build_string comments
[official-gcc.git] / gcc / tree-cfg.c
bloba8409db59822fafa29dc15cc8483a5acecfa0b34
1 /* Control flow functions for trees.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010, 2011 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "tm_p.h"
28 #include "basic-block.h"
29 #include "output.h"
30 #include "flags.h"
31 #include "function.h"
32 #include "ggc.h"
33 #include "langhooks.h"
34 #include "tree-pretty-print.h"
35 #include "gimple-pretty-print.h"
36 #include "tree-flow.h"
37 #include "timevar.h"
38 #include "tree-dump.h"
39 #include "tree-pass.h"
40 #include "diagnostic-core.h"
41 #include "except.h"
42 #include "cfgloop.h"
43 #include "cfglayout.h"
44 #include "tree-ssa-propagate.h"
45 #include "value-prof.h"
46 #include "pointer-set.h"
47 #include "tree-inline.h"
49 /* This file contains functions for building the Control Flow Graph (CFG)
50 for a function tree. */
52 /* Local declarations. */
54 /* Initial capacity for the basic block array. */
55 static const int initial_cfg_capacity = 20;
57 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
58 which use a particular edge. The CASE_LABEL_EXPRs are chained together
59 via their TREE_CHAIN field, which we clear after we're done with the
60 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
62 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
63 update the case vector in response to edge redirections.
65 Right now this table is set up and torn down at key points in the
66 compilation process. It would be nice if we could make the table
67 more persistent. The key is getting notification of changes to
68 the CFG (particularly edge removal, creation and redirection). */
70 static struct pointer_map_t *edge_to_cases;
72 /* If we record edge_to_cases, this bitmap will hold indexes
73 of basic blocks that end in a GIMPLE_SWITCH which we touched
74 due to edge manipulations. */
76 static bitmap touched_switch_bbs;
78 /* CFG statistics. */
79 struct cfg_stats_d
81 long num_merged_labels;
84 static struct cfg_stats_d cfg_stats;
86 /* Nonzero if we found a computed goto while building basic blocks. */
87 static bool found_computed_goto;
89 /* Hash table to store last discriminator assigned for each locus. */
90 struct locus_discrim_map
92 location_t locus;
93 int discriminator;
95 static htab_t discriminator_per_locus;
97 /* Basic blocks and flowgraphs. */
98 static void make_blocks (gimple_seq);
99 static void factor_computed_gotos (void);
101 /* Edges. */
102 static void make_edges (void);
103 static void make_cond_expr_edges (basic_block);
104 static void make_gimple_switch_edges (basic_block);
105 static void make_goto_expr_edges (basic_block);
106 static void make_gimple_asm_edges (basic_block);
107 static unsigned int locus_map_hash (const void *);
108 static int locus_map_eq (const void *, const void *);
109 static void assign_discriminator (location_t, basic_block);
110 static edge gimple_redirect_edge_and_branch (edge, basic_block);
111 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
112 static unsigned int split_critical_edges (void);
114 /* Various helpers. */
115 static inline bool stmt_starts_bb_p (gimple, gimple);
116 static int gimple_verify_flow_info (void);
117 static void gimple_make_forwarder_block (edge);
118 static void gimple_cfg2vcg (FILE *);
119 static gimple first_non_label_stmt (basic_block);
121 /* Flowgraph optimization and cleanup. */
122 static void gimple_merge_blocks (basic_block, basic_block);
123 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
124 static void remove_bb (basic_block);
125 static edge find_taken_edge_computed_goto (basic_block, tree);
126 static edge find_taken_edge_cond_expr (basic_block, tree);
127 static edge find_taken_edge_switch_expr (basic_block, tree);
128 static tree find_case_label_for_value (gimple, tree);
129 static void group_case_labels_stmt (gimple);
131 void
132 init_empty_tree_cfg_for_function (struct function *fn)
134 /* Initialize the basic block array. */
135 init_flow (fn);
136 profile_status_for_function (fn) = PROFILE_ABSENT;
137 n_basic_blocks_for_function (fn) = NUM_FIXED_BLOCKS;
138 last_basic_block_for_function (fn) = NUM_FIXED_BLOCKS;
139 basic_block_info_for_function (fn)
140 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
141 VEC_safe_grow_cleared (basic_block, gc,
142 basic_block_info_for_function (fn),
143 initial_cfg_capacity);
145 /* Build a mapping of labels to their associated blocks. */
146 label_to_block_map_for_function (fn)
147 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
148 VEC_safe_grow_cleared (basic_block, gc,
149 label_to_block_map_for_function (fn),
150 initial_cfg_capacity);
152 SET_BASIC_BLOCK_FOR_FUNCTION (fn, ENTRY_BLOCK,
153 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn));
154 SET_BASIC_BLOCK_FOR_FUNCTION (fn, EXIT_BLOCK,
155 EXIT_BLOCK_PTR_FOR_FUNCTION (fn));
157 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn)->next_bb
158 = EXIT_BLOCK_PTR_FOR_FUNCTION (fn);
159 EXIT_BLOCK_PTR_FOR_FUNCTION (fn)->prev_bb
160 = ENTRY_BLOCK_PTR_FOR_FUNCTION (fn);
163 void
164 init_empty_tree_cfg (void)
166 init_empty_tree_cfg_for_function (cfun);
169 /*---------------------------------------------------------------------------
170 Create basic blocks
171 ---------------------------------------------------------------------------*/
173 /* Entry point to the CFG builder for trees. SEQ is the sequence of
174 statements to be added to the flowgraph. */
176 static void
177 build_gimple_cfg (gimple_seq seq)
179 /* Register specific gimple functions. */
180 gimple_register_cfg_hooks ();
182 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
184 init_empty_tree_cfg ();
186 found_computed_goto = 0;
187 make_blocks (seq);
189 /* Computed gotos are hell to deal with, especially if there are
190 lots of them with a large number of destinations. So we factor
191 them to a common computed goto location before we build the
192 edge list. After we convert back to normal form, we will un-factor
193 the computed gotos since factoring introduces an unwanted jump. */
194 if (found_computed_goto)
195 factor_computed_gotos ();
197 /* Make sure there is always at least one block, even if it's empty. */
198 if (n_basic_blocks == NUM_FIXED_BLOCKS)
199 create_empty_bb (ENTRY_BLOCK_PTR);
201 /* Adjust the size of the array. */
202 if (VEC_length (basic_block, basic_block_info) < (size_t) n_basic_blocks)
203 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, n_basic_blocks);
205 /* To speed up statement iterator walks, we first purge dead labels. */
206 cleanup_dead_labels ();
208 /* Group case nodes to reduce the number of edges.
209 We do this after cleaning up dead labels because otherwise we miss
210 a lot of obvious case merging opportunities. */
211 group_case_labels ();
213 /* Create the edges of the flowgraph. */
214 discriminator_per_locus = htab_create (13, locus_map_hash, locus_map_eq,
215 free);
216 make_edges ();
217 cleanup_dead_labels ();
218 htab_delete (discriminator_per_locus);
220 /* Debugging dumps. */
222 /* Write the flowgraph to a VCG file. */
224 int local_dump_flags;
225 FILE *vcg_file = dump_begin (TDI_vcg, &local_dump_flags);
226 if (vcg_file)
228 gimple_cfg2vcg (vcg_file);
229 dump_end (TDI_vcg, vcg_file);
234 static unsigned int
235 execute_build_cfg (void)
237 gimple_seq body = gimple_body (current_function_decl);
239 build_gimple_cfg (body);
240 gimple_set_body (current_function_decl, NULL);
241 if (dump_file && (dump_flags & TDF_DETAILS))
243 fprintf (dump_file, "Scope blocks:\n");
244 dump_scope_blocks (dump_file, dump_flags);
246 return 0;
249 struct gimple_opt_pass pass_build_cfg =
252 GIMPLE_PASS,
253 "cfg", /* name */
254 NULL, /* gate */
255 execute_build_cfg, /* execute */
256 NULL, /* sub */
257 NULL, /* next */
258 0, /* static_pass_number */
259 TV_TREE_CFG, /* tv_id */
260 PROP_gimple_leh, /* properties_required */
261 PROP_cfg, /* properties_provided */
262 0, /* properties_destroyed */
263 0, /* todo_flags_start */
264 TODO_verify_stmts | TODO_cleanup_cfg /* todo_flags_finish */
269 /* Return true if T is a computed goto. */
271 static bool
272 computed_goto_p (gimple t)
274 return (gimple_code (t) == GIMPLE_GOTO
275 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
279 /* Search the CFG for any computed gotos. If found, factor them to a
280 common computed goto site. Also record the location of that site so
281 that we can un-factor the gotos after we have converted back to
282 normal form. */
284 static void
285 factor_computed_gotos (void)
287 basic_block bb;
288 tree factored_label_decl = NULL;
289 tree var = NULL;
290 gimple factored_computed_goto_label = NULL;
291 gimple factored_computed_goto = NULL;
293 /* We know there are one or more computed gotos in this function.
