767 i2dest_killed = dead_or_set_p (i2, i2dest);
2769 /* Replace the dest in I2 with our dest and make the resulting
2770 insn the new pattern for I3. Then skip to where we validate
2771 the pattern. Everything was set up above. */
2772 SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2773 newpat = p2;
2774 i3_subst_into_i2 = 1;
2775 goto validate_replacement;
2779 /* If I2 is setting a pseudo to a constant and I3 is setting some
2780 sub-part of it to another constant, merge them by making a new
2781 constant. */
2782 if (i1 == 0
2783 && (temp_expr = single_set (i2)) != 0
2784 && is_a <scalar_int_mode> (GET_MODE (SET_DEST (temp_expr)), &temp_mode)
2785 && CONST_SCALAR_INT_P (SET_SRC (temp_expr))
2786 && GET_CODE (PATTERN (i3)) == SET
2787 && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3)))
2788 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp_expr)))
2790 rtx dest = SET_DEST (PATTERN (i3));
2791 rtx temp_dest = SET_DEST (temp_expr);
2792 int offset = -1;
2793 int width = 0;
2795 if (GET_CODE (dest) == ZERO_EXTRACT)
2797 if (CONST_INT_P (XEXP (dest, 1))
2798 && CONST_INT_P (XEXP (dest, 2))
2799 && is_a <scalar_int_mode> (GET_MODE (XEXP (dest, 0)),
2800 &dest_mode))
2802 width = INTVAL (XEXP (dest, 1));
2803 offset = INTVAL (XEXP (dest, 2));
2804 dest = XEXP (dest, 0);
2805 if (BITS_BIG_ENDIAN)
2806 offset = GET_MODE_PRECISION (dest_mode) - width - offset;
2809 else
2811 if (GET_CODE (dest) == STRICT_LOW_PART)
2812 dest = XEXP (dest, 0);
2813 if (is_a <scalar_int_mode> (GET_MODE (dest), &dest_mode))
2815 width = GET_MODE_PRECISION (dest_mode);
2816 offset = 0;
2820 if (offset >= 0)
2822 /* If this is the low part, we're done. */
2823 if (subreg_lowpart_p (dest))
2825 /* Handle the case where inner is twice the size of outer. */
2826 else if (GET_MODE_PRECISION (temp_mode)
2827 == 2 * GET_MODE_PRECISION (dest_mode))
2828 offset += GET_MODE_PRECISION (dest_mode);
2829 /* Otherwise give up for now. */
2830 else
2831 offset = -1;
2834 if (offset >= 0)
2836 rtx inner = SET_SRC (PATTERN (i3));
2837 rtx outer = SET_SRC (temp_expr);
2839 wide_int o = wi::insert (rtx_mode_t (outer, temp_mode),
2840 rtx_mode_t (inner, dest_mode),
2841 offset, width);
2843 combine_merges++;
2844 subst_insn = i3;
2845 subst_low_luid = DF_INSN_LUID (i2);
2846 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2847 i2dest = temp_dest;
2848 i2dest_killed = dead_or_set_p (i2, i2dest);
2850 /* Replace the source in I2 with the new constant and make the
2851 resulting insn the new pattern for I3. Then skip to where we
2852 validate the pattern. Everything was set up above. */
2853 SUBST (SET_SRC (temp_expr),
2854 immed_wide_int_const (o, temp_mode));
2856 newpat = PATTERN (i2);
2858 /* The dest of I3 has been replaced with the dest of I2. */
2859 changed_i3_dest = 1;
2860 goto validate_replacement;
2864 /* If we have no I1 and I2 looks like:
2865 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2866 (set Y OP)])
2867 make up a dummy I1 that is
2868 (set Y OP)
2869 and change I2 to be
2870 (set (reg:CC X) (compare:CC Y (const_int 0)))
2872 (We can ignore any trailing CLOBBERs.)
2874 This undoes a previous combination and allows us to match a branch-and-
2875 decrement insn. */
2877 if (i1 == 0
2878 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2879 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2880 == MODE_CC)
2881 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2882 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2883 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2884 SET_SRC (XVECEXP (PATTERN (i2), 0, 1)))
2885 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2886 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
2888 /* We make I1 with the same INSN_UID as I2. This gives it
2889 the same DF_INSN_LUID for value tracking. Our fake I1 will
2890 never appear in the insn stream so giving it the same INSN_UID
2891 as I2 will not cause a problem. */
2893 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
2894 XVECEXP (PATTERN (i2), 0, 1), INSN_LOCATION (i2),
2895 -1, NULL_RTX);
2896 INSN_UID (i1) = INSN_UID (i2);
2898 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2899 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2900 SET_DEST (PATTERN (i1)));
2901 unsigned int regno = REGNO (SET_DEST (PATTERN (i1)));
2902 SUBST_LINK (LOG_LINKS (i2),
2903 alloc_insn_link (i1, regno, LOG_LINKS (i2)));
2906 /* If I2 is a PARALLEL of two SETs of REGs (and perhaps some CLOBBERs),
2907 make those two SETs separate I1 and I2 insns, and make an I0 that is
2908 the original I1. */
2909 if (i0 == 0
2910 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2911 && can_split_parallel_of_n_reg_sets (i2, 2)
2912 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2913 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3)
2914 && !reg_set_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2915 && !reg_set_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
2917 /* If there is no I1, there is no I0 either. */
2918 i0 = i1;
2920 /* We make I1 with the same INSN_UID as I2. This gives it
2921 the same DF_INSN_LUID for value tracking. Our fake I1 will
2922 never appear in the insn stream so giving it the same INSN_UID
2923 as I2 will not cause a problem. */
2925 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
2926 XVECEXP (PATTERN (i2), 0, 0), INSN_LOCATION (i2),
2927 -1, NULL_RTX);
2928 INSN_UID (i1) = INSN_UID (i2);
2930 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 1));
2933 /* Verify that I2 and maybe I1 and I0 can be combined into I3. */
2934 if (!can_combine_p (i2, i3, i0, i1, NULL, NULL, &i2dest, &i2src))
2936 if (dump_file && (dump_flags & TDF_DETAILS))
2937 fprintf (dump_file, "Can't combine i2 into i3\n");
2938 undo_all ();
2939 return 0;
2941 if (i1 && !can_combine_p (i1, i3, i0, NULL, i2, NULL, &i1dest, &i1src))
2943 if (dump_file && (dump_flags & TDF_DETAILS))
2944 fprintf (dump_file, "Can't combine i1 into i3\n");
2945 undo_all ();
2946 return 0;
2948 if (i0 && !can_combine_p (i0, i3, NULL, NULL, i1, i2, &i0dest, &i0src))
2950 if (dump_file && (dump_flags & TDF_DETAILS))
2951 fprintf (dump_file, "Can't combine i0 into i3\n");
2952 undo_all ();
2953 return 0;
2956 /* With non-call exceptions we can end up trying to combine multiple
2957 insns with possible EH side effects. Make sure we can combine
2958 that to a single insn which means there must be at most one insn
2959 in the combination with an EH side effect. */
2960 if (cfun->can_throw_non_call_exceptions)
2962 if (find_reg_note (i3, REG_EH_REGION, NULL_RTX)
2963 || find_reg_note (i2, REG_EH_REGION, NULL_RTX)
2964 || (i1 && find_reg_note (i1, REG_EH_REGION, NULL_RTX))
2965 || (i0 && find_reg_note (i0, REG_EH_REGION, NULL_RTX)))
2967 has_non_call_exception = true;
2968 if (insn_could_throw_p (i3)
2969 + insn_could_throw_p (i2)
2970 + (i1 ? insn_could_throw_p (i1) : 0)
2971 + (i0 ? insn_could_throw_p (i0) : 0) > 1)
2973 if (dump_file && (dump_flags & TDF_DETAILS))
2974 fprintf (dump_file, "Can't combine multiple insns with EH "
2975 "side-effects\n");
2976 undo_all ();
2977 return 0;
2982 /* Record whether i2 and i3 are trivial moves. */
2983 i2_was_move = is_just_move (i2);
2984 i3_was_move = is_just_move (i3);
2986 /* Record whether I2DEST is used in I2SRC and similarly for the other
2987 cases. Knowing this will help in register status updating below. */
2988 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2989 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
2990 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
2991 i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
2992 i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
2993 i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
2994 i2dest_killed = dead_or_set_p (i2, i2dest);
2995 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
2996 i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
2998 /* For the earlier insns, determine which of the subsequent ones they
2999 feed. */
3000 i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
3001 i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
3002 i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
3003 : (!reg_overlap_mentioned_p (i1dest, i0dest)
3004 && reg_overlap_mentioned_p (i0dest, i2src))));
3006 /* Ensure that I3's pattern can be the destination of combines. */
3007 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
3008 i1 && i2dest_in_i1src && !i1_feeds_i2_n,
3009 i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
3010 || (i1dest_in_i0src && !i0_feeds_i1_n)),
3011 &i3dest_killed))
3013 undo_all ();
3014 return 0;
3017 /* See if any of the insns is a MULT operation. Unless one is, we will
3018 reject a combination that is, since it must be slower. Be conservative
3019 here. */
3020 if (GET_CODE (i2src) == MULT
3021 || (i1 != 0 && GET_CODE (i1src) == MULT)
3022 || (i0 != 0 && GET_CODE (i0src) == MULT)
3023 || (GET_CODE (PATTERN (i3)) == SET
3024 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
3025 have_mult = 1;
3027 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
3028 We used to do this EXCEPT in one case: I3 has a post-inc in an
3029 output operand. However, that exception can give rise to insns like
3030 mov r3,(r3)+
3031 which is a famous insn on the PDP-11 where the value of r3 used as the
3032 source was model-dependent. Avoid this sort of thing. */
3034 #if 0
3035 if (!(GET_CODE (PATTERN (i3)) == SET
3036 && REG_P (SET_SRC (PATTERN (i3)))
3037 && MEM_P (SET_DEST (PATTERN (i3)))
3038 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
3039 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
3040 /* It's not the exception. */
3041 #endif
3042 if (AUTO_INC_DEC)
3044 rtx link;
3045 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
3046 if (REG_NOTE_KIND (link) == REG_INC
3047 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
3048 || (i1 != 0
3049 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
3051 undo_all ();
3052 return 0;
3056 /* See if the SETs in I1 or I2 need to be kept around in the merged
3057 instruction: whenever the value set there is still needed past I3.
3058 For the SET in I2, this is easy: we see if I2DEST dies or is set in I3.
3060 For the SET in I1, we have two cases: if I1 and I2 independently feed
3061 into I3, the set in I1 needs to be kept around unless I1DEST dies
3062 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
3063 in I1 needs to be kept around unless I1DEST dies or is set in either
3064 I2 or I3. The same considerations apply to I0. */
3066 added_sets_2 = !dead_or_set_p (i3, i2dest);
3068 if (i1)
3069 added_sets_1 = !(dead_or_set_p (i3, i1dest)
3070 || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
3071 else
3072 added_sets_1 = 0;
3074 if (i0)
3075 added_sets_0 = !(dead_or_set_p (i3, i0dest)
3076 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest))
3077 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3078 && dead_or_set_p (i2, i0dest)));
3079 else
3080 added_sets_0 = 0;
3082 /* We are about to copy insns for the case where they need to be kept
3083 around. Check that they can be copied in the merged instruction. */
3085 if (targetm.cannot_copy_insn_p
3086 && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
3087 || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
3088 || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
3090 undo_all ();
3091 return 0;
3094 /* We cannot safely duplicate volatile references in any case. */
3096 if ((added_sets_2 && volatile_refs_p (PATTERN (i2)))
3097 || (added_sets_1 && volatile_refs_p (PATTERN (i1)))
3098 || (added_sets_0 && volatile_refs_p (PATTERN (i0))))
3100 undo_all ();
3101 return 0;
3104 /* Count how many auto_inc expressions there were in the original insns;
3105 we need to have the same number in the resulting patterns. */
3107 if (i0)
3108 for_each_inc_dec (PATTERN (i0), count_auto_inc, &n_auto_inc);
3109 if (i1)
3110 for_each_inc_dec (PATTERN (i1), count_auto_inc, &n_auto_inc);
3111 for_each_inc_dec (PATTERN (i2), count_auto_inc, &n_auto_inc);
3112 for_each_inc_dec (PATTERN (i3), count_auto_inc, &n_auto_inc);
3114 /* If the set in I2 needs to be kept around, we must make a copy of
3115 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
3116 PATTERN (I2), we are only substituting for the original I1DEST, not into
3117 an already-substituted copy. This also prevents making self-referential
3118 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
3119 I2DEST. */
3121 if (added_sets_2)
3123 if (GET_CODE (PATTERN (i2)) == PARALLEL)
3124 i2pat = gen_rtx_SET (i2dest, copy_rtx (i2src));
3125 else
3126 i2pat = copy_rtx (PATTERN (i2));
3129 if (added_sets_1)
3131 if (GET_CODE (PATTERN (i1)) == PARALLEL)
3132 i1pat = gen_rtx_SET (i1dest, copy_rtx (i1src));
3133 else
3134 i1pat = copy_rtx (PATTERN (i1));
3137 if (added_sets_0)
3139 if (GET_CODE (PATTERN (i0)) == PARALLEL)
3140 i0pat = gen_rtx_SET (i0dest, copy_rtx (i0src));
3141 else
3142 i0pat = copy_rtx (PATTERN (i0));
3145 combine_merges++;
3147 /* Substitute in the latest insn for the regs set by the earlier ones. */
3149 maxreg = max_reg_num ();
3151 subst_insn = i3;
3153 /* Many machines have insns that can both perform an
3154 arithmetic operation and set the condition code. These operations will
3155 be represented as a PARALLEL with the first element of the vector
3156 being a COMPARE of an arithmetic operation with the constant zero.
3157 The second element of the vector will set some pseudo to the result
3158 of the same arithmetic operation. If we simplify the COMPARE, we won't
3159 match such a pattern and so will generate an extra insn. Here we test
3160 for this case, where both the comparison and the operation result are
3161 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3162 I2SRC. Later we will make the PARALLEL that contains I2. */
3164 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
3165 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
3166 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1))
3167 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
3169 rtx newpat_dest;
3170 rtx *cc_use_loc = NULL;
3171 rtx_insn *cc_use_insn = NULL;
3172 rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1);
3173 machine_mode compare_mode, orig_compare_mode;
3174 enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN;
3175 scalar_int_mode mode;
3177 newpat = PATTERN (i3);
3178 newpat_dest = SET_DEST (newpat);
3179 compare_mode = orig_compare_mode = GET_MODE (newpat_dest);
3181 if (undobuf.other_insn == 0
3182 && (cc_use_loc = find_single_use (SET_DEST (newpat), i3,
3183 &cc_use_insn)))
3185 compare_code = orig_compare_code = GET_CODE (*cc_use_loc);
3186 if (is_a <scalar_int_mode> (GET_MODE (i2dest), &mode))
3187 compare_code = simplify_compare_const (compare_code, mode,
3188 op0, &op1);
3189 target_canonicalize_comparison (&compare_code, &op0, &op1, 1);
3192 /* Do the rest only if op1 is const0_rtx, which may be the
3193 result of simplification. */
3194 if (op1 == const0_rtx)
3196 /* If a single use of the CC is found, prepare to modify it
3197 when SELECT_CC_MODE returns a new CC-class mode, or when
3198 the above simplify_compare_const() returned a new comparison
3199 operator. undobuf.other_insn is assigned the CC use insn
3200 when modifying it. */
3201 if (cc_use_loc)
3203 #ifdef SELECT_CC_MODE
3204 machine_mode new_mode
3205 = SELECT_CC_MODE (compare_code, op0, op1);
3206 if (new_mode != orig_compare_mode
3207 && can_change_dest_mode (SET_DEST (newpat),
3208 added_sets_2, new_mode))
3210 unsigned int regno = REGNO (newpat_dest);
3211 compare_mode = new_mode;
3212 if (regno < FIRST_PSEUDO_REGISTER)
3213 newpat_dest = gen_rtx_REG (compare_mode, regno);
3214 else
3216 subst_mode (regno, compare_mode);
3217 newpat_dest = regno_reg_rtx[regno];
3220 #endif
3221 /* Cases for modifying the CC-using comparison. */
3222 if (compare_code != orig_compare_code
3223 /* ??? Do we need to verify the zero rtx? */
3224 && XEXP (*cc_use_loc, 1) == const0_rtx)
3226 /* Replace cc_use_loc with entire new RTX. */
3227 SUBST (*cc_use_loc,
3228 gen_rtx_fmt_ee (compare_code, GET_MODE (*cc_use_loc),
3229 newpat_dest, const0_rtx));
3230 undobuf.other_insn = cc_use_insn;
3232 else if (compare_mode != orig_compare_mode)
3234 /* Just replace the CC reg with a new mode. */
3235 SUBST (XEXP (*cc_use_loc, 0), newpat_dest);
3236 undobuf.other_insn = cc_use_insn;
3240 /* Now we modify the current newpat:
3241 First, SET_DEST(newpat) is updated if the CC mode has been
3242 altered. For targets without SELECT_CC_MODE, this should be
3243 optimized away. */
3244 if (compare_mode != orig_compare_mode)
3245 SUBST (SET_DEST (newpat), newpat_dest);
3246 /* This is always done to propagate i2src into newpat. */
3247 SUBST (SET_SRC (newpat),
3248 gen_rtx_COMPARE (compare_mode, op0, op1));
3249 /* Create new version of i2pat if needed; the below PARALLEL
3250 creation needs this to work correctly. */
3251 if (! rtx_equal_p (i2src, op0))
3252 i2pat = gen_rtx_SET (i2dest, op0);
3253 i2_is_used = 1;
3257 if (i2_is_used == 0)
3259 /* It is possible that the source of I2 or I1 may be performing
3260 an unneeded operation, such as a ZERO_EXTEND of something
3261 that is known to have the high part zero. Handle that case
3262 by letting subst look at the inner insns.
3264 Another way to do this would be to have a function that tries
3265 to simplify a single insn instead of merging two or more
3266 insns. We don't do this because of the potential of infinite
3267 loops and because of the potential extra memory required.
3268 However, doing it the way we are is a bit of a kludge and
3269 doesn't catch all cases.
3271 But only do this if -fexpensive-optimizations since it slows
3272 things down and doesn't usually win.
3274 This is not done in the COMPARE case above because the
3275 unmodified I2PAT is used in the PARALLEL and so a pattern
3276 with a modified I2SRC would not match. */
3278 if (flag_expensive_optimizations)
3280 /* Pass pc_rtx so no substitutions are done, just
3281 simplifications. */
3282 if (i1)
3284 subst_low_luid = DF_INSN_LUID (i1);
3285 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0, 0);
3288 subst_low_luid = DF_INSN_LUID (i2);
3289 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0, 0);
3292 n_occurrences = 0; /* `subst' counts here */
3293 subst_low_luid = DF_INSN_LUID (i2);
3295 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3296 copy of I2SRC each time we substitute it, in order to avoid creating
3297 self-referential RTL when we will be substituting I1SRC for I1DEST
3298 later. Likewise if I0 feeds into I2, either directly or indirectly
3299 through I1, and I0DEST is in I0SRC. */
3300 newpat = subst (PATTERN (i3), i2dest, i2src, 0, 0,
3301 (i1_feeds_i2_n && i1dest_in_i1src)
3302 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3303 && i0dest_in_i0src));
3304 substed_i2 = 1;
3306 /* Record whether I2's body now appears within I3's body. */
3307 i2_is_used = n_occurrences;
3310 /* If we already got a failure, don't try to do more. Otherwise, try to
3311 substitute I1 if we have it. */
3313 if (i1 && GET_CODE (newpat) != CLOBBER)
3315 /* Before we can do this substitution, we must redo the test done
3316 above (see detailed comments there) that ensures I1DEST isn't
3317 mentioned in any SETs in NEWPAT that are field assignments. */
3318 if (!combinable_i3pat (NULL, &newpat, i1dest, NULL_RTX, NULL_RTX,
3319 0, 0, 0))
3321 undo_all ();
3322 return 0;
3325 n_occurrences = 0;
3326 subst_low_luid = DF_INSN_LUID (i1);
3328 /* If the following substitution will modify I1SRC, make a copy of it
3329 for the case where it is substituted for I1DEST in I2PAT later. */
3330 if (added_sets_2 && i1_feeds_i2_n)
3331 i1src_copy = copy_rtx (i1src);
3333 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3334 copy of I1SRC each time we substitute it, in order to avoid creating
3335 self-referential RTL when we will be substituting I0SRC for I0DEST
3336 later. */
3337 newpat = subst (newpat, i1dest, i1src, 0, 0,
3338 i0_feeds_i1_n && i0dest_in_i0src);
3339 substed_i1 = 1;
3341 /* Record whether I1's body now appears within I3's body. */
3342 i1_is_used = n_occurrences;
3345 /* Likewise for I0 if we have it. */
3347 if (i0 && GET_CODE (newpat) != CLOBBER)
3349 if (!combinable_i3pat (NULL, &newpat, i0dest, NULL_RTX, NULL_RTX,
3350 0, 0, 0))
3352 undo_all ();
3353 return 0;
3356 /* If the following substitution will modify I0SRC, make a copy of it
3357 for the case where it is substituted for I0DEST in I1PAT later. */
3358 if (added_sets_1 && i0_feeds_i1_n)
3359 i0src_copy = copy_rtx (i0src);
3360 /* And a copy for I0DEST in I2PAT substitution. */
3361 if (added_sets_2 && ((i0_feeds_i1_n && i1_feeds_i2_n)
3362 || (i0_feeds_i2_n)))
3363 i0src_copy2 = copy_rtx (i0src);
3365 n_occurrences = 0;
3366 subst_low_luid = DF_INSN_LUID (i0);
3367 newpat = subst (newpat, i0dest, i0src, 0, 0, 0);
3368 substed_i0 = 1;
3371 if (n_auto_inc)
3373 int new_n_auto_inc = 0;
3374 for_each_inc_dec (newpat, count_auto_inc, &new_n_auto_inc);
3376 if (n_auto_inc != new_n_auto_inc)
3378 if (dump_file && (dump_flags & TDF_DETAILS))
3379 fprintf (dump_file, "Number of auto_inc expressions changed\n");
3380 undo_all ();
3381 return 0;
3385 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3386 to count all the ways that I2SRC and I1SRC can be used. */
3387 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3388 && i2_is_used + added_sets_2 > 1)
3389 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3390 && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3391 > 1))
3392 || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3393 && (n_occurrences + added_sets_0
3394 + (added_sets_1 && i0_feeds_i1_n)
3395 + (added_sets_2 && i0_feeds_i2_n)
3396 > 1))
3397 /* Fail if we tried to make a new register. */
3398 || max_reg_num () != maxreg
3399 /* Fail if we couldn't do something and have a CLOBBER. */
3400 || GET_CODE (newpat) == CLOBBER
3401 /* Fail if this new pattern is a MULT and we didn't have one before
3402 at the outer level. */
3403 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3404 && ! have_mult))
3406 undo_all ();
3407 return 0;
3410 /* If the actions of the earlier insns must be kept
3411 in addition to substituting them into the latest one,
3412 we must make a new PARALLEL for the latest insn
3413 to hold additional the SETs. */
3415 if (added_sets_0 || added_sets_1 || added_sets_2)
3417 int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3418 combine_extras++;
3420 if (GET_CODE (newpat) == PARALLEL)
3422 rtvec old = XVEC (newpat, 0);
3423 total_sets = XVECLEN (newpat, 0) + extra_sets;
3424 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3425 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3426 sizeof (old->elem[0]) * old->num_elem);
3428 else
3430 rtx old = newpat;
3431 total_sets = 1 + extra_sets;
3432 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3433 XVECEXP (newpat, 0, 0) = old;
3436 if (added_sets_0)
3437 XVECEXP (newpat, 0, --total_sets) = i0pat;
3439 if (added_sets_1)
3441 rtx t = i1pat;
3442 if (i0_feeds_i1_n)
3443 t = subst (t, i0dest, i0src_copy ? i0src_copy : i0src, 0, 0, 0);
3445 XVECEXP (newpat, 0, --total_sets) = t;
3447 if (added_sets_2)
3449 rtx t = i2pat;
3450 if (i1_feeds_i2_n)
3451 t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0, 0,
3452 i0_feeds_i1_n && i0dest_in_i0src);
3453 if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3454 t = subst (t, i0dest, i0src_copy2 ? i0src_copy2 : i0src, 0, 0, 0);
3456 XVECEXP (newpat, 0, --total_sets) = t;
3460 validate_replacement:
3462 /* Note which hard regs this insn has as inputs. */
3463 mark_used_regs_combine (newpat);
3465 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3466 consider splitting this pattern, we might need these clobbers. */
3467 if (i1 && GET_CODE (newpat) == PARALLEL
3468 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3470 int len = XVECLEN (newpat, 0);
3472 newpat_vec_with_clobbers = rtvec_alloc (len);
3473 for (i = 0; i < len; i++)
3474 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3477 /* We have recognized nothing yet. */
3478 insn_code_number = -1;
3480 /* See if this is a PARALLEL of two SETs where one SET's destination is
3481 a register that is unused and this isn't marked as an instruction that
3482 might trap in an EH region. In that case, we just need the other SET.
3483 We prefer this over the PARALLEL.
3485 This can occur when simplifying a divmod insn. We *must* test for this
3486 case here because the code below that splits two independent SETs doesn't
3487 handle this case correctly when it updates the register status.
3489 It's pointless doing this if we originally had two sets, one from
3490 i3, and one from i2. Combining then splitting the parallel results
3491 in the original i2 again plus an invalid insn (which we delete).
3492 The net effect is only to move instructions around, which makes
3493 debug info less accurate.
3495 If the remaining SET came from I2 its destination should not be used
3496 between I2 and I3. See PR82024. */
3498 if (!(added_sets_2 && i1 == 0)
3499 && is_parallel_of_n_reg_sets (newpat, 2)
3500 && asm_noperands (newpat) < 0)
3502 rtx set0 = XVECEXP (newpat, 0, 0);
3503 rtx set1 = XVECEXP (newpat, 0, 1);
3504 rtx oldpat = newpat;
3506 if (((REG_P (SET_DEST (set1))
3507 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3508 || (GET_CODE (SET_DEST (set1)) == SUBREG
3509 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3510 && insn_nothrow_p (i3)
3511 && !side_effects_p (SET_SRC (set1)))
3513 newpat = set0;
3514 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3517 else if (((REG_P (SET_DEST (set0))
3518 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3519 || (GET_CODE (SET_DEST (set0)) == SUBREG
3520 && find_reg_note (i3, REG_UNUSED,
3521 SUBREG_REG (SET_DEST (set0)))))
3522 && insn_nothrow_p (i3)
3523 && !side_effects_p (SET_SRC (set0)))
3525 rtx dest = SET_DEST (set1);
3526 if (GET_CODE (dest) == SUBREG)
3527 dest = SUBREG_REG (dest);
3528 if (!reg_used_between_p (dest, i2, i3))
3530 newpat = set1;
3531 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3533 if (insn_code_number >= 0)
3534 changed_i3_dest = 1;
3538 if (insn_code_number < 0)
3539 newpat = oldpat;
3542 /* Is the result of combination a valid instruction? */
3543 if (insn_code_number < 0)
3544 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3546 /* If we were combining three insns and the result is a simple SET
3547 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3548 insns. There are two ways to do this. It can be split using a
3549 machine-specific method (like when you have an addition of a large
3550 constant) or by combine in the function find_split_point. */
3552 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3553 && asm_noperands (newpat) < 0)
3555 rtx parallel, *split;
3556 rtx_insn *m_split_insn;
3558 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3559 use I2DEST as a scratch register will help. In the latter case,
3560 convert I2DEST to the mode of the source of NEWPAT if we can. */
3562 m_split_insn = combine_split_insns (newpat, i3);
3564 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3565 inputs of NEWPAT. */
3567 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3568 possible to try that as a scratch reg. This would require adding
3569 more code to make it work though. */
3571 if (m_split_insn == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3573 machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3575 /* ??? Reusing i2dest without resetting the reg_stat entry for it
3576 (temporarily, until we are committed to this instruction
3577 combination) does not work: for example, any call to nonzero_bits
3578 on the register (from a splitter in the MD file, for example)
3579 will get the old information, which is invalid.
3581 Since nowadays we can create registers during combine just fine,
3582 we should just create a new one here, not reuse i2dest. */
3584 /* First try to split using the original register as a
3585 scratch register. */
3586 parallel = gen_rtx_PARALLEL (VOIDmode,
3587 gen_rtvec (2, newpat,
3588 gen_rtx_CLOBBER (VOIDmode,
3589 i2dest)));
3590 m_split_insn = combine_split_insns (parallel, i3);
3592 /* If that didn't work, try changing the mode of I2DEST if
3593 we can. */
3594 if (m_split_insn == 0
3595 && new_mode != GET_MODE (i2dest)
3596 && new_mode != VOIDmode
3597 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3599 machine_mode old_mode = GET_MODE (i2dest);
3600 rtx ni2dest;
3602 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3603 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3604 else
3606 subst_mode (REGNO (i2dest), new_mode);
3607 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3610 parallel = (gen_rtx_PARALLEL
3611 (VOIDmode,
3612 gen_rtvec (2, newpat,
3613 gen_rtx_CLOBBER (VOIDmode,
3614 ni2dest))));
3615 m_split_insn = combine_split_insns (parallel, i3);
3617 if (m_split_insn == 0
3618 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3620 struct undo *buf;
3622 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3623 buf = undobuf.undos;
3624 undobuf.undos = buf->next;
3625 buf->next = undobuf.frees;
3626 undobuf.frees = buf;
3630 i2scratch = m_split_insn != 0;
3633 /* If recog_for_combine has discarded clobbers, try to use them
3634 again for the split. */
3635 if (m_split_insn == 0 && newpat_vec_with_clobbers)
3637 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3638 m_split_insn = combine_split_insns (parallel, i3);
3641 if (m_split_insn && NEXT_INSN (m_split_insn) == NULL_RTX)
3643 rtx m_split_pat = PATTERN (m_split_insn);
3644 insn_code_number = recog_for_combine (&m_split_pat, i3, &new_i3_notes);
3645 if (insn_code_number >= 0)
3646 newpat = m_split_pat;
3648 else if (m_split_insn && NEXT_INSN (NEXT_INSN (m_split_insn)) == NULL_RTX
3649 && (next_nonnote_nondebug_insn (i2) == i3
3650 || !modified_between_p (PATTERN (m_split_insn), i2, i3)))
3652 rtx i2set, i3set;
3653 rtx newi3pat = PATTERN (NEXT_INSN (m_split_insn));
3654 newi2pat = PATTERN (m_split_insn);
3656 i3set = single_set (NEXT_INSN (m_split_insn));
3657 i2set = single_set (m_split_insn);
3659 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3661 /* If I2 or I3 has multiple SETs, we won't know how to track
3662 register status, so don't use these insns. If I2's destination
3663 is used between I2 and I3, we also can't use these insns. */
3665 if (i2_code_number >= 0 && i2set && i3set
3666 && (next_nonnote_nondebug_insn (i2) == i3
3667 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3668 insn_code_number = recog_for_combine (&newi3pat, i3,
3669 &new_i3_notes);
3670 if (insn_code_number >= 0)
3671 newpat = newi3pat;
3673 /* It is possible that both insns now set the destination of I3.
3674 If so, we must show an extra use of it. */
3676 if (insn_code_number >= 0)
3678 rtx new_i3_dest = SET_DEST (i3set);
3679 rtx new_i2_dest = SET_DEST (i2set);
3681 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3682 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3683 || GET_CODE (new_i3_dest) == SUBREG)
3684 new_i3_dest = XEXP (new_i3_dest, 0);
3686 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3687 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3688 || GET_CODE (new_i2_dest) == SUBREG)
3689 new_i2_dest = XEXP (new_i2_dest, 0);
3691 if (REG_P (new_i3_dest)
3692 && REG_P (new_i2_dest)
3693 && REGNO (new_i3_dest) == REGNO (new_i2_dest)
3694 && REGNO (new_i2_dest) < reg_n_sets_max)
3695 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3699 /* If we can split it and use I2DEST, go ahead and see if that
3700 helps things be recognized. Verify that none of the registers
3701 are set between I2 and I3. */
3702 if (insn_code_number < 0
3703 && (split = find_split_point (&newpat, i3, false)) != 0
3704 /* We need I2DEST in the proper mode. If it is a hard register
3705 or the only use of a pseudo, we can change its mode.
3706 Make sure we don't change a hard register to have a mode that
3707 isn't valid for it, or change the number of registers. */
3708 && (GET_MODE (*split) == GET_MODE (i2dest)
3709 || GET_MODE (*split) == VOIDmode
3710 || can_change_dest_mode (i2dest, added_sets_2,
3711 GET_MODE (*split)))
3712 && (next_nonnote_nondebug_insn (i2) == i3
3713 || !modified_between_p (*split, i2, i3))
3714 /* We can't overwrite I2DEST if its value is still used by
3715 NEWPAT. */
3716 && ! reg_referenced_p (i2dest, newpat)
3717 /* We should not split a possibly trapping part when we
3718 care about non-call EH and have REG_EH_REGION notes
3719 to distribute. */
3720 && ! (cfun->can_throw_non_call_exceptions
3721 && has_non_call_exception
3722 && may_trap_p (*split)))
3724 rtx newdest = i2dest;
3725 enum rtx_code split_code = GET_CODE (*split);
3726 machine_mode split_mode = GET_MODE (*split);
3727 bool subst_done = false;
3728 newi2pat = NULL_RTX;
3730 i2scratch = true;
3732 /* *SPLIT may be part of I2SRC, so make sure we have the
3733 original expression around for later debug processing.
3734 We should not need I2SRC any more in other cases. */
3735 if (MAY_HAVE_DEBUG_BIND_INSNS)
3736 i2src = copy_rtx (i2src);
3737 else
3738 i2src = NULL;
3740 /* Get NEWDEST as a register in the proper mode. We have already
3741 validated that we can do this. */
3742 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3744 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3745 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3746 else
3748 subst_mode (REGNO (i2dest), split_mode);
3749 newdest = regno_reg_rtx[REGNO (i2dest)];
3753 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3754 an ASHIFT. This can occur if it was inside a PLUS and hence
3755 appeared to be a memory address. This is a kludge. */
3756 if (split_code == MULT
3757 && CONST_INT_P (XEXP (*split, 1))
3758 && INTVAL (XEXP (*split, 1)) > 0
3759 && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3761 rtx i_rtx = gen_int_shift_amount (split_mode, i);
3762 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3763 XEXP (*split, 0), i_rtx));
3764 /* Update split_code because we may not have a multiply
3765 anymore. */
3766 split_code = GET_CODE (*split);
3769 /* Similarly for (plus (mult FOO (const_int pow2))). */
3770 if (split_code == PLUS
3771 && GET_CODE (XEXP (*split, 0)) == MULT
3772 && CONST_INT_P (XEXP (XEXP (*split, 0), 1))
3773 && INTVAL (XEXP (XEXP (*split, 0), 1)) > 0
3774 && (i = exact_log2 (UINTVAL (XEXP (XEXP (*split, 0), 1)))) >= 0)
3776 rtx nsplit = XEXP (*split, 0);
3777 rtx i_rtx = gen_int_shift_amount (GET_MODE (nsplit), i);
3778 SUBST (XEXP (*split, 0), gen_rtx_ASHIFT (GET_MODE (nsplit),
3779 XEXP (nsplit, 0),
3780 i_rtx));
3781 /* Update split_code because we may not have a multiply
3782 anymore. */
3783 split_code = GET_CODE (*split);
3786 #ifdef INSN_SCHEDULING
3787 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3788 be written as a ZERO_EXTEND. */
3789 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3791 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3792 what it really is. */
3793 if (load_extend_op (GET_MODE (SUBREG_REG (*split)))
3794 == SIGN_EXTEND)
3795 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3796 SUBREG_REG (*split)));
3797 else
3798 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3799 SUBREG_REG (*split)));
3801 #endif
3803 /* Attempt to split binary operators using arithmetic identities. */
3804 if (BINARY_P (SET_SRC (newpat))
3805 && split_mode == GET_MODE (SET_SRC (newpat))
3806 && ! side_effects_p (SET_SRC (newpat)))
3808 rtx setsrc = SET_SRC (newpat);
3809 machine_mode mode = GET_MODE (setsrc);
3810 enum rtx_code code = GET_CODE (setsrc);
3811 rtx src_op0 = XEXP (setsrc, 0);
3812 rtx src_op1 = XEXP (setsrc, 1);
3814 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3815 if (rtx_equal_p (src_op0, src_op1))
3817 newi2pat = gen_rtx_SET (newdest, src_op0);
3818 SUBST (XEXP (setsrc, 0), newdest);
3819 SUBST (XEXP (setsrc, 1), newdest);
3820 subst_done = true;
3822 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3823 else if ((code == PLUS || code == MULT)
3824 && GET_CODE (src_op0) == code
3825 && GET_CODE (XEXP (src_op0, 0)) == code
3826 && (INTEGRAL_MODE_P (mode)
3827 || (FLOAT_MODE_P (mode)
3828 && flag_unsafe_math_optimizations)))
3830 rtx p = XEXP (XEXP (src_op0, 0), 0);
3831 rtx q = XEXP (XEXP (src_op0, 0), 1);
3832 rtx r = XEXP (src_op0, 1);
3833 rtx s = src_op1;
3835 /* Split both "((X op Y) op X) op Y" and
3836 "((X op Y) op Y) op X" as "T op T" where T is
3837 "X op Y". */
3838 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3839 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3841 newi2pat = gen_rtx_SET (newdest, XEXP (src_op0, 0));
3842 SUBST (XEXP (setsrc, 0), newdest);
3843 SUBST (XEXP (setsrc, 1), newdest);
3844 subst_done = true;
3846 /* Split "((X op X) op Y) op Y)" as "T op T" where
3847 T is "X op Y". */
3848 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3850 rtx tmp = simplify_gen_binary (code, mode, p, r);
3851 newi2pat = gen_rtx_SET (newdest, tmp);
3852 SUBST (XEXP (setsrc, 0), newdest);
3853 SUBST (XEXP (setsrc, 1), newdest);
3854 subst_done = true;
3859 if (!subst_done)
3861 newi2pat = gen_rtx_SET (newdest, *split);
3862 SUBST (*split, newdest);
3865 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3867 /* recog_for_combine might have added CLOBBERs to newi2pat.
3868 Make sure NEWPAT does not depend on the clobbered regs. */
3869 if (GET_CODE (newi2pat) == PARALLEL)
3870 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3871 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3873 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3874 if (reg_overlap_mentioned_p (reg, newpat))
3876 undo_all ();
3877 return 0;
3881 /* If the split point was a MULT and we didn't have one before,
3882 don't use one now. */
3883 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3884 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3888 /* Check for a case where we loaded from memory in a narrow mode and
3889 then sign extended it, but we need both registers. In that case,
3890 we have a PARALLEL with both loads from the same memory location.
3891 We can split this into a load from memory followed by a register-register
3892 copy. This saves at least one insn, more if register allocation can
3893 eliminate the copy.
3895 We cannot do this if the destination of the first assignment is a
3896 condition code register. We eliminate this case by making sure
3897 the SET_DEST and SET_SRC have the same mode.
3899 We cannot do this if the destination of the second assignment is
3900 a register that we have already assumed is zero-extended. Similarly
3901 for a SUBREG of such a register. */
3903 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3904 && GET_CODE (newpat) == PARALLEL
3905 && XVECLEN (newpat, 0) == 2
3906 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3907 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3908 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3909 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3910 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3911 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3912 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3913 && !modified_between_p (SET_SRC (XVECEXP (newpat, 0, 1)), i2, i3)
3914 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3915 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3916 && ! (temp_expr = SET_DEST (XVECEXP (newpat, 0, 1)),
3917 (REG_P (temp_expr)
3918 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3919 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
3920 BITS_PER_WORD)
3921 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
3922 HOST_BITS_PER_INT)
3923 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3924 != GET_MODE_MASK (word_mode))))
3925 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3926 && (temp_expr = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3927 (REG_P (temp_expr)
3928 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3929 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
3930 BITS_PER_WORD)
3931 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
3932 HOST_BITS_PER_INT)
3933 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3934 != GET_MODE_MASK (word_mode)))))
3935 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3936 SET_SRC (XVECEXP (newpat, 0, 1)))
3937 && ! find_reg_note (i3, REG_UNUSED,
3938 SET_DEST (XVECEXP (newpat, 0, 0))))
3940 rtx ni2dest;
3942 newi2pat = XVECEXP (newpat, 0, 0);
3943 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3944 newpat = XVECEXP (newpat, 0, 1);
3945 SUBST (SET_SRC (newpat),
3946 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3947 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3949 if (i2_code_number >= 0)
3950 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3952 if (insn_code_number >= 0)
3953 swap_i2i3 = 1;
3956 /* Similarly, check for a case where we have a PARALLEL of two independent
3957 SETs but we started with three insns. In this case, we can do the sets
3958 as two separate insns. This case occurs when some SET allows two
3959 other insns to combine, but the destination of that SET is still live.
3961 Also do this if we started with two insns and (at least) one of the
3962 resulting sets is a noop; this noop will be deleted later.
3964 Also do this if we started with two insns neither of which was a simple
3965 move. */
3967 else if (insn_code_number < 0 && asm_noperands (newpat) < 0
3968 && GET_CODE (newpat) == PARALLEL
3969 && XVECLEN (newpat, 0) == 2
3970 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3971 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3972 && (i1
3973 || set_noop_p (XVECEXP (newpat, 0, 0))
3974 || set_noop_p (XVECEXP (newpat, 0, 1))
3975 || (!i2_was_move && !i3_was_move))
3976 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
3977 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
3978 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3979 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3980 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3981 XVECEXP (newpat, 0, 0))
3982 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
3983 XVECEXP (newpat, 0, 1))
3984 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
3985 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
3987 rtx set0 = XVECEXP (newpat, 0, 0);
3988 rtx set1 = XVECEXP (newpat, 0, 1);
3990 /* Normally, it doesn't matter which of the two is done first, but
3991 one which uses any regs/memory set in between i2 and i3 can't
3992 be first. The PARALLEL might also have been pre-existing in i3,
3993 so we need to make sure that we won't wrongly hoist a SET to i2
3994 that would conflict with a death note present in there, or would
3995 have its dest modified between i2 and i3. */
3996 if (!modified_between_p (SET_SRC (set1), i2, i3)
3997 && !(REG_P (SET_DEST (set1))
3998 && find_reg_note (i2, REG_DEAD, SET_DEST (set1)))
3999 && !(GET_CODE (SET_DEST (set1)) == SUBREG
4000 && find_reg_note (i2, REG_DEAD,
4001 SUBREG_REG (SET_DEST (set1))))
4002 && !modified_between_p (SET_DEST (set1), i2, i3)
4003 /* If I3 is a jump, ensure that set0 is a jump so that
4004 we do not create invalid RTL. */
4005 && (!JUMP_P (i3) || SET_DEST (set0) == pc_rtx)
4008 newi2pat = set1;
4009 newpat = set0;
4011 else if (!modified_between_p (SET_SRC (set0), i2, i3)
4012 && !(REG_P (SET_DEST (set0))
4013 && find_reg_note (i2, REG_DEAD, SET_DEST (set0)))
4014 && !(GET_CODE (SET_DEST (set0)) == SUBREG
4015 && find_reg_note (i2, REG_DEAD,
4016 SUBREG_REG (SET_DEST (set0))))
4017 && !modified_between_p (SET_DEST (set0), i2, i3)
4018 /* If I3 is a jump, ensure that set1 is a jump so that
4019 we do not create invalid RTL. */
4020 && (!JUMP_P (i3) || SET_DEST (set1) == pc_rtx)
4023 newi2pat = set0;
4024 newpat = set1;
4026 else
4028 undo_all ();
4029 return 0;
4032 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
4034 if (i2_code_number >= 0)
4036 /* recog_for_combine might have added CLOBBERs to newi2pat.
4037 Make sure NEWPAT does not depend on the clobbered regs. */
4038 if (GET_CODE (newi2pat) == PARALLEL)
4040 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
4041 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
4043 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
4044 if (reg_overlap_mentioned_p (reg, newpat))
4046 undo_all ();
4047 return 0;
4052 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
4054 /* Likewise, recog_for_combine might have added clobbers to NEWPAT.
4055 Checking that the SET0's SET_DEST and SET1's SET_DEST aren't
4056 mentioned/clobbered, ensures NEWI2PAT's SET_DEST is live. */
4057 if (insn_code_number >= 0 && GET_CODE (newpat) == PARALLEL)
4059 for (i = XVECLEN (newpat, 0) - 1; i >= 0; i--)
4060 if (GET_CODE (XVECEXP (newpat, 0, i)) == CLOBBER)
4062 rtx reg = XEXP (XVECEXP (newpat, 0, i), 0);
4063 if (reg_overlap_mentioned_p (reg, SET_DEST (set0))
4064 || reg_overlap_mentioned_p (reg, SET_DEST (set1)))
4066 undo_all ();
4067 return 0;
4072 if (insn_code_number >= 0)
4073 split_i2i3 = 1;
4077 /* If it still isn't recognized, fail and change things back the way they
4078 were. */
4079 if ((insn_code_number < 0
4080 /* Is the result a reasonable ASM_OPERANDS? */
4081 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
4083 undo_all ();
4084 return 0;
4087 /* If we had to change another insn, make sure it is valid also. */
4088 if (undobuf.other_insn)
4090 CLEAR_HARD_REG_SET (newpat_used_regs);
4092 other_pat = PATTERN (undobuf.other_insn);
4093 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
4094 &new_other_notes);
4096 if (other_code_number < 0 && ! check_asm_operands (other_pat))
4098 undo_all ();
4099 return 0;
4103 /* Only allow this combination if insn_cost reports that the
4104 replacement instructions are cheaper than the originals. */
4105 if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
4107 undo_all ();
4108 return 0;
4111 if (MAY_HAVE_DEBUG_BIND_INSNS)
4113 struct undo *undo;
4115 for (undo = undobuf.undos; undo; undo = undo->next)
4116 if (undo->kind == UNDO_MODE)
4118 rtx reg = regno_reg_rtx[undo->where.regno];
4119 machine_mode new_mode = GET_MODE (reg);
4120 machine_mode old_mode = undo->old_contents.m;
4122 /* Temporarily revert mode back. */
4123 adjust_reg_mode (reg, old_mode);
4125 if (reg == i2dest && i2scratch)
4127 /* If we used i2dest as a scratch register with a
4128 different mode, substitute it for the original
4129 i2src while its original mode is temporarily
4130 restored, and then clear i2scratch so that we don't
4131 do it again later. */
4132 propagate_for_debug (i2, last_combined_insn, reg, i2src,
4133 this_basic_block);
4134 i2scratch = false;
4135 /* Put back the new mode. */
4136 adjust_reg_mode (reg, new_mode);
4138 else
4140 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
4141 rtx_insn *first, *last;
4143 if (reg == i2dest)
4145 first = i2;
4146 last = last_combined_insn;
4148 else
4150 first = i3;
4151 last = undobuf.other_insn;
4152 gcc_assert (last);
4153 if (DF_INSN_LUID (last)
4154 < DF_INSN_LUID (last_combined_insn))
4155 last = last_combined_insn;
4158 /* We're dealing with a reg that changed mode but not
4159 meaning, so we want to turn it into a subreg for
4160 the new mode. However, because of REG sharing and
4161 because its mode had already changed, we have to do
4162 it in two steps. First, replace any debug uses of
4163 reg, with its original mode temporarily restored,
4164 with this copy we have created; then, replace the
4165 copy with the SUBREG of the original shared reg,
4166 once again changed to the new mode. */
4167 propagate_for_debug (first, last, reg, tempreg,
4168 this_basic_block);
4169 adjust_reg_mode (reg, new_mode);
4170 propagate_for_debug (first, last, tempreg,
4171 lowpart_subreg (old_mode, reg, new_mode),
4172 this_basic_block);
4177 /* If we will be able to accept this, we have made a
4178 change to the destination of I3. This requires us to
4179 do a few adjustments. */
4181 if (changed_i3_dest)
4183 PATTERN (i3) = newpat;
4184 adjust_for_new_dest (i3);
4187 /* We now know that we can do this combination. Merge the insns and
4188 update the status of registers and LOG_LINKS. */
4190 if (undobuf.other_insn)
4192 rtx note, next;
4194 PATTERN (undobuf.other_insn) = other_pat;
4196 /* If any of the notes in OTHER_INSN were REG_DEAD or REG_UNUSED,
4197 ensure that they are still valid. Then add any non-duplicate
4198 notes added by recog_for_combine. */
4199 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
4201 next = XEXP (note, 1);
4203 if ((REG_NOTE_KIND (note) == REG_DEAD
4204 && !reg_referenced_p (XEXP (note, 0),
4205 PATTERN (undobuf.other_insn)))
4206 ||(REG_NOTE_KIND (note) == REG_UNUSED
4207 && !reg_set_p (XEXP (note, 0),
4208 PATTERN (undobuf.other_insn)))
4209 /* Simply drop equal note since it may be no longer valid
4210 for other_insn. It may be possible to record that CC
4211 register is changed and only discard those notes, but
4212 in practice it's unnecessary complication and doesn't
4213 give any meaningful improvement.
4215 See PR78559. */
4216 || REG_NOTE_KIND (note) == REG_EQUAL
4217 || REG_NOTE_KIND (note) == REG_EQUIV)
4218 remove_note (undobuf.other_insn, note);
4221 distribute_notes (new_other_notes, undobuf.other_insn,
4222 undobuf.other_insn, NULL, NULL_RTX, NULL_RTX,
4223 NULL_RTX);
4226 if (swap_i2i3)
4228 /* I3 now uses what used to be its destination and which is now
4229 I2's destination. This requires us to do a few adjustments. */
4230 PATTERN (i3) = newpat;
4231 adjust_for_new_dest (i3);
4234 if (swap_i2i3 || split_i2i3)
4236 /* We might need a LOG_LINK from I3 to I2. But then we used to
4237 have one, so we still will.
