* config/ia64/ia64.md: Define new attribute "empty".
[official-gcc.git] / gcc / stor-layout.c
blobcf97159b5c5f5ca8386b316eb6eadadb33040914
1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1996, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "tree.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "flags.h"
31 #include "function.h"
32 #include "expr.h"
33 #include "toplev.h"
34 #include "ggc.h"
35 #include "target.h"
36 #include "langhooks.h"
38 /* Set to one when set_sizetype has been called. */
39 static int sizetype_set;
41 /* List of types created before set_sizetype has been called. We do not
42 make this a GGC root since we want these nodes to be reclaimed. */
43 static tree early_type_list;
45 /* Data type for the expressions representing sizes of data types.
46 It is the first integer type laid out. */
47 tree sizetype_tab[(int) TYPE_KIND_LAST];
49 /* If nonzero, this is an upper limit on alignment of structure fields.
50 The value is measured in bits. */
51 unsigned int maximum_field_alignment;
53 /* If nonzero, the alignment of a bitstring or (power-)set value, in bits.
54 May be overridden by front-ends. */
55 unsigned int set_alignment = 0;
57 /* Nonzero if all REFERENCE_TYPEs are internal and hence should be
58 allocated in Pmode, not ptr_mode. Set only by internal_reference_types
59 called only by a front end. */
60 static int reference_types_internal = 0;
62 static void finalize_record_size (record_layout_info);
63 static void finalize_type_size (tree);
64 static void place_union_field (record_layout_info, tree);
65 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
66 static int excess_unit_span (HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT,
67 HOST_WIDE_INT, tree);
68 #endif
69 extern void debug_rli (record_layout_info);
71 /* SAVE_EXPRs for sizes of types and decls, waiting to be expanded. */
73 static GTY(()) tree pending_sizes;
75 /* Show that REFERENCE_TYPES are internal and should be Pmode. Called only
76 by front end. */
78 void
79 internal_reference_types (void)
81 reference_types_internal = 1;
84 /* Get a list of all the objects put on the pending sizes list. */
86 tree
87 get_pending_sizes (void)
89 tree chain = pending_sizes;
91 pending_sizes = 0;
92 return chain;
95 /* Add EXPR to the pending sizes list. */
97 void
98 put_pending_size (tree expr)
100 /* Strip any simple arithmetic from EXPR to see if it has an underlying
101 SAVE_EXPR. */
102 expr = skip_simple_arithmetic (expr);
104 if (TREE_CODE (expr) == SAVE_EXPR)
105 pending_sizes = tree_cons (NULL_TREE, expr, pending_sizes);
108 /* Put a chain of objects into the pending sizes list, which must be
109 empty. */
111 void
112 put_pending_sizes (tree chain)
114 if (pending_sizes)
115 abort ();
117 pending_sizes = chain;
120 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
121 to serve as the actual size-expression for a type or decl. */
123 tree
124 variable_size (tree size)
126 tree save;
128 /* If the language-processor is to take responsibility for variable-sized
129 items (e.g., languages which have elaboration procedures like Ada),
130 just return SIZE unchanged. Likewise for self-referential sizes and
131 constant sizes. */
132 if (TREE_CONSTANT (size)
133 || lang_hooks.decls.global_bindings_p () < 0
134 || CONTAINS_PLACEHOLDER_P (size))
135 return size;
137 size = save_expr (size);
139 /* If an array with a variable number of elements is declared, and
140 the elements require destruction, we will emit a cleanup for the
141 array. That cleanup is run both on normal exit from the block
142 and in the exception-handler for the block. Normally, when code
143 is used in both ordinary code and in an exception handler it is
144 `unsaved', i.e., all SAVE_EXPRs are recalculated. However, we do
145 not wish to do that here; the array-size is the same in both
146 places. */
147 save = skip_simple_arithmetic (size);
149 if (cfun && cfun->x_dont_save_pending_sizes_p)
150 /* The front-end doesn't want us to keep a list of the expressions
151 that determine sizes for variable size objects. Trust it. */
152 return size;
154 if (lang_hooks.decls.global_bindings_p ())
156 if (TREE_CONSTANT (size))
157 error ("type size can't be explicitly evaluated");
158 else
159 error ("variable-size type declared outside of any function");
161 return size_one_node;
164 put_pending_size (save);
166 return size;
169 #ifndef MAX_FIXED_MODE_SIZE
170 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (DImode)
171 #endif
173 /* Return the machine mode to use for a nonscalar of SIZE bits. The
174 mode must be in class CLASS, and have exactly that many value bits;
175 it may have padding as well. If LIMIT is nonzero, modes of wider
176 than MAX_FIXED_MODE_SIZE will not be used. */
178 enum machine_mode
179 mode_for_size (unsigned int size, enum mode_class class, int limit)
181 enum machine_mode mode;
183 if (limit && size > MAX_FIXED_MODE_SIZE)
184 return BLKmode;
186 /* Get the first mode which has this size, in the specified class. */
187 for (mode = GET_CLASS_NARROWEST_MODE (class); mode != VOIDmode;
188 mode = GET_MODE_WIDER_MODE (mode))
189 if (GET_MODE_PRECISION (mode) == size)
190 return mode;
192 return BLKmode;
195 /* Similar, except passed a tree node. */
197 enum machine_mode
198 mode_for_size_tree (tree size, enum mode_class class, int limit)
200 if (TREE_CODE (size) != INTEGER_CST
201 || TREE_OVERFLOW (size)
202 /* What we really want to say here is that the size can fit in a
203 host integer, but we know there's no way we'd find a mode for
204 this many bits, so there's no point in doing the precise test. */
205 || compare_tree_int (size, 1000) > 0)
206 return BLKmode;
207 else
208 return mode_for_size (tree_low_cst (size, 1), class, limit);
211 /* Similar, but never return BLKmode; return the narrowest mode that
212 contains at least the requested number of value bits. */
214 enum machine_mode
215 smallest_mode_for_size (unsigned int size, enum mode_class class)
217 enum machine_mode mode;
219 /* Get the first mode which has at least this size, in the
220 specified class. */
221 for (mode = GET_CLASS_NARROWEST_MODE (class); mode != VOIDmode;
222 mode = GET_MODE_WIDER_MODE (mode))
223 if (GET_MODE_PRECISION (mode) >= size)
224 return mode;
226 abort ();
229 /* Find an integer mode of the exact same size, or BLKmode on failure. */
231 enum machine_mode
232 int_mode_for_mode (enum machine_mode mode)
234 switch (GET_MODE_CLASS (mode))
236 case MODE_INT:
237 case MODE_PARTIAL_INT:
238 break;
240 case MODE_COMPLEX_INT:
241 case MODE_COMPLEX_FLOAT:
242 case MODE_FLOAT:
243 case MODE_VECTOR_INT:
244 case MODE_VECTOR_FLOAT:
245 mode = mode_for_size (GET_MODE_BITSIZE (mode), MODE_INT, 0);
246 break;
248 case MODE_RANDOM:
249 if (mode == BLKmode)
250 break;
252 /* ... fall through ... */
254 case MODE_CC:
255 default:
256 abort ();
259 return mode;
262 /* Return the alignment of MODE. This will be bounded by 1 and
263 BIGGEST_ALIGNMENT. */
265 unsigned int
266 get_mode_alignment (enum machine_mode mode)
268 return MIN (BIGGEST_ALIGNMENT, MAX (1, mode_base_align[mode]*BITS_PER_UNIT));
271 /* Return the value of VALUE, rounded up to a multiple of DIVISOR.
272 This can only be applied to objects of a sizetype. */
274 tree
275 round_up (tree value, int divisor)
277 tree arg = size_int_type (divisor, TREE_TYPE (value));
279 return size_binop (MULT_EXPR, size_binop (CEIL_DIV_EXPR, value, arg), arg);
282 /* Likewise, but round down. */
284 tree
285 round_down (tree value, int divisor)
287 tree arg = size_int_type (divisor, TREE_TYPE (value));
289 return size_binop (MULT_EXPR, size_binop (FLOOR_DIV_EXPR, value, arg), arg);
292 /* Subroutine of layout_decl: Force alignment required for the data type.
293 But if the decl itself wants greater alignment, don't override that. */
295 static inline void
296 do_type_align (tree type, tree decl)
298 if (TYPE_ALIGN (type) > DECL_ALIGN (decl))
300 DECL_ALIGN (decl) = TYPE_ALIGN (type);
301 if (TREE_CODE (decl) == FIELD_DECL)
302 DECL_USER_ALIGN (decl) = TYPE_USER_ALIGN (type);
306 /* Set the size, mode and alignment of a ..._DECL node.
307 TYPE_DECL does need this for C++.
308 Note that LABEL_DECL and CONST_DECL nodes do not need this,
309 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
310 Don't call layout_decl for them.
312 KNOWN_ALIGN is the amount of alignment we can assume this
313 decl has with no special effort. It is relevant only for FIELD_DECLs
314 and depends on the previous fields.
