2012-08-01 Richard Guenther <rguenther@suse.de>
[official-gcc.git] / gcc / tree-ssa-tail-merge.c
blobab37336d0c47acbe4d7dbbfccefb576566ae7218
1 /* Tail merging for gimple.
2 Copyright (C) 2011, 2012 Free Software Foundation, Inc.
3 Contributed by Tom de Vries (tom@codesourcery.com)
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* Pass overview.
24 MOTIVATIONAL EXAMPLE
26 gimple representation of gcc/testsuite/gcc.dg/pr43864.c at
28 hprofStartupp (charD.1 * outputFileNameD.2600, charD.1 * ctxD.2601)
30 struct FILED.1638 * fpD.2605;
31 charD.1 fileNameD.2604[1000];
32 intD.0 D.3915;
33 const charD.1 * restrict outputFileName.0D.3914;
35 # BLOCK 2 freq:10000
36 # PRED: ENTRY [100.0%] (fallthru,exec)
37 # PT = nonlocal { D.3926 } (restr)
38 outputFileName.0D.3914_3
39 = (const charD.1 * restrict) outputFileNameD.2600_2(D);
40 # .MEMD.3923_13 = VDEF <.MEMD.3923_12(D)>
41 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
42 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
43 sprintfD.759 (&fileNameD.2604, outputFileName.0D.3914_3);
44 # .MEMD.3923_14 = VDEF <.MEMD.3923_13>
45 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
46 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
47 D.3915_4 = accessD.2606 (&fileNameD.2604, 1);
48 if (D.3915_4 == 0)
49 goto <bb 3>;
50 else
51 goto <bb 4>;
52 # SUCC: 3 [10.0%] (true,exec) 4 [90.0%] (false,exec)
54 # BLOCK 3 freq:1000
55 # PRED: 2 [10.0%] (true,exec)
56 # .MEMD.3923_15 = VDEF <.MEMD.3923_14>
57 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
58 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
59 freeD.898 (ctxD.2601_5(D));
60 goto <bb 7>;
61 # SUCC: 7 [100.0%] (fallthru,exec)
63 # BLOCK 4 freq:9000
64 # PRED: 2 [90.0%] (false,exec)
65 # .MEMD.3923_16 = VDEF <.MEMD.3923_14>
66 # PT = nonlocal escaped
67 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
68 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
69 fpD.2605_8 = fopenD.1805 (&fileNameD.2604[0], 0B);
70 if (fpD.2605_8 == 0B)
71 goto <bb 5>;
72 else
73 goto <bb 6>;
74 # SUCC: 5 [1.9%] (true,exec) 6 [98.1%] (false,exec)
76 # BLOCK 5 freq:173
77 # PRED: 4 [1.9%] (true,exec)
78 # .MEMD.3923_17 = VDEF <.MEMD.3923_16>
79 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
80 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
81 freeD.898 (ctxD.2601_5(D));
82 goto <bb 7>;
83 # SUCC: 7 [100.0%] (fallthru,exec)
85 # BLOCK 6 freq:8827
86 # PRED: 4 [98.1%] (false,exec)
87 # .MEMD.3923_18 = VDEF <.MEMD.3923_16>
88 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
89 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
90 fooD.2599 (outputFileNameD.2600_2(D), fpD.2605_8);
91 # SUCC: 7 [100.0%] (fallthru,exec)
93 # BLOCK 7 freq:10000
94 # PRED: 3 [100.0%] (fallthru,exec) 5 [100.0%] (fallthru,exec)
95 6 [100.0%] (fallthru,exec)
96 # PT = nonlocal null
98 # ctxD.2601_1 = PHI <0B(3), 0B(5), ctxD.2601_5(D)(6)>
99 # .MEMD.3923_11 = PHI <.MEMD.3923_15(3), .MEMD.3923_17(5),
100 .MEMD.3923_18(6)>
101 # VUSE <.MEMD.3923_11>
102 return ctxD.2601_1;
103 # SUCC: EXIT [100.0%]
106 bb 3 and bb 5 can be merged. The blocks have different predecessors, but the
107 same successors, and the same operations.
110 CONTEXT
112 A technique called tail merging (or cross jumping) can fix the example
113 above. For a block, we look for common code at the end (the tail) of the
114 predecessor blocks, and insert jumps from one block to the other.
115 The example is a special case for tail merging, in that 2 whole blocks
116 can be merged, rather than just the end parts of it.
117 We currently only focus on whole block merging, so in that sense
118 calling this pass tail merge is a bit of a misnomer.
120 We distinguish 2 kinds of situations in which blocks can be merged:
121 - same operations, same predecessors. The successor edges coming from one
122 block are redirected to come from the other block.
123 - same operations, same successors. The predecessor edges entering one block
124 are redirected to enter the other block. Note that this operation might
125 involve introducing phi operations.
127 For efficient implementation, we would like to value numbers the blocks, and
128 have a comparison operator that tells us whether the blocks are equal.
129 Besides being runtime efficient, block value numbering should also abstract
130 from irrelevant differences in order of operations, much like normal value
131 numbering abstracts from irrelevant order of operations.
133 For the first situation (same_operations, same predecessors), normal value
134 numbering fits well. We can calculate a block value number based on the
135 value numbers of the defs and vdefs.
137 For the second situation (same operations, same successors), this approach
138 doesn't work so well. We can illustrate this using the example. The calls
139 to free use different vdefs: MEMD.3923_16 and MEMD.3923_14, and these will
140 remain different in value numbering, since they represent different memory
141 states. So the resulting vdefs of the frees will be different in value
142 numbering, so the block value numbers will be different.
144 The reason why we call the blocks equal is not because they define the same
145 values, but because uses in the blocks use (possibly different) defs in the
146 same way. To be able to detect this efficiently, we need to do some kind of
147 reverse value numbering, meaning number the uses rather than the defs, and
148 calculate a block value number based on the value number of the uses.
149 Ideally, a block comparison operator will also indicate which phis are needed
150 to merge the blocks.
152 For the moment, we don't do block value numbering, but we do insn-by-insn
153 matching, using scc value numbers to match operations with results, and
154 structural comparison otherwise, while ignoring vop mismatches.
157 IMPLEMENTATION
159 1. The pass first determines all groups of blocks with the same successor
160 blocks.
161 2. Within each group, it tries to determine clusters of equal basic blocks.
162 3. The clusters are applied.
163 4. The same successor groups are updated.
164 5. This process is repeated from 2 onwards, until no more changes.
167 LIMITATIONS/TODO
169 - block only
170 - handles only 'same operations, same successors'.
171 It handles same predecessors as a special subcase though.
172 - does not implement the reverse value numbering and block value numbering.
173 - improve memory allocation: use garbage collected memory, obstacks,
174 allocpools where appropriate.
175 - no insertion of gimple_reg phis, We only introduce vop-phis.
176 - handle blocks with gimple_reg phi_nodes.