294 Examine the last statement in each basic block to see if the block
295 ends with a computed goto. */
297 FOR_EACH_BB (bb)
299 gimple_stmt_iterator gsi = gsi_last_bb (bb);
300 gimple last;
302 if (gsi_end_p (gsi))
303 continue;
305 last = gsi_stmt (gsi);
307 /* Ignore the computed goto we create when we factor the original
308 computed gotos. */
309 if (last == factored_computed_goto)
310 continue;
312 /* If the last statement is a computed goto, factor it. */
313 if (computed_goto_p (last))
315 gimple assignment;
317 /* The first time we find a computed goto we need to create
318 the factored goto block and the variable each original
319 computed goto will use for their goto destination. */
320 if (!factored_computed_goto)
322 basic_block new_bb = create_empty_bb (bb);
323 gimple_stmt_iterator new_gsi = gsi_start_bb (new_bb);
325 /* Create the destination of the factored goto. Each original
326 computed goto will put its desired destination into this
327 variable and jump to the label we create immediately
328 below. */
329 var = create_tmp_var (ptr_type_node, "gotovar");
331 /* Build a label for the new block which will contain the
332 factored computed goto. */
333 factored_label_decl = create_artificial_label (UNKNOWN_LOCATION);
334 factored_computed_goto_label
335 = gimple_build_label (factored_label_decl);
336 gsi_insert_after (&new_gsi, factored_computed_goto_label,
337 GSI_NEW_STMT);
339 /* Build our new computed goto. */
340 factored_computed_goto = gimple_build_goto (var);
341 gsi_insert_after (&new_gsi, factored_computed_goto, GSI_NEW_STMT);
344 /* Copy the original computed goto's destination into VAR. */
345 assignment = gimple_build_assign (var, gimple_goto_dest (last));
346 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
348 /* And re-vector the computed goto to the new destination. */
349 gimple_goto_set_dest (last, factored_label_decl);
355 /* Build a flowgraph for the sequence of stmts SEQ. */
357 static void
358 make_blocks (gimple_seq seq)
360 gimple_stmt_iterator i = gsi_start (seq);
361 gimple stmt = NULL;
362 bool start_new_block = true;
363 bool first_stmt_of_seq = true;
364 basic_block bb = ENTRY_BLOCK_PTR;
366 while (!gsi_end_p (i))
368 gimple prev_stmt;
370 prev_stmt = stmt;
371 stmt = gsi_stmt (i);
373 /* If the statement starts a new basic block or if we have determined
374 in a previous pass that we need to create a new block for STMT, do
375 so now. */
376 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
378 if (!first_stmt_of_seq)
379 seq = gsi_split_seq_before (&i);
380 bb = create_basic_block (seq, NULL, bb);
381 start_new_block = false;
384 /* Now add STMT to BB and create the subgraphs for special statement
385 codes. */
386 gimple_set_bb (stmt, bb);
388 if (computed_goto_p (stmt))
389 found_computed_goto = true;
391 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
392 next iteration. */
393 if (stmt_ends_bb_p (stmt))
395 /* If the stmt can make abnormal goto use a new temporary
396 for the assignment to the LHS. This makes sure the old value
397 of the LHS is available on the abnormal edge. Otherwise
398 we will end up with overlapping life-ranges for abnormal
399 SSA names. */
400 if (gimple_has_lhs (stmt)
401 && stmt_can_make_abnormal_goto (stmt)
402 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
404 tree lhs = gimple_get_lhs (stmt);
405 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
406 gimple s = gimple_build_assign (lhs, tmp);
407 gimple_set_location (s, gimple_location (stmt));
408 gimple_set_block (s, gimple_block (stmt));
409 gimple_set_lhs (stmt, tmp);
410 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
411 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
412 DECL_GIMPLE_REG_P (tmp) = 1;
413 gsi_insert_after (&i, s, GSI_SAME_STMT);
415 start_new_block = true;
418 gsi_next (&i);
419 first_stmt_of_seq = false;
424 /* Create and return a new empty basic block after bb AFTER. */
426 static basic_block
427 create_bb (void *h, void *e, basic_block after)
429 basic_block bb;
431 gcc_assert (!e);
433 /* Create and initialize a new basic block. Since alloc_block uses
434 GC allocation that clears memory to allocate a basic block, we do
435 not have to clear the newly allocated basic block here. */
436 bb = alloc_block ();
438 bb->index = last_basic_block;
439 bb->flags = BB_NEW;
440 bb->il.gimple = ggc_alloc_cleared_gimple_bb_info ();
441 set_bb_seq (bb, h ? (gimple_seq) h : gimple_seq_alloc ());
443 /* Add the new block to the linked list of blocks. */
444 link_block (bb, after);
446 /* Grow the basic block array if needed. */
447 if ((size_t) last_basic_block == VEC_length (basic_block, basic_block_info))
449 size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
450 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, new_size);
453 /* Add the newly created block to the array. */
454 SET_BASIC_BLOCK (last_basic_block, bb);
456 n_basic_blocks++;
457 last_basic_block++;
459 return bb;
463 /*---------------------------------------------------------------------------
464 Edge creation
465 ---------------------------------------------------------------------------*/
467 /* Fold COND_EXPR_COND of each COND_EXPR. */
469 void
470 fold_cond_expr_cond (void)
472 basic_block bb;
474 FOR_EACH_BB (bb)
476 gimple stmt = last_stmt (bb);
478 if (stmt && gimple_code (stmt) == GIMPLE_COND)
480 location_t loc = gimple_location (stmt);
481 tree cond;
482 bool zerop, onep;
484 fold_defer_overflow_warnings ();
485 cond = fold_binary_loc (loc, gimple_cond_code (stmt), boolean_type_node,
486 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
487 if (cond)
489 zerop = integer_zerop (cond);
490 onep = integer_onep (cond);
492 else
493 zerop = onep = false;
495 fold_undefer_overflow_warnings (zerop || onep,
496 stmt,
497 WARN_STRICT_OVERFLOW_CONDITIONAL);
498 if (zerop)
499 gimple_cond_make_false (stmt);
500 else if (onep)
501 gimple_cond_make_true (stmt);
506 /* Join all the blocks in the flowgraph. */
508 static void
509 make_edges (void)
511 basic_block bb;
512 struct omp_region *cur_region = NULL;
514 /* Create an edge from entry to the first block with executable
515 statements in it. */
516 make_edge (ENTRY_BLOCK_PTR, BASIC_BLOCK (NUM_FIXED_BLOCKS), EDGE_FALLTHRU);
518 /* Traverse the basic block array placing edges. */
519 FOR_EACH_BB (bb)
521 gimple last = last_stmt (bb);
522 bool fallthru;
524 if (last)
526 enum gimple_code code = gimple_code (last);
527 switch (code)
529 case GIMPLE_GOTO:
530 make_goto_expr_edges (bb);
531 fallthru = false;
532 break;
533 case GIMPLE_RETURN:
534 make_edge (bb, EXIT_BLOCK_PTR, 0);
535 fallthru = false;
536 break;
537 case GIMPLE_COND:
538 make_cond_expr_edges (bb);
539 fallthru = false;
540 break;
541 case GIMPLE_SWITCH:
542 make_gimple_switch_edges (bb);
543 fallthru = false;
544 break;
545 case GIMPLE_RESX:
546 make_eh_edges (last);
547 fallthru = false;
548 break;
549 case GIMPLE_EH_DISPATCH:
550 fallthru = make_eh_dispatch_edges (last);
551 break;
553 case GIMPLE_CALL:
554 /* If this function receives a nonlocal goto, then we need to
555 make edges from this call site to all the nonlocal goto
556 handlers. */
557 if (stmt_can_make_abnormal_goto (last))
558 make_abnormal_goto_edges (bb, true);
560 /* If this statement has reachable exception handlers, then
561 create abnormal edges to them. */
562 make_eh_edges (last);
564 /* BUILTIN_RETURN is really a return statement. */
565 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
566 make_edge (bb, EXIT_BLOCK_PTR, 0), fallthru = false;
567 /* Some calls are known not to return. */
568 else
569 fallthru = !(gimple_call_flags (last) & ECF_NORETURN);
570 break;
572 case GIMPLE_ASSIGN:
573 /* A GIMPLE_ASSIGN may throw internally and thus be considered
574 control-altering. */
575 if (is_ctrl_altering_stmt (last))
576 make_eh_edges (last);
577 fallthru = true;
578 break;
580 case GIMPLE_ASM:
581 make_gimple_asm_edges (bb);
582 fallthru = true;
583 break;
585 case GIMPLE_OMP_PARALLEL:
586 case GIMPLE_OMP_TASK:
587 case GIMPLE_OMP_FOR:
588 case GIMPLE_OMP_SINGLE:
