* gcc.target/powerpc/405-dlmzb-strlen-1.c: Skip on AIX.
[official-gcc.git] / gcc / rtlanal.c
blobfb7d45cfb9616bd1f4012f10209c16533fd02c46
1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011, 2012 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "diagnostic-core.h"
28 #include "hard-reg-set.h"
29 #include "rtl.h"
30 #include "insn-config.h"
31 #include "recog.h"
32 #include "target.h"
33 #include "output.h"
34 #include "tm_p.h"
35 #include "flags.h"
36 #include "regs.h"
37 #include "function.h"
38 #include "df.h"
39 #include "tree.h"
40 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
42 /* Forward declarations */
43 static void set_of_1 (rtx, const_rtx, void *);
44 static bool covers_regno_p (const_rtx, unsigned int);
45 static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
46 static int rtx_referenced_p_1 (rtx *, void *);
47 static int computed_jump_p_1 (const_rtx);
48 static void parms_set (rtx, const_rtx, void *);
50 static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, enum machine_mode,
51 const_rtx, enum machine_mode,
52 unsigned HOST_WIDE_INT);
53 static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, enum machine_mode,
54 const_rtx, enum machine_mode,
55 unsigned HOST_WIDE_INT);
56 static unsigned int cached_num_sign_bit_copies (const_rtx, enum machine_mode, const_rtx,
57 enum machine_mode,
58 unsigned int);
59 static unsigned int num_sign_bit_copies1 (const_rtx, enum machine_mode, const_rtx,
60 enum machine_mode, unsigned int);
62 /* Offset of the first 'e', 'E' or 'V' operand for each rtx code, or
63 -1 if a code has no such operand. */
64 static int non_rtx_starting_operands[NUM_RTX_CODE];
66 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
67 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
68 SIGN_EXTEND then while narrowing we also have to enforce the
69 representation and sign-extend the value to mode DESTINATION_REP.
71 If the value is already sign-extended to DESTINATION_REP mode we
72 can just switch to DESTINATION mode on it. For each pair of
73 integral modes SOURCE and DESTINATION, when truncating from SOURCE
74 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
75 contains the number of high-order bits in SOURCE that have to be
76 copies of the sign-bit so that we can do this mode-switch to
77 DESTINATION. */
79 static unsigned int
80 num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
82 /* Return 1 if the value of X is unstable
83 (would be different at a different point in the program).
84 The frame pointer, arg pointer, etc. are considered stable
85 (within one function) and so is anything marked `unchanging'. */
87 int
88 rtx_unstable_p (const_rtx x)
90 const RTX_CODE code = GET_CODE (x);
91 int i;
92 const char *fmt;
94 switch (code)
96 case MEM:
97 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
99 case CONST:
100 CASE_CONST_ANY:
101 case SYMBOL_REF:
102 case LABEL_REF:
103 return 0;
105 case REG:
106 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
107 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
108 /* The arg pointer varies if it is not a fixed register. */
109 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
110 return 0;
111 /* ??? When call-clobbered, the value is stable modulo the restore
112 that must happen after a call. This currently screws up local-alloc
113 into believing that the restore is not needed. */
114 if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED && x == pic_offset_table_rtx)
115 return 0;
116 return 1;
118 case ASM_OPERANDS:
119 if (MEM_VOLATILE_P (x))
120 return 1;
122 /* Fall through. */
124 default:
125 break;
128 fmt = GET_RTX_FORMAT (code);
129 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
130 if (fmt[i] == 'e')
132 if (rtx_unstable_p (XEXP (x, i)))
133 return 1;
135 else if (fmt[i] == 'E')
137 int j;
138 for (j = 0; j < XVECLEN (x, i); j++)
139 if (rtx_unstable_p (XVECEXP (x, i, j)))
140 return 1;
143 return 0;
146 /* Return 1 if X has a value that can vary even between two
147 executions of the program. 0 means X can be compared reliably
148 against certain constants or near-constants.
149 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
150 zero, we are slightly more conservative.
151 The frame pointer and the arg pointer are considered constant. */
153 bool
154 rtx_varies_p (const_rtx x, bool for_alias)
156 RTX_CODE code;
157 int i;
158 const char *fmt;
160 if (!x)
161 return 0;
163 code = GET_CODE (x);
164 switch (code)
166 case MEM:
167 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
169 case CONST:
170 CASE_CONST_ANY:
171 case SYMBOL_REF:
172 case LABEL_REF:
173 return 0;
175 case REG:
176 /* Note that we have to test for the actual rtx used for the frame
177 and arg pointers and not just the register number in case we have
178 eliminated the frame and/or arg pointer and are using it
179 for pseudos. */
180 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
181 /* The arg pointer varies if it is not a fixed register. */
182 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
183 return 0;
184 if (x == pic_offset_table_rtx
185 /* ??? When call-clobbered, the value is stable modulo the restore
186 that must happen after a call. This currently screws up
187 local-alloc into believing that the restore is not needed, so we
188 must return 0 only if we are called from alias analysis. */
189 && (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED || for_alias))
190 return 0;
191 return 1;
193 case LO_SUM:
194 /* The operand 0 of a LO_SUM is considered constant
195 (in fact it is related specifically to operand 1)
196 during alias analysis. */
197 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
198 || rtx_varies_p (XEXP (x, 1), for_alias);
200 case ASM_OPERANDS:
201 if (MEM_VOLATILE_P (x))
202 return 1;
204 /* Fall through. */
206 default:
207 break;
210 fmt = GET_RTX_FORMAT (code);
211 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
212 if (fmt[i] == 'e')
214 if (rtx_varies_p (XEXP (x, i), for_alias))
215 return 1;
217 else if (fmt[i] == 'E')
219 int j;
220 for (j = 0; j < XVECLEN (x, i); j++)
221 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
222 return 1;
225 return 0;
228 /* Return nonzero if the use of X as an address in a MEM can cause a trap.
229 MODE is the mode of the MEM (not that of X) and UNALIGNED_MEMS controls
230 whether nonzero is returned for unaligned memory accesses on strict
231 alignment machines. */
233 static int
234 rtx_addr_can_trap_p_1 (const_rtx x, HOST_WIDE_INT offset, HOST_WIDE_INT size,
235 enum machine_mode mode, bool unaligned_mems)
237 enum rtx_code code = GET_CODE (x);
239 if (STRICT_ALIGNMENT
240 && unaligned_mems
241 && GET_MODE_SIZE (mode) != 0)
243 HOST_WIDE_INT actual_offset = offset;
244 #ifdef SPARC_STACK_BOUNDARY_HACK
245 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
246 the real alignment of %sp. However, when it does this, the
247 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
248 if (SPARC_STACK_BOUNDARY_HACK
249 && (x == stack_pointer_rtx || x == hard_frame_pointer_rtx))
250 actual_offset -= STACK_POINTER_OFFSET;
251 #endif
253 if (actual_offset % GET_MODE_SIZE (mode) != 0)
254 return 1;
257 switch (code)
259 case SYMBOL_REF:
260 if (SYMBOL_REF_WEAK (x))
261 return 1;
262 if (!CONSTANT_POOL_ADDRESS_P (x))
264 tree decl;
265 HOST_WIDE_INT decl_size;
267 if (offset < 0)
268 return 1;
269 if (size == 0)
270 size = GET_MODE_SIZE (mode);
271 if (size == 0)
272 return offset != 0;
274 /* If the size of the access or of the symbol is unknown,
275 assume the worst. */
276 decl = SYMBOL_REF_DECL (x);
278 /* Else check that the access is in bounds. TODO: restructure
279 expr_size/tree_expr_size/int_expr_size and just use the latter. */
280 if (!decl)
281 decl_size = -1;
282 else if (DECL_P (decl) && DECL_SIZE_UNIT (decl))
283 decl_size = (host_integerp (DECL_SIZE_UNIT (decl), 0)
284 ? tree_low_cst (DECL_SIZE_UNIT (decl), 0)
285 : -1);
286 else if (TREE_CODE (decl) == STRING_CST)
287 decl_size = TREE_STRING_LENGTH (decl);
288 else if (TYPE_SIZE_UNIT (TREE_TYPE (decl)))
289 decl_size = int_size_in_bytes (TREE_TYPE (decl));
290 else
291 decl_size = -1;
293 return (decl_size <= 0 ? offset != 0 : offset + size > decl_size);
296 return 0;
298 case LABEL_REF:
299 return 0;
301 case REG:
302 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
303 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
304 || x == stack_pointer_rtx
305 /* The arg pointer varies if it is not a fixed register. */
306 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
307 return 0;
308 /* All of the virtual frame registers are stack references. */
309 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
310 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
311 return 0;
312 return 1;
314 case CONST:
315 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
316 mode, unaligned_mems);
318 case PLUS:
319 /* An address is assumed not to trap if:
320 - it is the pic register plus a constant. */
321 if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1)))
322 return 0;
324 /* - or it is an address that can't trap plus a constant integer,
325 with the proper remainder modulo the mode size if we are
326 considering unaligned memory references. */
327 if (CONST_INT_P (XEXP (x, 1))
328 && !rtx_addr_can_trap_p_1 (XEXP (x, 0), offset + INTVAL (XEXP (x, 1)),
329 size, mode, unaligned_mems))
330 return 0;
332 return 1;
334 case LO_SUM:
335 case PRE_MODIFY:
336 return rtx_addr_can_trap_p_1 (XEXP (x, 1), offset, size,
337 mode, unaligned_mems);
339 case PRE_DEC:
340 case PRE_INC:
341 case POST_DEC:
342 case POST_INC:
343 case POST_MODIFY:
344 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
345 mode, unaligned_mems);
347 default:
348 break;
351 /* If it isn't one of the case above, it can cause a trap. */
352 return 1;
355 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
358 rtx_addr_can_trap_p (const_rtx x)
360 return rtx_addr_can_trap_p_1 (x, 0, 0, VOIDmode, false);
363 /* Return true if X is an address that is known to not be zero. */
365 bool
366 nonzero_address_p (const_rtx x)
368 const enum rtx_code code = GET_CODE (x);
370 switch (code)
372 case SYMBOL_REF:
373 return !SYMBOL_REF_WEAK (x);
375 case LABEL_REF:
376 return true;
378 case REG:
379 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
380 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
381 || x == stack_pointer_rtx
382 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
383 return true;
384 /* All of the virtual frame registers are stack references. */
385 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
386 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
387 return true;
388 return false;
390 case CONST:
391 return nonzero_address_p (XEXP (x, 0));
393 case PLUS:
394 if (CONST_INT_P (XEXP (x, 1)))
395 return nonzero_address_p (XEXP (x, 0));
396 /* Handle PIC references. */
397 else if (XEXP (x, 0) == pic_offset_table_rtx
398 && CONSTANT_P (XEXP (x, 1)))
399 return true;
400 return false;
402 case PRE_MODIFY:
403 /* Similar to the above; allow positive offsets. Further, since
404 auto-inc is only allowed in memories, the register must be a
405 pointer. */
406 if (CONST_INT_P (XEXP (x, 1))
407 && INTVAL (XEXP (x, 1)) > 0)
408 return true;
409 return nonzero_address_p (XEXP (x, 0));
411 case PRE_INC:
412 /* Similarly. Further, the offset is always positive. */
413 return true;
415 case PRE_DEC:
416 case POST_DEC:
417 case POST_INC:
418 case POST_MODIFY:
419 return nonzero_address_p (XEXP (x, 0));
421 case LO_SUM:
422 return nonzero_address_p (XEXP (x, 1));
424 default:
425 break;
428 /* If it isn't one of the case above, might be zero. */
429 return false;
432 /* Return 1 if X refers to a memory location whose address
433 cannot be compared reliably with constant addresses,
434 or if X refers to a BLKmode memory object.
435 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
436 zero, we are slightly more conservative. */
438 bool
439 rtx_addr_varies_p (const_rtx x, bool for_alias)
441 enum rtx_code code;
442 int i;
443 const char *fmt;
445 if (x == 0)
446 return 0;
448 code = GET_CODE (x);
449 if (code == MEM)
450 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
452 fmt = GET_RTX_FORMAT (code);
453 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
454 if (fmt[i] == 'e')
456 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
457 return 1;
459 else if (fmt[i] == 'E')
461 int j;
462 for (j = 0; j < XVECLEN (x, i); j++)
463 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
464 return 1;
466 return 0;
469 /* Return the value of the integer term in X, if one is apparent;
470 otherwise return 0.
471 Only obvious integer terms are detected.
472 This is used in cse.c with the `related_value' field. */
474 HOST_WIDE_INT
475 get_integer_term (const_rtx x)
477 if (GET_CODE (x) == CONST)
478 x = XEXP (x, 0);
480 if (GET_CODE (x) == MINUS
481 && CONST_INT_P (XEXP (x, 1)))
482 return - INTVAL (XEXP (x, 1));
483 if (GET_CODE (x) == PLUS
484 && CONST_INT_P (XEXP (x, 1)))
485 return INTVAL (XEXP (x, 1));
486 return 0;
489 /* If X is a constant, return the value sans apparent integer term;
490 otherwise return 0.
491 Only obvious integer terms are detected. */
494 get_related_value (const_rtx x)
496 if (GET_CODE (x) != CONST)
497 return 0;
498 x = XEXP (x, 0);
499 if (GET_CODE (x) == PLUS
500 && CONST_INT_P (XEXP (x, 1)))
501 return XEXP (x, 0);
502 else if (GET_CODE (x) == MINUS
503 && CONST_INT_P (XEXP (x, 1)))
504 return XEXP (x, 0);
505 return 0;
508 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
509 to somewhere in the same object or object_block as SYMBOL. */
511 bool
512 offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
514 tree decl;
516 if (GET_CODE (symbol) != SYMBOL_REF)
517 return false;
519 if (offset == 0)
520 return true;
522 if (offset > 0)
524 if (CONSTANT_POOL_ADDRESS_P (symbol)
525 && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
526 return true;
528 decl = SYMBOL_REF_DECL (symbol);
529 if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
530 return true;
533 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
534 && SYMBOL_REF_BLOCK (symbol)
535 && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
536 && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
537 < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
538 return true;
540 return false;
543 /* Split X into a base and a constant offset, storing them in *BASE_OUT
544 and *OFFSET_OUT respectively. */
546 void
547 split_const (rtx x, rtx *base_out, rtx *offset_out)
549 if (GET_CODE (x) == CONST)
551 x = XEXP (x, 0);
552 if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
554 *base_out = XEXP (x, 0);
555 *offset_out = XEXP (x, 1);
556 return;
559 *base_out = x;
560 *offset_out = const0_rtx;
563 /* Return the number of places FIND appears within X. If COUNT_DEST is
564 zero, we do not count occurrences inside the destination of a SET. */
567 count_occurrences (const_rtx x, const_rtx find, int count_dest)
569 int i, j;
570 enum rtx_code code;
571 const char *format_ptr;
572 int count;
574 if (x == find)
575 return 1;
577 code = GET_CODE (x);
579 switch (code)
581 case REG:
582 CASE_CONST_ANY:
583 case SYMBOL_REF:
584 case CODE_LABEL:
585 case PC:
586 case CC0:
587 return 0;
589 case EXPR_LIST:
590 count = count_occurrences (XEXP (x, 0), find, count_dest);
591 if (XEXP (x, 1))
592 count += count_occurrences (XEXP (x, 1), find, count_dest);
593 return count;
595 case MEM:
596 if (MEM_P (find) && rtx_equal_p (x, find))
597 return 1;
598 break;
600 case SET:
601 if (SET_DEST (x) == find && ! count_dest)
602 return count_occurrences (SET_SRC (x), find, count_dest);
603 break;
605 default:
606 break;
609 format_ptr = GET_RTX_FORMAT (code);
610 count = 0;
612 for (i = 0; i < GET_RTX_LENGTH (code); i++)
614 switch (*format_ptr++)
616 case 'e':
617 count += count_occurrences (XEXP (x, i), find, count_dest);
618 break;
620 case 'E':
621 for (j = 0; j < XVECLEN (x, i); j++)
622 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
623 break;
626 return count;
630 /* Return TRUE if OP is a register or subreg of a register that
631 holds an unsigned quantity. Otherwise, return FALSE. */
633 bool
634 unsigned_reg_p (rtx op)
636 if (REG_P (op)
637 && REG_EXPR (op)
638 && TYPE_UNSIGNED (TREE_TYPE (REG_EXPR (op))))
639 return true;
641 if (GET_CODE (op) == SUBREG
642 && SUBREG_PROMOTED_UNSIGNED_P (op))
643 return true;
645 return false;
649 /* Nonzero if register REG appears somewhere within IN.