179 SWITCHES
181 - ftree-tail-merge. On at -O2. We may have to enable it only at -Os. */
183 #include "config.h"
184 #include "system.h"
185 #include "coretypes.h"
186 #include "tm.h"
187 #include "tree.h"
188 #include "tm_p.h"
189 #include "basic-block.h"
190 #include "flags.h"
191 #include "function.h"
192 #include "tree-flow.h"
193 #include "bitmap.h"
194 #include "tree-ssa-alias.h"
195 #include "params.h"
196 #include "hashtab.h"
197 #include "gimple-pretty-print.h"
198 #include "tree-ssa-sccvn.h"
199 #include "tree-dump.h"
201 /* ??? This currently runs as part of tree-ssa-pre. Why is this not
202 a stand-alone GIMPLE pass? */
203 #include "tree-pass.h"
205 /* Describes a group of bbs with the same successors. The successor bbs are
206 cached in succs, and the successor edge flags are cached in succ_flags.
207 If a bb has the EDGE_TRUE/VALSE_VALUE flags swapped compared to succ_flags,
208 it's marked in inverse.
209 Additionally, the hash value for the struct is cached in hashval, and
210 in_worklist indicates whether it's currently part of worklist. */
212 struct same_succ_def
214 /* The bbs that have the same successor bbs. */
215 bitmap bbs;
216 /* The successor bbs. */
217 bitmap succs;
218 /* Indicates whether the EDGE_TRUE/FALSE_VALUEs of succ_flags are swapped for
219 bb. */
220 bitmap inverse;
221 /* The edge flags for each of the successor bbs. */
222 VEC (int, heap) *succ_flags;
223 /* Indicates whether the struct is currently in the worklist. */
224 bool in_worklist;
225 /* The hash value of the struct. */
226 hashval_t hashval;
228 typedef struct same_succ_def *same_succ;
229 typedef const struct same_succ_def *const_same_succ;
231 /* A group of bbs where 1 bb from bbs can replace the other bbs. */
233 struct bb_cluster_def
235 /* The bbs in the cluster. */
236 bitmap bbs;
237 /* The preds of the bbs in the cluster. */
238 bitmap preds;
239 /* Index in all_clusters vector. */
240 int index;
241 /* The bb to replace the cluster with. */
242 basic_block rep_bb;
244 typedef struct bb_cluster_def *bb_cluster;
245 typedef const struct bb_cluster_def *const_bb_cluster;
247 /* Per bb-info. */
249 struct aux_bb_info
251 /* The number of non-debug statements in the bb. */
252 int size;
253 /* The same_succ that this bb is a member of. */
254 same_succ bb_same_succ;
255 /* The cluster that this bb is a member of. */
256 bb_cluster cluster;
257 /* The vop state at the exit of a bb. This is shortlived data, used to
258 communicate data between update_block_by and update_vuses. */
259 tree vop_at_exit;
260 /* The bb that either contains or is dominated by the dependencies of the
261 bb. */
262 basic_block dep_bb;
265 /* Macros to access the fields of struct aux_bb_info. */
267 #define BB_SIZE(bb) (((struct aux_bb_info *)bb->aux)->size)
268 #define BB_SAME_SUCC(bb) (((struct aux_bb_info *)bb->aux)->bb_same_succ)
269 #define BB_CLUSTER(bb) (((struct aux_bb_info *)bb->aux)->cluster)
270 #define BB_VOP_AT_EXIT(bb) (((struct aux_bb_info *)bb->aux)->vop_at_exit)
271 #define BB_DEP_BB(bb) (((struct aux_bb_info *)bb->aux)->dep_bb)
273 /* Returns true if the only effect a statement STMT has, is to define locally
274 used SSA_NAMEs. */
276 static bool
277 stmt_local_def (gimple stmt)
279 basic_block bb, def_bb;
280 imm_use_iterator iter;
281 use_operand_p use_p;
282 tree val;
283 def_operand_p def_p;
285 if (gimple_has_side_effects (stmt))
286 return false;
288 def_p = SINGLE_SSA_DEF_OPERAND (stmt, SSA_OP_DEF);
289 if (def_p == NULL)
290 return false;
292 val = DEF_FROM_PTR (def_p);
293 if (val == NULL_TREE || TREE_CODE (val) != SSA_NAME)
294 return false;
296 def_bb = gimple_bb (stmt);
298 FOR_EACH_IMM_USE_FAST (use_p, iter, val)
300 if (is_gimple_debug (USE_STMT (use_p)))
301 continue;
302 bb = gimple_bb (USE_STMT (use_p));
303 if (bb == def_bb)
304 continue;
306 if (gimple_code (USE_STMT (use_p)) == GIMPLE_PHI
307 && EDGE_PRED (bb, PHI_ARG_INDEX_FROM_USE (use_p))->src == def_bb)
308 continue;
310 return false;
313 return true;
316 /* Let GSI skip forwards over local defs. */
318 static void
319 gsi_advance_fw_nondebug_nonlocal (gimple_stmt_iterator *gsi)
321 gimple stmt;
323 while (true)
325 if (gsi_end_p (*gsi))
326 return;
327 stmt = gsi_stmt (*gsi);
328 if (!stmt_local_def (stmt))
329 return;
330 gsi_next_nondebug (gsi);
334 /* VAL1 and VAL2 are either:
335 - uses in BB1 and BB2, or
336 - phi alternatives for BB1 and BB2.