589 case GIMPLE_OMP_MASTER:
590 case GIMPLE_OMP_ORDERED:
591 case GIMPLE_OMP_CRITICAL:
592 case GIMPLE_OMP_SECTION:
593 cur_region = new_omp_region (bb, code, cur_region);
594 fallthru = true;
595 break;
597 case GIMPLE_OMP_SECTIONS:
598 cur_region = new_omp_region (bb, code, cur_region);
599 fallthru = true;
600 break;
602 case GIMPLE_OMP_SECTIONS_SWITCH:
603 fallthru = false;
604 break;
606 case GIMPLE_OMP_ATOMIC_LOAD:
607 case GIMPLE_OMP_ATOMIC_STORE:
608 fallthru = true;
609 break;
611 case GIMPLE_OMP_RETURN:
612 /* In the case of a GIMPLE_OMP_SECTION, the edge will go
613 somewhere other than the next block. This will be
614 created later. */
615 cur_region->exit = bb;
616 fallthru = cur_region->type != GIMPLE_OMP_SECTION;
617 cur_region = cur_region->outer;
618 break;
620 case GIMPLE_OMP_CONTINUE:
621 cur_region->cont = bb;
622 switch (cur_region->type)
624 case GIMPLE_OMP_FOR:
625 /* Mark all GIMPLE_OMP_FOR and GIMPLE_OMP_CONTINUE
626 succs edges as abnormal to prevent splitting
627 them. */
628 single_succ_edge (cur_region->entry)->flags |= EDGE_ABNORMAL;
629 /* Make the loopback edge. */
630 make_edge (bb, single_succ (cur_region->entry),
631 EDGE_ABNORMAL);
633 /* Create an edge from GIMPLE_OMP_FOR to exit, which
634 corresponds to the case that the body of the loop
635 is not executed at all. */
636 make_edge (cur_region->entry, bb->next_bb, EDGE_ABNORMAL);
637 make_edge (bb, bb->next_bb, EDGE_FALLTHRU | EDGE_ABNORMAL);
638 fallthru = false;
639 break;
641 case GIMPLE_OMP_SECTIONS:
642 /* Wire up the edges into and out of the nested sections. */
644 basic_block switch_bb = single_succ (cur_region->entry);
646 struct omp_region *i;
647 for (i = cur_region->inner; i ; i = i->next)
649 gcc_assert (i->type == GIMPLE_OMP_SECTION);
650 make_edge (switch_bb, i->entry, 0);
651 make_edge (i->exit, bb, EDGE_FALLTHRU);
654 /* Make the loopback edge to the block with
655 GIMPLE_OMP_SECTIONS_SWITCH. */
656 make_edge (bb, switch_bb, 0);
658 /* Make the edge from the switch to exit. */
659 make_edge (switch_bb, bb->next_bb, 0);
660 fallthru = false;
662 break;
664 default:
665 gcc_unreachable ();
667 break;
669 default:
670 gcc_assert (!stmt_ends_bb_p (last));
671 fallthru = true;
674 else
675 fallthru = true;
677 if (fallthru)
679 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
680 if (last)
681 assign_discriminator (gimple_location (last), bb->next_bb);
685 if (root_omp_region)
686 free_omp_regions ();
688 /* Fold COND_EXPR_COND of each COND_EXPR. */
689 fold_cond_expr_cond ();
692 /* Trivial hash function for a location_t. ITEM is a pointer to
693 a hash table entry that maps a location_t to a discriminator. */
695 static unsigned int
696 locus_map_hash (const void *item)
698 return ((const struct locus_discrim_map *) item)->locus;
701 /* Equality function for the locus-to-discriminator map. VA and VB
702 point to the two hash table entries to compare. */
704 static int
705 locus_map_eq (const void *va, const void *vb)
707 const struct locus_discrim_map *a = (const struct locus_discrim_map *) va;
708 const struct locus_discrim_map *b = (const struct locus_discrim_map *) vb;
709 return a->locus == b->locus;
712 /* Find the next available discriminator value for LOCUS. The
713 discriminator distinguishes among several basic blocks that
714 share a common locus, allowing for more accurate sample-based
715 profiling. */
717 static int
718 next_discriminator_for_locus (location_t locus)
720 struct locus_discrim_map item;
721 struct locus_discrim_map **slot;
723 item.locus = locus;
724 item.discriminator = 0;
725 slot = (struct locus_discrim_map **)
726 htab_find_slot_with_hash (discriminator_per_locus, (void *) &item,
727 (hashval_t) locus, INSERT);
728 gcc_assert (slot);
729 if (*slot == HTAB_EMPTY_ENTRY)
731 *slot = XNEW (struct locus_discrim_map);
732 gcc_assert (*slot);
733 (*slot)->locus = locus;
734 (*slot)->discriminator = 0;
736 (*slot)->discriminator++;
737 return (*slot)->discriminator;
740 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
742 static bool
743 same_line_p (location_t locus1, location_t locus2)
745 expanded_location from, to;
747 if (locus1 == locus2)
748 return true;
750 from = expand_location (locus1);
751 to = expand_location (locus2);
753 if (from.line != to.line)
754 return false;
755 if (from.file == to.file)
756 return true;
757 return (from.file != NULL
758 && to.file != NULL
759 && filename_cmp (from.file, to.file) == 0);
762 /* Assign a unique discriminator value to block BB if it begins at the same
763 LOCUS as its predecessor block. */
765 static void
766 assign_discriminator (location_t locus, basic_block bb)
768 gimple first_in_to_bb, last_in_to_bb;
770 if (locus == 0 || bb->discriminator != 0)
771 return;
773 first_in_to_bb = first_non_label_stmt (bb);
774 last_in_to_bb = last_stmt (bb);
775 if ((first_in_to_bb && same_line_p (locus, gimple_location (first_in_to_bb)))
776 || (last_in_to_bb && same_line_p (locus, gimple_location (last_in_to_bb))))
777 bb->discriminator = next_discriminator_for_locus (locus);
780 /* Create the edges for a GIMPLE_COND starting at block BB. */
782 static void
783 make_cond_expr_edges (basic_block bb)
785 gimple entry = last_stmt (bb);
786 gimple then_stmt, else_stmt;
787 basic_block then_bb, else_bb;
788 tree then_label, else_label;
789 edge e;
790 location_t entry_locus;
792 gcc_assert (entry);
793 gcc_assert (gimple_code (entry) == GIMPLE_COND);
795 entry_locus = gimple_location (entry);
797 /* Entry basic blocks for each component. */
798 then_label = gimple_cond_true_label (entry);
799 else_label = gimple_cond_false_label (entry);
800 then_bb = label_to_block (then_label);
801 else_bb = label_to_block (else_label);
802 then_stmt = first_stmt (then_bb);
803 else_stmt = first_stmt (else_bb);
805 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
806 assign_discriminator (entry_locus, then_bb);
807 e->goto_locus = gimple_location (then_stmt);
808 if (e->goto_locus)
809 e->goto_block = gimple_block (then_stmt);
810 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
811 if (e)
813 assign_discriminator (entry_locus, else_bb);
814 e->goto_locus = gimple_location (else_stmt);
815 if (e->goto_locus)
816 e->goto_block = gimple_block (else_stmt);
819 /* We do not need the labels anymore. */
820 gimple_cond_set_true_label (entry, NULL_TREE);
821 gimple_cond_set_false_label (entry, NULL_TREE);
825 /* Called for each element in the hash table (P) as we delete the
826 edge to cases hash table.
828 Clear all the TREE_CHAINs to prevent problems with copying of
829 SWITCH_EXPRs and structure sharing rules, then free the hash table
830 element. */
832 static bool
833 edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED, void **value,
834 void *data ATTRIBUTE_UNUSED)
836 tree t, next;
838 for (t = (tree) *value; t; t = next)
840 next = CASE_CHAIN (t);
841 CASE_CHAIN (t) = NULL;
844 *value = NULL;
845 return true;
848 /* Start recording information mapping edges to case labels. */
850 void
851 start_recording_case_labels (void)
853 gcc_assert (edge_to_cases == NULL);
854 edge_to_cases = pointer_map_create ();
855 touched_switch_bbs = BITMAP_ALLOC (NULL);
858 /* Return nonzero if we are recording information for case labels. */
860 static bool
861 recording_case_labels_p (void)
863 return (edge_to_cases != NULL);
866 /* Stop recording information mapping edges to case labels and
867 remove any information we have recorded. */
868 void
869 end_recording_case_labels (void)
871 bitmap_iterator bi;
872 unsigned i;
873 pointer_map_traverse (edge_to_cases, edge_to_cases_cleanup, NULL);
874 pointer_map_destroy (edge_to_cases);
875 edge_to_cases = NULL;
876 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
878 basic_block bb = BASIC_BLOCK (i);
879 if (bb)
881 gimple stmt = last_stmt (bb);
882 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
883 group_case_labels_stmt (stmt);
886 BITMAP_FREE (touched_switch_bbs);
889 /* If we are inside a {start,end}_recording_cases block, then return
890 a chain of CASE_LABEL_EXPRs from T which reference E.