650 Also works if REG is not a register; in this case it checks
651 for a subexpression of IN that is Lisp "equal" to REG. */
654 reg_mentioned_p (const_rtx reg, const_rtx in)
656 const char *fmt;
657 int i;
658 enum rtx_code code;
660 if (in == 0)
661 return 0;
663 if (reg == in)
664 return 1;
666 if (GET_CODE (in) == LABEL_REF)
667 return reg == XEXP (in, 0);
669 code = GET_CODE (in);
671 switch (code)
673 /* Compare registers by number. */
674 case REG:
675 return REG_P (reg) && REGNO (in) == REGNO (reg);
677 /* These codes have no constituent expressions
678 and are unique. */
679 case SCRATCH:
680 case CC0:
681 case PC:
682 return 0;
684 CASE_CONST_ANY:
685 /* These are kept unique for a given value. */
686 return 0;
688 default:
689 break;
692 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
693 return 1;
695 fmt = GET_RTX_FORMAT (code);
697 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
699 if (fmt[i] == 'E')
701 int j;
702 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
703 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
704 return 1;
706 else if (fmt[i] == 'e'
707 && reg_mentioned_p (reg, XEXP (in, i)))
708 return 1;
710 return 0;
713 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
714 no CODE_LABEL insn. */
717 no_labels_between_p (const_rtx beg, const_rtx end)
719 rtx p;
720 if (beg == end)
721 return 0;
722 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
723 if (LABEL_P (p))
724 return 0;
725 return 1;
728 /* Nonzero if register REG is used in an insn between
729 FROM_INSN and TO_INSN (exclusive of those two). */
732 reg_used_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn)
734 rtx insn;
736 if (from_insn == to_insn)
737 return 0;
739 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
740 if (NONDEBUG_INSN_P (insn)
741 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
742 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
743 return 1;
744 return 0;
747 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
748 is entirely replaced by a new value and the only use is as a SET_DEST,
749 we do not consider it a reference. */
752 reg_referenced_p (const_rtx x, const_rtx body)
754 int i;
756 switch (GET_CODE (body))
758 case SET:
759 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
760 return 1;
762 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
763 of a REG that occupies all of the REG, the insn references X if
764 it is mentioned in the destination. */
765 if (GET_CODE (SET_DEST (body)) != CC0
766 && GET_CODE (SET_DEST (body)) != PC
767 && !REG_P (SET_DEST (body))
768 && ! (GET_CODE (SET_DEST (body)) == SUBREG
769 && REG_P (SUBREG_REG (SET_DEST (body)))
770 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
771 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
772 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
773 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
774 && reg_overlap_mentioned_p (x, SET_DEST (body)))
775 return 1;
776 return 0;
778 case ASM_OPERANDS:
779 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
780 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
781 return 1;
782 return 0;
784 case CALL:
785 case USE:
786 case IF_THEN_ELSE:
787 return reg_overlap_mentioned_p (x, body);
789 case TRAP_IF:
790 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
792 case PREFETCH:
793 return reg_overlap_mentioned_p (x, XEXP (body, 0));
795 case UNSPEC:
796 case UNSPEC_VOLATILE:
797 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
798 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
799 return 1;
800 return 0;
802 case PARALLEL:
803 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
804 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
805 return 1;
806 return 0;
808 case CLOBBER:
809 if (MEM_P (XEXP (body, 0)))
810 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
811 return 1;
812 return 0;
814 case COND_EXEC:
815 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
816 return 1;
817 return reg_referenced_p (x, COND_EXEC_CODE (body));
819 default:
820 return 0;
824 /* Nonzero if register REG is set or clobbered in an insn between
825 FROM_INSN and TO_INSN (exclusive of those two). */
828 reg_set_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn)
830 const_rtx insn;
832 if (from_insn == to_insn)
833 return 0;
835 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
836 if (INSN_P (insn) && reg_set_p (reg, insn))
837 return 1;
838 return 0;
841 /* Internals of reg_set_between_p. */
843 reg_set_p (const_rtx reg, const_rtx insn)
845 /* We can be passed an insn or part of one. If we are passed an insn,
846 check if a side-effect of the insn clobbers REG. */
847 if (INSN_P (insn)
848 && (FIND_REG_INC_NOTE (insn, reg)
849 || (CALL_P (insn)
850 && ((REG_P (reg)
851 && REGNO (reg) < FIRST_PSEUDO_REGISTER
852 && overlaps_hard_reg_set_p (regs_invalidated_by_call,
853 GET_MODE (reg), REGNO (reg)))
854 || MEM_P (reg)
855 || find_reg_fusage (insn, CLOBBER, reg)))))
856 return 1;
858 return set_of (reg, insn) != NULL_RTX;
861 /* Similar to reg_set_between_p, but check all registers in X. Return 0
862 only if none of them are modified between START and END. Return 1 if
863 X contains a MEM; this routine does use memory aliasing. */
866 modified_between_p (const_rtx x, const_rtx start, const_rtx end)
868 const enum rtx_code code = GET_CODE (x);
869 const char *fmt;
870 int i, j;
871 rtx insn;
873 if (start == end)
874 return 0;
876 switch (code)
878 CASE_CONST_ANY:
879 case CONST:
880 case SYMBOL_REF:
881 case LABEL_REF:
882 return 0;
884 case PC:
885 case CC0:
886 return 1;
888 case MEM:
889 if (modified_between_p (XEXP (x, 0), start, end))
890 return 1;
891 if (MEM_READONLY_P (x))
892 return 0;
893 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
894 if (memory_modified_in_insn_p (x, insn))
895 return 1;
896 return 0;
897 break;
899 case REG:
900 return reg_set_between_p (x, start, end);
902 default:
903 break;
906 fmt = GET_RTX_FORMAT (code);
907 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
909 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
910 return 1;
912 else if (fmt[i] == 'E')
913 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
914 if (modified_between_p (XVECEXP (x, i, j), start, end))
915 return 1;
918 return 0;
921 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
922 of them are modified in INSN. Return 1 if X contains a MEM; this routine
923 does use memory aliasing. */
926 modified_in_p (const_rtx x, const_rtx insn)
928 const enum rtx_code code = GET_CODE (x);
929 const char *fmt;
930 int i, j;
932 switch (code)
934 CASE_CONST_ANY:
935 case CONST:
936 case SYMBOL_REF:
937 case LABEL_REF:
938 return 0;
940 case PC:
941 case CC0:
942 return 1;
944 case MEM:
945 if (modified_in_p (XEXP (x, 0), insn))
946 return 1;
947 if (MEM_READONLY_P (x))
948 return 0;
949 if (memory_modified_in_insn_p (x, insn))
950 return 1;
951 return 0;
952 break;
954 case REG:
955 return reg_set_p (x, insn);
957 default:
958 break;
961 fmt = GET_RTX_FORMAT (code);
962 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
964 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
965 return 1;
967 else if (fmt[i] == 'E')
968 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
969 if (modified_in_p (XVECEXP (x, i, j), insn))
970 return 1;
973 return 0;
976 /* Helper function for set_of. */
977 struct set_of_data
979 const_rtx found;
980 const_rtx pat;
983 static void
984 set_of_1 (rtx x, const_rtx pat, void *data1)
986 struct set_of_data *const data = (struct set_of_data *) (data1);
987 if (rtx_equal_p (x, data->pat)
988 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
989 data->found = pat;
992 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
993 (either directly or via STRICT_LOW_PART and similar modifiers). */
994 const_rtx
995 set_of (const_rtx pat, const_rtx insn)
997 struct set_of_data data;
998 data.found = NULL_RTX;
999 data.pat = pat;
1000 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
1001 return data.found;
1004 /* This function, called through note_stores, collects sets and
1005 clobbers of hard registers in a HARD_REG_SET, which is pointed to
1006 by DATA. */
1007 void
1008 record_hard_reg_sets (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1010 HARD_REG_SET *pset = (HARD_REG_SET *)data;
1011 if (REG_P (x) && HARD_REGISTER_P (x))
1012 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1015 /* Examine INSN, and compute the set of hard registers written by it.
1016 Store it in *PSET. Should only be called after reload. */
1017 void
1018 find_all_hard_reg_sets (const_rtx insn, HARD_REG_SET *pset)
1020 rtx link;
1022 CLEAR_HARD_REG_SET (*pset);
1023 note_stores (PATTERN (insn), record_hard_reg_sets, pset);
1024 if (CALL_P (insn))
1025 IOR_HARD_REG_SET (*pset, call_used_reg_set);
1026 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1027 if (REG_NOTE_KIND (link) == REG_INC)
1028 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1031 /* A for_each_rtx subroutine of record_hard_reg_uses. */
1032 static int
1033 record_hard_reg_uses_1 (rtx *px, void *data)
1035 rtx x = *px;
1036 HARD_REG_SET *pused = (HARD_REG_SET *)data;
1038 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1040 int nregs = hard_regno_nregs[REGNO (x)][GET_MODE (x)];
1041 while (nregs-- > 0)
1042 SET_HARD_REG_BIT (*pused, REGNO (x) + nregs);
1044 return 0;
1047 /* Like record_hard_reg_sets, but called through note_uses. */
1048 void
1049 record_hard_reg_uses (rtx *px, void *data)
1051 for_each_rtx (px, record_hard_reg_uses_1, data);
1054 /* Given an INSN, return a SET expression if this insn has only a single SET.
1055 It may also have CLOBBERs, USEs, or SET whose output
1056 will not be used, which we ignore. */
1059 single_set_2 (const_rtx insn, const_rtx pat)
1061 rtx set = NULL;
1062 int set_verified = 1;
1063 int i;
1065 if (GET_CODE (pat) == PARALLEL)
1067 for (i = 0; i < XVECLEN (pat, 0); i++)
1069 rtx sub = XVECEXP (pat, 0, i);
1070 switch (GET_CODE (sub))
1072 case USE:
1073 case CLOBBER:
1074 break;
1076 case SET:
1077 /* We can consider insns having multiple sets, where all
1078 but one are dead as single set insns. In common case
1079 only single set is present in the pattern so we want
1080 to avoid checking for REG_UNUSED notes unless necessary.
1082 When we reach set first time, we just expect this is
1083 the single set we are looking for and only when more
1084 sets are found in the insn, we check them. */
1085 if (!set_verified)
1087 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1088 && !side_effects_p (set))
1089 set = NULL;
1090 else
1091 set_verified = 1;
1093 if (!set)
1094 set = sub, set_verified = 0;
1095 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1096 || side_effects_p (sub))
1097 return NULL_RTX;
1098 break;
1100 default:
1101 return NULL_RTX;
1105 return set;
1108 /* Given an INSN, return nonzero if it has more than one SET, else return
1109 zero. */
1112 multiple_sets (const_rtx insn)
1114 int found;
1115 int i;
1117 /* INSN must be an insn. */
1118 if (! INSN_P (insn))
1119 return 0;
1121 /* Only a PARALLEL can have multiple SETs. */
1122 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1124 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1125 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1127 /* If we have already found a SET, then return now. */
1128 if (found)
1129 return 1;
1130 else
1131 found = 1;
1135 /* Either zero or one SET. */
1136 return 0;
1139 /* Return nonzero if the destination of SET equals the source
1140 and there are no side effects. */
1143 set_noop_p (const_rtx set)
1145 rtx src = SET_SRC (set);
1146 rtx dst = SET_DEST (set);
1148 if (dst == pc_rtx && src == pc_rtx)
1149 return 1;
1151 if (MEM_P (dst) && MEM_P (src))
1152 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1154 if (GET_CODE (dst) == ZERO_EXTRACT)
1155 return rtx_equal_p (XEXP (dst, 0), src)
1156 && ! BYTES_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1157 && !side_effects_p (src);
1159 if (GET_CODE (dst) == STRICT_LOW_PART)
1160 dst = XEXP (dst, 0);
1162 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1164 if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1165 return 0;
1166 src = SUBREG_REG (src);
1167 dst = SUBREG_REG (dst);
1170 return (REG_P (src) && REG_P (dst)
1171 && REGNO (src) == REGNO (dst));
1174 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1175 value to itself. */
1178 noop_move_p (const_rtx insn)
1180 rtx pat = PATTERN (insn);
1182 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1183 return 1;
1185 /* Insns carrying these notes are useful later on. */
1186 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1187 return 0;
1189 if (GET_CODE (pat) == SET && set_noop_p (pat))
1190 return 1;
1192 if (GET_CODE (pat) == PARALLEL)
1194 int i;
1195 /* If nothing but SETs of registers to themselves,
1196 this insn can also be deleted. */
1197 for (i = 0; i < XVECLEN (pat, 0); i++)
1199 rtx tem = XVECEXP (pat, 0, i);
1201 if (GET_CODE (tem) == USE
1202 || GET_CODE (tem) == CLOBBER)
1203 continue;
1205 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1206 return 0;
1209 return 1;
1211 return 0;
1215 /* Return the last thing that X was assigned from before *PINSN. If VALID_TO
1216 is not NULL_RTX then verify that the object is not modified up to VALID_TO.
1217 If the object was modified, if we hit a partial assignment to X, or hit a
1218 CODE_LABEL first, return X. If we found an assignment, update *PINSN to
1219 point to it. ALLOW_HWREG is set to 1 if hardware registers are allowed to
1220 be the src. */
1223 find_last_value (rtx x, rtx *pinsn, rtx valid_to, int allow_hwreg)
1225 rtx p;
1227 for (p = PREV_INSN (*pinsn); p && !LABEL_P (p);
1228 p = PREV_INSN (p))
1229 if (INSN_P (p))
1231 rtx set = single_set (p);
1232 rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX);
1234 if (set && rtx_equal_p (x, SET_DEST (set)))
1236 rtx src = SET_SRC (set);
1238 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST)
1239 src = XEXP (note, 0);
1241 if ((valid_to == NULL_RTX
1242 || ! modified_between_p (src, PREV_INSN (p), valid_to))
1243 /* Reject hard registers because we don't usually want
1244 to use them; we'd rather use a pseudo. */
1245 && (! (REG_P (src)
1246 && REGNO (src) < FIRST_PSEUDO_REGISTER) || allow_hwreg))
1248 *pinsn = p;
1249 return src;
1253 /* If set in non-simple way, we don't have a value. */
1254 if (reg_set_p (x, p))
1255 break;
1258 return x;
1261 /* Return nonzero if register in range [REGNO, ENDREGNO)
1262 appears either explicitly or implicitly in X
1263 other than being stored into.
1265 References contained within the substructure at LOC do not count.
1266 LOC may be zero, meaning don't ignore anything. */
1269 refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
1270 rtx *loc)
1272 int i;
1273 unsigned int x_regno;
1274 RTX_CODE code;
1275 const char *fmt;
1277 repeat:
1278 /* The contents of a REG_NONNEG note is always zero, so we must come here
1279 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1280 if (x == 0)
1281 return 0;
1283 code = GET_CODE (x);
1285 switch (code)
1287 case REG:
1288 x_regno = REGNO (x);
1290 /* If we modifying the stack, frame, or argument pointer, it will
1291 clobber a virtual register. In fact, we could be more precise,
1292 but it isn't worth it. */
1293 if ((x_regno == STACK_POINTER_REGNUM
1294 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1295 || x_regno == ARG_POINTER_REGNUM
1296 #endif
1297 || x_regno == FRAME_POINTER_REGNUM)
1298 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1299 return 1;
1301 return endregno > x_regno && regno < END_REGNO (x);
1303 case SUBREG:
1304 /* If this is a SUBREG of a hard reg, we can see exactly which
1305 registers are being modified. Otherwise, handle normally. */
1306 if (REG_P (SUBREG_REG (x))
1307 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1309 unsigned int inner_regno = subreg_regno (x);
1310 unsigned int inner_endregno
1311 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1312 ? subreg_nregs (x) : 1);
1314 return endregno > inner_regno && regno < inner_endregno;
1316 break;
1318 case CLOBBER:
1319 case SET:
1320 if (&SET_DEST (x) != loc
1321 /* Note setting a SUBREG counts as referring to the REG it is in for
1322 a pseudo but not for hard registers since we can
1323 treat each word individually. */
1324 && ((GET_CODE (SET_DEST (x)) == SUBREG
1325 && loc != &SUBREG_REG (SET_DEST (x))
1326 && REG_P (SUBREG_REG (SET_DEST (x)))
1327 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1328 && refers_to_regno_p (regno, endregno,
1329 SUBREG_REG (SET_DEST (x)), loc))
1330 || (!REG_P (SET_DEST (x))
1331 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1332 return 1;
1334 if (code == CLOBBER || loc == &SET_SRC (x))
1335 return 0;
1336 x = SET_SRC (x);
1337 goto repeat;
1339 default:
1340 break;
1343 /* X does not match, so try its subexpressions. */
1345 fmt = GET_RTX_FORMAT (code);
1346 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1348 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1350 if (i == 0)
1352 x = XEXP (x, 0);
1353 goto repeat;
1355 else
1356 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1357 return 1;
1359 else if (fmt[i] == 'E')
1361 int j;
1362 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1363 if (loc != &XVECEXP (x, i, j)
1364 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1365 return 1;
1368 return 0;
1371 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1372 we check if any register number in X conflicts with the relevant register
1373 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1374 contains a MEM (we don't bother checking for memory addresses that can't
1375 conflict because we expect this to be a rare case. */
1378 reg_overlap_mentioned_p (const_rtx x, const_rtx in)
1380 unsigned int regno, endregno;
1382 /* If either argument is a constant, then modifying X can not
1383 affect IN. Here we look at IN, we can profitably combine
1384 CONSTANT_P (x) with the switch statement below. */
1385 if (CONSTANT_P (in))
1386 return 0;
1388 recurse:
1389 switch (GET_CODE (x))
1391 case STRICT_LOW_PART:
1392 case ZERO_EXTRACT:
1393 case SIGN_EXTRACT:
1394 /* Overly conservative. */
1395 x = XEXP (x, 0);
1396 goto recurse;
1398 case SUBREG:
1399 regno = REGNO (SUBREG_REG (x));
1400 if (regno < FIRST_PSEUDO_REGISTER)
1401 regno = subreg_regno (x);
1402 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1403 ? subreg_nregs (x) : 1);
1404 goto do_reg;
1406 case REG:
1407 regno = REGNO (x);
1408 endregno = END_REGNO (x);
1409 do_reg:
1410 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1412 case MEM:
1414 const char *fmt;
1415 int i;
1417 if (MEM_P (in))
1418 return 1;
1420 fmt = GET_RTX_FORMAT (GET_CODE (in));
1421 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1422 if (fmt[i] == 'e')
1424 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1425 return 1;
1427 else if (fmt[i] == 'E')
1429 int j;
1430 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1431 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1432 return 1;
1435 return 0;
1438 case SCRATCH:
1439 case PC:
1440 case CC0:
1441 return reg_mentioned_p (x, in);
1443 case PARALLEL:
1445 int i;
1447 /* If any register in here refers to it we return true. */
1448 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1449 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1450 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1451 return 1;
1452 return 0;
1455 default:
1456 gcc_assert (CONSTANT_P (x));
1457 return 0;
1461 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1462 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1463 ignored by note_stores, but passed to FUN.
1465 FUN receives three arguments:
1466 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1467 2. the SET or CLOBBER rtx that does the store,
1468 3. the pointer DATA provided to note_stores.
1470 If the item being stored in or clobbered is a SUBREG of a hard register,
1471 the SUBREG will be passed. */
1473 void
1474 note_stores (const_rtx x, void (*fun) (rtx, const_rtx, void *), void *data)
1476 int i;
1478 if (GET_CODE (x) == COND_EXEC)
1479 x = COND_EXEC_CODE (x);
1481 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1483 rtx dest = SET_DEST (x);
1485 while ((GET_CODE (dest) == SUBREG
1486 && (!REG_P (SUBREG_REG (dest))
1487 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1488 || GET_CODE (dest) == ZERO_EXTRACT
1489 || GET_CODE (dest) == STRICT_LOW_PART)
1490 dest = XEXP (dest, 0);
1492 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1493 each of whose first operand is a register. */
1494 if (GET_CODE (dest) == PARALLEL)
1496 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1497 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1498 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1500 else
1501 (*fun) (dest, x, data);
1504 else if (GET_CODE (x) == PARALLEL)
1505 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1506 note_stores (XVECEXP (x, 0, i), fun, data);
1509 /* Like notes_stores, but call FUN for each expression that is being
1510 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1511 FUN for each expression, not any interior subexpressions. FUN receives a
1512 pointer to the expression and the DATA passed to this function.