337 Return true if the uses have the same gvn value. */
339 static bool
340 gvn_uses_equal (tree val1, tree val2)
342 gcc_checking_assert (val1 != NULL_TREE && val2 != NULL_TREE);
344 if (val1 == val2)
345 return true;
347 if (vn_valueize (val1) != vn_valueize (val2))
348 return false;
350 return ((TREE_CODE (val1) == SSA_NAME || CONSTANT_CLASS_P (val1))
351 && (TREE_CODE (val2) == SSA_NAME || CONSTANT_CLASS_P (val2)));
354 /* Prints E to FILE. */
356 static void
357 same_succ_print (FILE *file, const same_succ e)
359 unsigned int i;
360 bitmap_print (file, e->bbs, "bbs:", "\n");
361 bitmap_print (file, e->succs, "succs:", "\n");
362 bitmap_print (file, e->inverse, "inverse:", "\n");
363 fprintf (file, "flags:");
364 for (i = 0; i < VEC_length (int, e->succ_flags); ++i)
365 fprintf (file, " %x", VEC_index (int, e->succ_flags, i));
366 fprintf (file, "\n");
369 /* Prints same_succ VE to VFILE. */
371 static int
372 same_succ_print_traverse (void **ve, void *vfile)
374 const same_succ e = *((const same_succ *)ve);
375 FILE *file = ((FILE*)vfile);
376 same_succ_print (file, e);
377 return 1;
380 /* Update BB_DEP_BB (USE_BB), given a use of VAL in USE_BB. */
382 static void
383 update_dep_bb (basic_block use_bb, tree val)
385 basic_block dep_bb;
387 /* Not a dep. */
388 if (TREE_CODE (val) != SSA_NAME)
389 return;
391 /* Skip use of global def. */
392 if (SSA_NAME_IS_DEFAULT_DEF (val))
393 return;
395 /* Skip use of local def. */
396 dep_bb = gimple_bb (SSA_NAME_DEF_STMT (val));
397 if (dep_bb == use_bb)
398 return;
400 if (BB_DEP_BB (use_bb) == NULL
401 || dominated_by_p (CDI_DOMINATORS, dep_bb, BB_DEP_BB (use_bb)))
402 BB_DEP_BB (use_bb) = dep_bb;
405 /* Update BB_DEP_BB, given the dependencies in STMT. */
407 static void
408 stmt_update_dep_bb (gimple stmt)
410 ssa_op_iter iter;
411 use_operand_p use;
413 FOR_EACH_SSA_USE_OPERAND (use, stmt, iter, SSA_OP_USE)
414 update_dep_bb (gimple_bb (stmt), USE_FROM_PTR (use));
417 /* Calculates hash value for same_succ VE. */
419 static hashval_t
420 same_succ_hash (const void *ve)
422 const_same_succ e = (const_same_succ)ve;
423 hashval_t hashval = bitmap_hash (e->succs);
424 int flags;
425 unsigned int i;
426 unsigned int first = bitmap_first_set_bit (e->bbs);
427 basic_block bb = BASIC_BLOCK (first);
428 int size = 0;
429 gimple_stmt_iterator gsi;
430 gimple stmt;
431 tree arg;
432 unsigned int s;
433 bitmap_iterator bs;
435 for (gsi = gsi_start_nondebug_bb (bb);
436 !gsi_end_p (gsi); gsi_next_nondebug (&gsi))
438 stmt = gsi_stmt (gsi);
439 stmt_update_dep_bb (stmt);
440 if (stmt_local_def (stmt))
441 continue;
442 size++;
444 hashval = iterative_hash_hashval_t (gimple_code (stmt), hashval);
445 if (is_gimple_assign (stmt))
446 hashval = iterative_hash_hashval_t (gimple_assign_rhs_code (stmt),
447 hashval);
448 if (!is_gimple_call (stmt))
449 continue;
450 if (gimple_call_internal_p (stmt))
451 hashval = iterative_hash_hashval_t
452 ((hashval_t) gimple_call_internal_fn (stmt), hashval);
453 else
454 hashval = iterative_hash_expr (gimple_call_fn (stmt), hashval);
455 for (i = 0; i < gimple_call_num_args (stmt); i++)
457 arg = gimple_call_arg (stmt, i);
458 arg = vn_valueize (arg);
459 hashval = iterative_hash_expr (arg, hashval);
463 hashval = iterative_hash_hashval_t (size, hashval);
464 BB_SIZE (bb) = size;
466 for (i = 0; i < VEC_length (int, e->succ_flags); ++i)
468 flags = VEC_index (int, e->succ_flags, i);
469 flags = flags & ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
470 hashval = iterative_hash_hashval_t (flags, hashval);
473 EXECUTE_IF_SET_IN_BITMAP (e->succs, 0, s, bs)
475 int n = find_edge (bb, BASIC_BLOCK (s))->dest_idx;
476 for (gsi = gsi_start_phis (BASIC_BLOCK (s)); !gsi_end_p (gsi);
477 gsi_next (&gsi))
479 gimple phi = gsi_stmt (gsi);
480 tree lhs = gimple_phi_result (phi);
481 tree val = gimple_phi_arg_def (phi, n);
483 if (!is_gimple_reg (lhs))
484 continue;
485 update_dep_bb (bb, val);
489 return hashval;
492 /* Returns true if E1 and E2 have 2 successors, and if the successor flags
493 are inverse for the EDGE_TRUE_VALUE and EDGE_FALSE_VALUE flags, and equal for
494 the other edge flags. */
496 static bool
497 inverse_flags (const_same_succ e1, const_same_succ e2)
499 int f1a, f1b, f2a, f2b;
500 int mask = ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
502 if (VEC_length (int, e1->succ_flags) != 2)
503 return false;
505 f1a = VEC_index (int, e1->succ_flags, 0);
506 f1b = VEC_index (int, e1->succ_flags, 1);
507 f2a = VEC_index (int, e2->succ_flags, 0);
508 f2b = VEC_index (int, e2->succ_flags, 1);
510 if (f1a == f2a && f1b == f2b)
511 return false;
513 return (f1a & mask) == (f2a & mask) && (f1b & mask) == (f2b & mask);
516 /* Compares SAME_SUCCs VE1 and VE2. */
518 static int
519 same_succ_equal (const void *ve1, const void *ve2)
521 const_same_succ e1 = (const_same_succ)ve1;
522 const_same_succ e2 = (const_same_succ)ve2;
523 unsigned int i, first1, first2;
524 gimple_stmt_iterator gsi1, gsi2;
525 gimple s1, s2;
526 basic_block bb1, bb2;
528 if (e1->hashval != e2->hashval)
529 return 0;
531 if (VEC_length (int, e1->succ_flags) != VEC_length (int, e2->succ_flags))
532 return 0;
534 if (!bitmap_equal_p (e1->succs, e2->succs))
535 return 0;
537 if (!inverse_flags (e1, e2))
539 for (i = 0; i < VEC_length (int, e1->succ_flags); ++i)
540 if (VEC_index (int, e1->succ_flags, i)
541 != VEC_index (int, e1->succ_flags, i))
542 return 0;
545 first1 = bitmap_first_set_bit (e1->bbs);
546 first2 = bitmap_first_set_bit (e2->bbs);
548 bb1 = BASIC_BLOCK (first1);
549 bb2 = BASIC_BLOCK (first2);
551 if (BB_SIZE (bb1) != BB_SIZE (bb2))
552 return 0;
554 gsi1 = gsi_start_nondebug_bb (bb1);
555 gsi2 = gsi_start_nondebug_bb (bb2);
556 gsi_advance_fw_nondebug_nonlocal (&gsi1);
557 gsi_advance_fw_nondebug_nonlocal (&gsi2);
558 while (!(gsi_end_p (gsi1) || gsi_end_p (gsi2)))
560 s1 = gsi_stmt (gsi1);