315 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
316 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
317 the record will be aligned to suit. */
319 void
320 layout_decl (tree decl, unsigned int known_align)
322 tree type = TREE_TYPE (decl);
323 enum tree_code code = TREE_CODE (decl);
324 rtx rtl = NULL_RTX;
326 if (code == CONST_DECL)
327 return;
328 else if (code != VAR_DECL && code != PARM_DECL && code != RESULT_DECL
329 && code != TYPE_DECL && code != FIELD_DECL)
330 abort ();
332 rtl = DECL_RTL_IF_SET (decl);
334 if (type == error_mark_node)
335 type = void_type_node;
337 /* Usually the size and mode come from the data type without change,
338 however, the front-end may set the explicit width of the field, so its
339 size may not be the same as the size of its type. This happens with
340 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
341 also happens with other fields. For example, the C++ front-end creates
342 zero-sized fields corresponding to empty base classes, and depends on
343 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
344 size in bytes from the size in bits. If we have already set the mode,
345 don't set it again since we can be called twice for FIELD_DECLs. */
347 DECL_UNSIGNED (decl) = TYPE_UNSIGNED (type);
348 if (DECL_MODE (decl) == VOIDmode)
349 DECL_MODE (decl) = TYPE_MODE (type);
351 if (DECL_SIZE (decl) == 0)
353 DECL_SIZE (decl) = TYPE_SIZE (type);
354 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
356 else if (DECL_SIZE_UNIT (decl) == 0)
357 DECL_SIZE_UNIT (decl)
358 = convert (sizetype, size_binop (CEIL_DIV_EXPR, DECL_SIZE (decl),
359 bitsize_unit_node));
361 if (code != FIELD_DECL)
362 /* For non-fields, update the alignment from the type. */
363 do_type_align (type, decl);
364 else
365 /* For fields, it's a bit more complicated... */
367 bool old_user_align = DECL_USER_ALIGN (decl);
369 if (DECL_BIT_FIELD (decl))
371 DECL_BIT_FIELD_TYPE (decl) = type;
373 /* A zero-length bit-field affects the alignment of the next
374 field. */
375 if (integer_zerop (DECL_SIZE (decl))
376 && ! DECL_PACKED (decl)
377 && ! targetm.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl)))
379 #ifdef PCC_BITFIELD_TYPE_MATTERS
380 if (PCC_BITFIELD_TYPE_MATTERS)
381 do_type_align (type, decl);
382 else
383 #endif
385 #ifdef EMPTY_FIELD_BOUNDARY
386 if (EMPTY_FIELD_BOUNDARY > DECL_ALIGN (decl))
388 DECL_ALIGN (decl) = EMPTY_FIELD_BOUNDARY;
389 DECL_USER_ALIGN (decl) = 0;
391 #endif
395 /* See if we can use an ordinary integer mode for a bit-field.
396 Conditions are: a fixed size that is correct for another mode
397 and occupying a complete byte or bytes on proper boundary. */
398 if (TYPE_SIZE (type) != 0
399 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
400 && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT)
402 enum machine_mode xmode
403 = mode_for_size_tree (DECL_SIZE (decl), MODE_INT, 1);
405 if (xmode != BLKmode
406 && (known_align == 0
407 || known_align >= GET_MODE_ALIGNMENT (xmode)))
409 DECL_ALIGN (decl) = MAX (GET_MODE_ALIGNMENT (xmode),
410 DECL_ALIGN (decl));
411 DECL_MODE (decl) = xmode;
412 DECL_BIT_FIELD (decl) = 0;
416 /* Turn off DECL_BIT_FIELD if we won't need it set. */
417 if (TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
418 && known_align >= TYPE_ALIGN (type)
419 && DECL_ALIGN (decl) >= TYPE_ALIGN (type))
420 DECL_BIT_FIELD (decl) = 0;
422 else if (DECL_PACKED (decl) && DECL_USER_ALIGN (decl))
423 /* Don't touch DECL_ALIGN. For other packed fields, go ahead and
424 round up; we'll reduce it again below. We want packing to
425 supersede USER_ALIGN inherited from the type, but defer to
426 alignment explicitly specified on the field decl. */;
427 else
428 do_type_align (type, decl);
430 /* If the field is of variable size, we can't misalign it since we
431 have no way to make a temporary to align the result. But this
432 isn't an issue if the decl is not addressable. Likewise if it
433 is of unknown size.
435 Note that do_type_align may set DECL_USER_ALIGN, so we need to
436 check old_user_align instead. */
437 if (DECL_PACKED (decl)
438 && !old_user_align
439 && (DECL_NONADDRESSABLE_P (decl)
440 || DECL_SIZE_UNIT (decl) == 0
441 || TREE_CODE (DECL_SIZE_UNIT (decl)) == INTEGER_CST))
442 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), BITS_PER_UNIT);
444 if (! DECL_USER_ALIGN (decl) && ! DECL_PACKED (decl))
446 /* Some targets (i.e. i386, VMS) limit struct field alignment
447 to a lower boundary than alignment of variables unless
448 it was overridden by attribute aligned. */
449 #ifdef BIGGEST_FIELD_ALIGNMENT
450 DECL_ALIGN (decl)
451 = MIN (DECL_ALIGN (decl), (unsigned) BIGGEST_FIELD_ALIGNMENT);
452 #endif
453 #ifdef ADJUST_FIELD_ALIGN
454 DECL_ALIGN (decl) = ADJUST_FIELD_ALIGN (decl, DECL_ALIGN (decl));
455 #endif
458 /* Should this be controlled by DECL_USER_ALIGN, too? */
459 if (maximum_field_alignment != 0)
460 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), maximum_field_alignment);
463 /* Evaluate nonconstant size only once, either now or as soon as safe. */
464 if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
465 DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
466 if (DECL_SIZE_UNIT (decl) != 0
467 && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
468 DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
470 /* If requested, warn about definitions of large data objects. */
471 if (warn_larger_than
472 && (code == VAR_DECL || code == PARM_DECL)
473 && ! DECL_EXTERNAL (decl))
475 tree size = DECL_SIZE_UNIT (decl);
477 if (size != 0 && TREE_CODE (size) == INTEGER_CST
478 && compare_tree_int (size, larger_than_size) > 0)
480 int size_as_int = TREE_INT_CST_LOW (size);
482 if (compare_tree_int (size, size_as_int) == 0)
483 warning ("%Jsize of '%D' is %d bytes", decl, decl, size_as_int);
484 else
485 warning ("%Jsize of '%D' is larger than %d bytes",
486 decl, decl, larger_than_size);
490 /* If the RTL was already set, update its mode and mem attributes. */
491 if (rtl)
493 PUT_MODE (rtl, DECL_MODE (decl));
494 SET_DECL_RTL (decl, 0);
495 set_mem_attributes (rtl, decl, 1);
496 SET_DECL_RTL (decl, rtl);
500 /* Hook for a front-end function that can modify the record layout as needed
501 immediately before it is finalized. */
503 void (*lang_adjust_rli) (record_layout_info) = 0;
505 void
506 set_lang_adjust_rli (void (*f) (record_layout_info))
508 lang_adjust_rli = f;
511 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
512 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
513 is to be passed to all other layout functions for this record. It is the
514 responsibility of the caller to call `free' for the storage returned.
515 Note that garbage collection is not permitted until we finish laying
516 out the record. */
518 record_layout_info
519 start_record_layout (tree t)
521 record_layout_info rli = xmalloc (sizeof (struct record_layout_info_s));
523 rli->t = t;
525 /* If the type has a minimum specified alignment (via an attribute
526 declaration, for example) use it -- otherwise, start with a
527 one-byte alignment. */
528 rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
529 rli->unpacked_align = rli->record_align;
530 rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
532 #ifdef STRUCTURE_SIZE_BOUNDARY
533 /* Packed structures don't need to have minimum size. */
534 if (! TYPE_PACKED (t))
535 rli->record_align = MAX (rli->record_align, (unsigned) STRUCTURE_SIZE_BOUNDARY);
536 #endif
538 rli->offset = size_zero_node;
539 rli->bitpos = bitsize_zero_node;
540 rli->prev_field = 0;
541 rli->pending_statics = 0;
542 rli->packed_maybe_necessary = 0;
544 return rli;
547 /* These four routines perform computations that convert between
548 the offset/bitpos forms and byte and bit offsets. */
550 tree
551 bit_from_pos (tree offset, tree bitpos)
553 return size_binop (PLUS_EXPR, bitpos,
554 size_binop (MULT_EXPR, convert (bitsizetype, offset),
555 bitsize_unit_node));
558 tree
559 byte_from_pos (tree offset, tree bitpos)
561 return size_binop (PLUS_EXPR, offset,
562 convert (sizetype,
563 size_binop (TRUNC_DIV_EXPR, bitpos,
564 bitsize_unit_node)));
567 void
568 pos_from_bit (tree *poffset, tree *pbitpos, unsigned int off_align,
569 tree pos)
571 *poffset = size_binop (MULT_EXPR,
572 convert (sizetype,
573 size_binop (FLOOR_DIV_EXPR, pos,
574 bitsize_int (off_align))),
575 size_int (off_align / BITS_PER_UNIT));
576 *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, bitsize_int (off_align));
579 /* Given a pointer to bit and byte offsets and an offset alignment,
580 normalize the offsets so they are within the alignment. */
582 void
583 normalize_offset (tree *poffset, tree *pbitpos, unsigned int off_align)
585 /* If the bit position is now larger than it should be, adjust it
586 downwards. */
587 if (compare_tree_int (*pbitpos, off_align) >= 0)
589 tree extra_aligns = size_binop (FLOOR_DIV_EXPR, *pbitpos,
590 bitsize_int (off_align));
592 *poffset
593 = size_binop (PLUS_EXPR, *poffset,
594 size_binop (MULT_EXPR, convert (sizetype, extra_aligns),
595 size_int (off_align / BITS_PER_UNIT)));
597 *pbitpos
598 = size_binop (FLOOR_MOD_EXPR, *pbitpos, bitsize_int (off_align));
602 /* Print debugging information about the information in RLI. */
604 void
605 debug_rli (record_layout_info rli)
607 print_node_brief (stderr, "type", rli->t, 0);
608 print_node_brief (stderr, "\noffset", rli->offset, 0);
609 print_node_brief (stderr, " bitpos", rli->bitpos, 0);
611 fprintf (stderr, "\naligns: rec = %u, unpack = %u, off = %u\n",
612 rli->record_align, rli->unpacked_align,
613 rli->offset_align);
614 if (rli->packed_maybe_necessary)
615 fprintf (stderr, "packed may be necessary\n");
617 if (rli->pending_statics)
619 fprintf (stderr, "pending statics:\n");
620 debug_tree (rli->pending_statics);
624 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
625 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
627 void
628 normalize_rli (record_layout_info rli)
630 normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
633 /* Returns the size in bytes allocated so far. */
635 tree
636 rli_size_unit_so_far (record_layout_info rli)
638 return byte_from_pos (rli->offset, rli->bitpos);
641 /* Returns the size in bits allocated so far. */
643 tree
644 rli_size_so_far (record_layout_info rli)
646 return bit_from_pos (rli->offset, rli->bitpos);
649 /* FIELD is about to be added to RLI->T. The alignment (in bits) of
650 the next available location is given by KNOWN_ALIGN. Update the
651 variable alignment fields in RLI, and return the alignment to give
652 the FIELD. */
654 unsigned int
655 update_alignment_for_field (record_layout_info rli, tree field,
656 unsigned int known_align)
658 /* The alignment required for FIELD. */
659 unsigned int desired_align;
660 /* The type of this field. */
661 tree type = TREE_TYPE (field);
662 /* True if the field was explicitly aligned by the user. */
663 bool user_align;
664 bool is_bitfield;
666 /* Lay out the field so we know what alignment it needs. */
667 layout_decl (field, known_align);
668 desired_align = DECL_ALIGN (field);
669 user_align = DECL_USER_ALIGN (field);
671 is_bitfield = (type != error_mark_node
672 && DECL_BIT_FIELD_TYPE (field)
673 && ! integer_zerop (TYPE_SIZE (type)));
675 /* Record must have at least as much alignment as any field.