892 Otherwise return NULL. */
894 static tree
895 get_cases_for_edge (edge e, gimple t)
897 void **slot;
898 size_t i, n;
900 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
901 chains available. Return NULL so the caller can detect this case. */
902 if (!recording_case_labels_p ())
903 return NULL;
905 slot = pointer_map_contains (edge_to_cases, e);
906 if (slot)
907 return (tree) *slot;
909 /* If we did not find E in the hash table, then this must be the first
910 time we have been queried for information about E & T. Add all the
911 elements from T to the hash table then perform the query again. */
913 n = gimple_switch_num_labels (t);
914 for (i = 0; i < n; i++)
916 tree elt = gimple_switch_label (t, i);
917 tree lab = CASE_LABEL (elt);
918 basic_block label_bb = label_to_block (lab);
919 edge this_edge = find_edge (e->src, label_bb);
921 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
922 a new chain. */
923 slot = pointer_map_insert (edge_to_cases, this_edge);
924 CASE_CHAIN (elt) = (tree) *slot;
925 *slot = elt;
928 return (tree) *pointer_map_contains (edge_to_cases, e);
931 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
933 static void
934 make_gimple_switch_edges (basic_block bb)
936 gimple entry = last_stmt (bb);
937 location_t entry_locus;
938 size_t i, n;
940 entry_locus = gimple_location (entry);
942 n = gimple_switch_num_labels (entry);
944 for (i = 0; i < n; ++i)
946 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
947 basic_block label_bb = label_to_block (lab);
948 make_edge (bb, label_bb, 0);
949 assign_discriminator (entry_locus, label_bb);
954 /* Return the basic block holding label DEST. */
956 basic_block
957 label_to_block_fn (struct function *ifun, tree dest)
959 int uid = LABEL_DECL_UID (dest);
961 /* We would die hard when faced by an undefined label. Emit a label to
962 the very first basic block. This will hopefully make even the dataflow
963 and undefined variable warnings quite right. */
964 if (seen_error () && uid < 0)
966 gimple_stmt_iterator gsi = gsi_start_bb (BASIC_BLOCK (NUM_FIXED_BLOCKS));
967 gimple stmt;
969 stmt = gimple_build_label (dest);
970 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
971 uid = LABEL_DECL_UID (dest);
973 if (VEC_length (basic_block, ifun->cfg->x_label_to_block_map)
974 <= (unsigned int) uid)
975 return NULL;
976 return VEC_index (basic_block, ifun->cfg->x_label_to_block_map, uid);
979 /* Create edges for an abnormal goto statement at block BB. If FOR_CALL
980 is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
982 void
983 make_abnormal_goto_edges (basic_block bb, bool for_call)
985 basic_block target_bb;
986 gimple_stmt_iterator gsi;
988 FOR_EACH_BB (target_bb)
989 for (gsi = gsi_start_bb (target_bb); !gsi_end_p (gsi); gsi_next (&gsi))
991 gimple label_stmt = gsi_stmt (gsi);
992 tree target;
994 if (gimple_code (label_stmt) != GIMPLE_LABEL)
995 break;
997 target = gimple_label_label (label_stmt);
999 /* Make an edge to every label block that has been marked as a
1000 potential target for a computed goto or a non-local goto. */
1001 if ((FORCED_LABEL (target) && !for_call)
1002 || (DECL_NONLOCAL (target) && for_call))
1004 make_edge (bb, target_bb, EDGE_ABNORMAL);
1005 break;
1010 /* Create edges for a goto statement at block BB. */
1012 static void
1013 make_goto_expr_edges (basic_block bb)
1015 gimple_stmt_iterator last = gsi_last_bb (bb);
1016 gimple goto_t = gsi_stmt (last);
1018 /* A simple GOTO creates normal edges. */
1019 if (simple_goto_p (goto_t))
1021 tree dest = gimple_goto_dest (goto_t);
1022 basic_block label_bb = label_to_block (dest);
1023 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1024 e->goto_locus = gimple_location (goto_t);
1025 assign_discriminator (e->goto_locus, label_bb);
1026 if (e->goto_locus)
1027 e->goto_block = gimple_block (goto_t);
1028 gsi_remove (&last, true);
1029 return;
1032 /* A computed GOTO creates abnormal edges. */
1033 make_abnormal_goto_edges (bb, false);
1036 /* Create edges for an asm statement with labels at block BB. */
1038 static void
1039 make_gimple_asm_edges (basic_block bb)
1041 gimple stmt = last_stmt (bb);
1042 location_t stmt_loc = gimple_location (stmt);
1043 int i, n = gimple_asm_nlabels (stmt);
1045 for (i = 0; i < n; ++i)
1047 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1048 basic_block label_bb = label_to_block (label);
1049 make_edge (bb, label_bb, 0);
1050 assign_discriminator (stmt_loc, label_bb);
1054 /*---------------------------------------------------------------------------
1055 Flowgraph analysis
1056 ---------------------------------------------------------------------------*/
1058 /* Cleanup useless labels in basic blocks. This is something we wish
1059 to do early because it allows us to group case labels before creating
1060 the edges for the CFG, and it speeds up block statement iterators in
1061 all passes later on.
1062 We rerun this pass after CFG is created, to get rid of the labels that
1063 are no longer referenced. After then we do not run it any more, since
1064 (almost) no new labels should be created. */
1066 /* A map from basic block index to the leading label of that block. */
1067 static struct label_record
1069 /* The label. */
1070 tree label;
1072 /* True if the label is referenced from somewhere. */
1073 bool used;
1074 } *label_for_bb;
1076 /* Given LABEL return the first label in the same basic block. */
1078 static tree
1079 main_block_label (tree label)
1081 basic_block bb = label_to_block (label);
1082 tree main_label = label_for_bb[bb->index].label;
1084 /* label_to_block possibly inserted undefined label into the chain. */
1085 if (!main_label)
1087 label_for_bb[bb->index].label = label;
1088 main_label = label;
1091 label_for_bb[bb->index].used = true;
1092 return main_label;
1095 /* Clean up redundant labels within the exception tree. */
1097 static void
1098 cleanup_dead_labels_eh (void)
1100 eh_landing_pad lp;
1101 eh_region r;
1102 tree lab;
1103 int i;
1105 if (cfun->eh == NULL)
1106 return;
1108 for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
1109 if (lp && lp->post_landing_pad)
1111 lab = main_block_label (lp->post_landing_pad);
1112 if (lab != lp->post_landing_pad)
1114 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1115 EH_LANDING_PAD_NR (lab) = lp->index;
1119 FOR_ALL_EH_REGION (r)
1120 switch (r->type)
1122 case ERT_CLEANUP:
1123 case ERT_MUST_NOT_THROW:
1124 break;
1126 case ERT_TRY:
1128 eh_catch c;
1129 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1131 lab = c->label;
1132 if (lab)
1133 c->label = main_block_label (lab);
1136 break;
1138 case ERT_ALLOWED_EXCEPTIONS:
1139 lab = r->u.allowed.label;
1140 if (lab)
1141 r->u.allowed.label = main_block_label (lab);
1142 break;
1147 /* Cleanup redundant labels. This is a three-step process:
1148 1) Find the leading label for each block.
1149 2) Redirect all references to labels to the leading labels.
1150 3) Cleanup all useless labels. */
1152 void
1153 cleanup_dead_labels (void)
1155 basic_block bb;
1156 label_for_bb = XCNEWVEC (struct label_record, last_basic_block);
1158 /* Find a suitable label for each block. We use the first user-defined
1159 label if there is one, or otherwise just the first label we see. */
1160 FOR_EACH_BB (bb)
1162 gimple_stmt_iterator i;
1164 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1166 tree label;
1167 gimple stmt = gsi_stmt (i);
1169 if (gimple_code (stmt) != GIMPLE_LABEL)
1170 break;
1172 label = gimple_label_label (stmt);
1174 /* If we have not yet seen a label for the current block,
1175 remember this one and see if there are more labels. */
1176 if (!label_for_bb[bb->index].label)
1178 label_for_bb[bb->index].label = label;
1179 continue;
1182 /* If we did see a label for the current block already, but it
1183 is an artificially created label, replace it if the current
1184 label is a user defined label. */
1185 if (!DECL_ARTIFICIAL (label)
1186 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1188 label_for_bb[bb->index].label = label;
1189 break;
1194 /* Now redirect all jumps/branches to the selected label.
1195 First do so for each block ending in a control statement. */
1196 FOR_EACH_BB (bb)
1198 gimple stmt = last_stmt (bb);
1199 if (!stmt)
1200 continue;
1202 switch (gimple_code (stmt))
1204 case GIMPLE_COND:
1206 tree true_label = gimple_cond_true_label (stmt);
1207 tree false_label = gimple_cond_false_label (stmt);
1209 if (true_label)
1210 gimple_cond_set_true_label (stmt, main_block_label (true_label));
1211 if (false_label)
1212 gimple_cond_set_false_label (stmt, main_block_label (false_label));
1213 break;
1216 case GIMPLE_SWITCH:
1218 size_t i, n = gimple_switch_num_labels (stmt);
1220 /* Replace all destination labels. */
1221 for (i = 0; i < n; ++i)
1223 tree case_label = gimple_switch_label (stmt, i);
1224 tree label = main_block_label (CASE_LABEL (case_label));
1225 CASE_LABEL (case_label) = label;
1227 break;
1230 case GIMPLE_ASM:
1232 int i, n = gimple_asm_nlabels (stmt);
1234 for (i = 0; i < n; ++i)
1236 tree cons = gimple_asm_label_op (stmt, i);
1237 tree label = main_block_label (TREE_VALUE (cons));
1238 TREE_VALUE (cons) = label;
1240 break;
1243 /* We have to handle gotos until they're removed, and we don't
1244 remove them until after we've created the CFG edges. */
1245 case GIMPLE_GOTO:
1246 if (!computed_goto_p (stmt))
1248 tree new_dest = main_block_label (gimple_goto_dest (stmt));
1249 gimple_goto_set_dest (stmt, new_dest);
1251 break;
1253 default:
1254 break;
1258 /* Do the same for the exception region tree labels. */
1259 cleanup_dead_labels_eh ();
1261 /* Finally, purge dead labels. All user-defined labels and labels that
1262 can be the target of non-local gotos and labels which have their
1263 address taken are preserved. */
1264 FOR_EACH_BB (bb)
1266 gimple_stmt_iterator i;
1267 tree label_for_this_bb = label_for_bb[bb->index].label;
1269 if (!label_for_this_bb)
1270 continue;
1272 /* If the main label of the block is unused, we may still remove it. */
1273 if (!label_for_bb[bb->index].used)
1274 label_for_this_bb = NULL;
1276 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1278 tree label;
1279 gimple stmt = gsi_stmt (i);
1281 if (gimple_code (stmt) != GIMPLE_LABEL)
1282 break;
1284 label = gimple_label_label (stmt);
1286 if (label == label_for_this_bb
1287 || !DECL_ARTIFICIAL (label)
1288 || DECL_NONLOCAL (label)
1289 || FORCED_LABEL (label))
1290 gsi_next (&i);
1291 else
1292 gsi_remove (&i, true);
1296 free (label_for_bb);
1299 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1300 the ones jumping to the same label.