561 s2 = gsi_stmt (gsi2);
562 if (gimple_code (s1) != gimple_code (s2))
563 return 0;
564 if (is_gimple_call (s1) && !gimple_call_same_target_p (s1, s2))
565 return 0;
566 gsi_next_nondebug (&gsi1);
567 gsi_next_nondebug (&gsi2);
568 gsi_advance_fw_nondebug_nonlocal (&gsi1);
569 gsi_advance_fw_nondebug_nonlocal (&gsi2);
572 return 1;
575 /* Alloc and init a new SAME_SUCC. */
577 static same_succ
578 same_succ_alloc (void)
580 same_succ same = XNEW (struct same_succ_def);
582 same->bbs = BITMAP_ALLOC (NULL);
583 same->succs = BITMAP_ALLOC (NULL);
584 same->inverse = BITMAP_ALLOC (NULL);
585 same->succ_flags = VEC_alloc (int, heap, 10);
586 same->in_worklist = false;
588 return same;
591 /* Delete same_succ VE. */
593 static void
594 same_succ_delete (void *ve)
596 same_succ e = (same_succ)ve;
598 BITMAP_FREE (e->bbs);
599 BITMAP_FREE (e->succs);
600 BITMAP_FREE (e->inverse);
601 VEC_free (int, heap, e->succ_flags);
603 XDELETE (ve);
606 /* Reset same_succ SAME. */
608 static void
609 same_succ_reset (same_succ same)
611 bitmap_clear (same->bbs);
612 bitmap_clear (same->succs);
613 bitmap_clear (same->inverse);
614 VEC_truncate (int, same->succ_flags, 0);
617 /* Hash table with all same_succ entries. */
619 static htab_t same_succ_htab;
621 /* Array that is used to store the edge flags for a successor. */
623 static int *same_succ_edge_flags;
625 /* Bitmap that is used to mark bbs that are recently deleted. */
627 static bitmap deleted_bbs;
629 /* Bitmap that is used to mark predecessors of bbs that are
630 deleted. */
632 static bitmap deleted_bb_preds;
634 /* Prints same_succ_htab to stderr. */
636 extern void debug_same_succ (void);
637 DEBUG_FUNCTION void
638 debug_same_succ ( void)
640 htab_traverse (same_succ_htab, same_succ_print_traverse, stderr);
643 DEF_VEC_P (same_succ);
644 DEF_VEC_ALLOC_P (same_succ, heap);
646 /* Vector of bbs to process. */
648 static VEC (same_succ, heap) *worklist;
650 /* Prints worklist to FILE. */
652 static void
653 print_worklist (FILE *file)
655 unsigned int i;
656 for (i = 0; i < VEC_length (same_succ, worklist); ++i)
657 same_succ_print (file, VEC_index (same_succ, worklist, i));
660 /* Adds SAME to worklist. */
662 static void
663 add_to_worklist (same_succ same)
665 if (same->in_worklist)
666 return;
668 if (bitmap_count_bits (same->bbs) < 2)
669 return;
671 same->in_worklist = true;
672 VEC_safe_push (same_succ, heap, worklist, same);
675 /* Add BB to same_succ_htab. */
677 static void
678 find_same_succ_bb (basic_block bb, same_succ *same_p)
680 unsigned int j;
681 bitmap_iterator bj;
682 same_succ same = *same_p;
683 same_succ *slot;
684 edge_iterator ei;
685 edge e;
687 if (bb == NULL)
688 return;
689 bitmap_set_bit (same->bbs, bb->index);
690 FOR_EACH_EDGE (e, ei, bb->succs)
692 int index = e->dest->index;
693 bitmap_set_bit (same->succs, index);
694 same_succ_edge_flags[index] = e->flags;
696 EXECUTE_IF_SET_IN_BITMAP (same->succs, 0, j, bj)
697 VEC_safe_push (int, heap, same->succ_flags, same_succ_edge_flags[j]);
699 same->hashval = same_succ_hash (same);
701 slot = (same_succ *) htab_find_slot_with_hash (same_succ_htab, same,
702 same->hashval, INSERT);
703 if (*slot == NULL)
705 *slot = same;
706 BB_SAME_SUCC (bb) = same;
707 add_to_worklist (same);
708 *same_p = NULL;
710 else
712 bitmap_set_bit ((*slot)->bbs, bb->index);
713 BB_SAME_SUCC (bb) = *slot;
714 add_to_worklist (*slot);
715 if (inverse_flags (same, *slot))
716 bitmap_set_bit ((*slot)->inverse, bb->index);
717 same_succ_reset (same);
721 /* Find bbs with same successors. */
723 static void
724 find_same_succ (void)
726 same_succ same = same_succ_alloc ();
727 basic_block bb;
729 FOR_EACH_BB (bb)
731 find_same_succ_bb (bb, &same);
732 if (same == NULL)
733 same = same_succ_alloc ();
736 same_succ_delete (same);
739 /* Initializes worklist administration. */
741 static void
742 init_worklist (void)
744 alloc_aux_for_blocks (sizeof (struct aux_bb_info));
745 same_succ_htab
746 = htab_create (n_basic_blocks, same_succ_hash, same_succ_equal,
747 same_succ_delete);
748 same_succ_edge_flags = XCNEWVEC (int, last_basic_block);
749 deleted_bbs = BITMAP_ALLOC (NULL);
750 deleted_bb_preds = BITMAP_ALLOC (NULL);
751 worklist = VEC_alloc (same_succ, heap, n_basic_blocks);
752 find_same_succ ();
754 if (dump_file && (dump_flags & TDF_DETAILS))
756 fprintf (dump_file, "initial worklist:\n");
757 print_worklist (dump_file);
761 /* Deletes worklist administration. */
763 static void
764 delete_worklist (void)
766 free_aux_for_blocks ();
767 htab_delete (same_succ_htab);
768 same_succ_htab = NULL;
769 XDELETEVEC (same_succ_edge_flags);
770 same_succ_edge_flags = NULL;
771 BITMAP_FREE (deleted_bbs);
772 BITMAP_FREE (deleted_bb_preds);
773 VEC_free (same_succ, heap, worklist);
776 /* Mark BB as deleted, and mark its predecessors. */
778 static void
779 mark_basic_block_deleted (basic_block bb)
781 edge e;
782 edge_iterator ei;
784 bitmap_set_bit (deleted_bbs, bb->index);
786 FOR_EACH_EDGE (e, ei, bb->preds)
787 bitmap_set_bit (deleted_bb_preds, e->src->index);
790 /* Removes BB from its corresponding same_succ. */
792 static void
793 same_succ_flush_bb (basic_block bb)
795 same_succ same = BB_SAME_SUCC (bb);
796 BB_SAME_SUCC (bb) = NULL;
797 if (bitmap_single_bit_set_p (same->bbs))
798 htab_remove_elt_with_hash (same_succ_htab, same, same->hashval);
799 else
800 bitmap_clear_bit (same->bbs, bb->index);
803 /* Removes all bbs in BBS from their corresponding same_succ. */
805 static void
806 same_succ_flush_bbs (bitmap bbs)
808 unsigned int i;
809 bitmap_iterator bi;
811 EXECUTE_IF_SET_IN_BITMAP (bbs, 0, i, bi)
812 same_succ_flush_bb (BASIC_BLOCK (i));
815 /* For deleted_bb_preds, find bbs with same successors. */
817 static void
818 update_worklist (void)
820 unsigned int i;
821 bitmap_iterator bi;
822 basic_block bb;
823 same_succ same;