4239 However, some later insn might be using I2's dest and have
4240 a LOG_LINK pointing at I3. We should change it to point at
4241 I2 instead. */
4243 /* newi2pat is usually a SET here; however, recog_for_combine might
4244 have added some clobbers. */
4245 rtx x = newi2pat;
4246 if (GET_CODE (x) == PARALLEL)
4247 x = XVECEXP (newi2pat, 0, 0);
4249 if (REG_P (SET_DEST (x))
4250 || (GET_CODE (SET_DEST (x)) == SUBREG
4251 && REG_P (SUBREG_REG (SET_DEST (x)))))
4253 unsigned int regno = reg_or_subregno (SET_DEST (x));
4255 bool done = false;
4256 for (rtx_insn *insn = NEXT_INSN (i3);
4257 !done
4258 && insn
4259 && INSN_P (insn)
4260 && BLOCK_FOR_INSN (insn) == this_basic_block;
4261 insn = NEXT_INSN (insn))
4263 if (DEBUG_INSN_P (insn))
4264 continue;
4265 struct insn_link *link;
4266 FOR_EACH_LOG_LINK (link, insn)
4267 if (link->insn == i3 && link->regno == regno)
4269 link->insn = i2;
4270 done = true;
4271 break;
4278 rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
4279 struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0;
4280 rtx midnotes = 0;
4281 int from_luid;
4282 /* Compute which registers we expect to eliminate. newi2pat may be setting
4283 either i3dest or i2dest, so we must check it. */
4284 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
4285 || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
4286 || !i2dest_killed
4287 ? 0 : i2dest);
4288 /* For i1, we need to compute both local elimination and global
4289 elimination information with respect to newi2pat because i1dest
4290 may be the same as i3dest, in which case newi2pat may be setting
4291 i1dest. Global information is used when distributing REG_DEAD
4292 note for i2 and i3, in which case it does matter if newi2pat sets
4293 i1dest or not.
4295 Local information is used when distributing REG_DEAD note for i1,
4296 in which case it doesn't matter if newi2pat sets i1dest or not.
4297 See PR62151, if we have four insns combination:
4298 i0: r0 <- i0src
4299 i1: r1 <- i1src (using r0)
4300 REG_DEAD (r0)
4301 i2: r0 <- i2src (using r1)
4302 i3: r3 <- i3src (using r0)
4303 ix: using r0
4304 From i1's point of view, r0 is eliminated, no matter if it is set
4305 by newi2pat or not. In other words, REG_DEAD info for r0 in i1
4306 should be discarded.
4308 Note local information only affects cases in forms like "I1->I2->I3",
4309 "I0->I1->I2->I3" or "I0&I1->I2, I2->I3". For other cases like
4310 "I0->I1, I1&I2->I3" or "I1&I2->I3", newi2pat won't set i1dest or
4311 i0dest anyway. */
4312 rtx local_elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
4313 || !i1dest_killed
4314 ? 0 : i1dest);
4315 rtx elim_i1 = (local_elim_i1 == 0
4316 || (newi2pat && reg_set_p (i1dest, newi2pat))
4317 ? 0 : i1dest);
4318 /* Same case as i1. */
4319 rtx local_elim_i0 = (i0 == 0 || i0dest_in_i0src || !i0dest_killed
4320 ? 0 : i0dest);
4321 rtx elim_i0 = (local_elim_i0 == 0
4322 || (newi2pat && reg_set_p (i0dest, newi2pat))
4323 ? 0 : i0dest);
4325 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
4326 clear them. */
4327 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
4328 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
4329 if (i1)
4330 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
4331 if (i0)
4332 i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
4334 /* Ensure that we do not have something that should not be shared but
4335 occurs multiple times in the new insns. Check this by first
4336 resetting all the `used' flags and then copying anything is shared. */
4338 reset_used_flags (i3notes);
4339 reset_used_flags (i2notes);
4340 reset_used_flags (i1notes);
4341 reset_used_flags (i0notes);
4342 reset_used_flags (newpat);
4343 reset_used_flags (newi2pat);
4344 if (undobuf.other_insn)
4345 reset_used_flags (PATTERN (undobuf.other_insn));
4347 i3notes = copy_rtx_if_shared (i3notes);
4348 i2notes = copy_rtx_if_shared (i2notes);
4349 i1notes = copy_rtx_if_shared (i1notes);
4350 i0notes = copy_rtx_if_shared (i0notes);
4351 newpat = copy_rtx_if_shared (newpat);
4352 newi2pat = copy_rtx_if_shared (newi2pat);
4353 if (undobuf.other_insn)
4354 reset_used_flags (PATTERN (undobuf.other_insn));
4356 INSN_CODE (i3) = insn_code_number;
4357 PATTERN (i3) = newpat;
4359 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4361 for (rtx link = CALL_INSN_FUNCTION_USAGE (i3); link;
4362 link = XEXP (link, 1))
4364 if (substed_i2)
4366 /* I2SRC must still be meaningful at this point. Some
4367 splitting operations can invalidate I2SRC, but those
4368 operations do not apply to calls. */
4369 gcc_assert (i2src);
4370 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4371 i2dest, i2src);
4373 if (substed_i1)
4374 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4375 i1dest, i1src);
4376 if (substed_i0)
4377 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4378 i0dest, i0src);
4382 if (undobuf.other_insn)
4383 INSN_CODE (undobuf.other_insn) = other_code_number;
4385 /* We had one special case above where I2 had more than one set and
4386 we replaced a destination of one of those sets with the destination
4387 of I3. In that case, we have to update LOG_LINKS of insns later
4388 in this basic block. Note that this (expensive) case is rare.
4390 Also, in this case, we must pretend that all REG_NOTEs for I2
4391 actually came from I3, so that REG_UNUSED notes from I2 will be
4392 properly handled. */
4394 if (i3_subst_into_i2)
4396 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4397 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4398 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4399 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4400 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4401 && ! find_reg_note (i2, REG_UNUSED,
4402 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4403 for (temp_insn = NEXT_INSN (i2);
4404 temp_insn
4405 && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4406 || BB_HEAD (this_basic_block) != temp_insn);
4407 temp_insn = NEXT_INSN (temp_insn))
4408 if (temp_insn != i3 && NONDEBUG_INSN_P (temp_insn))
4409 FOR_EACH_LOG_LINK (link, temp_insn)
4410 if (link->insn == i2)
4411 link->insn = i3;
4413 if (i3notes)
4415 rtx link = i3notes;
4416 while (XEXP (link, 1))
4417 link = XEXP (link, 1);
4418 XEXP (link, 1) = i2notes;
4420 else
4421 i3notes = i2notes;
4422 i2notes = 0;
4425 LOG_LINKS (i3) = NULL;
4426 REG_NOTES (i3) = 0;
4427 LOG_LINKS (i2) = NULL;
4428 REG_NOTES (i2) = 0;
4430 if (newi2pat)
4432 if (MAY_HAVE_DEBUG_BIND_INSNS && i2scratch)
4433 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4434 this_basic_block);
4435 INSN_CODE (i2) = i2_code_number;
4436 PATTERN (i2) = newi2pat;
4438 else
4440 if (MAY_HAVE_DEBUG_BIND_INSNS && i2src)
4441 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4442 this_basic_block);
4443 SET_INSN_DELETED (i2);
4446 if (i1)
4448 LOG_LINKS (i1) = NULL;
4449 REG_NOTES (i1) = 0;
4450 if (MAY_HAVE_DEBUG_BIND_INSNS)
4451 propagate_for_debug (i1, last_combined_insn, i1dest, i1src,
4452 this_basic_block);
4453 SET_INSN_DELETED (i1);
4456 if (i0)
4458 LOG_LINKS (i0) = NULL;
4459 REG_NOTES (i0) = 0;
4460 if (MAY_HAVE_DEBUG_BIND_INSNS)
4461 propagate_for_debug (i0, last_combined_insn, i0dest, i0src,
4462 this_basic_block);
4463 SET_INSN_DELETED (i0);
4466 /* Get death notes for everything that is now used in either I3 or
4467 I2 and used to die in a previous insn. If we built two new
4468 patterns, move from I1 to I2 then I2 to I3 so that we get the
4469 proper movement on registers that I2 modifies. */
4471 if (i0)
4472 from_luid = DF_INSN_LUID (i0);
4473 else if (i1)
4474 from_luid = DF_INSN_LUID (i1);
4475 else
4476 from_luid = DF_INSN_LUID (i2);
4477 if (newi2pat)
4478 move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4479 move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4481 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4482 if (i3notes)
4483 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL,
4484 elim_i2, elim_i1, elim_i0);
4485 if (i2notes)
4486 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL,
4487 elim_i2, elim_i1, elim_i0);
4488 if (i1notes)
4489 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL,
4490 elim_i2, local_elim_i1, local_elim_i0);
4491 if (i0notes)
4492 distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL,
4493 elim_i2, elim_i1, local_elim_i0);
4494 if (midnotes)
4495 distribute_notes (midnotes, NULL, i3, newi2pat ? i2 : NULL,
4496 elim_i2, elim_i1, elim_i0);
4498 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4499 know these are REG_UNUSED and want them to go to the desired insn,
4500 so we always pass it as i3. */
4502 if (newi2pat && new_i2_notes)
4503 distribute_notes (new_i2_notes, i2, i2, NULL, NULL_RTX, NULL_RTX,
4504 NULL_RTX);
4506 if (new_i3_notes)
4507 distribute_notes (new_i3_notes, i3, i3, NULL, NULL_RTX, NULL_RTX,
4508 NULL_RTX);
4510 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4511 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4512 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4513 in that case, it might delete I2. Similarly for I2 and I1.
4514 Show an additional death due to the REG_DEAD note we make here. If
4515 we discard it in distribute_notes, we will decrement it again. */
4517 if (i3dest_killed)
4519 rtx new_note = alloc_reg_note (REG_DEAD, i3dest_killed, NULL_RTX);
4520 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4521 distribute_notes (new_note, NULL, i2, NULL, elim_i2,
4522 elim_i1, elim_i0);
4523 else
4524 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4525 elim_i2, elim_i1, elim_i0);
4528 if (i2dest_in_i2src)
4530 rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4531 if (newi2pat && reg_set_p (i2dest, newi2pat))
4532 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4533 NULL_RTX, NULL_RTX);
4534 else
4535 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4536 NULL_RTX, NULL_RTX, NULL_RTX);
4539 if (i1dest_in_i1src)
4541 rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4542 if (newi2pat && reg_set_p (i1dest, newi2pat))
4543 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4544 NULL_RTX, NULL_RTX);
4545 else
4546 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4547 NULL_RTX, NULL_RTX, NULL_RTX);
4550 if (i0dest_in_i0src)
4552 rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4553 if (newi2pat && reg_set_p (i0dest, newi2pat))
4554 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4555 NULL_RTX, NULL_RTX);
4556 else
4557 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4558 NULL_RTX, NULL_RTX, NULL_RTX);
4561 distribute_links (i3links);
4562 distribute_links (i2links);
4563 distribute_links (i1links);
4564 distribute_links (i0links);
4566 if (REG_P (i2dest))
4568 struct insn_link *link;
4569 rtx_insn *i2_insn = 0;
4570 rtx i2_val = 0, set;
4572 /* The insn that used to set this register doesn't exist, and
4573 this life of the register may not exist either. See if one of
4574 I3's links points to an insn that sets I2DEST. If it does,
4575 that is now the last known value for I2DEST. If we don't update
4576 this and I2 set the register to a value that depended on its old
4577 contents, we will get confused. If this insn is used, thing
4578 will be set correctly in combine_instructions. */
4579 FOR_EACH_LOG_LINK (link, i3)
4580 if ((set = single_set (link->insn)) != 0
4581 && rtx_equal_p (i2dest, SET_DEST (set)))
4582 i2_insn = link->insn, i2_val = SET_SRC (set);
4584 record_value_for_reg (i2dest, i2_insn, i2_val);
4586 /* If the reg formerly set in I2 died only once and that was in I3,
4587 zero its use count so it won't make `reload' do any work. */
4588 if (! added_sets_2
4589 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4590 && ! i2dest_in_i2src
4591 && REGNO (i2dest) < reg_n_sets_max)
4592 INC_REG_N_SETS (REGNO (i2dest), -1);
4595 if (i1 && REG_P (i1dest))
4597 struct insn_link *link;
4598 rtx_insn *i1_insn = 0;
4599 rtx i1_val = 0, set;
4601 FOR_EACH_LOG_LINK (link, i3)
4602 if ((set = single_set (link->insn)) != 0
4603 && rtx_equal_p (i1dest, SET_DEST (set)))
4604 i1_insn = link->insn, i1_val = SET_SRC (set);
4606 record_value_for_reg (i1dest, i1_insn, i1_val);
4608 if (! added_sets_1
4609 && ! i1dest_in_i1src
4610 && REGNO (i1dest) < reg_n_sets_max)
4611 INC_REG_N_SETS (REGNO (i1dest), -1);
4614 if (i0 && REG_P (i0dest))
4616 struct insn_link *link;
4617 rtx_insn *i0_insn = 0;
4618 rtx i0_val = 0, set;
4620 FOR_EACH_LOG_LINK (link, i3)
4621 if ((set = single_set (link->insn)) != 0
4622 && rtx_equal_p (i0dest, SET_DEST (set)))
4623 i0_insn = link->insn, i0_val = SET_SRC (set);
4625 record_value_for_reg (i0dest, i0_insn, i0_val);
4627 if (! added_sets_0
4628 && ! i0dest_in_i0src
4629 && REGNO (i0dest) < reg_n_sets_max)
4630 INC_REG_N_SETS (REGNO (i0dest), -1);
4633 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4634 been made to this insn. The order is important, because newi2pat
4635 can affect nonzero_bits of newpat. */
4636 if (newi2pat)
4637 note_pattern_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4638 note_pattern_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4641 if (undobuf.other_insn != NULL_RTX)
4643 if (dump_file)
4645 fprintf (dump_file, "modifying other_insn ");
4646 dump_insn_slim (dump_file, undobuf.other_insn);
4648 df_insn_rescan (undobuf.other_insn);
4651 if (i0 && !(NOTE_P (i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4653 if (dump_file)
4655 fprintf (dump_file, "modifying insn i0 ");
4656 dump_insn_slim (dump_file, i0);
4658 df_insn_rescan (i0);
4661 if (i1 && !(NOTE_P (i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4663 if (dump_file)
4665 fprintf (dump_file, "modifying insn i1 ");
4666 dump_insn_slim (dump_file, i1);
4668 df_insn_rescan (i1);
4671 if (i2 && !(NOTE_P (i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4673 if (dump_file)
4675 fprintf (dump_file, "modifying insn i2 ");
4676 dump_insn_slim (dump_file, i2);
4678 df_insn_rescan (i2);
4681 if (i3 && !(NOTE_P (i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4683 if (dump_file)
4685 fprintf (dump_file, "modifying insn i3 ");
4686 dump_insn_slim (dump_file, i3);
4688 df_insn_rescan (i3);
4691 /* Set new_direct_jump_p if a new return or simple jump instruction
4692 has been created. Adjust the CFG accordingly. */
4693 if (returnjump_p (i3) || any_uncondjump_p (i3))
4695 *new_direct_jump_p = 1;
4696 mark_jump_label (PATTERN (i3), i3, 0);
4697 update_cfg_for_uncondjump (i3);
4700 if (undobuf.other_insn != NULL_RTX
4701 && (returnjump_p (undobuf.other_insn)
4702 || any_uncondjump_p (undobuf.other_insn)))
4704 *new_direct_jump_p = 1;
4705 update_cfg_for_uncondjump (undobuf.other_insn);
4708 if (GET_CODE (PATTERN (i3)) == TRAP_IF
4709 && XEXP (PATTERN (i3), 0) == const1_rtx)
4711 basic_block bb = BLOCK_FOR_INSN (i3);
4712 gcc_assert (bb);
4713 remove_edge (split_block (bb, i3));
4714 emit_barrier_after_bb (bb);
4715 *new_direct_jump_p = 1;
4718 if (undobuf.other_insn
4719 && GET_CODE (PATTERN (undobuf.other_insn)) == TRAP_IF
4720 && XEXP (PATTERN (undobuf.other_insn), 0) == const1_rtx)
4722 basic_block bb = BLOCK_FOR_INSN (undobuf.other_insn);
4723 gcc_assert (bb);
4724 remove_edge (split_block (bb, undobuf.other_insn));
4725 emit_barrier_after_bb (bb);
4726 *new_direct_jump_p = 1;
4729 /* A noop might also need cleaning up of CFG, if it comes from the
4730 simplification of a jump. */
4731 if (JUMP_P (i3)
4732 && GET_CODE (newpat) == SET
4733 && SET_SRC (newpat) == pc_rtx
4734 && SET_DEST (newpat) == pc_rtx)
4736 *new_direct_jump_p = 1;
4737 update_cfg_for_uncondjump (i3);
4740 if (undobuf.other_insn != NULL_RTX
4741 && JUMP_P (undobuf.other_insn)
4742 && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4743 && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4744 && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4746 *new_direct_jump_p = 1;
4747 update_cfg_for_uncondjump (undobuf.other_insn);
4750 combine_successes++;
4751 undo_commit ();
4753 rtx_insn *ret = newi2pat ? i2 : i3;
4754 if (added_links_insn && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (ret))
4755 ret = added_links_insn;
4756 if (added_notes_insn && DF_INSN_LUID (added_notes_insn) < DF_INSN_LUID (ret))
4757 ret = added_notes_insn;
4759 return ret;
4762 /* Get a marker for undoing to the current state. */
4764 static void *
4765 get_undo_marker (void)
4767 return undobuf.undos;
4770 /* Undo the modifications up to the marker. */
4772 static void
4773 undo_to_marker (void *marker)
4775 struct undo *undo, *next;
4777 for (undo = undobuf.undos; undo != marker; undo = next)
4779 gcc_assert (undo);
4781 next = undo->next;
4782 switch (undo->kind)
4784 case UNDO_RTX:
4785 *undo->where.r = undo->old_contents.r;
4786 break;
4787 case UNDO_INT:
4788 *undo->where.i = undo->old_contents.i;
4789 break;
4790 case UNDO_MODE:
4791 adjust_reg_mode (regno_reg_rtx[undo->where.regno],
4792 undo->old_contents.m);
4793 break;
4794 case UNDO_LINKS:
4795 *undo->where.l = undo->old_contents.l;
4796 break;
4797 default:
4798 gcc_unreachable ();
4801 undo->next = undobuf.frees;
4802 undobuf.frees = undo;
4805 undobuf.undos = (struct undo *) marker;
4808 /* Undo all the modifications recorded in undobuf. */
4810 static void
4811 undo_all (void)
4813 undo_to_marker (0);
4816 /* We've committed to accepting the changes we made. Move all
4817 of the undos to the free list. */
4819 static void
4820 undo_commit (void)
4822 struct undo *undo, *next;
4824 for (undo = undobuf.undos; undo; undo = next)
4826 next = undo->next;
4827 undo->next = undobuf.frees;
4828 undobuf.frees = undo;
4830 undobuf.undos = 0;
4833 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4834 where we have an arithmetic expression and return that point. LOC will
4835 be inside INSN.
4837 try_combine will call this function to see if an insn can be split into
4838 two insns. */
4840 static rtx *
4841 find_split_point (rtx *loc, rtx_insn *insn, bool set_src)
4843 rtx x = *loc;
4844 enum rtx_code code = GET_CODE (x);
4845 rtx *split;
4846 unsigned HOST_WIDE_INT len = 0;
4847 HOST_WIDE_INT pos = 0;
4848 int unsignedp = 0;
4849 rtx inner = NULL_RTX;
4850 scalar_int_mode mode, inner_mode;
4852 /* First special-case some codes. */
4853 switch (code)
4855 case SUBREG:
4856 #ifdef INSN_SCHEDULING
4857 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4858 point. */
4859 if (MEM_P (SUBREG_REG (x)))
4860 return loc;
4861 #endif
4862 return find_split_point (&SUBREG_REG (x), insn, false);
4864 case MEM:
4865 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4866 using LO_SUM and HIGH. */
4867 if (HAVE_lo_sum && (GET_CODE (XEXP (x, 0)) == CONST
4868 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF))
4870 machine_mode address_mode = get_address_mode (x);
4872 SUBST (XEXP (x, 0),
4873 gen_rtx_LO_SUM (address_mode,
4874 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4875 XEXP (x, 0)));
4876 return &XEXP (XEXP (x, 0), 0);
4879 /* If we have a PLUS whose second operand is a constant and the
4880 address is not valid, perhaps we can split it up using
4881 the machine-specific way to split large constants. We use
4882 the first pseudo-reg (one of the virtual regs) as a placeholder;
4883 it will not remain in the result. */
4884 if (GET_CODE (XEXP (x, 0)) == PLUS
4885 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4886 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4887 MEM_ADDR_SPACE (x)))
4889 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4890 rtx_insn *seq = combine_split_insns (gen_rtx_SET (reg, XEXP (x, 0)),
4891 subst_insn);
4893 /* This should have produced two insns, each of which sets our
4894 placeholder. If the source of the second is a valid address,
4895 we can put both sources together and make a split point
4896 in the middle. */
4898 if (seq
4899 && NEXT_INSN (seq) != NULL_RTX
4900 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4901 && NONJUMP_INSN_P (seq)
4902 && GET_CODE (PATTERN (seq)) == SET
4903 && SET_DEST (PATTERN (seq)) == reg
4904 && ! reg_mentioned_p (reg,
4905 SET_SRC (PATTERN (seq)))
4906 && NONJUMP_INSN_P (NEXT_INSN (seq))
4907 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4908 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4909 && memory_address_addr_space_p
4910 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4911 MEM_ADDR_SPACE (x)))
4913 rtx src1 = SET_SRC (PATTERN (seq));
4914 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4916 /* Replace the placeholder in SRC2 with SRC1. If we can
4917 find where in SRC2 it was placed, that can become our
4918 split point and we can replace this address with SRC2.
4919 Just try two obvious places. */
4921 src2 = replace_rtx (src2, reg, src1);
4922 split = 0;
4923 if (XEXP (src2, 0) == src1)
4924 split = &XEXP (src2, 0);
4925 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4926 && XEXP (XEXP (src2, 0), 0) == src1)
4927 split = &XEXP (XEXP (src2, 0), 0);
4929 if (split)
4931 SUBST (XEXP (x, 0), src2);
4932 return split;
4936 /* If that didn't work and we have a nested plus, like:
4937 ((REG1 * CONST1) + REG2) + CONST2 and (REG1 + REG2) + CONST2
4938 is valid address, try to split (REG1 * CONST1). */
4939 if (GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
4940 && !OBJECT_P (XEXP (XEXP (XEXP (x, 0), 0), 0))
4941 && OBJECT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
4942 && ! (GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == SUBREG
4943 && OBJECT_P (SUBREG_REG (XEXP (XEXP (XEXP (x, 0),
4944 0), 0)))))
4946 rtx tem = XEXP (XEXP (XEXP (x, 0), 0), 0);
4947 XEXP (XEXP (XEXP (x, 0), 0), 0) = reg;
4948 if (memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4949 MEM_ADDR_SPACE (x)))
4951 XEXP (XEXP (XEXP (x, 0), 0), 0) = tem;
4952 return &XEXP (XEXP (XEXP (x, 0), 0), 0);
4954 XEXP (XEXP (XEXP (x, 0), 0), 0) = tem;
4956 else if (GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
4957 && OBJECT_P (XEXP (XEXP (XEXP (x, 0), 0), 0))
4958 && !OBJECT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
4959 && ! (GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == SUBREG
4960 && OBJECT_P (SUBREG_REG (XEXP (XEXP (XEXP (x, 0),
4961 0), 1)))))
4963 rtx tem = XEXP (XEXP (XEXP (x, 0), 0), 1);
4964 XEXP (XEXP (XEXP (x, 0), 0), 1) = reg;
4965 if (memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4966 MEM_ADDR_SPACE (x)))
4968 XEXP (XEXP (XEXP (x, 0), 0), 1) = tem;
4969 return &XEXP (XEXP (XEXP (x, 0), 0), 1);
4971 XEXP (XEXP (XEXP (x, 0), 0), 1) = tem;
4974 /* If that didn't work, perhaps the first operand is complex and
4975 needs to be computed separately, so make a split point there.
4976 This will occur on machines that just support REG + CONST
4977 and have a constant moved through some previous computation. */
4978 if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
4979 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4980 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4981 return &XEXP (XEXP (x, 0), 0);
4984 /* If we have a PLUS whose first operand is complex, try computing it
4985 separately by making a split there. */
4986 if (GET_CODE (XEXP (x, 0)) == PLUS
4987 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4988 MEM_ADDR_SPACE (x))
4989 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
4990 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4991 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4992 return &XEXP (XEXP (x, 0), 0);
4993 break;
4995 case SET:
4996 /* See if we can split SET_SRC as it stands. */
4997 split = find_split_point (&SET_SRC (x), insn, true);
4998 if (split && split != &SET_SRC (x))
4999 return split;
5001 /* See if we can split SET_DEST as it stands. */
5002 split = find_split_point (&SET_DEST (x), insn, false);
5003 if (split && split != &SET_DEST (x))
5004 return split;
5006 /* See if this is a bitfield assignment with everything constant. If
5007 so, this is an IOR of an AND, so split it into that. */
5008 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5009 && is_a <scalar_int_mode> (GET_MODE (XEXP (SET_DEST (x), 0)),
5010 &inner_mode)
5011 && HWI_COMPUTABLE_MODE_P (inner_mode)
5012 && CONST_INT_P (XEXP (SET_DEST (x), 1))
5013 && CONST_INT_P (XEXP (SET_DEST (x), 2))
5014 && CONST_INT_P (SET_SRC (x))
5015 && ((INTVAL (XEXP (SET_DEST (x), 1))
5016 + INTVAL (XEXP (SET_DEST (x), 2)))
5017 <= GET_MODE_PRECISION (inner_mode))
5018 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
5020 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
5021 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
5022 rtx dest = XEXP (SET_DEST (x), 0);
5023 unsigned HOST_WIDE_INT mask = (HOST_WIDE_INT_1U << len) - 1;
5024 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x)) & mask;
5025 rtx or_mask;
5027 if (BITS_BIG_ENDIAN)
5028 pos = GET_MODE_PRECISION (inner_mode) - len - pos;
5030 or_mask = gen_int_mode (src << pos, inner_mode);
5031 if (src == mask)
5032 SUBST (SET_SRC (x),
5033 simplify_gen_binary (IOR, inner_mode, dest, or_mask));
5034 else
5036 rtx negmask = gen_int_mode (~(mask << pos), inner_mode);
5037 SUBST (SET_SRC (x),
5038 simplify_gen_binary (IOR, inner_mode,
5039 simplify_gen_binary (AND, inner_mode,
5040 dest, negmask),
5041 or_mask));
5044 SUBST (SET_DEST (x), dest);
5046 split = find_split_point (&SET_SRC (x), insn, true);
5047 if (split && split != &SET_SRC (x))
5048 return split;
5051 /* Otherwise, see if this is an operation that we can split into two.
5052 If so, try to split that. */
5053 code = GET_CODE (SET_SRC (x));
5055 switch (code)
5057 case AND:
5058 /* If we are AND'ing with a large constant that is only a single
5059 bit and the result is only being used in a context where we
5060 need to know if it is zero or nonzero, replace it with a bit
5061 extraction. This will avoid the large constant, which might
5062 have taken more than one insn to make. If the constant were
5063 not a valid argument to the AND but took only one insn to make,
5064 this is no worse, but if it took more than one insn, it will
5065 be better. */
5067 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
5068 && REG_P (XEXP (SET_SRC (x), 0))
5069 && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
5070 && REG_P (SET_DEST (x))
5071 && (split = find_single_use (SET_DEST (x), insn, NULL)) != 0
5072 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
5073 && XEXP (*split, 0) == SET_DEST (x)
5074 && XEXP (*split, 1) == const0_rtx)
5076 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
5077 XEXP (SET_SRC (x), 0),
5078 pos, NULL_RTX, 1, 1, 0, 0);
5079 if (extraction != 0)
5081 SUBST (SET_SRC (x), extraction);
5082 return find_split_point (loc, insn, false);
5085 break;
5087 case NE:
5088 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
5089 is known to be on, this can be converted into a NEG of a shift. */
5090 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
5091 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
5092 && ((pos = exact_log2 (nonzero_bits (XEXP (SET_SRC (x), 0),
5093 GET_MODE (XEXP (SET_SRC (x),
5094 0))))) >= 1))
5096 machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
5097 rtx pos_rtx = gen_int_shift_amount (mode, pos);
5098 SUBST (SET_SRC (x),
5099 gen_rtx_NEG (mode,
5100 gen_rtx_LSHIFTRT (mode,
5101 XEXP (SET_SRC (x), 0),
5102 pos_rtx)));
5104 split = find_split_point (&SET_SRC (x), insn, true);
5105 if (split && split != &SET_SRC (x))
5106 return split;
5108 break;
5110 case SIGN_EXTEND:
5111 inner = XEXP (SET_SRC (x), 0);
5113 /* We can't optimize if either mode is a partial integer
5114 mode as we don't know how many bits are significant
5115 in those modes. */
5116 if (!is_int_mode (GET_MODE (inner), &inner_mode)
5117 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
5118 break;
5120 pos = 0;
5121 len = GET_MODE_PRECISION (inner_mode);
5122 unsignedp = 0;
5123 break;
5125 case SIGN_EXTRACT:
5126 case ZERO_EXTRACT:
5127 if (is_a <scalar_int_mode> (GET_MODE (XEXP (SET_SRC (x), 0)),
5128 &inner_mode)
5129 && CONST_INT_P (XEXP (SET_SRC (x), 1))
5130 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
5132 inner = XEXP (SET_SRC (x), 0);
5133 len = INTVAL (XEXP (SET_SRC (x), 1));
5134 pos = INTVAL (XEXP (SET_SRC (x), 2));
5136 if (BITS_BIG_ENDIAN)
5137 pos = GET_MODE_PRECISION (inner_mode) - len - pos;
5138 unsignedp = (code == ZERO_EXTRACT);
5140 break;
5142 default:
5143 break;
5146 if (len
5147 && known_subrange_p (pos, len,
5148 0, GET_MODE_PRECISION (GET_MODE (inner)))
5149 && is_a <scalar_int_mode> (GET_MODE (SET_SRC (x)), &mode))
5151 /* For unsigned, we have a choice of a shift followed by an
5152 AND or two shifts. Use two shifts for field sizes where the
5153 constant might be too large. We assume here that we can
5154 always at least get 8-bit constants in an AND insn, which is
5155 true for every current RISC. */
5157 if (unsignedp && len <= 8)
5159 unsigned HOST_WIDE_INT mask
5160 = (HOST_WIDE_INT_1U << len) - 1;
5161 rtx pos_rtx = gen_int_shift_amount (mode, pos);
5162 SUBST (SET_SRC (x),
5163 gen_rtx_AND (mode,
5164 gen_rtx_LSHIFTRT
5165 (mode, gen_lowpart (mode, inner), pos_rtx),
5166 gen_int_mode (mask, mode)));
5168 split = find_split_point (&SET_SRC (x), insn, true);
5169 if (split && split != &SET_SRC (x))
5170 return split;
5172 else
5174 int left_bits = GET_MODE_PRECISION (mode) - len - pos;
5175 int right_bits = GET_MODE_PRECISION (mode) - len;
5176 SUBST (SET_SRC (x),
5177 gen_rtx_fmt_ee
5178 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
5179 gen_rtx_ASHIFT (mode,
5180 gen_lowpart (mode, inner),
5181 gen_int_shift_amount (mode, left_bits)),
5182 gen_int_shift_amount (mode, right_bits)));
5184 split = find_split_point (&SET_SRC (x), insn, true);
5185 if (split && split != &SET_SRC (x))
5186 return split;
5190 /* See if this is a simple operation with a constant as the second
5191 operand. It might be that this constant is out of range and hence
5192 could be used as a split point. */
5193 if (BINARY_P (SET_SRC (x))
5194 && CONSTANT_P (XEXP (SET_SRC (x), 1))
5195 && (OBJECT_P (XEXP (SET_SRC (x), 0))
5196 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
5197 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
5198 return &XEXP (SET_SRC (x), 1);
5200 /* Finally, see if this is a simple operation with its first operand
5201 not in a register. The operation might require this operand in a
5202 register, so return it as a split point. We can always do this
5203 because if the first operand were another operation, we would have
5204 already found it as a split point. */
5205 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
5206 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
5207 return &XEXP (SET_SRC (x), 0);
5209 return 0;
5211 case AND:
5212 case IOR:
5213 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
5214 it is better to write this as (not (ior A B)) so we can split it.
5215 Similarly for IOR. */
5216 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
5218 SUBST (*loc,
5219 gen_rtx_NOT (GET_MODE (x),
5220 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
5221 GET_MODE (x),
5222 XEXP (XEXP (x, 0), 0),
5223 XEXP (XEXP (x, 1), 0))));
5224 return find_split_point (loc, insn, set_src);
5227 /* Many RISC machines have a large set of logical insns. If the
5228 second operand is a NOT, put it first so we will try to split the
5229 other operand first. */
5230 if (GET_CODE (XEXP (x, 1)) == NOT)
5232 rtx tem = XEXP (x, 0);
5233 SUBST (XEXP (x, 0), XEXP (x, 1));
5234 SUBST (XEXP (x, 1), tem);
5236 break;
5238 case PLUS:
5239 case MINUS:
5240 /* Canonicalization can produce (minus A (mult B C)), where C is a
5241 constant. It may be better to try splitting (plus (mult B -C) A)
5242 instead if this isn't a multiply by a power of two. */
5243 if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
5244 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
5245 && !pow2p_hwi (INTVAL (XEXP (XEXP (x, 1), 1))))
5247 machine_mode mode = GET_MODE (x);
5248 unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
5249 HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
5250 SUBST (*loc, gen_rtx_PLUS (mode,
5251 gen_rtx_MULT (mode,
5252 XEXP (XEXP (x, 1), 0),
5253 gen_int_mode (other_int,
5254 mode)),
5255 XEXP (x, 0)));
5256 return find_split_point (loc, insn, set_src);
5259 /* Split at a multiply-accumulate instruction. However if this is
5260 the SET_SRC, we likely do not have such an instruction and it's
5261 worthless to try this split. */
5262 if (!set_src
5263 && (GET_CODE (XEXP (x, 0)) == MULT
5264 || (GET_CODE (XEXP (x, 0)) == ASHIFT
5265 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)))
5266 return loc;
5268 default:
5269 break;
5272 /* Otherwise, select our actions depending on our rtx class. */
5273 switch (GET_RTX_CLASS (code))
5275 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
5276 case RTX_TERNARY:
5277 split = find_split_point (&XEXP (x, 2), insn, false);
5278 if (split)
5279 return split;
5280 /* fall through */
5281 case RTX_BIN_ARITH:
5282 case RTX_COMM_ARITH:
5283 case RTX_COMPARE:
5284 case RTX_COMM_COMPARE:
5285 split = find_split_point (&XEXP (x, 1), insn, false);
5286 if (split)
5287 return split;
5288 /* fall through */
5289 case RTX_UNARY:
5290 /* Some machines have (and (shift ...) ...) insns. If X is not
5291 an AND, but XEXP (X, 0) is, use it as our split point. */
5292 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
5293 return &XEXP (x, 0);
5295 split = find_split_point (&XEXP (x, 0), insn, false);
5296 if (split)
5297 return split;
5298 return loc;
5300 default:
5301 /* Otherwise, we don't have a split point. */
5302 return 0;
5306 /* Throughout X, replace FROM with TO, and return the result.
5307 The result is TO if X is FROM;
5308 otherwise the result is X, but its contents may have been modified.
5309 If they were modified, a record was made in undobuf so that
5310 undo_all will (among other things) return X to its original state.
5312 If the number of changes necessary is too much to record to undo,
5313 the excess changes are not made, so the result is invalid.
5314 The changes already made can still be undone.
5315 undobuf.num_undo is incremented for such changes, so by testing that
5316 the caller can tell whether the result is valid.
5318 `n_occurrences' is incremented each time FROM is replaced.
5320 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
5322 IN_COND is nonzero if we are at the top level of a condition.
5324 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
5325 by copying if `n_occurrences' is nonzero. */
5327 static rtx
5328 subst (rtx x, rtx from, rtx to, int in_dest, int in_cond, int unique_copy)
5330 enum rtx_code code = GET_CODE (x);
5331 machine_mode op0_mode = VOIDmode;
5332 const char *fmt;
5333 int len, i;
5334 rtx new_rtx;
5336 /* Two expressions are equal if they are identical copies of a shared
5337 RTX or if they are both registers with the same register number
5338 and mode. */
5340 #define COMBINE_RTX_EQUAL_P(X,Y) \
5341 ((X) == (Y) \
5342 || (REG_P (X) && REG_P (Y) \
5343 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
5345 /* Do not substitute into clobbers of regs -- this will never result in
5346 valid RTL. */
5347 if (GET_CODE (x) == CLOBBER && REG_P (XEXP (x, 0)))
5348 return x;
5350 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
5352 n_occurrences++;
5353 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
5356 /* If X and FROM are the same register but different modes, they
5357 will not have been seen as equal above. However, the log links code
5358 will make a LOG_LINKS entry for that case. If we do nothing, we
5359 will try to rerecognize our original insn and, when it succeeds,
5360 we will delete the feeding insn, which is incorrect.
5362 So force this insn not to match in this (rare) case. */
5363 if (! in_dest && code == REG && REG_P (from)
5364 && reg_overlap_mentioned_p (x, from))
5365 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
5367 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
5368 of which may contain things that can be combined. */
5369 if (code != MEM && code != LO_SUM && OBJECT_P (x))
5370 return x;
5372 /* It is possible to have a subexpression appear twice in the insn.
5373 Suppose that FROM is a register that appears within TO.
5374 Then, after that subexpression has been scanned once by `subst',
5375 the second time it is scanned, TO may be found. If we were
5376 to scan TO here, we would find FROM within it and create a
5377 self-referent rtl structure which is completely wrong. */
5378 if (COMBINE_RTX_EQUAL_P (x, to))
5379 return to;
5381 /* Parallel asm_operands need special attention because all of the
5382 inputs are shared across the arms. Furthermore, unsharing the
5383 rtl results in recognition failures. Failure to handle this case
5384 specially can result in circular rtl.
5386 Solve this by doing a normal pass across the first entry of the
5387 parallel, and only processing the SET_DESTs of the subsequent
5388 entries. Ug. */
5390 if (code == PARALLEL
5391 && GET_CODE (XVECEXP (x, 0, 0)) == SET
5392 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
5394 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, 0, unique_copy);
5396 /* If this substitution failed, this whole thing fails. */
5397 if (GET_CODE (new_rtx) == CLOBBER
5398 && XEXP (new_rtx, 0) == const0_rtx)
5399 return new_rtx;
5401 SUBST (XVECEXP (x, 0, 0), new_rtx);
5403 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
5405 rtx dest = SET_DEST (XVECEXP (x, 0, i));
5407 if (!REG_P (dest) && GET_CODE (dest) != PC)
5409 new_rtx = subst (dest, from, to, 0, 0, unique_copy);
5411 /* If this substitution failed, this whole thing fails. */
5412 if (GET_CODE (new_rtx) == CLOBBER
5413 && XEXP (new_rtx, 0) == const0_rtx)
5414 return new_rtx;
5416 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
5420 else
5422 len = GET_RTX_LENGTH (code);
5423 fmt = GET_RTX_FORMAT (code);
5425 /* We don't need to process a SET_DEST that is a register or PC, so
5426 set up to skip this common case. All other cases where we want
5427 to suppress replacing something inside a SET_SRC are handled via
5428 the IN_DEST operand. */
5429 if (code == SET
5430 && (REG_P (SET_DEST (x))
5431 || GET_CODE (SET_DEST (x)) == PC))
5432 fmt = "ie";
5434 /* Trying to simplify the operands of a widening MULT is not likely
5435 to create RTL matching a machine insn. */
5436 if (code == MULT
5437 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
5438 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
5439 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
5440 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
5441 && REG_P (XEXP (XEXP (x, 0), 0))
5442 && REG_P (XEXP (XEXP (x, 1), 0))
5443 && from == to)
5444 return x;
5447 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5448 constant. */
5449 if (fmt[0] == 'e')
5450 op0_mode = GET_MODE (XEXP (x, 0));
5452 for (i = 0; i < len; i++)
5454 if (fmt[i] == 'E')
5456 int j;
5457 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5459 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5461 new_rtx = (unique_copy && n_occurrences
5462 ? copy_rtx (to) : to);
5463 n_occurrences++;
5465 else
5467 new_rtx = subst (XVECEXP (x, i, j), from, to, 0, 0,
5468 unique_copy);
5470 /* If this substitution failed, this whole thing
5471 fails. */
5472 if (GET_CODE (new_rtx) == CLOBBER
5473 && XEXP (new_rtx, 0) == const0_rtx)
5474 return new_rtx;
5477 SUBST (XVECEXP (x, i, j), new_rtx);
5480 else if (fmt[i] == 'e')
5482 /* If this is a register being set, ignore it. */
5483 new_rtx = XEXP (x, i);
5484 if (in_dest
5485 && i == 0
5486 && (((code == SUBREG || code == ZERO_EXTRACT)
5487 && REG_P (new_rtx))
5488 || code == STRICT_LOW_PART))
5491 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5493 /* In general, don't install a subreg involving two
5494 modes not tieable. It can worsen register
5495 allocation, and can even make invalid reload
5496 insns, since the reg inside may need to be copied
5497 from in the outside mode, and that may be invalid
5498 if it is an fp reg copied in integer mode.
5500 We allow an exception to this: It is valid if
5501 it is inside another SUBREG and the mode of that
5502 SUBREG and the mode of the inside of TO is
5503 tieable. */
5505 if (GET_CODE (to) == SUBREG
5506 && !targetm.modes_tieable_p (GET_MODE (to),
5507 GET_MODE (SUBREG_REG (to)))
5508 && ! (code == SUBREG
5509 && (targetm.modes_tieable_p
5510 (GET_MODE (x), GET_MODE (SUBREG_REG (to))))))
5511 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5513 if (code == SUBREG
5514 && REG_P (to)
5515 && REGNO (to) < FIRST_PSEUDO_REGISTER
5516 && simplify_subreg_regno (REGNO (to), GET_MODE (to),
5517 SUBREG_BYTE (x),
5518 GET_MODE (x)) < 0)
5519 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5521 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5522 n_occurrences++;
5524 else
5525 /* If we are in a SET_DEST, suppress most cases unless we
5526 have gone inside a MEM, in which case we want to
5527 simplify the address. We assume here that things that
5528 are actually part of the destination have their inner
5529 parts in the first expression. This is true for SUBREG,
5530 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5531 things aside from REG and MEM that should appear in a
5532 SET_DEST. */
5533 new_rtx = subst (XEXP (x, i), from, to,
5534 (((in_dest
5535 && (code == SUBREG || code == STRICT_LOW_PART
5536 || code == ZERO_EXTRACT))
5537 || code == SET)
5538 && i == 0),
5539 code == IF_THEN_ELSE && i == 0,
5540 unique_copy);
5542 /* If we found that we will have to reject this combination,
5543 indicate that by returning the CLOBBER ourselves, rather than
5544 an expression containing it. This will speed things up as
5545 well as prevent accidents where two CLOBBERs are considered
5546 to be equal, thus producing an incorrect simplification. */
5548 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5549 return new_rtx;
5551 if (GET_CODE (x) == SUBREG && CONST_SCALAR_INT_P (new_rtx))
5553 machine_mode mode = GET_MODE (x);
5555 x = simplify_subreg (GET_MODE (x), new_rtx,
5556 GET_MODE (SUBREG_REG (x)),
5557 SUBREG_BYTE (x));
5558 if (! x)
5559 x = gen_rtx_CLOBBER (mode, const0_rtx);
5561 else if (CONST_SCALAR_INT_P (new_rtx)
5562 && (GET_CODE (x) == ZERO_EXTEND
5563 || GET_CODE (x) == SIGN_EXTEND
5564 || GET_CODE (x) == FLOAT
5565 || GET_CODE (x) == UNSIGNED_FLOAT))
5567 x = simplify_unary_operation (GET_CODE (x), GET_MODE (x),
5568 new_rtx,
5569 GET_MODE (XEXP (x, 0)));
5570 if (!x)
5571 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5573 /* CONST_INTs shouldn't be substituted into PRE_DEC, PRE_MODIFY
5574 etc. arguments, otherwise we can ICE before trying to recog
5575 it. See PR104446. */
5576 else if (CONST_SCALAR_INT_P (new_rtx)
5577 && GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
5578 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5579 else
5580 SUBST (XEXP (x, i), new_rtx);
5585 /* Check if we are loading something from the constant pool via float
5586 extension; in this case we would undo compress_float_constant
5587 optimization and degenerate constant load to an immediate value. */
5588 if (GET_CODE (x) == FLOAT_EXTEND
5589 && MEM_P (XEXP (x, 0))
5590 && MEM_READONLY_P (XEXP (x, 0)))
5592 rtx tmp = avoid_constant_pool_reference (x);
5593 if (x != tmp)
5594 return x;
5597 /* Try to simplify X. If the simplification changed the code, it is likely
5598 that further simplification will help, so loop, but limit the number
5599 of repetitions that will be performed. */
5601 for (i = 0; i < 4; i++)
5603 /* If X is sufficiently simple, don't bother trying to do anything
5604 with it. */
5605 if (code != CONST_INT && code != REG && code != CLOBBER)
5606 x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond);
5608 if (GET_CODE (x) == code)
5609 break;
5611 code = GET_CODE (x);
5613 /* We no longer know the original mode of operand 0 since we
5614 have changed the form of X) */
5615 op0_mode = VOIDmode;
5618 return x;
5621 /* If X is a commutative operation whose operands are not in the canonical
5622 order, use substitutions to swap them. */
5624 static void
5625 maybe_swap_commutative_operands (rtx x)
5627 if (COMMUTATIVE_ARITH_P (x)
5628 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5630 rtx temp = XEXP (x, 0);
5631 SUBST (XEXP (x, 0), XEXP (x, 1));
5632 SUBST (XEXP (x, 1), temp);
5635 unsigned n_elts = 0;
5636 if (GET_CODE (x) == VEC_MERGE
5637 && CONST_INT_P (XEXP (x, 2))
5638 && GET_MODE_NUNITS (GET_MODE (x)).is_constant (&n_elts)
5639 && (swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1))
5640 /* Two operands have same precedence, then
5641 first bit of mask select first operand. */
5642 || (!swap_commutative_operands_p (XEXP (x, 1), XEXP (x, 0))
5643 && !(UINTVAL (XEXP (x, 2)) & 1))))
5645 rtx temp = XEXP (x, 0);
5646 unsigned HOST_WIDE_INT sel = UINTVAL (XEXP (x, 2));
5647 unsigned HOST_WIDE_INT mask = HOST_WIDE_INT_1U;
5648 if (n_elts == HOST_BITS_PER_WIDE_INT)
5649 mask = -1;
5650 else
5651 mask = (HOST_WIDE_INT_1U << n_elts) - 1;
5652 SUBST (XEXP (x, 0), XEXP (x, 1));
5653 SUBST (XEXP (x, 1), temp);
5654 SUBST (XEXP (x, 2), GEN_INT (~sel & mask));
5658 /* Simplify X, a piece of RTL. We just operate on the expression at the
5659 outer level; call `subst' to simplify recursively. Return the new
5660 expression.
5662 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5663 if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level
5664 of a condition. */
5666 static rtx
5667 combine_simplify_rtx (rtx x, machine_mode op0_mode, int in_dest,
5668 int in_cond)
5670 enum rtx_code code = GET_CODE (x);
5671 machine_mode mode = GET_MODE (x);
5672 scalar_int_mode int_mode;
5673 rtx temp;
5674 int i;
5676 /* If this is a commutative operation, put a constant last and a complex
5677 expression first. We don't need to do this for comparisons here. */
5678 maybe_swap_commutative_operands (x);
5680 /* Try to fold this expression in case we have constants that weren't
5681 present before. */
5682 temp = 0;
5683 switch (GET_RTX_CLASS (code))
5685 case RTX_UNARY:
5686 if (op0_mode == VOIDmode)
5687 op0_mode = GET_MODE (XEXP (x, 0));
5688 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5689 break;
5690 case RTX_COMPARE:
5691 case RTX_COMM_COMPARE:
5693 machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5694 if (cmp_mode == VOIDmode)
5696 cmp_mode = GET_MODE (XEXP (x, 1));
5697 if (cmp_mode == VOIDmode)
5698 cmp_mode = op0_mode;
5700 temp = simplify_relational_operation (code, mode, cmp_mode,
5701 XEXP (x, 0), XEXP (x, 1));
5703 break;
5704 case RTX_COMM_ARITH:
5705 case RTX_BIN_ARITH:
5706 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5707 break;
5708 case RTX_BITFIELD_OPS:
5709 case RTX_TERNARY:
5710 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5711 XEXP (x, 1), XEXP (x, 2));
5712 break;
5713 default:
5714 break;
5717 if (temp)
5719 x = temp;
5720 code = GET_CODE (temp);
5721 op0_mode = VOIDmode;
5722 mode = GET_MODE (temp);
5725 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5726 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5727 things. Check for cases where both arms are testing the same
5728 condition.