1301 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1303 static void
1304 group_case_labels_stmt (gimple stmt)
1306 int old_size = gimple_switch_num_labels (stmt);
1307 int i, j, new_size = old_size;
1308 tree default_case = NULL_TREE;
1309 tree default_label = NULL_TREE;
1310 bool has_default;
1312 /* The default label is always the first case in a switch
1313 statement after gimplification if it was not optimized
1314 away */
1315 if (!CASE_LOW (gimple_switch_default_label (stmt))
1316 && !CASE_HIGH (gimple_switch_default_label (stmt)))
1318 default_case = gimple_switch_default_label (stmt);
1319 default_label = CASE_LABEL (default_case);
1320 has_default = true;
1322 else
1323 has_default = false;
1325 /* Look for possible opportunities to merge cases. */
1326 if (has_default)
1327 i = 1;
1328 else
1329 i = 0;
1330 while (i < old_size)
1332 tree base_case, base_label, base_high;
1333 base_case = gimple_switch_label (stmt, i);
1335 gcc_assert (base_case);
1336 base_label = CASE_LABEL (base_case);
1338 /* Discard cases that have the same destination as the
1339 default case. */
1340 if (base_label == default_label)
1342 gimple_switch_set_label (stmt, i, NULL_TREE);
1343 i++;
1344 new_size--;
1345 continue;
1348 base_high = CASE_HIGH (base_case)
1349 ? CASE_HIGH (base_case)
1350 : CASE_LOW (base_case);
1351 i++;
1353 /* Try to merge case labels. Break out when we reach the end
1354 of the label vector or when we cannot merge the next case
1355 label with the current one. */
1356 while (i < old_size)
1358 tree merge_case = gimple_switch_label (stmt, i);
1359 tree merge_label = CASE_LABEL (merge_case);
1360 double_int bhp1 = double_int_add (tree_to_double_int (base_high),
1361 double_int_one);
1363 /* Merge the cases if they jump to the same place,
1364 and their ranges are consecutive. */
1365 if (merge_label == base_label
1366 && double_int_equal_p (tree_to_double_int (CASE_LOW (merge_case)),
1367 bhp1))
1369 base_high = CASE_HIGH (merge_case) ?
1370 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1371 CASE_HIGH (base_case) = base_high;
1372 gimple_switch_set_label (stmt, i, NULL_TREE);
1373 new_size--;
1374 i++;
1376 else
1377 break;
1381 /* Compress the case labels in the label vector, and adjust the
1382 length of the vector. */
1383 for (i = 0, j = 0; i < new_size; i++)
1385 while (! gimple_switch_label (stmt, j))
1386 j++;
1387 gimple_switch_set_label (stmt, i,
1388 gimple_switch_label (stmt, j++));
1391 gcc_assert (new_size <= old_size);
1392 gimple_switch_set_num_labels (stmt, new_size);
1395 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1396 and scan the sorted vector of cases. Combine the ones jumping to the
1397 same label. */
1399 void
1400 group_case_labels (void)
1402 basic_block bb;
1404 FOR_EACH_BB (bb)
1406 gimple stmt = last_stmt (bb);
1407 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1408 group_case_labels_stmt (stmt);
1412 /* Checks whether we can merge block B into block A. */
1414 static bool
1415 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1417 gimple stmt;
1418 gimple_stmt_iterator gsi;
1419 gimple_seq phis;
1421 if (!single_succ_p (a))
1422 return false;
1424 if (single_succ_edge (a)->flags & (EDGE_ABNORMAL | EDGE_EH | EDGE_PRESERVE))
1425 return false;
1427 if (single_succ (a) != b)
1428 return false;
1430 if (!single_pred_p (b))
1431 return false;
1433 if (b == EXIT_BLOCK_PTR)
1434 return false;
1436 /* If A ends by a statement causing exceptions or something similar, we
1437 cannot merge the blocks. */
1438 stmt = last_stmt (a);
1439 if (stmt && stmt_ends_bb_p (stmt))
1440 return false;
1442 /* Do not allow a block with only a non-local label to be merged. */
1443 if (stmt
1444 && gimple_code (stmt) == GIMPLE_LABEL
1445 && DECL_NONLOCAL (gimple_label_label (stmt)))
1446 return false;
1448 /* Examine the labels at the beginning of B. */
1449 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi))
1451 tree lab;
1452 stmt = gsi_stmt (gsi);
1453 if (gimple_code (stmt) != GIMPLE_LABEL)
1454 break;
1455 lab = gimple_label_label (stmt);
1457 /* Do not remove user labels. */
1458 if (!DECL_ARTIFICIAL (lab))
1459 return false;
1462 /* Protect the loop latches. */
1463 if (current_loops && b->loop_father->latch == b)
1464 return false;
1466 /* It must be possible to eliminate all phi nodes in B. If ssa form
1467 is not up-to-date and a name-mapping is registered, we cannot eliminate
1468 any phis. Symbols marked for renaming are never a problem though. */
1469 phis = phi_nodes (b);
1470 if (!gimple_seq_empty_p (phis)
1471 && name_mappings_registered_p ())
1472 return false;
1474 /* When not optimizing, don't merge if we'd lose goto_locus. */
1475 if (!optimize
1476 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1478 location_t goto_locus = single_succ_edge (a)->goto_locus;
1479 gimple_stmt_iterator prev, next;
1480 prev = gsi_last_nondebug_bb (a);
1481 next = gsi_after_labels (b);
1482 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1483 gsi_next_nondebug (&next);
1484 if ((gsi_end_p (prev)
1485 || gimple_location (gsi_stmt (prev)) != goto_locus)
1486 && (gsi_end_p (next)
1487 || gimple_location (gsi_stmt (next)) != goto_locus))
1488 return false;
1491 return true;
1494 /* Return true if the var whose chain of uses starts at PTR has no
1495 nondebug uses. */
1496 bool
1497 has_zero_uses_1 (const ssa_use_operand_t *head)
1499 const ssa_use_operand_t *ptr;
1501 for (ptr = head->next; ptr != head; ptr = ptr->next)
1502 if (!is_gimple_debug (USE_STMT (ptr)))
1503 return false;
1505 return true;
1508 /* Return true if the var whose chain of uses starts at PTR has a
1509 single nondebug use. Set USE_P and STMT to that single nondebug
1510 use, if so, or to NULL otherwise. */
1511 bool
1512 single_imm_use_1 (const ssa_use_operand_t *head,
1513 use_operand_p *use_p, gimple *stmt)
1515 ssa_use_operand_t *ptr, *single_use = 0;
1517 for (ptr = head->next; ptr != head; ptr = ptr->next)
1518 if (!is_gimple_debug (USE_STMT (ptr)))
1520 if (single_use)
1522 single_use = NULL;
1523 break;
1525 single_use = ptr;
1528 if (use_p)
1529 *use_p = single_use;
1531 if (stmt)
1532 *stmt = single_use ? single_use->loc.stmt : NULL;
1534 return !!single_use;
1537 /* Replaces all uses of NAME by VAL. */
1539 void
1540 replace_uses_by (tree name, tree val)
1542 imm_use_iterator imm_iter;
1543 use_operand_p use;
1544 gimple stmt;
1545 edge e;
1547 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1549 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1551 replace_exp (use, val);
1553 if (gimple_code (stmt) == GIMPLE_PHI)
1555 e = gimple_phi_arg_edge (stmt, PHI_ARG_INDEX_FROM_USE (use));
1556 if (e->flags & EDGE_ABNORMAL)
1558 /* This can only occur for virtual operands, since
1559 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1560 would prevent replacement. */
1561 gcc_assert (!is_gimple_reg (name));
1562 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1567 if (gimple_code (stmt) != GIMPLE_PHI)
1569 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
1570 size_t i;
1572 fold_stmt (&gsi);
1573 stmt = gsi_stmt (gsi);
1574 if (cfgcleanup_altered_bbs && !is_gimple_debug (stmt))
1575 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1577 /* FIXME. This should go in update_stmt. */
1578 for (i = 0; i < gimple_num_ops (stmt); i++)
1580 tree op = gimple_op (stmt, i);
1581 /* Operands may be empty here. For example, the labels
1582 of a GIMPLE_COND are nulled out following the creation
1583 of the corresponding CFG edges. */
1584 if (op && TREE_CODE (op) == ADDR_EXPR)
1585 recompute_tree_invariant_for_addr_expr (op);
1588 maybe_clean_or_replace_eh_stmt (stmt, stmt);
1589 update_stmt (stmt);
1593 gcc_assert (has_zero_uses (name));
1595 /* Also update the trees stored in loop structures. */
1596 if (current_loops)
1598 struct loop *loop;
1599 loop_iterator li;
1601 FOR_EACH_LOOP (li, loop, 0)