825 bitmap_and_compl_into (deleted_bb_preds, deleted_bbs);
826 bitmap_clear (deleted_bbs);
828 bitmap_clear_bit (deleted_bb_preds, ENTRY_BLOCK);
829 same_succ_flush_bbs (deleted_bb_preds);
831 same = same_succ_alloc ();
832 EXECUTE_IF_SET_IN_BITMAP (deleted_bb_preds, 0, i, bi)
834 bb = BASIC_BLOCK (i);
835 gcc_assert (bb != NULL);
836 find_same_succ_bb (bb, &same);
837 if (same == NULL)
838 same = same_succ_alloc ();
840 same_succ_delete (same);
841 bitmap_clear (deleted_bb_preds);
844 /* Prints cluster C to FILE. */
846 static void
847 print_cluster (FILE *file, bb_cluster c)
849 if (c == NULL)
850 return;
851 bitmap_print (file, c->bbs, "bbs:", "\n");
852 bitmap_print (file, c->preds, "preds:", "\n");
855 /* Prints cluster C to stderr. */
857 extern void debug_cluster (bb_cluster);
858 DEBUG_FUNCTION void
859 debug_cluster (bb_cluster c)
861 print_cluster (stderr, c);
864 /* Update C->rep_bb, given that BB is added to the cluster. */
866 static void
867 update_rep_bb (bb_cluster c, basic_block bb)
869 /* Initial. */
870 if (c->rep_bb == NULL)
872 c->rep_bb = bb;
873 return;
876 /* Current needs no deps, keep it. */
877 if (BB_DEP_BB (c->rep_bb) == NULL)
878 return;
880 /* Bb needs no deps, change rep_bb. */
881 if (BB_DEP_BB (bb) == NULL)
883 c->rep_bb = bb;
884 return;
887 /* Bb needs last deps earlier than current, change rep_bb. A potential
888 problem with this, is that the first deps might also be earlier, which
889 would mean we prefer longer lifetimes for the deps. To be able to check
890 for this, we would have to trace BB_FIRST_DEP_BB as well, besides
891 BB_DEP_BB, which is really BB_LAST_DEP_BB.
892 The benefit of choosing the bb with last deps earlier, is that it can
893 potentially be used as replacement for more bbs. */
894 if (dominated_by_p (CDI_DOMINATORS, BB_DEP_BB (c->rep_bb), BB_DEP_BB (bb)))
895 c->rep_bb = bb;
898 /* Add BB to cluster C. Sets BB in C->bbs, and preds of BB in C->preds. */
900 static void
901 add_bb_to_cluster (bb_cluster c, basic_block bb)
903 edge e;
904 edge_iterator ei;
906 bitmap_set_bit (c->bbs, bb->index);
908 FOR_EACH_EDGE (e, ei, bb->preds)
909 bitmap_set_bit (c->preds, e->src->index);
911 update_rep_bb (c, bb);
914 /* Allocate and init new cluster. */
916 static bb_cluster
917 new_cluster (void)
919 bb_cluster c;
920 c = XCNEW (struct bb_cluster_def);
921 c->bbs = BITMAP_ALLOC (NULL);
922 c->preds = BITMAP_ALLOC (NULL);
923 c->rep_bb = NULL;
924 return c;
927 /* Delete clusters. */
929 static void
930 delete_cluster (bb_cluster c)
932 if (c == NULL)
933 return;
934 BITMAP_FREE (c->bbs);
935 BITMAP_FREE (c->preds);
936 XDELETE (c);
939 DEF_VEC_P (bb_cluster);
940 DEF_VEC_ALLOC_P (bb_cluster, heap);
942 /* Array that contains all clusters. */
944 static VEC (bb_cluster, heap) *all_clusters;
946 /* Allocate all cluster vectors. */
948 static void
949 alloc_cluster_vectors (void)
951 all_clusters = VEC_alloc (bb_cluster, heap, n_basic_blocks);
954 /* Reset all cluster vectors. */
956 static void
957 reset_cluster_vectors (void)
959 unsigned int i;
960 basic_block bb;
961 for (i = 0; i < VEC_length (bb_cluster, all_clusters); ++i)
962 delete_cluster (VEC_index (bb_cluster, all_clusters, i));
963 VEC_truncate (bb_cluster, all_clusters, 0);
964 FOR_EACH_BB (bb)
965 BB_CLUSTER (bb) = NULL;
968 /* Delete all cluster vectors. */
970 static void
971 delete_cluster_vectors (void)
973 unsigned int i;
974 for (i = 0; i < VEC_length (bb_cluster, all_clusters); ++i)
975 delete_cluster (VEC_index (bb_cluster, all_clusters, i));
976 VEC_free (bb_cluster, heap, all_clusters);
979 /* Merge cluster C2 into C1. */
981 static void
982 merge_clusters (bb_cluster c1, bb_cluster c2)
984 bitmap_ior_into (c1->bbs, c2->bbs);
985 bitmap_ior_into (c1->preds, c2->preds);
988 /* Register equivalence of BB1 and BB2 (members of cluster C). Store c in
989 all_clusters, or merge c with existing cluster. */
991 static void
992 set_cluster (basic_block bb1, basic_block bb2)
994 basic_block merge_bb, other_bb;
995 bb_cluster merge, old, c;
997 if (BB_CLUSTER (bb1) == NULL && BB_CLUSTER (bb2) == NULL)
999 c = new_cluster ();
1000 add_bb_to_cluster (c, bb1);
1001 add_bb_to_cluster (c, bb2);
1002 BB_CLUSTER (bb1) = c;
1003 BB_CLUSTER (bb2) = c;
1004 c->index = VEC_length (bb_cluster, all_clusters);
1005 VEC_safe_push (bb_cluster, heap, all_clusters, c);
1007 else if (BB_CLUSTER (bb1) == NULL || BB_CLUSTER (bb2) == NULL)
1009 merge_bb = BB_CLUSTER (bb1) == NULL ? bb2 : bb1;
1010 other_bb = BB_CLUSTER (bb1) == NULL ? bb1 : bb2;
1011 merge = BB_CLUSTER (merge_bb);
1012 add_bb_to_cluster (merge, other_bb);
1013 BB_CLUSTER (other_bb) = merge;
1015 else if (BB_CLUSTER (bb1) != BB_CLUSTER (bb2))
1017 unsigned int i;
1018 bitmap_iterator bi;
1020 old = BB_CLUSTER (bb2);
1021 merge = BB_CLUSTER (bb1);
1022 merge_clusters (merge, old);
1023 EXECUTE_IF_SET_IN_BITMAP (old->bbs, 0, i, bi)
1024 BB_CLUSTER (BASIC_BLOCK (i)) = merge;
1025 VEC_replace (bb_cluster, all_clusters, old->index, NULL);
1026 update_rep_bb (merge, old->rep_bb);
1027 delete_cluster (old);
1029 else
1030 gcc_unreachable ();
1033 /* Return true if gimple statements S1 and S2 are equal. Gimple_bb (s1) and
1034 gimple_bb (s2) are members of SAME_SUCC. */
1036 static bool
1037 gimple_equal_p (same_succ same_succ, gimple s1, gimple s2)
1039 unsigned int i;
1040 tree lhs1, lhs2;
1041 basic_block bb1 = gimple_bb (s1), bb2 = gimple_bb (s2);
1042 tree t1, t2;
1043 bool equal, inv_cond;
1044 enum tree_code code1, code2;
1046 if (gimple_code (s1) != gimple_code (s2))
1047 return false;
1049 switch (gimple_code (s1))
1051 case GIMPLE_CALL:
1052 if (gimple_call_num_args (s1) != gimple_call_num_args (s2))
1053 return false;
1054 if (!gimple_call_same_target_p (s1, s2))
1055 return false;
1057 /* Eventually, we'll significantly complicate the CFG by adding
1058 back edges to properly model the effects of transaction restart.