5730 Don't do anything if all operands are very simple. */
5732 if ((BINARY_P (x)
5733 && ((!OBJECT_P (XEXP (x, 0))
5734 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5735 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5736 || (!OBJECT_P (XEXP (x, 1))
5737 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5738 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5739 || (UNARY_P (x)
5740 && (!OBJECT_P (XEXP (x, 0))
5741 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5742 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5744 rtx cond, true_rtx, false_rtx;
5746 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5747 if (cond != 0
5748 /* If everything is a comparison, what we have is highly unlikely
5749 to be simpler, so don't use it. */
5750 && ! (COMPARISON_P (x)
5751 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx)))
5752 /* Similarly, if we end up with one of the expressions the same
5753 as the original, it is certainly not simpler. */
5754 && ! rtx_equal_p (x, true_rtx)
5755 && ! rtx_equal_p (x, false_rtx))
5757 rtx cop1 = const0_rtx;
5758 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5760 if (cond_code == NE && COMPARISON_P (cond))
5761 return x;
5763 /* Simplify the alternative arms; this may collapse the true and
5764 false arms to store-flag values. Be careful to use copy_rtx
5765 here since true_rtx or false_rtx might share RTL with x as a
5766 result of the if_then_else_cond call above. */
5767 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5768 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5770 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5771 is unlikely to be simpler. */
5772 if (general_operand (true_rtx, VOIDmode)
5773 && general_operand (false_rtx, VOIDmode))
5775 enum rtx_code reversed;
5777 /* Restarting if we generate a store-flag expression will cause
5778 us to loop. Just drop through in this case. */
5780 /* If the result values are STORE_FLAG_VALUE and zero, we can
5781 just make the comparison operation. */
5782 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5783 x = simplify_gen_relational (cond_code, mode, VOIDmode,
5784 cond, cop1);
5785 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5786 && ((reversed = reversed_comparison_code_parts
5787 (cond_code, cond, cop1, NULL))
5788 != UNKNOWN))
5789 x = simplify_gen_relational (reversed, mode, VOIDmode,
5790 cond, cop1);
5792 /* Likewise, we can make the negate of a comparison operation
5793 if the result values are - STORE_FLAG_VALUE and zero. */
5794 else if (CONST_INT_P (true_rtx)
5795 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5796 && false_rtx == const0_rtx)
5797 x = simplify_gen_unary (NEG, mode,
5798 simplify_gen_relational (cond_code,
5799 mode, VOIDmode,
5800 cond, cop1),
5801 mode);
5802 else if (CONST_INT_P (false_rtx)
5803 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5804 && true_rtx == const0_rtx
5805 && ((reversed = reversed_comparison_code_parts
5806 (cond_code, cond, cop1, NULL))
5807 != UNKNOWN))
5808 x = simplify_gen_unary (NEG, mode,
5809 simplify_gen_relational (reversed,
5810 mode, VOIDmode,
5811 cond, cop1),
5812 mode);
5814 code = GET_CODE (x);
5815 op0_mode = VOIDmode;
5820 /* First see if we can apply the inverse distributive law. */
5821 if (code == PLUS || code == MINUS
5822 || code == AND || code == IOR || code == XOR)
5824 x = apply_distributive_law (x);
5825 code = GET_CODE (x);
5826 op0_mode = VOIDmode;
5829 /* If CODE is an associative operation not otherwise handled, see if we
5830 can associate some operands. This can win if they are constants or
5831 if they are logically related (i.e. (a & b) & a). */
5832 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5833 || code == AND || code == IOR || code == XOR
5834 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5835 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5836 || (flag_associative_math && FLOAT_MODE_P (mode))))
5838 if (GET_CODE (XEXP (x, 0)) == code)
5840 rtx other = XEXP (XEXP (x, 0), 0);
5841 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5842 rtx inner_op1 = XEXP (x, 1);
5843 rtx inner;
5845 /* Make sure we pass the constant operand if any as the second
5846 one if this is a commutative operation. */
5847 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5848 std::swap (inner_op0, inner_op1);
5849 inner = simplify_binary_operation (code == MINUS ? PLUS
5850 : code == DIV ? MULT
5851 : code,
5852 mode, inner_op0, inner_op1);
5854 /* For commutative operations, try the other pair if that one
5855 didn't simplify. */
5856 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5858 other = XEXP (XEXP (x, 0), 1);
5859 inner = simplify_binary_operation (code, mode,
5860 XEXP (XEXP (x, 0), 0),
5861 XEXP (x, 1));
5864 if (inner)
5865 return simplify_gen_binary (code, mode, other, inner);
5869 /* A little bit of algebraic simplification here. */
5870 switch (code)
5872 case MEM:
5873 /* Ensure that our address has any ASHIFTs converted to MULT in case
5874 address-recognizing predicates are called later. */
5875 temp = make_compound_operation (XEXP (x, 0), MEM);
5876 SUBST (XEXP (x, 0), temp);
5877 break;
5879 case SUBREG:
5880 if (op0_mode == VOIDmode)
5881 op0_mode = GET_MODE (SUBREG_REG (x));
5883 /* See if this can be moved to simplify_subreg. */
5884 if (CONSTANT_P (SUBREG_REG (x))
5885 && known_eq (subreg_lowpart_offset (mode, op0_mode), SUBREG_BYTE (x))
5886 /* Don't call gen_lowpart if the inner mode
5887 is VOIDmode and we cannot simplify it, as SUBREG without
5888 inner mode is invalid. */
5889 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5890 || gen_lowpart_common (mode, SUBREG_REG (x))))
5891 return gen_lowpart (mode, SUBREG_REG (x));
5893 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5894 break;
5896 rtx temp;
5897 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5898 SUBREG_BYTE (x));
5899 if (temp)
5900 return temp;
5902 /* If op is known to have all lower bits zero, the result is zero. */
5903 scalar_int_mode int_mode, int_op0_mode;
5904 if (!in_dest
5905 && is_a <scalar_int_mode> (mode, &int_mode)
5906 && is_a <scalar_int_mode> (op0_mode, &int_op0_mode)
5907 && (GET_MODE_PRECISION (int_mode)
5908 < GET_MODE_PRECISION (int_op0_mode))
5909 && known_eq (subreg_lowpart_offset (int_mode, int_op0_mode),
5910 SUBREG_BYTE (x))
5911 && HWI_COMPUTABLE_MODE_P (int_op0_mode)
5912 && ((nonzero_bits (SUBREG_REG (x), int_op0_mode)
5913 & GET_MODE_MASK (int_mode)) == 0)
5914 && !side_effects_p (SUBREG_REG (x)))
5915 return CONST0_RTX (int_mode);
5918 /* Don't change the mode of the MEM if that would change the meaning
5919 of the address. */
5920 if (MEM_P (SUBREG_REG (x))
5921 && (MEM_VOLATILE_P (SUBREG_REG (x))
5922 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0),
5923 MEM_ADDR_SPACE (SUBREG_REG (x)))))
5924 return gen_rtx_CLOBBER (mode, const0_rtx);
5926 /* Note that we cannot do any narrowing for non-constants since
5927 we might have been counting on using the fact that some bits were
5928 zero. We now do this in the SET. */
5930 break;
5932 case NEG:
5933 temp = expand_compound_operation (XEXP (x, 0));
5935 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5936 replaced by (lshiftrt X C). This will convert
5937 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5939 if (GET_CODE (temp) == ASHIFTRT
5940 && CONST_INT_P (XEXP (temp, 1))
5941 && INTVAL (XEXP (temp, 1)) == GET_MODE_UNIT_PRECISION (mode) - 1)
5942 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
5943 INTVAL (XEXP (temp, 1)));
5945 /* If X has only a single bit that might be nonzero, say, bit I, convert
5946 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5947 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5948 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5949 or a SUBREG of one since we'd be making the expression more
5950 complex if it was just a register. */
5952 if (!REG_P (temp)
5953 && ! (GET_CODE (temp) == SUBREG
5954 && REG_P (SUBREG_REG (temp)))
5955 && is_a <scalar_int_mode> (mode, &int_mode)
5956 && (i = exact_log2 (nonzero_bits (temp, int_mode))) >= 0)
5958 rtx temp1 = simplify_shift_const
5959 (NULL_RTX, ASHIFTRT, int_mode,
5960 simplify_shift_const (NULL_RTX, ASHIFT, int_mode, temp,
5961 GET_MODE_PRECISION (int_mode) - 1 - i),
5962 GET_MODE_PRECISION (int_mode) - 1 - i);
5964 /* If all we did was surround TEMP with the two shifts, we
5965 haven't improved anything, so don't use it. Otherwise,
5966 we are better off with TEMP1. */
5967 if (GET_CODE (temp1) != ASHIFTRT
5968 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
5969 || XEXP (XEXP (temp1, 0), 0) != temp)
5970 return temp1;
5972 break;
5974 case TRUNCATE:
5975 /* We can't handle truncation to a partial integer mode here
5976 because we don't know the real bitsize of the partial
5977 integer mode. */
5978 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
5979 break;
5981 if (HWI_COMPUTABLE_MODE_P (mode))
5982 SUBST (XEXP (x, 0),
5983 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5984 GET_MODE_MASK (mode), 0));
5986 /* We can truncate a constant value and return it. */
5988 poly_int64 c;
5989 if (poly_int_rtx_p (XEXP (x, 0), &c))
5990 return gen_int_mode (c, mode);
5993 /* Similarly to what we do in simplify-rtx.cc, a truncate of a register
5994 whose value is a comparison can be replaced with a subreg if
5995 STORE_FLAG_VALUE permits. */
5996 if (HWI_COMPUTABLE_MODE_P (mode)
5997 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
5998 && (temp = get_last_value (XEXP (x, 0)))
5999 && COMPARISON_P (temp)
6000 && TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (XEXP (x, 0))))
6001 return gen_lowpart (mode, XEXP (x, 0));
6002 break;
6004 case CONST:
6005 /* (const (const X)) can become (const X). Do it this way rather than
6006 returning the inner CONST since CONST can be shared with a
6007 REG_EQUAL note. */
6008 if (GET_CODE (XEXP (x, 0)) == CONST)
6009 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
6010 break;
6012 case LO_SUM:
6013 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
6014 can add in an offset. find_split_point will split this address up
6015 again if it doesn't match. */
6016 if (HAVE_lo_sum && GET_CODE (XEXP (x, 0)) == HIGH
6017 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
6018 return XEXP (x, 1);
6019 break;
6021 case PLUS:
6022 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
6023 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
6024 bit-field and can be replaced by either a sign_extend or a
6025 sign_extract. The `and' may be a zero_extend and the two
6026 <c>, -<c> constants may be reversed. */
6027 if (GET_CODE (XEXP (x, 0)) == XOR
6028 && is_a <scalar_int_mode> (mode, &int_mode)
6029 && CONST_INT_P (XEXP (x, 1))
6030 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
6031 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
6032 && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
6033 || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
6034 && HWI_COMPUTABLE_MODE_P (int_mode)
6035 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
6036 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
6037 && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
6038 == (HOST_WIDE_INT_1U << (i + 1)) - 1))
6039 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
6040 && known_eq ((GET_MODE_PRECISION
6041 (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))),
6042 (unsigned int) i + 1))))
6043 return simplify_shift_const
6044 (NULL_RTX, ASHIFTRT, int_mode,
6045 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6046 XEXP (XEXP (XEXP (x, 0), 0), 0),
6047 GET_MODE_PRECISION (int_mode) - (i + 1)),
6048 GET_MODE_PRECISION (int_mode) - (i + 1));
6050 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
6051 can become (ashiftrt (ashift (xor x 1) C) C) where C is
6052 the bitsize of the mode - 1. This allows simplification of
6053 "a = (b & 8) == 0;" */
6054 if (XEXP (x, 1) == constm1_rtx
6055 && !REG_P (XEXP (x, 0))
6056 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
6057 && REG_P (SUBREG_REG (XEXP (x, 0))))
6058 && is_a <scalar_int_mode> (mode, &int_mode)
6059 && nonzero_bits (XEXP (x, 0), int_mode) == 1)
6060 return simplify_shift_const
6061 (NULL_RTX, ASHIFTRT, int_mode,
6062 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6063 gen_rtx_XOR (int_mode, XEXP (x, 0),
6064 const1_rtx),
6065 GET_MODE_PRECISION (int_mode) - 1),
6066 GET_MODE_PRECISION (int_mode) - 1);
6068 /* If we are adding two things that have no bits in common, convert
6069 the addition into an IOR. This will often be further simplified,
6070 for example in cases like ((a & 1) + (a & 2)), which can
6071 become a & 3. */
6073 if (HWI_COMPUTABLE_MODE_P (mode)
6074 && (nonzero_bits (XEXP (x, 0), mode)
6075 & nonzero_bits (XEXP (x, 1), mode)) == 0)
6077 /* Try to simplify the expression further. */
6078 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
6079 temp = combine_simplify_rtx (tor, VOIDmode, in_dest, 0);
6081 /* If we could, great. If not, do not go ahead with the IOR
6082 replacement, since PLUS appears in many special purpose
6083 address arithmetic instructions. */
6084 if (GET_CODE (temp) != CLOBBER
6085 && (GET_CODE (temp) != IOR
6086 || ((XEXP (temp, 0) != XEXP (x, 0)
6087 || XEXP (temp, 1) != XEXP (x, 1))
6088 && (XEXP (temp, 0) != XEXP (x, 1)
6089 || XEXP (temp, 1) != XEXP (x, 0)))))
6090 return temp;
6093 /* Canonicalize x + x into x << 1. */
6094 if (GET_MODE_CLASS (mode) == MODE_INT
6095 && rtx_equal_p (XEXP (x, 0), XEXP (x, 1))
6096 && !side_effects_p (XEXP (x, 0)))
6097 return simplify_gen_binary (ASHIFT, mode, XEXP (x, 0), const1_rtx);
6099 break;
6101 case MINUS:
6102 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
6103 (and <foo> (const_int pow2-1)) */
6104 if (is_a <scalar_int_mode> (mode, &int_mode)
6105 && GET_CODE (XEXP (x, 1)) == AND
6106 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
6107 && pow2p_hwi (-UINTVAL (XEXP (XEXP (x, 1), 1)))
6108 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
6109 return simplify_and_const_int (NULL_RTX, int_mode, XEXP (x, 0),
6110 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
6111 break;
6113 case MULT:
6114 /* If we have (mult (plus A B) C), apply the distributive law and then
6115 the inverse distributive law to see if things simplify. This
6116 occurs mostly in addresses, often when unrolling loops. */
6118 if (GET_CODE (XEXP (x, 0)) == PLUS)
6120 rtx result = distribute_and_simplify_rtx (x, 0);
6121 if (result)
6122 return result;
6125 /* Try simplify a*(b/c) as (a*b)/c. */
6126 if (FLOAT_MODE_P (mode) && flag_associative_math
6127 && GET_CODE (XEXP (x, 0)) == DIV)
6129 rtx tem = simplify_binary_operation (MULT, mode,
6130 XEXP (XEXP (x, 0), 0),
6131 XEXP (x, 1));
6132 if (tem)
6133 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
6135 break;
6137 case UDIV:
6138 /* If this is a divide by a power of two, treat it as a shift if
6139 its first operand is a shift. */
6140 if (is_a <scalar_int_mode> (mode, &int_mode)
6141 && CONST_INT_P (XEXP (x, 1))
6142 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
6143 && (GET_CODE (XEXP (x, 0)) == ASHIFT
6144 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
6145 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
6146 || GET_CODE (XEXP (x, 0)) == ROTATE
6147 || GET_CODE (XEXP (x, 0)) == ROTATERT))
6148 return simplify_shift_const (NULL_RTX, LSHIFTRT, int_mode,
6149 XEXP (x, 0), i);
6150 break;
6152 case EQ: case NE:
6153 case GT: case GTU: case GE: case GEU:
6154 case LT: case LTU: case LE: case LEU:
6155 case UNEQ: case LTGT:
6156 case UNGT: case UNGE:
6157 case UNLT: case UNLE:
6158 case UNORDERED: case ORDERED:
6159 /* If the first operand is a condition code, we can't do anything
6160 with it. */
6161 if (GET_CODE (XEXP (x, 0)) == COMPARE
6162 || GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC)
6164 rtx op0 = XEXP (x, 0);
6165 rtx op1 = XEXP (x, 1);
6166 enum rtx_code new_code;
6168 if (GET_CODE (op0) == COMPARE)
6169 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
6171 /* Simplify our comparison, if possible. */
6172 new_code = simplify_comparison (code, &op0, &op1);
6174 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
6175 if only the low-order bit is possibly nonzero in X (such as when
6176 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
6177 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
6178 known to be either 0 or -1, NE becomes a NEG and EQ becomes
6179 (plus X 1).
6181 Remove any ZERO_EXTRACT we made when thinking this was a
6182 comparison. It may now be simpler to use, e.g., an AND. If a
6183 ZERO_EXTRACT is indeed appropriate, it will be placed back by
6184 the call to make_compound_operation in the SET case.
6186 Don't apply these optimizations if the caller would
6187 prefer a comparison rather than a value.
6188 E.g., for the condition in an IF_THEN_ELSE most targets need
6189 an explicit comparison. */
6191 if (in_cond)
6194 else if (STORE_FLAG_VALUE == 1
6195 && new_code == NE
6196 && is_int_mode (mode, &int_mode)
6197 && op1 == const0_rtx
6198 && int_mode == GET_MODE (op0)
6199 && nonzero_bits (op0, int_mode) == 1)
6200 return gen_lowpart (int_mode,
6201 expand_compound_operation (op0));
6203 else if (STORE_FLAG_VALUE == 1
6204 && new_code == NE
6205 && is_int_mode (mode, &int_mode)
6206 && op1 == const0_rtx
6207 && int_mode == GET_MODE (op0)
6208 && (num_sign_bit_copies (op0, int_mode)
6209 == GET_MODE_PRECISION (int_mode)))
6211 op0 = expand_compound_operation (op0);
6212 return simplify_gen_unary (NEG, int_mode,
6213 gen_lowpart (int_mode, op0),
6214 int_mode);
6217 else if (STORE_FLAG_VALUE == 1
6218 && new_code == EQ
6219 && is_int_mode (mode, &int_mode)
6220 && op1 == const0_rtx
6221 && int_mode == GET_MODE (op0)
6222 && nonzero_bits (op0, int_mode) == 1)
6224 op0 = expand_compound_operation (op0);
6225 return simplify_gen_binary (XOR, int_mode,
6226 gen_lowpart (int_mode, op0),
6227 const1_rtx);
6230 else if (STORE_FLAG_VALUE == 1
6231 && new_code == EQ
6232 && is_int_mode (mode, &int_mode)
6233 && op1 == const0_rtx
6234 && int_mode == GET_MODE (op0)
6235 && (num_sign_bit_copies (op0, int_mode)
6236 == GET_MODE_PRECISION (int_mode)))
6238 op0 = expand_compound_operation (op0);
6239 return plus_constant (int_mode, gen_lowpart (int_mode, op0), 1);
6242 /* If STORE_FLAG_VALUE is -1, we have cases similar to
6243 those above. */
6244 if (in_cond)
6247 else if (STORE_FLAG_VALUE == -1
6248 && new_code == NE
6249 && is_int_mode (mode, &int_mode)
6250 && op1 == const0_rtx
6251 && int_mode == GET_MODE (op0)
6252 && (num_sign_bit_copies (op0, int_mode)
6253 == GET_MODE_PRECISION (int_mode)))
6254 return gen_lowpart (int_mode, expand_compound_operation (op0));
6256 else if (STORE_FLAG_VALUE == -1
6257 && new_code == NE
6258 && is_int_mode (mode, &int_mode)
6259 && op1 == const0_rtx
6260 && int_mode == GET_MODE (op0)
6261 && nonzero_bits (op0, int_mode) == 1)
6263 op0 = expand_compound_operation (op0);
6264 return simplify_gen_unary (NEG, int_mode,
6265 gen_lowpart (int_mode, op0),
6266 int_mode);
6269 else if (STORE_FLAG_VALUE == -1
6270 && new_code == EQ
6271 && is_int_mode (mode, &int_mode)
6272 && op1 == const0_rtx
6273 && int_mode == GET_MODE (op0)
6274 && (num_sign_bit_copies (op0, int_mode)
6275 == GET_MODE_PRECISION (int_mode)))
6277 op0 = expand_compound_operation (op0);
6278 return simplify_gen_unary (NOT, int_mode,
6279 gen_lowpart (int_mode, op0),
6280 int_mode);
6283 /* If X is 0/1, (eq X 0) is X-1. */
6284 else if (STORE_FLAG_VALUE == -1
6285 && new_code == EQ
6286 && is_int_mode (mode, &int_mode)
6287 && op1 == const0_rtx
6288 && int_mode == GET_MODE (op0)
6289 && nonzero_bits (op0, int_mode) == 1)
6291 op0 = expand_compound_operation (op0);
6292 return plus_constant (int_mode, gen_lowpart (int_mode, op0), -1);
6295 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
6296 one bit that might be nonzero, we can convert (ne x 0) to
6297 (ashift x c) where C puts the bit in the sign bit. Remove any
6298 AND with STORE_FLAG_VALUE when we are done, since we are only
6299 going to test the sign bit. */
6300 if (new_code == NE
6301 && is_int_mode (mode, &int_mode)
6302 && HWI_COMPUTABLE_MODE_P (int_mode)
6303 && val_signbit_p (int_mode, STORE_FLAG_VALUE)
6304 && op1 == const0_rtx
6305 && int_mode == GET_MODE (op0)
6306 && (i = exact_log2 (nonzero_bits (op0, int_mode))) >= 0)
6308 x = simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6309 expand_compound_operation (op0),
6310 GET_MODE_PRECISION (int_mode) - 1 - i);
6311 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
6312 return XEXP (x, 0);
6313 else
6314 return x;
6317 /* If the code changed, return a whole new comparison.
6318 We also need to avoid using SUBST in cases where
6319 simplify_comparison has widened a comparison with a CONST_INT,
6320 since in that case the wider CONST_INT may fail the sanity
6321 checks in do_SUBST. */
6322 if (new_code != code
6323 || (CONST_INT_P (op1)
6324 && GET_MODE (op0) != GET_MODE (XEXP (x, 0))
6325 && GET_MODE (op0) != GET_MODE (XEXP (x, 1))))
6326 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
6328 /* Otherwise, keep this operation, but maybe change its operands.
6329 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
6330 SUBST (XEXP (x, 0), op0);
6331 SUBST (XEXP (x, 1), op1);
6333 break;
6335 case IF_THEN_ELSE:
6336 return simplify_if_then_else (x);
6338 case ZERO_EXTRACT:
6339 case SIGN_EXTRACT:
6340 case ZERO_EXTEND:
6341 case SIGN_EXTEND:
6342 /* If we are processing SET_DEST, we are done. */
6343 if (in_dest)
6344 return x;
6346 return expand_compound_operation (x);
6348 case SET:
6349 return simplify_set (x);
6351 case AND:
6352 case IOR:
6353 return simplify_logical (x);
6355 case ASHIFT:
6356 case LSHIFTRT:
6357 case ASHIFTRT:
6358 case ROTATE:
6359 case ROTATERT:
6360 /* If this is a shift by a constant amount, simplify it. */
6361 if (CONST_INT_P (XEXP (x, 1)))
6362 return simplify_shift_const (x, code, mode, XEXP (x, 0),
6363 INTVAL (XEXP (x, 1)));
6365 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
6366 SUBST (XEXP (x, 1),
6367 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
6368 (HOST_WIDE_INT_1U
6369 << exact_log2 (GET_MODE_UNIT_BITSIZE
6370 (GET_MODE (x))))
6371 - 1,
6372 0));
6373 break;
6374 case VEC_SELECT:
6376 rtx trueop0 = XEXP (x, 0);
6377 mode = GET_MODE (trueop0);
6378 rtx trueop1 = XEXP (x, 1);
6379 /* If we select a low-part subreg, return that. */
6380 if (vec_series_lowpart_p (GET_MODE (x), mode, trueop1))
6382 rtx new_rtx = lowpart_subreg (GET_MODE (x), trueop0, mode);
6383 if (new_rtx != NULL_RTX)
6384 return new_rtx;
6388 default:
6389 break;
6392 return x;
6395 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
6397 static rtx
6398 simplify_if_then_else (rtx x)
6400 machine_mode mode = GET_MODE (x);
6401 rtx cond = XEXP (x, 0);
6402 rtx true_rtx = XEXP (x, 1);
6403 rtx false_rtx = XEXP (x, 2);
6404 enum rtx_code true_code = GET_CODE (cond);
6405 int comparison_p = COMPARISON_P (cond);
6406 rtx temp;
6407 int i;
6408 enum rtx_code false_code;
6409 rtx reversed;
6410 scalar_int_mode int_mode, inner_mode;
6412 /* Simplify storing of the truth value. */
6413 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
6414 return simplify_gen_relational (true_code, mode, VOIDmode,
6415 XEXP (cond, 0), XEXP (cond, 1));
6417 /* Also when the truth value has to be reversed. */
6418 if (comparison_p
6419 && true_rtx == const0_rtx && false_rtx == const_true_rtx
6420 && (reversed = reversed_comparison (cond, mode)))
6421 return reversed;
6423 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
6424 in it is being compared against certain values. Get the true and false
6425 comparisons and see if that says anything about the value of each arm. */
6427 if (comparison_p
6428 && ((false_code = reversed_comparison_code (cond, NULL))
6429 != UNKNOWN)
6430 && REG_P (XEXP (cond, 0)))
6432 HOST_WIDE_INT nzb;
6433 rtx from = XEXP (cond, 0);
6434 rtx true_val = XEXP (cond, 1);
6435 rtx false_val = true_val;
6436 int swapped = 0;
6438 /* If FALSE_CODE is EQ, swap the codes and arms. */
6440 if (false_code == EQ)
6442 swapped = 1, true_code = EQ, false_code = NE;
6443 std::swap (true_rtx, false_rtx);
6446 scalar_int_mode from_mode;
6447 if (is_a <scalar_int_mode> (GET_MODE (from), &from_mode))
6449 /* If we are comparing against zero and the expression being
6450 tested has only a single bit that might be nonzero, that is
6451 its value when it is not equal to zero. Similarly if it is
6452 known to be -1 or 0. */
6453 if (true_code == EQ
6454 && true_val == const0_rtx
6455 && pow2p_hwi (nzb = nonzero_bits (from, from_mode)))
6457 false_code = EQ;
6458 false_val = gen_int_mode (nzb, from_mode);
6460 else if (true_code == EQ
6461 && true_val == const0_rtx
6462 && (num_sign_bit_copies (from, from_mode)
6463 == GET_MODE_PRECISION (from_mode)))
6465 false_code = EQ;
6466 false_val = constm1_rtx;
6470 /* Now simplify an arm if we know the value of the register in the
6471 branch and it is used in the arm. Be careful due to the potential
6472 of locally-shared RTL. */
6474 if (reg_mentioned_p (from, true_rtx))
6475 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
6476 from, true_val),
6477 pc_rtx, pc_rtx, 0, 0, 0);
6478 if (reg_mentioned_p (from, false_rtx))
6479 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
6480 from, false_val),
6481 pc_rtx, pc_rtx, 0, 0, 0);
6483 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
6484 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
6486 true_rtx = XEXP (x, 1);
6487 false_rtx = XEXP (x, 2);
6488 true_code = GET_CODE (cond);
6491 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
6492 reversed, do so to avoid needing two sets of patterns for
6493 subtract-and-branch insns. Similarly if we have a constant in the true
6494 arm, the false arm is the same as the first operand of the comparison, or
6495 the false arm is more complicated than the true arm. */
6497 if (comparison_p
6498 && reversed_comparison_code (cond, NULL) != UNKNOWN
6499 && (true_rtx == pc_rtx
6500 || (CONSTANT_P (true_rtx)
6501 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
6502 || true_rtx == const0_rtx
6503 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
6504 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
6505 && !OBJECT_P (false_rtx))
6506 || reg_mentioned_p (true_rtx, false_rtx)
6507 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
6509 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
6510 SUBST (XEXP (x, 1), false_rtx);
6511 SUBST (XEXP (x, 2), true_rtx);
6513 std::swap (true_rtx, false_rtx);
6514 cond = XEXP (x, 0);
6516 /* It is possible that the conditional has been simplified out. */
6517 true_code = GET_CODE (cond);
6518 comparison_p = COMPARISON_P (cond);
6521 /* If the two arms are identical, we don't need the comparison. */
6523 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
6524 return true_rtx;
6526 /* Convert a == b ? b : a to "a". */
6527 if (true_code == EQ && ! side_effects_p (cond)
6528 && !HONOR_NANS (mode)
6529 && rtx_equal_p (XEXP (cond, 0), false_rtx)
6530 && rtx_equal_p (XEXP (cond, 1), true_rtx))
6531 return false_rtx;
6532 else if (true_code == NE && ! side_effects_p (cond)
6533 && !HONOR_NANS (mode)
6534 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6535 && rtx_equal_p (XEXP (cond, 1), false_rtx))
6536 return true_rtx;
6538 /* Look for cases where we have (abs x) or (neg (abs X)). */
6540 if (GET_MODE_CLASS (mode) == MODE_INT
6541 && comparison_p
6542 && XEXP (cond, 1) == const0_rtx
6543 && GET_CODE (false_rtx) == NEG
6544 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
6545 && rtx_equal_p (true_rtx, XEXP (cond, 0))
6546 && ! side_effects_p (true_rtx))
6547 switch (true_code)
6549 case GT:
6550 case GE:
6551 return simplify_gen_unary (ABS, mode, true_rtx, mode);
6552 case LT:
6553 case LE:
6554 return
6555 simplify_gen_unary (NEG, mode,
6556 simplify_gen_unary (ABS, mode, true_rtx, mode),
6557 mode);
6558 default:
6559 break;
6562 /* Look for MIN or MAX. */
6564 if ((! FLOAT_MODE_P (mode)
6565 || (flag_unsafe_math_optimizations
6566 && !HONOR_NANS (mode)
6567 && !HONOR_SIGNED_ZEROS (mode)))
6568 && comparison_p
6569 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6570 && rtx_equal_p (XEXP (cond, 1), false_rtx)
6571 && ! side_effects_p (cond))
6572 switch (true_code)
6574 case GE:
6575 case GT:
6576 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6577 case LE:
6578 case LT:
6579 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6580 case GEU:
6581 case GTU:
6582 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6583 case LEU:
6584 case LTU:
6585 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6586 default:
6587 break;
6590 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6591 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6592 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6593 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6594 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6595 neither 1 or -1, but it isn't worth checking for. */
6597 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6598 && comparison_p
6599 && is_int_mode (mode, &int_mode)
6600 && ! side_effects_p (x))
6602 rtx t = make_compound_operation (true_rtx, SET);
6603 rtx f = make_compound_operation (false_rtx, SET);
6604 rtx cond_op0 = XEXP (cond, 0);
6605 rtx cond_op1 = XEXP (cond, 1);
6606 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6607 scalar_int_mode m = int_mode;
6608 rtx z = 0, c1 = NULL_RTX;
6610 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6611 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6612 || GET_CODE (t) == ASHIFT
6613 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6614 && rtx_equal_p (XEXP (t, 0), f))
6615 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6617 /* If an identity-zero op is commutative, check whether there
6618 would be a match if we swapped the operands. */
6619 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6620 || GET_CODE (t) == XOR)
6621 && rtx_equal_p (XEXP (t, 1), f))
6622 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6623 else if (GET_CODE (t) == SIGN_EXTEND
6624 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6625 && (GET_CODE (XEXP (t, 0)) == PLUS
6626 || GET_CODE (XEXP (t, 0)) == MINUS
6627 || GET_CODE (XEXP (t, 0)) == IOR
6628 || GET_CODE (XEXP (t, 0)) == XOR
6629 || GET_CODE (XEXP (t, 0)) == ASHIFT
6630 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6631 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6632 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6633 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6634 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6635 && (num_sign_bit_copies (f, GET_MODE (f))
6636 > (unsigned int)
6637 (GET_MODE_PRECISION (int_mode)
6638 - GET_MODE_PRECISION (inner_mode))))
6640 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6641 extend_op = SIGN_EXTEND;
6642 m = inner_mode;
6644 else if (GET_CODE (t) == SIGN_EXTEND
6645 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6646 && (GET_CODE (XEXP (t, 0)) == PLUS
6647 || GET_CODE (XEXP (t, 0)) == IOR
6648 || GET_CODE (XEXP (t, 0)) == XOR)
6649 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6650 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6651 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6652 && (num_sign_bit_copies (f, GET_MODE (f))
6653 > (unsigned int)
6654 (GET_MODE_PRECISION (int_mode)
6655 - GET_MODE_PRECISION (inner_mode))))
6657 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6658 extend_op = SIGN_EXTEND;
6659 m = inner_mode;
6661 else if (GET_CODE (t) == ZERO_EXTEND
6662 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6663 && (GET_CODE (XEXP (t, 0)) == PLUS
6664 || GET_CODE (XEXP (t, 0)) == MINUS
6665 || GET_CODE (XEXP (t, 0)) == IOR
6666 || GET_CODE (XEXP (t, 0)) == XOR
6667 || GET_CODE (XEXP (t, 0)) == ASHIFT
6668 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6669 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6670 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6671 && HWI_COMPUTABLE_MODE_P (int_mode)
6672 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6673 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6674 && ((nonzero_bits (f, GET_MODE (f))
6675 & ~GET_MODE_MASK (inner_mode))
6676 == 0))
6678 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6679 extend_op = ZERO_EXTEND;
6680 m = inner_mode;
6682 else if (GET_CODE (t) == ZERO_EXTEND
6683 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6684 && (GET_CODE (XEXP (t, 0)) == PLUS
6685 || GET_CODE (XEXP (t, 0)) == IOR
6686 || GET_CODE (XEXP (t, 0)) == XOR)
6687 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6688 && HWI_COMPUTABLE_MODE_P (int_mode)
6689 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6690 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6691 && ((nonzero_bits (f, GET_MODE (f))
6692 & ~GET_MODE_MASK (inner_mode))
6693 == 0))
6695 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6696 extend_op = ZERO_EXTEND;
6697 m = inner_mode;
6700 if (z)
6702 machine_mode cm = m;
6703 if ((op == ASHIFT || op == LSHIFTRT || op == ASHIFTRT)
6704 && GET_MODE (c1) != VOIDmode)
6705 cm = GET_MODE (c1);
6706 temp = subst (simplify_gen_relational (true_code, cm, VOIDmode,
6707 cond_op0, cond_op1),
6708 pc_rtx, pc_rtx, 0, 0, 0);
6709 temp = simplify_gen_binary (MULT, cm, temp,
6710 simplify_gen_binary (MULT, cm, c1,
6711 const_true_rtx));
6712 temp = subst (temp, pc_rtx, pc_rtx, 0, 0, 0);
6713 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6715 if (extend_op != UNKNOWN)
6716 temp = simplify_gen_unary (extend_op, int_mode, temp, m);
6718 return temp;
6722 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6723 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6724 negation of a single bit, we can convert this operation to a shift. We
6725 can actually do this more generally, but it doesn't seem worth it. */
6727 if (true_code == NE
6728 && is_a <scalar_int_mode> (mode, &int_mode)
6729 && XEXP (cond, 1) == const0_rtx
6730 && false_rtx == const0_rtx
6731 && CONST_INT_P (true_rtx)
6732 && ((nonzero_bits (XEXP (cond, 0), int_mode) == 1
6733 && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6734 || ((num_sign_bit_copies (XEXP (cond, 0), int_mode)
6735 == GET_MODE_PRECISION (int_mode))
6736 && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6737 return
6738 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6739 gen_lowpart (int_mode, XEXP (cond, 0)), i);
6741 /* (IF_THEN_ELSE (NE A 0) C1 0) is A or a zero-extend of A if the only
6742 non-zero bit in A is C1. */
6743 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6744 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6745 && is_a <scalar_int_mode> (mode, &int_mode)
6746 && is_a <scalar_int_mode> (GET_MODE (XEXP (cond, 0)), &inner_mode)
6747 && (UINTVAL (true_rtx) & GET_MODE_MASK (int_mode))
6748 == nonzero_bits (XEXP (cond, 0), inner_mode)
6749 && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (int_mode))) >= 0)
6751 rtx val = XEXP (cond, 0);
6752 if (inner_mode == int_mode)
6753 return val;
6754 else if (GET_MODE_PRECISION (inner_mode) < GET_MODE_PRECISION (int_mode))
6755 return simplify_gen_unary (ZERO_EXTEND, int_mode, val, inner_mode);
6758 return x;
6761 /* Simplify X, a SET expression. Return the new expression. */
6763 static rtx
6764 simplify_set (rtx x)
6766 rtx src = SET_SRC (x);
6767 rtx dest = SET_DEST (x);
6768 machine_mode mode
6769 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6770 rtx_insn *other_insn;
6771 rtx *cc_use;
6772 scalar_int_mode int_mode;
6774 /* (set (pc) (return)) gets written as (return). */
6775 if (GET_CODE (dest) == PC && ANY_RETURN_P (src))
6776 return src;
6778 /* Now that we know for sure which bits of SRC we are using, see if we can
6779 simplify the expression for the object knowing that we only need the
6780 low-order bits. */
6782 if (GET_MODE_CLASS (mode) == MODE_INT && HWI_COMPUTABLE_MODE_P (mode))
6784 src = force_to_mode (src, mode, HOST_WIDE_INT_M1U, 0);
6785 SUBST (SET_SRC (x), src);
6788 /* If the source is a COMPARE, look for the use of the comparison result
6789 and try to simplify it unless we already have used undobuf.other_insn. */
6790 if ((GET_MODE_CLASS (mode) == MODE_CC || GET_CODE (src) == COMPARE)
6791 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6792 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6793 && COMPARISON_P (*cc_use)
6794 && rtx_equal_p (XEXP (*cc_use, 0), dest))
6796 enum rtx_code old_code = GET_CODE (*cc_use);
6797 enum rtx_code new_code;
6798 rtx op0, op1, tmp;
6799 int other_changed = 0;
6800 rtx inner_compare = NULL_RTX;
6801 machine_mode compare_mode = GET_MODE (dest);
6803 if (GET_CODE (src) == COMPARE)
6805 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6806 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
6808 inner_compare = op0;
6809 op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
6812 else
6813 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6815 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6816 op0, op1);
6817 if (!tmp)
6818 new_code = old_code;
6819 else if (!CONSTANT_P (tmp))
6821 new_code = GET_CODE (tmp);
6822 op0 = XEXP (tmp, 0);
6823 op1 = XEXP (tmp, 1);
6825 else
6827 rtx pat = PATTERN (other_insn);
6828 undobuf.other_insn = other_insn;
6829 SUBST (*cc_use, tmp);
6831 /* Attempt to simplify CC user. */
6832 if (GET_CODE (pat) == SET)
6834 rtx new_rtx = simplify_rtx (SET_SRC (pat));
6835 if (new_rtx != NULL_RTX)
6836 SUBST (SET_SRC (pat), new_rtx);
6839 /* Convert X into a no-op move. */
6840 SUBST (SET_DEST (x), pc_rtx);
6841 SUBST (SET_SRC (x), pc_rtx);
6842 return x;
6845 /* Simplify our comparison, if possible. */
6846 new_code = simplify_comparison (new_code, &op0, &op1);
6848 #ifdef SELECT_CC_MODE
6849 /* If this machine has CC modes other than CCmode, check to see if we
6850 need to use a different CC mode here. */
6851 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6852 compare_mode = GET_MODE (op0);
6853 else if (inner_compare
6854 && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
6855 && new_code == old_code
6856 && op0 == XEXP (inner_compare, 0)
6857 && op1 == XEXP (inner_compare, 1))
6858 compare_mode = GET_MODE (inner_compare);
6859 else
6860 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6862 /* If the mode changed, we have to change SET_DEST, the mode in the
6863 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6864 a hard register, just build new versions with the proper mode. If it
6865 is a pseudo, we lose unless it is only time we set the pseudo, in
6866 which case we can safely change its mode. */
6867 if (compare_mode != GET_MODE (dest))
6869 if (can_change_dest_mode (dest, 0, compare_mode))
6871 unsigned int regno = REGNO (dest);
6872 rtx new_dest;
6874 if (regno < FIRST_PSEUDO_REGISTER)
6875 new_dest = gen_rtx_REG (compare_mode, regno);
6876 else
6878 subst_mode (regno, compare_mode);
6879 new_dest = regno_reg_rtx[regno];
6882 SUBST (SET_DEST (x), new_dest);
6883 SUBST (XEXP (*cc_use, 0), new_dest);
6884 other_changed = 1;
6886 dest = new_dest;
6889 #endif /* SELECT_CC_MODE */
6891 /* If the code changed, we have to build a new comparison in
6892 undobuf.other_insn. */
6893 if (new_code != old_code)
6895 int other_changed_previously = other_changed;
6896 unsigned HOST_WIDE_INT mask;
6897 rtx old_cc_use = *cc_use;
6899 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6900 dest, const0_rtx));
6901 other_changed = 1;
6903 /* If the only change we made was to change an EQ into an NE or
6904 vice versa, OP0 has only one bit that might be nonzero, and OP1
6905 is zero, check if changing the user of the condition code will
6906 produce a valid insn. If it won't, we can keep the original code
6907 in that insn by surrounding our operation with an XOR. */
6909 if (((old_code == NE && new_code == EQ)
6910 || (old_code == EQ && new_code == NE))
6911 && ! other_changed_previously && op1 == const0_rtx
6912 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
6913 && pow2p_hwi (mask = nonzero_bits (op0, GET_MODE (op0))))
6915 rtx pat = PATTERN (other_insn), note = 0;
6917 if ((recog_for_combine (&pat, other_insn, &note) < 0
6918 && ! check_asm_operands (pat)))
6920 *cc_use = old_cc_use;
6921 other_changed = 0;
6923 op0 = simplify_gen_binary (XOR, GET_MODE (op0), op0,
6924 gen_int_mode (mask,
6925 GET_MODE (op0)));
6930 if (other_changed)
6931 undobuf.other_insn = other_insn;
6933 /* Don't generate a compare of a CC with 0, just use that CC. */
6934 if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
6936 SUBST (SET_SRC (x), op0);
6937 src = SET_SRC (x);
6939 /* Otherwise, if we didn't previously have the same COMPARE we
6940 want, create it from scratch. */
6941 else if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode
6942 || XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6944 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6945 src = SET_SRC (x);
6948 else
6950 /* Get SET_SRC in a form where we have placed back any
6951 compound expressions. Then do the checks below. */
6952 src = make_compound_operation (src, SET);
6953 SUBST (SET_SRC (x), src);
6956 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6957 and X being a REG or (subreg (reg)), we may be able to convert this to
6958 (set (subreg:m2 x) (op)).
6960 We can always do this if M1 is narrower than M2 because that means that
6961 we only care about the low bits of the result.
6963 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6964 perform a narrower operation than requested since the high-order bits will
6965 be undefined. On machine where it is defined, this transformation is safe
6966 as long as M1 and M2 have the same number of words. */
6968 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6969 && !OBJECT_P (SUBREG_REG (src))
6970 && (known_equal_after_align_up
6971 (GET_MODE_SIZE (GET_MODE (src)),
6972 GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))),
6973 UNITS_PER_WORD))
6974 && (WORD_REGISTER_OPERATIONS || !paradoxical_subreg_p (src))
6975 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
6976 && !REG_CAN_CHANGE_MODE_P (REGNO (dest),
6977 GET_MODE (SUBREG_REG (src)),
6978 GET_MODE (src)))
6979 && (REG_P (dest)
6980 || (GET_CODE (dest) == SUBREG
6981 && REG_P (SUBREG_REG (dest)))))
6983 SUBST (SET_DEST (x),
6984 gen_lowpart (GET_MODE (SUBREG_REG (src)),
6985 dest));
6986 SUBST (SET_SRC (x), SUBREG_REG (src));
6988 src = SET_SRC (x), dest = SET_DEST (x);
6991 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6992 would require a paradoxical subreg. Replace the subreg with a
6993 zero_extend to avoid the reload that would otherwise be required.
6994 Don't do this unless we have a scalar integer mode, otherwise the
6995 transformation is incorrect. */
6997 enum rtx_code extend_op;
6998 if (paradoxical_subreg_p (src)
6999 && MEM_P (SUBREG_REG (src))
7000 && SCALAR_INT_MODE_P (GET_MODE (src))
7001 && (extend_op = load_extend_op (GET_MODE (SUBREG_REG (src)))) != UNKNOWN)
7003 SUBST (SET_SRC (x),
7004 gen_rtx_fmt_e (extend_op, GET_MODE (src), SUBREG_REG (src)));
7006 src = SET_SRC (x);
7009 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
7010 are comparing an item known to be 0 or -1 against 0, use a logical
7011 operation instead. Check for one of the arms being an IOR of the other
7012 arm with some value. We compute three terms to be IOR'ed together. In
7013 practice, at most two will be nonzero. Then we do the IOR's. */
7015 if (GET_CODE (dest) != PC
7016 && GET_CODE (src) == IF_THEN_ELSE
7017 && is_int_mode (GET_MODE (src), &int_mode)
7018 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
7019 && XEXP (XEXP (src, 0), 1) == const0_rtx
7020 && int_mode == GET_MODE (XEXP (XEXP (src, 0), 0))
7021 && (!HAVE_conditional_move
7022 || ! can_conditionally_move_p (int_mode))
7023 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0), int_mode)
7024 == GET_MODE_PRECISION (int_mode))
7025 && ! side_effects_p (src))
7027 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
7028 ? XEXP (src, 1) : XEXP (src, 2));
7029 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
7030 ? XEXP (src, 2) : XEXP (src, 1));
7031 rtx term1 = const0_rtx, term2, term3;
7033 if (GET_CODE (true_rtx) == IOR
7034 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
7035 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
7036 else if (GET_CODE (true_rtx) == IOR
7037 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
7038 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
7039 else if (GET_CODE (false_rtx) == IOR
7040 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
7041 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
7042 else if (GET_CODE (false_rtx) == IOR
7043 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
7044 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
7046 term2 = simplify_gen_binary (AND, int_mode,
7047 XEXP (XEXP (src, 0), 0), true_rtx);
7048 term3 = simplify_gen_binary (AND, int_mode,
7049 simplify_gen_unary (NOT, int_mode,
7050 XEXP (XEXP (src, 0), 0),
7051 int_mode),
7052 false_rtx);
7054 SUBST (SET_SRC (x),
7055 simplify_gen_binary (IOR, int_mode,
7056 simplify_gen_binary (IOR, int_mode,
7057 term1, term2),
7058 term3));
7060 src = SET_SRC (x);
7063 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
7064 whole thing fail. */
7065 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
7066 return src;
7067 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
7068 return dest;
7069 else
7070 /* Convert this into a field assignment operation, if possible. */
7071 return make_field_assignment (x);
7074 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
7075 result. */
7077 static rtx
7078 simplify_logical (rtx x)
7080 rtx op0 = XEXP (x, 0);
7081 rtx op1 = XEXP (x, 1);
7082 scalar_int_mode mode;
7084 switch (GET_CODE (x))
7086 case AND:
7087 /* We can call simplify_and_const_int only if we don't lose
7088 any (sign) bits when converting INTVAL (op1) to
7089 "unsigned HOST_WIDE_INT". */
7090 if (is_a <scalar_int_mode> (GET_MODE (x), &mode)
7091 && CONST_INT_P (op1)
7092 && (HWI_COMPUTABLE_MODE_P (mode)
7093 || INTVAL (op1) > 0))
7095 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
7096 if (GET_CODE (x) != AND)
7097 return x;
7099 op0 = XEXP (x, 0);
7100 op1 = XEXP (x, 1);
7103 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
7104 apply the distributive law and then the inverse distributive
7105 law to see if things simplify. */
7106 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
7108 rtx result = distribute_and_simplify_rtx (x, 0);
7109 if (result)
7110 return result;
7112 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
7114 rtx result = distribute_and_simplify_rtx (x, 1);
7115 if (result)
7116 return result;
7118 break;
7120 case IOR:
7121 /* If we have (ior (and A B) C), apply the distributive law and then
7122 the inverse distributive law to see if things simplify. */
7124 if (GET_CODE (op0) == AND)
7126 rtx result = distribute_and_simplify_rtx (x, 0);
7127 if (result)
7128 return result;
7131 if (GET_CODE (op1) == AND)
7133 rtx result = distribute_and_simplify_rtx (x, 1);
7134 if (result)
7135 return result;
7137 break;
7139 default:
7140 gcc_unreachable ();
7143 return x;
7146 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
7147 operations" because they can be replaced with two more basic operations.
7148 ZERO_EXTEND is also considered "compound" because it can be replaced with
7149 an AND operation, which is simpler, though only one operation.
7151 The function expand_compound_operation is called with an rtx expression
7152 and will convert it to the appropriate shifts and AND operations,
7153 simplifying at each stage.
7155 The function make_compound_operation is called to convert an expression
7156 consisting of shifts and ANDs into the equivalent compound expression.
7157 It is the inverse of this function, loosely speaking. */
7159 static rtx
7160 expand_compound_operation (rtx x)
7162 unsigned HOST_WIDE_INT pos = 0, len;
7163 int unsignedp = 0;
7164 unsigned int modewidth;
7165 rtx tem;
7166 scalar_int_mode inner_mode;
7168 switch (GET_CODE (x))
7170 case ZERO_EXTEND:
7171 unsignedp = 1;
7172 /* FALLTHRU */
7173 case SIGN_EXTEND:
7174 /* We can't necessarily use a const_int for a multiword mode;
7175 it depends on implicitly extending the value.
7176 Since we don't know the right way to extend it,
7177 we can't tell whether the implicit way is right.
7179 Even for a mode that is no wider than a const_int,
7180 we can't win, because we need to sign extend one of its bits through
7181 the rest of it, and we don't know which bit. */
7182 if (CONST_INT_P (XEXP (x, 0)))
7183 return x;
7185 /* Reject modes that aren't scalar integers because turning vector
7186 or complex modes into shifts causes problems. */
7187 if (!is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode))
7188 return x;
7190 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
7191 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
7192 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
7193 reloaded. If not for that, MEM's would very rarely be safe.