1514 Note that this is not quite the same test as that done in reg_referenced_p
1515 since that considers something as being referenced if it is being
1516 partially set, while we do not. */
1518 void
1519 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1521 rtx body = *pbody;
1522 int i;
1524 switch (GET_CODE (body))
1526 case COND_EXEC:
1527 (*fun) (&COND_EXEC_TEST (body), data);
1528 note_uses (&COND_EXEC_CODE (body), fun, data);
1529 return;
1531 case PARALLEL:
1532 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1533 note_uses (&XVECEXP (body, 0, i), fun, data);
1534 return;
1536 case SEQUENCE:
1537 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1538 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1539 return;
1541 case USE:
1542 (*fun) (&XEXP (body, 0), data);
1543 return;
1545 case ASM_OPERANDS:
1546 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1547 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1548 return;
1550 case TRAP_IF:
1551 (*fun) (&TRAP_CONDITION (body), data);
1552 return;
1554 case PREFETCH:
1555 (*fun) (&XEXP (body, 0), data);
1556 return;
1558 case UNSPEC:
1559 case UNSPEC_VOLATILE:
1560 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1561 (*fun) (&XVECEXP (body, 0, i), data);
1562 return;
1564 case CLOBBER:
1565 if (MEM_P (XEXP (body, 0)))
1566 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1567 return;
1569 case SET:
1571 rtx dest = SET_DEST (body);
1573 /* For sets we replace everything in source plus registers in memory
1574 expression in store and operands of a ZERO_EXTRACT. */
1575 (*fun) (&SET_SRC (body), data);
1577 if (GET_CODE (dest) == ZERO_EXTRACT)
1579 (*fun) (&XEXP (dest, 1), data);
1580 (*fun) (&XEXP (dest, 2), data);
1583 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1584 dest = XEXP (dest, 0);
1586 if (MEM_P (dest))
1587 (*fun) (&XEXP (dest, 0), data);
1589 return;
1591 default:
1592 /* All the other possibilities never store. */
1593 (*fun) (pbody, data);
1594 return;
1598 /* Return nonzero if X's old contents don't survive after INSN.
1599 This will be true if X is (cc0) or if X is a register and
1600 X dies in INSN or because INSN entirely sets X.
1602 "Entirely set" means set directly and not through a SUBREG, or
1603 ZERO_EXTRACT, so no trace of the old contents remains.
1604 Likewise, REG_INC does not count.
1606 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1607 but for this use that makes no difference, since regs don't overlap
1608 during their lifetimes. Therefore, this function may be used
1609 at any time after deaths have been computed.
1611 If REG is a hard reg that occupies multiple machine registers, this
1612 function will only return 1 if each of those registers will be replaced
1613 by INSN. */
1616 dead_or_set_p (const_rtx insn, const_rtx x)
1618 unsigned int regno, end_regno;
1619 unsigned int i;
1621 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1622 if (GET_CODE (x) == CC0)
1623 return 1;
1625 gcc_assert (REG_P (x));
1627 regno = REGNO (x);
1628 end_regno = END_REGNO (x);
1629 for (i = regno; i < end_regno; i++)
1630 if (! dead_or_set_regno_p (insn, i))
1631 return 0;
1633 return 1;
1636 /* Return TRUE iff DEST is a register or subreg of a register and
1637 doesn't change the number of words of the inner register, and any
1638 part of the register is TEST_REGNO. */
1640 static bool
1641 covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
1643 unsigned int regno, endregno;
1645 if (GET_CODE (dest) == SUBREG
1646 && (((GET_MODE_SIZE (GET_MODE (dest))
1647 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1648 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1649 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1650 dest = SUBREG_REG (dest);
1652 if (!REG_P (dest))
1653 return false;
1655 regno = REGNO (dest);
1656 endregno = END_REGNO (dest);
1657 return (test_regno >= regno && test_regno < endregno);
1660 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1661 any member matches the covers_regno_no_parallel_p criteria. */
1663 static bool
1664 covers_regno_p (const_rtx dest, unsigned int test_regno)
1666 if (GET_CODE (dest) == PARALLEL)
1668 /* Some targets place small structures in registers for return
1669 values of functions, and those registers are wrapped in
1670 PARALLELs that we may see as the destination of a SET. */
1671 int i;
1673 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1675 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
1676 if (inner != NULL_RTX
1677 && covers_regno_no_parallel_p (inner, test_regno))
1678 return true;
1681 return false;
1683 else
1684 return covers_regno_no_parallel_p (dest, test_regno);
1687 /* Utility function for dead_or_set_p to check an individual register. */
1690 dead_or_set_regno_p (const_rtx insn, unsigned int test_regno)
1692 const_rtx pattern;
1694 /* See if there is a death note for something that includes TEST_REGNO. */
1695 if (find_regno_note (insn, REG_DEAD, test_regno))
1696 return 1;
1698 if (CALL_P (insn)
1699 && find_regno_fusage (insn, CLOBBER, test_regno))
1700 return 1;
1702 pattern = PATTERN (insn);
1704 /* If a COND_EXEC is not executed, the value survives. */
1705 if (GET_CODE (pattern) == COND_EXEC)
1706 return 0;
1708 if (GET_CODE (pattern) == SET)
1709 return covers_regno_p (SET_DEST (pattern), test_regno);
1710 else if (GET_CODE (pattern) == PARALLEL)
1712 int i;
1714 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
1716 rtx body = XVECEXP (pattern, 0, i);
1718 if (GET_CODE (body) == COND_EXEC)
1719 body = COND_EXEC_CODE (body);
1721 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
1722 && covers_regno_p (SET_DEST (body), test_regno))
1723 return 1;
1727 return 0;
1730 /* Return the reg-note of kind KIND in insn INSN, if there is one.
1731 If DATUM is nonzero, look for one whose datum is DATUM. */
1734 find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
1736 rtx link;
1738 gcc_checking_assert (insn);
1740 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1741 if (! INSN_P (insn))
1742 return 0;
1743 if (datum == 0)
1745 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1746 if (REG_NOTE_KIND (link) == kind)
1747 return link;
1748 return 0;
1751 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1752 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
1753 return link;
1754 return 0;
1757 /* Return the reg-note of kind KIND in insn INSN which applies to register
1758 number REGNO, if any. Return 0 if there is no such reg-note. Note that
1759 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1760 it might be the case that the note overlaps REGNO. */
1763 find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
1765 rtx link;
1767 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1768 if (! INSN_P (insn))
1769 return 0;
1771 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1772 if (REG_NOTE_KIND (link) == kind
1773 /* Verify that it is a register, so that scratch and MEM won't cause a
1774 problem here. */
1775 && REG_P (XEXP (link, 0))
1776 && REGNO (XEXP (link, 0)) <= regno
1777 && END_REGNO (XEXP (link, 0)) > regno)
1778 return link;
1779 return 0;
1782 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1783 has such a note. */
1786 find_reg_equal_equiv_note (const_rtx insn)
1788 rtx link;
1790 if (!INSN_P (insn))
1791 return 0;
1793 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1794 if (REG_NOTE_KIND (link) == REG_EQUAL
1795 || REG_NOTE_KIND (link) == REG_EQUIV)
1797 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
1798 insns that have multiple sets. Checking single_set to
1799 make sure of this is not the proper check, as explained
1800 in the comment in set_unique_reg_note.
1802 This should be changed into an assert. */
1803 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
1804 return 0;
1805 return link;
1807 return NULL;
1810 /* Check whether INSN is a single_set whose source is known to be
1811 equivalent to a constant. Return that constant if so, otherwise
1812 return null. */
1815 find_constant_src (const_rtx insn)
1817 rtx note, set, x;
1819 set = single_set (insn);
1820 if (set)
1822 x = avoid_constant_pool_reference (SET_SRC (set));
1823 if (CONSTANT_P (x))
1824 return x;
1827 note = find_reg_equal_equiv_note (insn);
1828 if (note && CONSTANT_P (XEXP (note, 0)))
1829 return XEXP (note, 0);
1831 return NULL_RTX;
1834 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1835 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1838 find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
1840 /* If it's not a CALL_INSN, it can't possibly have a
1841 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
1842 if (!CALL_P (insn))
1843 return 0;
1845 gcc_assert (datum);
1847 if (!REG_P (datum))
1849 rtx link;
1851 for (link = CALL_INSN_FUNCTION_USAGE (insn);
1852 link;
1853 link = XEXP (link, 1))
1854 if (GET_CODE (XEXP (link, 0)) == code
1855 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
1856 return 1;
1858 else
1860 unsigned int regno = REGNO (datum);
1862 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1863 to pseudo registers, so don't bother checking. */
1865 if (regno < FIRST_PSEUDO_REGISTER)
1867 unsigned int end_regno = END_HARD_REGNO (datum);
1868 unsigned int i;
1870 for (i = regno; i < end_regno; i++)
1871 if (find_regno_fusage (insn, code, i))
1872 return 1;
1876 return 0;
1879 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
1880 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1883 find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
1885 rtx link;
1887 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1888 to pseudo registers, so don't bother checking. */
1890 if (regno >= FIRST_PSEUDO_REGISTER
1891 || !CALL_P (insn) )
1892 return 0;
1894 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1896 rtx op, reg;
1898 if (GET_CODE (op = XEXP (link, 0)) == code
1899 && REG_P (reg = XEXP (op, 0))
1900 && REGNO (reg) <= regno
1901 && END_HARD_REGNO (reg) > regno)
1902 return 1;
1905 return 0;
1909 /* Allocate a register note with kind KIND and datum DATUM. LIST is
1910 stored as the pointer to the next register note. */
1913 alloc_reg_note (enum reg_note kind, rtx datum, rtx list)
1915 rtx note;
1917 switch (kind)
1919 case REG_CC_SETTER:
1920 case REG_CC_USER:
1921 case REG_LABEL_TARGET:
1922 case REG_LABEL_OPERAND:
1923 case REG_TM:
1924 /* These types of register notes use an INSN_LIST rather than an
1925 EXPR_LIST, so that copying is done right and dumps look
1926 better. */
1927 note = alloc_INSN_LIST (datum, list);
1928 PUT_REG_NOTE_KIND (note, kind);
1929 break;
1931 default:
1932 note = alloc_EXPR_LIST (kind, datum, list);
1933 break;
1936 return note;
1939 /* Add register note with kind KIND and datum DATUM to INSN. */
1941 void
1942 add_reg_note (rtx insn, enum reg_note kind, rtx datum)
1944 REG_NOTES (insn) = alloc_reg_note (kind, datum, REG_NOTES (insn));
1947 /* Remove register note NOTE from the REG_NOTES of INSN. */
1949 void
1950 remove_note (rtx insn, const_rtx note)
1952 rtx link;
1954 if (note == NULL_RTX)
1955 return;
1957 if (REG_NOTES (insn) == note)
1958 REG_NOTES (insn) = XEXP (note, 1);
1959 else
1960 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1961 if (XEXP (link, 1) == note)
1963 XEXP (link, 1) = XEXP (note, 1);
1964 break;
1967 switch (REG_NOTE_KIND (note))
1969 case REG_EQUAL:
1970 case REG_EQUIV:
1971 df_notes_rescan (insn);
1972 break;
1973 default:
1974 break;
1978 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes. */
1980 void
1981 remove_reg_equal_equiv_notes (rtx insn)
1983 rtx *loc;
1985 loc = &REG_NOTES (insn);
1986 while (*loc)
1988 enum reg_note kind = REG_NOTE_KIND (*loc);
1989 if (kind == REG_EQUAL || kind == REG_EQUIV)
1990 *loc = XEXP (*loc, 1);
1991 else
1992 loc = &XEXP (*loc, 1);
1996 /* Remove all REG_EQUAL and REG_EQUIV notes referring to REGNO. */
1998 void
1999 remove_reg_equal_equiv_notes_for_regno (unsigned int regno)
2001 df_ref eq_use;
2003 if (!df)
2004 return;
2006 /* This loop is a little tricky. We cannot just go down the chain because
2007 it is being modified by some actions in the loop. So we just iterate
2008 over the head. We plan to drain the list anyway. */
2009 while ((eq_use = DF_REG_EQ_USE_CHAIN (regno)) != NULL)
2011 rtx insn = DF_REF_INSN (eq_use);
2012 rtx note = find_reg_equal_equiv_note (insn);
2014 /* This assert is generally triggered when someone deletes a REG_EQUAL
2015 or REG_EQUIV note by hacking the list manually rather than calling
2016 remove_note. */
2017 gcc_assert (note);
2019 remove_note (insn, note);
2023 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2024 return 1 if it is found. A simple equality test is used to determine if
2025 NODE matches. */
2028 in_expr_list_p (const_rtx listp, const_rtx node)
2030 const_rtx x;
2032 for (x = listp; x; x = XEXP (x, 1))
2033 if (node == XEXP (x, 0))
2034 return 1;
2036 return 0;
2039 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2040 remove that entry from the list if it is found.
2042 A simple equality test is used to determine if NODE matches. */
2044 void
2045 remove_node_from_expr_list (const_rtx node, rtx *listp)
2047 rtx temp = *listp;
2048 rtx prev = NULL_RTX;
2050 while (temp)
2052 if (node == XEXP (temp, 0))
2054 /* Splice the node out of the list. */
2055 if (prev)
2056 XEXP (prev, 1) = XEXP (temp, 1);
2057 else
2058 *listp = XEXP (temp, 1);
2060 return;
2063 prev = temp;
2064 temp = XEXP (temp, 1);
2068 /* Nonzero if X contains any volatile instructions. These are instructions
2069 which may cause unpredictable machine state instructions, and thus no
2070 instructions should be moved or combined across them. This includes
2071 only volatile asms and UNSPEC_VOLATILE instructions. */
2074 volatile_insn_p (const_rtx x)
2076 const RTX_CODE code = GET_CODE (x);
2077 switch (code)
2079 case LABEL_REF:
2080 case SYMBOL_REF:
2081 case CONST:
2082 CASE_CONST_ANY:
2083 case CC0:
2084 case PC:
2085 case REG:
2086 case SCRATCH:
2087 case CLOBBER:
2088 case ADDR_VEC:
2089 case ADDR_DIFF_VEC:
2090 case CALL:
2091 case MEM:
2092 return 0;
2094 case UNSPEC_VOLATILE:
2095 /* case TRAP_IF: This isn't clear yet. */
2096 return 1;
2098 case ASM_INPUT:
2099 case ASM_OPERANDS:
2100 if (MEM_VOLATILE_P (x))
2101 return 1;
2103 default:
2104 break;
2107 /* Recursively scan the operands of this expression. */
2110 const char *const fmt = GET_RTX_FORMAT (code);
2111 int i;
2113 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2115 if (fmt[i] == 'e')
2117 if (volatile_insn_p (XEXP (x, i)))
2118 return 1;
2120 else if (fmt[i] == 'E')
2122 int j;
2123 for (j = 0; j < XVECLEN (x, i); j++)
2124 if (volatile_insn_p (XVECEXP (x, i, j)))
2125 return 1;
2129 return 0;
2132 /* Nonzero if X contains any volatile memory references
2133 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2136 volatile_refs_p (const_rtx x)
2138 const RTX_CODE code = GET_CODE (x);
2139 switch (code)
2141 case LABEL_REF:
2142 case SYMBOL_REF:
2143 case CONST:
2144 CASE_CONST_ANY:
2145 case CC0:
2146 case PC:
2147 case REG:
2148 case SCRATCH:
2149 case CLOBBER:
2150 case ADDR_VEC:
2151 case ADDR_DIFF_VEC:
2152 return 0;
2154 case UNSPEC_VOLATILE:
2155 return 1;
2157 case MEM:
2158 case ASM_INPUT:
2159 case ASM_OPERANDS:
2160 if (MEM_VOLATILE_P (x))
2161 return 1;
2163 default:
2164 break;
2167 /* Recursively scan the operands of this expression. */
2170 const char *const fmt = GET_RTX_FORMAT (code);
2171 int i;
2173 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2175 if (fmt[i] == 'e')
2177 if (volatile_refs_p (XEXP (x, i)))
2178 return 1;
2180 else if (fmt[i] == 'E')
2182 int j;
2183 for (j = 0; j < XVECLEN (x, i); j++)
2184 if (volatile_refs_p (XVECEXP (x, i, j)))
2185 return 1;
2189 return 0;
2192 /* Similar to above, except that it also rejects register pre- and post-
2193 incrementing. */
2196 side_effects_p (const_rtx x)
2198 const RTX_CODE code = GET_CODE (x);
2199 switch (code)
2201 case LABEL_REF:
2202 case SYMBOL_REF:
2203 case CONST:
2204 CASE_CONST_ANY:
2205 case CC0:
2206 case PC:
2207 case REG:
2208 case SCRATCH:
2209 case ADDR_VEC:
2210 case ADDR_DIFF_VEC:
2211 case VAR_LOCATION:
2212 return 0;
2214 case CLOBBER:
2215 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2216 when some combination can't be done. If we see one, don't think
2217 that we can simplify the expression. */
2218 return (GET_MODE (x) != VOIDmode);
2220 case PRE_INC:
2221 case PRE_DEC:
2222 case POST_INC:
2223 case POST_DEC:
2224 case PRE_MODIFY:
2225 case POST_MODIFY:
2226 case CALL:
2227 case UNSPEC_VOLATILE:
2228 /* case TRAP_IF: This isn't clear yet. */
2229 return 1;
2231 case MEM:
2232 case ASM_INPUT:
2233 case ASM_OPERANDS:
2234 if (MEM_VOLATILE_P (x))
2235 return 1;
2237 default:
2238 break;
2241 /* Recursively scan the operands of this expression. */
2244 const char *fmt = GET_RTX_FORMAT (code);
2245 int i;
2247 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2249 if (fmt[i] == 'e')
2251 if (side_effects_p (XEXP (x, i)))
2252 return 1;
2254 else if (fmt[i] == 'E')
2256 int j;
2257 for (j = 0; j < XVECLEN (x, i); j++)
2258 if (side_effects_p (XVECEXP (x, i, j)))
2259 return 1;
2263 return 0;
2266 /* Return nonzero if evaluating rtx X might cause a trap.