676 Otherwise, the alignment of the field within the record is
677 meaningless. */
678 if (is_bitfield && targetm.ms_bitfield_layout_p (rli->t))
680 /* Here, the alignment of the underlying type of a bitfield can
681 affect the alignment of a record; even a zero-sized field
682 can do this. The alignment should be to the alignment of
683 the type, except that for zero-size bitfields this only
684 applies if there was an immediately prior, nonzero-size
685 bitfield. (That's the way it is, experimentally.) */
686 if (! integer_zerop (DECL_SIZE (field))
687 ? ! DECL_PACKED (field)
688 : (rli->prev_field
689 && DECL_BIT_FIELD_TYPE (rli->prev_field)
690 && ! integer_zerop (DECL_SIZE (rli->prev_field))))
692 unsigned int type_align = TYPE_ALIGN (type);
693 type_align = MAX (type_align, desired_align);
694 if (maximum_field_alignment != 0)
695 type_align = MIN (type_align, maximum_field_alignment);
696 rli->record_align = MAX (rli->record_align, type_align);
697 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
700 #ifdef PCC_BITFIELD_TYPE_MATTERS
701 else if (is_bitfield && PCC_BITFIELD_TYPE_MATTERS)
703 /* Named bit-fields cause the entire structure to have the
704 alignment implied by their type. Some targets also apply the same
705 rules to unnamed bitfields. */
706 if (DECL_NAME (field) != 0
707 || targetm.align_anon_bitfield ())
709 unsigned int type_align = TYPE_ALIGN (type);
711 #ifdef ADJUST_FIELD_ALIGN
712 if (! TYPE_USER_ALIGN (type))
713 type_align = ADJUST_FIELD_ALIGN (field, type_align);
714 #endif
716 if (maximum_field_alignment != 0)
717 type_align = MIN (type_align, maximum_field_alignment);
718 else if (DECL_PACKED (field))
719 type_align = MIN (type_align, BITS_PER_UNIT);
721 /* The alignment of the record is increased to the maximum
722 of the current alignment, the alignment indicated on the
723 field (i.e., the alignment specified by an __aligned__
724 attribute), and the alignment indicated by the type of
725 the field. */
726 rli->record_align = MAX (rli->record_align, desired_align);
727 rli->record_align = MAX (rli->record_align, type_align);
729 if (warn_packed)
730 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
731 user_align |= TYPE_USER_ALIGN (type);
734 #endif
735 else
737 rli->record_align = MAX (rli->record_align, desired_align);
738 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
741 TYPE_USER_ALIGN (rli->t) |= user_align;
743 return desired_align;
746 /* Called from place_field to handle unions. */
748 static void
749 place_union_field (record_layout_info rli, tree field)
751 update_alignment_for_field (rli, field, /*known_align=*/0);
753 DECL_FIELD_OFFSET (field) = size_zero_node;
754 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
755 SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
757 /* We assume the union's size will be a multiple of a byte so we don't
758 bother with BITPOS. */
759 if (TREE_CODE (rli->t) == UNION_TYPE)
760 rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
761 else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
762 rli->offset = fold (build (COND_EXPR, sizetype,
763 DECL_QUALIFIER (field),
764 DECL_SIZE_UNIT (field), rli->offset));
767 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
768 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
769 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
770 units of alignment than the underlying TYPE. */
771 static int
772 excess_unit_span (HOST_WIDE_INT byte_offset, HOST_WIDE_INT bit_offset,
773 HOST_WIDE_INT size, HOST_WIDE_INT align, tree type)
775 /* Note that the calculation of OFFSET might overflow; we calculate it so
776 that we still get the right result as long as ALIGN is a power of two. */
777 unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;
779 offset = offset % align;
780 return ((offset + size + align - 1) / align
781 > ((unsigned HOST_WIDE_INT) tree_low_cst (TYPE_SIZE (type), 1)
782 / align));
784 #endif
786 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
787 is a FIELD_DECL to be added after those fields already present in
788 T. (FIELD is not actually added to the TYPE_FIELDS list here;
789 callers that desire that behavior must manually perform that step.) */
791 void
792 place_field (record_layout_info rli, tree field)
794 /* The alignment required for FIELD. */
795 unsigned int desired_align;
796 /* The alignment FIELD would have if we just dropped it into the
797 record as it presently stands. */
798 unsigned int known_align;
799 unsigned int actual_align;
800 /* The type of this field. */
801 tree type = TREE_TYPE (field);
803 if (TREE_CODE (field) == ERROR_MARK || TREE_CODE (type) == ERROR_MARK)
804 return;
806 /* If FIELD is static, then treat it like a separate variable, not
807 really like a structure field. If it is a FUNCTION_DECL, it's a
808 method. In both cases, all we do is lay out the decl, and we do
809 it *after* the record is laid out. */
810 if (TREE_CODE (field) == VAR_DECL)
812 rli->pending_statics = tree_cons (NULL_TREE, field,
813 rli->pending_statics);
814 return;
817 /* Enumerators and enum types which are local to this class need not
818 be laid out. Likewise for initialized constant fields. */
819 else if (TREE_CODE (field) != FIELD_DECL)
820 return;
822 /* Unions are laid out very differently than records, so split
823 that code off to another function. */
824 else if (TREE_CODE (rli->t) != RECORD_TYPE)
826 place_union_field (rli, field);
827 return;
830 /* Work out the known alignment so far. Note that A & (-A) is the
831 value of the least-significant bit in A that is one. */
832 if (! integer_zerop (rli->bitpos))
833 known_align = (tree_low_cst (rli->bitpos, 1)
834 & - tree_low_cst (rli->bitpos, 1));
835 else if (integer_zerop (rli->offset))
836 known_align = BIGGEST_ALIGNMENT;
837 else if (host_integerp (rli->offset, 1))
838 known_align = (BITS_PER_UNIT
839 * (tree_low_cst (rli->offset, 1)
840 & - tree_low_cst (rli->offset, 1)));
841 else
842 known_align = rli->offset_align;
844 desired_align = update_alignment_for_field (rli, field, known_align);
846 if (warn_packed && DECL_PACKED (field))
848 if (known_align >= TYPE_ALIGN (type))
850 if (TYPE_ALIGN (type) > desired_align)
852 if (STRICT_ALIGNMENT)
853 warning ("%Jpacked attribute causes inefficient alignment "
854 "for '%D'", field, field);
855 else
856 warning ("%Jpacked attribute is unnecessary for '%D'",
857 field, field);
860 else
861 rli->packed_maybe_necessary = 1;
864 /* Does this field automatically have alignment it needs by virtue
865 of the fields that precede it and the record's own alignment? */
866 if (known_align < desired_align)
868 /* No, we need to skip space before this field.