7195 Reject modes bigger than a word, because we might not be able
7196 to reference a two-register group starting with an arbitrary register
7197 (and currently gen_lowpart might crash for a SUBREG). */
7199 if (GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7200 return x;
7202 len = GET_MODE_PRECISION (inner_mode);
7203 /* If the inner object has VOIDmode (the only way this can happen
7204 is if it is an ASM_OPERANDS), we can't do anything since we don't
7205 know how much masking to do. */
7206 if (len == 0)
7207 return x;
7209 break;
7211 case ZERO_EXTRACT:
7212 unsignedp = 1;
7214 /* fall through */
7216 case SIGN_EXTRACT:
7217 /* If the operand is a CLOBBER, just return it. */
7218 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
7219 return XEXP (x, 0);
7221 if (!CONST_INT_P (XEXP (x, 1))
7222 || !CONST_INT_P (XEXP (x, 2)))
7223 return x;
7225 /* Reject modes that aren't scalar integers because turning vector
7226 or complex modes into shifts causes problems. */
7227 if (!is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode))
7228 return x;
7230 len = INTVAL (XEXP (x, 1));
7231 pos = INTVAL (XEXP (x, 2));
7233 /* This should stay within the object being extracted, fail otherwise. */
7234 if (len + pos > GET_MODE_PRECISION (inner_mode))
7235 return x;
7237 if (BITS_BIG_ENDIAN)
7238 pos = GET_MODE_PRECISION (inner_mode) - len - pos;
7240 break;
7242 default:
7243 return x;
7246 /* We've rejected non-scalar operations by now. */
7247 scalar_int_mode mode = as_a <scalar_int_mode> (GET_MODE (x));
7249 /* Convert sign extension to zero extension, if we know that the high
7250 bit is not set, as this is easier to optimize. It will be converted
7251 back to cheaper alternative in make_extraction. */
7252 if (GET_CODE (x) == SIGN_EXTEND
7253 && HWI_COMPUTABLE_MODE_P (mode)
7254 && ((nonzero_bits (XEXP (x, 0), inner_mode)
7255 & ~(((unsigned HOST_WIDE_INT) GET_MODE_MASK (inner_mode)) >> 1))
7256 == 0))
7258 rtx temp = gen_rtx_ZERO_EXTEND (mode, XEXP (x, 0));
7259 rtx temp2 = expand_compound_operation (temp);
7261 /* Make sure this is a profitable operation. */
7262 if (set_src_cost (x, mode, optimize_this_for_speed_p)
7263 > set_src_cost (temp2, mode, optimize_this_for_speed_p))
7264 return temp2;
7265 else if (set_src_cost (x, mode, optimize_this_for_speed_p)
7266 > set_src_cost (temp, mode, optimize_this_for_speed_p))
7267 return temp;
7268 else
7269 return x;
7272 /* We can optimize some special cases of ZERO_EXTEND. */
7273 if (GET_CODE (x) == ZERO_EXTEND)
7275 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
7276 know that the last value didn't have any inappropriate bits
7277 set. */
7278 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7279 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode
7280 && HWI_COMPUTABLE_MODE_P (mode)
7281 && (nonzero_bits (XEXP (XEXP (x, 0), 0), mode)
7282 & ~GET_MODE_MASK (inner_mode)) == 0)
7283 return XEXP (XEXP (x, 0), 0);
7285 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7286 if (GET_CODE (XEXP (x, 0)) == SUBREG
7287 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
7288 && subreg_lowpart_p (XEXP (x, 0))
7289 && HWI_COMPUTABLE_MODE_P (mode)
7290 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), mode)
7291 & ~GET_MODE_MASK (inner_mode)) == 0)
7292 return SUBREG_REG (XEXP (x, 0));
7294 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
7295 is a comparison and STORE_FLAG_VALUE permits. This is like
7296 the first case, but it works even when MODE is larger
7297 than HOST_WIDE_INT. */
7298 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7299 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode
7300 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
7301 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
7302 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (inner_mode)) == 0)
7303 return XEXP (XEXP (x, 0), 0);
7305 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7306 if (GET_CODE (XEXP (x, 0)) == SUBREG
7307 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
7308 && subreg_lowpart_p (XEXP (x, 0))
7309 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
7310 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
7311 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (inner_mode)) == 0)
7312 return SUBREG_REG (XEXP (x, 0));
7316 /* If we reach here, we want to return a pair of shifts. The inner
7317 shift is a left shift of BITSIZE - POS - LEN bits. The outer
7318 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
7319 logical depending on the value of UNSIGNEDP.
7321 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
7322 converted into an AND of a shift.
7324 We must check for the case where the left shift would have a negative
7325 count. This can happen in a case like (x >> 31) & 255 on machines
7326 that can't shift by a constant. On those machines, we would first
7327 combine the shift with the AND to produce a variable-position
7328 extraction. Then the constant of 31 would be substituted in
7329 to produce such a position. */
7331 modewidth = GET_MODE_PRECISION (mode);
7332 if (modewidth >= pos + len)
7334 tem = gen_lowpart (mode, XEXP (x, 0));
7335 if (!tem || GET_CODE (tem) == CLOBBER)
7336 return x;
7337 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
7338 tem, modewidth - pos - len);
7339 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
7340 mode, tem, modewidth - len);
7342 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
7344 tem = simplify_shift_const (NULL_RTX, LSHIFTRT, inner_mode,
7345 XEXP (x, 0), pos);
7346 tem = gen_lowpart (mode, tem);
7347 if (!tem || GET_CODE (tem) == CLOBBER)
7348 return x;
7349 tem = simplify_and_const_int (NULL_RTX, mode, tem,
7350 (HOST_WIDE_INT_1U << len) - 1);
7352 else
7353 /* Any other cases we can't handle. */
7354 return x;
7356 /* If we couldn't do this for some reason, return the original
7357 expression. */
7358 if (GET_CODE (tem) == CLOBBER)
7359 return x;
7361 return tem;
7364 /* X is a SET which contains an assignment of one object into
7365 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
7366 or certain SUBREGS). If possible, convert it into a series of
7367 logical operations.
7369 We half-heartedly support variable positions, but do not at all
7370 support variable lengths. */
7372 static const_rtx
7373 expand_field_assignment (const_rtx x)
7375 rtx inner;
7376 rtx pos; /* Always counts from low bit. */
7377 int len, inner_len;
7378 rtx mask, cleared, masked;
7379 scalar_int_mode compute_mode;
7381 /* Loop until we find something we can't simplify. */
7382 while (1)
7384 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
7385 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
7387 rtx x0 = XEXP (SET_DEST (x), 0);
7388 if (!GET_MODE_PRECISION (GET_MODE (x0)).is_constant (&len))
7389 break;
7390 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
7391 pos = gen_int_mode (subreg_lsb (XEXP (SET_DEST (x), 0)),
7392 MAX_MODE_INT);
7394 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
7395 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
7397 inner = XEXP (SET_DEST (x), 0);
7398 if (!GET_MODE_PRECISION (GET_MODE (inner)).is_constant (&inner_len))
7399 break;
7401 len = INTVAL (XEXP (SET_DEST (x), 1));
7402 pos = XEXP (SET_DEST (x), 2);
7404 /* A constant position should stay within the width of INNER. */
7405 if (CONST_INT_P (pos) && INTVAL (pos) + len > inner_len)
7406 break;
7408 if (BITS_BIG_ENDIAN)
7410 if (CONST_INT_P (pos))
7411 pos = GEN_INT (inner_len - len - INTVAL (pos));
7412 else if (GET_CODE (pos) == MINUS
7413 && CONST_INT_P (XEXP (pos, 1))
7414 && INTVAL (XEXP (pos, 1)) == inner_len - len)
7415 /* If position is ADJUST - X, new position is X. */
7416 pos = XEXP (pos, 0);
7417 else
7418 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
7419 gen_int_mode (inner_len - len,
7420 GET_MODE (pos)),
7421 pos);
7425 /* If the destination is a subreg that overwrites the whole of the inner
7426 register, we can move the subreg to the source. */
7427 else if (GET_CODE (SET_DEST (x)) == SUBREG
7428 /* We need SUBREGs to compute nonzero_bits properly. */
7429 && nonzero_sign_valid
7430 && !read_modify_subreg_p (SET_DEST (x)))
7432 x = gen_rtx_SET (SUBREG_REG (SET_DEST (x)),
7433 gen_lowpart
7434 (GET_MODE (SUBREG_REG (SET_DEST (x))),
7435 SET_SRC (x)));
7436 continue;
7438 else
7439 break;
7441 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7442 inner = SUBREG_REG (inner);
7444 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
7445 if (!is_a <scalar_int_mode> (GET_MODE (inner), &compute_mode))
7447 /* Don't do anything for vector or complex integral types. */
7448 if (! FLOAT_MODE_P (GET_MODE (inner)))
7449 break;
7451 /* Try to find an integral mode to pun with. */
7452 if (!int_mode_for_size (GET_MODE_BITSIZE (GET_MODE (inner)), 0)
7453 .exists (&compute_mode))
7454 break;
7456 inner = gen_lowpart (compute_mode, inner);
7459 /* Compute a mask of LEN bits, if we can do this on the host machine. */
7460 if (len >= HOST_BITS_PER_WIDE_INT)
7461 break;
7463 /* Don't try to compute in too wide unsupported modes. */
7464 if (!targetm.scalar_mode_supported_p (compute_mode))
7465 break;
7467 /* Now compute the equivalent expression. Make a copy of INNER
7468 for the SET_DEST in case it is a MEM into which we will substitute;
7469 we don't want shared RTL in that case. */
7470 mask = gen_int_mode ((HOST_WIDE_INT_1U << len) - 1,
7471 compute_mode);
7472 cleared = simplify_gen_binary (AND, compute_mode,
7473 simplify_gen_unary (NOT, compute_mode,
7474 simplify_gen_binary (ASHIFT,
7475 compute_mode,
7476 mask, pos),
7477 compute_mode),
7478 inner);
7479 masked = simplify_gen_binary (ASHIFT, compute_mode,
7480 simplify_gen_binary (
7481 AND, compute_mode,
7482 gen_lowpart (compute_mode, SET_SRC (x)),
7483 mask),
7484 pos);
7486 x = gen_rtx_SET (copy_rtx (inner),
7487 simplify_gen_binary (IOR, compute_mode,
7488 cleared, masked));
7491 return x;
7494 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
7495 it is an RTX that represents the (variable) starting position; otherwise,
7496 POS is the (constant) starting bit position. Both are counted from the LSB.
7498 UNSIGNEDP is nonzero for an unsigned reference and zero for a signed one.
7500 IN_DEST is nonzero if this is a reference in the destination of a SET.
7501 This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
7502 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7503 be used.
7505 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
7506 ZERO_EXTRACT should be built even for bits starting at bit 0.
7508 MODE is the desired mode of the result (if IN_DEST == 0).
7510 The result is an RTX for the extraction or NULL_RTX if the target
7511 can't handle it. */
7513 static rtx
7514 make_extraction (machine_mode mode, rtx inner, HOST_WIDE_INT pos,
7515 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
7516 int in_dest, int in_compare)
7518 /* This mode describes the size of the storage area
7519 to fetch the overall value from. Within that, we
7520 ignore the POS lowest bits, etc. */
7521 machine_mode is_mode = GET_MODE (inner);
7522 machine_mode inner_mode;
7523 scalar_int_mode wanted_inner_mode;
7524 scalar_int_mode wanted_inner_reg_mode = word_mode;
7525 scalar_int_mode pos_mode = word_mode;
7526 machine_mode extraction_mode = word_mode;
7527 rtx new_rtx = 0;
7528 rtx orig_pos_rtx = pos_rtx;
7529 HOST_WIDE_INT orig_pos;
7531 if (pos_rtx && CONST_INT_P (pos_rtx))
7532 pos = INTVAL (pos_rtx), pos_rtx = 0;
7534 if (GET_CODE (inner) == SUBREG
7535 && subreg_lowpart_p (inner)
7536 && (paradoxical_subreg_p (inner)
7537 /* If trying or potentionally trying to extract
7538 bits outside of is_mode, don't look through
7539 non-paradoxical SUBREGs. See PR82192. */
7540 || (pos_rtx == NULL_RTX
7541 && known_le (pos + len, GET_MODE_PRECISION (is_mode)))))
7543 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7544 consider just the QI as the memory to extract from.
7545 The subreg adds or removes high bits; its mode is
7546 irrelevant to the meaning of this extraction,
7547 since POS and LEN count from the lsb. */
7548 if (MEM_P (SUBREG_REG (inner)))
7549 is_mode = GET_MODE (SUBREG_REG (inner));
7550 inner = SUBREG_REG (inner);
7552 else if (GET_CODE (inner) == ASHIFT
7553 && CONST_INT_P (XEXP (inner, 1))
7554 && pos_rtx == 0 && pos == 0
7555 && len > UINTVAL (XEXP (inner, 1)))
7557 /* We're extracting the least significant bits of an rtx
7558 (ashift X (const_int C)), where LEN > C. Extract the
7559 least significant (LEN - C) bits of X, giving an rtx
7560 whose mode is MODE, then shift it left C times. */
7561 new_rtx = make_extraction (mode, XEXP (inner, 0),
7562 0, 0, len - INTVAL (XEXP (inner, 1)),
7563 unsignedp, in_dest, in_compare);
7564 if (new_rtx != 0)
7565 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7567 else if (GET_CODE (inner) == MULT
7568 && CONST_INT_P (XEXP (inner, 1))
7569 && pos_rtx == 0 && pos == 0)
7571 /* We're extracting the least significant bits of an rtx
7572 (mult X (const_int 2^C)), where LEN > C. Extract the
7573 least significant (LEN - C) bits of X, giving an rtx
7574 whose mode is MODE, then multiply it by 2^C. */
7575 const HOST_WIDE_INT shift_amt = exact_log2 (INTVAL (XEXP (inner, 1)));
7576 if (IN_RANGE (shift_amt, 1, len - 1))
7578 new_rtx = make_extraction (mode, XEXP (inner, 0),
7579 0, 0, len - shift_amt,
7580 unsignedp, in_dest, in_compare);
7581 if (new_rtx)
7582 return gen_rtx_MULT (mode, new_rtx, XEXP (inner, 1));
7585 else if (GET_CODE (inner) == TRUNCATE
7586 /* If trying or potentionally trying to extract
7587 bits outside of is_mode, don't look through
7588 TRUNCATE. See PR82192. */
7589 && pos_rtx == NULL_RTX
7590 && known_le (pos + len, GET_MODE_PRECISION (is_mode)))
7591 inner = XEXP (inner, 0);
7593 inner_mode = GET_MODE (inner);
7595 /* See if this can be done without an extraction. We never can if the
7596 width of the field is not the same as that of some integer mode. For
7597 registers, we can only avoid the extraction if the position is at the
7598 low-order bit and this is either not in the destination or we have the
7599 appropriate STRICT_LOW_PART operation available.
7601 For MEM, we can avoid an extract if the field starts on an appropriate
7602 boundary and we can change the mode of the memory reference. */
7604 scalar_int_mode tmode;
7605 if (int_mode_for_size (len, 1).exists (&tmode)
7606 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7607 && !MEM_P (inner)
7608 && (pos == 0 || REG_P (inner))
7609 && (inner_mode == tmode
7610 || !REG_P (inner)
7611 || TRULY_NOOP_TRUNCATION_MODES_P (tmode, inner_mode)
7612 || reg_truncated_to_mode (tmode, inner))
7613 && (! in_dest
7614 || (REG_P (inner)
7615 && have_insn_for (STRICT_LOW_PART, tmode))))
7616 || (MEM_P (inner) && pos_rtx == 0
7617 && (pos
7618 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7619 : BITS_PER_UNIT)) == 0
7620 /* We can't do this if we are widening INNER_MODE (it
7621 may not be aligned, for one thing). */
7622 && !paradoxical_subreg_p (tmode, inner_mode)
7623 && known_le (pos + len, GET_MODE_PRECISION (is_mode))
7624 && (inner_mode == tmode
7625 || (! mode_dependent_address_p (XEXP (inner, 0),
7626 MEM_ADDR_SPACE (inner))
7627 && ! MEM_VOLATILE_P (inner))))))
7629 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7630 field. If the original and current mode are the same, we need not
7631 adjust the offset. Otherwise, we do if bytes big endian.
7633 If INNER is not a MEM, get a piece consisting of just the field
7634 of interest (in this case POS % BITS_PER_WORD must be 0). */
7636 if (MEM_P (inner))
7638 poly_int64 offset;
7640 /* POS counts from lsb, but make OFFSET count in memory order. */
7641 if (BYTES_BIG_ENDIAN)
7642 offset = bits_to_bytes_round_down (GET_MODE_PRECISION (is_mode)
7643 - len - pos);
7644 else
7645 offset = pos / BITS_PER_UNIT;
7647 new_rtx = adjust_address_nv (inner, tmode, offset);
7649 else if (REG_P (inner))
7651 if (tmode != inner_mode)
7653 /* We can't call gen_lowpart in a DEST since we
7654 always want a SUBREG (see below) and it would sometimes
7655 return a new hard register. */
7656 if (pos || in_dest)
7658 poly_uint64 offset
7659 = subreg_offset_from_lsb (tmode, inner_mode, pos);
7661 /* Avoid creating invalid subregs, for example when
7662 simplifying (x>>32)&255. */
7663 if (!validate_subreg (tmode, inner_mode, inner, offset))
7664 return NULL_RTX;
7666 new_rtx = gen_rtx_SUBREG (tmode, inner, offset);
7668 else
7669 new_rtx = gen_lowpart (tmode, inner);
7671 else
7672 new_rtx = inner;
7674 else
7675 new_rtx = force_to_mode (inner, tmode,
7676 len >= HOST_BITS_PER_WIDE_INT
7677 ? HOST_WIDE_INT_M1U
7678 : (HOST_WIDE_INT_1U << len) - 1, 0);
7680 /* If this extraction is going into the destination of a SET,
7681 make a STRICT_LOW_PART unless we made a MEM. */
7683 if (in_dest)
7684 return (MEM_P (new_rtx) ? new_rtx
7685 : (GET_CODE (new_rtx) != SUBREG
7686 ? gen_rtx_CLOBBER (tmode, const0_rtx)
7687 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7689 if (mode == tmode)
7690 return new_rtx;
7692 if (CONST_SCALAR_INT_P (new_rtx))
7693 return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7694 mode, new_rtx, tmode);
7696 /* If we know that no extraneous bits are set, and that the high
7697 bit is not set, convert the extraction to the cheaper of
7698 sign and zero extension, that are equivalent in these cases. */
7699 if (flag_expensive_optimizations
7700 && (HWI_COMPUTABLE_MODE_P (tmode)
7701 && ((nonzero_bits (new_rtx, tmode)
7702 & ~(((unsigned HOST_WIDE_INT)GET_MODE_MASK (tmode)) >> 1))
7703 == 0)))
7705 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7706 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7708 /* Prefer ZERO_EXTENSION, since it gives more information to
7709 backends. */
7710 if (set_src_cost (temp, mode, optimize_this_for_speed_p)
7711 <= set_src_cost (temp1, mode, optimize_this_for_speed_p))
7712 return temp;
7713 return temp1;
7716 /* Otherwise, sign- or zero-extend unless we already are in the
7717 proper mode. */
7719 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7720 mode, new_rtx));
7723 /* Unless this is a COMPARE or we have a funny memory reference,
7724 don't do anything with zero-extending field extracts starting at
7725 the low-order bit since they are simple AND operations. */
7726 if (pos_rtx == 0 && pos == 0 && ! in_dest
7727 && ! in_compare && unsignedp)
7728 return 0;
7730 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7731 if the position is not a constant and the length is not 1. In all
7732 other cases, we would only be going outside our object in cases when
7733 an original shift would have been undefined. */
7734 if (MEM_P (inner)
7735 && ((pos_rtx == 0 && maybe_gt (pos + len, GET_MODE_PRECISION (is_mode)))
7736 || (pos_rtx != 0 && len != 1)))
7737 return 0;
7739 enum extraction_pattern pattern = (in_dest ? EP_insv
7740 : unsignedp ? EP_extzv : EP_extv);
7742 /* If INNER is not from memory, we want it to have the mode of a register
7743 extraction pattern's structure operand, or word_mode if there is no
7744 such pattern. The same applies to extraction_mode and pos_mode
7745 and their respective operands.
7747 For memory, assume that the desired extraction_mode and pos_mode
7748 are the same as for a register operation, since at present we don't
7749 have named patterns for aligned memory structures. */
7750 class extraction_insn insn;
7751 unsigned int inner_size;
7752 if (GET_MODE_BITSIZE (inner_mode).is_constant (&inner_size)
7753 && get_best_reg_extraction_insn (&insn, pattern, inner_size, mode))
7755 wanted_inner_reg_mode = insn.struct_mode.require ();
7756 pos_mode = insn.pos_mode;
7757 extraction_mode = insn.field_mode;
7760 /* Never narrow an object, since that might not be safe. */
7762 if (mode != VOIDmode
7763 && partial_subreg_p (extraction_mode, mode))
7764 extraction_mode = mode;
7766 /* Punt if len is too large for extraction_mode. */
7767 if (maybe_gt (len, GET_MODE_PRECISION (extraction_mode)))
7768 return NULL_RTX;
7770 if (!MEM_P (inner))
7771 wanted_inner_mode = wanted_inner_reg_mode;
7772 else
7774 /* Be careful not to go beyond the extracted object and maintain the
7775 natural alignment of the memory. */
7776 wanted_inner_mode = smallest_int_mode_for_size (len);
7777 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7778 > GET_MODE_BITSIZE (wanted_inner_mode))
7779 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode).require ();
7782 orig_pos = pos;
7784 if (BITS_BIG_ENDIAN)
7786 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7787 BITS_BIG_ENDIAN style. If position is constant, compute new
7788 position. Otherwise, build subtraction.
7789 Note that POS is relative to the mode of the original argument.
7790 If it's a MEM we need to recompute POS relative to that.
7791 However, if we're extracting from (or inserting into) a register,
7792 we want to recompute POS relative to wanted_inner_mode. */
7793 int width;
7794 if (!MEM_P (inner))
7795 width = GET_MODE_BITSIZE (wanted_inner_mode);
7796 else if (!GET_MODE_BITSIZE (is_mode).is_constant (&width))
7797 return NULL_RTX;
7799 if (pos_rtx == 0)
7800 pos = width - len - pos;
7801 else
7802 pos_rtx
7803 = gen_rtx_MINUS (GET_MODE (pos_rtx),
7804 gen_int_mode (width - len, GET_MODE (pos_rtx)),
7805 pos_rtx);
7806 /* POS may be less than 0 now, but we check for that below.
7807 Note that it can only be less than 0 if !MEM_P (inner). */
7810 /* If INNER has a wider mode, and this is a constant extraction, try to
7811 make it smaller and adjust the byte to point to the byte containing
7812 the value. */
7813 if (wanted_inner_mode != VOIDmode
7814 && inner_mode != wanted_inner_mode
7815 && ! pos_rtx
7816 && partial_subreg_p (wanted_inner_mode, is_mode)
7817 && MEM_P (inner)
7818 && ! mode_dependent_address_p (XEXP (inner, 0), MEM_ADDR_SPACE (inner))
7819 && ! MEM_VOLATILE_P (inner))
7821 poly_int64 offset = 0;
7823 /* The computations below will be correct if the machine is big
7824 endian in both bits and bytes or little endian in bits and bytes.
7825 If it is mixed, we must adjust. */
7827 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7828 adjust OFFSET to compensate. */
7829 if (BYTES_BIG_ENDIAN
7830 && paradoxical_subreg_p (is_mode, inner_mode))
7831 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7833 /* We can now move to the desired byte. */
7834 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7835 * GET_MODE_SIZE (wanted_inner_mode);
7836 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7838 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7839 && is_mode != wanted_inner_mode)
7840 offset = (GET_MODE_SIZE (is_mode)
7841 - GET_MODE_SIZE (wanted_inner_mode) - offset);
7843 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7846 /* If INNER is not memory, get it into the proper mode. If we are changing
7847 its mode, POS must be a constant and smaller than the size of the new
7848 mode. */
7849 else if (!MEM_P (inner))
7851 /* On the LHS, don't create paradoxical subregs implicitely truncating
7852 the register unless TARGET_TRULY_NOOP_TRUNCATION. */
7853 if (in_dest
7854 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner),
7855 wanted_inner_mode))
7856 return NULL_RTX;
7858 if (GET_MODE (inner) != wanted_inner_mode
7859 && (pos_rtx != 0
7860 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7861 return NULL_RTX;
7863 if (orig_pos < 0)
7864 return NULL_RTX;
7866 inner = force_to_mode (inner, wanted_inner_mode,
7867 pos_rtx
7868 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7869 ? HOST_WIDE_INT_M1U
7870 : (((HOST_WIDE_INT_1U << len) - 1)
7871 << orig_pos),
7875 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7876 have to zero extend. Otherwise, we can just use a SUBREG.
7878 We dealt with constant rtxes earlier, so pos_rtx cannot
7879 have VOIDmode at this point. */
7880 if (pos_rtx != 0
7881 && (GET_MODE_SIZE (pos_mode)
7882 > GET_MODE_SIZE (as_a <scalar_int_mode> (GET_MODE (pos_rtx)))))
7884 rtx temp = simplify_gen_unary (ZERO_EXTEND, pos_mode, pos_rtx,
7885 GET_MODE (pos_rtx));
7887 /* If we know that no extraneous bits are set, and that the high
7888 bit is not set, convert extraction to cheaper one - either
7889 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7890 cases. */
7891 if (flag_expensive_optimizations
7892 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx))
7893 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7894 & ~(((unsigned HOST_WIDE_INT)
7895 GET_MODE_MASK (GET_MODE (pos_rtx)))
7896 >> 1))
7897 == 0)))
7899 rtx temp1 = simplify_gen_unary (SIGN_EXTEND, pos_mode, pos_rtx,
7900 GET_MODE (pos_rtx));
7902 /* Prefer ZERO_EXTENSION, since it gives more information to
7903 backends. */
7904 if (set_src_cost (temp1, pos_mode, optimize_this_for_speed_p)
7905 < set_src_cost (temp, pos_mode, optimize_this_for_speed_p))
7906 temp = temp1;
7908 pos_rtx = temp;
7911 /* Make POS_RTX unless we already have it and it is correct. If we don't
7912 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7913 be a CONST_INT. */
7914 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7915 pos_rtx = orig_pos_rtx;
7917 else if (pos_rtx == 0)
7918 pos_rtx = GEN_INT (pos);
7920 /* Make the required operation. See if we can use existing rtx. */
7921 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7922 extraction_mode, inner, GEN_INT (len), pos_rtx);
7923 if (! in_dest)
7924 new_rtx = gen_lowpart (mode, new_rtx);
7926 return new_rtx;
7929 /* See if X (of mode MODE) contains an ASHIFT of COUNT or more bits that
7930 can be commuted with any other operations in X. Return X without
7931 that shift if so. */
7933 static rtx
7934 extract_left_shift (scalar_int_mode mode, rtx x, int count)
7936 enum rtx_code code = GET_CODE (x);
7937 rtx tem;
7939 switch (code)
7941 case ASHIFT:
7942 /* This is the shift itself. If it is wide enough, we will return
7943 either the value being shifted if the shift count is equal to
7944 COUNT or a shift for the difference. */
7945 if (CONST_INT_P (XEXP (x, 1))
7946 && INTVAL (XEXP (x, 1)) >= count)
7947 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
7948 INTVAL (XEXP (x, 1)) - count);
7949 break;
7951 case NEG: case NOT:
7952 if ((tem = extract_left_shift (mode, XEXP (x, 0), count)) != 0)
7953 return simplify_gen_unary (code, mode, tem, mode);
7955 break;
7957 case PLUS: case IOR: case XOR: case AND:
7958 /* If we can safely shift this constant and we find the inner shift,
7959 make a new operation. */
7960 if (CONST_INT_P (XEXP (x, 1))
7961 && (UINTVAL (XEXP (x, 1))
7962 & (((HOST_WIDE_INT_1U << count)) - 1)) == 0
7963 && (tem = extract_left_shift (mode, XEXP (x, 0), count)) != 0)
7965 HOST_WIDE_INT val = INTVAL (XEXP (x, 1)) >> count;
7966 return simplify_gen_binary (code, mode, tem,
7967 gen_int_mode (val, mode));
7969 break;
7971 default:
7972 break;
7975 return 0;
7978 /* Subroutine of make_compound_operation. *X_PTR is the rtx at the current
7979 level of the expression and MODE is its mode. IN_CODE is as for
7980 make_compound_operation. *NEXT_CODE_PTR is the value of IN_CODE
7981 that should be used when recursing on operands of *X_PTR.
7983 There are two possible actions:
7985 - Return null. This tells the caller to recurse on *X_PTR with IN_CODE
7986 equal to *NEXT_CODE_PTR, after which *X_PTR holds the final value.
7988 - Return a new rtx, which the caller returns directly. */
7990 static rtx
7991 make_compound_operation_int (scalar_int_mode mode, rtx *x_ptr,
7992 enum rtx_code in_code,
7993 enum rtx_code *next_code_ptr)
7995 rtx x = *x_ptr;
7996 enum rtx_code next_code = *next_code_ptr;
7997 enum rtx_code code = GET_CODE (x);
7998 int mode_width = GET_MODE_PRECISION (mode);
7999 rtx rhs, lhs;
8000 rtx new_rtx = 0;
8001 int i;
8002 rtx tem;
8003 scalar_int_mode inner_mode;
8004 bool equality_comparison = false;
8006 if (in_code == EQ)
8008 equality_comparison = true;
8009 in_code = COMPARE;
8012 /* Process depending on the code of this operation. If NEW is set
8013 nonzero, it will be returned. */
8015 switch (code)
8017 case ASHIFT:
8018 /* Convert shifts by constants into multiplications if inside
8019 an address. */
8020 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
8021 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8022 && INTVAL (XEXP (x, 1)) >= 0)
8024 HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
8025 HOST_WIDE_INT multval = HOST_WIDE_INT_1 << count;
8027 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8028 if (GET_CODE (new_rtx) == NEG)
8030 new_rtx = XEXP (new_rtx, 0);
8031 multval = -multval;
8033 multval = trunc_int_for_mode (multval, mode);
8034 new_rtx = gen_rtx_MULT (mode, new_rtx, gen_int_mode (multval, mode));
8036 break;
8038 case PLUS:
8039 lhs = XEXP (x, 0);
8040 rhs = XEXP (x, 1);
8041 lhs = make_compound_operation (lhs, next_code);
8042 rhs = make_compound_operation (rhs, next_code);
8043 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG)
8045 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
8046 XEXP (lhs, 1));
8047 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
8049 else if (GET_CODE (lhs) == MULT
8050 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
8052 tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
8053 simplify_gen_unary (NEG, mode,
8054 XEXP (lhs, 1),
8055 mode));
8056 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
8058 else
8060 SUBST (XEXP (x, 0), lhs);
8061 SUBST (XEXP (x, 1), rhs);
8063 maybe_swap_commutative_operands (x);
8064 return x;
8066 case MINUS:
8067 lhs = XEXP (x, 0);
8068 rhs = XEXP (x, 1);
8069 lhs = make_compound_operation (lhs, next_code);
8070 rhs = make_compound_operation (rhs, next_code);
8071 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG)
8073 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
8074 XEXP (rhs, 1));
8075 return simplify_gen_binary (PLUS, mode, tem, lhs);
8077 else if (GET_CODE (rhs) == MULT
8078 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
8080 tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
8081 simplify_gen_unary (NEG, mode,
8082 XEXP (rhs, 1),
8083 mode));
8084 return simplify_gen_binary (PLUS, mode, tem, lhs);
8086 else
8088 SUBST (XEXP (x, 0), lhs);
8089 SUBST (XEXP (x, 1), rhs);
8090 return x;
8093 case AND:
8094 /* If the second operand is not a constant, we can't do anything
8095 with it. */
8096 if (!CONST_INT_P (XEXP (x, 1)))
8097 break;
8099 /* If the constant is a power of two minus one and the first operand
8100 is a logical right shift, make an extraction. */
8101 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8102 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8104 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
8105 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1),
8106 i, 1, 0, in_code == COMPARE);
8109 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
8110 else if (GET_CODE (XEXP (x, 0)) == SUBREG
8111 && subreg_lowpart_p (XEXP (x, 0))
8112 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (XEXP (x, 0))),
8113 &inner_mode)
8114 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
8115 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8117 rtx inner_x0 = SUBREG_REG (XEXP (x, 0));
8118 new_rtx = make_compound_operation (XEXP (inner_x0, 0), next_code);
8119 new_rtx = make_extraction (inner_mode, new_rtx, 0,
8120 XEXP (inner_x0, 1),
8121 i, 1, 0, in_code == COMPARE);
8123 /* If we narrowed the mode when dropping the subreg, then we lose. */
8124 if (GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (mode))
8125 new_rtx = NULL;
8127 /* If that didn't give anything, see if the AND simplifies on
8128 its own. */
8129 if (!new_rtx && i >= 0)
8131 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8132 new_rtx = make_extraction (mode, new_rtx, 0, NULL_RTX, i, 1,
8133 0, in_code == COMPARE);
8136 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
8137 else if ((GET_CODE (XEXP (x, 0)) == XOR
8138 || GET_CODE (XEXP (x, 0)) == IOR)
8139 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
8140 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
8141 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8143 /* Apply the distributive law, and then try to make extractions. */
8144 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
8145 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
8146 XEXP (x, 1)),
8147 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
8148 XEXP (x, 1)));
8149 new_rtx = make_compound_operation (new_rtx, in_code);
8152 /* If we are have (and (rotate X C) M) and C is larger than the number
8153 of bits in M, this is an extraction. */
8155 else if (GET_CODE (XEXP (x, 0)) == ROTATE
8156 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8157 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
8158 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
8160 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
8161 new_rtx = make_extraction (mode, new_rtx,
8162 (GET_MODE_PRECISION (mode)
8163 - INTVAL (XEXP (XEXP (x, 0), 1))),
8164 NULL_RTX, i, 1, 0, in_code == COMPARE);
8167 /* On machines without logical shifts, if the operand of the AND is
8168 a logical shift and our mask turns off all the propagated sign
8169 bits, we can replace the logical shift with an arithmetic shift. */
8170 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8171 && !have_insn_for (LSHIFTRT, mode)
8172 && have_insn_for (ASHIFTRT, mode)
8173 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8174 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8175 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8176 && mode_width <= HOST_BITS_PER_WIDE_INT)
8178 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
8180 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
8181 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
8182 SUBST (XEXP (x, 0),
8183 gen_rtx_ASHIFTRT (mode,
8184 make_compound_operation (XEXP (XEXP (x,
8187 next_code),
8188 XEXP (XEXP (x, 0), 1)));
8191 /* If the constant is one less than a power of two, this might be
8192 representable by an extraction even if no shift is present.
8193 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
8194 we are in a COMPARE. */
8195 else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8196 new_rtx = make_extraction (mode,
8197 make_compound_operation (XEXP (x, 0),
8198 next_code),
8199 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
8201 /* If we are in a comparison and this is an AND with a power of two,
8202 convert this into the appropriate bit extract. */
8203 else if (in_code == COMPARE
8204 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
8205 && (equality_comparison || i < GET_MODE_PRECISION (mode) - 1))
8206 new_rtx = make_extraction (mode,
8207 make_compound_operation (XEXP (x, 0),
8208 next_code),
8209 i, NULL_RTX, 1, 1, 0, 1);
8211 /* If the one operand is a paradoxical subreg of a register or memory and
8212 the constant (limited to the smaller mode) has only zero bits where
8213 the sub expression has known zero bits, this can be expressed as
8214 a zero_extend. */
8215 else if (GET_CODE (XEXP (x, 0)) == SUBREG)
8217 rtx sub;
8219 sub = XEXP (XEXP (x, 0), 0);
8220 machine_mode sub_mode = GET_MODE (sub);
8221 int sub_width;
8222 if ((REG_P (sub) || MEM_P (sub))
8223 && GET_MODE_PRECISION (sub_mode).is_constant (&sub_width)
8224 && sub_width < mode_width)
8226 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (sub_mode);
8227 unsigned HOST_WIDE_INT mask;
8229 /* original AND constant with all the known zero bits set */
8230 mask = UINTVAL (XEXP (x, 1)) | (~nonzero_bits (sub, sub_mode));
8231 if ((mask & mode_mask) == mode_mask)
8233 new_rtx = make_compound_operation (sub, next_code);
8234 new_rtx = make_extraction (mode, new_rtx, 0, 0, sub_width,
8235 1, 0, in_code == COMPARE);
8240 break;
8242 case LSHIFTRT:
8243 /* If the sign bit is known to be zero, replace this with an
8244 arithmetic shift. */
8245 if (have_insn_for (ASHIFTRT, mode)
8246 && ! have_insn_for (LSHIFTRT, mode)
8247 && mode_width <= HOST_BITS_PER_WIDE_INT
8248 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
8250 new_rtx = gen_rtx_ASHIFTRT (mode,
8251 make_compound_operation (XEXP (x, 0),
8252 next_code),
8253 XEXP (x, 1));
8254 break;
8257 /* fall through */
8259 case ASHIFTRT:
8260 lhs = XEXP (x, 0);
8261 rhs = XEXP (x, 1);
8263 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
8264 this is a SIGN_EXTRACT. */
8265 if (CONST_INT_P (rhs)
8266 && GET_CODE (lhs) == ASHIFT
8267 && CONST_INT_P (XEXP (lhs, 1))
8268 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
8269 && INTVAL (XEXP (lhs, 1)) >= 0
8270 && INTVAL (rhs) < mode_width)
8272 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
8273 new_rtx = make_extraction (mode, new_rtx,
8274 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
8275 NULL_RTX, mode_width - INTVAL (rhs),
8276 code == LSHIFTRT, 0, in_code == COMPARE);
8277 break;
8280 /* See if we have operations between an ASHIFTRT and an ASHIFT.
8281 If so, try to merge the shifts into a SIGN_EXTEND. We could
8282 also do this for some cases of SIGN_EXTRACT, but it doesn't
8283 seem worth the effort; the case checked for occurs on Alpha. */
8285 if (!OBJECT_P (lhs)
8286 && ! (GET_CODE (lhs) == SUBREG
8287 && (OBJECT_P (SUBREG_REG (lhs))))
8288 && CONST_INT_P (rhs)
8289 && INTVAL (rhs) >= 0
8290 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
8291 && INTVAL (rhs) < mode_width
8292 && (new_rtx = extract_left_shift (mode, lhs, INTVAL (rhs))) != 0)
8293 new_rtx = make_extraction (mode, make_compound_operation (new_rtx,
8294 next_code),
8295 0, NULL_RTX, mode_width - INTVAL (rhs),
8296 code == LSHIFTRT, 0, in_code == COMPARE);
8298 break;
8300 case SUBREG:
8301 /* Call ourselves recursively on the inner expression. If we are
8302 narrowing the object and it has a different RTL code from
8303 what it originally did, do this SUBREG as a force_to_mode. */
8305 rtx inner = SUBREG_REG (x), simplified;
8306 enum rtx_code subreg_code = in_code;
8308 /* If the SUBREG is masking of a logical right shift,
8309 make an extraction. */
8310 if (GET_CODE (inner) == LSHIFTRT
8311 && is_a <scalar_int_mode> (GET_MODE (inner), &inner_mode)
8312 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (inner_mode)
8313 && CONST_INT_P (XEXP (inner, 1))
8314 && UINTVAL (XEXP (inner, 1)) < GET_MODE_PRECISION (inner_mode)
8315 && subreg_lowpart_p (x))
8317 new_rtx = make_compound_operation (XEXP (inner, 0), next_code);
8318 int width = GET_MODE_PRECISION (inner_mode)
8319 - INTVAL (XEXP (inner, 1));
8320 if (width > mode_width)
8321 width = mode_width;
8322 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (inner, 1),
8323 width, 1, 0, in_code == COMPARE);
8324 break;
8327 /* If in_code is COMPARE, it isn't always safe to pass it through
8328 to the recursive make_compound_operation call. */
8329 if (subreg_code == COMPARE
8330 && (!subreg_lowpart_p (x)
8331 || GET_CODE (inner) == SUBREG
8332 /* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0)
8333 is (const_int 0), rather than
8334 (subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0).
8335 Similarly (subreg:QI (and:SI (reg:SI) (const_int 0x80)) 0)
8336 for non-equality comparisons against 0 is not equivalent
8337 to (subreg:QI (lshiftrt:SI (reg:SI) (const_int 7)) 0). */
8338 || (GET_CODE (inner) == AND
8339 && CONST_INT_P (XEXP (inner, 1))
8340 && partial_subreg_p (x)
8341 && exact_log2 (UINTVAL (XEXP (inner, 1)))
8342 >= GET_MODE_BITSIZE (mode) - 1)))
8343 subreg_code = SET;
8345 tem = make_compound_operation (inner, subreg_code);
8347 simplified
8348 = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
8349 if (simplified)
8350 tem = simplified;
8352 if (GET_CODE (tem) != GET_CODE (inner)
8353 && partial_subreg_p (x)
8354 && subreg_lowpart_p (x))
8356 rtx newer
8357 = force_to_mode (tem, mode, HOST_WIDE_INT_M1U, 0);
8359 /* If we have something other than a SUBREG, we might have
8360 done an expansion, so rerun ourselves. */
8361 if (GET_CODE (newer) != SUBREG)
8362 newer = make_compound_operation (newer, in_code);
8364 /* force_to_mode can expand compounds. If it just re-expanded
8365 the compound, use gen_lowpart to convert to the desired
8366 mode. */
8367 if (rtx_equal_p (newer, x)
8368 /* Likewise if it re-expanded the compound only partially.
8369 This happens for SUBREG of ZERO_EXTRACT if they extract
8370 the same number of bits. */
8371 || (GET_CODE (newer) == SUBREG
8372 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
8373 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
8374 && GET_CODE (inner) == AND
8375 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
8376 return gen_lowpart (GET_MODE (x), tem);
8378 return newer;
8381 if (simplified)
8382 return tem;
8384 break;
8386 default:
8387 break;
8390 if (new_rtx)
8391 *x_ptr = gen_lowpart (mode, new_rtx);
8392 *next_code_ptr = next_code;
8393 return NULL_RTX;
8396 /* Look at the expression rooted at X. Look for expressions
8397 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
8398 Form these expressions.
8400 Return the new rtx, usually just X.
8402 Also, for machines like the VAX that don't have logical shift insns,
8403 try to convert logical to arithmetic shift operations in cases where
8404 they are equivalent. This undoes the canonicalizations to logical
8405 shifts done elsewhere.
8407 We try, as much as possible, to re-use rtl expressions to save memory.
8409 IN_CODE says what kind of expression we are processing. Normally, it is
8410 SET. In a memory address it is MEM. When processing the arguments of
8411 a comparison or a COMPARE against zero, it is COMPARE, or EQ if more
8412 precisely it is an equality comparison against zero. */
8415 make_compound_operation (rtx x, enum rtx_code in_code)
8417 enum rtx_code code = GET_CODE (x);
8418 const char *fmt;
8419 int i, j;
8420 enum rtx_code next_code;
8421 rtx new_rtx, tem;
8423 /* Select the code to be used in recursive calls. Once we are inside an
8424 address, we stay there. If we have a comparison, set to COMPARE,
8425 but once inside, go back to our default of SET. */
8427 next_code = (code == MEM ? MEM
8428 : ((code == COMPARE || COMPARISON_P (x))
8429 && XEXP (x, 1) == const0_rtx) ? COMPARE
8430 : in_code == COMPARE || in_code == EQ ? SET : in_code);
8432 scalar_int_mode mode;
8433 if (is_a <scalar_int_mode> (GET_MODE (x), &mode))
8435 rtx new_rtx = make_compound_operation_int (mode, &x, in_code,
8436 &next_code);
8437 if (new_rtx)
8438 return new_rtx;
8439 code = GET_CODE (x);
8442 /* Now recursively process each operand of this operation. We need to
8443 handle ZERO_EXTEND specially so that we don't lose track of the
8444 inner mode. */
8445 if (code == ZERO_EXTEND)
8447 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8448 tem = simplify_const_unary_operation (ZERO_EXTEND, GET_MODE (x),
8449 new_rtx, GET_MODE (XEXP (x, 0)));
8450 if (tem)
8451 return tem;
8452 SUBST (XEXP (x, 0), new_rtx);
8453 return x;
8456 fmt = GET_RTX_FORMAT (code);
8457 for (i = 0; i < GET_RTX_LENGTH (code); i++)
8458 if (fmt[i] == 'e')
8460 new_rtx = make_compound_operation (XEXP (x, i), next_code);
8461 SUBST (XEXP (x, i), new_rtx);
8463 else if (fmt[i] == 'E')
8464 for (j = 0; j < XVECLEN (x, i); j++)
8466 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
8467 SUBST (XVECEXP (x, i, j), new_rtx);
8470 maybe_swap_commutative_operands (x);
8471 return x;
8474 /* Given M see if it is a value that would select a field of bits
8475 within an item, but not the entire word. Return -1 if not.
8476 Otherwise, return the starting position of the field, where 0 is the
8477 low-order bit.
8479 *PLEN is set to the length of the field. */
8481 static int
8482 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
8484 /* Get the bit number of the first 1 bit from the right, -1 if none. */
8485 int pos = m ? ctz_hwi (m) : -1;
8486 int len = 0;
8488 if (pos >= 0)
8489 /* Now shift off the low-order zero bits and see if we have a
8490 power of two minus 1. */
8491 len = exact_log2 ((m >> pos) + 1);
8493 if (len <= 0)
8494 pos = -1;
8496 *plen = len;
8497 return pos;
8500 /* If X refers to a register that equals REG in value, replace these
8501 references with REG. */
8502 static rtx
8503 canon_reg_for_combine (rtx x, rtx reg)
8505 rtx op0, op1, op2;
8506 const char *fmt;
8507 int i;
8508 bool copied;
8510 enum rtx_code code = GET_CODE (x);
8511 switch (GET_RTX_CLASS (code))
8513 case RTX_UNARY:
8514 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8515 if (op0 != XEXP (x, 0))
8516 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
8517 GET_MODE (reg));
8518 break;
8520 case RTX_BIN_ARITH:
8521 case RTX_COMM_ARITH:
8522 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8523 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8524 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8525 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
8526 break;
8528 case RTX_COMPARE:
8529 case RTX_COMM_COMPARE:
8530 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8531 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8532 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8533 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
8534 GET_MODE (op0), op0, op1);
8535 break;
8537 case RTX_TERNARY:
8538 case RTX_BITFIELD_OPS:
8539 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8540 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8541 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
8542 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
8543 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
8544 GET_MODE (op0), op0, op1, op2);
8545 /* FALLTHRU */
8547 case RTX_OBJ:
8548 if (REG_P (x))
8550 if (rtx_equal_p (get_last_value (reg), x)
8551 || rtx_equal_p (reg, get_last_value (x)))
8552 return reg;
8553 else
8554 break;
8557 /* fall through */
8559 default:
8560 fmt = GET_RTX_FORMAT (code);
8561 copied = false;
8562 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8563 if (fmt[i] == 'e')
8565 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
8566 if (op != XEXP (x, i))
8568 if (!copied)
8570 copied = true;
8571 x = copy_rtx (x);
8573 XEXP (x, i) = op;
8576 else if (fmt[i] == 'E')
8578 int j;
8579 for (j = 0; j < XVECLEN (x, i); j++)
8581 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
8582 if (op != XVECEXP (x, i, j))
8584 if (!copied)
8586 copied = true;
8587 x = copy_rtx (x);
8589 XVECEXP (x, i, j) = op;
8594 break;
8597 return x;
8600 /* Return X converted to MODE. If the value is already truncated to
8601 MODE we can just return a subreg even though in the general case we
8602 would need an explicit truncation. */
8604 static rtx
8605 gen_lowpart_or_truncate (machine_mode mode, rtx x)
8607 if (!CONST_INT_P (x)
8608 && partial_subreg_p (mode, GET_MODE (x))
8609 && !TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x))
8610 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
8612 /* Bit-cast X into an integer mode. */
8613 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
8614 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)).require (), x);
8615 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode).require (),
8616 x, GET_MODE (x));
8619 return gen_lowpart (mode, x);
8622 /* See if X can be simplified knowing that we will only refer to it in
8623 MODE and will only refer to those bits that are nonzero in MASK.
8624 If other bits are being computed or if masking operations are done
8625 that select a superset of the bits in MASK, they can sometimes be
8626 ignored.
8628 Return a possibly simplified expression, but always convert X to
8629 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
8631 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
8632 are all off in X. This is used when X will be complemented, by either
8633 NOT, NEG, or XOR. */
8635 static rtx
8636 force_to_mode (rtx x, machine_mode mode, unsigned HOST_WIDE_INT mask,
8637 int just_select)
8639 enum rtx_code code = GET_CODE (x);
8640 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8641 machine_mode op_mode;
8642 unsigned HOST_WIDE_INT nonzero;
8644 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
8645 code below will do the wrong thing since the mode of such an
8646 expression is VOIDmode.
8648 Also do nothing if X is a CLOBBER; this can happen if X was
8649 the return value from a call to gen_lowpart. */
8650 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
8651 return x;
8653 /* We want to perform the operation in its present mode unless we know
8654 that the operation is valid in MODE, in which case we do the operation
8655 in MODE. */
8656 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
8657 && have_insn_for (code, mode))
8658 ? mode : GET_MODE (x));
8660 /* It is not valid to do a right-shift in a narrower mode
8661 than the one it came in with. */
8662 if ((code == LSHIFTRT || code == ASHIFTRT)
8663 && partial_subreg_p (mode, GET_MODE (x)))
8664 op_mode = GET_MODE (x);
8666 /* Truncate MASK to fit OP_MODE. */
8667 if (op_mode)
8668 mask &= GET_MODE_MASK (op_mode);
8670 /* Determine what bits of X are guaranteed to be (non)zero. */
8671 nonzero = nonzero_bits (x, mode);
8673 /* If none of the bits in X are needed, return a zero. */
8674 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8675 x = const0_rtx;
8677 /* If X is a CONST_INT, return a new one. Do this here since the
8678 test below will fail. */
8679 if (CONST_INT_P (x))
8681 if (SCALAR_INT_MODE_P (mode))
8682 return gen_int_mode (INTVAL (x) & mask, mode);
8683 else
8685 x = GEN_INT (INTVAL (x) & mask);
8686 return gen_lowpart_common (mode, x);
8690 /* If X is narrower than MODE and we want all the bits in X's mode, just
8691 get X in the proper mode. */
8692 if (paradoxical_subreg_p (mode, GET_MODE (x))
8693 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8694 return gen_lowpart (mode, x);
8696 /* We can ignore the effect of a SUBREG if it narrows the mode or
8697 if the constant masks to zero all the bits the mode doesn't have. */
8698 if (GET_CODE (x) == SUBREG
8699 && subreg_lowpart_p (x)
8700 && (partial_subreg_p (x)
8701 || (mask
8702 & GET_MODE_MASK (GET_MODE (x))
8703 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))) == 0))
8704 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8706 scalar_int_mode int_mode, xmode;
8707 if (is_a <scalar_int_mode> (mode, &int_mode)
8708 && is_a <scalar_int_mode> (GET_MODE (x), &xmode))
8709 /* OP_MODE is either MODE or XMODE, so it must be a scalar
8710 integer too. */
8711 return force_int_to_mode (x, int_mode, xmode,
8712 as_a <scalar_int_mode> (op_mode),
8713 mask, just_select);
8715 return gen_lowpart_or_truncate (mode, x);
8718 /* Subroutine of force_to_mode that handles cases in which both X and
8719 the result are scalar integers. MODE is the mode of the result,
8720 XMODE is the mode of X, and OP_MODE says which of MODE or XMODE
8721 is preferred for simplified versions of X. The other arguments
8722 are as for force_to_mode. */
8724 static rtx
8725 force_int_to_mode (rtx x, scalar_int_mode mode, scalar_int_mode xmode,
8726 scalar_int_mode op_mode, unsigned HOST_WIDE_INT mask,
8727 int just_select)
8729 enum rtx_code code = GET_CODE (x);
8730 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8731 unsigned HOST_WIDE_INT fuller_mask;
8732 rtx op0, op1, temp;
8733 poly_int64 const_op0;
8735 /* When we have an arithmetic operation, or a shift whose count we
8736 do not know, we need to assume that all bits up to the highest-order
8737 bit in MASK will be needed. This is how we form such a mask. */
8738 if (mask & (HOST_WIDE_INT_1U << (HOST_BITS_PER_WIDE_INT - 1)))
8739 fuller_mask = HOST_WIDE_INT_M1U;
8740 else
8741 fuller_mask = ((HOST_WIDE_INT_1U << (floor_log2 (mask) + 1))
8742 - 1);
8744 switch (code)
8746 case CLOBBER:
8747 /* If X is a (clobber (const_int)), return it since we know we are
8748 generating something that won't match. */
8749 return x;
8751 case SIGN_EXTEND:
8752 case ZERO_EXTEND:
8753 case ZERO_EXTRACT:
8754 case SIGN_EXTRACT:
8755 x = expand_compound_operation (x);
8756 if (GET_CODE (x) != code)
8757 return force_to_mode (x, mode, mask, next_select);
8758 break;
8760 case TRUNCATE:
8761 /* Similarly for a truncate. */
8762 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8764 case AND:
8765 /* If this is an AND with a constant, convert it into an AND
8766 whose constant is the AND of that constant with MASK. If it
8767 remains an AND of MASK, delete it since it is redundant. */
8769 if (CONST_INT_P (XEXP (x, 1)))
8771 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8772 mask & INTVAL (XEXP (x, 1)));
8773 xmode = op_mode;
8775 /* If X is still an AND, see if it is an AND with a mask that
8776 is just some low-order bits. If so, and it is MASK, we don't
8777 need it. */
8779 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8780 && (INTVAL (XEXP (x, 1)) & GET_MODE_MASK (xmode)) == mask)
8781 x = XEXP (x, 0);
8783 /* If it remains an AND, try making another AND with the bits
8784 in the mode mask that aren't in MASK turned on. If the
8785 constant in the AND is wide enough, this might make a
8786 cheaper constant. */
8788 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8789 && GET_MODE_MASK (xmode) != mask
8790 && HWI_COMPUTABLE_MODE_P (xmode))
8792 unsigned HOST_WIDE_INT cval
8793 = UINTVAL (XEXP (x, 1)) | (GET_MODE_MASK (xmode) & ~mask);
8794 rtx y;
8796 y = simplify_gen_binary (AND, xmode, XEXP (x, 0),
8797 gen_int_mode (cval, xmode));
8798 if (set_src_cost (y, xmode, optimize_this_for_speed_p)
8799 < set_src_cost (x, xmode, optimize_this_for_speed_p))
8800 x = y;
8803 break;
8806 goto binop;
8808 case PLUS:
8809 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8810 low-order bits (as in an alignment operation) and FOO is already
8811 aligned to that boundary, mask C1 to that boundary as well.