1059 For the bulk of optimization this does not matter, but what we
1060 cannot recover from is tail merging blocks between two separate
1061 transactions. Avoid that by making commit not match. */
1062 if (gimple_call_builtin_p (s1, BUILT_IN_TM_COMMIT))
1063 return false;
1065 equal = true;
1066 for (i = 0; i < gimple_call_num_args (s1); ++i)
1068 t1 = gimple_call_arg (s1, i);
1069 t2 = gimple_call_arg (s2, i);
1070 if (operand_equal_p (t1, t2, 0))
1071 continue;
1072 if (gvn_uses_equal (t1, t2))
1073 continue;
1074 equal = false;
1075 break;
1077 if (!equal)
1078 return false;
1080 lhs1 = gimple_get_lhs (s1);
1081 lhs2 = gimple_get_lhs (s2);
1082 if (lhs1 == NULL_TREE && lhs2 == NULL_TREE)
1083 return true;
1084 if (lhs1 == NULL_TREE || lhs2 == NULL_TREE)
1085 return false;
1086 if (TREE_CODE (lhs1) == SSA_NAME && TREE_CODE (lhs2) == SSA_NAME)
1087 return vn_valueize (lhs1) == vn_valueize (lhs2);
1088 return operand_equal_p (lhs1, lhs2, 0);
1090 case GIMPLE_ASSIGN:
1091 lhs1 = gimple_get_lhs (s1);
1092 lhs2 = gimple_get_lhs (s2);
1093 if (gimple_vdef (s1))
1095 if (vn_valueize (gimple_vdef (s1)) != vn_valueize (gimple_vdef (s2)))
1096 return false;
1097 if (TREE_CODE (lhs1) != SSA_NAME
1098 && TREE_CODE (lhs2) != SSA_NAME)
1099 return true;
1101 return (TREE_CODE (lhs1) == SSA_NAME
1102 && TREE_CODE (lhs2) == SSA_NAME
1103 && vn_valueize (lhs1) == vn_valueize (lhs2));
1105 case GIMPLE_COND:
1106 t1 = gimple_cond_lhs (s1);
1107 t2 = gimple_cond_lhs (s2);
1108 if (!operand_equal_p (t1, t2, 0)
1109 && !gvn_uses_equal (t1, t2))
1110 return false;
1112 t1 = gimple_cond_rhs (s1);
1113 t2 = gimple_cond_rhs (s2);
1114 if (!operand_equal_p (t1, t2, 0)
1115 && !gvn_uses_equal (t1, t2))
1116 return false;
1118 code1 = gimple_expr_code (s1);
1119 code2 = gimple_expr_code (s2);
1120 inv_cond = (bitmap_bit_p (same_succ->inverse, bb1->index)
1121 != bitmap_bit_p (same_succ->inverse, bb2->index));
1122 if (inv_cond)
1124 bool honor_nans
1125 = HONOR_NANS (TYPE_MODE (TREE_TYPE (gimple_cond_lhs (s1))));
1126 code2 = invert_tree_comparison (code2, honor_nans);
1128 return code1 == code2;
1130 default:
1131 return false;
1135 /* Let GSI skip backwards over local defs. Return the earliest vuse in VUSE.
1136 Return true in VUSE_ESCAPED if the vuse influenced a SSA_OP_DEF of one of the
1137 processed statements. */
1139 static void
1140 gsi_advance_bw_nondebug_nonlocal (gimple_stmt_iterator *gsi, tree *vuse,
1141 bool *vuse_escaped)
1143 gimple stmt;
1144 tree lvuse;
1146 while (true)
1148 if (gsi_end_p (*gsi))
1149 return;
1150 stmt = gsi_stmt (*gsi);
1152 lvuse = gimple_vuse (stmt);
1153 if (lvuse != NULL_TREE)
1155 *vuse = lvuse;
1156 if (!ZERO_SSA_OPERANDS (stmt, SSA_OP_DEF))
1157 *vuse_escaped = true;
1160 if (!stmt_local_def (stmt))
1161 return;
1162 gsi_prev_nondebug (gsi);
1166 /* Determines whether BB1 and BB2 (members of same_succ) are duplicates. If so,
1167 clusters them. */
1169 static void
1170 find_duplicate (same_succ same_succ, basic_block bb1, basic_block bb2)
1172 gimple_stmt_iterator gsi1 = gsi_last_nondebug_bb (bb1);
1173 gimple_stmt_iterator gsi2 = gsi_last_nondebug_bb (bb2);
1174 tree vuse1 = NULL_TREE, vuse2 = NULL_TREE;
1175 bool vuse_escaped = false;
1177 gsi_advance_bw_nondebug_nonlocal (&gsi1, &vuse1, &vuse_escaped);
1178 gsi_advance_bw_nondebug_nonlocal (&gsi2, &vuse2, &vuse_escaped);
1180 while (!gsi_end_p (gsi1) && !gsi_end_p (gsi2))
1182 if (!gimple_equal_p (same_succ, gsi_stmt (gsi1), gsi_stmt (gsi2)))
1183 return;
1185 gsi_prev_nondebug (&gsi1);
1186 gsi_prev_nondebug (&gsi2);
1187 gsi_advance_bw_nondebug_nonlocal (&gsi1, &vuse1, &vuse_escaped);
1188 gsi_advance_bw_nondebug_nonlocal (&gsi2, &vuse2, &vuse_escaped);
1191 if (!(gsi_end_p (gsi1) && gsi_end_p (gsi2)))
1192 return;
1194 /* If the incoming vuses are not the same, and the vuse escaped into an
1195 SSA_OP_DEF, then merging the 2 blocks will change the value of the def,
1196 which potentially means the semantics of one of the blocks will be changed.