869 Bump the cumulative size to multiple of field alignment. */
871 if (warn_padded)
872 warning ("%Jpadding struct to align '%D'", field, field);
874 /* If the alignment is still within offset_align, just align
875 the bit position. */
876 if (desired_align < rli->offset_align)
877 rli->bitpos = round_up (rli->bitpos, desired_align);
878 else
880 /* First adjust OFFSET by the partial bits, then align. */
881 rli->offset
882 = size_binop (PLUS_EXPR, rli->offset,
883 convert (sizetype,
884 size_binop (CEIL_DIV_EXPR, rli->bitpos,
885 bitsize_unit_node)));
886 rli->bitpos = bitsize_zero_node;
888 rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
891 if (! TREE_CONSTANT (rli->offset))
892 rli->offset_align = desired_align;
896 /* Handle compatibility with PCC. Note that if the record has any
897 variable-sized fields, we need not worry about compatibility. */
898 #ifdef PCC_BITFIELD_TYPE_MATTERS
899 if (PCC_BITFIELD_TYPE_MATTERS
900 && ! targetm.ms_bitfield_layout_p (rli->t)
901 && TREE_CODE (field) == FIELD_DECL
902 && type != error_mark_node
903 && DECL_BIT_FIELD (field)
904 && ! DECL_PACKED (field)
905 && maximum_field_alignment == 0
906 && ! integer_zerop (DECL_SIZE (field))
907 && host_integerp (DECL_SIZE (field), 1)
908 && host_integerp (rli->offset, 1)
909 && host_integerp (TYPE_SIZE (type), 1))
911 unsigned int type_align = TYPE_ALIGN (type);
912 tree dsize = DECL_SIZE (field);
913 HOST_WIDE_INT field_size = tree_low_cst (dsize, 1);
914 HOST_WIDE_INT offset = tree_low_cst (rli->offset, 0);
915 HOST_WIDE_INT bit_offset = tree_low_cst (rli->bitpos, 0);
917 #ifdef ADJUST_FIELD_ALIGN
918 if (! TYPE_USER_ALIGN (type))
919 type_align = ADJUST_FIELD_ALIGN (field, type_align);
920 #endif
922 /* A bit field may not span more units of alignment of its type
923 than its type itself. Advance to next boundary if necessary. */
924 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
925 rli->bitpos = round_up (rli->bitpos, type_align);
927 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
929 #endif
931 #ifdef BITFIELD_NBYTES_LIMITED
932 if (BITFIELD_NBYTES_LIMITED
933 && ! targetm.ms_bitfield_layout_p (rli->t)
934 && TREE_CODE (field) == FIELD_DECL
935 && type != error_mark_node
936 && DECL_BIT_FIELD_TYPE (field)
937 && ! DECL_PACKED (field)
938 && ! integer_zerop (DECL_SIZE (field))
939 && host_integerp (DECL_SIZE (field), 1)
940 && host_integerp (rli->offset, 1)
941 && host_integerp (TYPE_SIZE (type), 1))
943 unsigned int type_align = TYPE_ALIGN (type);
944 tree dsize = DECL_SIZE (field);
945 HOST_WIDE_INT field_size = tree_low_cst (dsize, 1);
946 HOST_WIDE_INT offset = tree_low_cst (rli->offset, 0);
947 HOST_WIDE_INT bit_offset = tree_low_cst (rli->bitpos, 0);
949 #ifdef ADJUST_FIELD_ALIGN
950 if (! TYPE_USER_ALIGN (type))
951 type_align = ADJUST_FIELD_ALIGN (field, type_align);
952 #endif
954 if (maximum_field_alignment != 0)
955 type_align = MIN (type_align, maximum_field_alignment);
956 /* ??? This test is opposite the test in the containing if
957 statement, so this code is unreachable currently. */
958 else if (DECL_PACKED (field))
959 type_align = MIN (type_align, BITS_PER_UNIT);
961 /* A bit field may not span the unit of alignment of its type.
962 Advance to next boundary if necessary. */
963 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
964 rli->bitpos = round_up (rli->bitpos, type_align);
966 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
968 #endif
970 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
971 A subtlety:
972 When a bit field is inserted into a packed record, the whole
973 size of the underlying type is used by one or more same-size
974 adjacent bitfields. (That is, if its long:3, 32 bits is
975 used in the record, and any additional adjacent long bitfields are
976 packed into the same chunk of 32 bits. However, if the size
977 changes, a new field of that size is allocated.) In an unpacked
978 record, this is the same as using alignment, but not equivalent
979 when packing.
981 Note: for compatibility, we use the type size, not the type alignment
982 to determine alignment, since that matches the documentation */
984 if (targetm.ms_bitfield_layout_p (rli->t)
985 && ((DECL_BIT_FIELD_TYPE (field) && ! DECL_PACKED (field))
986 || (rli->prev_field && ! DECL_PACKED (rli->prev_field))))
988 /* At this point, either the prior or current are bitfields,
989 (possibly both), and we're dealing with MS packing. */
990 tree prev_saved = rli->prev_field;
992 /* Is the prior field a bitfield? If so, handle "runs" of same
993 type size fields. */
994 if (rli->prev_field /* necessarily a bitfield if it exists. */)
996 /* If both are bitfields, nonzero, and the same size, this is
997 the middle of a run. Zero declared size fields are special
998 and handled as "end of run". (Note: it's nonzero declared
999 size, but equal type sizes!) (Since we know that both
1000 the current and previous fields are bitfields by the
1001 time we check it, DECL_SIZE must be present for both.) */
1002 if (DECL_BIT_FIELD_TYPE (field)
1003 && !integer_zerop (DECL_SIZE (field))
1004 && !integer_zerop (DECL_SIZE (rli->prev_field))
1005 && host_integerp (DECL_SIZE (rli->prev_field), 0)
1006 && host_integerp (TYPE_SIZE (type), 0)
1007 && simple_cst_equal (TYPE_SIZE (type),
1008 TYPE_SIZE (TREE_TYPE (rli->prev_field))))
1010 /* We're in the middle of a run of equal type size fields; make
1011 sure we realign if we run out of bits. (Not decl size,
1012 type size!) */
1013 HOST_WIDE_INT bitsize = tree_low_cst (DECL_SIZE (field), 0);
1015 if (rli->remaining_in_alignment < bitsize)
1017 /* out of bits; bump up to next 'word'. */
1018 rli->offset = DECL_FIELD_OFFSET (rli->prev_field);
1019 rli->bitpos
1020 = size_binop (PLUS_EXPR, TYPE_SIZE (type),
1021 DECL_FIELD_BIT_OFFSET (rli->prev_field));
1022 rli->prev_field = field;
1023 rli->remaining_in_alignment
1024 = tree_low_cst (TYPE_SIZE (type), 0);
1027 rli->remaining_in_alignment -= bitsize;
1029 else
1031 /* End of a run: if leaving a run of bitfields of the same type
1032 size, we have to "use up" the rest of the bits of the type
1033 size.
1035 Compute the new position as the sum of the size for the prior
1036 type and where we first started working on that type.
1037 Note: since the beginning of the field was aligned then
1038 of course the end will be too. No round needed. */
1040 if (!integer_zerop (DECL_SIZE (rli->prev_field)))
1042 tree type_size = TYPE_SIZE (TREE_TYPE (rli->prev_field));
1044 rli->bitpos
1045 = size_binop (PLUS_EXPR, type_size,
1046 DECL_FIELD_BIT_OFFSET (rli->prev_field));
1048 else
1049 /* We "use up" size zero fields; the code below should behave
1050 as if the prior field was not a bitfield. */
1051 prev_saved = NULL;
1053 /* Cause a new bitfield to be captured, either this time (if
1054 currently a bitfield) or next time we see one. */
1055 if (!DECL_BIT_FIELD_TYPE(field)
1056 || integer_zerop (DECL_SIZE (field)))
1057 rli->prev_field = NULL;
1060 normalize_rli (rli);
1063 /* If we're starting a new run of same size type bitfields
1064 (or a run of non-bitfields), set up the "first of the run"
1065 fields.
1067 That is, if the current field is not a bitfield, or if there
1068 was a prior bitfield the type sizes differ, or if there wasn't
1069 a prior bitfield the size of the current field is nonzero.