8812 This may eliminate that PLUS and, later, the AND. */
8815 unsigned int width = GET_MODE_PRECISION (mode);
8816 unsigned HOST_WIDE_INT smask = mask;
8818 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8819 number, sign extend it. */
8821 if (width < HOST_BITS_PER_WIDE_INT
8822 && (smask & (HOST_WIDE_INT_1U << (width - 1))) != 0)
8823 smask |= HOST_WIDE_INT_M1U << width;
8825 if (CONST_INT_P (XEXP (x, 1))
8826 && pow2p_hwi (- smask)
8827 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8828 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8829 return force_to_mode (plus_constant (xmode, XEXP (x, 0),
8830 (INTVAL (XEXP (x, 1)) & smask)),
8831 mode, smask, next_select);
8834 /* fall through */
8836 case MULT:
8837 /* Substituting into the operands of a widening MULT is not likely to
8838 create RTL matching a machine insn. */
8839 if (code == MULT
8840 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
8841 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
8842 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
8843 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
8844 && REG_P (XEXP (XEXP (x, 0), 0))
8845 && REG_P (XEXP (XEXP (x, 1), 0)))
8846 return gen_lowpart_or_truncate (mode, x);
8848 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8849 most significant bit in MASK since carries from those bits will
8850 affect the bits we are interested in. */
8851 mask = fuller_mask;
8852 goto binop;
8854 case MINUS:
8855 /* If X is (minus C Y) where C's least set bit is larger than any bit
8856 in the mask, then we may replace with (neg Y). */
8857 if (poly_int_rtx_p (XEXP (x, 0), &const_op0)
8858 && known_alignment (poly_uint64 (const_op0)) > mask)
8860 x = simplify_gen_unary (NEG, xmode, XEXP (x, 1), xmode);
8861 return force_to_mode (x, mode, mask, next_select);
8864 /* Similarly, if C contains every bit in the fuller_mask, then we may
8865 replace with (not Y). */
8866 if (CONST_INT_P (XEXP (x, 0))
8867 && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8869 x = simplify_gen_unary (NOT, xmode, XEXP (x, 1), xmode);
8870 return force_to_mode (x, mode, mask, next_select);
8873 mask = fuller_mask;
8874 goto binop;
8876 case IOR:
8877 case XOR:
8878 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8879 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8880 operation which may be a bitfield extraction. Ensure that the
8881 constant we form is not wider than the mode of X. */
8883 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8884 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8885 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8886 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8887 && CONST_INT_P (XEXP (x, 1))
8888 && ((INTVAL (XEXP (XEXP (x, 0), 1))
8889 + floor_log2 (INTVAL (XEXP (x, 1))))
8890 < GET_MODE_PRECISION (xmode))
8891 && (UINTVAL (XEXP (x, 1))
8892 & ~nonzero_bits (XEXP (x, 0), xmode)) == 0)
8894 temp = gen_int_mode ((INTVAL (XEXP (x, 1)) & mask)
8895 << INTVAL (XEXP (XEXP (x, 0), 1)),
8896 xmode);
8897 temp = simplify_gen_binary (GET_CODE (x), xmode,
8898 XEXP (XEXP (x, 0), 0), temp);
8899 x = simplify_gen_binary (LSHIFTRT, xmode, temp,
8900 XEXP (XEXP (x, 0), 1));
8901 return force_to_mode (x, mode, mask, next_select);
8904 binop:
8905 /* For most binary operations, just propagate into the operation and
8906 change the mode if we have an operation of that mode. */
8908 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8909 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8911 /* If we ended up truncating both operands, truncate the result of the
8912 operation instead. */
8913 if (GET_CODE (op0) == TRUNCATE
8914 && GET_CODE (op1) == TRUNCATE)
8916 op0 = XEXP (op0, 0);
8917 op1 = XEXP (op1, 0);
8920 op0 = gen_lowpart_or_truncate (op_mode, op0);
8921 op1 = gen_lowpart_or_truncate (op_mode, op1);
8923 if (op_mode != xmode || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8925 x = simplify_gen_binary (code, op_mode, op0, op1);
8926 xmode = op_mode;
8928 break;
8930 case ASHIFT:
8931 /* For left shifts, do the same, but just for the first operand.
8932 However, we cannot do anything with shifts where we cannot
8933 guarantee that the counts are smaller than the size of the mode
8934 because such a count will have a different meaning in a
8935 wider mode. */
8937 if (! (CONST_INT_P (XEXP (x, 1))
8938 && INTVAL (XEXP (x, 1)) >= 0
8939 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode))
8940 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
8941 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
8942 < (unsigned HOST_WIDE_INT) GET_MODE_PRECISION (mode))))
8943 break;
8945 /* If the shift count is a constant and we can do arithmetic in
8946 the mode of the shift, refine which bits we need. Otherwise, use the
8947 conservative form of the mask. */
8948 if (CONST_INT_P (XEXP (x, 1))
8949 && INTVAL (XEXP (x, 1)) >= 0
8950 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (op_mode)
8951 && HWI_COMPUTABLE_MODE_P (op_mode))
8952 mask >>= INTVAL (XEXP (x, 1));
8953 else
8954 mask = fuller_mask;
8956 op0 = gen_lowpart_or_truncate (op_mode,
8957 force_to_mode (XEXP (x, 0), mode,
8958 mask, next_select));
8960 if (op_mode != xmode || op0 != XEXP (x, 0))
8962 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
8963 xmode = op_mode;
8965 break;
8967 case LSHIFTRT:
8968 /* Here we can only do something if the shift count is a constant,
8969 this shift constant is valid for the host, and we can do arithmetic
8970 in OP_MODE. */
8972 if (CONST_INT_P (XEXP (x, 1))
8973 && INTVAL (XEXP (x, 1)) >= 0
8974 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8975 && HWI_COMPUTABLE_MODE_P (op_mode))
8977 rtx inner = XEXP (x, 0);
8978 unsigned HOST_WIDE_INT inner_mask;
8980 /* Select the mask of the bits we need for the shift operand. */
8981 inner_mask = mask << INTVAL (XEXP (x, 1));
8983 /* We can only change the mode of the shift if we can do arithmetic
8984 in the mode of the shift and INNER_MASK is no wider than the
8985 width of X's mode. */
8986 if ((inner_mask & ~GET_MODE_MASK (xmode)) != 0)
8987 op_mode = xmode;
8989 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
8991 if (xmode != op_mode || inner != XEXP (x, 0))
8993 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
8994 xmode = op_mode;
8998 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
8999 shift and AND produces only copies of the sign bit (C2 is one less
9000 than a power of two), we can do this with just a shift. */
9002 if (GET_CODE (x) == LSHIFTRT
9003 && CONST_INT_P (XEXP (x, 1))
9004 /* The shift puts one of the sign bit copies in the least significant
9005 bit. */
9006 && ((INTVAL (XEXP (x, 1))
9007 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
9008 >= GET_MODE_PRECISION (xmode))
9009 && pow2p_hwi (mask + 1)
9010 /* Number of bits left after the shift must be more than the mask
9011 needs. */
9012 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
9013 <= GET_MODE_PRECISION (xmode))
9014 /* Must be more sign bit copies than the mask needs. */
9015 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
9016 >= exact_log2 (mask + 1)))
9018 int nbits = GET_MODE_PRECISION (xmode) - exact_log2 (mask + 1);
9019 x = simplify_gen_binary (LSHIFTRT, xmode, XEXP (x, 0),
9020 gen_int_shift_amount (xmode, nbits));
9022 goto shiftrt;
9024 case ASHIFTRT:
9025 /* If we are just looking for the sign bit, we don't need this shift at
9026 all, even if it has a variable count. */
9027 if (val_signbit_p (xmode, mask))
9028 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
9030 /* If this is a shift by a constant, get a mask that contains those bits
9031 that are not copies of the sign bit. We then have two cases: If
9032 MASK only includes those bits, this can be a logical shift, which may
9033 allow simplifications. If MASK is a single-bit field not within
9034 those bits, we are requesting a copy of the sign bit and hence can
9035 shift the sign bit to the appropriate location. */
9037 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
9038 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
9040 unsigned HOST_WIDE_INT nonzero;
9041 int i;
9043 /* If the considered data is wider than HOST_WIDE_INT, we can't
9044 represent a mask for all its bits in a single scalar.
9045 But we only care about the lower bits, so calculate these. */
9047 if (GET_MODE_PRECISION (xmode) > HOST_BITS_PER_WIDE_INT)
9049 nonzero = HOST_WIDE_INT_M1U;
9051 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
9052 is the number of bits a full-width mask would have set.
9053 We need only shift if these are fewer than nonzero can
9054 hold. If not, we must keep all bits set in nonzero. */
9056 if (GET_MODE_PRECISION (xmode) - INTVAL (XEXP (x, 1))
9057 < HOST_BITS_PER_WIDE_INT)
9058 nonzero >>= INTVAL (XEXP (x, 1))
9059 + HOST_BITS_PER_WIDE_INT
9060 - GET_MODE_PRECISION (xmode);
9062 else
9064 nonzero = GET_MODE_MASK (xmode);
9065 nonzero >>= INTVAL (XEXP (x, 1));
9068 if ((mask & ~nonzero) == 0)
9070 x = simplify_shift_const (NULL_RTX, LSHIFTRT, xmode,
9071 XEXP (x, 0), INTVAL (XEXP (x, 1)));
9072 if (GET_CODE (x) != ASHIFTRT)
9073 return force_to_mode (x, mode, mask, next_select);
9076 else if ((i = exact_log2 (mask)) >= 0)
9078 x = simplify_shift_const
9079 (NULL_RTX, LSHIFTRT, xmode, XEXP (x, 0),
9080 GET_MODE_PRECISION (xmode) - 1 - i);
9082 if (GET_CODE (x) != ASHIFTRT)
9083 return force_to_mode (x, mode, mask, next_select);
9087 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
9088 even if the shift count isn't a constant. */
9089 if (mask == 1)
9090 x = simplify_gen_binary (LSHIFTRT, xmode, XEXP (x, 0), XEXP (x, 1));
9092 shiftrt:
9094 /* If this is a zero- or sign-extension operation that just affects bits
9095 we don't care about, remove it. Be sure the call above returned
9096 something that is still a shift. */
9098 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
9099 && CONST_INT_P (XEXP (x, 1))
9100 && INTVAL (XEXP (x, 1)) >= 0
9101 && (INTVAL (XEXP (x, 1))
9102 <= GET_MODE_PRECISION (xmode) - (floor_log2 (mask) + 1))
9103 && GET_CODE (XEXP (x, 0)) == ASHIFT
9104 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
9105 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
9106 next_select);
9108 break;
9110 case ROTATE:
9111 case ROTATERT:
9112 /* If the shift count is constant and we can do computations
9113 in the mode of X, compute where the bits we care about are.
9114 Otherwise, we can't do anything. Don't change the mode of
9115 the shift or propagate MODE into the shift, though. */
9116 if (CONST_INT_P (XEXP (x, 1))
9117 && INTVAL (XEXP (x, 1)) >= 0)
9119 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
9120 xmode, gen_int_mode (mask, xmode),
9121 XEXP (x, 1));
9122 if (temp && CONST_INT_P (temp))
9123 x = simplify_gen_binary (code, xmode,
9124 force_to_mode (XEXP (x, 0), xmode,
9125 INTVAL (temp), next_select),
9126 XEXP (x, 1));
9128 break;
9130 case NEG:
9131 /* If we just want the low-order bit, the NEG isn't needed since it
9132 won't change the low-order bit. */
9133 if (mask == 1)
9134 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
9136 /* We need any bits less significant than the most significant bit in
9137 MASK since carries from those bits will affect the bits we are
9138 interested in. */
9139 mask = fuller_mask;
9140 goto unop;
9142 case NOT:
9143 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
9144 same as the XOR case above. Ensure that the constant we form is not
9145 wider than the mode of X. */
9147 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
9148 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
9149 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
9150 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
9151 < GET_MODE_PRECISION (xmode))
9152 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
9154 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)), xmode);
9155 temp = simplify_gen_binary (XOR, xmode, XEXP (XEXP (x, 0), 0), temp);
9156 x = simplify_gen_binary (LSHIFTRT, xmode,
9157 temp, XEXP (XEXP (x, 0), 1));
9159 return force_to_mode (x, mode, mask, next_select);
9162 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
9163 use the full mask inside the NOT. */
9164 mask = fuller_mask;
9166 unop:
9167 op0 = gen_lowpart_or_truncate (op_mode,
9168 force_to_mode (XEXP (x, 0), mode, mask,
9169 next_select));
9170 if (op_mode != xmode || op0 != XEXP (x, 0))
9172 x = simplify_gen_unary (code, op_mode, op0, op_mode);
9173 xmode = op_mode;
9175 break;
9177 case NE:
9178 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
9179 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
9180 which is equal to STORE_FLAG_VALUE. */
9181 if ((mask & ~STORE_FLAG_VALUE) == 0
9182 && XEXP (x, 1) == const0_rtx
9183 && GET_MODE (XEXP (x, 0)) == mode
9184 && pow2p_hwi (nonzero_bits (XEXP (x, 0), mode))
9185 && (nonzero_bits (XEXP (x, 0), mode)
9186 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
9187 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
9189 break;
9191 case IF_THEN_ELSE:
9192 /* We have no way of knowing if the IF_THEN_ELSE can itself be
9193 written in a narrower mode. We play it safe and do not do so. */
9195 op0 = gen_lowpart_or_truncate (xmode,
9196 force_to_mode (XEXP (x, 1), mode,
9197 mask, next_select));
9198 op1 = gen_lowpart_or_truncate (xmode,
9199 force_to_mode (XEXP (x, 2), mode,
9200 mask, next_select));
9201 if (op0 != XEXP (x, 1) || op1 != XEXP (x, 2))
9202 x = simplify_gen_ternary (IF_THEN_ELSE, xmode,
9203 GET_MODE (XEXP (x, 0)), XEXP (x, 0),
9204 op0, op1);
9205 break;
9207 default:
9208 break;
9211 /* Ensure we return a value of the proper mode. */
9212 return gen_lowpart_or_truncate (mode, x);
9215 /* Return nonzero if X is an expression that has one of two values depending on
9216 whether some other value is zero or nonzero. In that case, we return the
9217 value that is being tested, *PTRUE is set to the value if the rtx being
9218 returned has a nonzero value, and *PFALSE is set to the other alternative.
9220 If we return zero, we set *PTRUE and *PFALSE to X. */
9222 static rtx
9223 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
9225 machine_mode mode = GET_MODE (x);
9226 enum rtx_code code = GET_CODE (x);
9227 rtx cond0, cond1, true0, true1, false0, false1;
9228 unsigned HOST_WIDE_INT nz;
9229 scalar_int_mode int_mode;
9231 /* If we are comparing a value against zero, we are done. */
9232 if ((code == NE || code == EQ)
9233 && XEXP (x, 1) == const0_rtx)
9235 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
9236 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
9237 return XEXP (x, 0);
9240 /* If this is a unary operation whose operand has one of two values, apply
9241 our opcode to compute those values. */
9242 else if (UNARY_P (x)
9243 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
9245 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
9246 *pfalse = simplify_gen_unary (code, mode, false0,
9247 GET_MODE (XEXP (x, 0)));
9248 return cond0;
9251 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
9252 make can't possibly match and would suppress other optimizations. */
9253 else if (code == COMPARE)
9256 /* If this is a binary operation, see if either side has only one of two
9257 values. If either one does or if both do and they are conditional on
9258 the same value, compute the new true and false values. */
9259 else if (BINARY_P (x))
9261 rtx op0 = XEXP (x, 0);
9262 rtx op1 = XEXP (x, 1);
9263 cond0 = if_then_else_cond (op0, &true0, &false0);
9264 cond1 = if_then_else_cond (op1, &true1, &false1);
9266 if ((cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1))
9267 && (REG_P (op0) || REG_P (op1)))
9269 /* Try to enable a simplification by undoing work done by
9270 if_then_else_cond if it converted a REG into something more
9271 complex. */
9272 if (REG_P (op0))
9274 cond0 = 0;
9275 true0 = false0 = op0;
9277 else
9279 cond1 = 0;
9280 true1 = false1 = op1;
9284 if ((cond0 != 0 || cond1 != 0)
9285 && ! (cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1)))
9287 /* If if_then_else_cond returned zero, then true/false are the
9288 same rtl. We must copy one of them to prevent invalid rtl
9289 sharing. */
9290 if (cond0 == 0)
9291 true0 = copy_rtx (true0);
9292 else if (cond1 == 0)
9293 true1 = copy_rtx (true1);
9295 if (COMPARISON_P (x))
9297 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
9298 true0, true1);
9299 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
9300 false0, false1);
9302 else
9304 *ptrue = simplify_gen_binary (code, mode, true0, true1);
9305 *pfalse = simplify_gen_binary (code, mode, false0, false1);
9308 return cond0 ? cond0 : cond1;
9311 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
9312 operands is zero when the other is nonzero, and vice-versa,
9313 and STORE_FLAG_VALUE is 1 or -1. */
9315 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9316 && (code == PLUS || code == IOR || code == XOR || code == MINUS
9317 || code == UMAX)
9318 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9320 rtx op0 = XEXP (XEXP (x, 0), 1);
9321 rtx op1 = XEXP (XEXP (x, 1), 1);
9323 cond0 = XEXP (XEXP (x, 0), 0);
9324 cond1 = XEXP (XEXP (x, 1), 0);
9326 if (COMPARISON_P (cond0)
9327 && COMPARISON_P (cond1)
9328 && SCALAR_INT_MODE_P (mode)
9329 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9330 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9331 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9332 || ((swap_condition (GET_CODE (cond0))
9333 == reversed_comparison_code (cond1, NULL))
9334 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9335 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9336 && ! side_effects_p (x))
9338 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
9339 *pfalse = simplify_gen_binary (MULT, mode,
9340 (code == MINUS
9341 ? simplify_gen_unary (NEG, mode,
9342 op1, mode)
9343 : op1),
9344 const_true_rtx);
9345 return cond0;
9349 /* Similarly for MULT, AND and UMIN, except that for these the result
9350 is always zero. */
9351 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9352 && (code == MULT || code == AND || code == UMIN)
9353 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9355 cond0 = XEXP (XEXP (x, 0), 0);
9356 cond1 = XEXP (XEXP (x, 1), 0);
9358 if (COMPARISON_P (cond0)
9359 && COMPARISON_P (cond1)
9360 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9361 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9362 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9363 || ((swap_condition (GET_CODE (cond0))
9364 == reversed_comparison_code (cond1, NULL))
9365 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9366 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9367 && ! side_effects_p (x))
9369 *ptrue = *pfalse = const0_rtx;
9370 return cond0;
9375 else if (code == IF_THEN_ELSE)
9377 /* If we have IF_THEN_ELSE already, extract the condition and
9378 canonicalize it if it is NE or EQ. */
9379 cond0 = XEXP (x, 0);
9380 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
9381 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
9382 return XEXP (cond0, 0);
9383 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
9385 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
9386 return XEXP (cond0, 0);
9388 else
9389 return cond0;
9392 /* If X is a SUBREG, we can narrow both the true and false values
9393 if the inner expression, if there is a condition. */
9394 else if (code == SUBREG
9395 && (cond0 = if_then_else_cond (SUBREG_REG (x), &true0,
9396 &false0)) != 0)
9398 true0 = simplify_gen_subreg (mode, true0,
9399 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9400 false0 = simplify_gen_subreg (mode, false0,
9401 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9402 if (true0 && false0)
9404 *ptrue = true0;
9405 *pfalse = false0;
9406 return cond0;
9410 /* If X is a constant, this isn't special and will cause confusions
9411 if we treat it as such. Likewise if it is equivalent to a constant. */
9412 else if (CONSTANT_P (x)
9413 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
9416 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
9417 will be least confusing to the rest of the compiler. */
9418 else if (mode == BImode)
9420 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
9421 return x;
9424 /* If X is known to be either 0 or -1, those are the true and
9425 false values when testing X. */
9426 else if (x == constm1_rtx || x == const0_rtx
9427 || (is_a <scalar_int_mode> (mode, &int_mode)
9428 && (num_sign_bit_copies (x, int_mode)
9429 == GET_MODE_PRECISION (int_mode))))
9431 *ptrue = constm1_rtx, *pfalse = const0_rtx;
9432 return x;
9435 /* Likewise for 0 or a single bit. */
9436 else if (HWI_COMPUTABLE_MODE_P (mode)
9437 && pow2p_hwi (nz = nonzero_bits (x, mode)))
9439 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
9440 return x;
9443 /* Otherwise fail; show no condition with true and false values the same. */
9444 *ptrue = *pfalse = x;
9445 return 0;
9448 /* Return the value of expression X given the fact that condition COND
9449 is known to be true when applied to REG as its first operand and VAL
9450 as its second. X is known to not be shared and so can be modified in
9451 place.
9453 We only handle the simplest cases, and specifically those cases that
9454 arise with IF_THEN_ELSE expressions. */
9456 static rtx
9457 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
9459 enum rtx_code code = GET_CODE (x);
9460 const char *fmt;
9461 int i, j;
9463 if (side_effects_p (x))
9464 return x;
9466 /* If either operand of the condition is a floating point value,
9467 then we have to avoid collapsing an EQ comparison. */
9468 if (cond == EQ
9469 && rtx_equal_p (x, reg)
9470 && ! FLOAT_MODE_P (GET_MODE (x))
9471 && ! FLOAT_MODE_P (GET_MODE (val)))
9472 return val;
9474 if (cond == UNEQ && rtx_equal_p (x, reg))
9475 return val;
9477 /* If X is (abs REG) and we know something about REG's relationship
9478 with zero, we may be able to simplify this. */
9480 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
9481 switch (cond)
9483 case GE: case GT: case EQ:
9484 return XEXP (x, 0);
9485 case LT: case LE:
9486 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
9487 XEXP (x, 0),
9488 GET_MODE (XEXP (x, 0)));
9489 default:
9490 break;
9493 /* The only other cases we handle are MIN, MAX, and comparisons if the
9494 operands are the same as REG and VAL. */
9496 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
9498 if (rtx_equal_p (XEXP (x, 0), val))
9500 std::swap (val, reg);
9501 cond = swap_condition (cond);
9504 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
9506 if (COMPARISON_P (x))
9508 if (comparison_dominates_p (cond, code))
9509 return VECTOR_MODE_P (GET_MODE (x)) ? x : const_true_rtx;
9511 code = reversed_comparison_code (x, NULL);
9512 if (code != UNKNOWN
9513 && comparison_dominates_p (cond, code))
9514 return CONST0_RTX (GET_MODE (x));
9515 else
9516 return x;
9518 else if (code == SMAX || code == SMIN
9519 || code == UMIN || code == UMAX)
9521 int unsignedp = (code == UMIN || code == UMAX);
9523 /* Do not reverse the condition when it is NE or EQ.
9524 This is because we cannot conclude anything about
9525 the value of 'SMAX (x, y)' when x is not equal to y,
9526 but we can when x equals y. */
9527 if ((code == SMAX || code == UMAX)
9528 && ! (cond == EQ || cond == NE))
9529 cond = reverse_condition (cond);
9531 switch (cond)
9533 case GE: case GT:
9534 return unsignedp ? x : XEXP (x, 1);
9535 case LE: case LT:
9536 return unsignedp ? x : XEXP (x, 0);
9537 case GEU: case GTU:
9538 return unsignedp ? XEXP (x, 1) : x;
9539 case LEU: case LTU:
9540 return unsignedp ? XEXP (x, 0) : x;
9541 default:
9542 break;
9547 else if (code == SUBREG)
9549 machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
9550 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
9552 if (SUBREG_REG (x) != r)
9554 /* We must simplify subreg here, before we lose track of the
9555 original inner_mode. */
9556 new_rtx = simplify_subreg (GET_MODE (x), r,
9557 inner_mode, SUBREG_BYTE (x));
9558 if (new_rtx)
9559 return new_rtx;
9560 else
9561 SUBST (SUBREG_REG (x), r);
9564 return x;
9566 /* We don't have to handle SIGN_EXTEND here, because even in the
9567 case of replacing something with a modeless CONST_INT, a
9568 CONST_INT is already (supposed to be) a valid sign extension for
9569 its narrower mode, which implies it's already properly
9570 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
9571 story is different. */
9572 else if (code == ZERO_EXTEND)
9574 machine_mode inner_mode = GET_MODE (XEXP (x, 0));
9575 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
9577 if (XEXP (x, 0) != r)
9579 /* We must simplify the zero_extend here, before we lose
9580 track of the original inner_mode. */
9581 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
9582 r, inner_mode);
9583 if (new_rtx)
9584 return new_rtx;
9585 else
9586 SUBST (XEXP (x, 0), r);
9589 return x;
9592 fmt = GET_RTX_FORMAT (code);
9593 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9595 if (fmt[i] == 'e')
9596 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
9597 else if (fmt[i] == 'E')
9598 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9599 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
9600 cond, reg, val));
9603 return x;
9606 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
9607 assignment as a field assignment. */
9609 static int
9610 rtx_equal_for_field_assignment_p (rtx x, rtx y, bool widen_x)
9612 if (widen_x && GET_MODE (x) != GET_MODE (y))
9614 if (paradoxical_subreg_p (GET_MODE (x), GET_MODE (y)))
9615 return 0;
9616 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
9617 return 0;
9618 x = adjust_address_nv (x, GET_MODE (y),
9619 byte_lowpart_offset (GET_MODE (y),
9620 GET_MODE (x)));
9623 if (x == y || rtx_equal_p (x, y))
9624 return 1;
9626 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
9627 return 0;
9629 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
9630 Note that all SUBREGs of MEM are paradoxical; otherwise they
9631 would have been rewritten. */
9632 if (MEM_P (x) && GET_CODE (y) == SUBREG
9633 && MEM_P (SUBREG_REG (y))
9634 && rtx_equal_p (SUBREG_REG (y),
9635 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
9636 return 1;
9638 if (MEM_P (y) && GET_CODE (x) == SUBREG
9639 && MEM_P (SUBREG_REG (x))
9640 && rtx_equal_p (SUBREG_REG (x),
9641 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
9642 return 1;
9644 /* We used to see if get_last_value of X and Y were the same but that's
9645 not correct. In one direction, we'll cause the assignment to have
9646 the wrong destination and in the case, we'll import a register into this
9647 insn that might have already have been dead. So fail if none of the
9648 above cases are true. */
9649 return 0;
9652 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
9653 Return that assignment if so.
9655 We only handle the most common cases. */
9657 static rtx
9658 make_field_assignment (rtx x)
9660 rtx dest = SET_DEST (x);
9661 rtx src = SET_SRC (x);
9662 rtx assign;
9663 rtx rhs, lhs;
9664 HOST_WIDE_INT c1;
9665 HOST_WIDE_INT pos;
9666 unsigned HOST_WIDE_INT len;
9667 rtx other;
9669 /* All the rules in this function are specific to scalar integers. */
9670 scalar_int_mode mode;
9671 if (!is_a <scalar_int_mode> (GET_MODE (dest), &mode))
9672 return x;
9674 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
9675 a clear of a one-bit field. We will have changed it to
9676 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
9677 for a SUBREG. */
9679 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
9680 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
9681 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
9682 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9684 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9685 1, 1, 1, 0);
9686 if (assign != 0)
9687 return gen_rtx_SET (assign, const0_rtx);
9688 return x;
9691 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
9692 && subreg_lowpart_p (XEXP (src, 0))
9693 && partial_subreg_p (XEXP (src, 0))
9694 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
9695 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
9696 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
9697 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9699 assign = make_extraction (VOIDmode, dest, 0,
9700 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
9701 1, 1, 1, 0);
9702 if (assign != 0)
9703 return gen_rtx_SET (assign, const0_rtx);
9704 return x;
9707 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9708 one-bit field. */
9709 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
9710 && XEXP (XEXP (src, 0), 0) == const1_rtx
9711 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9713 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9714 1, 1, 1, 0);
9715 if (assign != 0)
9716 return gen_rtx_SET (assign, const1_rtx);
9717 return x;
9720 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9721 SRC is an AND with all bits of that field set, then we can discard
9722 the AND. */
9723 if (GET_CODE (dest) == ZERO_EXTRACT
9724 && CONST_INT_P (XEXP (dest, 1))
9725 && GET_CODE (src) == AND
9726 && CONST_INT_P (XEXP (src, 1)))
9728 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
9729 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
9730 unsigned HOST_WIDE_INT ze_mask;
9732 if (width >= HOST_BITS_PER_WIDE_INT)
9733 ze_mask = -1;
9734 else
9735 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
9737 /* Complete overlap. We can remove the source AND. */
9738 if ((and_mask & ze_mask) == ze_mask)
9739 return gen_rtx_SET (dest, XEXP (src, 0));
9741 /* Partial overlap. We can reduce the source AND. */
9742 if ((and_mask & ze_mask) != and_mask)
9744 src = gen_rtx_AND (mode, XEXP (src, 0),
9745 gen_int_mode (and_mask & ze_mask, mode));
9746 return gen_rtx_SET (dest, src);
9750 /* The other case we handle is assignments into a constant-position
9751 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9752 a mask that has all one bits except for a group of zero bits and
9753 OTHER is known to have zeros where C1 has ones, this is such an
9754 assignment. Compute the position and length from C1. Shift OTHER
9755 to the appropriate position, force it to the required mode, and
9756 make the extraction. Check for the AND in both operands. */
9758 /* One or more SUBREGs might obscure the constant-position field
9759 assignment. The first one we are likely to encounter is an outer
9760 narrowing SUBREG, which we can just strip for the purposes of
9761 identifying the constant-field assignment. */
9762 scalar_int_mode src_mode = mode;
9763 if (GET_CODE (src) == SUBREG
9764 && subreg_lowpart_p (src)
9765 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (src)), &src_mode))
9766 src = SUBREG_REG (src);
9768 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9769 return x;
9771 rhs = expand_compound_operation (XEXP (src, 0));
9772 lhs = expand_compound_operation (XEXP (src, 1));
9774 if (GET_CODE (rhs) == AND
9775 && CONST_INT_P (XEXP (rhs, 1))
9776 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9777 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9778 /* The second SUBREG that might get in the way is a paradoxical
9779 SUBREG around the first operand of the AND. We want to
9780 pretend the operand is as wide as the destination here. We
9781 do this by adjusting the MEM to wider mode for the sole
9782 purpose of the call to rtx_equal_for_field_assignment_p. Also
9783 note this trick only works for MEMs. */
9784 else if (GET_CODE (rhs) == AND
9785 && paradoxical_subreg_p (XEXP (rhs, 0))
9786 && MEM_P (SUBREG_REG (XEXP (rhs, 0)))
9787 && CONST_INT_P (XEXP (rhs, 1))
9788 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (rhs, 0)),
9789 dest, true))
9790 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9791 else if (GET_CODE (lhs) == AND
9792 && CONST_INT_P (XEXP (lhs, 1))
9793 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9794 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9795 /* The second SUBREG that might get in the way is a paradoxical
9796 SUBREG around the first operand of the AND. We want to
9797 pretend the operand is as wide as the destination here. We
9798 do this by adjusting the MEM to wider mode for the sole
9799 purpose of the call to rtx_equal_for_field_assignment_p. Also
9800 note this trick only works for MEMs. */
9801 else if (GET_CODE (lhs) == AND
9802 && paradoxical_subreg_p (XEXP (lhs, 0))
9803 && MEM_P (SUBREG_REG (XEXP (lhs, 0)))
9804 && CONST_INT_P (XEXP (lhs, 1))
9805 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (lhs, 0)),
9806 dest, true))
9807 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9808 else
9809 return x;
9811 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (mode), &len);
9812 if (pos < 0
9813 || pos + len > GET_MODE_PRECISION (mode)
9814 || GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT
9815 || (c1 & nonzero_bits (other, mode)) != 0)
9816 return x;
9818 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
9819 if (assign == 0)
9820 return x;
9822 /* The mode to use for the source is the mode of the assignment, or of
9823 what is inside a possible STRICT_LOW_PART. */
9824 machine_mode new_mode = (GET_CODE (assign) == STRICT_LOW_PART
9825 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9827 /* Shift OTHER right POS places and make it the source, restricting it
9828 to the proper length and mode. */
9830 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9831 src_mode, other, pos),
9832 dest);
9833 src = force_to_mode (src, new_mode,
9834 len >= HOST_BITS_PER_WIDE_INT
9835 ? HOST_WIDE_INT_M1U
9836 : (HOST_WIDE_INT_1U << len) - 1,
9839 /* If SRC is masked by an AND that does not make a difference in
9840 the value being stored, strip it. */
9841 if (GET_CODE (assign) == ZERO_EXTRACT
9842 && CONST_INT_P (XEXP (assign, 1))
9843 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9844 && GET_CODE (src) == AND
9845 && CONST_INT_P (XEXP (src, 1))
9846 && UINTVAL (XEXP (src, 1))
9847 == (HOST_WIDE_INT_1U << INTVAL (XEXP (assign, 1))) - 1)
9848 src = XEXP (src, 0);
9850 return gen_rtx_SET (assign, src);
9853 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9854 if so. */
9856 static rtx
9857 apply_distributive_law (rtx x)
9859 enum rtx_code code = GET_CODE (x);
9860 enum rtx_code inner_code;
9861 rtx lhs, rhs, other;
9862 rtx tem;
9864 /* Distributivity is not true for floating point as it can change the
9865 value. So we don't do it unless -funsafe-math-optimizations. */
9866 if (FLOAT_MODE_P (GET_MODE (x))
9867 && ! flag_unsafe_math_optimizations)
9868 return x;
9870 /* The outer operation can only be one of the following: */
9871 if (code != IOR && code != AND && code != XOR
9872 && code != PLUS && code != MINUS)
9873 return x;
9875 lhs = XEXP (x, 0);
9876 rhs = XEXP (x, 1);
9878 /* If either operand is a primitive we can't do anything, so get out
9879 fast. */
9880 if (OBJECT_P (lhs) || OBJECT_P (rhs))
9881 return x;
9883 lhs = expand_compound_operation (lhs);
9884 rhs = expand_compound_operation (rhs);
9885 inner_code = GET_CODE (lhs);
9886 if (inner_code != GET_CODE (rhs))
9887 return x;
9889 /* See if the inner and outer operations distribute. */
9890 switch (inner_code)
9892 case LSHIFTRT:
9893 case ASHIFTRT:
9894 case AND:
9895 case IOR:
9896 /* These all distribute except over PLUS. */
9897 if (code == PLUS || code == MINUS)
9898 return x;
9899 break;
9901 case MULT:
9902 if (code != PLUS && code != MINUS)
9903 return x;
9904 break;
9906 case ASHIFT:
9907 /* This is also a multiply, so it distributes over everything. */
9908 break;
9910 /* This used to handle SUBREG, but this turned out to be counter-
9911 productive, since (subreg (op ...)) usually is not handled by
9912 insn patterns, and this "optimization" therefore transformed
9913 recognizable patterns into unrecognizable ones. Therefore the
9914 SUBREG case was removed from here.
9916 It is possible that distributing SUBREG over arithmetic operations
9917 leads to an intermediate result than can then be optimized further,
9918 e.g. by moving the outer SUBREG to the other side of a SET as done
9919 in simplify_set. This seems to have been the original intent of
9920 handling SUBREGs here.
9922 However, with current GCC this does not appear to actually happen,
9923 at least on major platforms. If some case is found where removing
9924 the SUBREG case here prevents follow-on optimizations, distributing
9925 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
9927 default:
9928 return x;
9931 /* Set LHS and RHS to the inner operands (A and B in the example
9932 above) and set OTHER to the common operand (C in the example).
9933 There is only one way to do this unless the inner operation is
9934 commutative. */
9935 if (COMMUTATIVE_ARITH_P (lhs)
9936 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
9937 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
9938 else if (COMMUTATIVE_ARITH_P (lhs)
9939 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
9940 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
9941 else if (COMMUTATIVE_ARITH_P (lhs)
9942 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
9943 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
9944 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
9945 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
9946 else
9947 return x;
9949 /* Form the new inner operation, seeing if it simplifies first. */
9950 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
9952 /* There is one exception to the general way of distributing:
9953 (a | c) ^ (b | c) -> (a ^ b) & ~c */
9954 if (code == XOR && inner_code == IOR)
9956 inner_code = AND;
9957 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
9960 /* We may be able to continuing distributing the result, so call
9961 ourselves recursively on the inner operation before forming the
9962 outer operation, which we return. */
9963 return simplify_gen_binary (inner_code, GET_MODE (x),
9964 apply_distributive_law (tem), other);
9967 /* See if X is of the form (* (+ A B) C), and if so convert to
9968 (+ (* A C) (* B C)) and try to simplify.
9970 Most of the time, this results in no change. However, if some of
9971 the operands are the same or inverses of each other, simplifications
9972 will result.
9974 For example, (and (ior A B) (not B)) can occur as the result of
9975 expanding a bit field assignment. When we apply the distributive
9976 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9977 which then simplifies to (and (A (not B))).
9979 Note that no checks happen on the validity of applying the inverse
9980 distributive law. This is pointless since we can do it in the
9981 few places where this routine is called.
9983 N is the index of the term that is decomposed (the arithmetic operation,
9984 i.e. (+ A B) in the first example above). !N is the index of the term that
9985 is distributed, i.e. of C in the first example above. */
9986 static rtx
9987 distribute_and_simplify_rtx (rtx x, int n)
9989 machine_mode mode;
9990 enum rtx_code outer_code, inner_code;
9991 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
9993 /* Distributivity is not true for floating point as it can change the
9994 value. So we don't do it unless -funsafe-math-optimizations. */
9995 if (FLOAT_MODE_P (GET_MODE (x))
9996 && ! flag_unsafe_math_optimizations)
9997 return NULL_RTX;
9999 decomposed = XEXP (x, n);
10000 if (!ARITHMETIC_P (decomposed))
10001 return NULL_RTX;
10003 mode = GET_MODE (x);
10004 outer_code = GET_CODE (x);
10005 distributed = XEXP (x, !n);
10007 inner_code = GET_CODE (decomposed);
10008 inner_op0 = XEXP (decomposed, 0);
10009 inner_op1 = XEXP (decomposed, 1);
10011 /* Special case (and (xor B C) (not A)), which is equivalent to
10012 (xor (ior A B) (ior A C)) */
10013 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
10015 distributed = XEXP (distributed, 0);
10016 outer_code = IOR;
10019 if (n == 0)
10021 /* Distribute the second term. */
10022 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
10023 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
10025 else
10027 /* Distribute the first term. */
10028 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
10029 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
10032 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
10033 new_op0, new_op1));
10034 if (GET_CODE (tmp) != outer_code
10035 && (set_src_cost (tmp, mode, optimize_this_for_speed_p)
10036 < set_src_cost (x, mode, optimize_this_for_speed_p)))
10037 return tmp;
10039 return NULL_RTX;
10042 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
10043 in MODE. Return an equivalent form, if different from (and VAROP
10044 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
10046 static rtx
10047 simplify_and_const_int_1 (scalar_int_mode mode, rtx varop,
10048 unsigned HOST_WIDE_INT constop)
10050 unsigned HOST_WIDE_INT nonzero;
10051 unsigned HOST_WIDE_INT orig_constop;
10052 rtx orig_varop;
10053 int i;
10055 orig_varop = varop;
10056 orig_constop = constop;
10057 if (GET_CODE (varop) == CLOBBER)
10058 return NULL_RTX;
10060 /* Simplify VAROP knowing that we will be only looking at some of the
10061 bits in it.
10063 Note by passing in CONSTOP, we guarantee that the bits not set in
10064 CONSTOP are not significant and will never be examined. We must
10065 ensure that is the case by explicitly masking out those bits
10066 before returning. */
10067 varop = force_to_mode (varop, mode, constop, 0);
10069 /* If VAROP is a CLOBBER, we will fail so return it. */
10070 if (GET_CODE (varop) == CLOBBER)
10071 return varop;
10073 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
10074 to VAROP and return the new constant. */
10075 if (CONST_INT_P (varop))
10076 return gen_int_mode (INTVAL (varop) & constop, mode);
10078 /* See what bits may be nonzero in VAROP. Unlike the general case of
10079 a call to nonzero_bits, here we don't care about bits outside
10080 MODE unless WORD_REGISTER_OPERATIONS is true. */
10082 scalar_int_mode tmode = mode;
10083 if (WORD_REGISTER_OPERATIONS && GET_MODE_BITSIZE (mode) < BITS_PER_WORD)
10084 tmode = word_mode;
10085 nonzero = nonzero_bits (varop, tmode) & GET_MODE_MASK (tmode);
10087 /* Turn off all bits in the constant that are known to already be zero.
10088 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
10089 which is tested below. */
10091 constop &= nonzero;
10093 /* If we don't have any bits left, return zero. */
10094 if (constop == 0 && !side_effects_p (varop))
10095 return const0_rtx;
10097 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
10098 a power of two, we can replace this with an ASHIFT. */
10099 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), tmode) == 1
10100 && (i = exact_log2 (constop)) >= 0)
10101 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
10103 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
10104 or XOR, then try to apply the distributive law. This may eliminate
10105 operations if either branch can be simplified because of the AND.
10106 It may also make some cases more complex, but those cases probably
10107 won't match a pattern either with or without this. */
10109 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
10111 scalar_int_mode varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10112 return
10113 gen_lowpart
10114 (mode,
10115 apply_distributive_law
10116 (simplify_gen_binary (GET_CODE (varop), varop_mode,
10117 simplify_and_const_int (NULL_RTX, varop_mode,
10118 XEXP (varop, 0),
10119 constop),
10120 simplify_and_const_int (NULL_RTX, varop_mode,
10121 XEXP (varop, 1),
10122 constop))));
10125 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
10126 the AND and see if one of the operands simplifies to zero. If so, we
10127 may eliminate it. */
10129 if (GET_CODE (varop) == PLUS
10130 && pow2p_hwi (constop + 1))
10132 rtx o0, o1;
10134 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
10135 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
10136 if (o0 == const0_rtx)
10137 return o1;
10138 if (o1 == const0_rtx)
10139 return o0;
10142 /* Make a SUBREG if necessary. If we can't make it, fail. */
10143 varop = gen_lowpart (mode, varop);
10144 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
10145 return NULL_RTX;
10147 /* If we are only masking insignificant bits, return VAROP. */
10148 if (constop == nonzero)
10149 return varop;
10151 if (varop == orig_varop && constop == orig_constop)
10152 return NULL_RTX;
10154 /* Otherwise, return an AND. */
10155 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
10159 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
10160 in MODE.
10162 Return an equivalent form, if different from X. Otherwise, return X. If
10163 X is zero, we are to always construct the equivalent form. */
10165 static rtx
10166 simplify_and_const_int (rtx x, scalar_int_mode mode, rtx varop,
10167 unsigned HOST_WIDE_INT constop)
10169 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
10170 if (tem)
10171 return tem;
10173 if (!x)
10174 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
10175 gen_int_mode (constop, mode));
10176 if (GET_MODE (x) != mode)
10177 x = gen_lowpart (mode, x);
10178 return x;
10181 /* Given a REG X of mode XMODE, compute which bits in X can be nonzero.
10182 We don't care about bits outside of those defined in MODE.
10183 We DO care about all the bits in MODE, even if XMODE is smaller than MODE.
10185 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
10186 a shift, AND, or zero_extract, we can do better. */
10188 static rtx
10189 reg_nonzero_bits_for_combine (const_rtx x, scalar_int_mode xmode,
10190 scalar_int_mode mode,
10191 unsigned HOST_WIDE_INT *nonzero)
10193 rtx tem;
10194 reg_stat_type *rsp;
10196 /* If X is a register whose nonzero bits value is current, use it.
10197 Otherwise, if X is a register whose value we can find, use that
10198 value. Otherwise, use the previously-computed global nonzero bits
10199 for this register. */
10201 rsp = &reg_stat[REGNO (x)];
10202 if (rsp->last_set_value != 0
10203 && (rsp->last_set_mode == mode
10204 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10205 && GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
10206 && GET_MODE_CLASS (mode) == MODE_INT))
10207 && ((rsp->last_set_label >= label_tick_ebb_start
10208 && rsp->last_set_label < label_tick)
10209 || (rsp->last_set_label == label_tick
10210 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10211 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10212 && REGNO (x) < reg_n_sets_max
10213 && REG_N_SETS (REGNO (x)) == 1
10214 && !REGNO_REG_SET_P
10215 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10216 REGNO (x)))))
10218 /* Note that, even if the precision of last_set_mode is lower than that
10219 of mode, record_value_for_reg invoked nonzero_bits on the register
10220 with nonzero_bits_mode (because last_set_mode is necessarily integral
10221 and HWI_COMPUTABLE_MODE_P in this case) so bits in nonzero_bits_mode
10222 are all valid, hence in mode too since nonzero_bits_mode is defined
10223 to the largest HWI_COMPUTABLE_MODE_P mode. */
10224 *nonzero &= rsp->last_set_nonzero_bits;
10225 return NULL;
10228 tem = get_last_value (x);
10229 if (tem)
10231 if (SHORT_IMMEDIATES_SIGN_EXTEND)
10232 tem = sign_extend_short_imm (tem, xmode, GET_MODE_PRECISION (mode));
10234 return tem;
10237 if (nonzero_sign_valid && rsp->nonzero_bits)
10239 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
10241 if (GET_MODE_PRECISION (xmode) < GET_MODE_PRECISION (mode))
10242 /* We don't know anything about the upper bits. */
10243 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (xmode);
10245 *nonzero &= mask;
10248 return NULL;
10251 /* Given a reg X of mode XMODE, return the number of bits at the high-order
10252 end of X that are known to be equal to the sign bit. X will be used
10253 in mode MODE; the returned value will always be between 1 and the
10254 number of bits in MODE. */
10256 static rtx
10257 reg_num_sign_bit_copies_for_combine (const_rtx x, scalar_int_mode xmode,
10258 scalar_int_mode mode,
10259 unsigned int *result)
10261 rtx tem;
10262 reg_stat_type *rsp;
10264 rsp = &reg_stat[REGNO (x)];
10265 if (rsp->last_set_value != 0
10266 && rsp->last_set_mode == mode
10267 && ((rsp->last_set_label >= label_tick_ebb_start
10268 && rsp->last_set_label < label_tick)
10269 || (rsp->last_set_label == label_tick
10270 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10271 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10272 && REGNO (x) < reg_n_sets_max
10273 && REG_N_SETS (REGNO (x)) == 1
10274 && !REGNO_REG_SET_P
10275 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10276 REGNO (x)))))
10278 *result = rsp->last_set_sign_bit_copies;
10279 return NULL;
10282 tem = get_last_value (x);
10283 if (tem != 0)
10284 return tem;
10286 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
10287 && GET_MODE_PRECISION (xmode) == GET_MODE_PRECISION (mode))
10288 *result = rsp->sign_bit_copies;
10290 return NULL;
10293 /* Return the number of "extended" bits there are in X, when interpreted
10294 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
10295 unsigned quantities, this is the number of high-order zero bits.
10296 For signed quantities, this is the number of copies of the sign bit
10297 minus 1. In both case, this function returns the number of "spare"
10298 bits. For example, if two quantities for which this function returns
10299 at least 1 are added, the addition is known not to overflow.
10301 This function will always return 0 unless called during combine, which
10302 implies that it must be called from a define_split. */
10304 unsigned int
10305 extended_count (const_rtx x, machine_mode mode, int unsignedp)
10307 if (nonzero_sign_valid == 0)
10308 return 0;
10310 scalar_int_mode int_mode;
10311 return (unsignedp
10312 ? (is_a <scalar_int_mode> (mode, &int_mode)
10313 && HWI_COMPUTABLE_MODE_P (int_mode)
10314 ? (unsigned int) (GET_MODE_PRECISION (int_mode) - 1
10315 - floor_log2 (nonzero_bits (x, int_mode)))
10316 : 0)
10317 : num_sign_bit_copies (x, mode) - 1);
10320 /* This function is called from `simplify_shift_const' to merge two
10321 outer operations. Specifically, we have already found that we need
10322 to perform operation *POP0 with constant *PCONST0 at the outermost
10323 position. We would now like to also perform OP1 with constant CONST1
10324 (with *POP0 being done last).