2267 FLAGS controls how to consider MEMs. A nonzero means the context
2268 of the access may have changed from the original, such that the
2269 address may have become invalid. */
2272 may_trap_p_1 (const_rtx x, unsigned flags)
2274 int i;
2275 enum rtx_code code;
2276 const char *fmt;
2278 /* We make no distinction currently, but this function is part of
2279 the internal target-hooks ABI so we keep the parameter as
2280 "unsigned flags". */
2281 bool code_changed = flags != 0;
2283 if (x == 0)
2284 return 0;
2285 code = GET_CODE (x);
2286 switch (code)
2288 /* Handle these cases quickly. */
2289 CASE_CONST_ANY:
2290 case SYMBOL_REF:
2291 case LABEL_REF:
2292 case CONST:
2293 case PC:
2294 case CC0:
2295 case REG:
2296 case SCRATCH:
2297 return 0;
2299 case UNSPEC:
2300 case UNSPEC_VOLATILE:
2301 return targetm.unspec_may_trap_p (x, flags);
2303 case ASM_INPUT:
2304 case TRAP_IF:
2305 return 1;
2307 case ASM_OPERANDS:
2308 return MEM_VOLATILE_P (x);
2310 /* Memory ref can trap unless it's a static var or a stack slot. */
2311 case MEM:
2312 /* Recognize specific pattern of stack checking probes. */
2313 if (flag_stack_check
2314 && MEM_VOLATILE_P (x)
2315 && XEXP (x, 0) == stack_pointer_rtx)
2316 return 1;
2317 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2318 reference; moving it out of context such as when moving code
2319 when optimizing, might cause its address to become invalid. */
2320 code_changed
2321 || !MEM_NOTRAP_P (x))
2323 HOST_WIDE_INT size = MEM_SIZE_KNOWN_P (x) ? MEM_SIZE (x) : 0;
2324 return rtx_addr_can_trap_p_1 (XEXP (x, 0), 0, size,
2325 GET_MODE (x), code_changed);
2328 return 0;
2330 /* Division by a non-constant might trap. */
2331 case DIV:
2332 case MOD:
2333 case UDIV:
2334 case UMOD:
2335 if (HONOR_SNANS (GET_MODE (x)))
2336 return 1;
2337 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
2338 return flag_trapping_math;
2339 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2340 return 1;
2341 break;
2343 case EXPR_LIST:
2344 /* An EXPR_LIST is used to represent a function call. This
2345 certainly may trap. */
2346 return 1;
2348 case GE:
2349 case GT:
2350 case LE:
2351 case LT:
2352 case LTGT:
2353 case COMPARE:
2354 /* Some floating point comparisons may trap. */
2355 if (!flag_trapping_math)
2356 break;
2357 /* ??? There is no machine independent way to check for tests that trap
2358 when COMPARE is used, though many targets do make this distinction.
2359 For instance, sparc uses CCFPE for compares which generate exceptions
2360 and CCFP for compares which do not generate exceptions. */
2361 if (HONOR_NANS (GET_MODE (x)))
2362 return 1;
2363 /* But often the compare has some CC mode, so check operand
2364 modes as well. */
2365 if (HONOR_NANS (GET_MODE (XEXP (x, 0)))
2366 || HONOR_NANS (GET_MODE (XEXP (x, 1))))
2367 return 1;
2368 break;
2370 case EQ:
2371 case NE:
2372 if (HONOR_SNANS (GET_MODE (x)))
2373 return 1;
2374 /* Often comparison is CC mode, so check operand modes. */
2375 if (HONOR_SNANS (GET_MODE (XEXP (x, 0)))
2376 || HONOR_SNANS (GET_MODE (XEXP (x, 1))))
2377 return 1;
2378 break;
2380 case FIX:
2381 /* Conversion of floating point might trap. */
2382 if (flag_trapping_math && HONOR_NANS (GET_MODE (XEXP (x, 0))))
2383 return 1;
2384 break;
2386 case NEG:
2387 case ABS:
2388 case SUBREG:
2389 /* These operations don't trap even with floating point. */
2390 break;
2392 default:
2393 /* Any floating arithmetic may trap. */
2394 if (SCALAR_FLOAT_MODE_P (GET_MODE (x))
2395 && flag_trapping_math)
2396 return 1;
2399 fmt = GET_RTX_FORMAT (code);
2400 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2402 if (fmt[i] == 'e')
2404 if (may_trap_p_1 (XEXP (x, i), flags))
2405 return 1;
2407 else if (fmt[i] == 'E')
2409 int j;
2410 for (j = 0; j < XVECLEN (x, i); j++)
2411 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2412 return 1;
2415 return 0;
2418 /* Return nonzero if evaluating rtx X might cause a trap. */
2421 may_trap_p (const_rtx x)
2423 return may_trap_p_1 (x, 0);
2426 /* Same as above, but additionally return nonzero if evaluating rtx X might
2427 cause a fault. We define a fault for the purpose of this function as a
2428 erroneous execution condition that cannot be encountered during the normal
2429 execution of a valid program; the typical example is an unaligned memory
2430 access on a strict alignment machine. The compiler guarantees that it
2431 doesn't generate code that will fault from a valid program, but this
2432 guarantee doesn't mean anything for individual instructions. Consider
2433 the following example:
2435 struct S { int d; union { char *cp; int *ip; }; };
2437 int foo(struct S *s)
2439 if (s->d == 1)
2440 return *s->ip;
2441 else
2442 return *s->cp;
2445 on a strict alignment machine. In a valid program, foo will never be
2446 invoked on a structure for which d is equal to 1 and the underlying
2447 unique field of the union not aligned on a 4-byte boundary, but the
2448 expression *s->ip might cause a fault if considered individually.
2450 At the RTL level, potentially problematic expressions will almost always
2451 verify may_trap_p; for example, the above dereference can be emitted as
2452 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2453 However, suppose that foo is inlined in a caller that causes s->cp to
2454 point to a local character variable and guarantees that s->d is not set
2455 to 1; foo may have been effectively translated into pseudo-RTL as:
2457 if ((reg:SI) == 1)
2458 (set (reg:SI) (mem:SI (%fp - 7)))
2459 else
2460 (set (reg:QI) (mem:QI (%fp - 7)))
2462 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2463 memory reference to a stack slot, but it will certainly cause a fault
2464 on a strict alignment machine. */
2467 may_trap_or_fault_p (const_rtx x)
2469 return may_trap_p_1 (x, 1);
2472 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2473 i.e., an inequality. */
2476 inequality_comparisons_p (const_rtx x)
2478 const char *fmt;
2479 int len, i;
2480 const enum rtx_code code = GET_CODE (x);
2482 switch (code)
2484 case REG:
2485 case SCRATCH:
2486 case PC:
2487 case CC0:
2488 CASE_CONST_ANY:
2489 case CONST:
2490 case LABEL_REF:
2491 case SYMBOL_REF:
2492 return 0;
2494 case LT:
2495 case LTU:
2496 case GT:
2497 case GTU:
2498 case LE:
2499 case LEU:
2500 case GE:
2501 case GEU:
2502 return 1;
2504 default:
2505 break;
2508 len = GET_RTX_LENGTH (code);
2509 fmt = GET_RTX_FORMAT (code);
2511 for (i = 0; i < len; i++)
2513 if (fmt[i] == 'e')
2515 if (inequality_comparisons_p (XEXP (x, i)))
2516 return 1;
2518 else if (fmt[i] == 'E')
2520 int j;
2521 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2522 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2523 return 1;
2527 return 0;
2530 /* Replace any occurrence of FROM in X with TO. The function does
2531 not enter into CONST_DOUBLE for the replace.
2533 Note that copying is not done so X must not be shared unless all copies
2534 are to be modified. */
2537 replace_rtx (rtx x, rtx from, rtx to)
2539 int i, j;
2540 const char *fmt;
2542 if (x == from)
2543 return to;
2545 /* Allow this function to make replacements in EXPR_LISTs. */
2546 if (x == 0)
2547 return 0;
2549 if (GET_CODE (x) == SUBREG)
2551 rtx new_rtx = replace_rtx (SUBREG_REG (x), from, to);
2553 if (CONST_INT_P (new_rtx))
2555 x = simplify_subreg (GET_MODE (x), new_rtx,
2556 GET_MODE (SUBREG_REG (x)),
2557 SUBREG_BYTE (x));
2558 gcc_assert (x);
2560 else
2561 SUBREG_REG (x) = new_rtx;
2563 return x;
2565 else if (GET_CODE (x) == ZERO_EXTEND)
2567 rtx new_rtx = replace_rtx (XEXP (x, 0), from, to);
2569 if (CONST_INT_P (new_rtx))
2571 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
2572 new_rtx, GET_MODE (XEXP (x, 0)));
2573 gcc_assert (x);
2575 else
2576 XEXP (x, 0) = new_rtx;
2578 return x;
2581 fmt = GET_RTX_FORMAT (GET_CODE (x));
2582 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2584 if (fmt[i] == 'e')
2585 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to);
2586 else if (fmt[i] == 'E')
2587 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2588 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to);
2591 return x;
2594 /* Replace occurrences of the old label in *X with the new one.
2595 DATA is a REPLACE_LABEL_DATA containing the old and new labels. */
2598 replace_label (rtx *x, void *data)
2600 rtx l = *x;
2601 rtx old_label = ((replace_label_data *) data)->r1;
2602 rtx new_label = ((replace_label_data *) data)->r2;
2603 bool update_label_nuses = ((replace_label_data *) data)->update_label_nuses;
2605 if (l == NULL_RTX)
2606 return 0;
2608 if (GET_CODE (l) == SYMBOL_REF
2609 && CONSTANT_POOL_ADDRESS_P (l))
2611 rtx c = get_pool_constant (l);
2612 if (rtx_referenced_p (old_label, c))
2614 rtx new_c, new_l;
2615 replace_label_data *d = (replace_label_data *) data;
2617 /* Create a copy of constant C; replace the label inside
2618 but do not update LABEL_NUSES because uses in constant pool
2619 are not counted. */
2620 new_c = copy_rtx (c);
2621 d->update_label_nuses = false;
2622 for_each_rtx (&new_c, replace_label, data);
2623 d->update_label_nuses = update_label_nuses;
2625 /* Add the new constant NEW_C to constant pool and replace
2626 the old reference to constant by new reference. */
2627 new_l = XEXP (force_const_mem (get_pool_mode (l), new_c), 0);
2628 *x = replace_rtx (l, l, new_l);
2630 return 0;
2633 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
2634 field. This is not handled by for_each_rtx because it doesn't
2635 handle unprinted ('0') fields. */
2636 if (JUMP_P (l) && JUMP_LABEL (l) == old_label)
2637 JUMP_LABEL (l) = new_label;
2639 if ((GET_CODE (l) == LABEL_REF
2640 || GET_CODE (l) == INSN_LIST)
2641 && XEXP (l, 0) == old_label)
2643 XEXP (l, 0) = new_label;
2644 if (update_label_nuses)
2646 ++LABEL_NUSES (new_label);
2647 --LABEL_NUSES (old_label);
2649 return 0;
2652 return 0;
2655 /* When *BODY is equal to X or X is directly referenced by *BODY
2656 return nonzero, thus FOR_EACH_RTX stops traversing and returns nonzero
2657 too, otherwise FOR_EACH_RTX continues traversing *BODY. */
2659 static int
2660 rtx_referenced_p_1 (rtx *body, void *x)
2662 rtx y = (rtx) x;
2664 if (*body == NULL_RTX)
2665 return y == NULL_RTX;
2667 /* Return true if a label_ref *BODY refers to label Y. */
2668 if (GET_CODE (*body) == LABEL_REF && LABEL_P (y))
2669 return XEXP (*body, 0) == y;
2671 /* If *BODY is a reference to pool constant traverse the constant. */
2672 if (GET_CODE (*body) == SYMBOL_REF
2673 && CONSTANT_POOL_ADDRESS_P (*body))
2674 return rtx_referenced_p (y, get_pool_constant (*body));
2676 /* By default, compare the RTL expressions. */
2677 return rtx_equal_p (*body, y);
2680 /* Return true if X is referenced in BODY. */
2683 rtx_referenced_p (rtx x, rtx body)
2685 return for_each_rtx (&body, rtx_referenced_p_1, x);
2688 /* If INSN is a tablejump return true and store the label (before jump table) to
2689 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
2691 bool
2692 tablejump_p (const_rtx insn, rtx *labelp, rtx *tablep)
2694 rtx label, table;
2696 if (!JUMP_P (insn))
2697 return false;
2699 label = JUMP_LABEL (insn);
2700 if (label != NULL_RTX && !ANY_RETURN_P (label)
2701 && (table = next_active_insn (label)) != NULL_RTX
2702 && JUMP_TABLE_DATA_P (table))
2704 if (labelp)
2705 *labelp = label;
2706 if (tablep)
2707 *tablep = table;
2708 return true;
2710 return false;
2713 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2714 constant that is not in the constant pool and not in the condition
2715 of an IF_THEN_ELSE. */
2717 static int
2718 computed_jump_p_1 (const_rtx x)
2720 const enum rtx_code code = GET_CODE (x);
2721 int i, j;
2722 const char *fmt;
2724 switch (code)
2726 case LABEL_REF:
2727 case PC:
2728 return 0;
2730 case CONST:
2731 CASE_CONST_ANY:
2732 case SYMBOL_REF:
2733 case REG:
2734 return 1;
2736 case MEM:
2737 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
2738 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
2740 case IF_THEN_ELSE:
2741 return (computed_jump_p_1 (XEXP (x, 1))
2742 || computed_jump_p_1 (XEXP (x, 2)));
2744 default:
2745 break;
2748 fmt = GET_RTX_FORMAT (code);
2749 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2751 if (fmt[i] == 'e'
2752 && computed_jump_p_1 (XEXP (x, i)))
2753 return 1;
2755 else if (fmt[i] == 'E')
2756 for (j = 0; j < XVECLEN (x, i); j++)
2757 if (computed_jump_p_1 (XVECEXP (x, i, j)))
2758 return 1;
2761 return 0;
2764 /* Return nonzero if INSN is an indirect jump (aka computed jump).
2766 Tablejumps and casesi insns are not considered indirect jumps;
2767 we can recognize them by a (use (label_ref)). */
2770 computed_jump_p (const_rtx insn)
2772 int i;
2773 if (JUMP_P (insn))
2775 rtx pat = PATTERN (insn);
2777 /* If we have a JUMP_LABEL set, we're not a computed jump. */
2778 if (JUMP_LABEL (insn) != NULL)
2779 return 0;
2781 if (GET_CODE (pat) == PARALLEL)
2783 int len = XVECLEN (pat, 0);
2784 int has_use_labelref = 0;
2786 for (i = len - 1; i >= 0; i--)
2787 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
2788 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
2789 == LABEL_REF))
2790 has_use_labelref = 1;
2792 if (! has_use_labelref)
2793 for (i = len - 1; i >= 0; i--)
2794 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
2795 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
2796 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
2797 return 1;
2799 else if (GET_CODE (pat) == SET
2800 && SET_DEST (pat) == pc_rtx
2801 && computed_jump_p_1 (SET_SRC (pat)))
2802 return 1;
2804 return 0;
2807 /* Optimized loop of for_each_rtx, trying to avoid useless recursive
2808 calls. Processes the subexpressions of EXP and passes them to F. */
2809 static int
2810 for_each_rtx_1 (rtx exp, int n, rtx_function f, void *data)
2812 int result, i, j;
2813 const char *format = GET_RTX_FORMAT (GET_CODE (exp));
2814 rtx *x;
2816 for (; format[n] != '\0'; n++)
2818 switch (format[n])
2820 case 'e':
2821 /* Call F on X. */
2822 x = &XEXP (exp, n);
2823 result = (*f) (x, data);
2824 if (result == -1)
2825 /* Do not traverse sub-expressions. */
2826 continue;
2827 else if (result != 0)
2828 /* Stop the traversal. */
2829 return result;
2831 if (*x == NULL_RTX)
2832 /* There are no sub-expressions. */
2833 continue;
2835 i = non_rtx_starting_operands[GET_CODE (*x)];
2836 if (i >= 0)
2838 result = for_each_rtx_1 (*x, i, f, data);
2839 if (result != 0)
2840 return result;
2842 break;
2844 case 'V':
2845 case 'E':
2846 if (XVEC (exp, n) == 0)
2847 continue;
2848 for (j = 0; j < XVECLEN (exp, n); ++j)
2850 /* Call F on X. */
2851 x = &XVECEXP (exp, n, j);
2852 result = (*f) (x, data);
2853 if (result == -1)
2854 /* Do not traverse sub-expressions. */
2855 continue;
2856 else if (result != 0)
2857 /* Stop the traversal. */
2858 return result;
2860 if (*x == NULL_RTX)
2861 /* There are no sub-expressions. */
2862 continue;
2864 i = non_rtx_starting_operands[GET_CODE (*x)];
2865 if (i >= 0)
2867 result = for_each_rtx_1 (*x, i, f, data);
2868 if (result != 0)
2869 return result;
2872 break;
2874 default:
2875 /* Nothing to do. */
2876 break;
2880 return 0;
2883 /* Traverse X via depth-first search, calling F for each
2884 sub-expression (including X itself). F is also passed the DATA.
2885 If F returns -1, do not traverse sub-expressions, but continue
2886 traversing the rest of the tree. If F ever returns any other
2887 nonzero value, stop the traversal, and return the value returned
2888 by F. Otherwise, return 0. This function does not traverse inside
2889 tree structure that contains RTX_EXPRs, or into sub-expressions
2890 whose format code is `0' since it is not known whether or not those
2891 codes are actually RTL.