1071 Note: we must be sure to test ONLY the type size if there was
1072 a prior bitfield and ONLY for the current field being zero if
1073 there wasn't. */
1075 if (!DECL_BIT_FIELD_TYPE (field)
1076 || ( prev_saved != NULL
1077 ? !simple_cst_equal (TYPE_SIZE (type),
1078 TYPE_SIZE (TREE_TYPE (prev_saved)))
1079 : !integer_zerop (DECL_SIZE (field)) ))
1081 /* Never smaller than a byte for compatibility. */
1082 unsigned int type_align = BITS_PER_UNIT;
1084 /* (When not a bitfield), we could be seeing a flex array (with
1085 no DECL_SIZE). Since we won't be using remaining_in_alignment
1086 until we see a bitfield (and come by here again) we just skip
1087 calculating it. */
1088 if (DECL_SIZE (field) != NULL
1089 && host_integerp (TYPE_SIZE (TREE_TYPE (field)), 0)
1090 && host_integerp (DECL_SIZE (field), 0))
1091 rli->remaining_in_alignment
1092 = tree_low_cst (TYPE_SIZE (TREE_TYPE(field)), 0)
1093 - tree_low_cst (DECL_SIZE (field), 0);
1095 /* Now align (conventionally) for the new type. */
1096 if (!DECL_PACKED(field))
1097 type_align = MAX(TYPE_ALIGN (type), type_align);
1099 if (prev_saved
1100 && DECL_BIT_FIELD_TYPE (prev_saved)
1101 /* If the previous bit-field is zero-sized, we've already
1102 accounted for its alignment needs (or ignored it, if
1103 appropriate) while placing it. */
1104 && ! integer_zerop (DECL_SIZE (prev_saved)))
1105 type_align = MAX (type_align,
1106 TYPE_ALIGN (TREE_TYPE (prev_saved)));
1108 if (maximum_field_alignment != 0)
1109 type_align = MIN (type_align, maximum_field_alignment);
1111 rli->bitpos = round_up (rli->bitpos, type_align);
1113 /* If we really aligned, don't allow subsequent bitfields
1114 to undo that. */
1115 rli->prev_field = NULL;
1119 /* Offset so far becomes the position of this field after normalizing. */
1120 normalize_rli (rli);
1121 DECL_FIELD_OFFSET (field) = rli->offset;
1122 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1123 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1125 /* If this field ended up more aligned than we thought it would be (we
1126 approximate this by seeing if its position changed), lay out the field
1127 again; perhaps we can use an integral mode for it now. */
1128 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
1129 actual_align = (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
1130 & - tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1));
1131 else if (integer_zerop (DECL_FIELD_OFFSET (field)))
1132 actual_align = BIGGEST_ALIGNMENT;
1133 else if (host_integerp (DECL_FIELD_OFFSET (field), 1))
1134 actual_align = (BITS_PER_UNIT
1135 * (tree_low_cst (DECL_FIELD_OFFSET (field), 1)
1136 & - tree_low_cst (DECL_FIELD_OFFSET (field), 1)));
1137 else
1138 actual_align = DECL_OFFSET_ALIGN (field);
1140 if (known_align != actual_align)
1141 layout_decl (field, actual_align);
1143 /* Only the MS bitfields use this. */
1144 if (rli->prev_field == NULL && DECL_BIT_FIELD_TYPE(field))
1145 rli->prev_field = field;
1147 /* Now add size of this field to the size of the record. If the size is
1148 not constant, treat the field as being a multiple of bytes and just
1149 adjust the offset, resetting the bit position. Otherwise, apportion the
1150 size amongst the bit position and offset. First handle the case of an
1151 unspecified size, which can happen when we have an invalid nested struct
1152 definition, such as struct j { struct j { int i; } }. The error message
1153 is printed in finish_struct. */
1154 if (DECL_SIZE (field) == 0)
1155 /* Do nothing. */;
1156 else if (TREE_CODE (DECL_SIZE_UNIT (field)) != INTEGER_CST
1157 || TREE_CONSTANT_OVERFLOW (DECL_SIZE_UNIT (field)))
1159 rli->offset
1160 = size_binop (PLUS_EXPR, rli->offset,
1161 convert (sizetype,
1162 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1163 bitsize_unit_node)));
1164 rli->offset
1165 = size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1166 rli->bitpos = bitsize_zero_node;
1167 rli->offset_align = MIN (rli->offset_align, desired_align);
1169 else
1171 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1172 normalize_rli (rli);
1176 /* Assuming that all the fields have been laid out, this function uses
1177 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1178 indicated by RLI. */
1180 static void
1181 finalize_record_size (record_layout_info rli)
1183 tree unpadded_size, unpadded_size_unit;
1185 /* Now we want just byte and bit offsets, so set the offset alignment
1186 to be a byte and then normalize. */
1187 rli->offset_align = BITS_PER_UNIT;
1188 normalize_rli (rli);
1190 /* Determine the desired alignment. */
1191 #ifdef ROUND_TYPE_ALIGN
1192 TYPE_ALIGN (rli->t) = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
1193 rli->record_align);
1194 #else
1195 TYPE_ALIGN (rli->t) = MAX (TYPE_ALIGN (rli->t), rli->record_align);
1196 #endif
1198 /* Compute the size so far. Be sure to allow for extra bits in the
1199 size in bytes. We have guaranteed above that it will be no more
1200 than a single byte. */
1201 unpadded_size = rli_size_so_far (rli);
1202 unpadded_size_unit = rli_size_unit_so_far (rli);
1203 if (! integer_zerop (rli->bitpos))
1204 unpadded_size_unit
1205 = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
1207 /* Round the size up to be a multiple of the required alignment. */
1208 TYPE_SIZE (rli->t) = round_up (unpadded_size, TYPE_ALIGN (rli->t));
1209 TYPE_SIZE_UNIT (rli->t) = round_up (unpadded_size_unit,
1210 TYPE_ALIGN (rli->t) / BITS_PER_UNIT);
1212 if (warn_padded && TREE_CONSTANT (unpadded_size)
1213 && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0)
1214 warning ("padding struct size to alignment boundary");
1216 if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
1217 && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
1218 && TREE_CONSTANT (unpadded_size))
1220 tree unpacked_size;
1222 #ifdef ROUND_TYPE_ALIGN
1223 rli->unpacked_align
1224 = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
1225 #else
1226 rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
1227 #endif
1229 unpacked_size = round_up (TYPE_SIZE (rli->t), rli->unpacked_align);
1230 if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
1232 TYPE_PACKED (rli->t) = 0;
1234 if (TYPE_NAME (rli->t))
1236 const char *name;
1238 if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
1239 name = IDENTIFIER_POINTER (TYPE_NAME (rli->t));
1240 else
1241 name = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (rli->t)));
1243 if (STRICT_ALIGNMENT)
1244 warning ("packed attribute causes inefficient alignment for `%s'", name);
1245 else
1246 warning ("packed attribute is unnecessary for `%s'", name);
1248 else
1250 if (STRICT_ALIGNMENT)
1251 warning ("packed attribute causes inefficient alignment");
1252 else
1253 warning ("packed attribute is unnecessary");
1259 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1261 void
1262 compute_record_mode (tree type)
1264 tree field;
1265 enum machine_mode mode = VOIDmode;
1267 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1268 However, if possible, we use a mode that fits in a register
1269 instead, in order to allow for better optimization down the
1270 line. */
1271 TYPE_MODE (type) = BLKmode;
1273 if (! host_integerp (TYPE_SIZE (type), 1))
1274 return;
1276 /* A record which has any BLKmode members must itself be
1277 BLKmode; it can't go in a register. Unless the member is
1278 BLKmode only because it isn't aligned. */
1279 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1281 if (TREE_CODE (field) != FIELD_DECL)
1282 continue;
1284 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
1285 || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
1286 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field))
1287 && !(TYPE_SIZE (TREE_TYPE (field)) != 0
1288 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))))
1289 || ! host_integerp (bit_position (field), 1)
1290 || DECL_SIZE (field) == 0
1291 || ! host_integerp (DECL_SIZE (field), 1))
1292 return;
1294 /* If this field is the whole struct, remember its mode so
1295 that, say, we can put a double in a class into a DF
1296 register instead of forcing it to live in the stack. */
1297 if (simple_cst_equal (TYPE_SIZE (type), DECL_SIZE (field)))
1298 mode = DECL_MODE (field);
1300 #ifdef MEMBER_TYPE_FORCES_BLK
1301 /* With some targets, eg. c4x, it is sub-optimal
1302 to access an aligned BLKmode structure as a scalar. */
1304 if (MEMBER_TYPE_FORCES_BLK (field, mode))
1305 return;
1306 #endif /* MEMBER_TYPE_FORCES_BLK */
1309 /* If we only have one real field; use its mode. This only applies to
1310 RECORD_TYPE. This does not apply to unions. */
1311 if (TREE_CODE (type) == RECORD_TYPE && mode != VOIDmode)
1312 TYPE_MODE (type) = mode;
1313 else
1314 TYPE_MODE (type) = mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1);
1316 /* If structure's known alignment is less than what the scalar
1317 mode would need, and it matters, then stick with BLKmode. */
1318 if (TYPE_MODE (type) != BLKmode
1319 && STRICT_ALIGNMENT
1320 && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
1321 || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (TYPE_MODE (type))))
1323 /* If this is the only reason this type is BLKmode, then
1324 don't force containing types to be BLKmode. */
1325 TYPE_NO_FORCE_BLK (type) = 1;
1326 TYPE_MODE (type) = BLKmode;
1330 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1331 out. */
1333 static void
1334 finalize_type_size (tree type)
1336 /* Normally, use the alignment corresponding to the mode chosen.