10326 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
10327 the resulting operation. *PCOMP_P is set to 1 if we would need to
10328 complement the innermost operand, otherwise it is unchanged.
10330 MODE is the mode in which the operation will be done. No bits outside
10331 the width of this mode matter. It is assumed that the width of this mode
10332 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
10334 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
10335 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
10336 result is simply *PCONST0.
10338 If the resulting operation cannot be expressed as one operation, we
10339 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
10341 static int
10342 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, machine_mode mode, int *pcomp_p)
10344 enum rtx_code op0 = *pop0;
10345 HOST_WIDE_INT const0 = *pconst0;
10347 const0 &= GET_MODE_MASK (mode);
10348 const1 &= GET_MODE_MASK (mode);
10350 /* If OP0 is an AND, clear unimportant bits in CONST1. */
10351 if (op0 == AND)
10352 const1 &= const0;
10354 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
10355 if OP0 is SET. */
10357 if (op1 == UNKNOWN || op0 == SET)
10358 return 1;
10360 else if (op0 == UNKNOWN)
10361 op0 = op1, const0 = const1;
10363 else if (op0 == op1)
10365 switch (op0)
10367 case AND:
10368 const0 &= const1;
10369 break;
10370 case IOR:
10371 const0 |= const1;
10372 break;
10373 case XOR:
10374 const0 ^= const1;
10375 break;
10376 case PLUS:
10377 const0 += const1;
10378 break;
10379 case NEG:
10380 op0 = UNKNOWN;
10381 break;
10382 default:
10383 break;
10387 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
10388 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
10389 return 0;
10391 /* If the two constants aren't the same, we can't do anything. The
10392 remaining six cases can all be done. */
10393 else if (const0 != const1)
10394 return 0;
10396 else
10397 switch (op0)
10399 case IOR:
10400 if (op1 == AND)
10401 /* (a & b) | b == b */
10402 op0 = SET;
10403 else /* op1 == XOR */
10404 /* (a ^ b) | b == a | b */
10406 break;
10408 case XOR:
10409 if (op1 == AND)
10410 /* (a & b) ^ b == (~a) & b */
10411 op0 = AND, *pcomp_p = 1;
10412 else /* op1 == IOR */
10413 /* (a | b) ^ b == a & ~b */
10414 op0 = AND, const0 = ~const0;
10415 break;
10417 case AND:
10418 if (op1 == IOR)
10419 /* (a | b) & b == b */
10420 op0 = SET;
10421 else /* op1 == XOR */
10422 /* (a ^ b) & b) == (~a) & b */
10423 *pcomp_p = 1;
10424 break;
10425 default:
10426 break;
10429 /* Check for NO-OP cases. */
10430 const0 &= GET_MODE_MASK (mode);
10431 if (const0 == 0
10432 && (op0 == IOR || op0 == XOR || op0 == PLUS))
10433 op0 = UNKNOWN;
10434 else if (const0 == 0 && op0 == AND)
10435 op0 = SET;
10436 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
10437 && op0 == AND)
10438 op0 = UNKNOWN;
10440 *pop0 = op0;
10442 /* ??? Slightly redundant with the above mask, but not entirely.
10443 Moving this above means we'd have to sign-extend the mode mask
10444 for the final test. */
10445 if (op0 != UNKNOWN && op0 != NEG)
10446 *pconst0 = trunc_int_for_mode (const0, mode);
10448 return 1;
10451 /* A helper to simplify_shift_const_1 to determine the mode we can perform
10452 the shift in. The original shift operation CODE is performed on OP in
10453 ORIG_MODE. Return the wider mode MODE if we can perform the operation
10454 in that mode. Return ORIG_MODE otherwise. We can also assume that the
10455 result of the shift is subject to operation OUTER_CODE with operand
10456 OUTER_CONST. */
10458 static scalar_int_mode
10459 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
10460 scalar_int_mode orig_mode, scalar_int_mode mode,
10461 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
10463 gcc_assert (GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (orig_mode));
10465 /* In general we can't perform in wider mode for right shift and rotate. */
10466 switch (code)
10468 case ASHIFTRT:
10469 /* We can still widen if the bits brought in from the left are identical
10470 to the sign bit of ORIG_MODE. */
10471 if (num_sign_bit_copies (op, mode)
10472 > (unsigned) (GET_MODE_PRECISION (mode)
10473 - GET_MODE_PRECISION (orig_mode)))
10474 return mode;
10475 return orig_mode;
10477 case LSHIFTRT:
10478 /* Similarly here but with zero bits. */
10479 if (HWI_COMPUTABLE_MODE_P (mode)
10480 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
10481 return mode;
10483 /* We can also widen if the bits brought in will be masked off. This
10484 operation is performed in ORIG_MODE. */
10485 if (outer_code == AND)
10487 int care_bits = low_bitmask_len (orig_mode, outer_const);
10489 if (care_bits >= 0
10490 && GET_MODE_PRECISION (orig_mode) - care_bits >= count)
10491 return mode;
10493 /* fall through */
10495 case ROTATE:
10496 return orig_mode;
10498 case ROTATERT:
10499 gcc_unreachable ();
10501 default:
10502 return mode;
10506 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
10507 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
10508 if we cannot simplify it. Otherwise, return a simplified value.
10510 The shift is normally computed in the widest mode we find in VAROP, as
10511 long as it isn't a different number of words than RESULT_MODE. Exceptions
10512 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10514 static rtx
10515 simplify_shift_const_1 (enum rtx_code code, machine_mode result_mode,
10516 rtx varop, int orig_count)
10518 enum rtx_code orig_code = code;
10519 rtx orig_varop = varop;
10520 int count, log2;
10521 machine_mode mode = result_mode;
10522 machine_mode shift_mode;
10523 scalar_int_mode tmode, inner_mode, int_mode, int_varop_mode, int_result_mode;
10524 /* We form (outer_op (code varop count) (outer_const)). */
10525 enum rtx_code outer_op = UNKNOWN;
10526 HOST_WIDE_INT outer_const = 0;
10527 int complement_p = 0;
10528 rtx new_rtx, x;
10530 /* Make sure and truncate the "natural" shift on the way in. We don't
10531 want to do this inside the loop as it makes it more difficult to
10532 combine shifts. */
10533 if (SHIFT_COUNT_TRUNCATED)
10534 orig_count &= GET_MODE_UNIT_BITSIZE (mode) - 1;
10536 /* If we were given an invalid count, don't do anything except exactly
10537 what was requested. */
10539 if (orig_count < 0 || orig_count >= (int) GET_MODE_UNIT_PRECISION (mode))
10540 return NULL_RTX;
10542 count = orig_count;
10544 /* Unless one of the branches of the `if' in this loop does a `continue',
10545 we will `break' the loop after the `if'. */
10547 while (count != 0)
10549 /* If we have an operand of (clobber (const_int 0)), fail. */
10550 if (GET_CODE (varop) == CLOBBER)
10551 return NULL_RTX;
10553 /* Convert ROTATERT to ROTATE. */
10554 if (code == ROTATERT)
10556 unsigned int bitsize = GET_MODE_UNIT_PRECISION (result_mode);
10557 code = ROTATE;
10558 count = bitsize - count;
10561 shift_mode = result_mode;
10562 if (shift_mode != mode)
10564 /* We only change the modes of scalar shifts. */
10565 int_mode = as_a <scalar_int_mode> (mode);
10566 int_result_mode = as_a <scalar_int_mode> (result_mode);
10567 shift_mode = try_widen_shift_mode (code, varop, count,
10568 int_result_mode, int_mode,
10569 outer_op, outer_const);
10572 scalar_int_mode shift_unit_mode
10573 = as_a <scalar_int_mode> (GET_MODE_INNER (shift_mode));
10575 /* Handle cases where the count is greater than the size of the mode
10576 minus 1. For ASHIFT, use the size minus one as the count (this can
10577 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
10578 take the count modulo the size. For other shifts, the result is
10579 zero.
10581 Since these shifts are being produced by the compiler by combining
10582 multiple operations, each of which are defined, we know what the
10583 result is supposed to be. */
10585 if (count > (GET_MODE_PRECISION (shift_unit_mode) - 1))
10587 if (code == ASHIFTRT)
10588 count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10589 else if (code == ROTATE || code == ROTATERT)
10590 count %= GET_MODE_PRECISION (shift_unit_mode);
10591 else
10593 /* We can't simply return zero because there may be an
10594 outer op. */
10595 varop = const0_rtx;
10596 count = 0;
10597 break;
10601 /* If we discovered we had to complement VAROP, leave. Making a NOT
10602 here would cause an infinite loop. */
10603 if (complement_p)
10604 break;
10606 if (shift_mode == shift_unit_mode)
10608 /* An arithmetic right shift of a quantity known to be -1 or 0
10609 is a no-op. */
10610 if (code == ASHIFTRT
10611 && (num_sign_bit_copies (varop, shift_unit_mode)
10612 == GET_MODE_PRECISION (shift_unit_mode)))
10614 count = 0;
10615 break;
10618 /* If we are doing an arithmetic right shift and discarding all but
10619 the sign bit copies, this is equivalent to doing a shift by the
10620 bitsize minus one. Convert it into that shift because it will
10621 often allow other simplifications. */
10623 if (code == ASHIFTRT
10624 && (count + num_sign_bit_copies (varop, shift_unit_mode)
10625 >= GET_MODE_PRECISION (shift_unit_mode)))
10626 count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10628 /* We simplify the tests below and elsewhere by converting
10629 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
10630 `make_compound_operation' will convert it to an ASHIFTRT for
10631 those machines (such as VAX) that don't have an LSHIFTRT. */
10632 if (code == ASHIFTRT
10633 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10634 && val_signbit_known_clear_p (shift_unit_mode,
10635 nonzero_bits (varop,
10636 shift_unit_mode)))
10637 code = LSHIFTRT;
10639 if (((code == LSHIFTRT
10640 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10641 && !(nonzero_bits (varop, shift_unit_mode) >> count))
10642 || (code == ASHIFT
10643 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10644 && !((nonzero_bits (varop, shift_unit_mode) << count)
10645 & GET_MODE_MASK (shift_unit_mode))))
10646 && !side_effects_p (varop))
10647 varop = const0_rtx;
10650 switch (GET_CODE (varop))
10652 case SIGN_EXTEND:
10653 case ZERO_EXTEND:
10654 case SIGN_EXTRACT:
10655 case ZERO_EXTRACT:
10656 new_rtx = expand_compound_operation (varop);
10657 if (new_rtx != varop)
10659 varop = new_rtx;
10660 continue;
10662 break;
10664 case MEM:
10665 /* The following rules apply only to scalars. */
10666 if (shift_mode != shift_unit_mode)
10667 break;
10668 int_mode = as_a <scalar_int_mode> (mode);
10670 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
10671 minus the width of a smaller mode, we can do this with a
10672 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
10673 if ((code == ASHIFTRT || code == LSHIFTRT)
10674 && ! mode_dependent_address_p (XEXP (varop, 0),
10675 MEM_ADDR_SPACE (varop))
10676 && ! MEM_VOLATILE_P (varop)
10677 && (int_mode_for_size (GET_MODE_BITSIZE (int_mode) - count, 1)
10678 .exists (&tmode)))
10680 new_rtx = adjust_address_nv (varop, tmode,
10681 BYTES_BIG_ENDIAN ? 0
10682 : count / BITS_PER_UNIT);
10684 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
10685 : ZERO_EXTEND, int_mode, new_rtx);
10686 count = 0;
10687 continue;
10689 break;
10691 case SUBREG:
10692 /* The following rules apply only to scalars. */
10693 if (shift_mode != shift_unit_mode)
10694 break;
10695 int_mode = as_a <scalar_int_mode> (mode);
10696 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10698 /* If VAROP is a SUBREG, strip it as long as the inner operand has
10699 the same number of words as what we've seen so far. Then store
10700 the widest mode in MODE. */
10701 if (subreg_lowpart_p (varop)
10702 && is_int_mode (GET_MODE (SUBREG_REG (varop)), &inner_mode)
10703 && GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (int_varop_mode)
10704 && (CEIL (GET_MODE_SIZE (inner_mode), UNITS_PER_WORD)
10705 == CEIL (GET_MODE_SIZE (int_mode), UNITS_PER_WORD))
10706 && GET_MODE_CLASS (int_varop_mode) == MODE_INT)
10708 varop = SUBREG_REG (varop);
10709 if (GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (int_mode))
10710 mode = inner_mode;
10711 continue;
10713 break;
10715 case MULT:
10716 /* Some machines use MULT instead of ASHIFT because MULT
10717 is cheaper. But it is still better on those machines to
10718 merge two shifts into one. */
10719 if (CONST_INT_P (XEXP (varop, 1))
10720 && (log2 = exact_log2 (UINTVAL (XEXP (varop, 1)))) >= 0)
10722 rtx log2_rtx = gen_int_shift_amount (GET_MODE (varop), log2);
10723 varop = simplify_gen_binary (ASHIFT, GET_MODE (varop),
10724 XEXP (varop, 0), log2_rtx);
10725 continue;
10727 break;
10729 case UDIV:
10730 /* Similar, for when divides are cheaper. */
10731 if (CONST_INT_P (XEXP (varop, 1))
10732 && (log2 = exact_log2 (UINTVAL (XEXP (varop, 1)))) >= 0)
10734 rtx log2_rtx = gen_int_shift_amount (GET_MODE (varop), log2);
10735 varop = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
10736 XEXP (varop, 0), log2_rtx);
10737 continue;
10739 break;
10741 case ASHIFTRT:
10742 /* If we are extracting just the sign bit of an arithmetic
10743 right shift, that shift is not needed. However, the sign
10744 bit of a wider mode may be different from what would be
10745 interpreted as the sign bit in a narrower mode, so, if
10746 the result is narrower, don't discard the shift. */
10747 if (code == LSHIFTRT
10748 && count == (GET_MODE_UNIT_BITSIZE (result_mode) - 1)
10749 && (GET_MODE_UNIT_BITSIZE (result_mode)
10750 >= GET_MODE_UNIT_BITSIZE (GET_MODE (varop))))
10752 varop = XEXP (varop, 0);
10753 continue;
10756 /* fall through */
10758 case LSHIFTRT:
10759 case ASHIFT:
10760 case ROTATE:
10761 /* The following rules apply only to scalars. */
10762 if (shift_mode != shift_unit_mode)
10763 break;
10764 int_mode = as_a <scalar_int_mode> (mode);
10765 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10766 int_result_mode = as_a <scalar_int_mode> (result_mode);
10768 /* Here we have two nested shifts. The result is usually the
10769 AND of a new shift with a mask. We compute the result below. */
10770 if (CONST_INT_P (XEXP (varop, 1))
10771 && INTVAL (XEXP (varop, 1)) >= 0
10772 && INTVAL (XEXP (varop, 1)) < GET_MODE_PRECISION (int_varop_mode)
10773 && HWI_COMPUTABLE_MODE_P (int_result_mode)
10774 && HWI_COMPUTABLE_MODE_P (int_mode))
10776 enum rtx_code first_code = GET_CODE (varop);
10777 unsigned int first_count = INTVAL (XEXP (varop, 1));
10778 unsigned HOST_WIDE_INT mask;
10779 rtx mask_rtx;
10781 /* We have one common special case. We can't do any merging if
10782 the inner code is an ASHIFTRT of a smaller mode. However, if
10783 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10784 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10785 we can convert it to
10786 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10787 This simplifies certain SIGN_EXTEND operations. */
10788 if (code == ASHIFT && first_code == ASHIFTRT
10789 && count == (GET_MODE_PRECISION (int_result_mode)
10790 - GET_MODE_PRECISION (int_varop_mode)))
10792 /* C3 has the low-order C1 bits zero. */
10794 mask = GET_MODE_MASK (int_mode)
10795 & ~((HOST_WIDE_INT_1U << first_count) - 1);
10797 varop = simplify_and_const_int (NULL_RTX, int_result_mode,
10798 XEXP (varop, 0), mask);
10799 varop = simplify_shift_const (NULL_RTX, ASHIFT,
10800 int_result_mode, varop, count);
10801 count = first_count;
10802 code = ASHIFTRT;
10803 continue;
10806 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10807 than C1 high-order bits equal to the sign bit, we can convert
10808 this to either an ASHIFT or an ASHIFTRT depending on the
10809 two counts.
10811 We cannot do this if VAROP's mode is not SHIFT_UNIT_MODE. */
10813 if (code == ASHIFTRT && first_code == ASHIFT
10814 && int_varop_mode == shift_unit_mode
10815 && (num_sign_bit_copies (XEXP (varop, 0), shift_unit_mode)
10816 > first_count))
10818 varop = XEXP (varop, 0);
10819 count -= first_count;
10820 if (count < 0)
10822 count = -count;
10823 code = ASHIFT;
10826 continue;
10829 /* There are some cases we can't do. If CODE is ASHIFTRT,
10830 we can only do this if FIRST_CODE is also ASHIFTRT.
10832 We can't do the case when CODE is ROTATE and FIRST_CODE is
10833 ASHIFTRT.
10835 If the mode of this shift is not the mode of the outer shift,
10836 we can't do this if either shift is a right shift or ROTATE.
10838 Finally, we can't do any of these if the mode is too wide
10839 unless the codes are the same.
10841 Handle the case where the shift codes are the same
10842 first. */
10844 if (code == first_code)
10846 if (int_varop_mode != int_result_mode
10847 && (code == ASHIFTRT || code == LSHIFTRT
10848 || code == ROTATE))
10849 break;
10851 count += first_count;
10852 varop = XEXP (varop, 0);
10853 continue;
10856 if (code == ASHIFTRT
10857 || (code == ROTATE && first_code == ASHIFTRT)
10858 || GET_MODE_PRECISION (int_mode) > HOST_BITS_PER_WIDE_INT
10859 || (int_varop_mode != int_result_mode
10860 && (first_code == ASHIFTRT || first_code == LSHIFTRT
10861 || first_code == ROTATE
10862 || code == ROTATE)))
10863 break;
10865 /* To compute the mask to apply after the shift, shift the
10866 nonzero bits of the inner shift the same way the
10867 outer shift will. */
10869 mask_rtx = gen_int_mode (nonzero_bits (varop, int_varop_mode),
10870 int_result_mode);
10871 rtx count_rtx = gen_int_shift_amount (int_result_mode, count);
10872 mask_rtx
10873 = simplify_const_binary_operation (code, int_result_mode,
10874 mask_rtx, count_rtx);
10876 /* Give up if we can't compute an outer operation to use. */
10877 if (mask_rtx == 0
10878 || !CONST_INT_P (mask_rtx)
10879 || ! merge_outer_ops (&outer_op, &outer_const, AND,
10880 INTVAL (mask_rtx),
10881 int_result_mode, &complement_p))
10882 break;
10884 /* If the shifts are in the same direction, we add the
10885 counts. Otherwise, we subtract them. */
10886 if ((code == ASHIFTRT || code == LSHIFTRT)
10887 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10888 count += first_count;
10889 else
10890 count -= first_count;
10892 /* If COUNT is positive, the new shift is usually CODE,
10893 except for the two exceptions below, in which case it is
10894 FIRST_CODE. If the count is negative, FIRST_CODE should
10895 always be used */
10896 if (count > 0
10897 && ((first_code == ROTATE && code == ASHIFT)
10898 || (first_code == ASHIFTRT && code == LSHIFTRT)))
10899 code = first_code;
10900 else if (count < 0)
10901 code = first_code, count = -count;
10903 varop = XEXP (varop, 0);
10904 continue;
10907 /* If we have (A << B << C) for any shift, we can convert this to
10908 (A << C << B). This wins if A is a constant. Only try this if
10909 B is not a constant. */
10911 else if (GET_CODE (varop) == code
10912 && CONST_INT_P (XEXP (varop, 0))
10913 && !CONST_INT_P (XEXP (varop, 1)))
10915 /* For ((unsigned) (cstULL >> count)) >> cst2 we have to make
10916 sure the result will be masked. See PR70222. */
10917 if (code == LSHIFTRT
10918 && int_mode != int_result_mode
10919 && !merge_outer_ops (&outer_op, &outer_const, AND,
10920 GET_MODE_MASK (int_result_mode)
10921 >> orig_count, int_result_mode,
10922 &complement_p))
10923 break;
10924 /* For ((int) (cstLL >> count)) >> cst2 just give up. Queuing
10925 up outer sign extension (often left and right shift) is
10926 hardly more efficient than the original. See PR70429.
10927 Similarly punt for rotates with different modes.
10928 See PR97386. */
10929 if ((code == ASHIFTRT || code == ROTATE)
10930 && int_mode != int_result_mode)
10931 break;
10933 rtx count_rtx = gen_int_shift_amount (int_result_mode, count);
10934 rtx new_rtx = simplify_const_binary_operation (code, int_mode,
10935 XEXP (varop, 0),
10936 count_rtx);
10937 varop = gen_rtx_fmt_ee (code, int_mode, new_rtx, XEXP (varop, 1));
10938 count = 0;
10939 continue;
10941 break;
10943 case NOT:
10944 /* The following rules apply only to scalars. */
10945 if (shift_mode != shift_unit_mode)
10946 break;
10948 /* Make this fit the case below. */
10949 varop = gen_rtx_XOR (mode, XEXP (varop, 0), constm1_rtx);
10950 continue;
10952 case IOR:
10953 case AND:
10954 case XOR:
10955 /* The following rules apply only to scalars. */
10956 if (shift_mode != shift_unit_mode)
10957 break;
10958 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10959 int_result_mode = as_a <scalar_int_mode> (result_mode);
10961 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10962 with C the size of VAROP - 1 and the shift is logical if
10963 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10964 we have an (le X 0) operation. If we have an arithmetic shift
10965 and STORE_FLAG_VALUE is 1 or we have a logical shift with
10966 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
10968 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
10969 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
10970 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10971 && (code == LSHIFTRT || code == ASHIFTRT)
10972 && count == (GET_MODE_PRECISION (int_varop_mode) - 1)
10973 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10975 count = 0;
10976 varop = gen_rtx_LE (int_varop_mode, XEXP (varop, 1),
10977 const0_rtx);
10979 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10980 varop = gen_rtx_NEG (int_varop_mode, varop);
10982 continue;
10985 /* If we have (shift (logical)), move the logical to the outside
10986 to allow it to possibly combine with another logical and the
10987 shift to combine with another shift. This also canonicalizes to
10988 what a ZERO_EXTRACT looks like. Also, some machines have
10989 (and (shift)) insns. */
10991 if (CONST_INT_P (XEXP (varop, 1))
10992 /* We can't do this if we have (ashiftrt (xor)) and the
10993 constant has its sign bit set in shift_unit_mode with
10994 shift_unit_mode wider than result_mode. */
10995 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10996 && int_result_mode != shift_unit_mode
10997 && trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10998 shift_unit_mode) < 0)
10999 && (new_rtx = simplify_const_binary_operation
11000 (code, int_result_mode,
11001 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11002 gen_int_shift_amount (int_result_mode, count))) != 0
11003 && CONST_INT_P (new_rtx)
11004 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
11005 INTVAL (new_rtx), int_result_mode,
11006 &complement_p))
11008 varop = XEXP (varop, 0);
11009 continue;
11012 /* If we can't do that, try to simplify the shift in each arm of the
11013 logical expression, make a new logical expression, and apply
11014 the inverse distributive law. This also can't be done for
11015 (ashiftrt (xor)) where we've widened the shift and the constant
11016 changes the sign bit. */
11017 if (CONST_INT_P (XEXP (varop, 1))
11018 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
11019 && int_result_mode != shift_unit_mode
11020 && trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
11021 shift_unit_mode) < 0))
11023 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_unit_mode,
11024 XEXP (varop, 0), count);
11025 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_unit_mode,
11026 XEXP (varop, 1), count);
11028 varop = simplify_gen_binary (GET_CODE (varop), shift_unit_mode,
11029 lhs, rhs);
11030 varop = apply_distributive_law (varop);
11032 count = 0;
11033 continue;
11035 break;
11037 case EQ:
11038 /* The following rules apply only to scalars. */
11039 if (shift_mode != shift_unit_mode)
11040 break;
11041 int_result_mode = as_a <scalar_int_mode> (result_mode);
11043 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
11044 says that the sign bit can be tested, FOO has mode MODE, C is
11045 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
11046 that may be nonzero. */
11047 if (code == LSHIFTRT
11048 && XEXP (varop, 1) == const0_rtx
11049 && GET_MODE (XEXP (varop, 0)) == int_result_mode
11050 && count == (GET_MODE_PRECISION (int_result_mode) - 1)
11051 && HWI_COMPUTABLE_MODE_P (int_result_mode)
11052 && STORE_FLAG_VALUE == -1
11053 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1
11054 && merge_outer_ops (&outer_op, &outer_const, XOR, 1,
11055 int_result_mode, &complement_p))
11057 varop = XEXP (varop, 0);
11058 count = 0;
11059 continue;
11061 break;
11063 case NEG:
11064 /* The following rules apply only to scalars. */
11065 if (shift_mode != shift_unit_mode)
11066 break;
11067 int_result_mode = as_a <scalar_int_mode> (result_mode);
11069 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
11070 than the number of bits in the mode is equivalent to A. */
11071 if (code == LSHIFTRT
11072 && count == (GET_MODE_PRECISION (int_result_mode) - 1)
11073 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1)
11075 varop = XEXP (varop, 0);
11076 count = 0;
11077 continue;
11080 /* NEG commutes with ASHIFT since it is multiplication. Move the
11081 NEG outside to allow shifts to combine. */
11082 if (code == ASHIFT
11083 && merge_outer_ops (&outer_op, &outer_const, NEG, 0,
11084 int_result_mode, &complement_p))
11086 varop = XEXP (varop, 0);
11087 continue;
11089 break;
11091 case PLUS:
11092 /* The following rules apply only to scalars. */
11093 if (shift_mode != shift_unit_mode)
11094 break;
11095 int_result_mode = as_a <scalar_int_mode> (result_mode);
11097 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
11098 is one less than the number of bits in the mode is
11099 equivalent to (xor A 1). */
11100 if (code == LSHIFTRT
11101 && count == (GET_MODE_PRECISION (int_result_mode) - 1)
11102 && XEXP (varop, 1) == constm1_rtx
11103 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1
11104 && merge_outer_ops (&outer_op, &outer_const, XOR, 1,
11105 int_result_mode, &complement_p))
11107 count = 0;
11108 varop = XEXP (varop, 0);
11109 continue;
11112 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
11113 that might be nonzero in BAR are those being shifted out and those
11114 bits are known zero in FOO, we can replace the PLUS with FOO.
11115 Similarly in the other operand order. This code occurs when
11116 we are computing the size of a variable-size array. */
11118 if ((code == ASHIFTRT || code == LSHIFTRT)
11119 && count < HOST_BITS_PER_WIDE_INT
11120 && nonzero_bits (XEXP (varop, 1), int_result_mode) >> count == 0
11121 && (nonzero_bits (XEXP (varop, 1), int_result_mode)
11122 & nonzero_bits (XEXP (varop, 0), int_result_mode)) == 0)
11124 varop = XEXP (varop, 0);
11125 continue;
11127 else if ((code == ASHIFTRT || code == LSHIFTRT)
11128 && count < HOST_BITS_PER_WIDE_INT
11129 && HWI_COMPUTABLE_MODE_P (int_result_mode)
11130 && (nonzero_bits (XEXP (varop, 0), int_result_mode)
11131 >> count) == 0
11132 && (nonzero_bits (XEXP (varop, 0), int_result_mode)
11133 & nonzero_bits (XEXP (varop, 1), int_result_mode)) == 0)
11135 varop = XEXP (varop, 1);
11136 continue;
11139 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
11140 if (code == ASHIFT
11141 && CONST_INT_P (XEXP (varop, 1))
11142 && (new_rtx = simplify_const_binary_operation
11143 (ASHIFT, int_result_mode,
11144 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11145 gen_int_shift_amount (int_result_mode, count))) != 0
11146 && CONST_INT_P (new_rtx)
11147 && merge_outer_ops (&outer_op, &outer_const, PLUS,
11148 INTVAL (new_rtx), int_result_mode,
11149 &complement_p))
11151 varop = XEXP (varop, 0);
11152 continue;
11155 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
11156 signbit', and attempt to change the PLUS to an XOR and move it to
11157 the outer operation as is done above in the AND/IOR/XOR case
11158 leg for shift(logical). See details in logical handling above
11159 for reasoning in doing so. */
11160 if (code == LSHIFTRT
11161 && CONST_INT_P (XEXP (varop, 1))
11162 && mode_signbit_p (int_result_mode, XEXP (varop, 1))
11163 && (new_rtx = simplify_const_binary_operation
11164 (code, int_result_mode,
11165 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11166 gen_int_shift_amount (int_result_mode, count))) != 0
11167 && CONST_INT_P (new_rtx)
11168 && merge_outer_ops (&outer_op, &outer_const, XOR,
11169 INTVAL (new_rtx), int_result_mode,
11170 &complement_p))
11172 varop = XEXP (varop, 0);
11173 continue;
11176 break;
11178 case MINUS:
11179 /* The following rules apply only to scalars. */
11180 if (shift_mode != shift_unit_mode)
11181 break;
11182 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
11184 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
11185 with C the size of VAROP - 1 and the shift is logical if
11186 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
11187 we have a (gt X 0) operation. If the shift is arithmetic with
11188 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
11189 we have a (neg (gt X 0)) operation. */
11191 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
11192 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
11193 && count == (GET_MODE_PRECISION (int_varop_mode) - 1)
11194 && (code == LSHIFTRT || code == ASHIFTRT)
11195 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
11196 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
11197 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
11199 count = 0;
11200 varop = gen_rtx_GT (int_varop_mode, XEXP (varop, 1),
11201 const0_rtx);
11203 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
11204 varop = gen_rtx_NEG (int_varop_mode, varop);
11206 continue;
11208 break;
11210 case TRUNCATE:
11211 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
11212 if the truncate does not affect the value. */
11213 if (code == LSHIFTRT
11214 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
11215 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
11216 && (INTVAL (XEXP (XEXP (varop, 0), 1))
11217 >= (GET_MODE_UNIT_PRECISION (GET_MODE (XEXP (varop, 0)))
11218 - GET_MODE_UNIT_PRECISION (GET_MODE (varop)))))
11220 rtx varop_inner = XEXP (varop, 0);
11221 int new_count = count + INTVAL (XEXP (varop_inner, 1));
11222 rtx new_count_rtx = gen_int_shift_amount (GET_MODE (varop_inner),
11223 new_count);
11224 varop_inner = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
11225 XEXP (varop_inner, 0),
11226 new_count_rtx);
11227 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
11228 count = 0;
11229 continue;
11231 break;
11233 default:
11234 break;
11237 break;
11240 shift_mode = result_mode;
11241 if (shift_mode != mode)
11243 /* We only change the modes of scalar shifts. */
11244 int_mode = as_a <scalar_int_mode> (mode);
11245 int_result_mode = as_a <scalar_int_mode> (result_mode);
11246 shift_mode = try_widen_shift_mode (code, varop, count, int_result_mode,
11247 int_mode, outer_op, outer_const);
11250 /* We have now finished analyzing the shift. The result should be
11251 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
11252 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
11253 to the result of the shift. OUTER_CONST is the relevant constant,
11254 but we must turn off all bits turned off in the shift. */
11256 if (outer_op == UNKNOWN
11257 && orig_code == code && orig_count == count
11258 && varop == orig_varop
11259 && shift_mode == GET_MODE (varop))
11260 return NULL_RTX;
11262 /* Make a SUBREG if necessary. If we can't make it, fail. */
11263 varop = gen_lowpart (shift_mode, varop);
11264 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
11265 return NULL_RTX;
11267 /* If we have an outer operation and we just made a shift, it is
11268 possible that we could have simplified the shift were it not
11269 for the outer operation. So try to do the simplification
11270 recursively. */
11272 if (outer_op != UNKNOWN)
11273 x = simplify_shift_const_1 (code, shift_mode, varop, count);
11274 else
11275 x = NULL_RTX;
11277 if (x == NULL_RTX)
11278 x = simplify_gen_binary (code, shift_mode, varop,
11279 gen_int_shift_amount (shift_mode, count));
11281 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
11282 turn off all the bits that the shift would have turned off. */
11283 if (orig_code == LSHIFTRT && result_mode != shift_mode)
11284 /* We only change the modes of scalar shifts. */
11285 x = simplify_and_const_int (NULL_RTX, as_a <scalar_int_mode> (shift_mode),
11286 x, GET_MODE_MASK (result_mode) >> orig_count);
11288 /* Do the remainder of the processing in RESULT_MODE. */
11289 x = gen_lowpart_or_truncate (result_mode, x);
11291 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
11292 operation. */
11293 if (complement_p)
11294 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
11296 if (outer_op != UNKNOWN)
11298 int_result_mode = as_a <scalar_int_mode> (result_mode);
11300 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
11301 && GET_MODE_PRECISION (int_result_mode) < HOST_BITS_PER_WIDE_INT)
11302 outer_const = trunc_int_for_mode (outer_const, int_result_mode);
11304 if (outer_op == AND)
11305 x = simplify_and_const_int (NULL_RTX, int_result_mode, x, outer_const);
11306 else if (outer_op == SET)
11308 /* This means that we have determined that the result is
11309 equivalent to a constant. This should be rare. */
11310 if (!side_effects_p (x))
11311 x = GEN_INT (outer_const);
11313 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
11314 x = simplify_gen_unary (outer_op, int_result_mode, x, int_result_mode);
11315 else
11316 x = simplify_gen_binary (outer_op, int_result_mode, x,
11317 GEN_INT (outer_const));
11320 return x;
11323 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
11324 The result of the shift is RESULT_MODE. If we cannot simplify it,
11325 return X or, if it is NULL, synthesize the expression with
11326 simplify_gen_binary. Otherwise, return a simplified value.
11328 The shift is normally computed in the widest mode we find in VAROP, as
11329 long as it isn't a different number of words than RESULT_MODE. Exceptions
11330 are ASHIFTRT and ROTATE, which are always done in their original mode. */
11332 static rtx
11333 simplify_shift_const (rtx x, enum rtx_code code, machine_mode result_mode,
11334 rtx varop, int count)
11336 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
11337 if (tem)
11338 return tem;
11340 if (!x)
11341 x = simplify_gen_binary (code, GET_MODE (varop), varop,
11342 gen_int_shift_amount (GET_MODE (varop), count));
11343 if (GET_MODE (x) != result_mode)
11344 x = gen_lowpart (result_mode, x);
11345 return x;
11349 /* A subroutine of recog_for_combine. See there for arguments and
11350 return value. */
11352 static int
11353 recog_for_combine_1 (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11355 rtx pat = *pnewpat;
11356 rtx pat_without_clobbers;
11357 int insn_code_number;
11358 int num_clobbers_to_add = 0;
11359 int i;
11360 rtx notes = NULL_RTX;
11361 rtx old_notes, old_pat;
11362 int old_icode;
11364 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
11365 we use to indicate that something didn't match. If we find such a
11366 thing, force rejection. */
11367 if (GET_CODE (pat) == PARALLEL)
11368 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
11369 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
11370 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
11371 return -1;
11373 old_pat = PATTERN (insn);
11374 old_notes = REG_NOTES (insn);
11375 PATTERN (insn) = pat;
11376 REG_NOTES (insn) = NULL_RTX;
11378 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11379 if (dump_file && (dump_flags & TDF_DETAILS))
11381 if (insn_code_number < 0)
11382 fputs ("Failed to match this instruction:\n", dump_file);
11383 else
11384 fputs ("Successfully matched this instruction:\n", dump_file);
11385 print_rtl_single (dump_file, pat);
11388 /* If it isn't, there is the possibility that we previously had an insn
11389 that clobbered some register as a side effect, but the combined
11390 insn doesn't need to do that. So try once more without the clobbers
11391 unless this represents an ASM insn. */
11393 if (insn_code_number < 0 && ! check_asm_operands (pat)
11394 && GET_CODE (pat) == PARALLEL)
11396 int pos;
11398 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
11399 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
11401 if (i != pos)
11402 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
11403 pos++;
11406 SUBST_INT (XVECLEN (pat, 0), pos);
11408 if (pos == 1)
11409 pat = XVECEXP (pat, 0, 0);
11411 PATTERN (insn) = pat;
11412 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11413 if (dump_file && (dump_flags & TDF_DETAILS))
11415 if (insn_code_number < 0)
11416 fputs ("Failed to match this instruction:\n", dump_file);
11417 else
11418 fputs ("Successfully matched this instruction:\n", dump_file);
11419 print_rtl_single (dump_file, pat);
11423 pat_without_clobbers = pat;
11425 PATTERN (insn) = old_pat;
11426 REG_NOTES (insn) = old_notes;
11428 /* Recognize all noop sets, these will be killed by followup pass. */
11429 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
11430 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
11432 /* If we had any clobbers to add, make a new pattern than contains
11433 them. Then check to make sure that all of them are dead. */
11434 if (num_clobbers_to_add)
11436 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
11437 rtvec_alloc (GET_CODE (pat) == PARALLEL
11438 ? (XVECLEN (pat, 0)
11439 + num_clobbers_to_add)
11440 : num_clobbers_to_add + 1));
11442 if (GET_CODE (pat) == PARALLEL)
11443 for (i = 0; i < XVECLEN (pat, 0); i++)
11444 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
11445 else
11446 XVECEXP (newpat, 0, 0) = pat;
11448 add_clobbers (newpat, insn_code_number);
11450 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
11451 i < XVECLEN (newpat, 0); i++)
11453 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
11454 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
11455 return -1;
11456 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
11458 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
11459 notes = alloc_reg_note (REG_UNUSED,
11460 XEXP (XVECEXP (newpat, 0, i), 0), notes);
11463 pat = newpat;
11466 if (insn_code_number >= 0
11467 && insn_code_number != NOOP_MOVE_INSN_CODE)
11469 old_pat = PATTERN (insn);
11470 old_notes = REG_NOTES (insn);
11471 old_icode = INSN_CODE (insn);
11472 PATTERN (insn) = pat;
11473 REG_NOTES (insn) = notes;
11474 INSN_CODE (insn) = insn_code_number;
11476 /* Allow targets to reject combined insn. */
11477 if (!targetm.legitimate_combined_insn (insn))
11479 if (dump_file && (dump_flags & TDF_DETAILS))
11480 fputs ("Instruction not appropriate for target.",
11481 dump_file);
11483 /* Callers expect recog_for_combine to strip
11484 clobbers from the pattern on failure. */
11485 pat = pat_without_clobbers;
11486 notes = NULL_RTX;
11488 insn_code_number = -1;
11491 PATTERN (insn) = old_pat;
11492 REG_NOTES (insn) = old_notes;
11493 INSN_CODE (insn) = old_icode;
11496 *pnewpat = pat;
11497 *pnotes = notes;
11499 return insn_code_number;
11502 /* Change every ZERO_EXTRACT and ZERO_EXTEND of a SUBREG that can be
11503 expressed as an AND and maybe an LSHIFTRT, to that formulation.
11504 Return whether anything was so changed. */
11506 static bool
11507 change_zero_ext (rtx pat)
11509 bool changed = false;
11510 rtx *src = &SET_SRC (pat);
11512 subrtx_ptr_iterator::array_type array;
11513 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11515 rtx x = **iter;
11516 scalar_int_mode mode, inner_mode;
11517 if (!is_a <scalar_int_mode> (GET_MODE (x), &mode))
11518 continue;
11519 int size;
11521 if (GET_CODE (x) == ZERO_EXTRACT
11522 && CONST_INT_P (XEXP (x, 1))
11523 && CONST_INT_P (XEXP (x, 2))
11524 && is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode)
11525 && GET_MODE_PRECISION (inner_mode) <= GET_MODE_PRECISION (mode))
11527 size = INTVAL (XEXP (x, 1));
11529 int start = INTVAL (XEXP (x, 2));
11530 if (BITS_BIG_ENDIAN)
11531 start = GET_MODE_PRECISION (inner_mode) - size - start;
11533 if (start != 0)
11534 x = gen_rtx_LSHIFTRT (inner_mode, XEXP (x, 0),
11535 gen_int_shift_amount (inner_mode, start));
11536 else
11537 x = XEXP (x, 0);
11539 if (mode != inner_mode)
11541 if (REG_P (x) && HARD_REGISTER_P (x)
11542 && !can_change_dest_mode (x, 0, mode))
11543 continue;
11545 x = gen_lowpart_SUBREG (mode, x);
11548 else if (GET_CODE (x) == ZERO_EXTEND
11549 && GET_CODE (XEXP (x, 0)) == SUBREG
11550 && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (XEXP (x, 0))))
11551 && !paradoxical_subreg_p (XEXP (x, 0))
11552 && subreg_lowpart_p (XEXP (x, 0)))
11554 inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
11555 size = GET_MODE_PRECISION (inner_mode);
11556 x = SUBREG_REG (XEXP (x, 0));
11557 if (GET_MODE (x) != mode)
11559 if (REG_P (x) && HARD_REGISTER_P (x)
11560 && !can_change_dest_mode (x, 0, mode))
11561 continue;
11563 x = gen_lowpart_SUBREG (mode, x);
11566 else if (GET_CODE (x) == ZERO_EXTEND
11567 && REG_P (XEXP (x, 0))
11568 && HARD_REGISTER_P (XEXP (x, 0))
11569 && can_change_dest_mode (XEXP (x, 0), 0, mode))
11571 inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
11572 size = GET_MODE_PRECISION (inner_mode);
11573 x = gen_rtx_REG (mode, REGNO (XEXP (x, 0)));
11575 else
11576 continue;
11578 if (!(GET_CODE (x) == LSHIFTRT
11579 && CONST_INT_P (XEXP (x, 1))
11580 && size + INTVAL (XEXP (x, 1)) == GET_MODE_PRECISION (mode)))
11582 wide_int mask = wi::mask (size, false, GET_MODE_PRECISION (mode));
11583 x = gen_rtx_AND (mode, x, immed_wide_int_const (mask, mode));
11586 SUBST (**iter, x);
11587 changed = true;
11590 if (changed)
11591 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11592 maybe_swap_commutative_operands (**iter);
11594 rtx *dst = &SET_DEST (pat);
11595 scalar_int_mode mode;
11596 if (GET_CODE (*dst) == ZERO_EXTRACT
11597 && REG_P (XEXP (*dst, 0))
11598 && is_a <scalar_int_mode> (GET_MODE (XEXP (*dst, 0)), &mode)
11599 && CONST_INT_P (XEXP (*dst, 1))
11600 && CONST_INT_P (XEXP (*dst, 2)))
11602 rtx reg = XEXP (*dst, 0);
11603 int width = INTVAL (XEXP (*dst, 1));
11604 int offset = INTVAL (XEXP (*dst, 2));
11605 int reg_width = GET_MODE_PRECISION (mode);
11606 if (BITS_BIG_ENDIAN)
11607 offset = reg_width - width - offset;
11609 rtx x, y, z, w;
11610 wide_int mask = wi::shifted_mask (offset, width, true, reg_width);
11611 wide_int mask2 = wi::shifted_mask (offset, width, false, reg_width);
11612 x = gen_rtx_AND (mode, reg, immed_wide_int_const (mask, mode));
11613 if (offset)
11614 y = gen_rtx_ASHIFT (mode, SET_SRC (pat), GEN_INT (offset));
11615 else
11616 y = SET_SRC (pat);
11617 z = gen_rtx_AND (mode, y, immed_wide_int_const (mask2, mode));
11618 w = gen_rtx_IOR (mode, x, z);
11619 SUBST (SET_DEST (pat), reg);
11620 SUBST (SET_SRC (pat), w);
11622 changed = true;
11625 return changed;
11628 /* Like recog, but we receive the address of a pointer to a new pattern.
11629 We try to match the rtx that the pointer points to.
11630 If that fails, we may try to modify or replace the pattern,
11631 storing the replacement into the same pointer object.
11633 Modifications include deletion or addition of CLOBBERs. If the
11634 instruction will still not match, we change ZERO_EXTEND and ZERO_EXTRACT
11635 to the equivalent AND and perhaps LSHIFTRT patterns, and try with that
11636 (and undo if that fails).
11638 PNOTES is a pointer to a location where any REG_UNUSED notes added for
11639 the CLOBBERs are placed.
11641 The value is the final insn code from the pattern ultimately matched,
11642 or -1. */
11644 static int
11645 recog_for_combine (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11647 rtx pat = *pnewpat;
11648 int insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11649 if (insn_code_number >= 0 || check_asm_operands (pat))
11650 return insn_code_number;
11652 void *marker = get_undo_marker ();
11653 bool changed = false;
11655 if (GET_CODE (pat) == SET)
11657 /* For an unrecognized single set of a constant, try placing it in
11658 the constant pool, if this function already uses one. */
11659 rtx src = SET_SRC (pat);
11660 if (CONSTANT_P (src)
11661 && !CONST_INT_P (src)
11662 && crtl->uses_const_pool)
11664 machine_mode mode = GET_MODE (src);
11665 if (mode == VOIDmode)
11666 mode = GET_MODE (SET_DEST (pat));
11667 src = force_const_mem (mode, src);
11668 if (src)
11670 SUBST (SET_SRC (pat), src);
11671 changed = true;
11674 else
11675 changed = change_zero_ext (pat);
11677 else if (GET_CODE (pat) == PARALLEL)
11679 int i;
11680 for (i = 0; i < XVECLEN (pat, 0); i++)
11682 rtx set = XVECEXP (pat, 0, i);
11683 if (GET_CODE (set) == SET)
11684 changed |= change_zero_ext (set);
11688 if (changed)
11690 insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11692 if (insn_code_number < 0)
11693 undo_to_marker (marker);
11696 return insn_code_number;
11699 /* Like gen_lowpart_general but for use by combine. In combine it
11700 is not possible to create any new pseudoregs. However, it is
11701 safe to create invalid memory addresses, because combine will
11702 try to recognize them and all they will do is make the combine
11703 attempt fail.
11705 If for some reason this cannot do its job, an rtx
11706 (clobber (const_int 0)) is returned.
11707 An insn containing that will not be recognized. */
11709 static rtx
11710 gen_lowpart_for_combine (machine_mode omode, rtx x)
11712 machine_mode imode = GET_MODE (x);
11713 rtx result;
11715 if (omode == imode)
11716 return x;
11718 /* We can only support MODE being wider than a word if X is a
11719 constant integer or has a mode the same size. */
11720 if (maybe_gt (GET_MODE_SIZE (omode), UNITS_PER_WORD)
11721 && ! (CONST_SCALAR_INT_P (x)
11722 || known_eq (GET_MODE_SIZE (imode), GET_MODE_SIZE (omode))))
11723 goto fail;
11725 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
11726 won't know what to do. So we will strip off the SUBREG here and
11727 process normally. */
11728 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
11730 x = SUBREG_REG (x);
11732 /* For use in case we fall down into the address adjustments
11733 further below, we need to adjust the known mode and size of
11734 x; imode and isize, since we just adjusted x. */
11735 imode = GET_MODE (x);
11737 if (imode == omode)
11738 return x;
11741 result = gen_lowpart_common (omode, x);
11743 if (result)
11744 return result;
11746 if (MEM_P (x))
11748 /* Refuse to work on a volatile memory ref or one with a mode-dependent
11749 address. */
11750 if (MEM_VOLATILE_P (x)
11751 || mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x)))
11752 goto fail;
11754 /* If we want to refer to something bigger than the original memref,
11755 generate a paradoxical subreg instead. That will force a reload
11756 of the original memref X. */
11757 if (paradoxical_subreg_p (omode, imode))
11758 return gen_rtx_SUBREG (omode, x, 0);
11760 poly_int64 offset = byte_lowpart_offset (omode, imode);
11761 return adjust_address_nv (x, omode, offset);
11764 /* If X is a comparison operator, rewrite it in a new mode. This
11765 probably won't match, but may allow further simplifications. */
11766 else if (COMPARISON_P (x)
11767 && SCALAR_INT_MODE_P (imode)
11768 && SCALAR_INT_MODE_P (omode))
11769 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
11771 /* If we couldn't simplify X any other way, just enclose it in a
11772 SUBREG. Normally, this SUBREG won't match, but some patterns may
11773 include an explicit SUBREG or we may simplify it further in combine. */
11774 else
11776 rtx res;
11778 if (imode == VOIDmode)
11780 imode = int_mode_for_mode (omode).require ();
11781 x = gen_lowpart_common (imode, x);
11782 if (x == NULL)
11783 goto fail;
11785 res = lowpart_subreg (omode, x, imode);
11786 if (res)
11787 return res;
11790 fail:
11791 return gen_rtx_CLOBBER (omode, const0_rtx);
11794 /* Try to simplify a comparison between OP0 and a constant OP1,
11795 where CODE is the comparison code that will be tested, into a
11796 (CODE OP0 const0_rtx) form.
11798 The result is a possibly different comparison code to use.
11799 *POP1 may be updated. */
11801 static enum rtx_code
11802 simplify_compare_const (enum rtx_code code, machine_mode mode,
11803 rtx op0, rtx *pop1)
11805 scalar_int_mode int_mode;
11806 HOST_WIDE_INT const_op = INTVAL (*pop1);
11808 /* Get the constant we are comparing against and turn off all bits
11809 not on in our mode. */
11810 if (mode != VOIDmode)
11811 const_op = trunc_int_for_mode (const_op, mode);
11813 /* If we are comparing against a constant power of two and the value
11814 being compared can only have that single bit nonzero (e.g., it was
11815 `and'ed with that bit), we can replace this with a comparison
11816 with zero. */
11817 if (const_op
11818 && (code == EQ || code == NE || code == GE || code == GEU
11819 || code == LT || code == LTU)
11820 && is_a <scalar_int_mode> (mode, &int_mode)
11821 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11822 && pow2p_hwi (const_op & GET_MODE_MASK (int_mode))
11823 && (nonzero_bits (op0, int_mode)
11824 == (unsigned HOST_WIDE_INT) (const_op & GET_MODE_MASK (int_mode))))
11826 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
11827 const_op = 0;
11830 /* Similarly, if we are comparing a value known to be either -1 or
11831 0 with -1, change it to the opposite comparison against zero. */
11832 if (const_op == -1
11833 && (code == EQ || code == NE || code == GT || code == LE
11834 || code == GEU || code == LTU)
11835 && is_a <scalar_int_mode> (mode, &int_mode)
11836 && num_sign_bit_copies (op0, int_mode) == GET_MODE_PRECISION (int_mode))
11838 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
11839 const_op = 0;
11842 /* Do some canonicalizations based on the comparison code. We prefer
11843 comparisons against zero and then prefer equality comparisons.