1603 substitute_in_loop_info (loop, name, val);
1608 /* Merge block B into block A. */
1610 static void
1611 gimple_merge_blocks (basic_block a, basic_block b)
1613 gimple_stmt_iterator last, gsi, psi;
1614 gimple_seq phis = phi_nodes (b);
1616 if (dump_file)
1617 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1619 /* Remove all single-valued PHI nodes from block B of the form
1620 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1621 gsi = gsi_last_bb (a);
1622 for (psi = gsi_start (phis); !gsi_end_p (psi); )
1624 gimple phi = gsi_stmt (psi);
1625 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
1626 gimple copy;
1627 bool may_replace_uses = !is_gimple_reg (def)
1628 || may_propagate_copy (def, use);
1630 /* In case we maintain loop closed ssa form, do not propagate arguments
1631 of loop exit phi nodes. */
1632 if (current_loops
1633 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
1634 && is_gimple_reg (def)
1635 && TREE_CODE (use) == SSA_NAME
1636 && a->loop_father != b->loop_father)
1637 may_replace_uses = false;
1639 if (!may_replace_uses)
1641 gcc_assert (is_gimple_reg (def));
1643 /* Note that just emitting the copies is fine -- there is no problem
1644 with ordering of phi nodes. This is because A is the single
1645 predecessor of B, therefore results of the phi nodes cannot
1646 appear as arguments of the phi nodes. */
1647 copy = gimple_build_assign (def, use);
1648 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
1649 remove_phi_node (&psi, false);
1651 else
1653 /* If we deal with a PHI for virtual operands, we can simply
1654 propagate these without fussing with folding or updating
1655 the stmt. */
1656 if (!is_gimple_reg (def))
1658 imm_use_iterator iter;
1659 use_operand_p use_p;
1660 gimple stmt;
1662 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
1663 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1664 SET_USE (use_p, use);
1666 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
1667 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
1669 else
1670 replace_uses_by (def, use);
1672 remove_phi_node (&psi, true);
1676 /* Ensure that B follows A. */
1677 move_block_after (b, a);
1679 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1680 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
1682 /* Remove labels from B and set gimple_bb to A for other statements. */
1683 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
1685 gimple stmt = gsi_stmt (gsi);
1686 if (gimple_code (stmt) == GIMPLE_LABEL)
1688 tree label = gimple_label_label (stmt);
1689 int lp_nr;
1691 gsi_remove (&gsi, false);
1693 /* Now that we can thread computed gotos, we might have
1694 a situation where we have a forced label in block B
1695 However, the label at the start of block B might still be
1696 used in other ways (think about the runtime checking for
1697 Fortran assigned gotos). So we can not just delete the
1698 label. Instead we move the label to the start of block A. */
1699 if (FORCED_LABEL (label))
1701 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
1702 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
1705 lp_nr = EH_LANDING_PAD_NR (label);
1706 if (lp_nr)
1708 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
1709 lp->post_landing_pad = NULL;
1712 else
1714 gimple_set_bb (stmt, a);
1715 gsi_next (&gsi);
1719 /* Merge the sequences. */
1720 last = gsi_last_bb (a);
1721 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
1722 set_bb_seq (b, NULL);
1724 if (cfgcleanup_altered_bbs)
1725 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
1729 /* Return the one of two successors of BB that is not reachable by a
1730 complex edge, if there is one. Else, return BB. We use
1731 this in optimizations that use post-dominators for their heuristics,
1732 to catch the cases in C++ where function calls are involved. */
1734 basic_block
1735 single_noncomplex_succ (basic_block bb)
1737 edge e0, e1;
1738 if (EDGE_COUNT (bb->succs) != 2)
1739 return bb;
1741 e0 = EDGE_SUCC (bb, 0);
1742 e1 = EDGE_SUCC (bb, 1);
1743 if (e0->flags & EDGE_COMPLEX)
1744 return e1->dest;
1745 if (e1->flags & EDGE_COMPLEX)
1746 return e0->dest;
1748 return bb;
1751 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1753 void
1754 notice_special_calls (gimple call)
1756 int flags = gimple_call_flags (call);
1758 if (flags & ECF_MAY_BE_ALLOCA)
1759 cfun->calls_alloca = true;
1760 if (flags & ECF_RETURNS_TWICE)
1761 cfun->calls_setjmp = true;
1765 /* Clear flags set by notice_special_calls. Used by dead code removal
1766 to update the flags. */
1768 void
1769 clear_special_calls (void)
1771 cfun->calls_alloca = false;
1772 cfun->calls_setjmp = false;
1775 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1777 static void
1778 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
1780 /* Since this block is no longer reachable, we can just delete all
1781 of its PHI nodes. */
1782 remove_phi_nodes (bb);
1784 /* Remove edges to BB's successors. */
1785 while (EDGE_COUNT (bb->succs) > 0)
1786 remove_edge (EDGE_SUCC (bb, 0));
1790 /* Remove statements of basic block BB. */
1792 static void
1793 remove_bb (basic_block bb)
1795 gimple_stmt_iterator i;
1797 if (dump_file)
1799 fprintf (dump_file, "Removing basic block %d\n", bb->index);
1800 if (dump_flags & TDF_DETAILS)
1802 dump_bb (bb, dump_file, 0);
1803 fprintf (dump_file, "\n");
1807 if (current_loops)
1809 struct loop *loop = bb->loop_father;
1811 /* If a loop gets removed, clean up the information associated
1812 with it. */
1813 if (loop->latch == bb
1814 || loop->header == bb)
1815 free_numbers_of_iterations_estimates_loop (loop);
1818 /* Remove all the instructions in the block. */
1819 if (bb_seq (bb) != NULL)
1821 /* Walk backwards so as to get a chance to substitute all
1822 released DEFs into debug stmts. See
1823 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
1824 details. */
1825 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
1827 gimple stmt = gsi_stmt (i);
1828 if (gimple_code (stmt) == GIMPLE_LABEL
1829 && (FORCED_LABEL (gimple_label_label (stmt))
1830 || DECL_NONLOCAL (gimple_label_label (stmt))))
1832 basic_block new_bb;
1833 gimple_stmt_iterator new_gsi;
1835 /* A non-reachable non-local label may still be referenced.
1836 But it no longer needs to carry the extra semantics of
1837 non-locality. */
1838 if (DECL_NONLOCAL (gimple_label_label (stmt)))
1840 DECL_NONLOCAL (gimple_label_label (stmt)) = 0;
1841 FORCED_LABEL (gimple_label_label (stmt)) = 1;
1844 new_bb = bb->prev_bb;
1845 new_gsi = gsi_start_bb (new_bb);
1846 gsi_remove (&i, false);
1847 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
1849 else
1851 /* Release SSA definitions if we are in SSA. Note that we
1852 may be called when not in SSA. For example,
1853 final_cleanup calls this function via
1854 cleanup_tree_cfg. */
1855 if (gimple_in_ssa_p (cfun))
1856 release_defs (stmt);
1858 gsi_remove (&i, true);
1861 if (gsi_end_p (i))
1862 i = gsi_last_bb (bb);
1863 else
1864 gsi_prev (&i);
1868 remove_phi_nodes_and_edges_for_unreachable_block (bb);
1869 bb->il.gimple = NULL;
1873 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
1874 predicate VAL, return the edge that will be taken out of the block.
1875 If VAL does not match a unique edge, NULL is returned. */
1877 edge
1878 find_taken_edge (basic_block bb, tree val)
1880 gimple stmt;
1882 stmt = last_stmt (bb);
1884 gcc_assert (stmt);
1885 gcc_assert (is_ctrl_stmt (stmt));
1887 if (val == NULL)
1888 return NULL;
1890 if (!is_gimple_min_invariant (val))
1891 return NULL;
1893 if (gimple_code (stmt) == GIMPLE_COND)
1894 return find_taken_edge_cond_expr (bb, val);
1896 if (gimple_code (stmt) == GIMPLE_SWITCH)
1897 return find_taken_edge_switch_expr (bb, val);
1899 if (computed_goto_p (stmt))
1901 /* Only optimize if the argument is a label, if the argument is
1902 not a label then we can not construct a proper CFG.