2893 This routine is very general, and could (should?) be used to
2894 implement many of the other routines in this file. */
2897 for_each_rtx (rtx *x, rtx_function f, void *data)
2899 int result;
2900 int i;
2902 /* Call F on X. */
2903 result = (*f) (x, data);
2904 if (result == -1)
2905 /* Do not traverse sub-expressions. */
2906 return 0;
2907 else if (result != 0)
2908 /* Stop the traversal. */
2909 return result;
2911 if (*x == NULL_RTX)
2912 /* There are no sub-expressions. */
2913 return 0;
2915 i = non_rtx_starting_operands[GET_CODE (*x)];
2916 if (i < 0)
2917 return 0;
2919 return for_each_rtx_1 (*x, i, f, data);
2924 /* Data structure that holds the internal state communicated between
2925 for_each_inc_dec, for_each_inc_dec_find_mem and
2926 for_each_inc_dec_find_inc_dec. */
2928 struct for_each_inc_dec_ops {
2929 /* The function to be called for each autoinc operation found. */
2930 for_each_inc_dec_fn fn;
2931 /* The opaque argument to be passed to it. */
2932 void *arg;
2933 /* The MEM we're visiting, if any. */
2934 rtx mem;
2937 static int for_each_inc_dec_find_mem (rtx *r, void *d);
2939 /* Find PRE/POST-INC/DEC/MODIFY operations within *R, extract the
2940 operands of the equivalent add insn and pass the result to the
2941 operator specified by *D. */
2943 static int
2944 for_each_inc_dec_find_inc_dec (rtx *r, void *d)
2946 rtx x = *r;
2947 struct for_each_inc_dec_ops *data = (struct for_each_inc_dec_ops *)d;
2949 switch (GET_CODE (x))
2951 case PRE_INC:
2952 case POST_INC:
2954 int size = GET_MODE_SIZE (GET_MODE (data->mem));
2955 rtx r1 = XEXP (x, 0);
2956 rtx c = gen_int_mode (size, GET_MODE (r1));
2957 return data->fn (data->mem, x, r1, r1, c, data->arg);
2960 case PRE_DEC:
2961 case POST_DEC:
2963 int size = GET_MODE_SIZE (GET_MODE (data->mem));
2964 rtx r1 = XEXP (x, 0);
2965 rtx c = gen_int_mode (-size, GET_MODE (r1));
2966 return data->fn (data->mem, x, r1, r1, c, data->arg);
2969 case PRE_MODIFY:
2970 case POST_MODIFY:
2972 rtx r1 = XEXP (x, 0);
2973 rtx add = XEXP (x, 1);
2974 return data->fn (data->mem, x, r1, add, NULL, data->arg);
2977 case MEM:
2979 rtx save = data->mem;
2980 int ret = for_each_inc_dec_find_mem (r, d);
2981 data->mem = save;
2982 return ret;
2985 default:
2986 return 0;
2990 /* If *R is a MEM, find PRE/POST-INC/DEC/MODIFY operations within its
2991 address, extract the operands of the equivalent add insn and pass
2992 the result to the operator specified by *D. */
2994 static int
2995 for_each_inc_dec_find_mem (rtx *r, void *d)
2997 rtx x = *r;
2998 if (x != NULL_RTX && MEM_P (x))
3000 struct for_each_inc_dec_ops *data = (struct for_each_inc_dec_ops *) d;
3001 int result;
3003 data->mem = x;
3005 result = for_each_rtx (&XEXP (x, 0), for_each_inc_dec_find_inc_dec,
3006 data);
3007 if (result)
3008 return result;
3010 return -1;
3012 return 0;
3015 /* Traverse *X looking for MEMs, and for autoinc operations within
3016 them. For each such autoinc operation found, call FN, passing it
3017 the innermost enclosing MEM, the operation itself, the RTX modified
3018 by the operation, two RTXs (the second may be NULL) that, once
3019 added, represent the value to be held by the modified RTX
3020 afterwards, and ARG. FN is to return -1 to skip looking for other
3021 autoinc operations within the visited operation, 0 to continue the
3022 traversal, or any other value to have it returned to the caller of
3023 for_each_inc_dec. */
3026 for_each_inc_dec (rtx *x,
3027 for_each_inc_dec_fn fn,
3028 void *arg)
3030 struct for_each_inc_dec_ops data;
3032 data.fn = fn;
3033 data.arg = arg;
3034 data.mem = NULL;
3036 return for_each_rtx (x, for_each_inc_dec_find_mem, &data);
3040 /* Searches X for any reference to REGNO, returning the rtx of the
3041 reference found if any. Otherwise, returns NULL_RTX. */
3044 regno_use_in (unsigned int regno, rtx x)
3046 const char *fmt;
3047 int i, j;
3048 rtx tem;
3050 if (REG_P (x) && REGNO (x) == regno)
3051 return x;
3053 fmt = GET_RTX_FORMAT (GET_CODE (x));
3054 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3056 if (fmt[i] == 'e')
3058 if ((tem = regno_use_in (regno, XEXP (x, i))))
3059 return tem;
3061 else if (fmt[i] == 'E')
3062 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3063 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
3064 return tem;
3067 return NULL_RTX;
3070 /* Return a value indicating whether OP, an operand of a commutative
3071 operation, is preferred as the first or second operand. The higher
3072 the value, the stronger the preference for being the first operand.
3073 We use negative values to indicate a preference for the first operand
3074 and positive values for the second operand. */
3077 commutative_operand_precedence (rtx op)
3079 enum rtx_code code = GET_CODE (op);
3081 /* Constants always come the second operand. Prefer "nice" constants. */
3082 if (code == CONST_INT)
3083 return -8;
3084 if (code == CONST_DOUBLE)
3085 return -7;
3086 if (code == CONST_FIXED)
3087 return -7;
3088 op = avoid_constant_pool_reference (op);
3089 code = GET_CODE (op);
3091 switch (GET_RTX_CLASS (code))
3093 case RTX_CONST_OBJ:
3094 if (code == CONST_INT)
3095 return -6;
3096 if (code == CONST_DOUBLE)
3097 return -5;
3098 if (code == CONST_FIXED)
3099 return -5;
3100 return -4;
3102 case RTX_EXTRA:
3103 /* SUBREGs of objects should come second. */
3104 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
3105 return -3;
3106 return 0;
3108 case RTX_OBJ:
3109 /* Complex expressions should be the first, so decrease priority
3110 of objects. Prefer pointer objects over non pointer objects. */
3111 if ((REG_P (op) && REG_POINTER (op))
3112 || (MEM_P (op) && MEM_POINTER (op)))
3113 return -1;
3114 return -2;
3116 case RTX_COMM_ARITH:
3117 /* Prefer operands that are themselves commutative to be first.
3118 This helps to make things linear. In particular,
3119 (and (and (reg) (reg)) (not (reg))) is canonical. */
3120 return 4;
3122 case RTX_BIN_ARITH:
3123 /* If only one operand is a binary expression, it will be the first
3124 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
3125 is canonical, although it will usually be further simplified. */
3126 return 2;
3128 case RTX_UNARY:
3129 /* Then prefer NEG and NOT. */
3130 if (code == NEG || code == NOT)
3131 return 1;
3133 default:
3134 return 0;
3138 /* Return 1 iff it is necessary to swap operands of commutative operation
3139 in order to canonicalize expression. */
3141 bool
3142 swap_commutative_operands_p (rtx x, rtx y)
3144 return (commutative_operand_precedence (x)
3145 < commutative_operand_precedence (y));
3148 /* Return 1 if X is an autoincrement side effect and the register is
3149 not the stack pointer. */
3151 auto_inc_p (const_rtx x)
3153 switch (GET_CODE (x))
3155 case PRE_INC:
3156 case POST_INC:
3157 case PRE_DEC:
3158 case POST_DEC:
3159 case PRE_MODIFY:
3160 case POST_MODIFY:
3161 /* There are no REG_INC notes for SP. */
3162 if (XEXP (x, 0) != stack_pointer_rtx)
3163 return 1;
3164 default:
3165 break;
3167 return 0;
3170 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
3172 loc_mentioned_in_p (rtx *loc, const_rtx in)
3174 enum rtx_code code;
3175 const char *fmt;
3176 int i, j;
3178 if (!in)
3179 return 0;
3181 code = GET_CODE (in);
3182 fmt = GET_RTX_FORMAT (code);
3183 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3185 if (fmt[i] == 'e')
3187 if (loc == &XEXP (in, i) || loc_mentioned_in_p (loc, XEXP (in, i)))
3188 return 1;
3190 else if (fmt[i] == 'E')
3191 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
3192 if (loc == &XVECEXP (in, i, j)
3193 || loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
3194 return 1;
3196 return 0;
3199 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3200 and SUBREG_BYTE, return the bit offset where the subreg begins
3201 (counting from the least significant bit of the operand). */
3203 unsigned int
3204 subreg_lsb_1 (enum machine_mode outer_mode,
3205 enum machine_mode inner_mode,
3206 unsigned int subreg_byte)
3208 unsigned int bitpos;
3209 unsigned int byte;
3210 unsigned int word;
3212 /* A paradoxical subreg begins at bit position 0. */
3213 if (GET_MODE_PRECISION (outer_mode) > GET_MODE_PRECISION (inner_mode))
3214 return 0;
3216 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
3217 /* If the subreg crosses a word boundary ensure that
3218 it also begins and ends on a word boundary. */
3219 gcc_assert (!((subreg_byte % UNITS_PER_WORD
3220 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
3221 && (subreg_byte % UNITS_PER_WORD
3222 || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
3224 if (WORDS_BIG_ENDIAN)
3225 word = (GET_MODE_SIZE (inner_mode)
3226 - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
3227 else
3228 word = subreg_byte / UNITS_PER_WORD;
3229 bitpos = word * BITS_PER_WORD;
3231 if (BYTES_BIG_ENDIAN)
3232 byte = (GET_MODE_SIZE (inner_mode)
3233 - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
3234 else
3235 byte = subreg_byte % UNITS_PER_WORD;
3236 bitpos += byte * BITS_PER_UNIT;
3238 return bitpos;
3241 /* Given a subreg X, return the bit offset where the subreg begins
3242 (counting from the least significant bit of the reg). */
3244 unsigned int
3245 subreg_lsb (const_rtx x)
3247 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3248 SUBREG_BYTE (x));
3251 /* Fill in information about a subreg of a hard register.
3252 xregno - A regno of an inner hard subreg_reg (or what will become one).
3253 xmode - The mode of xregno.
3254 offset - The byte offset.
3255 ymode - The mode of a top level SUBREG (or what may become one).
3256 info - Pointer to structure to fill in. */
3257 void
3258 subreg_get_info (unsigned int xregno, enum machine_mode xmode,
3259 unsigned int offset, enum machine_mode ymode,
3260 struct subreg_info *info)
3262 int nregs_xmode, nregs_ymode;
3263 int mode_multiple, nregs_multiple;
3264 int offset_adj, y_offset, y_offset_adj;
3265 int regsize_xmode, regsize_ymode;
3266 bool rknown;
3268 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3270 rknown = false;
3272 /* If there are holes in a non-scalar mode in registers, we expect
3273 that it is made up of its units concatenated together. */
3274 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
3276 enum machine_mode xmode_unit;
3278 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
3279 if (GET_MODE_INNER (xmode) == VOIDmode)
3280 xmode_unit = xmode;
3281 else
3282 xmode_unit = GET_MODE_INNER (xmode);
3283 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3284 gcc_assert (nregs_xmode
3285 == (GET_MODE_NUNITS (xmode)
3286 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3287 gcc_assert (hard_regno_nregs[xregno][xmode]
3288 == (hard_regno_nregs[xregno][xmode_unit]
3289 * GET_MODE_NUNITS (xmode)));
3291 /* You can only ask for a SUBREG of a value with holes in the middle
3292 if you don't cross the holes. (Such a SUBREG should be done by
3293 picking a different register class, or doing it in memory if
3294 necessary.) An example of a value with holes is XCmode on 32-bit
3295 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3296 3 for each part, but in memory it's two 128-bit parts.
3297 Padding is assumed to be at the end (not necessarily the 'high part')
3298 of each unit. */
3299 if ((offset / GET_MODE_SIZE (xmode_unit) + 1
3300 < GET_MODE_NUNITS (xmode))
3301 && (offset / GET_MODE_SIZE (xmode_unit)
3302 != ((offset + GET_MODE_SIZE (ymode) - 1)
3303 / GET_MODE_SIZE (xmode_unit))))
3305 info->representable_p = false;
3306 rknown = true;
3309 else
3310 nregs_xmode = hard_regno_nregs[xregno][xmode];
3312 nregs_ymode = hard_regno_nregs[xregno][ymode];
3314 /* Paradoxical subregs are otherwise valid. */
3315 if (!rknown
3316 && offset == 0
3317 && GET_MODE_PRECISION (ymode) > GET_MODE_PRECISION (xmode))
3319 info->representable_p = true;
3320 /* If this is a big endian paradoxical subreg, which uses more
3321 actual hard registers than the original register, we must
3322 return a negative offset so that we find the proper highpart
3323 of the register. */
3324 if (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3325 ? REG_WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN)
3326 info->offset = nregs_xmode - nregs_ymode;
3327 else
3328 info->offset = 0;
3329 info->nregs = nregs_ymode;
3330 return;
3333 /* If registers store different numbers of bits in the different
3334 modes, we cannot generally form this subreg. */
3335 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
3336 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3337 && (GET_MODE_SIZE (xmode) % nregs_xmode) == 0
3338 && (GET_MODE_SIZE (ymode) % nregs_ymode) == 0)
3340 regsize_xmode = GET_MODE_SIZE (xmode) / nregs_xmode;
3341 regsize_ymode = GET_MODE_SIZE (ymode) / nregs_ymode;
3342 if (!rknown && regsize_xmode > regsize_ymode && nregs_ymode > 1)
3344 info->representable_p = false;
3345 info->nregs
3346 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3347 info->offset = offset / regsize_xmode;
3348 return;
3350 if (!rknown && regsize_ymode > regsize_xmode && nregs_xmode > 1)
3352 info->representable_p = false;
3353 info->nregs
3354 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3355 info->offset = offset / regsize_xmode;
3356 return;
3360 /* Lowpart subregs are otherwise valid. */
3361 if (!rknown && offset == subreg_lowpart_offset (ymode, xmode))
3363 info->representable_p = true;
3364 rknown = true;
3366 if (offset == 0 || nregs_xmode == nregs_ymode)
3368 info->offset = 0;
3369 info->nregs = nregs_ymode;
3370 return;
3374 /* This should always pass, otherwise we don't know how to verify
3375 the constraint. These conditions may be relaxed but
3376 subreg_regno_offset would need to be redesigned. */
3377 gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
3378 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3380 if (WORDS_BIG_ENDIAN != REG_WORDS_BIG_ENDIAN
3381 && GET_MODE_SIZE (xmode) > UNITS_PER_WORD)
3383 HOST_WIDE_INT xsize = GET_MODE_SIZE (xmode);
3384 HOST_WIDE_INT ysize = GET_MODE_SIZE (ymode);
3385 HOST_WIDE_INT off_low = offset & (ysize - 1);
3386 HOST_WIDE_INT off_high = offset & ~(ysize - 1);
3387 offset = (xsize - ysize - off_high) | off_low;
3389 /* The XMODE value can be seen as a vector of NREGS_XMODE
3390 values. The subreg must represent a lowpart of given field.
3391 Compute what field it is. */
3392 offset_adj = offset;
3393 offset_adj -= subreg_lowpart_offset (ymode,
3394 mode_for_size (GET_MODE_BITSIZE (xmode)
3395 / nregs_xmode,
3396 MODE_INT, 0));
3398 /* Size of ymode must not be greater than the size of xmode. */
3399 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3400 gcc_assert (mode_multiple != 0);
3402 y_offset = offset / GET_MODE_SIZE (ymode);
3403 y_offset_adj = offset_adj / GET_MODE_SIZE (ymode);
3404 nregs_multiple = nregs_xmode / nregs_ymode;
3406 gcc_assert ((offset_adj % GET_MODE_SIZE (ymode)) == 0);
3407 gcc_assert ((mode_multiple % nregs_multiple) == 0);
3409 if (!rknown)
3411 info->representable_p = (!(y_offset_adj % (mode_multiple / nregs_multiple)));
3412 rknown = true;
3414 info->offset = (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
3415 info->nregs = nregs_ymode;
3418 /* This function returns the regno offset of a subreg expression.
3419 xregno - A regno of an inner hard subreg_reg (or what will become one).
3420 xmode - The mode of xregno.
3421 offset - The byte offset.
3422 ymode - The mode of a top level SUBREG (or what may become one).
3423 RETURN - The regno offset which would be used. */
3424 unsigned int
3425 subreg_regno_offset (unsigned int xregno, enum machine_mode xmode,
3426 unsigned int offset, enum machine_mode ymode)
3428 struct subreg_info info;
3429 subreg_get_info (xregno, xmode, offset, ymode, &info);
3430 return info.offset;
3433 /* This function returns true when the offset is representable via
3434 subreg_offset in the given regno.
3435 xregno - A regno of an inner hard subreg_reg (or what will become one).
3436 xmode - The mode of xregno.
3437 offset - The byte offset.
3438 ymode - The mode of a top level SUBREG (or what may become one).
3439 RETURN - Whether the offset is representable. */
3440 bool
3441 subreg_offset_representable_p (unsigned int xregno, enum machine_mode xmode,
3442 unsigned int offset, enum machine_mode ymode)
3444 struct subreg_info info;
3445 subreg_get_info (xregno, xmode, offset, ymode, &info);
3446 return info.representable_p;
3449 /* Return the number of a YMODE register to which
3451 (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
3453 can be simplified. Return -1 if the subreg can't be simplified.
3455 XREGNO is a hard register number. */
3458 simplify_subreg_regno (unsigned int xregno, enum machine_mode xmode,
3459 unsigned int offset, enum machine_mode ymode)
3461 struct subreg_info info;
3462 unsigned int yregno;
3464 #ifdef CANNOT_CHANGE_MODE_CLASS
3465 /* Give the backend a chance to disallow the mode change. */
3466 if (GET_MODE_CLASS (xmode) != MODE_COMPLEX_INT
3467 && GET_MODE_CLASS (xmode) != MODE_COMPLEX_FLOAT
3468 && REG_CANNOT_CHANGE_MODE_P (xregno, xmode, ymode))
3469 return -1;
3470 #endif
3472 /* We shouldn't simplify stack-related registers. */
3473 if ((!reload_completed || frame_pointer_needed)
3474 && xregno == FRAME_POINTER_REGNUM)
3475 return -1;
3477 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3478 && xregno == ARG_POINTER_REGNUM)
3479 return -1;
3481 if (xregno == STACK_POINTER_REGNUM)
3482 return -1;
3484 /* Try to get the register offset. */
3485 subreg_get_info (xregno, xmode, offset, ymode, &info);
3486 if (!info.representable_p)
3487 return -1;
3489 /* Make sure that the offsetted register value is in range. */
3490 yregno = xregno + info.offset;
3491 if (!HARD_REGISTER_NUM_P (yregno))
3492 return -1;
3494 /* See whether (reg:YMODE YREGNO) is valid.
3496 ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
3497 This is a kludge to work around how complex FP arguments are passed
3498 on IA-64 and should be fixed. See PR target/49226. */
3499 if (!HARD_REGNO_MODE_OK (yregno, ymode)
3500 && HARD_REGNO_MODE_OK (xregno, xmode))
3501 return -1;
3503 return (int) yregno;
3506 /* Return the final regno that a subreg expression refers to. */
3507 unsigned int
3508 subreg_regno (const_rtx x)
3510 unsigned int ret;
3511 rtx subreg = SUBREG_REG (x);
3512 int regno = REGNO (subreg);
3514 ret = regno + subreg_regno_offset (regno,
3515 GET_MODE (subreg),
3516 SUBREG_BYTE (x),
3517 GET_MODE (x));
3518 return ret;
3522 /* Return the number of registers that a subreg expression refers
3523 to. */
3524 unsigned int
3525 subreg_nregs (const_rtx x)
3527 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x);
3530 /* Return the number of registers that a subreg REG with REGNO
3531 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
3532 changed so that the regno can be passed in. */
3534 unsigned int
3535 subreg_nregs_with_regno (unsigned int regno, const_rtx x)
3537 struct subreg_info info;
3538 rtx subreg = SUBREG_REG (x);
3540 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
3541 &info);
3542 return info.nregs;
3546 struct parms_set_data
3548 int nregs;
3549 HARD_REG_SET regs;
3552 /* Helper function for noticing stores to parameter registers. */
3553 static void
3554 parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3556 struct parms_set_data *const d = (struct parms_set_data *) data;
3557 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3558 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3560 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3561 d->nregs--;
3565 /* Look backward for first parameter to be loaded.
3566 Note that loads of all parameters will not necessarily be
3567 found if CSE has eliminated some of them (e.g., an argument
3568 to the outer function is passed down as a parameter).