1197 TODO: make this check more precise. */
1198 if (vuse_escaped && vuse1 != vuse2)
1199 return;
1201 if (dump_file)
1202 fprintf (dump_file, "find_duplicates: <bb %d> duplicate of <bb %d>\n",
1203 bb1->index, bb2->index);
1205 set_cluster (bb1, bb2);
1208 /* Returns whether for all phis in DEST the phi alternatives for E1 and
1209 E2 are equal. */
1211 static bool
1212 same_phi_alternatives_1 (basic_block dest, edge e1, edge e2)
1214 int n1 = e1->dest_idx, n2 = e2->dest_idx;
1215 gimple_stmt_iterator gsi;
1217 for (gsi = gsi_start_phis (dest); !gsi_end_p (gsi); gsi_next (&gsi))
1219 gimple phi = gsi_stmt (gsi);
1220 tree lhs = gimple_phi_result (phi);
1221 tree val1 = gimple_phi_arg_def (phi, n1);
1222 tree val2 = gimple_phi_arg_def (phi, n2);
1224 if (!is_gimple_reg (lhs))
1225 continue;
1227 if (operand_equal_for_phi_arg_p (val1, val2))
1228 continue;
1229 if (gvn_uses_equal (val1, val2))
1230 continue;
1232 return false;
1235 return true;
1238 /* Returns whether for all successors of BB1 and BB2 (members of SAME_SUCC), the
1239 phi alternatives for BB1 and BB2 are equal. */
1241 static bool
1242 same_phi_alternatives (same_succ same_succ, basic_block bb1, basic_block bb2)
1244 unsigned int s;
1245 bitmap_iterator bs;
1246 edge e1, e2;
1247 basic_block succ;
1249 EXECUTE_IF_SET_IN_BITMAP (same_succ->succs, 0, s, bs)
1251 succ = BASIC_BLOCK (s);
1252 e1 = find_edge (bb1, succ);
1253 e2 = find_edge (bb2, succ);
1254 if (e1->flags & EDGE_COMPLEX
1255 || e2->flags & EDGE_COMPLEX)
1256 return false;
1258 /* For all phis in bb, the phi alternatives for e1 and e2 need to have
1259 the same value. */
1260 if (!same_phi_alternatives_1 (succ, e1, e2))
1261 return false;
1264 return true;
1267 /* Return true if BB has non-vop phis. */
1269 static bool
1270 bb_has_non_vop_phi (basic_block bb)
1272 gimple_seq phis = phi_nodes (bb);
1273 gimple phi;
1275 if (phis == NULL)
1276 return false;
1278 if (!gimple_seq_singleton_p (phis))
1279 return true;
1281 phi = gimple_seq_first_stmt (phis);
1282 return is_gimple_reg (gimple_phi_result (phi));
1285 /* Returns true if redirecting the incoming edges of FROM to TO maintains the
1286 invariant that uses in FROM are dominates by their defs. */
1288 static bool
1289 deps_ok_for_redirect_from_bb_to_bb (basic_block from, basic_block to)
1291 basic_block cd, dep_bb = BB_DEP_BB (to);
1292 edge_iterator ei;
1293 edge e;
1294 bitmap from_preds = BITMAP_ALLOC (NULL);
1296 if (dep_bb == NULL)
1297 return true;
1299 FOR_EACH_EDGE (e, ei, from->preds)
1300 bitmap_set_bit (from_preds, e->src->index);
1301 cd = nearest_common_dominator_for_set (CDI_DOMINATORS, from_preds);
1302 BITMAP_FREE (from_preds);
1304 return dominated_by_p (CDI_DOMINATORS, dep_bb, cd);
1307 /* Returns true if replacing BB1 (or its replacement bb) by BB2 (or its
1308 replacement bb) and vice versa maintains the invariant that uses in the
1309 replacement are dominates by their defs. */
1311 static bool
1312 deps_ok_for_redirect (basic_block bb1, basic_block bb2)
1314 if (BB_CLUSTER (bb1) != NULL)
1315 bb1 = BB_CLUSTER (bb1)->rep_bb;
1317 if (BB_CLUSTER (bb2) != NULL)
1318 bb2 = BB_CLUSTER (bb2)->rep_bb;
1320 return (deps_ok_for_redirect_from_bb_to_bb (bb1, bb2)
1321 && deps_ok_for_redirect_from_bb_to_bb (bb2, bb1));
1324 /* Within SAME_SUCC->bbs, find clusters of bbs which can be merged. */
1326 static void
1327 find_clusters_1 (same_succ same_succ)
1329 basic_block bb1, bb2;
1330 unsigned int i, j;
1331 bitmap_iterator bi, bj;
1332 int nr_comparisons;
1333 int max_comparisons = PARAM_VALUE (PARAM_MAX_TAIL_MERGE_COMPARISONS);
1335 EXECUTE_IF_SET_IN_BITMAP (same_succ->bbs, 0, i, bi)
1337 bb1 = BASIC_BLOCK (i);
1339 /* TODO: handle blocks with phi-nodes. We'll have to find corresponding
1340 phi-nodes in bb1 and bb2, with the same alternatives for the same
1341 preds. */
1342 if (bb_has_non_vop_phi (bb1))
1343 continue;
1345 nr_comparisons = 0;
1346 EXECUTE_IF_SET_IN_BITMAP (same_succ->bbs, i + 1, j, bj)
1348 bb2 = BASIC_BLOCK (j);
1350 if (bb_has_non_vop_phi (bb2))
1351 continue;
1353 if (BB_CLUSTER (bb1) != NULL && BB_CLUSTER (bb1) == BB_CLUSTER (bb2))
1354 continue;
1356 /* Limit quadratic behaviour. */
1357 nr_comparisons++;
1358 if (nr_comparisons > max_comparisons)
1359 break;
1361 /* This is a conservative dependency check. We could test more
1362 precise for allowed replacement direction. */
1363 if (!deps_ok_for_redirect (bb1, bb2))
1364 continue;
1366 if (!(same_phi_alternatives (same_succ, bb1, bb2)))
1367 continue;
1369 find_duplicate (same_succ, bb1, bb2);
1374 /* Find clusters of bbs which can be merged. */
1376 static void
1377 find_clusters (void)
1379 same_succ same;
1381 while (!VEC_empty (same_succ, worklist))
1383 same = VEC_pop (same_succ, worklist);
1384 same->in_worklist = false;
1385 if (dump_file && (dump_flags & TDF_DETAILS))
1387 fprintf (dump_file, "processing worklist entry\n");
1388 same_succ_print (dump_file, same);
1390 find_clusters_1 (same);
1394 /* Returns the vop phi of BB, if any. */
1396 static gimple
1397 vop_phi (basic_block bb)
1399 gimple stmt;
1400 gimple_stmt_iterator gsi;
1401 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1403 stmt = gsi_stmt (gsi);
1404 if (is_gimple_reg (gimple_phi_result (stmt)))
1405 continue;
1406 return stmt;
1408 return NULL;