1904 It may be the case that we only need to allow the LABEL_REF to
1905 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
1906 appear inside a LABEL_EXPR just to be safe. */
1907 if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
1908 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
1909 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
1910 return NULL;
1913 gcc_unreachable ();
1916 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
1917 statement, determine which of the outgoing edges will be taken out of the
1918 block. Return NULL if either edge may be taken. */
1920 static edge
1921 find_taken_edge_computed_goto (basic_block bb, tree val)
1923 basic_block dest;
1924 edge e = NULL;
1926 dest = label_to_block (val);
1927 if (dest)
1929 e = find_edge (bb, dest);
1930 gcc_assert (e != NULL);
1933 return e;
1936 /* Given a constant value VAL and the entry block BB to a COND_EXPR
1937 statement, determine which of the two edges will be taken out of the
1938 block. Return NULL if either edge may be taken. */
1940 static edge
1941 find_taken_edge_cond_expr (basic_block bb, tree val)
1943 edge true_edge, false_edge;
1945 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
1947 gcc_assert (TREE_CODE (val) == INTEGER_CST);
1948 return (integer_zerop (val) ? false_edge : true_edge);
1951 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
1952 statement, determine which edge will be taken out of the block. Return
1953 NULL if any edge may be taken. */
1955 static edge
1956 find_taken_edge_switch_expr (basic_block bb, tree val)
1958 basic_block dest_bb;
1959 edge e;
1960 gimple switch_stmt;
1961 tree taken_case;
1963 switch_stmt = last_stmt (bb);
1964 taken_case = find_case_label_for_value (switch_stmt, val);
1965 dest_bb = label_to_block (CASE_LABEL (taken_case));
1967 e = find_edge (bb, dest_bb);
1968 gcc_assert (e);
1969 return e;
1973 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
1974 We can make optimal use here of the fact that the case labels are
1975 sorted: We can do a binary search for a case matching VAL. */
1977 static tree
1978 find_case_label_for_value (gimple switch_stmt, tree val)
1980 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
1981 tree default_case = gimple_switch_default_label (switch_stmt);
1983 for (low = 0, high = n; high - low > 1; )
1985 size_t i = (high + low) / 2;
1986 tree t = gimple_switch_label (switch_stmt, i);
1987 int cmp;
1989 /* Cache the result of comparing CASE_LOW and val. */
1990 cmp = tree_int_cst_compare (CASE_LOW (t), val);
1992 if (cmp > 0)
1993 high = i;
1994 else
1995 low = i;
1997 if (CASE_HIGH (t) == NULL)
1999 /* A singe-valued case label. */
2000 if (cmp == 0)
2001 return t;
2003 else
2005 /* A case range. We can only handle integer ranges. */
2006 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2007 return t;
2011 return default_case;
2015 /* Dump a basic block on stderr. */
2017 void
2018 gimple_debug_bb (basic_block bb)
2020 gimple_dump_bb (bb, stderr, 0, TDF_VOPS|TDF_MEMSYMS);
2024 /* Dump basic block with index N on stderr. */
2026 basic_block
2027 gimple_debug_bb_n (int n)
2029 gimple_debug_bb (BASIC_BLOCK (n));
2030 return BASIC_BLOCK (n);
2034 /* Dump the CFG on stderr.
2036 FLAGS are the same used by the tree dumping functions
2037 (see TDF_* in tree-pass.h). */
2039 void
2040 gimple_debug_cfg (int flags)
2042 gimple_dump_cfg (stderr, flags);
2046 /* Dump the program showing basic block boundaries on the given FILE.
2048 FLAGS are the same used by the tree dumping functions (see TDF_* in
2049 tree.h). */
2051 void
2052 gimple_dump_cfg (FILE *file, int flags)
2054 if (flags & TDF_DETAILS)
2056 dump_function_header (file, current_function_decl, flags);
2057 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2058 n_basic_blocks, n_edges, last_basic_block);
2060 brief_dump_cfg (file);
2061 fprintf (file, "\n");
2064 if (flags & TDF_STATS)
2065 dump_cfg_stats (file);
2067 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2071 /* Dump CFG statistics on FILE. */
2073 void
2074 dump_cfg_stats (FILE *file)
2076 static long max_num_merged_labels = 0;
2077 unsigned long size, total = 0;
2078 long num_edges;
2079 basic_block bb;
2080 const char * const fmt_str = "%-30s%-13s%12s\n";
2081 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2082 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2083 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2084 const char *funcname
2085 = lang_hooks.decl_printable_name (current_function_decl, 2);
2088 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2090 fprintf (file, "---------------------------------------------------------\n");
2091 fprintf (file, fmt_str, "", " Number of ", "Memory");
2092 fprintf (file, fmt_str, "", " instances ", "used ");
2093 fprintf (file, "---------------------------------------------------------\n");
2095 size = n_basic_blocks * sizeof (struct basic_block_def);
2096 total += size;
2097 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks,
2098 SCALE (size), LABEL (size));
2100 num_edges = 0;
2101 FOR_EACH_BB (bb)
2102 num_edges += EDGE_COUNT (bb->succs);
2103 size = num_edges * sizeof (struct edge_def);
2104 total += size;
2105 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2107 fprintf (file, "---------------------------------------------------------\n");
2108 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2109 LABEL (total));
2110 fprintf (file, "---------------------------------------------------------\n");
2111 fprintf (file, "\n");
2113 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2114 max_num_merged_labels = cfg_stats.num_merged_labels;
2116 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2117 cfg_stats.num_merged_labels, max_num_merged_labels);
2119 fprintf (file, "\n");
2123 /* Dump CFG statistics on stderr. Keep extern so that it's always
2124 linked in the final executable. */
2126 DEBUG_FUNCTION void
2127 debug_cfg_stats (void)
2129 dump_cfg_stats (stderr);
2133 /* Dump the flowgraph to a .vcg FILE. */
2135 static void
2136 gimple_cfg2vcg (FILE *file)
2138 edge e;
2139 edge_iterator ei;
2140 basic_block bb;
2141 const char *funcname
2142 = lang_hooks.decl_printable_name (current_function_decl, 2);
2144 /* Write the file header. */
2145 fprintf (file, "graph: { title: \"%s\"\n", funcname);
2146 fprintf (file, "node: { title: \"ENTRY\" label: \"ENTRY\" }\n");
2147 fprintf (file, "node: { title: \"EXIT\" label: \"EXIT\" }\n");
2149 /* Write blocks and edges. */
2150 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2152 fprintf (file, "edge: { sourcename: \"ENTRY\" targetname: \"%d\"",
2153 e->dest->index);
2155 if (e->flags & EDGE_FAKE)
2156 fprintf (file, " linestyle: dotted priority: 10");
2157 else
2158 fprintf (file, " linestyle: solid priority: 100");
2160 fprintf (file, " }\n");
2162 fputc ('\n', file);
2164 FOR_EACH_BB (bb)
2166 enum gimple_code head_code, end_code;
2167 const char *head_name, *end_name;
2168 int head_line = 0;
2169 int end_line = 0;
2170 gimple first = first_stmt (bb);
2171 gimple last = last_stmt (bb);
2173 if (first)
2175 head_code = gimple_code (first);
2176 head_name = gimple_code_name[head_code];
2177 head_line = get_lineno (first);
2179 else
2180 head_name = "no-statement";
2182 if (last)
2184 end_code = gimple_code (last);
2185 end_name = gimple_code_name[end_code];
2186 end_line = get_lineno (last);
2188 else
2189 end_name = "no-statement";
2191 fprintf (file, "node: { title: \"%d\" label: \"#%d\\n%s (%d)\\n%s (%d)\"}\n",
2192 bb->index, bb->index, head_name, head_line, end_name,
2193 end_line);
2195 FOR_EACH_EDGE (e, ei, bb->succs)
2197 if (e->dest == EXIT_BLOCK_PTR)
2198 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"EXIT\"", bb->index);
2199 else
2200 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"%d\"", bb->index, e->dest->index);
2202 if (e->flags & EDGE_FAKE)
2203 fprintf (file, " priority: 10 linestyle: dotted");
2204 else
2205 fprintf (file, " priority: 100 linestyle: solid");
2207 fprintf (file, " }\n");
2210 if (bb->next_bb != EXIT_BLOCK_PTR)
2211 fputc ('\n', file);
2214 fputs ("}\n\n", file);
2219 /*---------------------------------------------------------------------------
2220 Miscellaneous helpers
2221 ---------------------------------------------------------------------------*/
2223 /* Return true if T represents a stmt that always transfers control. */
2225 bool
2226 is_ctrl_stmt (gimple t)
2228 switch (gimple_code (t))
2230 case GIMPLE_COND:
2231 case GIMPLE_SWITCH:
2232 case GIMPLE_GOTO:
2233 case GIMPLE_RETURN:
2234 case GIMPLE_RESX:
2235 return true;
2236 default:
2237 return false;
2242 /* Return true if T is a statement that may alter the flow of control
2243 (e.g., a call to a non-returning function). */
2245 bool
2246 is_ctrl_altering_stmt (gimple t)
2248 gcc_assert (t);
2250 switch (gimple_code (t))
2252 case GIMPLE_CALL:
2254 int flags = gimple_call_flags (t);
2256 /* A non-pure/const call alters flow control if the current
2257 function has nonlocal labels. */
2258 if (!(flags & (ECF_CONST | ECF_PURE | ECF_LEAF))
2259 && cfun->has_nonlocal_label)
2260 return true;
2262 /* A call also alters control flow if it does not return. */
2263 if (flags & ECF_NORETURN)
2264 return true;
2266 /* BUILT_IN_RETURN call is same as return statement. */
2267 if (gimple_call_builtin_p (t, BUILT_IN_RETURN))
2268 return true;
2270 break;
2272 case GIMPLE_EH_DISPATCH:
2273 /* EH_DISPATCH branches to the individual catch handlers at
2274 this level of a try or allowed-exceptions region. It can
2275 fallthru to the next statement as well. */
2276 return true;
2278 case GIMPLE_ASM:
2279 if (gimple_asm_nlabels (t) > 0)
2280 return true;
2281 break;
2283 CASE_GIMPLE_OMP:
2284 /* OpenMP directives alter control flow. */
2285 return true;
2287 default:
2288 break;
2291 /* If a statement can throw, it alters control flow. */
2292 return stmt_can_throw_internal (t);
2296 /* Return true if T is a simple local goto. */
2298 bool
2299 simple_goto_p (gimple t)
2301 return (gimple_code (t) == GIMPLE_GOTO
2302 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2306 /* Return true if T can make an abnormal transfer of control flow.