3569 Do not skip BOUNDARY. */
3571 find_first_parameter_load (rtx call_insn, rtx boundary)
3573 struct parms_set_data parm;
3574 rtx p, before, first_set;
3576 /* Since different machines initialize their parameter registers
3577 in different orders, assume nothing. Collect the set of all
3578 parameter registers. */
3579 CLEAR_HARD_REG_SET (parm.regs);
3580 parm.nregs = 0;
3581 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3582 if (GET_CODE (XEXP (p, 0)) == USE
3583 && REG_P (XEXP (XEXP (p, 0), 0)))
3585 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
3587 /* We only care about registers which can hold function
3588 arguments. */
3589 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3590 continue;
3592 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3593 parm.nregs++;
3595 before = call_insn;
3596 first_set = call_insn;
3598 /* Search backward for the first set of a register in this set. */
3599 while (parm.nregs && before != boundary)
3601 before = PREV_INSN (before);
3603 /* It is possible that some loads got CSEed from one call to
3604 another. Stop in that case. */
3605 if (CALL_P (before))
3606 break;
3608 /* Our caller needs either ensure that we will find all sets
3609 (in case code has not been optimized yet), or take care
3610 for possible labels in a way by setting boundary to preceding
3611 CODE_LABEL. */
3612 if (LABEL_P (before))
3614 gcc_assert (before == boundary);
3615 break;
3618 if (INSN_P (before))
3620 int nregs_old = parm.nregs;
3621 note_stores (PATTERN (before), parms_set, &parm);
3622 /* If we found something that did not set a parameter reg,
3623 we're done. Do not keep going, as that might result
3624 in hoisting an insn before the setting of a pseudo
3625 that is used by the hoisted insn. */
3626 if (nregs_old != parm.nregs)
3627 first_set = before;
3628 else
3629 break;
3632 return first_set;
3635 /* Return true if we should avoid inserting code between INSN and preceding
3636 call instruction. */
3638 bool
3639 keep_with_call_p (const_rtx insn)
3641 rtx set;
3643 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3645 if (REG_P (SET_DEST (set))
3646 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
3647 && fixed_regs[REGNO (SET_DEST (set))]
3648 && general_operand (SET_SRC (set), VOIDmode))
3649 return true;
3650 if (REG_P (SET_SRC (set))
3651 && targetm.calls.function_value_regno_p (REGNO (SET_SRC (set)))
3652 && REG_P (SET_DEST (set))
3653 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3654 return true;
3655 /* There may be a stack pop just after the call and before the store
3656 of the return register. Search for the actual store when deciding
3657 if we can break or not. */
3658 if (SET_DEST (set) == stack_pointer_rtx)
3660 /* This CONST_CAST is okay because next_nonnote_insn just
3661 returns its argument and we assign it to a const_rtx
3662 variable. */
3663 const_rtx i2 = next_nonnote_insn (CONST_CAST_RTX(insn));
3664 if (i2 && keep_with_call_p (i2))
3665 return true;
3668 return false;
3671 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3672 to non-complex jumps. That is, direct unconditional, conditional,
3673 and tablejumps, but not computed jumps or returns. It also does
3674 not apply to the fallthru case of a conditional jump. */
3676 bool
3677 label_is_jump_target_p (const_rtx label, const_rtx jump_insn)
3679 rtx tmp = JUMP_LABEL (jump_insn);
3681 if (label == tmp)
3682 return true;
3684 if (tablejump_p (jump_insn, NULL, &tmp))
3686 rtvec vec = XVEC (PATTERN (tmp),
3687 GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC);
3688 int i, veclen = GET_NUM_ELEM (vec);
3690 for (i = 0; i < veclen; ++i)
3691 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
3692 return true;
3695 if (find_reg_note (jump_insn, REG_LABEL_TARGET, label))
3696 return true;
3698 return false;
3702 /* Return an estimate of the cost of computing rtx X.
3703 One use is in cse, to decide which expression to keep in the hash table.
3704 Another is in rtl generation, to pick the cheapest way to multiply.
3705 Other uses like the latter are expected in the future.
3707 X appears as operand OPNO in an expression with code OUTER_CODE.
3708 SPEED specifies whether costs optimized for speed or size should
3709 be returned. */
3712 rtx_cost (rtx x, enum rtx_code outer_code, int opno, bool speed)
3714 int i, j;
3715 enum rtx_code code;
3716 const char *fmt;
3717 int total;
3718 int factor;
3720 if (x == 0)
3721 return 0;
3723 /* A size N times larger than UNITS_PER_WORD likely needs N times as
3724 many insns, taking N times as long. */
3725 factor = GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD;
3726 if (factor == 0)
3727 factor = 1;
3729 /* Compute the default costs of certain things.
3730 Note that targetm.rtx_costs can override the defaults. */
3732 code = GET_CODE (x);
3733 switch (code)
3735 case MULT:
3736 /* Multiplication has time-complexity O(N*N), where N is the
3737 number of units (translated from digits) when using
3738 schoolbook long multiplication. */
3739 total = factor * factor * COSTS_N_INSNS (5);
3740 break;
3741 case DIV:
3742 case UDIV:
3743 case MOD:
3744 case UMOD:
3745 /* Similarly, complexity for schoolbook long division. */
3746 total = factor * factor * COSTS_N_INSNS (7);
3747 break;
3748 case USE:
3749 /* Used in combine.c as a marker. */
3750 total = 0;
3751 break;
3752 case SET:
3753 /* A SET doesn't have a mode, so let's look at the SET_DEST to get
3754 the mode for the factor. */
3755 factor = GET_MODE_SIZE (GET_MODE (SET_DEST (x))) / UNITS_PER_WORD;
3756 if (factor == 0)
3757 factor = 1;
3758 /* Pass through. */
3759 default:
3760 total = factor * COSTS_N_INSNS (1);
3763 switch (code)
3765 case REG:
3766 return 0;
3768 case SUBREG:
3769 total = 0;
3770 /* If we can't tie these modes, make this expensive. The larger
3771 the mode, the more expensive it is. */
3772 if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
3773 return COSTS_N_INSNS (2 + factor);
3774 break;
3776 default:
3777 if (targetm.rtx_costs (x, code, outer_code, opno, &total, speed))
3778 return total;
3779 break;
3782 /* Sum the costs of the sub-rtx's, plus cost of this operation,
3783 which is already in total. */
3785 fmt = GET_RTX_FORMAT (code);
3786 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3787 if (fmt[i] == 'e')
3788 total += rtx_cost (XEXP (x, i), code, i, speed);
3789 else if (fmt[i] == 'E')
3790 for (j = 0; j < XVECLEN (x, i); j++)
3791 total += rtx_cost (XVECEXP (x, i, j), code, i, speed);
3793 return total;
3796 /* Fill in the structure C with information about both speed and size rtx
3797 costs for X, which is operand OPNO in an expression with code OUTER. */
3799 void
3800 get_full_rtx_cost (rtx x, enum rtx_code outer, int opno,
3801 struct full_rtx_costs *c)
3803 c->speed = rtx_cost (x, outer, opno, true);
3804 c->size = rtx_cost (x, outer, opno, false);
3808 /* Return cost of address expression X.
3809 Expect that X is properly formed address reference.
3811 SPEED parameter specify whether costs optimized for speed or size should
3812 be returned. */
3815 address_cost (rtx x, enum machine_mode mode, addr_space_t as, bool speed)
3817 /* We may be asked for cost of various unusual addresses, such as operands
3818 of push instruction. It is not worthwhile to complicate writing
3819 of the target hook by such cases. */
3821 if (!memory_address_addr_space_p (mode, x, as))
3822 return 1000;
3824 return targetm.address_cost (x, mode, as, speed);
3827 /* If the target doesn't override, compute the cost as with arithmetic. */
3830 default_address_cost (rtx x, enum machine_mode, addr_space_t, bool speed)
3832 return rtx_cost (x, MEM, 0, speed);
3836 unsigned HOST_WIDE_INT
3837 nonzero_bits (const_rtx x, enum machine_mode mode)
3839 return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
3842 unsigned int
3843 num_sign_bit_copies (const_rtx x, enum machine_mode mode)
3845 return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
3848 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
3849 It avoids exponential behavior in nonzero_bits1 when X has
3850 identical subexpressions on the first or the second level. */
3852 static unsigned HOST_WIDE_INT
3853 cached_nonzero_bits (const_rtx x, enum machine_mode mode, const_rtx known_x,
3854 enum machine_mode known_mode,
3855 unsigned HOST_WIDE_INT known_ret)
3857 if (x == known_x && mode == known_mode)
3858 return known_ret;
3860 /* Try to find identical subexpressions. If found call
3861 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
3862 precomputed value for the subexpression as KNOWN_RET. */
3864 if (ARITHMETIC_P (x))
3866 rtx x0 = XEXP (x, 0);
3867 rtx x1 = XEXP (x, 1);
3869 /* Check the first level. */
3870 if (x0 == x1)
3871 return nonzero_bits1 (x, mode, x0, mode,
3872 cached_nonzero_bits (x0, mode, known_x,
3873 known_mode, known_ret));
3875 /* Check the second level. */
3876 if (ARITHMETIC_P (x0)
3877 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
3878 return nonzero_bits1 (x, mode, x1, mode,
3879 cached_nonzero_bits (x1, mode, known_x,
3880 known_mode, known_ret));
3882 if (ARITHMETIC_P (x1)
3883 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
3884 return nonzero_bits1 (x, mode, x0, mode,
3885 cached_nonzero_bits (x0, mode, known_x,
3886 known_mode, known_ret));
3889 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
3892 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
3893 We don't let nonzero_bits recur into num_sign_bit_copies, because that
3894 is less useful. We can't allow both, because that results in exponential
3895 run time recursion. There is a nullstone testcase that triggered
3896 this. This macro avoids accidental uses of num_sign_bit_copies. */
3897 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
3899 /* Given an expression, X, compute which bits in X can be nonzero.
3900 We don't care about bits outside of those defined in MODE.
3902 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
3903 an arithmetic operation, we can do better. */
3905 static unsigned HOST_WIDE_INT
3906 nonzero_bits1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
3907 enum machine_mode known_mode,
3908 unsigned HOST_WIDE_INT known_ret)
3910 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
3911 unsigned HOST_WIDE_INT inner_nz;
3912 enum rtx_code code;
3913 enum machine_mode inner_mode;
3914 unsigned int mode_width = GET_MODE_PRECISION (mode);
3916 /* For floating-point and vector values, assume all bits are needed. */
3917 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode)
3918 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
3919 return nonzero;
3921 /* If X is wider than MODE, use its mode instead. */
3922 if (GET_MODE_PRECISION (GET_MODE (x)) > mode_width)
3924 mode = GET_MODE (x);
3925 nonzero = GET_MODE_MASK (mode);
3926 mode_width = GET_MODE_PRECISION (mode);
3929 if (mode_width > HOST_BITS_PER_WIDE_INT)
3930 /* Our only callers in this case look for single bit values. So
3931 just return the mode mask. Those tests will then be false. */
3932 return nonzero;
3934 #ifndef WORD_REGISTER_OPERATIONS
3935 /* If MODE is wider than X, but both are a single word for both the host
3936 and target machines, we can compute this from which bits of the
3937 object might be nonzero in its own mode, taking into account the fact
3938 that on many CISC machines, accessing an object in a wider mode
3939 causes the high-order bits to become undefined. So they are
3940 not known to be zero. */
3942 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
3943 && GET_MODE_PRECISION (GET_MODE (x)) <= BITS_PER_WORD
3944 && GET_MODE_PRECISION (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
3945 && GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (GET_MODE (x)))
3947 nonzero &= cached_nonzero_bits (x, GET_MODE (x),
3948 known_x, known_mode, known_ret);
3949 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
3950 return nonzero;
3952 #endif
3954 code = GET_CODE (x);
3955 switch (code)
3957 case REG:
3958 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
3959 /* If pointers extend unsigned and this is a pointer in Pmode, say that
3960 all the bits above ptr_mode are known to be zero. */
3961 /* As we do not know which address space the pointer is referring to,
3962 we can do this only if the target does not support different pointer
3963 or address modes depending on the address space. */
3964 if (target_default_pointer_address_modes_p ()
3965 && POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
3966 && REG_POINTER (x))
3967 nonzero &= GET_MODE_MASK (ptr_mode);
3968 #endif
3970 /* Include declared information about alignment of pointers. */
3971 /* ??? We don't properly preserve REG_POINTER changes across
3972 pointer-to-integer casts, so we can't trust it except for
3973 things that we know must be pointers. See execute/960116-1.c. */
3974 if ((x == stack_pointer_rtx
3975 || x == frame_pointer_rtx
3976 || x == arg_pointer_rtx)
3977 && REGNO_POINTER_ALIGN (REGNO (x)))
3979 unsigned HOST_WIDE_INT alignment
3980 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
3982 #ifdef PUSH_ROUNDING
3983 /* If PUSH_ROUNDING is defined, it is possible for the
3984 stack to be momentarily aligned only to that amount,
3985 so we pick the least alignment. */
3986 if (x == stack_pointer_rtx && PUSH_ARGS)
3987 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
3988 alignment);
3989 #endif
3991 nonzero &= ~(alignment - 1);
3995 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
3996 rtx new_rtx = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
3997 known_mode, known_ret,
3998 &nonzero_for_hook);
4000 if (new_rtx)
4001 nonzero_for_hook &= cached_nonzero_bits (new_rtx, mode, known_x,
4002 known_mode, known_ret);
4004 return nonzero_for_hook;
4007 case CONST_INT:
4008 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
4009 /* If X is negative in MODE, sign-extend the value. */
4010 if (INTVAL (x) > 0
4011 && mode_width < BITS_PER_WORD
4012 && (UINTVAL (x) & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
4013 != 0)
4014 return UINTVAL (x) | ((unsigned HOST_WIDE_INT) (-1) << mode_width);
4015 #endif
4017 return UINTVAL (x);
4019 case MEM:
4020 #ifdef LOAD_EXTEND_OP
4021 /* In many, if not most, RISC machines, reading a byte from memory
4022 zeros the rest of the register. Noticing that fact saves a lot
4023 of extra zero-extends. */
4024 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
4025 nonzero &= GET_MODE_MASK (GET_MODE (x));
4026 #endif
4027 break;
4029 case EQ: case NE:
4030 case UNEQ: case LTGT:
4031 case GT: case GTU: case UNGT:
4032 case LT: case LTU: case UNLT:
4033 case GE: case GEU: case UNGE:
4034 case LE: case LEU: case UNLE:
4035 case UNORDERED: case ORDERED:
4036 /* If this produces an integer result, we know which bits are set.