1337 However, where strict alignment is not required, avoid
1338 over-aligning structures, since most compilers do not do this
1339 alignment. */
1341 if (TYPE_MODE (type) != BLKmode && TYPE_MODE (type) != VOIDmode
1342 && (STRICT_ALIGNMENT
1343 || (TREE_CODE (type) != RECORD_TYPE && TREE_CODE (type) != UNION_TYPE
1344 && TREE_CODE (type) != QUAL_UNION_TYPE
1345 && TREE_CODE (type) != ARRAY_TYPE)))
1347 TYPE_ALIGN (type) = GET_MODE_ALIGNMENT (TYPE_MODE (type));
1348 TYPE_USER_ALIGN (type) = 0;
1351 /* Do machine-dependent extra alignment. */
1352 #ifdef ROUND_TYPE_ALIGN
1353 TYPE_ALIGN (type)
1354 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT);
1355 #endif
1357 /* If we failed to find a simple way to calculate the unit size
1358 of the type, find it by division. */
1359 if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
1360 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1361 result will fit in sizetype. We will get more efficient code using
1362 sizetype, so we force a conversion. */
1363 TYPE_SIZE_UNIT (type)
1364 = convert (sizetype,
1365 size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
1366 bitsize_unit_node));
1368 if (TYPE_SIZE (type) != 0)
1370 TYPE_SIZE (type) = round_up (TYPE_SIZE (type), TYPE_ALIGN (type));
1371 TYPE_SIZE_UNIT (type)
1372 = round_up (TYPE_SIZE_UNIT (type), TYPE_ALIGN (type) / BITS_PER_UNIT);
1375 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1376 if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1377 TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
1378 if (TYPE_SIZE_UNIT (type) != 0
1379 && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
1380 TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
1382 /* Also layout any other variants of the type. */
1383 if (TYPE_NEXT_VARIANT (type)
1384 || type != TYPE_MAIN_VARIANT (type))
1386 tree variant;
1387 /* Record layout info of this variant. */
1388 tree size = TYPE_SIZE (type);
1389 tree size_unit = TYPE_SIZE_UNIT (type);
1390 unsigned int align = TYPE_ALIGN (type);
1391 unsigned int user_align = TYPE_USER_ALIGN (type);
1392 enum machine_mode mode = TYPE_MODE (type);
1394 /* Copy it into all variants. */
1395 for (variant = TYPE_MAIN_VARIANT (type);
1396 variant != 0;
1397 variant = TYPE_NEXT_VARIANT (variant))
1399 TYPE_SIZE (variant) = size;
1400 TYPE_SIZE_UNIT (variant) = size_unit;
1401 TYPE_ALIGN (variant) = align;
1402 TYPE_USER_ALIGN (variant) = user_align;
1403 TYPE_MODE (variant) = mode;
1408 /* Do all of the work required to layout the type indicated by RLI,
1409 once the fields have been laid out. This function will call `free'
1410 for RLI, unless FREE_P is false. Passing a value other than false
1411 for FREE_P is bad practice; this option only exists to support the
1412 G++ 3.2 ABI. */
1414 void
1415 finish_record_layout (record_layout_info rli, int free_p)
1417 /* Compute the final size. */
1418 finalize_record_size (rli);
1420 /* Compute the TYPE_MODE for the record. */
1421 compute_record_mode (rli->t);
1423 /* Perform any last tweaks to the TYPE_SIZE, etc. */
1424 finalize_type_size (rli->t);
1426 /* Lay out any static members. This is done now because their type
1427 may use the record's type. */
1428 while (rli->pending_statics)
1430 layout_decl (TREE_VALUE (rli->pending_statics), 0);
1431 rli->pending_statics = TREE_CHAIN (rli->pending_statics);
1434 /* Clean up. */
1435 if (free_p)
1436 free (rli);
1440 /* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
1441 NAME, its fields are chained in reverse on FIELDS.
1443 If ALIGN_TYPE is non-null, it is given the same alignment as
1444 ALIGN_TYPE. */
1446 void
1447 finish_builtin_struct (tree type, const char *name, tree fields,
1448 tree align_type)
1450 tree tail, next;
1452 for (tail = NULL_TREE; fields; tail = fields, fields = next)
1454 DECL_FIELD_CONTEXT (fields) = type;
1455 next = TREE_CHAIN (fields);
1456 TREE_CHAIN (fields) = tail;
1458 TYPE_FIELDS (type) = tail;
1460 if (align_type)
1462 TYPE_ALIGN (type) = TYPE_ALIGN (align_type);
1463 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
1466 layout_type (type);
1467 #if 0 /* not yet, should get fixed properly later */
1468 TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
1469 #else
1470 TYPE_NAME (type) = build_decl (TYPE_DECL, get_identifier (name), type);
1471 #endif
1472 TYPE_STUB_DECL (type) = TYPE_NAME (type);
1473 layout_decl (TYPE_NAME (type), 0);
1476 /* Calculate the mode, size, and alignment for TYPE.
1477 For an array type, calculate the element separation as well.
1478 Record TYPE on the chain of permanent or temporary types
1479 so that dbxout will find out about it.
1481 TYPE_SIZE of a type is nonzero if the type has been laid out already.
1482 layout_type does nothing on such a type.
1484 If the type is incomplete, its TYPE_SIZE remains zero. */
1486 void
1487 layout_type (tree type)
1489 if (type == 0)
1490 abort ();
1492 if (type == error_mark_node)
1493 return;
1495 /* Do nothing if type has been laid out before. */
1496 if (TYPE_SIZE (type))
1497 return;
1499 switch (TREE_CODE (type))
1501 case LANG_TYPE:
1502 /* This kind of type is the responsibility
1503 of the language-specific code. */
1504 abort ();
1506 case BOOLEAN_TYPE: /* Used for Java, Pascal, and Chill. */
1507 if (TYPE_PRECISION (type) == 0)
1508 TYPE_PRECISION (type) = 1; /* default to one byte/boolean. */
1510 /* ... fall through ... */
1512 case INTEGER_TYPE:
1513 case ENUMERAL_TYPE:
1514 case CHAR_TYPE:
1515 if (TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST
1516 && tree_int_cst_sgn (TYPE_MIN_VALUE (type)) >= 0)
1517 TYPE_UNSIGNED (type) = 1;
1519 TYPE_MODE (type) = smallest_mode_for_size (TYPE_PRECISION (type),
1520 MODE_INT);
1521 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1522 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1523 break;
1525 case REAL_TYPE:
1526 TYPE_MODE (type) = mode_for_size (TYPE_PRECISION (type), MODE_FLOAT, 0);
1527 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1528 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1529 break;
1531 case COMPLEX_TYPE:
1532 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
1533 TYPE_MODE (type)
1534 = mode_for_size (2 * TYPE_PRECISION (TREE_TYPE (type)),
1535 (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE
1536 ? MODE_COMPLEX_FLOAT : MODE_COMPLEX_INT),
1538 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1539 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1540 break;
1542 case VECTOR_TYPE:
1543 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
1544 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1545 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1546 break;
1548 case VOID_TYPE:
1549 /* This is an incomplete type and so doesn't have a size. */
1550 TYPE_ALIGN (type) = 1;
1551 TYPE_USER_ALIGN (type) = 0;
1552 TYPE_MODE (type) = VOIDmode;
1553 break;
1555 case OFFSET_TYPE:
1556 TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
1557 TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE / BITS_PER_UNIT);
1558 /* A pointer might be MODE_PARTIAL_INT,
1559 but ptrdiff_t must be integral. */
1560 TYPE_MODE (type) = mode_for_size (POINTER_SIZE, MODE_INT, 0);
1561 break;
1563 case FUNCTION_TYPE:
1564 case METHOD_TYPE:
1565 /* It's hard to see what the mode and size of a function ought to
1566 be, but we do know the alignment is FUNCTION_BOUNDARY, so
1567 make it consistent with that. */
1568 TYPE_MODE (type) = mode_for_size (FUNCTION_BOUNDARY, MODE_INT, 0);
1569 TYPE_SIZE (type) = bitsize_int (FUNCTION_BOUNDARY);
1570 TYPE_SIZE_UNIT (type) = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
1571 break;
1573 case POINTER_TYPE:
1574 case REFERENCE_TYPE:
1577 enum machine_mode mode = ((TREE_CODE (type) == REFERENCE_TYPE
1578 && reference_types_internal)
1579 ? Pmode : TYPE_MODE (type));
1581 int nbits = GET_MODE_BITSIZE (mode);
1583 TYPE_SIZE (type) = bitsize_int (nbits);
1584 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
1585 TYPE_UNSIGNED (type) = 1;
1586 TYPE_PRECISION (type) = nbits;
1588 break;
1590 case ARRAY_TYPE:
1592 tree index = TYPE_DOMAIN (type);
1593 tree element = TREE_TYPE (type);
1595 build_pointer_type (element);
1597 /* We need to know both bounds in order to compute the size. */
1598 if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
1599 && TYPE_SIZE (element))
1601 tree ub = TYPE_MAX_VALUE (index);
1602 tree lb = TYPE_MIN_VALUE (index);
1603 tree length;
1604 tree element_size;
1606 /* The initial subtraction should happen in the original type so
1607 that (possible) negative values are handled appropriately. */
1608 length = size_binop (PLUS_EXPR, size_one_node,
1609 convert (sizetype,
1610 fold (build (MINUS_EXPR,
1611 TREE_TYPE (lb),
1612 ub, lb))));
1614 /* Special handling for arrays of bits (for Chill). */
1615 element_size = TYPE_SIZE (element);
1616 if (TYPE_PACKED (type) && INTEGRAL_TYPE_P (element)
1617 && (integer_zerop (TYPE_MAX_VALUE (element))
1618 || integer_onep (TYPE_MAX_VALUE (element)))
1619 && host_integerp (TYPE_MIN_VALUE (element), 1))
1621 HOST_WIDE_INT maxvalue
1622 = tree_low_cst (TYPE_MAX_VALUE (element), 1);
1623 HOST_WIDE_INT minvalue
1624 = tree_low_cst (TYPE_MIN_VALUE (element), 1);
1626 if (maxvalue - minvalue == 1
1627 && (maxvalue == 1 || maxvalue == 0))
1628 element_size = integer_one_node;
1631 /* If neither bound is a constant and sizetype is signed, make
1632 sure the size is never negative. We should really do this
1633 if *either* bound is non-constant, but this is the best
1634 compromise between C and Ada. */
1635 if (!TYPE_UNSIGNED (sizetype)
1636 && TREE_CODE (TYPE_MIN_VALUE (index)) != INTEGER_CST
1637 && TREE_CODE (TYPE_MAX_VALUE (index)) != INTEGER_CST)
1638 length = size_binop (MAX_EXPR, length, size_zero_node);
1640 TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
1641 convert (bitsizetype, length));
1643 /* If we know the size of the element, calculate the total
1644 size directly, rather than do some division thing below.