11844 If we can reduce the size of a constant, we will do that too. */
11845 switch (code)
11847 case LT:
11848 /* < C is equivalent to <= (C - 1) */
11849 if (const_op > 0)
11851 const_op -= 1;
11852 code = LE;
11853 /* ... fall through to LE case below. */
11854 gcc_fallthrough ();
11856 else
11857 break;
11859 case LE:
11860 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
11861 if (const_op < 0)
11863 const_op += 1;
11864 code = LT;
11867 /* If we are doing a <= 0 comparison on a value known to have
11868 a zero sign bit, we can replace this with == 0. */
11869 else if (const_op == 0
11870 && is_a <scalar_int_mode> (mode, &int_mode)
11871 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11872 && (nonzero_bits (op0, int_mode)
11873 & (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11874 == 0)
11875 code = EQ;
11876 break;
11878 case GE:
11879 /* >= C is equivalent to > (C - 1). */
11880 if (const_op > 0)
11882 const_op -= 1;
11883 code = GT;
11884 /* ... fall through to GT below. */
11885 gcc_fallthrough ();
11887 else
11888 break;
11890 case GT:
11891 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
11892 if (const_op < 0)
11894 const_op += 1;
11895 code = GE;
11898 /* If we are doing a > 0 comparison on a value known to have
11899 a zero sign bit, we can replace this with != 0. */
11900 else if (const_op == 0
11901 && is_a <scalar_int_mode> (mode, &int_mode)
11902 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11903 && (nonzero_bits (op0, int_mode)
11904 & (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11905 == 0)
11906 code = NE;
11907 break;
11909 case LTU:
11910 /* < C is equivalent to <= (C - 1). */
11911 if (const_op > 0)
11913 const_op -= 1;
11914 code = LEU;
11915 /* ... fall through ... */
11916 gcc_fallthrough ();
11918 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
11919 else if (is_a <scalar_int_mode> (mode, &int_mode)
11920 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11921 && ((unsigned HOST_WIDE_INT) const_op
11922 == HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11924 const_op = 0;
11925 code = GE;
11926 break;
11928 else
11929 break;
11931 case LEU:
11932 /* unsigned <= 0 is equivalent to == 0 */
11933 if (const_op == 0)
11934 code = EQ;
11935 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
11936 else if (is_a <scalar_int_mode> (mode, &int_mode)
11937 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11938 && ((unsigned HOST_WIDE_INT) const_op
11939 == ((HOST_WIDE_INT_1U
11940 << (GET_MODE_PRECISION (int_mode) - 1)) - 1)))
11942 const_op = 0;
11943 code = GE;
11945 break;
11947 case GEU:
11948 /* >= C is equivalent to > (C - 1). */
11949 if (const_op > 1)
11951 const_op -= 1;
11952 code = GTU;
11953 /* ... fall through ... */
11954 gcc_fallthrough ();
11957 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
11958 else if (is_a <scalar_int_mode> (mode, &int_mode)
11959 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11960 && ((unsigned HOST_WIDE_INT) const_op
11961 == HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11963 const_op = 0;
11964 code = LT;
11965 break;
11967 else
11968 break;
11970 case GTU:
11971 /* unsigned > 0 is equivalent to != 0 */
11972 if (const_op == 0)
11973 code = NE;
11974 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
11975 else if (is_a <scalar_int_mode> (mode, &int_mode)
11976 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11977 && ((unsigned HOST_WIDE_INT) const_op
11978 == (HOST_WIDE_INT_1U
11979 << (GET_MODE_PRECISION (int_mode) - 1)) - 1))
11981 const_op = 0;
11982 code = LT;
11984 break;
11986 default:
11987 break;
11990 *pop1 = GEN_INT (const_op);
11991 return code;
11994 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
11995 comparison code that will be tested.
11997 The result is a possibly different comparison code to use. *POP0 and
11998 *POP1 may be updated.
12000 It is possible that we might detect that a comparison is either always
12001 true or always false. However, we do not perform general constant
12002 folding in combine, so this knowledge isn't useful. Such tautologies
12003 should have been detected earlier. Hence we ignore all such cases. */
12005 static enum rtx_code
12006 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
12008 rtx op0 = *pop0;
12009 rtx op1 = *pop1;
12010 rtx tem, tem1;
12011 int i;
12012 scalar_int_mode mode, inner_mode, tmode;
12013 opt_scalar_int_mode tmode_iter;
12015 /* Try a few ways of applying the same transformation to both operands. */
12016 while (1)
12018 /* The test below this one won't handle SIGN_EXTENDs on these machines,
12019 so check specially. */
12020 if (!WORD_REGISTER_OPERATIONS
12021 && code != GTU && code != GEU && code != LTU && code != LEU
12022 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
12023 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12024 && GET_CODE (XEXP (op1, 0)) == ASHIFT
12025 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
12026 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
12027 && is_a <scalar_int_mode> (GET_MODE (op0), &mode)
12028 && (is_a <scalar_int_mode>
12029 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))), &inner_mode))
12030 && inner_mode == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0)))
12031 && CONST_INT_P (XEXP (op0, 1))
12032 && XEXP (op0, 1) == XEXP (op1, 1)
12033 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
12034 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
12035 && (INTVAL (XEXP (op0, 1))
12036 == (GET_MODE_PRECISION (mode)
12037 - GET_MODE_PRECISION (inner_mode))))
12039 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
12040 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
12043 /* If both operands are the same constant shift, see if we can ignore the
12044 shift. We can if the shift is a rotate or if the bits shifted out of
12045 this shift are known to be zero for both inputs and if the type of
12046 comparison is compatible with the shift. */
12047 if (GET_CODE (op0) == GET_CODE (op1)
12048 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
12049 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
12050 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
12051 && (code != GT && code != LT && code != GE && code != LE))
12052 || (GET_CODE (op0) == ASHIFTRT
12053 && (code != GTU && code != LTU
12054 && code != GEU && code != LEU)))
12055 && CONST_INT_P (XEXP (op0, 1))
12056 && INTVAL (XEXP (op0, 1)) >= 0
12057 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12058 && XEXP (op0, 1) == XEXP (op1, 1))
12060 machine_mode mode = GET_MODE (op0);
12061 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
12062 int shift_count = INTVAL (XEXP (op0, 1));
12064 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
12065 mask &= (mask >> shift_count) << shift_count;
12066 else if (GET_CODE (op0) == ASHIFT)
12067 mask = (mask & (mask << shift_count)) >> shift_count;
12069 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
12070 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
12071 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
12072 else
12073 break;
12076 /* If both operands are AND's of a paradoxical SUBREG by constant, the
12077 SUBREGs are of the same mode, and, in both cases, the AND would
12078 be redundant if the comparison was done in the narrower mode,
12079 do the comparison in the narrower mode (e.g., we are AND'ing with 1
12080 and the operand's possibly nonzero bits are 0xffffff01; in that case
12081 if we only care about QImode, we don't need the AND). This case
12082 occurs if the output mode of an scc insn is not SImode and
12083 STORE_FLAG_VALUE == 1 (e.g., the 386).
12085 Similarly, check for a case where the AND's are ZERO_EXTEND
12086 operations from some narrower mode even though a SUBREG is not
12087 present. */
12089 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
12090 && CONST_INT_P (XEXP (op0, 1))
12091 && CONST_INT_P (XEXP (op1, 1)))
12093 rtx inner_op0 = XEXP (op0, 0);
12094 rtx inner_op1 = XEXP (op1, 0);
12095 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
12096 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
12097 int changed = 0;
12099 if (paradoxical_subreg_p (inner_op0)
12100 && GET_CODE (inner_op1) == SUBREG
12101 && HWI_COMPUTABLE_MODE_P (GET_MODE (SUBREG_REG (inner_op0)))
12102 && (GET_MODE (SUBREG_REG (inner_op0))
12103 == GET_MODE (SUBREG_REG (inner_op1)))
12104 && ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
12105 GET_MODE (SUBREG_REG (inner_op0)))) == 0
12106 && ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
12107 GET_MODE (SUBREG_REG (inner_op1)))) == 0)
12109 op0 = SUBREG_REG (inner_op0);
12110 op1 = SUBREG_REG (inner_op1);
12112 /* The resulting comparison is always unsigned since we masked
12113 off the original sign bit. */
12114 code = unsigned_condition (code);
12116 changed = 1;
12119 else if (c0 == c1)
12120 FOR_EACH_MODE_UNTIL (tmode,
12121 as_a <scalar_int_mode> (GET_MODE (op0)))
12122 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
12124 op0 = gen_lowpart_or_truncate (tmode, inner_op0);
12125 op1 = gen_lowpart_or_truncate (tmode, inner_op1);
12126 code = unsigned_condition (code);
12127 changed = 1;
12128 break;
12131 if (! changed)
12132 break;
12135 /* If both operands are NOT, we can strip off the outer operation
12136 and adjust the comparison code for swapped operands; similarly for
12137 NEG, except that this must be an equality comparison. */
12138 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
12139 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
12140 && (code == EQ || code == NE)))
12141 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
12143 else
12144 break;
12147 /* If the first operand is a constant, swap the operands and adjust the
12148 comparison code appropriately, but don't do this if the second operand
12149 is already a constant integer. */
12150 if (swap_commutative_operands_p (op0, op1))
12152 std::swap (op0, op1);
12153 code = swap_condition (code);
12156 /* We now enter a loop during which we will try to simplify the comparison.
12157 For the most part, we only are concerned with comparisons with zero,
12158 but some things may really be comparisons with zero but not start
12159 out looking that way. */
12161 while (CONST_INT_P (op1))
12163 machine_mode raw_mode = GET_MODE (op0);
12164 scalar_int_mode int_mode;
12165 int equality_comparison_p;
12166 int sign_bit_comparison_p;
12167 int unsigned_comparison_p;
12168 HOST_WIDE_INT const_op;
12170 /* We only want to handle integral modes. This catches VOIDmode,
12171 CCmode, and the floating-point modes. An exception is that we
12172 can handle VOIDmode if OP0 is a COMPARE or a comparison
12173 operation. */
12175 if (GET_MODE_CLASS (raw_mode) != MODE_INT
12176 && ! (raw_mode == VOIDmode
12177 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
12178 break;
12180 /* Try to simplify the compare to constant, possibly changing the
12181 comparison op, and/or changing op1 to zero. */
12182 code = simplify_compare_const (code, raw_mode, op0, &op1);
12183 const_op = INTVAL (op1);
12185 /* Compute some predicates to simplify code below. */
12187 equality_comparison_p = (code == EQ || code == NE);
12188 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
12189 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
12190 || code == GEU);
12192 /* If this is a sign bit comparison and we can do arithmetic in
12193 MODE, say that we will only be needing the sign bit of OP0. */
12194 if (sign_bit_comparison_p
12195 && is_a <scalar_int_mode> (raw_mode, &int_mode)
12196 && HWI_COMPUTABLE_MODE_P (int_mode))
12197 op0 = force_to_mode (op0, int_mode,
12198 HOST_WIDE_INT_1U
12199 << (GET_MODE_PRECISION (int_mode) - 1),
12202 if (COMPARISON_P (op0))
12204 /* We can't do anything if OP0 is a condition code value, rather
12205 than an actual data value. */
12206 if (const_op != 0
12207 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
12208 break;
12210 /* Get the two operands being compared. */
12211 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
12212 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
12213 else
12214 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
12216 /* Check for the cases where we simply want the result of the
12217 earlier test or the opposite of that result. */
12218 if (code == NE || code == EQ
12219 || (val_signbit_known_set_p (raw_mode, STORE_FLAG_VALUE)
12220 && (code == LT || code == GE)))
12222 enum rtx_code new_code;
12223 if (code == LT || code == NE)
12224 new_code = GET_CODE (op0);
12225 else
12226 new_code = reversed_comparison_code (op0, NULL);
12228 if (new_code != UNKNOWN)
12230 code = new_code;
12231 op0 = tem;
12232 op1 = tem1;
12233 continue;
12236 break;
12239 if (raw_mode == VOIDmode)
12240 break;
12241 scalar_int_mode mode = as_a <scalar_int_mode> (raw_mode);
12243 /* Now try cases based on the opcode of OP0. If none of the cases
12244 does a "continue", we exit this loop immediately after the
12245 switch. */
12247 unsigned int mode_width = GET_MODE_PRECISION (mode);
12248 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
12249 switch (GET_CODE (op0))
12251 case ZERO_EXTRACT:
12252 /* If we are extracting a single bit from a variable position in
12253 a constant that has only a single bit set and are comparing it
12254 with zero, we can convert this into an equality comparison
12255 between the position and the location of the single bit. */
12256 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
12257 have already reduced the shift count modulo the word size. */
12258 if (!SHIFT_COUNT_TRUNCATED
12259 && CONST_INT_P (XEXP (op0, 0))
12260 && XEXP (op0, 1) == const1_rtx
12261 && equality_comparison_p && const_op == 0
12262 && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
12264 if (BITS_BIG_ENDIAN)
12265 i = BITS_PER_WORD - 1 - i;
12267 op0 = XEXP (op0, 2);
12268 op1 = GEN_INT (i);
12269 const_op = i;
12271 /* Result is nonzero iff shift count is equal to I. */
12272 code = reverse_condition (code);
12273 continue;
12276 /* fall through */
12278 case SIGN_EXTRACT:
12279 tem = expand_compound_operation (op0);
12280 if (tem != op0)
12282 op0 = tem;
12283 continue;
12285 break;
12287 case NOT:
12288 /* If testing for equality, we can take the NOT of the constant. */
12289 if (equality_comparison_p
12290 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
12292 op0 = XEXP (op0, 0);
12293 op1 = tem;
12294 continue;
12297 /* If just looking at the sign bit, reverse the sense of the
12298 comparison. */
12299 if (sign_bit_comparison_p)
12301 op0 = XEXP (op0, 0);
12302 code = (code == GE ? LT : GE);
12303 continue;
12305 break;
12307 case NEG:
12308 /* If testing for equality, we can take the NEG of the constant. */
12309 if (equality_comparison_p
12310 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
12312 op0 = XEXP (op0, 0);
12313 op1 = tem;
12314 continue;
12317 /* The remaining cases only apply to comparisons with zero. */
12318 if (const_op != 0)
12319 break;
12321 /* When X is ABS or is known positive,
12322 (neg X) is < 0 if and only if X != 0. */
12324 if (sign_bit_comparison_p
12325 && (GET_CODE (XEXP (op0, 0)) == ABS
12326 || (mode_width <= HOST_BITS_PER_WIDE_INT
12327 && (nonzero_bits (XEXP (op0, 0), mode)
12328 & (HOST_WIDE_INT_1U << (mode_width - 1)))
12329 == 0)))
12331 op0 = XEXP (op0, 0);
12332 code = (code == LT ? NE : EQ);
12333 continue;
12336 /* If we have NEG of something whose two high-order bits are the
12337 same, we know that "(-a) < 0" is equivalent to "a > 0". */
12338 if (num_sign_bit_copies (op0, mode) >= 2)
12340 op0 = XEXP (op0, 0);
12341 code = swap_condition (code);
12342 continue;
12344 break;
12346 case ROTATE:
12347 /* If we are testing equality and our count is a constant, we
12348 can perform the inverse operation on our RHS. */
12349 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
12350 && (tem = simplify_binary_operation (ROTATERT, mode,
12351 op1, XEXP (op0, 1))) != 0)
12353 op0 = XEXP (op0, 0);
12354 op1 = tem;
12355 continue;
12358 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
12359 a particular bit. Convert it to an AND of a constant of that
12360 bit. This will be converted into a ZERO_EXTRACT. */
12361 if (const_op == 0 && sign_bit_comparison_p
12362 && CONST_INT_P (XEXP (op0, 1))
12363 && mode_width <= HOST_BITS_PER_WIDE_INT
12364 && UINTVAL (XEXP (op0, 1)) < mode_width)
12366 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12367 (HOST_WIDE_INT_1U
12368 << (mode_width - 1
12369 - INTVAL (XEXP (op0, 1)))));
12370 code = (code == LT ? NE : EQ);
12371 continue;
12374 /* Fall through. */
12376 case ABS:
12377 /* ABS is ignorable inside an equality comparison with zero. */
12378 if (const_op == 0 && equality_comparison_p)
12380 op0 = XEXP (op0, 0);
12381 continue;
12383 break;
12385 case SIGN_EXTEND:
12386 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
12387 (compare FOO CONST) if CONST fits in FOO's mode and we
12388 are either testing inequality or have an unsigned
12389 comparison with ZERO_EXTEND or a signed comparison with
12390 SIGN_EXTEND. But don't do it if we don't have a compare
12391 insn of the given mode, since we'd have to revert it
12392 later on, and then we wouldn't know whether to sign- or
12393 zero-extend. */
12394 if (is_int_mode (GET_MODE (XEXP (op0, 0)), &mode)
12395 && ! unsigned_comparison_p
12396 && HWI_COMPUTABLE_MODE_P (mode)
12397 && trunc_int_for_mode (const_op, mode) == const_op
12398 && have_insn_for (COMPARE, mode))
12400 op0 = XEXP (op0, 0);
12401 continue;
12403 break;
12405 case SUBREG:
12406 /* Check for the case where we are comparing A - C1 with C2, that is
12408 (subreg:MODE (plus (A) (-C1))) op (C2)
12410 with C1 a constant, and try to lift the SUBREG, i.e. to do the
12411 comparison in the wider mode. One of the following two conditions
12412 must be true in order for this to be valid:
12414 1. The mode extension results in the same bit pattern being added
12415 on both sides and the comparison is equality or unsigned. As
12416 C2 has been truncated to fit in MODE, the pattern can only be
12417 all 0s or all 1s.
12419 2. The mode extension results in the sign bit being copied on
12420 each side.
12422 The difficulty here is that we have predicates for A but not for
12423 (A - C1) so we need to check that C1 is within proper bounds so
12424 as to perturbate A as little as possible. */
12426 if (mode_width <= HOST_BITS_PER_WIDE_INT
12427 && subreg_lowpart_p (op0)
12428 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (op0)),
12429 &inner_mode)
12430 && GET_MODE_PRECISION (inner_mode) > mode_width
12431 && GET_CODE (SUBREG_REG (op0)) == PLUS
12432 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
12434 rtx a = XEXP (SUBREG_REG (op0), 0);
12435 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
12437 if ((c1 > 0
12438 && (unsigned HOST_WIDE_INT) c1
12439 < HOST_WIDE_INT_1U << (mode_width - 1)
12440 && (equality_comparison_p || unsigned_comparison_p)
12441 /* (A - C1) zero-extends if it is positive and sign-extends
12442 if it is negative, C2 both zero- and sign-extends. */
12443 && (((nonzero_bits (a, inner_mode)
12444 & ~GET_MODE_MASK (mode)) == 0
12445 && const_op >= 0)
12446 /* (A - C1) sign-extends if it is positive and 1-extends
12447 if it is negative, C2 both sign- and 1-extends. */
12448 || (num_sign_bit_copies (a, inner_mode)
12449 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12450 - mode_width)
12451 && const_op < 0)))
12452 || ((unsigned HOST_WIDE_INT) c1
12453 < HOST_WIDE_INT_1U << (mode_width - 2)
12454 /* (A - C1) always sign-extends, like C2. */
12455 && num_sign_bit_copies (a, inner_mode)
12456 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12457 - (mode_width - 1))))
12459 op0 = SUBREG_REG (op0);
12460 continue;
12464 /* If the inner mode is narrower and we are extracting the low part,
12465 we can treat the SUBREG as if it were a ZERO_EXTEND. */
12466 if (paradoxical_subreg_p (op0))
12468 else if (subreg_lowpart_p (op0)
12469 && GET_MODE_CLASS (mode) == MODE_INT
12470 && is_int_mode (GET_MODE (SUBREG_REG (op0)), &inner_mode)
12471 && (code == NE || code == EQ)
12472 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
12473 && !paradoxical_subreg_p (op0)
12474 && (nonzero_bits (SUBREG_REG (op0), inner_mode)
12475 & ~GET_MODE_MASK (mode)) == 0)
12477 /* Remove outer subregs that don't do anything. */
12478 tem = gen_lowpart (inner_mode, op1);
12480 if ((nonzero_bits (tem, inner_mode)
12481 & ~GET_MODE_MASK (mode)) == 0)
12483 op0 = SUBREG_REG (op0);
12484 op1 = tem;
12485 continue;
12487 break;
12489 else
12490 break;
12492 /* FALLTHROUGH */
12494 case ZERO_EXTEND:
12495 if (is_int_mode (GET_MODE (XEXP (op0, 0)), &mode)
12496 && (unsigned_comparison_p || equality_comparison_p)
12497 && HWI_COMPUTABLE_MODE_P (mode)
12498 && (unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (mode)
12499 && const_op >= 0
12500 && have_insn_for (COMPARE, mode))
12502 op0 = XEXP (op0, 0);
12503 continue;
12505 break;
12507 case PLUS:
12508 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
12509 this for equality comparisons due to pathological cases involving
12510 overflows. */
12511 if (equality_comparison_p
12512 && (tem = simplify_binary_operation (MINUS, mode,
12513 op1, XEXP (op0, 1))) != 0)
12515 op0 = XEXP (op0, 0);
12516 op1 = tem;
12517 continue;
12520 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
12521 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
12522 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
12524 op0 = XEXP (XEXP (op0, 0), 0);
12525 code = (code == LT ? EQ : NE);
12526 continue;
12528 break;
12530 case MINUS:
12531 /* We used to optimize signed comparisons against zero, but that
12532 was incorrect. Unsigned comparisons against zero (GTU, LEU)
12533 arrive here as equality comparisons, or (GEU, LTU) are
12534 optimized away. No need to special-case them. */
12536 /* (eq (minus A B) C) -> (eq A (plus B C)) or
12537 (eq B (minus A C)), whichever simplifies. We can only do
12538 this for equality comparisons due to pathological cases involving
12539 overflows. */
12540 if (equality_comparison_p
12541 && (tem = simplify_binary_operation (PLUS, mode,
12542 XEXP (op0, 1), op1)) != 0)
12544 op0 = XEXP (op0, 0);
12545 op1 = tem;
12546 continue;
12549 if (equality_comparison_p
12550 && (tem = simplify_binary_operation (MINUS, mode,
12551 XEXP (op0, 0), op1)) != 0)
12553 op0 = XEXP (op0, 1);
12554 op1 = tem;
12555 continue;
12558 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
12559 of bits in X minus 1, is one iff X > 0. */
12560 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
12561 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12562 && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
12563 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12565 op0 = XEXP (op0, 1);
12566 code = (code == GE ? LE : GT);
12567 continue;
12569 break;
12571 case XOR:
12572 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
12573 if C is zero or B is a constant. */
12574 if (equality_comparison_p
12575 && (tem = simplify_binary_operation (XOR, mode,
12576 XEXP (op0, 1), op1)) != 0)
12578 op0 = XEXP (op0, 0);
12579 op1 = tem;
12580 continue;
12582 break;
12585 case IOR:
12586 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
12587 iff X <= 0. */
12588 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
12589 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
12590 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12592 op0 = XEXP (op0, 1);
12593 code = (code == GE ? GT : LE);
12594 continue;
12596 break;
12598 case AND:
12599 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
12600 will be converted to a ZERO_EXTRACT later. */
12601 if (const_op == 0 && equality_comparison_p
12602 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12603 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
12605 op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
12606 XEXP (XEXP (op0, 0), 1));
12607 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12608 continue;
12611 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
12612 zero and X is a comparison and C1 and C2 describe only bits set
12613 in STORE_FLAG_VALUE, we can compare with X. */
12614 if (const_op == 0 && equality_comparison_p
12615 && mode_width <= HOST_BITS_PER_WIDE_INT
12616 && CONST_INT_P (XEXP (op0, 1))
12617 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
12618 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12619 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
12620 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
12622 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12623 << INTVAL (XEXP (XEXP (op0, 0), 1)));
12624 if ((~STORE_FLAG_VALUE & mask) == 0
12625 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
12626 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
12627 && COMPARISON_P (tem))))
12629 op0 = XEXP (XEXP (op0, 0), 0);
12630 continue;
12634 /* If we are doing an equality comparison of an AND of a bit equal
12635 to the sign bit, replace this with a LT or GE comparison of
12636 the underlying value. */
12637 if (equality_comparison_p
12638 && const_op == 0
12639 && CONST_INT_P (XEXP (op0, 1))
12640 && mode_width <= HOST_BITS_PER_WIDE_INT
12641 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12642 == HOST_WIDE_INT_1U << (mode_width - 1)))
12644 op0 = XEXP (op0, 0);
12645 code = (code == EQ ? GE : LT);
12646 continue;
12649 /* If this AND operation is really a ZERO_EXTEND from a narrower
12650 mode, the constant fits within that mode, and this is either an
12651 equality or unsigned comparison, try to do this comparison in
12652 the narrower mode.
12654 Note that in:
12656 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
12657 -> (ne:DI (reg:SI 4) (const_int 0))
12659 unless TARGET_TRULY_NOOP_TRUNCATION allows it or the register is
12660 known to hold a value of the required mode the
12661 transformation is invalid. */
12662 if ((equality_comparison_p || unsigned_comparison_p)
12663 && CONST_INT_P (XEXP (op0, 1))
12664 && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
12665 & GET_MODE_MASK (mode))
12666 + 1)) >= 0
12667 && const_op >> i == 0
12668 && int_mode_for_size (i, 1).exists (&tmode))
12670 op0 = gen_lowpart_or_truncate (tmode, XEXP (op0, 0));
12671 continue;
12674 /* If this is (and:M1 (subreg:M1 X:M2 0) (const_int C1)) where C1
12675 fits in both M1 and M2 and the SUBREG is either paradoxical
12676 or represents the low part, permute the SUBREG and the AND
12677 and try again. */
12678 if (GET_CODE (XEXP (op0, 0)) == SUBREG
12679 && CONST_INT_P (XEXP (op0, 1)))
12681 unsigned HOST_WIDE_INT c1 = INTVAL (XEXP (op0, 1));
12682 /* Require an integral mode, to avoid creating something like
12683 (AND:SF ...). */
12684 if ((is_a <scalar_int_mode>
12685 (GET_MODE (SUBREG_REG (XEXP (op0, 0))), &tmode))
12686 /* It is unsafe to commute the AND into the SUBREG if the
12687 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
12688 not defined. As originally written the upper bits
12689 have a defined value due to the AND operation.
12690 However, if we commute the AND inside the SUBREG then
12691 they no longer have defined values and the meaning of
12692 the code has been changed.
12693 Also C1 should not change value in the smaller mode,
12694 see PR67028 (a positive C1 can become negative in the
12695 smaller mode, so that the AND does no longer mask the
12696 upper bits). */
12697 && ((WORD_REGISTER_OPERATIONS
12698 && mode_width > GET_MODE_PRECISION (tmode)
12699 && mode_width <= BITS_PER_WORD
12700 && trunc_int_for_mode (c1, tmode) == (HOST_WIDE_INT) c1)
12701 || (mode_width <= GET_MODE_PRECISION (tmode)
12702 && subreg_lowpart_p (XEXP (op0, 0))))
12703 && mode_width <= HOST_BITS_PER_WIDE_INT
12704 && HWI_COMPUTABLE_MODE_P (tmode)
12705 && (c1 & ~mask) == 0
12706 && (c1 & ~GET_MODE_MASK (tmode)) == 0
12707 && c1 != mask
12708 && c1 != GET_MODE_MASK (tmode))
12710 op0 = simplify_gen_binary (AND, tmode,
12711 SUBREG_REG (XEXP (op0, 0)),
12712 gen_int_mode (c1, tmode));
12713 op0 = gen_lowpart (mode, op0);
12714 continue;
12718 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
12719 if (const_op == 0 && equality_comparison_p
12720 && XEXP (op0, 1) == const1_rtx
12721 && GET_CODE (XEXP (op0, 0)) == NOT)
12723 op0 = simplify_and_const_int (NULL_RTX, mode,
12724 XEXP (XEXP (op0, 0), 0), 1);
12725 code = (code == NE ? EQ : NE);
12726 continue;
12729 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
12730 (eq (and (lshiftrt X) 1) 0).
12731 Also handle the case where (not X) is expressed using xor. */
12732 if (const_op == 0 && equality_comparison_p
12733 && XEXP (op0, 1) == const1_rtx
12734 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
12736 rtx shift_op = XEXP (XEXP (op0, 0), 0);
12737 rtx shift_count = XEXP (XEXP (op0, 0), 1);
12739 if (GET_CODE (shift_op) == NOT
12740 || (GET_CODE (shift_op) == XOR
12741 && CONST_INT_P (XEXP (shift_op, 1))
12742 && CONST_INT_P (shift_count)
12743 && HWI_COMPUTABLE_MODE_P (mode)
12744 && (UINTVAL (XEXP (shift_op, 1))
12745 == HOST_WIDE_INT_1U
12746 << INTVAL (shift_count))))
12749 = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
12750 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12751 code = (code == NE ? EQ : NE);
12752 continue;
12755 break;
12757 case ASHIFT:
12758 /* If we have (compare (ashift FOO N) (const_int C)) and
12759 the high order N bits of FOO (N+1 if an inequality comparison)
12760 are known to be zero, we can do this by comparing FOO with C
12761 shifted right N bits so long as the low-order N bits of C are
12762 zero. */
12763 if (CONST_INT_P (XEXP (op0, 1))
12764 && INTVAL (XEXP (op0, 1)) >= 0
12765 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
12766 < HOST_BITS_PER_WIDE_INT)
12767 && (((unsigned HOST_WIDE_INT) const_op
12768 & ((HOST_WIDE_INT_1U << INTVAL (XEXP (op0, 1)))
12769 - 1)) == 0)
12770 && mode_width <= HOST_BITS_PER_WIDE_INT
12771 && (nonzero_bits (XEXP (op0, 0), mode)
12772 & ~(mask >> (INTVAL (XEXP (op0, 1))
12773 + ! equality_comparison_p))) == 0)
12775 /* We must perform a logical shift, not an arithmetic one,
12776 as we want the top N bits of C to be zero. */
12777 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
12779 temp >>= INTVAL (XEXP (op0, 1));
12780 op1 = gen_int_mode (temp, mode);
12781 op0 = XEXP (op0, 0);
12782 continue;
12785 /* If we are doing a sign bit comparison, it means we are testing
12786 a particular bit. Convert it to the appropriate AND. */
12787 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
12788 && mode_width <= HOST_BITS_PER_WIDE_INT)
12790 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12791 (HOST_WIDE_INT_1U
12792 << (mode_width - 1
12793 - INTVAL (XEXP (op0, 1)))));
12794 code = (code == LT ? NE : EQ);
12795 continue;
12798 /* If this an equality comparison with zero and we are shifting
12799 the low bit to the sign bit, we can convert this to an AND of the
12800 low-order bit. */
12801 if (const_op == 0 && equality_comparison_p
12802 && CONST_INT_P (XEXP (op0, 1))
12803 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12805 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
12806 continue;
12808 break;
12810 case ASHIFTRT:
12811 /* If this is an equality comparison with zero, we can do this
12812 as a logical shift, which might be much simpler. */
12813 if (equality_comparison_p && const_op == 0
12814 && CONST_INT_P (XEXP (op0, 1)))
12816 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
12817 XEXP (op0, 0),
12818 INTVAL (XEXP (op0, 1)));
12819 continue;
12822 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
12823 do the comparison in a narrower mode. */
12824 if (! unsigned_comparison_p
12825 && CONST_INT_P (XEXP (op0, 1))
12826 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12827 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
12828 && (int_mode_for_size (mode_width - INTVAL (XEXP (op0, 1)), 1)
12829 .exists (&tmode))
12830 && (((unsigned HOST_WIDE_INT) const_op
12831 + (GET_MODE_MASK (tmode) >> 1) + 1)
12832 <= GET_MODE_MASK (tmode)))
12834 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
12835 continue;
12838 /* Likewise if OP0 is a PLUS of a sign extension with a
12839 constant, which is usually represented with the PLUS
12840 between the shifts. */
12841 if (! unsigned_comparison_p
12842 && CONST_INT_P (XEXP (op0, 1))
12843 && GET_CODE (XEXP (op0, 0)) == PLUS
12844 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12845 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
12846 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
12847 && (int_mode_for_size (mode_width - INTVAL (XEXP (op0, 1)), 1)
12848 .exists (&tmode))
12849 && (((unsigned HOST_WIDE_INT) const_op
12850 + (GET_MODE_MASK (tmode) >> 1) + 1)
12851 <= GET_MODE_MASK (tmode)))
12853 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
12854 rtx add_const = XEXP (XEXP (op0, 0), 1);
12855 rtx new_const = simplify_gen_binary (ASHIFTRT, mode,
12856 add_const, XEXP (op0, 1));
12858 op0 = simplify_gen_binary (PLUS, tmode,
12859 gen_lowpart (tmode, inner),
12860 new_const);
12861 continue;
12864 /* FALLTHROUGH */
12865 case LSHIFTRT:
12866 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
12867 the low order N bits of FOO are known to be zero, we can do this
12868 by comparing FOO with C shifted left N bits so long as no
12869 overflow occurs. Even if the low order N bits of FOO aren't known
12870 to be zero, if the comparison is >= or < we can use the same
12871 optimization and for > or <= by setting all the low
12872 order N bits in the comparison constant. */
12873 if (CONST_INT_P (XEXP (op0, 1))
12874 && INTVAL (XEXP (op0, 1)) > 0
12875 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12876 && mode_width <= HOST_BITS_PER_WIDE_INT
12877 && (((unsigned HOST_WIDE_INT) const_op
12878 + (GET_CODE (op0) != LSHIFTRT
12879 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
12880 + 1)
12881 : 0))
12882 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
12884 unsigned HOST_WIDE_INT low_bits
12885 = (nonzero_bits (XEXP (op0, 0), mode)
12886 & ((HOST_WIDE_INT_1U
12887 << INTVAL (XEXP (op0, 1))) - 1));
12888 if (low_bits == 0 || !equality_comparison_p)
12890 /* If the shift was logical, then we must make the condition
12891 unsigned. */
12892 if (GET_CODE (op0) == LSHIFTRT)
12893 code = unsigned_condition (code);
12895 const_op = (unsigned HOST_WIDE_INT) const_op
12896 << INTVAL (XEXP (op0, 1));
12897 if (low_bits != 0
12898 && (code == GT || code == GTU
12899 || code == LE || code == LEU))
12900 const_op
12901 |= ((HOST_WIDE_INT_1 << INTVAL (XEXP (op0, 1))) - 1);
12902 op1 = GEN_INT (const_op);
12903 op0 = XEXP (op0, 0);
12904 continue;
12908 /* If we are using this shift to extract just the sign bit, we
12909 can replace this with an LT or GE comparison. */
12910 if (const_op == 0
12911 && (equality_comparison_p || sign_bit_comparison_p)
12912 && CONST_INT_P (XEXP (op0, 1))
12913 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12915 op0 = XEXP (op0, 0);
12916 code = (code == NE || code == GT ? LT : GE);
12917 continue;
12919 break;
12921 default:
12922 break;
12925 break;
12928 /* Now make any compound operations involved in this comparison. Then,
12929 check for an outmost SUBREG on OP0 that is not doing anything or is
12930 paradoxical. The latter transformation must only be performed when
12931 it is known that the "extra" bits will be the same in op0 and op1 or
12932 that they don't matter. There are three cases to consider:
12934 1. SUBREG_REG (op0) is a register. In this case the bits are don't
12935 care bits and we can assume they have any convenient value. So
12936 making the transformation is safe.
12938 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is UNKNOWN.
12939 In this case the upper bits of op0 are undefined. We should not make
12940 the simplification in that case as we do not know the contents of
12941 those bits.
12943 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not UNKNOWN.
12944 In that case we know those bits are zeros or ones. We must also be
12945 sure that they are the same as the upper bits of op1.
12947 We can never remove a SUBREG for a non-equality comparison because
12948 the sign bit is in a different place in the underlying object. */
12950 rtx_code op0_mco_code = SET;
12951 if (op1 == const0_rtx)
12952 op0_mco_code = code == NE || code == EQ ? EQ : COMPARE;
12954 op0 = make_compound_operation (op0, op0_mco_code);
12955 op1 = make_compound_operation (op1, SET);
12957 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
12958 && is_int_mode (GET_MODE (op0), &mode)
12959 && is_int_mode (GET_MODE (SUBREG_REG (op0)), &inner_mode)
12960 && (code == NE || code == EQ))
12962 if (paradoxical_subreg_p (op0))
12964 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
12965 implemented. */
12966 if (REG_P (SUBREG_REG (op0)))
12968 op0 = SUBREG_REG (op0);
12969 op1 = gen_lowpart (inner_mode, op1);
12972 else if (GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
12973 && (nonzero_bits (SUBREG_REG (op0), inner_mode)
12974 & ~GET_MODE_MASK (mode)) == 0)
12976 tem = gen_lowpart (inner_mode, op1);
12978 if ((nonzero_bits (tem, inner_mode) & ~GET_MODE_MASK (mode)) == 0)
12979 op0 = SUBREG_REG (op0), op1 = tem;
12983 /* We now do the opposite procedure: Some machines don't have compare
12984 insns in all modes. If OP0's mode is an integer mode smaller than a
12985 word and we can't do a compare in that mode, see if there is a larger
12986 mode for which we can do the compare. There are a number of cases in
12987 which we can use the wider mode. */
12989 if (is_int_mode (GET_MODE (op0), &mode)
12990 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
12991 && ! have_insn_for (COMPARE, mode))
12992 FOR_EACH_WIDER_MODE (tmode_iter, mode)
12994 tmode = tmode_iter.require ();
12995 if (!HWI_COMPUTABLE_MODE_P (tmode))
12996 break;
12997 if (have_insn_for (COMPARE, tmode))
12999 int zero_extended;
13001 /* If this is a test for negative, we can make an explicit
13002 test of the sign bit. Test this first so we can use
13003 a paradoxical subreg to extend OP0. */
13005 if (op1 == const0_rtx && (code == LT || code == GE)
13006 && HWI_COMPUTABLE_MODE_P (mode))
13008 unsigned HOST_WIDE_INT sign
13009 = HOST_WIDE_INT_1U << (GET_MODE_BITSIZE (mode) - 1);
13010 op0 = simplify_gen_binary (AND, tmode,
13011 gen_lowpart (tmode, op0),
13012 gen_int_mode (sign, tmode));
13013 code = (code == LT) ? NE : EQ;
13014 break;
13017 /* If the only nonzero bits in OP0 and OP1 are those in the
13018 narrower mode and this is an equality or unsigned comparison,
13019 we can use the wider mode. Similarly for sign-extended
13020 values, in which case it is true for all comparisons. */
13021 zero_extended = ((code == EQ || code == NE
13022 || code == GEU || code == GTU
13023 || code == LEU || code == LTU)
13024 && (nonzero_bits (op0, tmode)
13025 & ~GET_MODE_MASK (mode)) == 0
13026 && ((CONST_INT_P (op1)
13027 || (nonzero_bits (op1, tmode)
13028 & ~GET_MODE_MASK (mode)) == 0)));
13030 if (zero_extended
13031 || ((num_sign_bit_copies (op0, tmode)
13032 > (unsigned int) (GET_MODE_PRECISION (tmode)
13033 - GET_MODE_PRECISION (mode)))
13034 && (num_sign_bit_copies (op1, tmode)
13035 > (unsigned int) (GET_MODE_PRECISION (tmode)
13036 - GET_MODE_PRECISION (mode)))))
13038 /* If OP0 is an AND and we don't have an AND in MODE either,
13039 make a new AND in the proper mode. */
13040 if (GET_CODE (op0) == AND
13041 && !have_insn_for (AND, mode))
13042 op0 = simplify_gen_binary (AND, tmode,
13043 gen_lowpart (tmode,
13044 XEXP (op0, 0)),
13045 gen_lowpart (tmode,
13046 XEXP (op0, 1)));
13047 else
13049 if (zero_extended)
13051 op0 = simplify_gen_unary (ZERO_EXTEND, tmode,
13052 op0, mode);
13053 op1 = simplify_gen_unary (ZERO_EXTEND, tmode,
13054 op1, mode);
13056 else
13058 op0 = simplify_gen_unary (SIGN_EXTEND, tmode,
13059 op0, mode);
13060 op1 = simplify_gen_unary (SIGN_EXTEND, tmode,
13061 op1, mode);
13063 break;
13069 /* We may have changed the comparison operands. Re-canonicalize. */
13070 if (swap_commutative_operands_p (op0, op1))
13072 std::swap (op0, op1);
13073 code = swap_condition (code);
13076 /* If this machine only supports a subset of valid comparisons, see if we
13077 can convert an unsupported one into a supported one. */
13078 target_canonicalize_comparison (&code, &op0, &op1, 0);
13080 *pop0 = op0;
13081 *pop1 = op1;
13083 return code;
13086 /* Utility function for record_value_for_reg. Count number of
13087 rtxs in X. */
13088 static int
13089 count_rtxs (rtx x)
13091 enum rtx_code code = GET_CODE (x);
13092 const char *fmt;
13093 int i, j, ret = 1;
13095 if (GET_RTX_CLASS (code) == RTX_BIN_ARITH
13096 || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
13098 rtx x0 = XEXP (x, 0);
13099 rtx x1 = XEXP (x, 1);
13101 if (x0 == x1)
13102 return 1 + 2 * count_rtxs (x0);
13104 if ((GET_RTX_CLASS (GET_CODE (x1)) == RTX_BIN_ARITH
13105 || GET_RTX_CLASS (GET_CODE (x1)) == RTX_COMM_ARITH)
13106 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13107 return 2 + 2 * count_rtxs (x0)
13108 + count_rtxs (x == XEXP (x1, 0)
13109 ? XEXP (x1, 1) : XEXP (x1, 0));
13111 if ((GET_RTX_CLASS (GET_CODE (x0)) == RTX_BIN_ARITH
13112 || GET_RTX_CLASS (GET_CODE (x0)) == RTX_COMM_ARITH)
13113 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13114 return 2 + 2 * count_rtxs (x1)
13115 + count_rtxs (x == XEXP (x0, 0)
13116 ? XEXP (x0, 1) : XEXP (x0, 0));
13119 fmt = GET_RTX_FORMAT (code);
13120 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13121 if (fmt[i] == 'e')
13122 ret += count_rtxs (XEXP (x, i));
13123 else if (fmt[i] == 'E')
13124 for (j = 0; j < XVECLEN (x, i); j++)
13125 ret += count_rtxs (XVECEXP (x, i, j));
13127 return ret;
13130 /* Utility function for following routine. Called when X is part of a value
13131 being stored into last_set_value. Sets last_set_table_tick
13132 for each register mentioned. Similar to mention_regs in cse.cc */
13134 static void
13135 update_table_tick (rtx x)
13137 enum rtx_code code = GET_CODE (x);
13138 const char *fmt = GET_RTX_FORMAT (code);
13139 int i, j;
13141 if (code == REG)
13143 unsigned int regno = REGNO (x);
13144 unsigned int endregno = END_REGNO (x);
13145 unsigned int r;
13147 for (r = regno; r < endregno; r++)
13149 reg_stat_type *rsp = &reg_stat[r];
13150 rsp->last_set_table_tick = label_tick;
13153 return;
13156 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13157 if (fmt[i] == 'e')
13159 /* Check for identical subexpressions. If x contains
13160 identical subexpression we only have to traverse one of
13161 them. */
13162 if (i == 0 && ARITHMETIC_P (x))
13164 /* Note that at this point x1 has already been
13165 processed. */
13166 rtx x0 = XEXP (x, 0);
13167 rtx x1 = XEXP (x, 1);
13169 /* If x0 and x1 are identical then there is no need to
13170 process x0. */
13171 if (x0 == x1)
13172 break;
13174 /* If x0 is identical to a subexpression of x1 then while
13175 processing x1, x0 has already been processed. Thus we
13176 are done with x. */
13177 if (ARITHMETIC_P (x1)
13178 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13179 break;
13181 /* If x1 is identical to a subexpression of x0 then we
13182 still have to process the rest of x0. */
13183 if (ARITHMETIC_P (x0)
13184 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13186 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
13187 break;
13191 update_table_tick (XEXP (x, i));
13193 else if (fmt[i] == 'E')
13194 for (j = 0; j < XVECLEN (x, i); j++)
13195 update_table_tick (XVECEXP (x, i, j));
13198 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
13199 are saying that the register is clobbered and we no longer know its
13200 value. If INSN is zero, don't update reg_stat[].last_set; this is
13201 only permitted with VALUE also zero and is used to invalidate the
13202 register. */
13204 static void
13205 record_value_for_reg (rtx reg, rtx_insn *insn, rtx value)
13207 unsigned int regno = REGNO (reg);
13208 unsigned int endregno = END_REGNO (reg);
13209 unsigned int i;
13210 reg_stat_type *rsp;
13212 /* If VALUE contains REG and we have a previous value for REG, substitute
13213 the previous value. */
13214 if (value && insn && reg_overlap_mentioned_p (reg, value))
13216 rtx tem;
13218 /* Set things up so get_last_value is allowed to see anything set up to
13219 our insn. */
13220 subst_low_luid = DF_INSN_LUID (insn);
13221 tem = get_last_value (reg);
13223 /* If TEM is simply a binary operation with two CLOBBERs as operands,
13224 it isn't going to be useful and will take a lot of time to process,
13225 so just use the CLOBBER. */
13227 if (tem)
13229 if (ARITHMETIC_P (tem)
13230 && GET_CODE (XEXP (tem, 0)) == CLOBBER
13231 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
13232 tem = XEXP (tem, 0);
13233 else if (count_occurrences (value, reg, 1) >= 2)
13235 /* If there are two or more occurrences of REG in VALUE,
13236 prevent the value from growing too much. */
13237 if (count_rtxs (tem) > param_max_last_value_rtl)
13238 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
13241 value = replace_rtx (copy_rtx (value), reg, tem);
13245 /* For each register modified, show we don't know its value, that
13246 we don't know about its bitwise content, that its value has been
13247 updated, and that we don't know the location of the death of the
13248 register. */
13249 for (i = regno; i < endregno; i++)
13251 rsp = &reg_stat[i];
13253 if (insn)
13254 rsp->last_set = insn;
13256 rsp->last_set_value = 0;
13257 rsp->last_set_mode = VOIDmode;
13258 rsp->last_set_nonzero_bits = 0;
13259 rsp->last_set_sign_bit_copies = 0;
13260 rsp->last_death = 0;
13261 rsp->truncated_to_mode = VOIDmode;
13264 /* Mark registers that are being referenced in this value. */
13265 if (value)
13266 update_table_tick (value);
13268 /* Now update the status of each register being set.
13269 If someone is using this register in this block, set this register
13270 to invalid since we will get confused between the two lives in this
13271 basic block. This makes using this register always invalid. In cse, we
13272 scan the table to invalidate all entries using this register, but this
13273 is too much work for us. */
13275 for (i = regno; i < endregno; i++)
13277 rsp = &reg_stat[i];
13278 rsp->last_set_label = label_tick;
13279 if (!insn
13280 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
13281 rsp->last_set_invalid = 1;
13282 else
13283 rsp->last_set_invalid = 0;
13286 /* The value being assigned might refer to X (like in "x++;"). In that
13287 case, we must replace it with (clobber (const_int 0)) to prevent
13288 infinite loops. */
13289 rsp = &reg_stat[regno];
13290 if (value && !get_last_value_validate (&value, insn, label_tick, 0))
13292 value = copy_rtx (value);
13293 if (!get_last_value_validate (&value, insn, label_tick, 1))
13294 value = 0;
13297 /* For the main register being modified, update the value, the mode, the
13298 nonzero bits, and the number of sign bit copies. */
13300 rsp->last_set_value = value;
13302 if (value)
13304 machine_mode mode = GET_MODE (reg);
13305 subst_low_luid = DF_INSN_LUID (insn);
13306 rsp->last_set_mode = mode;
13307 if (GET_MODE_CLASS (mode) == MODE_INT
13308 && HWI_COMPUTABLE_MODE_P (mode))
13309 mode = nonzero_bits_mode;
13310 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
13311 rsp->last_set_sign_bit_copies
13312 = num_sign_bit_copies (value, GET_MODE (reg));
13316 /* Called via note_stores from record_dead_and_set_regs to handle one
13317 SET or CLOBBER in an insn. DATA is the instruction in which the
13318 set is occurring. */
13320 static void
13321 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
13323 rtx_insn *record_dead_insn = (rtx_insn *) data;
13325 if (GET_CODE (dest) == SUBREG)
13326 dest = SUBREG_REG (dest);
13328 if (!record_dead_insn)
13330 if (REG_P (dest))
13331 record_value_for_reg (dest, NULL, NULL_RTX);
13332 return;
13335 if (REG_P (dest))
13337 /* If we are setting the whole register, we know its value. Otherwise
13338 show that we don't know the value. We can handle a SUBREG if it's
13339 the low part, but we must be careful with paradoxical SUBREGs on
13340 RISC architectures because we cannot strip e.g. an extension around
13341 a load and record the naked load since the RTL middle-end considers
13342 that the upper bits are defined according to LOAD_EXTEND_OP. */
13343 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
13344 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
13345 else if (GET_CODE (setter) == SET
13346 && GET_CODE (SET_DEST (setter)) == SUBREG
13347 && SUBREG_REG (SET_DEST (setter)) == dest
13348 && known_le (GET_MODE_PRECISION (GET_MODE (dest)),
13349 BITS_PER_WORD)
13350 && subreg_lowpart_p (SET_DEST (setter)))
13351 record_value_for_reg (dest, record_dead_insn,
13352 WORD_REGISTER_OPERATIONS
13353 && word_register_operation_p (SET_SRC (setter))
13354 && paradoxical_subreg_p (SET_DEST (setter))
13355 ? SET_SRC (setter)
13356 : gen_lowpart (GET_MODE (dest),
13357 SET_SRC (setter)));
13358 else
13359 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
13361 else if (MEM_P (dest)
13362 /* Ignore pushes, they clobber nothing. */
13363 && ! push_operand (dest, GET_MODE (dest)))
13364 mem_last_set = DF_INSN_LUID (record_dead_insn);
13367 /* Update the records of when each REG was most recently set or killed
13368 for the things done by INSN. This is the last thing done in processing
13369 INSN in the combiner loop.
13371 We update reg_stat[], in particular fields last_set, last_set_value,
13372 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
13373 last_death, and also the similar information mem_last_set (which insn
13374 most recently modified memory) and last_call_luid (which insn was the
13375 most recent subroutine call). */
13377 static void
13378 record_dead_and_set_regs (rtx_insn *insn)
13380 rtx link;
13381 unsigned int i;
13383 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
13385 if (REG_NOTE_KIND (link) == REG_DEAD
13386 && REG_P (XEXP (link, 0)))
13388 unsigned int regno = REGNO (XEXP (link, 0));
13389 unsigned int endregno = END_REGNO (XEXP (link, 0));
13391 for (i = regno; i < endregno; i++)
13393 reg_stat_type *rsp;
13395 rsp = &reg_stat[i];
13396 rsp->last_death = insn;
13399 else if (REG_NOTE_KIND (link) == REG_INC)
13400 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
13403 if (CALL_P (insn))
13405 HARD_REG_SET callee_clobbers
13406 = insn_callee_abi (insn).full_and_partial_reg_clobbers ();
13407 hard_reg_set_iterator hrsi;
13408 EXECUTE_IF_SET_IN_HARD_REG_SET (callee_clobbers, 0, i, hrsi)
13410 reg_stat_type *rsp;
13412 /* ??? We could try to preserve some information from the last
13413 set of register I if the call doesn't actually clobber
13414 (reg:last_set_mode I), which might be true for ABIs with
13415 partial clobbers. However, it would be difficult to
13416 update last_set_nonzero_bits and last_sign_bit_copies
13417 to account for the part of I that actually was clobbered.