4037 Code here used to clear bits outside the mode of X, but that is
4038 now done above. */
4039 /* Mind that MODE is the mode the caller wants to look at this
4040 operation in, and not the actual operation mode. We can wind
4041 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
4042 that describes the results of a vector compare. */
4043 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
4044 && mode_width <= HOST_BITS_PER_WIDE_INT)
4045 nonzero = STORE_FLAG_VALUE;
4046 break;
4048 case NEG:
4049 #if 0
4050 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4051 and num_sign_bit_copies. */
4052 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
4053 == GET_MODE_PRECISION (GET_MODE (x)))
4054 nonzero = 1;
4055 #endif
4057 if (GET_MODE_PRECISION (GET_MODE (x)) < mode_width)
4058 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
4059 break;
4061 case ABS:
4062 #if 0
4063 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4064 and num_sign_bit_copies. */
4065 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
4066 == GET_MODE_PRECISION (GET_MODE (x)))
4067 nonzero = 1;
4068 #endif
4069 break;
4071 case TRUNCATE:
4072 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
4073 known_x, known_mode, known_ret)
4074 & GET_MODE_MASK (mode));
4075 break;
4077 case ZERO_EXTEND:
4078 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4079 known_x, known_mode, known_ret);
4080 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4081 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4082 break;
4084 case SIGN_EXTEND:
4085 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
4086 Otherwise, show all the bits in the outer mode but not the inner
4087 may be nonzero. */
4088 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
4089 known_x, known_mode, known_ret);
4090 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4092 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4093 if (val_signbit_known_set_p (GET_MODE (XEXP (x, 0)), inner_nz))
4094 inner_nz |= (GET_MODE_MASK (mode)
4095 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
4098 nonzero &= inner_nz;
4099 break;
4101 case AND:
4102 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4103 known_x, known_mode, known_ret)
4104 & cached_nonzero_bits (XEXP (x, 1), mode,
4105 known_x, known_mode, known_ret);
4106 break;
4108 case XOR: case IOR:
4109 case UMIN: case UMAX: case SMIN: case SMAX:
4111 unsigned HOST_WIDE_INT nonzero0
4112 = cached_nonzero_bits (XEXP (x, 0), mode,
4113 known_x, known_mode, known_ret);
4115 /* Don't call nonzero_bits for the second time if it cannot change
4116 anything. */
4117 if ((nonzero & nonzero0) != nonzero)
4118 nonzero &= nonzero0
4119 | cached_nonzero_bits (XEXP (x, 1), mode,
4120 known_x, known_mode, known_ret);
4122 break;
4124 case PLUS: case MINUS:
4125 case MULT:
4126 case DIV: case UDIV:
4127 case MOD: case UMOD:
4128 /* We can apply the rules of arithmetic to compute the number of
4129 high- and low-order zero bits of these operations. We start by
4130 computing the width (position of the highest-order nonzero bit)
4131 and the number of low-order zero bits for each value. */
4133 unsigned HOST_WIDE_INT nz0
4134 = cached_nonzero_bits (XEXP (x, 0), mode,
4135 known_x, known_mode, known_ret);
4136 unsigned HOST_WIDE_INT nz1
4137 = cached_nonzero_bits (XEXP (x, 1), mode,
4138 known_x, known_mode, known_ret);
4139 int sign_index = GET_MODE_PRECISION (GET_MODE (x)) - 1;
4140 int width0 = floor_log2 (nz0) + 1;
4141 int width1 = floor_log2 (nz1) + 1;
4142 int low0 = floor_log2 (nz0 & -nz0);
4143 int low1 = floor_log2 (nz1 & -nz1);
4144 unsigned HOST_WIDE_INT op0_maybe_minusp
4145 = nz0 & ((unsigned HOST_WIDE_INT) 1 << sign_index);
4146 unsigned HOST_WIDE_INT op1_maybe_minusp
4147 = nz1 & ((unsigned HOST_WIDE_INT) 1 << sign_index);
4148 unsigned int result_width = mode_width;
4149 int result_low = 0;
4151 switch (code)
4153 case PLUS:
4154 result_width = MAX (width0, width1) + 1;
4155 result_low = MIN (low0, low1);
4156 break;
4157 case MINUS:
4158 result_low = MIN (low0, low1);
4159 break;
4160 case MULT:
4161 result_width = width0 + width1;
4162 result_low = low0 + low1;
4163 break;
4164 case DIV:
4165 if (width1 == 0)
4166 break;
4167 if (!op0_maybe_minusp && !op1_maybe_minusp)
4168 result_width = width0;
4169 break;
4170 case UDIV:
4171 if (width1 == 0)
4172 break;
4173 result_width = width0;
4174 break;
4175 case MOD:
4176 if (width1 == 0)
4177 break;
4178 if (!op0_maybe_minusp && !op1_maybe_minusp)
4179 result_width = MIN (width0, width1);
4180 result_low = MIN (low0, low1);
4181 break;
4182 case UMOD:
4183 if (width1 == 0)
4184 break;
4185 result_width = MIN (width0, width1);
4186 result_low = MIN (low0, low1);
4187 break;
4188 default:
4189 gcc_unreachable ();
4192 if (result_width < mode_width)
4193 nonzero &= ((unsigned HOST_WIDE_INT) 1 << result_width) - 1;
4195 if (result_low > 0)
4196 nonzero &= ~(((unsigned HOST_WIDE_INT) 1 << result_low) - 1);
4198 break;
4200 case ZERO_EXTRACT:
4201 if (CONST_INT_P (XEXP (x, 1))
4202 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
4203 nonzero &= ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
4204 break;
4206 case SUBREG:
4207 /* If this is a SUBREG formed for a promoted variable that has
4208 been zero-extended, we know that at least the high-order bits
4209 are zero, though others might be too. */
4211 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
4212 nonzero = GET_MODE_MASK (GET_MODE (x))
4213 & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
4214 known_x, known_mode, known_ret);
4216 inner_mode = GET_MODE (SUBREG_REG (x));
4217 /* If the inner mode is a single word for both the host and target
4218 machines, we can compute this from which bits of the inner
4219 object might be nonzero. */
4220 if (GET_MODE_PRECISION (inner_mode) <= BITS_PER_WORD
4221 && (GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT))
4223 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
4224 known_x, known_mode, known_ret);
4226 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
4227 /* If this is a typical RISC machine, we only have to worry
4228 about the way loads are extended. */
4229 if ((LOAD_EXTEND_OP (inner_mode) == SIGN_EXTEND
4230 ? val_signbit_known_set_p (inner_mode, nonzero)
4231 : LOAD_EXTEND_OP (inner_mode) != ZERO_EXTEND)
4232 || !MEM_P (SUBREG_REG (x)))
4233 #endif
4235 /* On many CISC machines, accessing an object in a wider mode
4236 causes the high-order bits to become undefined. So they are
4237 not known to be zero. */
4238 if (GET_MODE_PRECISION (GET_MODE (x))
4239 > GET_MODE_PRECISION (inner_mode))
4240 nonzero |= (GET_MODE_MASK (GET_MODE (x))
4241 & ~GET_MODE_MASK (inner_mode));
4244 break;
4246 case ASHIFTRT:
4247 case LSHIFTRT:
4248 case ASHIFT:
4249 case ROTATE:
4250 /* The nonzero bits are in two classes: any bits within MODE
4251 that aren't in GET_MODE (x) are always significant. The rest of the
4252 nonzero bits are those that are significant in the operand of
4253 the shift when shifted the appropriate number of bits. This
4254 shows that high-order bits are cleared by the right shift and
4255 low-order bits by left shifts. */
4256 if (CONST_INT_P (XEXP (x, 1))
4257 && INTVAL (XEXP (x, 1)) >= 0
4258 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
4259 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
4261 enum machine_mode inner_mode = GET_MODE (x);
4262 unsigned int width = GET_MODE_PRECISION (inner_mode);
4263 int count = INTVAL (XEXP (x, 1));
4264 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
4265 unsigned HOST_WIDE_INT op_nonzero
4266 = cached_nonzero_bits (XEXP (x, 0), mode,
4267 known_x, known_mode, known_ret);
4268 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
4269 unsigned HOST_WIDE_INT outer = 0;
4271 if (mode_width > width)
4272 outer = (op_nonzero & nonzero & ~mode_mask);
4274 if (code == LSHIFTRT)
4275 inner >>= count;
4276 else if (code == ASHIFTRT)
4278 inner >>= count;
4280 /* If the sign bit may have been nonzero before the shift, we
4281 need to mark all the places it could have been copied to
4282 by the shift as possibly nonzero. */
4283 if (inner & ((unsigned HOST_WIDE_INT) 1 << (width - 1 - count)))
4284 inner |= (((unsigned HOST_WIDE_INT) 1 << count) - 1)
4285 << (width - count);
4287 else if (code == ASHIFT)
4288 inner <<= count;
4289 else
4290 inner = ((inner << (count % width)
4291 | (inner >> (width - (count % width)))) & mode_mask);
4293 nonzero &= (outer | inner);
4295 break;
4297 case FFS:
4298 case POPCOUNT:
4299 /* This is at most the number of bits in the mode. */
4300 nonzero = ((unsigned HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
4301 break;
4303 case CLZ:
4304 /* If CLZ has a known value at zero, then the nonzero bits are
4305 that value, plus the number of bits in the mode minus one. */
4306 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4307 nonzero
4308 |= ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4309 else
4310 nonzero = -1;
4311 break;
4313 case CTZ:
4314 /* If CTZ has a known value at zero, then the nonzero bits are
4315 that value, plus the number of bits in the mode minus one. */
4316 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4317 nonzero
4318 |= ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4319 else
4320 nonzero = -1;
4321 break;
4323 case CLRSB:
4324 /* This is at most the number of bits in the mode minus 1. */
4325 nonzero = ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4326 break;
4328 case PARITY:
4329 nonzero = 1;
4330 break;
4332 case IF_THEN_ELSE:
4334 unsigned HOST_WIDE_INT nonzero_true
4335 = cached_nonzero_bits (XEXP (x, 1), mode,
4336 known_x, known_mode, known_ret);
4338 /* Don't call nonzero_bits for the second time if it cannot change
4339 anything. */
4340 if ((nonzero & nonzero_true) != nonzero)
4341 nonzero &= nonzero_true
4342 | cached_nonzero_bits (XEXP (x, 2), mode,
4343 known_x, known_mode, known_ret);
4345 break;
4347 default:
4348 break;
4351 return nonzero;
4354 /* See the macro definition above. */
4355 #undef cached_num_sign_bit_copies
4358 /* The function cached_num_sign_bit_copies is a wrapper around
4359 num_sign_bit_copies1. It avoids exponential behavior in
4360 num_sign_bit_copies1 when X has identical subexpressions on the
4361 first or the second level. */
4363 static unsigned int
4364 cached_num_sign_bit_copies (const_rtx x, enum machine_mode mode, const_rtx known_x,
4365 enum machine_mode known_mode,
4366 unsigned int known_ret)
4368 if (x == known_x && mode == known_mode)
4369 return known_ret;
4371 /* Try to find identical subexpressions. If found call
4372 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4373 the precomputed value for the subexpression as KNOWN_RET. */
4375 if (ARITHMETIC_P (x))
4377 rtx x0 = XEXP (x, 0);
4378 rtx x1 = XEXP (x, 1);
4380 /* Check the first level. */
4381 if (x0 == x1)
4382 return
4383 num_sign_bit_copies1 (x, mode, x0, mode,
4384 cached_num_sign_bit_copies (x0, mode, known_x,
4385 known_mode,
4386 known_ret));
4388 /* Check the second level. */
4389 if (ARITHMETIC_P (x0)
4390 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4391 return
4392 num_sign_bit_copies1 (x, mode, x1, mode,
4393 cached_num_sign_bit_copies (x1, mode, known_x,
4394 known_mode,
4395 known_ret));
4397 if (ARITHMETIC_P (x1)
4398 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4399 return
4400 num_sign_bit_copies1 (x, mode, x0, mode,
4401 cached_num_sign_bit_copies (x0, mode, known_x,
4402 known_mode,
4403 known_ret));
4406 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4409 /* Return the number of bits at the high-order end of X that are known to
4410 be equal to the sign bit. X will be used in mode MODE; if MODE is
4411 VOIDmode, X will be used in its own mode. The returned value will always
4412 be between 1 and the number of bits in MODE. */
4414 static unsigned int
4415 num_sign_bit_copies1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
4416 enum machine_mode known_mode,
4417 unsigned int known_ret)
4419 enum rtx_code code = GET_CODE (x);
4420 unsigned int bitwidth = GET_MODE_PRECISION (mode);
4421 int num0, num1, result;
4422 unsigned HOST_WIDE_INT nonzero;
4424 /* If we weren't given a mode, use the mode of X. If the mode is still
4425 VOIDmode, we don't know anything. Likewise if one of the modes is
4426 floating-point. */
4428 if (mode == VOIDmode)
4429 mode = GET_MODE (x);
4431 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x))
4432 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
4433 return 1;
4435 /* For a smaller object, just ignore the high bits. */
4436 if (bitwidth < GET_MODE_PRECISION (GET_MODE (x)))
4438 num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
4439 known_x, known_mode, known_ret);
4440 return MAX (1,
4441 num0 - (int) (GET_MODE_PRECISION (GET_MODE (x)) - bitwidth));
4444 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_PRECISION (GET_MODE (x)))
4446 #ifndef WORD_REGISTER_OPERATIONS
4447 /* If this machine does not do all register operations on the entire
4448 register and MODE is wider than the mode of X, we can say nothing
4449 at all about the high-order bits. */
4450 return 1;
4451 #else
4452 /* Likewise on machines that do, if the mode of the object is smaller
4453 than a word and loads of that size don't sign extend, we can say
4454 nothing about the high order bits. */
4455 if (GET_MODE_PRECISION (GET_MODE (x)) < BITS_PER_WORD
4456 #ifdef LOAD_EXTEND_OP
4457 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
4458 #endif
4460 return 1;
4461 #endif
4464 switch (code)
4466 case REG:
4468 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4469 /* If pointers extend signed and this is a pointer in Pmode, say that
4470 all the bits above ptr_mode are known to be sign bit copies. */
4471 /* As we do not know which address space the pointer is referring to,
4472 we can do this only if the target does not support different pointer
4473 or address modes depending on the address space. */
4474 if (target_default_pointer_address_modes_p ()
4475 && ! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4476 && mode == Pmode && REG_POINTER (x))
4477 return GET_MODE_PRECISION (Pmode) - GET_MODE_PRECISION (ptr_mode) + 1;
4478 #endif
4481 unsigned int copies_for_hook = 1, copies = 1;
4482 rtx new_rtx = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
4483 known_mode, known_ret,
4484 &copies_for_hook);
4486 if (new_rtx)
4487 copies = cached_num_sign_bit_copies (new_rtx, mode, known_x,
4488 known_mode, known_ret);
4490 if (copies > 1 || copies_for_hook > 1)
4491 return MAX (copies, copies_for_hook);
4493 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4495 break;
4497 case MEM:
4498 #ifdef LOAD_EXTEND_OP
4499 /* Some RISC machines sign-extend all loads of smaller than a word. */
4500 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
4501 return MAX (1, ((int) bitwidth
4502 - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1));
4503 #endif
4504 break;
4506 case CONST_INT:
4507 /* If the constant is negative, take its 1's complement and remask.
4508 Then see how many zero bits we have. */
4509 nonzero = UINTVAL (x) & GET_MODE_MASK (mode);
4510 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4511 && (nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4512 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4514 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4516 case SUBREG:
4517 /* If this is a SUBREG for a promoted object that is sign-extended
4518 and we are looking at it in a wider mode, we know that at least the
4519 high-order bits are known to be sign bit copies. */
4521 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
4523 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4524 known_x, known_mode, known_ret);
4525 return MAX ((int) bitwidth
4526 - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1,
4527 num0);
4530 /* For a smaller object, just ignore the high bits. */
4531 if (bitwidth <= GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))))
4533 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4534 known_x, known_mode, known_ret);
4535 return MAX (1, (num0
4536 - (int) (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x)))
4537 - bitwidth)));
4540 #ifdef WORD_REGISTER_OPERATIONS
4541 #ifdef LOAD_EXTEND_OP
4542 /* For paradoxical SUBREGs on machines where all register operations
4543 affect the entire register, just look inside. Note that we are
4544 passing MODE to the recursive call, so the number of sign bit copies
4545 will remain relative to that mode, not the inner mode. */
4547 /* This works only if loads sign extend. Otherwise, if we get a
4548 reload for the inner part, it may be loaded from the stack, and
4549 then we lose all sign bit copies that existed before the store
4550 to the stack. */
4552 if (paradoxical_subreg_p (x)
4553 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4554 && MEM_P (SUBREG_REG (x)))
4555 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4556 known_x, known_mode, known_ret);
4557 #endif
4558 #endif
4559 break;
4561 case SIGN_EXTRACT:
4562 if (CONST_INT_P (XEXP (x, 1)))
4563 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4564 break;
4566 case SIGN_EXTEND:
4567 return (bitwidth - GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
4568 + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4569 known_x, known_mode, known_ret));
4571 case TRUNCATE:
4572 /* For a smaller object, just ignore the high bits. */
4573 num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4574 known_x, known_mode, known_ret);
4575 return MAX (1, (num0 - (int) (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
4576 - bitwidth)));
4578 case NOT:
4579 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4580 known_x, known_mode, known_ret);
4582 case ROTATE: case ROTATERT:
4583 /* If we are rotating left by a number of bits less than the number
4584 of sign bit copies, we can just subtract that amount from the
4585 number. */
4586 if (CONST_INT_P (XEXP (x, 1))
4587 && INTVAL (XEXP (x, 1)) >= 0
4588 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
4590 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4591 known_x, known_mode, known_ret);
4592 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
4593 : (int) bitwidth - INTVAL (XEXP (x, 1))));
4595 break;
4597 case NEG:
4598 /* In general, this subtracts one sign bit copy. But if the value
4599 is known to be positive, the number of sign bit copies is the
4600 same as that of the input. Finally, if the input has just one bit
4601 that might be nonzero, all the bits are copies of the sign bit. */
4602 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4603 known_x, known_mode, known_ret);
4604 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4605 return num0 > 1 ? num0 - 1 : 1;
4607 nonzero = nonzero_bits (XEXP (x, 0), mode);
4608 if (nonzero == 1)
4609 return bitwidth;
4611 if (num0 > 1
4612 && (((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
4613 num0--;
4615 return num0;
4617 case IOR: case AND: case XOR:
4618 case SMIN: case SMAX: case UMIN: case UMAX:
4619 /* Logical operations will preserve the number of sign-bit copies.
4620 MIN and MAX operations always return one of the operands. */
4621 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4622 known_x, known_mode, known_ret);
4623 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4624 known_x, known_mode, known_ret);
4626 /* If num1 is clearing some of the top bits then regardless of
4627 the other term, we are guaranteed to have at least that many
4628 high-order zero bits. */
4629 if (code == AND
4630 && num1 > 1
4631 && bitwidth <= HOST_BITS_PER_WIDE_INT
4632 && CONST_INT_P (XEXP (x, 1))
4633 && (UINTVAL (XEXP (x, 1))
4634 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) == 0)
4635 return num1;
4637 /* Similarly for IOR when setting high-order bits. */
4638 if (code == IOR
4639 && num1 > 1
4640 && bitwidth <= HOST_BITS_PER_WIDE_INT
4641 && CONST_INT_P (XEXP (x, 1))
4642 && (UINTVAL (XEXP (x, 1))
4643 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4644 return num1;
4646 return MIN (num0, num1);
4648 case PLUS: case MINUS:
4649 /* For addition and subtraction, we can have a 1-bit carry. However,
4650 if we are subtracting 1 from a positive number, there will not
4651 be such a carry. Furthermore, if the positive number is known to
4652 be 0 or 1, we know the result is either -1 or 0. */
4654 if (code == PLUS && XEXP (x, 1) == constm1_rtx
4655 && bitwidth <= HOST_BITS_PER_WIDE_INT)
4657 nonzero = nonzero_bits (XEXP (x, 0), mode);
4658 if ((((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
4659 return (nonzero == 1 || nonzero == 0 ? bitwidth
4660 : bitwidth - floor_log2 (nonzero) - 1);
4663 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4664 known_x, known_mode, known_ret);
4665 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4666 known_x, known_mode, known_ret);
4667 result = MAX (1, MIN (num0, num1) - 1);
4669 return result;
4671 case MULT:
4672 /* The number of bits of the product is the sum of the number of
4673 bits of both terms. However, unless one of the terms if known
4674 to be positive, we must allow for an additional bit since negating
4675 a negative number can remove one sign bit copy. */
4677 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4678 known_x, known_mode, known_ret);
4679 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4680 known_x, known_mode, known_ret);
4682 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
4683 if (result > 0
4684 && (bitwidth > HOST_BITS_PER_WIDE_INT
4685 || (((nonzero_bits (XEXP (x, 0), mode)
4686 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4687 && ((nonzero_bits (XEXP (x, 1), mode)
4688 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)))
4689 != 0))))
4690 result--;
4692 return MAX (1, result);
4694 case UDIV:
4695 /* The result must be <= the first operand. If the first operand
4696 has the high bit set, we know nothing about the number of sign
4697 bit copies. */
4698 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4699 return 1;
4700 else if ((nonzero_bits (XEXP (x, 0), mode)
4701 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4702 return 1;
4703 else
4704 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4705 known_x, known_mode, known_ret);
4707 case UMOD:
4708 /* The result must be <= the second operand. If the second operand
4709 has (or just might have) the high bit set, we know nothing about
4710 the number of sign bit copies. */
4711 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4712 return 1;
4713 else if ((nonzero_bits (XEXP (x, 1), mode)
4714 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4715 return 1;
4716 else
4717 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
4718 known_x, known_mode, known_ret);
4720 case DIV:
4721 /* Similar to unsigned division, except that we have to worry about
4722 the case where the divisor is negative, in which case we have
4723 to add 1. */
4724 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4725 known_x, known_mode, known_ret);
4726 if (result > 1
4727 && (bitwidth > HOST_BITS_PER_WIDE_INT
4728 || (nonzero_bits (XEXP (x, 1), mode)
4729 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4730 result--;
4732 return result;
4734 case MOD:
4735 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4736 known_x, known_mode, known_ret);
4737 if (result > 1
4738 && (bitwidth > HOST_BITS_PER_WIDE_INT
4739 || (nonzero_bits (XEXP (x, 1), mode)
4740 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4741 result--;
4743 return result;
4745 case ASHIFTRT:
4746 /* Shifts by a constant add to the number of bits equal to the
4747 sign bit. */
4748 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4749 known_x, known_mode, known_ret);
4750 if (CONST_INT_P (XEXP (x, 1))
4751 && INTVAL (XEXP (x, 1)) > 0
4752 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
4753 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
4755 return num0;
4757 case ASHIFT:
4758 /* Left shifts destroy copies. */
4759 if (!CONST_INT_P (XEXP (x, 1))
4760 || INTVAL (XEXP (x, 1)) < 0
4761 || INTVAL (XEXP (x, 1)) >= (int) bitwidth
4762 || INTVAL (XEXP (x, 1)) >= GET_MODE_PRECISION (GET_MODE (x)))
4763 return 1;
4765 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4766 known_x, known_mode, known_ret);
4767 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
4769 case IF_THEN_ELSE:
4770 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4771 known_x, known_mode, known_ret);
4772 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
4773 known_x, known_mode, known_ret);
4774 return MIN (num0, num1);
4776 case EQ: case NE: case GE: case GT: case LE: case LT:
4777 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
4778 case GEU: case GTU: case LEU: case LTU:
4779 case UNORDERED: case ORDERED:
4780 /* If the constant is negative, take its 1's complement and remask.