1645 This optimization helps Fortran assumed-size arrays
1646 (where the size of the array is determined at runtime)
1647 substantially.
1648 Note that we can't do this in the case where the size of
1649 the elements is one bit since TYPE_SIZE_UNIT cannot be
1650 set correctly in that case. */
1651 if (TYPE_SIZE_UNIT (element) != 0 && ! integer_onep (element_size))
1652 TYPE_SIZE_UNIT (type)
1653 = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
1656 /* Now round the alignment and size,
1657 using machine-dependent criteria if any. */
1659 #ifdef ROUND_TYPE_ALIGN
1660 TYPE_ALIGN (type)
1661 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (element), BITS_PER_UNIT);
1662 #else
1663 TYPE_ALIGN (type) = MAX (TYPE_ALIGN (element), BITS_PER_UNIT);
1664 #endif
1665 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
1666 TYPE_MODE (type) = BLKmode;
1667 if (TYPE_SIZE (type) != 0
1668 #ifdef MEMBER_TYPE_FORCES_BLK
1669 && ! MEMBER_TYPE_FORCES_BLK (type, VOIDmode)
1670 #endif
1671 /* BLKmode elements force BLKmode aggregate;
1672 else extract/store fields may lose. */
1673 && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
1674 || TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
1676 /* One-element arrays get the component type's mode. */
1677 if (simple_cst_equal (TYPE_SIZE (type),
1678 TYPE_SIZE (TREE_TYPE (type))))
1679 TYPE_MODE (type) = TYPE_MODE (TREE_TYPE (type));
1680 else
1681 TYPE_MODE (type)
1682 = mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1);
1684 if (TYPE_MODE (type) != BLKmode
1685 && STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
1686 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type))
1687 && TYPE_MODE (type) != BLKmode)
1689 TYPE_NO_FORCE_BLK (type) = 1;
1690 TYPE_MODE (type) = BLKmode;
1693 break;
1696 case RECORD_TYPE:
1697 case UNION_TYPE:
1698 case QUAL_UNION_TYPE:
1700 tree field;
1701 record_layout_info rli;
1703 /* Initialize the layout information. */
1704 rli = start_record_layout (type);
1706 /* If this is a QUAL_UNION_TYPE, we want to process the fields
1707 in the reverse order in building the COND_EXPR that denotes
1708 its size. We reverse them again later. */
1709 if (TREE_CODE (type) == QUAL_UNION_TYPE)
1710 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
1712 /* Place all the fields. */
1713 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1714 place_field (rli, field);
1716 if (TREE_CODE (type) == QUAL_UNION_TYPE)
1717 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
1719 if (lang_adjust_rli)
1720 (*lang_adjust_rli) (rli);
1722 /* Finish laying out the record. */
1723 finish_record_layout (rli, /*free_p=*/true);
1725 break;
1727 case SET_TYPE: /* Used by Chill and Pascal. */
1728 if (TREE_CODE (TYPE_MAX_VALUE (TYPE_DOMAIN (type))) != INTEGER_CST
1729 || TREE_CODE (TYPE_MIN_VALUE (TYPE_DOMAIN (type))) != INTEGER_CST)
1730 abort ();
1731 else
1733 #ifndef SET_WORD_SIZE
1734 #define SET_WORD_SIZE BITS_PER_WORD
1735 #endif
1736 unsigned int alignment
1737 = set_alignment ? set_alignment : SET_WORD_SIZE;
1738 HOST_WIDE_INT size_in_bits
1739 = (tree_low_cst (TYPE_MAX_VALUE (TYPE_DOMAIN (type)), 0)
1740 - tree_low_cst (TYPE_MIN_VALUE (TYPE_DOMAIN (type)), 0) + 1);
1741 HOST_WIDE_INT rounded_size
1742 = ((size_in_bits + alignment - 1) / alignment) * alignment;
1744 if (rounded_size > (int) alignment)
1745 TYPE_MODE (type) = BLKmode;
1746 else
1747 TYPE_MODE (type) = mode_for_size (alignment, MODE_INT, 1);
1749 TYPE_SIZE (type) = bitsize_int (rounded_size);
1750 TYPE_SIZE_UNIT (type) = size_int (rounded_size / BITS_PER_UNIT);
1751 TYPE_ALIGN (type) = alignment;
1752 TYPE_USER_ALIGN (type) = 0;
1753 TYPE_PRECISION (type) = size_in_bits;
1755 break;
1757 case FILE_TYPE:
1758 /* The size may vary in different languages, so the language front end
1759 should fill in the size. */
1760 TYPE_ALIGN (type) = BIGGEST_ALIGNMENT;
1761 TYPE_USER_ALIGN (type) = 0;
1762 TYPE_MODE (type) = BLKmode;
1763 break;
1765 default:
1766 abort ();
1769 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
1770 records and unions, finish_record_layout already called this
1771 function. */
1772 if (TREE_CODE (type) != RECORD_TYPE
1773 && TREE_CODE (type) != UNION_TYPE
1774 && TREE_CODE (type) != QUAL_UNION_TYPE)
1775 finalize_type_size (type);
1777 /* If this type is created before sizetype has been permanently set,
1778 record it so set_sizetype can fix it up. */
1779 if (! sizetype_set)
1780 early_type_list = tree_cons (NULL_TREE, type, early_type_list);
1782 /* If an alias set has been set for this aggregate when it was incomplete,
1783 force it into alias set 0.
1784 This is too conservative, but we cannot call record_component_aliases
1785 here because some frontends still change the aggregates after
1786 layout_type. */
1787 if (AGGREGATE_TYPE_P (type) && TYPE_ALIAS_SET_KNOWN_P (type))
1788 TYPE_ALIAS_SET (type) = 0;
1791 /* Create and return a type for signed integers of PRECISION bits. */
1793 tree
1794 make_signed_type (int precision)
1796 tree type = make_node (INTEGER_TYPE);
1798 TYPE_PRECISION (type) = precision;
1800 fixup_signed_type (type);
1801 return type;
1804 /* Create and return a type for unsigned integers of PRECISION bits. */
1806 tree
1807 make_unsigned_type (int precision)
1809 tree type = make_node (INTEGER_TYPE);
1811 TYPE_PRECISION (type) = precision;
1813 fixup_unsigned_type (type);
1814 return type;
1817 /* Initialize sizetype and bitsizetype to a reasonable and temporary
1818 value to enable integer types to be created. */
1820 void
1821 initialize_sizetypes (void)
1823 tree t = make_node (INTEGER_TYPE);
1825 /* Set this so we do something reasonable for the build_int_2 calls
1826 below. */
1827 integer_type_node = t;
1829 TYPE_MODE (t) = SImode;
1830 TYPE_ALIGN (t) = GET_MODE_ALIGNMENT (SImode);
1831 TYPE_USER_ALIGN (t) = 0;
1832 TYPE_SIZE (t) = build_int_2 (GET_MODE_BITSIZE (SImode), 0);
1833 TYPE_SIZE_UNIT (t) = build_int_2 (GET_MODE_SIZE (SImode), 0);
1834 TYPE_UNSIGNED (t) = 1;
1835 TYPE_PRECISION (t) = GET_MODE_BITSIZE (SImode);
1836 TYPE_MIN_VALUE (t) = build_int_2 (0, 0);
1837 TYPE_IS_SIZETYPE (t) = 1;
1839 /* 1000 avoids problems with possible overflow and is certainly
1840 larger than any size value we'd want to be storing. */
1841 TYPE_MAX_VALUE (t) = build_int_2 (1000, 0);
1843 /* These two must be different nodes because of the caching done in
1844 size_int_wide. */
1845 sizetype = t;
1846 bitsizetype = copy_node (t);
1847 integer_type_node = 0;
1850 /* Set sizetype to TYPE, and initialize *sizetype accordingly.