13418 It wouldn't help much anyway, since we rarely see this
13419 situation before RA. */
13420 rsp = &reg_stat[i];
13421 rsp->last_set_invalid = 1;
13422 rsp->last_set = insn;
13423 rsp->last_set_value = 0;
13424 rsp->last_set_mode = VOIDmode;
13425 rsp->last_set_nonzero_bits = 0;
13426 rsp->last_set_sign_bit_copies = 0;
13427 rsp->last_death = 0;
13428 rsp->truncated_to_mode = VOIDmode;
13431 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
13433 /* We can't combine into a call pattern. Remember, though, that
13434 the return value register is set at this LUID. We could
13435 still replace a register with the return value from the
13436 wrong subroutine call! */
13437 note_stores (insn, record_dead_and_set_regs_1, NULL_RTX);
13439 else
13440 note_stores (insn, record_dead_and_set_regs_1, insn);
13443 /* If a SUBREG has the promoted bit set, it is in fact a property of the
13444 register present in the SUBREG, so for each such SUBREG go back and
13445 adjust nonzero and sign bit information of the registers that are
13446 known to have some zero/sign bits set.
13448 This is needed because when combine blows the SUBREGs away, the
13449 information on zero/sign bits is lost and further combines can be
13450 missed because of that. */
13452 static void
13453 record_promoted_value (rtx_insn *insn, rtx subreg)
13455 struct insn_link *links;
13456 rtx set;
13457 unsigned int regno = REGNO (SUBREG_REG (subreg));
13458 machine_mode mode = GET_MODE (subreg);
13460 if (!HWI_COMPUTABLE_MODE_P (mode))
13461 return;
13463 for (links = LOG_LINKS (insn); links;)
13465 reg_stat_type *rsp;
13467 insn = links->insn;
13468 set = single_set (insn);
13470 if (! set || !REG_P (SET_DEST (set))
13471 || REGNO (SET_DEST (set)) != regno
13472 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
13474 links = links->next;
13475 continue;
13478 rsp = &reg_stat[regno];
13479 if (rsp->last_set == insn)
13481 if (SUBREG_PROMOTED_UNSIGNED_P (subreg))
13482 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
13485 if (REG_P (SET_SRC (set)))
13487 regno = REGNO (SET_SRC (set));
13488 links = LOG_LINKS (insn);
13490 else
13491 break;
13495 /* Check if X, a register, is known to contain a value already
13496 truncated to MODE. In this case we can use a subreg to refer to
13497 the truncated value even though in the generic case we would need
13498 an explicit truncation. */
13500 static bool
13501 reg_truncated_to_mode (machine_mode mode, const_rtx x)
13503 reg_stat_type *rsp = &reg_stat[REGNO (x)];
13504 machine_mode truncated = rsp->truncated_to_mode;
13506 if (truncated == 0
13507 || rsp->truncation_label < label_tick_ebb_start)
13508 return false;
13509 if (!partial_subreg_p (mode, truncated))
13510 return true;
13511 if (TRULY_NOOP_TRUNCATION_MODES_P (mode, truncated))
13512 return true;
13513 return false;
13516 /* If X is a hard reg or a subreg record the mode that the register is
13517 accessed in. For non-TARGET_TRULY_NOOP_TRUNCATION targets we might be
13518 able to turn a truncate into a subreg using this information. Return true
13519 if traversing X is complete. */
13521 static bool
13522 record_truncated_value (rtx x)
13524 machine_mode truncated_mode;
13525 reg_stat_type *rsp;
13527 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
13529 machine_mode original_mode = GET_MODE (SUBREG_REG (x));
13530 truncated_mode = GET_MODE (x);
13532 if (!partial_subreg_p (truncated_mode, original_mode))
13533 return true;
13535 truncated_mode = GET_MODE (x);
13536 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode, original_mode))
13537 return true;
13539 x = SUBREG_REG (x);
13541 /* ??? For hard-regs we now record everything. We might be able to
13542 optimize this using last_set_mode. */
13543 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
13544 truncated_mode = GET_MODE (x);
13545 else
13546 return false;
13548 rsp = &reg_stat[REGNO (x)];
13549 if (rsp->truncated_to_mode == 0
13550 || rsp->truncation_label < label_tick_ebb_start
13551 || partial_subreg_p (truncated_mode, rsp->truncated_to_mode))
13553 rsp->truncated_to_mode = truncated_mode;
13554 rsp->truncation_label = label_tick;
13557 return true;
13560 /* Callback for note_uses. Find hardregs and subregs of pseudos and
13561 the modes they are used in. This can help truning TRUNCATEs into
13562 SUBREGs. */
13564 static void
13565 record_truncated_values (rtx *loc, void *data ATTRIBUTE_UNUSED)
13567 subrtx_var_iterator::array_type array;
13568 FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST)
13569 if (record_truncated_value (*iter))
13570 iter.skip_subrtxes ();
13573 /* Scan X for promoted SUBREGs. For each one found,
13574 note what it implies to the registers used in it. */
13576 static void
13577 check_promoted_subreg (rtx_insn *insn, rtx x)
13579 if (GET_CODE (x) == SUBREG
13580 && SUBREG_PROMOTED_VAR_P (x)
13581 && REG_P (SUBREG_REG (x)))
13582 record_promoted_value (insn, x);
13583 else
13585 const char *format = GET_RTX_FORMAT (GET_CODE (x));
13586 int i, j;
13588 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
13589 switch (format[i])
13591 case 'e':
13592 check_promoted_subreg (insn, XEXP (x, i));
13593 break;
13594 case 'V':
13595 case 'E':
13596 if (XVEC (x, i) != 0)
13597 for (j = 0; j < XVECLEN (x, i); j++)
13598 check_promoted_subreg (insn, XVECEXP (x, i, j));
13599 break;
13604 /* Verify that all the registers and memory references mentioned in *LOC are
13605 still valid. *LOC was part of a value set in INSN when label_tick was
13606 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
13607 the invalid references with (clobber (const_int 0)) and return 1. This
13608 replacement is useful because we often can get useful information about
13609 the form of a value (e.g., if it was produced by a shift that always
13610 produces -1 or 0) even though we don't know exactly what registers it
13611 was produced from. */
13613 static int
13614 get_last_value_validate (rtx *loc, rtx_insn *insn, int tick, int replace)
13616 rtx x = *loc;
13617 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
13618 int len = GET_RTX_LENGTH (GET_CODE (x));
13619 int i, j;
13621 if (REG_P (x))
13623 unsigned int regno = REGNO (x);
13624 unsigned int endregno = END_REGNO (x);
13625 unsigned int j;
13627 for (j = regno; j < endregno; j++)
13629 reg_stat_type *rsp = &reg_stat[j];
13630 if (rsp->last_set_invalid
13631 /* If this is a pseudo-register that was only set once and not
13632 live at the beginning of the function, it is always valid. */
13633 || (! (regno >= FIRST_PSEUDO_REGISTER
13634 && regno < reg_n_sets_max
13635 && REG_N_SETS (regno) == 1
13636 && (!REGNO_REG_SET_P
13637 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
13638 regno)))
13639 && rsp->last_set_label > tick))
13641 if (replace)
13642 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13643 return replace;
13647 return 1;
13649 /* If this is a memory reference, make sure that there were no stores after
13650 it that might have clobbered the value. We don't have alias info, so we
13651 assume any store invalidates it. Moreover, we only have local UIDs, so
13652 we also assume that there were stores in the intervening basic blocks. */
13653 else if (MEM_P (x) && !MEM_READONLY_P (x)
13654 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
13656 if (replace)
13657 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13658 return replace;
13661 for (i = 0; i < len; i++)
13663 if (fmt[i] == 'e')
13665 /* Check for identical subexpressions. If x contains
13666 identical subexpression we only have to traverse one of
13667 them. */
13668 if (i == 1 && ARITHMETIC_P (x))
13670 /* Note that at this point x0 has already been checked
13671 and found valid. */
13672 rtx x0 = XEXP (x, 0);
13673 rtx x1 = XEXP (x, 1);
13675 /* If x0 and x1 are identical then x is also valid. */
13676 if (x0 == x1)
13677 return 1;
13679 /* If x1 is identical to a subexpression of x0 then
13680 while checking x0, x1 has already been checked. Thus
13681 it is valid and so as x. */
13682 if (ARITHMETIC_P (x0)
13683 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13684 return 1;
13686 /* If x0 is identical to a subexpression of x1 then x is
13687 valid iff the rest of x1 is valid. */
13688 if (ARITHMETIC_P (x1)
13689 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13690 return
13691 get_last_value_validate (&XEXP (x1,
13692 x0 == XEXP (x1, 0) ? 1 : 0),
13693 insn, tick, replace);
13696 if (get_last_value_validate (&XEXP (x, i), insn, tick,
13697 replace) == 0)
13698 return 0;
13700 else if (fmt[i] == 'E')
13701 for (j = 0; j < XVECLEN (x, i); j++)
13702 if (get_last_value_validate (&XVECEXP (x, i, j),
13703 insn, tick, replace) == 0)
13704 return 0;
13707 /* If we haven't found a reason for it to be invalid, it is valid. */
13708 return 1;
13711 /* Get the last value assigned to X, if known. Some registers
13712 in the value may be replaced with (clobber (const_int 0)) if their value
13713 is known longer known reliably. */
13715 static rtx
13716 get_last_value (const_rtx x)
13718 unsigned int regno;
13719 rtx value;
13720 reg_stat_type *rsp;
13722 /* If this is a non-paradoxical SUBREG, get the value of its operand and
13723 then convert it to the desired mode. If this is a paradoxical SUBREG,
13724 we cannot predict what values the "extra" bits might have. */
13725 if (GET_CODE (x) == SUBREG
13726 && subreg_lowpart_p (x)
13727 && !paradoxical_subreg_p (x)
13728 && (value = get_last_value (SUBREG_REG (x))) != 0)
13729 return gen_lowpart (GET_MODE (x), value);
13731 if (!REG_P (x))
13732 return 0;
13734 regno = REGNO (x);
13735 rsp = &reg_stat[regno];
13736 value = rsp->last_set_value;
13738 /* If we don't have a value, or if it isn't for this basic block and
13739 it's either a hard register, set more than once, or it's a live
13740 at the beginning of the function, return 0.
13742 Because if it's not live at the beginning of the function then the reg
13743 is always set before being used (is never used without being set).
13744 And, if it's set only once, and it's always set before use, then all
13745 uses must have the same last value, even if it's not from this basic
13746 block. */
13748 if (value == 0
13749 || (rsp->last_set_label < label_tick_ebb_start
13750 && (regno < FIRST_PSEUDO_REGISTER
13751 || regno >= reg_n_sets_max
13752 || REG_N_SETS (regno) != 1
13753 || REGNO_REG_SET_P
13754 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), regno))))
13755 return 0;
13757 /* If the value was set in a later insn than the ones we are processing,
13758 we can't use it even if the register was only set once. */
13759 if (rsp->last_set_label == label_tick
13760 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
13761 return 0;
13763 /* If fewer bits were set than what we are asked for now, we cannot use
13764 the value. */
13765 if (maybe_lt (GET_MODE_PRECISION (rsp->last_set_mode),
13766 GET_MODE_PRECISION (GET_MODE (x))))
13767 return 0;
13769 /* If the value has all its registers valid, return it. */
13770 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
13771 return value;
13773 /* Otherwise, make a copy and replace any invalid register with
13774 (clobber (const_int 0)). If that fails for some reason, return 0. */
13776 value = copy_rtx (value);
13777 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
13778 return value;
13780 return 0;
13783 /* Define three variables used for communication between the following
13784 routines. */
13786 static unsigned int reg_dead_regno, reg_dead_endregno;
13787 static int reg_dead_flag;
13788 rtx reg_dead_reg;
13790 /* Function called via note_stores from reg_dead_at_p.
13792 If DEST is within [reg_dead_regno, reg_dead_endregno), set
13793 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
13795 static void
13796 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
13798 unsigned int regno, endregno;
13800 if (!REG_P (dest))
13801 return;
13803 regno = REGNO (dest);
13804 endregno = END_REGNO (dest);
13805 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
13806 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
13809 /* Return nonzero if REG is known to be dead at INSN.
13811 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
13812 referencing REG, it is dead. If we hit a SET referencing REG, it is
13813 live. Otherwise, see if it is live or dead at the start of the basic
13814 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
13815 must be assumed to be always live. */
13817 static int
13818 reg_dead_at_p (rtx reg, rtx_insn *insn)
13820 basic_block block;
13821 unsigned int i;
13823 /* Set variables for reg_dead_at_p_1. */
13824 reg_dead_regno = REGNO (reg);
13825 reg_dead_endregno = END_REGNO (reg);
13826 reg_dead_reg = reg;
13828 reg_dead_flag = 0;
13830 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
13831 we allow the machine description to decide whether use-and-clobber
13832 patterns are OK. */
13833 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
13835 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13836 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
13837 return 0;
13840 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
13841 beginning of basic block. */
13842 block = BLOCK_FOR_INSN (insn);
13843 for (;;)
13845 if (INSN_P (insn))
13847 if (find_regno_note (insn, REG_UNUSED, reg_dead_regno))
13848 return 1;
13850 note_stores (insn, reg_dead_at_p_1, NULL);
13851 if (reg_dead_flag)
13852 return reg_dead_flag == 1 ? 1 : 0;
13854 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
13855 return 1;
13858 if (insn == BB_HEAD (block))
13859 break;
13861 insn = PREV_INSN (insn);
13864 /* Look at live-in sets for the basic block that we were in. */
13865 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13866 if (REGNO_REG_SET_P (df_get_live_in (block), i))
13867 return 0;
13869 return 1;
13872 /* Note hard registers in X that are used. */
13874 static void
13875 mark_used_regs_combine (rtx x)
13877 RTX_CODE code = GET_CODE (x);
13878 unsigned int regno;
13879 int i;
13881 switch (code)
13883 case LABEL_REF:
13884 case SYMBOL_REF:
13885 case CONST:
13886 CASE_CONST_ANY:
13887 case PC:
13888 case ADDR_VEC:
13889 case ADDR_DIFF_VEC:
13890 case ASM_INPUT:
13891 return;
13893 case CLOBBER:
13894 /* If we are clobbering a MEM, mark any hard registers inside the
13895 address as used. */
13896 if (MEM_P (XEXP (x, 0)))
13897 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
13898 return;
13900 case REG:
13901 regno = REGNO (x);
13902 /* A hard reg in a wide mode may really be multiple registers.
13903 If so, mark all of them just like the first. */
13904 if (regno < FIRST_PSEUDO_REGISTER)
13906 /* None of this applies to the stack, frame or arg pointers. */
13907 if (regno == STACK_POINTER_REGNUM
13908 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
13909 && regno == HARD_FRAME_POINTER_REGNUM)
13910 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
13911 && regno == ARG_POINTER_REGNUM && fixed_regs[regno])
13912 || regno == FRAME_POINTER_REGNUM)
13913 return;
13915 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
13917 return;
13919 case SET:
13921 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
13922 the address. */
13923 rtx testreg = SET_DEST (x);
13925 while (GET_CODE (testreg) == SUBREG
13926 || GET_CODE (testreg) == ZERO_EXTRACT
13927 || GET_CODE (testreg) == STRICT_LOW_PART)
13928 testreg = XEXP (testreg, 0);
13930 if (MEM_P (testreg))
13931 mark_used_regs_combine (XEXP (testreg, 0));
13933 mark_used_regs_combine (SET_SRC (x));
13935 return;
13937 default:
13938 break;
13941 /* Recursively scan the operands of this expression. */
13944 const char *fmt = GET_RTX_FORMAT (code);
13946 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13948 if (fmt[i] == 'e')
13949 mark_used_regs_combine (XEXP (x, i));
13950 else if (fmt[i] == 'E')
13952 int j;
13954 for (j = 0; j < XVECLEN (x, i); j++)
13955 mark_used_regs_combine (XVECEXP (x, i, j));
13961 /* Remove register number REGNO from the dead registers list of INSN.
13963 Return the note used to record the death, if there was one. */
13966 remove_death (unsigned int regno, rtx_insn *insn)
13968 rtx note = find_regno_note (insn, REG_DEAD, regno);
13970 if (note)
13971 remove_note (insn, note);
13973 return note;
13976 /* For each register (hardware or pseudo) used within expression X, if its
13977 death is in an instruction with luid between FROM_LUID (inclusive) and
13978 TO_INSN (exclusive), put a REG_DEAD note for that register in the
13979 list headed by PNOTES.
13981 That said, don't move registers killed by maybe_kill_insn.
13983 This is done when X is being merged by combination into TO_INSN. These
13984 notes will then be distributed as needed. */
13986 static void
13987 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx_insn *to_insn,
13988 rtx *pnotes)
13990 const char *fmt;
13991 int len, i;
13992 enum rtx_code code = GET_CODE (x);
13994 if (code == REG)
13996 unsigned int regno = REGNO (x);
13997 rtx_insn *where_dead = reg_stat[regno].last_death;
13999 /* If we do not know where the register died, it may still die between
14000 FROM_LUID and TO_INSN. If so, find it. This is PR83304. */
14001 if (!where_dead || DF_INSN_LUID (where_dead) >= DF_INSN_LUID (to_insn))
14003 rtx_insn *insn = prev_real_nondebug_insn (to_insn);
14004 while (insn
14005 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (to_insn)
14006 && DF_INSN_LUID (insn) >= from_luid)
14008 if (dead_or_set_regno_p (insn, regno))
14010 if (find_regno_note (insn, REG_DEAD, regno))
14011 where_dead = insn;
14012 break;
14015 insn = prev_real_nondebug_insn (insn);
14019 /* Don't move the register if it gets killed in between from and to. */
14020 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
14021 && ! reg_referenced_p (x, maybe_kill_insn))
14022 return;
14024 if (where_dead
14025 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
14026 && DF_INSN_LUID (where_dead) >= from_luid
14027 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
14029 rtx note = remove_death (regno, where_dead);
14031 /* It is possible for the call above to return 0. This can occur
14032 when last_death points to I2 or I1 that we combined with.
14033 In that case make a new note.
14035 We must also check for the case where X is a hard register
14036 and NOTE is a death note for a range of hard registers
14037 including X. In that case, we must put REG_DEAD notes for
14038 the remaining registers in place of NOTE. */
14040 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
14041 && partial_subreg_p (GET_MODE (x), GET_MODE (XEXP (note, 0))))
14043 unsigned int deadregno = REGNO (XEXP (note, 0));
14044 unsigned int deadend = END_REGNO (XEXP (note, 0));
14045 unsigned int ourend = END_REGNO (x);
14046 unsigned int i;
14048 for (i = deadregno; i < deadend; i++)
14049 if (i < regno || i >= ourend)
14050 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
14053 /* If we didn't find any note, or if we found a REG_DEAD note that
14054 covers only part of the given reg, and we have a multi-reg hard
14055 register, then to be safe we must check for REG_DEAD notes
14056 for each register other than the first. They could have
14057 their own REG_DEAD notes lying around. */
14058 else if ((note == 0
14059 || (note != 0
14060 && partial_subreg_p (GET_MODE (XEXP (note, 0)),
14061 GET_MODE (x))))
14062 && regno < FIRST_PSEUDO_REGISTER
14063 && REG_NREGS (x) > 1)
14065 unsigned int ourend = END_REGNO (x);
14066 unsigned int i, offset;
14067 rtx oldnotes = 0;
14069 if (note)
14070 offset = hard_regno_nregs (regno, GET_MODE (XEXP (note, 0)));
14071 else
14072 offset = 1;
14074 for (i = regno + offset; i < ourend; i++)
14075 move_deaths (regno_reg_rtx[i],
14076 maybe_kill_insn, from_luid, to_insn, &oldnotes);
14079 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
14081 XEXP (note, 1) = *pnotes;
14082 *pnotes = note;
14084 else
14085 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
14088 return;
14091 else if (GET_CODE (x) == SET)
14093 rtx dest = SET_DEST (x);
14095 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
14097 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
14098 that accesses one word of a multi-word item, some
14099 piece of everything register in the expression is used by
14100 this insn, so remove any old death. */
14101 /* ??? So why do we test for equality of the sizes? */
14103 if (GET_CODE (dest) == ZERO_EXTRACT
14104 || GET_CODE (dest) == STRICT_LOW_PART
14105 || (GET_CODE (dest) == SUBREG
14106 && !read_modify_subreg_p (dest)))
14108 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
14109 return;
14112 /* If this is some other SUBREG, we know it replaces the entire
14113 value, so use that as the destination. */
14114 if (GET_CODE (dest) == SUBREG)
14115 dest = SUBREG_REG (dest);
14117 /* If this is a MEM, adjust deaths of anything used in the address.
14118 For a REG (the only other possibility), the entire value is
14119 being replaced so the old value is not used in this insn. */
14121 if (MEM_P (dest))
14122 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
14123 to_insn, pnotes);
14124 return;
14127 else if (GET_CODE (x) == CLOBBER)
14128 return;
14130 len = GET_RTX_LENGTH (code);
14131 fmt = GET_RTX_FORMAT (code);
14133 for (i = 0; i < len; i++)
14135 if (fmt[i] == 'E')
14137 int j;
14138 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
14139 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
14140 to_insn, pnotes);
14142 else if (fmt[i] == 'e')
14143 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
14147 /* Return 1 if X is the target of a bit-field assignment in BODY, the
14148 pattern of an insn. X must be a REG. */
14150 static int
14151 reg_bitfield_target_p (rtx x, rtx body)
14153 int i;
14155 if (GET_CODE (body) == SET)
14157 rtx dest = SET_DEST (body);
14158 rtx target;
14159 unsigned int regno, tregno, endregno, endtregno;
14161 if (GET_CODE (dest) == ZERO_EXTRACT)
14162 target = XEXP (dest, 0);
14163 else if (GET_CODE (dest) == STRICT_LOW_PART)
14164 target = SUBREG_REG (XEXP (dest, 0));
14165 else
14166 return 0;
14168 if (GET_CODE (target) == SUBREG)
14169 target = SUBREG_REG (target);
14171 if (!REG_P (target))
14172 return 0;
14174 tregno = REGNO (target), regno = REGNO (x);
14175 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
14176 return target == x;
14178 endtregno = end_hard_regno (GET_MODE (target), tregno);
14179 endregno = end_hard_regno (GET_MODE (x), regno);
14181 return endregno > tregno && regno < endtregno;
14184 else if (GET_CODE (body) == PARALLEL)
14185 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
14186 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
14187 return 1;
14189 return 0;
14192 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
14193 as appropriate. I3 and I2 are the insns resulting from the combination
14194 insns including FROM (I2 may be zero).
14196 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
14197 not need REG_DEAD notes because they are being substituted for. This
14198 saves searching in the most common cases.
14200 Each note in the list is either ignored or placed on some insns, depending
14201 on the type of note. */
14203 static void
14204 distribute_notes (rtx notes, rtx_insn *from_insn, rtx_insn *i3, rtx_insn *i2,
14205 rtx elim_i2, rtx elim_i1, rtx elim_i0)
14207 rtx note, next_note;
14208 rtx tem_note;
14209 rtx_insn *tem_insn;
14211 for (note = notes; note; note = next_note)
14213 rtx_insn *place = 0, *place2 = 0;
14215 next_note = XEXP (note, 1);
14216 switch (REG_NOTE_KIND (note))
14218 case REG_BR_PROB:
14219 case REG_BR_PRED:
14220 /* Doesn't matter much where we put this, as long as it's somewhere.
14221 It is preferable to keep these notes on branches, which is most
14222 likely to be i3. */
14223 place = i3;
14224 break;
14226 case REG_NON_LOCAL_GOTO:
14227 if (JUMP_P (i3))
14228 place = i3;
14229 else
14231 gcc_assert (i2 && JUMP_P (i2));
14232 place = i2;
14234 break;
14236 case REG_EH_REGION:
14238 /* The landing pad handling needs to be kept in sync with the
14239 prerequisite checking in try_combine. */
14240 int lp_nr = INTVAL (XEXP (note, 0));
14241 /* A REG_EH_REGION note transfering control can only ever come
14242 from i3. */
14243 if (lp_nr > 0)
14244 gcc_assert (from_insn == i3);
14245 /* We are making sure there is a single effective REG_EH_REGION
14246 note and it's valid to put it on i3. */
14247 if (!insn_could_throw_p (from_insn)
14248 && !(lp_nr == INT_MIN && can_nonlocal_goto (from_insn)))
14249 /* Throw away stray notes on insns that can never throw or
14250 make a nonlocal goto. */
14252 else
14254 if (CALL_P (i3))
14255 place = i3;
14256 else
14258 gcc_assert (cfun->can_throw_non_call_exceptions);
14259 /* If i3 can still trap preserve the note, otherwise we've
14260 combined things such that we can now prove that the
14261 instructions can't trap. Drop the note in this case. */
14262 if (may_trap_p (i3))
14263 place = i3;
14266 break;
14269 case REG_ARGS_SIZE:
14270 /* ??? How to distribute between i3-i1. Assume i3 contains the
14271 entire adjustment. Assert i3 contains at least some adjust. */
14272 if (!noop_move_p (i3))
14274 poly_int64 old_size, args_size = get_args_size (note);
14275 /* fixup_args_size_notes looks at REG_NORETURN note,
14276 so ensure the note is placed there first. */
14277 if (CALL_P (i3))
14279 rtx *np;
14280 for (np = &next_note; *np; np = &XEXP (*np, 1))
14281 if (REG_NOTE_KIND (*np) == REG_NORETURN)
14283 rtx n = *np;
14284 *np = XEXP (n, 1);
14285 XEXP (n, 1) = REG_NOTES (i3);
14286 REG_NOTES (i3) = n;
14287 break;
14290 old_size = fixup_args_size_notes (PREV_INSN (i3), i3, args_size);
14291 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
14292 REG_ARGS_SIZE note to all noreturn calls, allow that here. */
14293 gcc_assert (maybe_ne (old_size, args_size)
14294 || (CALL_P (i3)
14295 && !ACCUMULATE_OUTGOING_ARGS
14296 && find_reg_note (i3, REG_NORETURN, NULL_RTX)));
14298 break;
14300 case REG_NORETURN:
14301 case REG_SETJMP:
14302 case REG_TM:
14303 case REG_CALL_DECL:
14304 case REG_UNTYPED_CALL:
14305 case REG_CALL_NOCF_CHECK:
14306 /* These notes must remain with the call. It should not be
14307 possible for both I2 and I3 to be a call. */
14308 if (CALL_P (i3))
14309 place = i3;
14310 else
14312 gcc_assert (i2 && CALL_P (i2));
14313 place = i2;
14315 break;
14317 case REG_UNUSED:
14318 /* Any clobbers for i3 may still exist, and so we must process
14319 REG_UNUSED notes from that insn.
14321 Any clobbers from i2 or i1 can only exist if they were added by
14322 recog_for_combine. In that case, recog_for_combine created the
14323 necessary REG_UNUSED notes. Trying to keep any original
14324 REG_UNUSED notes from these insns can cause incorrect output
14325 if it is for the same register as the original i3 dest.
14326 In that case, we will notice that the register is set in i3,
14327 and then add a REG_UNUSED note for the destination of i3, which
14328 is wrong. However, it is possible to have REG_UNUSED notes from
14329 i2 or i1 for register which were both used and clobbered, so
14330 we keep notes from i2 or i1 if they will turn into REG_DEAD
14331 notes. */
14333 /* If this register is set or clobbered between FROM_INSN and I3,
14334 we should not create a note for it. */
14335 if (reg_set_between_p (XEXP (note, 0), from_insn, i3))
14336 break;
14338 /* If this register is set or clobbered in I3, put the note there
14339 unless there is one already. */
14340 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
14342 if (from_insn != i3)
14343 break;
14345 if (! (REG_P (XEXP (note, 0))
14346 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
14347 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
14348 place = i3;
14350 /* Otherwise, if this register is used by I3, then this register
14351 now dies here, so we must put a REG_DEAD note here unless there
14352 is one already. */
14353 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
14354 && ! (REG_P (XEXP (note, 0))
14355 ? find_regno_note (i3, REG_DEAD,
14356 REGNO (XEXP (note, 0)))
14357 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
14359 PUT_REG_NOTE_KIND (note, REG_DEAD);
14360 place = i3;
14363 /* A SET or CLOBBER of the REG_UNUSED reg has been removed,
14364 but we can't tell which at this point. We must reset any
14365 expectations we had about the value that was previously
14366 stored in the reg. ??? Ideally, we'd adjust REG_N_SETS
14367 and, if appropriate, restore its previous value, but we
14368 don't have enough information for that at this point. */
14369 else
14371 record_value_for_reg (XEXP (note, 0), NULL, NULL_RTX);
14373 /* Otherwise, if this register is now referenced in i2
14374 then the register used to be modified in one of the
14375 original insns. If it was i3 (say, in an unused
14376 parallel), it's now completely gone, so the note can
14377 be discarded. But if it was modified in i2, i1 or i0
14378 and we still reference it in i2, then we're
14379 referencing the previous value, and since the
14380 register was modified and REG_UNUSED, we know that
14381 the previous value is now dead. So, if we only
14382 reference the register in i2, we change the note to
14383 REG_DEAD, to reflect the previous value. However, if
14384 we're also setting or clobbering the register as
14385 scratch, we know (because the register was not
14386 referenced in i3) that it's unused, just as it was
14387 unused before, and we place the note in i2. */
14388 if (from_insn != i3 && i2 && INSN_P (i2)
14389 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14391 if (!reg_set_p (XEXP (note, 0), PATTERN (i2)))
14392 PUT_REG_NOTE_KIND (note, REG_DEAD);
14393 if (! (REG_P (XEXP (note, 0))
14394 ? find_regno_note (i2, REG_NOTE_KIND (note),
14395 REGNO (XEXP (note, 0)))
14396 : find_reg_note (i2, REG_NOTE_KIND (note),
14397 XEXP (note, 0))))
14398 place = i2;
14402 break;
14404 case REG_EQUAL:
14405 case REG_EQUIV:
14406 case REG_NOALIAS:
14407 /* These notes say something about results of an insn. We can
14408 only support them if they used to be on I3 in which case they
14409 remain on I3. Otherwise they are ignored.
14411 If the note refers to an expression that is not a constant, we
14412 must also ignore the note since we cannot tell whether the
14413 equivalence is still true. It might be possible to do
14414 slightly better than this (we only have a problem if I2DEST
14415 or I1DEST is present in the expression), but it doesn't
14416 seem worth the trouble. */
14418 if (from_insn == i3
14419 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
14420 place = i3;
14421 break;
14423 case REG_INC:
14424 /* These notes say something about how a register is used. They must
14425 be present on any use of the register in I2 or I3. */
14426 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
14427 place = i3;
14429 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
14431 if (place)
14432 place2 = i2;
14433 else
14434 place = i2;
14436 break;
14438 case REG_LABEL_TARGET:
14439 case REG_LABEL_OPERAND:
14440 /* This can show up in several ways -- either directly in the
14441 pattern, or hidden off in the constant pool with (or without?)
14442 a REG_EQUAL note. */
14443 /* ??? Ignore the without-reg_equal-note problem for now. */
14444 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
14445 || ((tem_note = find_reg_note (i3, REG_EQUAL, NULL_RTX))
14446 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14447 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0)))
14448 place = i3;
14450 if (i2
14451 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
14452 || ((tem_note = find_reg_note (i2, REG_EQUAL, NULL_RTX))
14453 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14454 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0))))
14456 if (place)
14457 place2 = i2;
14458 else
14459 place = i2;
14462 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
14463 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
14464 there. */
14465 if (place && JUMP_P (place)
14466 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14467 && (JUMP_LABEL (place) == NULL
14468 || JUMP_LABEL (place) == XEXP (note, 0)))
14470 rtx label = JUMP_LABEL (place);
14472 if (!label)
14473 JUMP_LABEL (place) = XEXP (note, 0);
14474 else if (LABEL_P (label))
14475 LABEL_NUSES (label)--;
14478 if (place2 && JUMP_P (place2)
14479 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14480 && (JUMP_LABEL (place2) == NULL
14481 || JUMP_LABEL (place2) == XEXP (note, 0)))
14483 rtx label = JUMP_LABEL (place2);
14485 if (!label)
14486 JUMP_LABEL (place2) = XEXP (note, 0);
14487 else if (LABEL_P (label))
14488 LABEL_NUSES (label)--;
14489 place2 = 0;
14491 break;
14493 case REG_NONNEG:
14494 /* This note says something about the value of a register prior
14495 to the execution of an insn. It is too much trouble to see
14496 if the note is still correct in all situations. It is better
14497 to simply delete it. */
14498 break;
14500 case REG_DEAD:
14501 /* If we replaced the right hand side of FROM_INSN with a
14502 REG_EQUAL note, the original use of the dying register
14503 will not have been combined into I3 and I2. In such cases,
14504 FROM_INSN is guaranteed to be the first of the combined
14505 instructions, so we simply need to search back before
14506 FROM_INSN for the previous use or set of this register,
14507 then alter the notes there appropriately.
14509 If the register is used as an input in I3, it dies there.
14510 Similarly for I2, if it is nonzero and adjacent to I3.
14512 If the register is not used as an input in either I3 or I2
14513 and it is not one of the registers we were supposed to eliminate,
14514 there are two possibilities. We might have a non-adjacent I2
14515 or we might have somehow eliminated an additional register
14516 from a computation. For example, we might have had A & B where
14517 we discover that B will always be zero. In this case we will
14518 eliminate the reference to A.
14520 In both cases, we must search to see if we can find a previous
14521 use of A and put the death note there. */
14523 if (from_insn
14524 && from_insn == i2mod
14525 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
14526 tem_insn = from_insn;
14527 else
14529 if (from_insn
14530 && CALL_P (from_insn)
14531 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
14532 place = from_insn;
14533 else if (i2 && reg_set_p (XEXP (note, 0), PATTERN (i2)))
14535 /* If the new I2 sets the same register that is marked
14536 dead in the note, we do not in general know where to
14537 put the note. One important case we _can_ handle is
14538 when the note comes from I3. */
14539 if (from_insn == i3)
14540 place = i3;
14541 else
14542 break;
14544 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
14545 place = i3;
14546 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
14547 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14548 place = i2;
14549 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
14550 && !(i2mod
14551 && reg_overlap_mentioned_p (XEXP (note, 0),
14552 i2mod_old_rhs)))
14553 || rtx_equal_p (XEXP (note, 0), elim_i1)
14554 || rtx_equal_p (XEXP (note, 0), elim_i0))
14555 break;
14556 tem_insn = i3;
14559 if (place == 0)
14561 basic_block bb = this_basic_block;
14563 for (tem_insn = PREV_INSN (tem_insn); place == 0; tem_insn = PREV_INSN (tem_insn))
14565 if (!NONDEBUG_INSN_P (tem_insn))
14567 if (tem_insn == BB_HEAD (bb))
14568 break;
14569 continue;
14572 /* If the register is being set at TEM_INSN, see if that is all
14573 TEM_INSN is doing. If so, delete TEM_INSN. Otherwise, make this
14574 into a REG_UNUSED note instead. Don't delete sets to
14575 global register vars. */
14576 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
14577 || !global_regs[REGNO (XEXP (note, 0))])
14578 && reg_set_p (XEXP (note, 0), PATTERN (tem_insn)))
14580 rtx set = single_set (tem_insn);
14581 rtx inner_dest = 0;
14583 if (set != 0)
14584 for (inner_dest = SET_DEST (set);
14585 (GET_CODE (inner_dest) == STRICT_LOW_PART
14586 || GET_CODE (inner_dest) == SUBREG
14587 || GET_CODE (inner_dest) == ZERO_EXTRACT);
14588 inner_dest = XEXP (inner_dest, 0))
14591 /* Verify that it was the set, and not a clobber that
14592 modified the register.
14594 If we cannot delete the setter due to side
14595 effects, mark the user with an UNUSED note instead
14596 of deleting it. */
14598 if (set != 0 && ! side_effects_p (SET_SRC (set))
14599 && rtx_equal_p (XEXP (note, 0), inner_dest))
14601 /* Move the notes and links of TEM_INSN elsewhere.
14602 This might delete other dead insns recursively.
14603 First set the pattern to something that won't use
14604 any register. */
14605 rtx old_notes = REG_NOTES (tem_insn);
14607 PATTERN (tem_insn) = pc_rtx;
14608 REG_NOTES (tem_insn) = NULL;
14610 distribute_notes (old_notes, tem_insn, tem_insn, NULL,
14611 NULL_RTX, NULL_RTX, NULL_RTX);
14612 distribute_links (LOG_LINKS (tem_insn));
14614 unsigned int regno = REGNO (XEXP (note, 0));
14615 reg_stat_type *rsp = &reg_stat[regno];
14616 if (rsp->last_set == tem_insn)
14617 record_value_for_reg (XEXP (note, 0), NULL, NULL_RTX);
14619 SET_INSN_DELETED (tem_insn);
14620 if (tem_insn == i2)
14621 i2 = NULL;
14623 else
14625 PUT_REG_NOTE_KIND (note, REG_UNUSED);
14627 /* If there isn't already a REG_UNUSED note, put one
14628 here. Do not place a REG_DEAD note, even if
14629 the register is also used here; that would not
14630 match the algorithm used in lifetime analysis
14631 and can cause the consistency check in the
14632 scheduler to fail. */
14633 if (! find_regno_note (tem_insn, REG_UNUSED,
14634 REGNO (XEXP (note, 0))))
14635 place = tem_insn;
14636 break;
14639 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem_insn))
14640 || (CALL_P (tem_insn)
14641 && find_reg_fusage (tem_insn, USE, XEXP (note, 0))))
14643 place = tem_insn;
14645 /* If we are doing a 3->2 combination, and we have a
14646 register which formerly died in i3 and was not used
14647 by i2, which now no longer dies in i3 and is used in
14648 i2 but does not die in i2, and place is between i2
14649 and i3, then we may need to move a link from place to
14650 i2. */
14651 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
14652 && from_insn
14653 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
14654 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14656 struct insn_link *links = LOG_LINKS (place);
14657 LOG_LINKS (place) = NULL;
14658 distribute_links (links);
14660 break;
14663 if (tem_insn == BB_HEAD (bb))
14664 break;
14669 /* If the register is set or already dead at PLACE, we needn't do
14670 anything with this note if it is still a REG_DEAD note.
14671 We check here if it is set at all, not if is it totally replaced,
14672 which is what `dead_or_set_p' checks, so also check for it being
14673 set partially. */
14675 if (place && REG_NOTE_KIND (note) == REG_DEAD)
14677 unsigned int regno = REGNO (XEXP (note, 0));
14678 reg_stat_type *rsp = &reg_stat[regno];
14680 if (dead_or_set_p (place, XEXP (note, 0))
14681 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
14683 /* Unless the register previously died in PLACE, clear
14684 last_death. [I no longer understand why this is
14685 being done.] */
14686 if (rsp->last_death != place)
14687 rsp->last_death = 0;
14688 place = 0;
14690 else
14691 rsp->last_death = place;
14693 /* If this is a death note for a hard reg that is occupying
14694 multiple registers, ensure that we are still using all
14695 parts of the object. If we find a piece of the object
14696 that is unused, we must arrange for an appropriate REG_DEAD
14697 note to be added for it. However, we can't just emit a USE
14698 and tag the note to it, since the register might actually
14699 be dead; so we recourse, and the recursive call then finds
14700 the previous insn that used this register. */
14702 if (place && REG_NREGS (XEXP (note, 0)) > 1)
14704 unsigned int endregno = END_REGNO (XEXP (note, 0));
14705 bool all_used = true;
14706 unsigned int i;
14708 for (i = regno; i < endregno; i++)
14709 if ((! refers_to_regno_p (i, PATTERN (place))
14710 && ! find_regno_fusage (place, USE, i))
14711 || dead_or_set_regno_p (place, i))
14713 all_used = false;
14714 break;
14717 if (! all_used)
14719 /* Put only REG_DEAD notes for pieces that are
14720 not already dead or set. */
14722 for (i = regno; i < endregno;
14723 i += hard_regno_nregs (i, reg_raw_mode[i]))
14725 rtx piece = regno_reg_rtx[i];
14726 basic_block bb = this_basic_block;
14728 if (! dead_or_set_p (place, piece)
14729 && ! reg_bitfield_target_p (piece,
14730 PATTERN (place)))
14732 rtx new_note = alloc_reg_note (REG_DEAD, piece,
14733 NULL_RTX);
14735 distribute_notes (new_note, place, place,
14736 NULL, NULL_RTX, NULL_RTX,
14737 NULL_RTX);
14739 else if (! refers_to_regno_p (i, PATTERN (place))
14740 && ! find_regno_fusage (place, USE, i))
14741 for (tem_insn = PREV_INSN (place); ;
14742 tem_insn = PREV_INSN (tem_insn))
14744 if (!NONDEBUG_INSN_P (tem_insn))
14746 if (tem_insn == BB_HEAD (bb))
14747 break;
14748 continue;
14750 if (dead_or_set_p (tem_insn, piece)
14751 || reg_bitfield_target_p (piece,
14752 PATTERN (tem_insn)))
14754 add_reg_note (tem_insn, REG_UNUSED, piece);
14755 break;
14760 place = 0;
14764 break;
14766 default:
14767 /* Any other notes should not be present at this point in the
14768 compilation. */
14769 gcc_unreachable ();
14772 if (place)
14774 XEXP (note, 1) = REG_NOTES (place);
14775 REG_NOTES (place) = note;
14777 /* Set added_notes_insn to the earliest insn we added a note to. */
14778 if (added_notes_insn == 0
14779 || DF_INSN_LUID (added_notes_insn) > DF_INSN_LUID (place))
14780 added_notes_insn = place;
14783 if (place2)
14785 add_shallow_copy_of_reg_note (place2, note);
14787 /* Set added_notes_insn to the earliest insn we added a note to. */
14788 if (added_notes_insn == 0
14789 || DF_INSN_LUID (added_notes_insn) > DF_INSN_LUID (place2))
14790 added_notes_insn = place2;
14795 /* Similarly to above, distribute the LOG_LINKS that used to be present on
14796 I3, I2, and I1 to new locations. This is also called to add a link
14797 pointing at I3 when I3's destination is changed. */
14799 static void
14800 distribute_links (struct insn_link *links)
14802 struct insn_link *link, *next_link;
14804 for (link = links; link; link = next_link)
14806 rtx_insn *place = 0;
14807 rtx_insn *insn;
14808 rtx set, reg;
14810 next_link = link->next;
14812 /* If the insn that this link points to is a NOTE, ignore it. */
14813 if (NOTE_P (link->insn))
14814 continue;
14816 set = 0;
14817 rtx pat = PATTERN (link->insn);
14818 if (GET_CODE (pat) == SET)
14819 set = pat;
14820 else if (GET_CODE (pat) == PARALLEL)
14822 int i;
14823 for (i = 0; i < XVECLEN (pat, 0); i++)
14825 set = XVECEXP (pat, 0, i);
14826 if (GET_CODE (set) != SET)
14827 continue;
14829 reg = SET_DEST (set);
14830 while (GET_CODE (reg) == ZERO_EXTRACT
14831 || GET_CODE (reg) == STRICT_LOW_PART
14832 || GET_CODE (reg) == SUBREG)
14833 reg = XEXP (reg, 0);
14835 if (!REG_P (reg))
14836 continue;
14838 if (REGNO (reg) == link->regno)
14839 break;
14841 if (i == XVECLEN (pat, 0))
14842 continue;
14844 else
14845 continue;
14847 reg = SET_DEST (set);
14849 while (GET_CODE (reg) == ZERO_EXTRACT
14850 || GET_CODE (reg) == STRICT_LOW_PART
14851 || GET_CODE (reg) == SUBREG)
14852 reg = XEXP (reg, 0);
14854 if (reg == pc_rtx)
14855 continue;
14857 /* A LOG_LINK is defined as being placed on the first insn that uses
14858 a register and points to the insn that sets the register. Start
14859 searching at the next insn after the target of the link and stop
14860 when we reach a set of the register or the end of the basic block.
14862 Note that this correctly handles the link that used to point from
14863 I3 to I2. Also note that not much searching is typically done here
14864 since most links don't point very far away. */
14866 for (insn = NEXT_INSN (link->insn);
14867 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
14868 || BB_HEAD (this_basic_block->next_bb) != insn));
14869 insn = NEXT_INSN (insn))
14870 if (DEBUG_INSN_P (insn))
14871 continue;
14872 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
14874 if (reg_referenced_p (reg, PATTERN (insn)))
14875 place = insn;
14876 break;
14878 else if (CALL_P (insn)
14879 && find_reg_fusage (insn, USE, reg))
14881 place = insn;
14882 break;
14884 else if (INSN_P (insn) && reg_set_p (reg, insn))
14885 break;
14887 /* If we found a place to put the link, place it there unless there
14888 is already a link to the same insn as LINK at that point. */
14890 if (place)
14892 struct insn_link *link2;
14894 FOR_EACH_LOG_LINK (link2, place)
14895 if (link2->insn == link->insn && link2->regno == link->regno)
14896 break;
14898 if (link2 == NULL)
14900 link->next = LOG_LINKS (place);
14901 LOG_LINKS (place) = link;
14903 /* Set added_links_insn to the earliest insn we added a
14904 link to. */
14905 if (added_links_insn == 0
14906 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
14907 added_links_insn = place;
14913 /* Check for any register or memory mentioned in EQUIV that is not
14914 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
14915 of EXPR where some registers may have been replaced by constants. */
14917 static bool
14918 unmentioned_reg_p (rtx equiv, rtx expr)
14920 subrtx_iterator::array_type array;
14921 FOR_EACH_SUBRTX (iter, array, equiv, NONCONST)
14923 const_rtx x = *iter;
14924 if ((REG_P (x) || MEM_P (x))
14925 && !reg_mentioned_p (x, expr))
14926 return true;
14928 return false;
14931 DEBUG_FUNCTION void
14932 dump_combine_stats (FILE *file)
14934 fprintf
14935 (file,
14936 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
14937 combine_attempts, combine_merges, combine_extras, combine_successes);
14940 void
14941 dump_combine_total_stats (FILE *file)
14943 fprintf
14944 (file,
14945 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
14946 total_attempts, total_merges, total_extras, total_successes);
14949 /* Make pseudo-to-pseudo copies after every hard-reg-to-pseudo-copy, because
14950 the reg-to-reg copy can usefully combine with later instructions, but we
14951 do not want to combine the hard reg into later instructions, for that
14952 restricts register allocation. */
14953 static void
14954 make_more_copies (void)
14956 basic_block bb;
14958 FOR_EACH_BB_FN (bb, cfun)
14960 rtx_insn *insn;
14962 FOR_BB_INSNS (bb, insn)
14964 if (!NONDEBUG_INSN_P (insn))
14965 continue;
14967 rtx set = single_set (insn);
14968 if (!set)
14969 continue;
14971 rtx dest = SET_DEST (set);
14972 if (!(REG_P (dest) && !HARD_REGISTER_P (dest)))
14973 continue;
14975 rtx src = SET_SRC (set);
14976 if (!(REG_P (src) && HARD_REGISTER_P (src)))
14977 continue;
14978 if (TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src)))
14979 continue;
14981 rtx new_reg = gen_reg_rtx (GET_MODE (dest));
14982 rtx_insn *new_insn = gen_move_insn (new_reg, src);
14983 SET_SRC (set) = new_reg;
14984 emit_insn_before (new_insn, insn);
14985 df_insn_rescan (insn);
14990 /* Try combining insns through substitution. */
14991 static unsigned int
14992 rest_of_handle_combine (void)
14994 make_more_copies ();
14996 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
14997 df_note_add_problem ();
14998 df_analyze ();
15000 regstat_init_n_sets_and_refs ();
15001 reg_n_sets_max = max_reg_num ();
15003 int rebuild_jump_labels_after_combine
15004 = combine_instructions (get_insns (), max_reg_num ());
15006 /* Combining insns may have turned an indirect jump into a
15007 direct jump. Rebuild the JUMP_LABEL fields of jumping
15008 instructions. */
15009 if (rebuild_jump_labels_after_combine)
15011 if (dom_info_available_p (CDI_DOMINATORS))
15012 free_dominance_info (CDI_DOMINATORS);
15013 timevar_push (TV_JUMP);
15014 rebuild_jump_labels (get_insns ());
15015 cleanup_cfg (0);
15016 timevar_pop (TV_JUMP);
15019 regstat_free_n_sets_and_refs ();
15020 return 0;
15023 namespace {
15025 const pass_data pass_data_combine =
15027 RTL_PASS, /* type */
15028 "combine", /* name */
15029 OPTGROUP_NONE, /* optinfo_flags */
15030 TV_COMBINE, /* tv_id */
15031 PROP_cfglayout, /* properties_required */
15032 0, /* properties_provided */
15033 0, /* properties_destroyed */
15034 0, /* todo_flags_start */
15035 TODO_df_finish, /* todo_flags_finish */
15038 class pass_combine : public rtl_opt_pass
15040 public:
15041 pass_combine (gcc::context *ctxt)
15042 : rtl_opt_pass (pass_data_combine, ctxt)
15045 /* opt_pass methods: */
15046 bool gate (function *) final override { return (optimize > 0); }
15047 unsigned int execute (function *) final override
15049 return rest_of_handle_combine ();
15052 }; // class pass_combine
15054 } // anon namespace
15056 rtl_opt_pass *
15057 make_pass_combine (gcc::context *ctxt)
15059 return new pass_combine (ctxt);