4781 Then see how many zero bits we have. */
4782 nonzero = STORE_FLAG_VALUE;
4783 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4784 && (nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4785 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4787 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4789 default:
4790 break;
4793 /* If we haven't been able to figure it out by one of the above rules,
4794 see if some of the high-order bits are known to be zero. If so,
4795 count those bits and return one less than that amount. If we can't
4796 safely compute the mask for this mode, always return BITWIDTH. */
4798 bitwidth = GET_MODE_PRECISION (mode);
4799 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4800 return 1;
4802 nonzero = nonzero_bits (x, mode);
4803 return nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))
4804 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
4807 /* Calculate the rtx_cost of a single instruction. A return value of
4808 zero indicates an instruction pattern without a known cost. */
4811 insn_rtx_cost (rtx pat, bool speed)
4813 int i, cost;
4814 rtx set;
4816 /* Extract the single set rtx from the instruction pattern.
4817 We can't use single_set since we only have the pattern. */
4818 if (GET_CODE (pat) == SET)
4819 set = pat;
4820 else if (GET_CODE (pat) == PARALLEL)
4822 set = NULL_RTX;
4823 for (i = 0; i < XVECLEN (pat, 0); i++)
4825 rtx x = XVECEXP (pat, 0, i);
4826 if (GET_CODE (x) == SET)
4828 if (set)
4829 return 0;
4830 set = x;
4833 if (!set)
4834 return 0;
4836 else
4837 return 0;
4839 cost = set_src_cost (SET_SRC (set), speed);
4840 return cost > 0 ? cost : COSTS_N_INSNS (1);
4843 /* Given an insn INSN and condition COND, return the condition in a
4844 canonical form to simplify testing by callers. Specifically:
4846 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
4847 (2) Both operands will be machine operands; (cc0) will have been replaced.
4848 (3) If an operand is a constant, it will be the second operand.
4849 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
4850 for GE, GEU, and LEU.
4852 If the condition cannot be understood, or is an inequality floating-point
4853 comparison which needs to be reversed, 0 will be returned.
4855 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
4857 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4858 insn used in locating the condition was found. If a replacement test
4859 of the condition is desired, it should be placed in front of that
4860 insn and we will be sure that the inputs are still valid.
4862 If WANT_REG is nonzero, we wish the condition to be relative to that
4863 register, if possible. Therefore, do not canonicalize the condition
4864 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
4865 to be a compare to a CC mode register.
4867 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
4868 and at INSN. */
4871 canonicalize_condition (rtx insn, rtx cond, int reverse, rtx *earliest,
4872 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
4874 enum rtx_code code;
4875 rtx prev = insn;
4876 const_rtx set;
4877 rtx tem;
4878 rtx op0, op1;
4879 int reverse_code = 0;
4880 enum machine_mode mode;
4881 basic_block bb = BLOCK_FOR_INSN (insn);
4883 code = GET_CODE (cond);
4884 mode = GET_MODE (cond);
4885 op0 = XEXP (cond, 0);
4886 op1 = XEXP (cond, 1);
4888 if (reverse)
4889 code = reversed_comparison_code (cond, insn);
4890 if (code == UNKNOWN)
4891 return 0;
4893 if (earliest)
4894 *earliest = insn;
4896 /* If we are comparing a register with zero, see if the register is set
4897 in the previous insn to a COMPARE or a comparison operation. Perform
4898 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
4899 in cse.c */
4901 while ((GET_RTX_CLASS (code) == RTX_COMPARE
4902 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
4903 && op1 == CONST0_RTX (GET_MODE (op0))
4904 && op0 != want_reg)
4906 /* Set nonzero when we find something of interest. */
4907 rtx x = 0;
4909 #ifdef HAVE_cc0
4910 /* If comparison with cc0, import actual comparison from compare
4911 insn. */
4912 if (op0 == cc0_rtx)
4914 if ((prev = prev_nonnote_insn (prev)) == 0
4915 || !NONJUMP_INSN_P (prev)
4916 || (set = single_set (prev)) == 0
4917 || SET_DEST (set) != cc0_rtx)
4918 return 0;
4920 op0 = SET_SRC (set);
4921 op1 = CONST0_RTX (GET_MODE (op0));
4922 if (earliest)
4923 *earliest = prev;
4925 #endif
4927 /* If this is a COMPARE, pick up the two things being compared. */
4928 if (GET_CODE (op0) == COMPARE)
4930 op1 = XEXP (op0, 1);
4931 op0 = XEXP (op0, 0);
4932 continue;
4934 else if (!REG_P (op0))
4935 break;
4937 /* Go back to the previous insn. Stop if it is not an INSN. We also
4938 stop if it isn't a single set or if it has a REG_INC note because
4939 we don't want to bother dealing with it. */
4941 prev = prev_nonnote_nondebug_insn (prev);
4943 if (prev == 0
4944 || !NONJUMP_INSN_P (prev)
4945 || FIND_REG_INC_NOTE (prev, NULL_RTX)
4946 /* In cfglayout mode, there do not have to be labels at the
4947 beginning of a block, or jumps at the end, so the previous
4948 conditions would not stop us when we reach bb boundary. */
4949 || BLOCK_FOR_INSN (prev) != bb)
4950 break;
4952 set = set_of (op0, prev);
4954 if (set
4955 && (GET_CODE (set) != SET
4956 || !rtx_equal_p (SET_DEST (set), op0)))
4957 break;
4959 /* If this is setting OP0, get what it sets it to if it looks
4960 relevant. */
4961 if (set)
4963 enum machine_mode inner_mode = GET_MODE (SET_DEST (set));
4964 #ifdef FLOAT_STORE_FLAG_VALUE
4965 REAL_VALUE_TYPE fsfv;
4966 #endif
4968 /* ??? We may not combine comparisons done in a CCmode with
4969 comparisons not done in a CCmode. This is to aid targets
4970 like Alpha that have an IEEE compliant EQ instruction, and
4971 a non-IEEE compliant BEQ instruction. The use of CCmode is
4972 actually artificial, simply to prevent the combination, but
4973 should not affect other platforms.
4975 However, we must allow VOIDmode comparisons to match either
4976 CCmode or non-CCmode comparison, because some ports have
4977 modeless comparisons inside branch patterns.
4979 ??? This mode check should perhaps look more like the mode check
4980 in simplify_comparison in combine. */
4982 if ((GET_CODE (SET_SRC (set)) == COMPARE
4983 || (((code == NE
4984 || (code == LT
4985 && val_signbit_known_set_p (inner_mode,
4986 STORE_FLAG_VALUE))
4987 #ifdef FLOAT_STORE_FLAG_VALUE
4988 || (code == LT
4989 && SCALAR_FLOAT_MODE_P (inner_mode)
4990 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4991 REAL_VALUE_NEGATIVE (fsfv)))
4992 #endif
4994 && COMPARISON_P (SET_SRC (set))))
4995 && (((GET_MODE_CLASS (mode) == MODE_CC)
4996 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
4997 || mode == VOIDmode || inner_mode == VOIDmode))
4998 x = SET_SRC (set);
4999 else if (((code == EQ
5000 || (code == GE
5001 && val_signbit_known_set_p (inner_mode,
5002 STORE_FLAG_VALUE))
5003 #ifdef FLOAT_STORE_FLAG_VALUE
5004 || (code == GE
5005 && SCALAR_FLOAT_MODE_P (inner_mode)
5006 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5007 REAL_VALUE_NEGATIVE (fsfv)))
5008 #endif
5010 && COMPARISON_P (SET_SRC (set))
5011 && (((GET_MODE_CLASS (mode) == MODE_CC)
5012 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
5013 || mode == VOIDmode || inner_mode == VOIDmode))
5016 reverse_code = 1;
5017 x = SET_SRC (set);
5019 else
5020 break;
5023 else if (reg_set_p (op0, prev))
5024 /* If this sets OP0, but not directly, we have to give up. */
5025 break;
5027 if (x)
5029 /* If the caller is expecting the condition to be valid at INSN,
5030 make sure X doesn't change before INSN. */
5031 if (valid_at_insn_p)
5032 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
5033 break;
5034 if (COMPARISON_P (x))
5035 code = GET_CODE (x);
5036 if (reverse_code)
5038 code = reversed_comparison_code (x, prev);
5039 if (code == UNKNOWN)
5040 return 0;
5041 reverse_code = 0;
5044 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5045 if (earliest)
5046 *earliest = prev;
5050 /* If constant is first, put it last. */
5051 if (CONSTANT_P (op0))
5052 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
5054 /* If OP0 is the result of a comparison, we weren't able to find what
5055 was really being compared, so fail. */
5056 if (!allow_cc_mode
5057 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5058 return 0;
5060 /* Canonicalize any ordered comparison with integers involving equality
5061 if we can do computations in the relevant mode and we do not
5062 overflow. */
5064 if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
5065 && CONST_INT_P (op1)
5066 && GET_MODE (op0) != VOIDmode
5067 && GET_MODE_PRECISION (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
5069 HOST_WIDE_INT const_val = INTVAL (op1);
5070 unsigned HOST_WIDE_INT uconst_val = const_val;
5071 unsigned HOST_WIDE_INT max_val
5072 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
5074 switch (code)
5076 case LE:
5077 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
5078 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
5079 break;
5081 /* When cross-compiling, const_val might be sign-extended from
5082 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
5083 case GE:
5084 if ((const_val & max_val)
5085 != ((unsigned HOST_WIDE_INT) 1
5086 << (GET_MODE_PRECISION (GET_MODE (op0)) - 1)))
5087 code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
5088 break;
5090 case LEU:
5091 if (uconst_val < max_val)
5092 code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
5093 break;
5095 case GEU:
5096 if (uconst_val != 0)
5097 code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
5098 break;
5100 default:
5101 break;
5105 /* Never return CC0; return zero instead. */
5106 if (CC0_P (op0))
5107 return 0;
5109 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
5112 /* Given a jump insn JUMP, return the condition that will cause it to branch
5113 to its JUMP_LABEL. If the condition cannot be understood, or is an
5114 inequality floating-point comparison which needs to be reversed, 0 will
5115 be returned.
5117 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5118 insn used in locating the condition was found. If a replacement test
5119 of the condition is desired, it should be placed in front of that
5120 insn and we will be sure that the inputs are still valid. If EARLIEST
5121 is null, the returned condition will be valid at INSN.
5123 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
5124 compare CC mode register.
5126 VALID_AT_INSN_P is the same as for canonicalize_condition. */
5129 get_condition (rtx jump, rtx *earliest, int allow_cc_mode, int valid_at_insn_p)
5131 rtx cond;
5132 int reverse;
5133 rtx set;
5135 /* If this is not a standard conditional jump, we can't parse it. */
5136 if (!JUMP_P (jump)
5137 || ! any_condjump_p (jump))
5138 return 0;
5139 set = pc_set (jump);
5141 cond = XEXP (SET_SRC (set), 0);
5143 /* If this branches to JUMP_LABEL when the condition is false, reverse
5144 the condition. */
5145 reverse
5146 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
5147 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump);
5149 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
5150 allow_cc_mode, valid_at_insn_p);
5153 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
5154 TARGET_MODE_REP_EXTENDED.
5156 Note that we assume that the property of
5157 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
5158 narrower than mode B. I.e., if A is a mode narrower than B then in
5159 order to be able to operate on it in mode B, mode A needs to
5160 satisfy the requirements set by the representation of mode B. */
5162 static void
5163 init_num_sign_bit_copies_in_rep (void)
5165 enum machine_mode mode, in_mode;
5167 for (in_mode = GET_CLASS_NARROWEST_MODE (MODE_INT); in_mode != VOIDmode;
5168 in_mode = GET_MODE_WIDER_MODE (mode))
5169 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != in_mode;
5170 mode = GET_MODE_WIDER_MODE (mode))
5172 enum machine_mode i;
5174 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
5175 extends to the next widest mode. */
5176 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
5177 || GET_MODE_WIDER_MODE (mode) == in_mode);
5179 /* We are in in_mode. Count how many bits outside of mode
5180 have to be copies of the sign-bit. */
5181 for (i = mode; i != in_mode; i = GET_MODE_WIDER_MODE (i))
5183 enum machine_mode wider = GET_MODE_WIDER_MODE (i);
5185 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
5186 /* We can only check sign-bit copies starting from the
5187 top-bit. In order to be able to check the bits we
5188 have already seen we pretend that subsequent bits
5189 have to be sign-bit copies too. */
5190 || num_sign_bit_copies_in_rep [in_mode][mode])
5191 num_sign_bit_copies_in_rep [in_mode][mode]
5192 += GET_MODE_PRECISION (wider) - GET_MODE_PRECISION (i);
5197 /* Suppose that truncation from the machine mode of X to MODE is not a
5198 no-op. See if there is anything special about X so that we can
5199 assume it already contains a truncated value of MODE. */
5201 bool
5202 truncated_to_mode (enum machine_mode mode, const_rtx x)
5204 /* This register has already been used in MODE without explicit
5205 truncation. */
5206 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
5207 return true;
5209 /* See if we already satisfy the requirements of MODE. If yes we
5210 can just switch to MODE. */
5211 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
5212 && (num_sign_bit_copies (x, GET_MODE (x))
5213 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
5214 return true;
5216 return false;
5219 /* Initialize non_rtx_starting_operands, which is used to speed up
5220 for_each_rtx. */
5221 void
5222 init_rtlanal (void)
5224 int i;
5225 for (i = 0; i < NUM_RTX_CODE; i++)
5227 const char *format = GET_RTX_FORMAT (i);
5228 const char *first = strpbrk (format, "eEV");
5229 non_rtx_starting_operands[i] = first ? first - format : -1;
5232 init_num_sign_bit_copies_in_rep ();
5235 /* Check whether this is a constant pool constant. */
5236 bool
5237 constant_pool_constant_p (rtx x)
5239 x = avoid_constant_pool_reference (x);
5240 return CONST_DOUBLE_P (x);
5243 /* If M is a bitmask that selects a field of low-order bits within an item but
5244 not the entire word, return the length of the field. Return -1 otherwise.
5245 M is used in machine mode MODE. */
5248 low_bitmask_len (enum machine_mode mode, unsigned HOST_WIDE_INT m)
5250 if (mode != VOIDmode)
5252 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
5253 return -1;
5254 m &= GET_MODE_MASK (mode);
5257 return exact_log2 (m + 1);
5260 /* Return the mode of MEM's address. */
5262 enum machine_mode
5263 get_address_mode (rtx mem)
5265 enum machine_mode mode;
5267 gcc_assert (MEM_P (mem));
5268 mode = GET_MODE (XEXP (mem, 0));
5269 if (mode != VOIDmode)
5270 return mode;
5271 return targetm.addr_space.address_mode (MEM_ADDR_SPACE (mem));
5274 /* Split up a CONST_DOUBLE or integer constant rtx
5275 into two rtx's for single words,
5276 storing in *FIRST the word that comes first in memory in the target
5277 and in *SECOND the other. */
5279 void
5280 split_double (rtx value, rtx *first, rtx *second)
5282 if (CONST_INT_P (value))
5284 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
5286 /* In this case the CONST_INT holds both target words.
5287 Extract the bits from it into two word-sized pieces.
5288 Sign extend each half to HOST_WIDE_INT. */
5289 unsigned HOST_WIDE_INT low, high;
5290 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
5291 unsigned bits_per_word = BITS_PER_WORD;
5293 /* Set sign_bit to the most significant bit of a word. */
5294 sign_bit = 1;
5295 sign_bit <<= bits_per_word - 1;
5297 /* Set mask so that all bits of the word are set. We could
5298 have used 1 << BITS_PER_WORD instead of basing the
5299 calculation on sign_bit. However, on machines where
5300 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
5301 compiler warning, even though the code would never be
5302 executed. */
5303 mask = sign_bit << 1;
5304 mask--;
5306 /* Set sign_extend as any remaining bits. */
5307 sign_extend = ~mask;
5309 /* Pick the lower word and sign-extend it. */
5310 low = INTVAL (value);
5311 low &= mask;
5312 if (low & sign_bit)
5313 low |= sign_extend;
5315 /* Pick the higher word, shifted to the least significant
5316 bits, and sign-extend it. */
5317 high = INTVAL (value);
5318 high >>= bits_per_word - 1;
5319 high >>= 1;
5320 high &= mask;
5321 if (high & sign_bit)
5322 high |= sign_extend;
5324 /* Store the words in the target machine order. */
5325 if (WORDS_BIG_ENDIAN)
5327 *first = GEN_INT (high);
5328 *second = GEN_INT (low);
5330 else
5332 *first = GEN_INT (low);
5333 *second = GEN_INT (high);
5336 else
5338 /* The rule for using CONST_INT for a wider mode
5339 is that we regard the value as signed.
5340 So sign-extend it. */
5341 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
5342 if (WORDS_BIG_ENDIAN)
5344 *first = high;
5345 *second = value;
5347 else
5349 *first = value;
5350 *second = high;
5354 else if (!CONST_DOUBLE_P (value))
5356 if (WORDS_BIG_ENDIAN)
5358 *first = const0_rtx;
5359 *second = value;
5361 else
5363 *first = value;
5364 *second = const0_rtx;
5367 else if (GET_MODE (value) == VOIDmode
5368 /* This is the old way we did CONST_DOUBLE integers. */
5369 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
5371 /* In an integer, the words are defined as most and least significant.
5372 So order them by the target's convention. */
5373 if (WORDS_BIG_ENDIAN)
5375 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
5376 *second = GEN_INT (CONST_DOUBLE_LOW (value));
5378 else
5380 *first = GEN_INT (CONST_DOUBLE_LOW (value));
5381 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
5384 else
5386 REAL_VALUE_TYPE r;
5387 long l[2];
5388 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
5390 /* Note, this converts the REAL_VALUE_TYPE to the target's
5391 format, splits up the floating point double and outputs
5392 exactly 32 bits of it into each of l[0] and l[1] --
5393 not necessarily BITS_PER_WORD bits. */
5394 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
5396 /* If 32 bits is an entire word for the target, but not for the host,
5397 then sign-extend on the host so that the number will look the same
5398 way on the host that it would on the target. See for instance
5399 simplify_unary_operation. The #if is needed to avoid compiler
5400 warnings. */
5402 #if HOST_BITS_PER_LONG > 32
5403 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
5405 if (l[0] & ((long) 1 << 31))
5406 l[0] |= ((long) (-1) << 32);
5407 if (l[1] & ((long) 1 << 31))
5408 l[1] |= ((long) (-1) << 32);
5410 #endif
5412 *first = GEN_INT (l[0]);
5413 *second = GEN_INT (l[1]);