1411 /* Redirect all edges from BB1 to BB2, removes BB1 and marks it as removed. */
1413 static void
1414 replace_block_by (basic_block bb1, basic_block bb2)
1416 edge pred_edge;
1417 unsigned int i;
1418 gimple bb2_phi;
1420 bb2_phi = vop_phi (bb2);
1422 /* Mark the basic block as deleted. */
1423 mark_basic_block_deleted (bb1);
1425 /* Redirect the incoming edges of bb1 to bb2. */
1426 for (i = EDGE_COUNT (bb1->preds); i > 0 ; --i)
1428 pred_edge = EDGE_PRED (bb1, i - 1);
1429 pred_edge = redirect_edge_and_branch (pred_edge, bb2);
1430 gcc_assert (pred_edge != NULL);
1432 if (bb2_phi == NULL)
1433 continue;
1435 /* The phi might have run out of capacity when the redirect added an
1436 argument, which means it could have been replaced. Refresh it. */
1437 bb2_phi = vop_phi (bb2);
1439 add_phi_arg (bb2_phi, SSA_NAME_VAR (gimple_phi_result (bb2_phi)),
1440 pred_edge, UNKNOWN_LOCATION);
1443 bb2->frequency += bb1->frequency;
1444 if (bb2->frequency > BB_FREQ_MAX)
1445 bb2->frequency = BB_FREQ_MAX;
1446 bb1->frequency = 0;
1448 /* Do updates that use bb1, before deleting bb1. */
1449 same_succ_flush_bb (bb1);
1451 delete_basic_block (bb1);
1454 /* Bbs for which update_debug_stmt need to be called. */
1456 static bitmap update_bbs;
1458 /* For each cluster in all_clusters, merge all cluster->bbs. Returns
1459 number of bbs removed. */
1461 static int
1462 apply_clusters (void)
1464 basic_block bb1, bb2;
1465 bb_cluster c;
1466 unsigned int i, j;
1467 bitmap_iterator bj;
1468 int nr_bbs_removed = 0;
1470 for (i = 0; i < VEC_length (bb_cluster, all_clusters); ++i)
1472 c = VEC_index (bb_cluster, all_clusters, i);
1473 if (c == NULL)
1474 continue;
1476 bb2 = c->rep_bb;
1477 bitmap_set_bit (update_bbs, bb2->index);
1479 bitmap_clear_bit (c->bbs, bb2->index);
1480 EXECUTE_IF_SET_IN_BITMAP (c->bbs, 0, j, bj)
1482 bb1 = BASIC_BLOCK (j);
1483 bitmap_clear_bit (update_bbs, bb1->index);
1485 replace_block_by (bb1, bb2);
1486 nr_bbs_removed++;
1490 return nr_bbs_removed;
1493 /* Resets debug statement STMT if it has uses that are not dominated by their
1494 defs. */
1496 static void
1497 update_debug_stmt (gimple stmt)
1499 use_operand_p use_p;
1500 ssa_op_iter oi;
1501 basic_block bbdef, bbuse;
1502 gimple def_stmt;
1503 tree name;
1505 if (!gimple_debug_bind_p (stmt))
1506 return;
1508 bbuse = gimple_bb (stmt);
1509 FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, oi, SSA_OP_USE)
1511 name = USE_FROM_PTR (use_p);
1512 gcc_assert (TREE_CODE (name) == SSA_NAME);
1514 def_stmt = SSA_NAME_DEF_STMT (name);
1515 gcc_assert (def_stmt != NULL);
1517 bbdef = gimple_bb (def_stmt);
1518 if (bbdef == NULL || bbuse == bbdef
1519 || dominated_by_p (CDI_DOMINATORS, bbuse, bbdef))
1520 continue;
1522 gimple_debug_bind_reset_value (stmt);
1523 update_stmt (stmt);
1527 /* Resets all debug statements that have uses that are not
1528 dominated by their defs. */
1530 static void
1531 update_debug_stmts (void)
1533 basic_block bb;
1534 bitmap_iterator bi;
1535 unsigned int i;
1537 EXECUTE_IF_SET_IN_BITMAP (update_bbs, 0, i, bi)
1539 gimple stmt;
1540 gimple_stmt_iterator gsi;
1542 bb = BASIC_BLOCK (i);
1543 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1545 stmt = gsi_stmt (gsi);
1546 if (!is_gimple_debug (stmt))
1547 continue;
1548 update_debug_stmt (stmt);
1553 /* Runs tail merge optimization. */
1555 unsigned int
1556 tail_merge_optimize (unsigned int todo)
1558 int nr_bbs_removed_total = 0;
1559 int nr_bbs_removed;
1560 bool loop_entered = false;
1561 int iteration_nr = 0;
1562 int max_iterations = PARAM_VALUE (PARAM_MAX_TAIL_MERGE_ITERATIONS);
1564 if (!flag_tree_tail_merge || max_iterations == 0)
1565 return 0;
1567 timevar_push (TV_TREE_TAIL_MERGE);
1569 calculate_dominance_info (CDI_DOMINATORS);
1570 init_worklist ();
1572 while (!VEC_empty (same_succ, worklist))
1574 if (!loop_entered)
1576 loop_entered = true;
1577 alloc_cluster_vectors ();
1578 update_bbs = BITMAP_ALLOC (NULL);
1580 else
1581 reset_cluster_vectors ();
1583 iteration_nr++;
1584 if (dump_file && (dump_flags & TDF_DETAILS))
1585 fprintf (dump_file, "worklist iteration #%d\n", iteration_nr);
1587 find_clusters ();
1588 gcc_assert (VEC_empty (same_succ, worklist));
1589 if (VEC_empty (bb_cluster, all_clusters))
1590 break;
1592 nr_bbs_removed = apply_clusters ();
1593 nr_bbs_removed_total += nr_bbs_removed;
1594 if (nr_bbs_removed == 0)
1595 break;
1597 free_dominance_info (CDI_DOMINATORS);
1599 if (iteration_nr == max_iterations)
1600 break;
1602 calculate_dominance_info (CDI_DOMINATORS);
1603 update_worklist ();
1606 if (dump_file && (dump_flags & TDF_DETAILS))
1607 fprintf (dump_file, "htab collision / search: %f\n",
1608 htab_collisions (same_succ_htab));
1610 if (nr_bbs_removed_total > 0)
1612 if (MAY_HAVE_DEBUG_STMTS)
1614 calculate_dominance_info (CDI_DOMINATORS);
1615 update_debug_stmts ();
1618 if (dump_file && (dump_flags & TDF_DETAILS))
1620 fprintf (dump_file, "Before TODOs.\n");
1621 dump_function_to_file (current_function_decl, dump_file, dump_flags);
1624 todo |= (TODO_verify_ssa | TODO_verify_stmts | TODO_verify_flow);
1625 mark_virtual_operands_for_renaming (cfun);
1628 delete_worklist ();
1629 if (loop_entered)
1631 delete_cluster_vectors ();
1632 BITMAP_FREE (update_bbs);
1635 timevar_pop (TV_TREE_TAIL_MERGE);
1637 return todo;