1851 Also update the type of any standard type's sizes made so far. */
1853 void
1854 set_sizetype (tree type)
1856 int oprecision = TYPE_PRECISION (type);
1857 /* The *bitsizetype types use a precision that avoids overflows when
1858 calculating signed sizes / offsets in bits. However, when
1859 cross-compiling from a 32 bit to a 64 bit host, we are limited to 64 bit
1860 precision. */
1861 int precision = MIN (oprecision + BITS_PER_UNIT_LOG + 1,
1862 2 * HOST_BITS_PER_WIDE_INT);
1863 unsigned int i;
1864 tree t;
1866 if (sizetype_set)
1867 abort ();
1869 /* Make copies of nodes since we'll be setting TYPE_IS_SIZETYPE. */
1870 sizetype = copy_node (type);
1871 TYPE_ORIG_SIZE_TYPE (sizetype) = type;
1872 TYPE_IS_SIZETYPE (sizetype) = 1;
1873 bitsizetype = make_node (INTEGER_TYPE);
1874 TYPE_NAME (bitsizetype) = TYPE_NAME (type);
1875 TYPE_PRECISION (bitsizetype) = precision;
1876 TYPE_IS_SIZETYPE (bitsizetype) = 1;
1878 if (TYPE_UNSIGNED (type))
1879 fixup_unsigned_type (bitsizetype);
1880 else
1881 fixup_signed_type (bitsizetype);
1883 layout_type (bitsizetype);
1885 if (TYPE_UNSIGNED (type))
1887 usizetype = sizetype;
1888 ubitsizetype = bitsizetype;
1889 ssizetype = copy_node (make_signed_type (oprecision));
1890 sbitsizetype = copy_node (make_signed_type (precision));
1892 else
1894 ssizetype = sizetype;
1895 sbitsizetype = bitsizetype;
1896 usizetype = copy_node (make_unsigned_type (oprecision));
1897 ubitsizetype = copy_node (make_unsigned_type (precision));
1900 TYPE_NAME (bitsizetype) = get_identifier ("bit_size_type");
1902 /* Show is a sizetype, is a main type, and has no pointers to it. */
1903 for (i = 0; i < ARRAY_SIZE (sizetype_tab); i++)
1905 TYPE_IS_SIZETYPE (sizetype_tab[i]) = 1;
1906 TYPE_MAIN_VARIANT (sizetype_tab[i]) = sizetype_tab[i];
1907 TYPE_NEXT_VARIANT (sizetype_tab[i]) = 0;
1908 TYPE_POINTER_TO (sizetype_tab[i]) = 0;
1909 TYPE_REFERENCE_TO (sizetype_tab[i]) = 0;
1912 /* Go down each of the types we already made and set the proper type
1913 for the sizes in them. */
1914 for (t = early_type_list; t != 0; t = TREE_CHAIN (t))
1916 if (TREE_CODE (TREE_VALUE (t)) != INTEGER_TYPE
1917 && TREE_CODE (TREE_VALUE (t)) != BOOLEAN_TYPE)
1918 abort ();
1920 TREE_TYPE (TYPE_SIZE (TREE_VALUE (t))) = bitsizetype;
1921 TREE_TYPE (TYPE_SIZE_UNIT (TREE_VALUE (t))) = sizetype;
1924 early_type_list = 0;
1925 sizetype_set = 1;
1928 /* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE,
1929 BOOLEAN_TYPE, or CHAR_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
1930 for TYPE, based on the PRECISION and whether or not the TYPE
1931 IS_UNSIGNED. PRECISION need not correspond to a width supported
1932 natively by the hardware; for example, on a machine with 8-bit,
1933 16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
1934 61. */
1936 void
1937 set_min_and_max_values_for_integral_type (tree type,
1938 int precision,
1939 bool is_unsigned)
1941 tree min_value;
1942 tree max_value;
1944 if (is_unsigned)
1946 min_value = build_int_2 (0, 0);
1947 max_value
1948 = build_int_2 (precision - HOST_BITS_PER_WIDE_INT >= 0
1949 ? -1 : ((HOST_WIDE_INT) 1 << precision) - 1,
1950 precision - HOST_BITS_PER_WIDE_INT > 0
1951 ? ((unsigned HOST_WIDE_INT) ~0
1952 >> (HOST_BITS_PER_WIDE_INT
1953 - (precision - HOST_BITS_PER_WIDE_INT)))
1954 : 0);
1956 else
1958 min_value
1959 = build_int_2 ((precision - HOST_BITS_PER_WIDE_INT > 0
1960 ? 0 : (HOST_WIDE_INT) (-1) << (precision - 1)),
1961 (((HOST_WIDE_INT) (-1)
1962 << (precision - HOST_BITS_PER_WIDE_INT - 1 > 0
1963 ? precision - HOST_BITS_PER_WIDE_INT - 1
1964 : 0))));
1965 max_value
1966 = build_int_2 ((precision - HOST_BITS_PER_WIDE_INT > 0
1967 ? -1 : ((HOST_WIDE_INT) 1 << (precision - 1)) - 1),
1968 (precision - HOST_BITS_PER_WIDE_INT - 1 > 0
1969 ? (((HOST_WIDE_INT) 1
1970 << (precision - HOST_BITS_PER_WIDE_INT - 1))) - 1
1971 : 0));
1974 TREE_TYPE (min_value) = type;
1975 TREE_TYPE (max_value) = type;
1976 TYPE_MIN_VALUE (type) = min_value;
1977 TYPE_MAX_VALUE (type) = max_value;
1980 /* Set the extreme values of TYPE based on its precision in bits,
1981 then lay it out. Used when make_signed_type won't do
1982 because the tree code is not INTEGER_TYPE.
1983 E.g. for Pascal, when the -fsigned-char option is given. */
1985 void
1986 fixup_signed_type (tree type)
1988 int precision = TYPE_PRECISION (type);
1990 /* We can not represent properly constants greater then
1991 2 * HOST_BITS_PER_WIDE_INT, still we need the types
1992 as they are used by i386 vector extensions and friends. */
1993 if (precision > HOST_BITS_PER_WIDE_INT * 2)
1994 precision = HOST_BITS_PER_WIDE_INT * 2;
1996 set_min_and_max_values_for_integral_type (type, precision,
1997 /*is_unsigned=*/false);
1999 /* Lay out the type: set its alignment, size, etc. */
2000 layout_type (type);
2003 /* Set the extreme values of TYPE based on its precision in bits,
2004 then lay it out. This is used both in `make_unsigned_type'
2005 and for enumeral types. */
2007 void
2008 fixup_unsigned_type (tree type)
2010 int precision = TYPE_PRECISION (type);
2012 /* We can not represent properly constants greater then
2013 2 * HOST_BITS_PER_WIDE_INT, still we need the types
2014 as they are used by i386 vector extensions and friends. */
2015 if (precision > HOST_BITS_PER_WIDE_INT * 2)
2016 precision = HOST_BITS_PER_WIDE_INT * 2;
2018 set_min_and_max_values_for_integral_type (type, precision,
2019 /*is_unsigned=*/true);
2021 /* Lay out the type: set its alignment, size, etc. */
2022 layout_type (type);
2025 /* Find the best machine mode to use when referencing a bit field of length
2026 BITSIZE bits starting at BITPOS.
2028 The underlying object is known to be aligned to a boundary of ALIGN bits.
2029 If LARGEST_MODE is not VOIDmode, it means that we should not use a mode
2030 larger than LARGEST_MODE (usually SImode).
2032 If no mode meets all these conditions, we return VOIDmode. Otherwise, if
2033 VOLATILEP is true or SLOW_BYTE_ACCESS is false, we return the smallest
2034 mode meeting these conditions.
2036 Otherwise (VOLATILEP is false and SLOW_BYTE_ACCESS is true), we return
2037 the largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2038 all the conditions. */
2040 enum machine_mode
2041 get_best_mode (int bitsize, int bitpos, unsigned int align,
2042 enum machine_mode largest_mode, int volatilep)
2044 enum machine_mode mode;
2045 unsigned int unit = 0;
2047 /* Find the narrowest integer mode that contains the bit field. */
2048 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
2049 mode = GET_MODE_WIDER_MODE (mode))
2051 unit = GET_MODE_BITSIZE (mode);
2052 if ((bitpos % unit) + bitsize <= unit)
2053 break;
2056 if (mode == VOIDmode
2057 /* It is tempting to omit the following line
2058 if STRICT_ALIGNMENT is true.
2059 But that is incorrect, since if the bitfield uses part of 3 bytes
2060 and we use a 4-byte mode, we could get a spurious segv
2061 if the extra 4th byte is past the end of memory.
2062 (Though at least one Unix compiler ignores this problem:
2063 that on the Sequent 386 machine. */
2064 || MIN (unit, BIGGEST_ALIGNMENT) > align
2065 || (largest_mode != VOIDmode && unit > GET_MODE_BITSIZE (largest_mode)))
2066 return VOIDmode;
2068 if (SLOW_BYTE_ACCESS && ! volatilep)
2070 enum machine_mode wide_mode = VOIDmode, tmode;
2072 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT); tmode != VOIDmode;
2073 tmode = GET_MODE_WIDER_MODE (tmode))
2075 unit = GET_MODE_BITSIZE (tmode);
2076 if (bitpos / unit == (bitpos + bitsize - 1) / unit
2077 && unit <= BITS_PER_WORD
2078 && unit <= MIN (align, BIGGEST_ALIGNMENT)
2079 && (largest_mode == VOIDmode
2080 || unit <= GET_MODE_BITSIZE (largest_mode)))
2081 wide_mode = tmode;
2084 if (wide_mode != VOIDmode)
2085 return wide_mode;
2088 return mode;
2091 /* Gets minimal and maximal values for MODE (signed or unsigned depending on
2092 SIGN). The returned constants are made to be usable in TARGET_MODE. */
2094 void
2095 get_mode_bounds (enum machine_mode mode, int sign,
2096 enum machine_mode target_mode,
2097 rtx *mmin, rtx *mmax)
2099 unsigned size = GET_MODE_BITSIZE (mode);
2100 unsigned HOST_WIDE_INT min_val, max_val;
2102 if (size > HOST_BITS_PER_WIDE_INT)
2103 abort ();
2105 if (sign)
2107 min_val = -((unsigned HOST_WIDE_INT) 1 << (size - 1));
2108 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1)) - 1;
2110 else
2112 min_val = 0;
2113 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1) << 1) - 1;
2116 *mmin = GEN_INT (trunc_int_for_mode (min_val, target_mode));
2117 *mmax = GEN_INT (trunc_int_for_mode (max_val, target_mode));
2120 #include "gt-stor-layout.h"