2307 Transfers of control flow associated with EH are excluded. */
2309 bool
2310 stmt_can_make_abnormal_goto (gimple t)
2312 if (computed_goto_p (t))
2313 return true;
2314 if (is_gimple_call (t))
2315 return (gimple_has_side_effects (t) && cfun->has_nonlocal_label
2316 && !(gimple_call_flags (t) & ECF_LEAF));
2317 return false;
2321 /* Return true if STMT should start a new basic block. PREV_STMT is
2322 the statement preceding STMT. It is used when STMT is a label or a
2323 case label. Labels should only start a new basic block if their
2324 previous statement wasn't a label. Otherwise, sequence of labels
2325 would generate unnecessary basic blocks that only contain a single
2326 label. */
2328 static inline bool
2329 stmt_starts_bb_p (gimple stmt, gimple prev_stmt)
2331 if (stmt == NULL)
2332 return false;
2334 /* Labels start a new basic block only if the preceding statement
2335 wasn't a label of the same type. This prevents the creation of
2336 consecutive blocks that have nothing but a single label. */
2337 if (gimple_code (stmt) == GIMPLE_LABEL)
2339 /* Nonlocal and computed GOTO targets always start a new block. */
2340 if (DECL_NONLOCAL (gimple_label_label (stmt))
2341 || FORCED_LABEL (gimple_label_label (stmt)))
2342 return true;
2344 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2346 if (DECL_NONLOCAL (gimple_label_label (prev_stmt)))
2347 return true;
2349 cfg_stats.num_merged_labels++;
2350 return false;
2352 else
2353 return true;
2356 return false;
2360 /* Return true if T should end a basic block. */
2362 bool
2363 stmt_ends_bb_p (gimple t)
2365 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2368 /* Remove block annotations and other data structures. */
2370 void
2371 delete_tree_cfg_annotations (void)
2373 label_to_block_map = NULL;
2377 /* Return the first statement in basic block BB. */
2379 gimple
2380 first_stmt (basic_block bb)
2382 gimple_stmt_iterator i = gsi_start_bb (bb);
2383 gimple stmt = NULL;
2385 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2387 gsi_next (&i);
2388 stmt = NULL;
2390 return stmt;
2393 /* Return the first non-label statement in basic block BB. */
2395 static gimple
2396 first_non_label_stmt (basic_block bb)
2398 gimple_stmt_iterator i = gsi_start_bb (bb);
2399 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2400 gsi_next (&i);
2401 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2404 /* Return the last statement in basic block BB. */
2406 gimple
2407 last_stmt (basic_block bb)
2409 gimple_stmt_iterator i = gsi_last_bb (bb);
2410 gimple stmt = NULL;
2412 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2414 gsi_prev (&i);
2415 stmt = NULL;
2417 return stmt;
2420 /* Return the last statement of an otherwise empty block. Return NULL
2421 if the block is totally empty, or if it contains more than one
2422 statement. */
2424 gimple
2425 last_and_only_stmt (basic_block bb)
2427 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2428 gimple last, prev;
2430 if (gsi_end_p (i))
2431 return NULL;
2433 last = gsi_stmt (i);
2434 gsi_prev_nondebug (&i);
2435 if (gsi_end_p (i))
2436 return last;
2438 /* Empty statements should no longer appear in the instruction stream.
2439 Everything that might have appeared before should be deleted by
2440 remove_useless_stmts, and the optimizers should just gsi_remove
2441 instead of smashing with build_empty_stmt.
2443 Thus the only thing that should appear here in a block containing
2444 one executable statement is a label. */
2445 prev = gsi_stmt (i);
2446 if (gimple_code (prev) == GIMPLE_LABEL)
2447 return last;
2448 else
2449 return NULL;
2452 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2454 static void
2455 reinstall_phi_args (edge new_edge, edge old_edge)
2457 edge_var_map_vector v;
2458 edge_var_map *vm;
2459 int i;
2460 gimple_stmt_iterator phis;
2462 v = redirect_edge_var_map_vector (old_edge);
2463 if (!v)
2464 return;
2466 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2467 VEC_iterate (edge_var_map, v, i, vm) && !gsi_end_p (phis);
2468 i++, gsi_next (&phis))
2470 gimple phi = gsi_stmt (phis);
2471 tree result = redirect_edge_var_map_result (vm);
2472 tree arg = redirect_edge_var_map_def (vm);
2474 gcc_assert (result == gimple_phi_result (phi));
2476 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2479 redirect_edge_var_map_clear (old_edge);
2482 /* Returns the basic block after which the new basic block created
2483 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2484 near its "logical" location. This is of most help to humans looking
2485 at debugging dumps. */
2487 static basic_block
2488 split_edge_bb_loc (edge edge_in)
2490 basic_block dest = edge_in->dest;
2491 basic_block dest_prev = dest->prev_bb;
2493 if (dest_prev)
2495 edge e = find_edge (dest_prev, dest);
2496 if (e && !(e->flags & EDGE_COMPLEX))
2497 return edge_in->src;
2499 return dest_prev;
2502 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2503 Abort on abnormal edges. */
2505 static basic_block
2506 gimple_split_edge (edge edge_in)
2508 basic_block new_bb, after_bb, dest;
2509 edge new_edge, e;
2511 /* Abnormal edges cannot be split. */
2512 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2514 dest = edge_in->dest;
2516 after_bb = split_edge_bb_loc (edge_in);
2518 new_bb = create_empty_bb (after_bb);
2519 new_bb->frequency = EDGE_FREQUENCY (edge_in);
2520 new_bb->count = edge_in->count;
2521 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
2522 new_edge->probability = REG_BR_PROB_BASE;
2523 new_edge->count = edge_in->count;
2525 e = redirect_edge_and_branch (edge_in, new_bb);
2526 gcc_assert (e == edge_in);
2527 reinstall_phi_args (new_edge, e);
2529 return new_bb;
2533 /* Verify properties of the address expression T with base object BASE. */
2535 static tree
2536 verify_address (tree t, tree base)
2538 bool old_constant;
2539 bool old_side_effects;
2540 bool new_constant;
2541 bool new_side_effects;
2543 old_constant = TREE_CONSTANT (t);
2544 old_side_effects = TREE_SIDE_EFFECTS (t);
2546 recompute_tree_invariant_for_addr_expr (t);
2547 new_side_effects = TREE_SIDE_EFFECTS (t);
2548 new_constant = TREE_CONSTANT (t);
2550 if (old_constant != new_constant)
2552 error ("constant not recomputed when ADDR_EXPR changed");
2553 return t;
2555 if (old_side_effects != new_side_effects)
2557 error ("side effects not recomputed when ADDR_EXPR changed");
2558 return t;
2561 if (!(TREE_CODE (base) == VAR_DECL
2562 || TREE_CODE (base) == PARM_DECL
2563 || TREE_CODE (base) == RESULT_DECL))
2564 return NULL_TREE;
2566 if (DECL_GIMPLE_REG_P (base))
2568 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2569 return base;
2572 return NULL_TREE;
2575 /* Callback for walk_tree, check that all elements with address taken are
2576 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2577 inside a PHI node. */
2579 static tree
2580 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
2582 tree t = *tp, x;
2584 if (TYPE_P (t))
2585 *walk_subtrees = 0;
2587 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2588 #define CHECK_OP(N, MSG) \
2589 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2590 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2592 switch (TREE_CODE (t))
2594 case SSA_NAME:
2595 if (SSA_NAME_IN_FREE_LIST (t))
2597 error ("SSA name in freelist but still referenced");
2598 return *tp;
2600 break;
2602 case INDIRECT_REF:
2603 error ("INDIRECT_REF in gimple IL");
2604 return t;
2606 case MEM_REF:
2607 x = TREE_OPERAND (t, 0);
2608 if (!POINTER_TYPE_P (TREE_TYPE (x))
2609 || !is_gimple_mem_ref_addr (x))
2611 error ("invalid first operand of MEM_REF");
2612 return x;
2614 if (TREE_CODE (TREE_OPERAND (t, 1)) != INTEGER_CST
2615 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
2617 error ("invalid offset operand of MEM_REF");
2618 return TREE_OPERAND (t, 1);
2620 if (TREE_CODE (x) == ADDR_EXPR
2621 && (x = verify_address (x, TREE_OPERAND (x, 0))))
2622 return x;
2623 *walk_subtrees = 0;
2624 break;
2626 case ASSERT_EXPR:
2627 x = fold (ASSERT_EXPR_COND (t));
2628 if (x == boolean_false_node)
2630 error ("ASSERT_EXPR with an always-false condition");
2631 return *tp;
2633 break;
2635 case MODIFY_EXPR:
2636 error ("MODIFY_EXPR not expected while having tuples");
2637 return *tp;
2639 case ADDR_EXPR:
2641 tree tem;
2643 gcc_assert (is_gimple_address (t));
2645 /* Skip any references (they will be checked when we recurse down the
2646 tree) and ensure that any variable used as a prefix is marked
2647 addressable. */
2648 for (x = TREE_OPERAND (t, 0);
2649 handled_component_p (x);
2650 x = TREE_OPERAND (x, 0))
2653 if ((tem = verify_address (t, x)))
2654 return tem;
2656 if (!(TREE_CODE (x) == VAR_DECL
2657 || TREE_CODE (x) == PARM_DECL
2658 || TREE_CODE (x) == RESULT_DECL))
2659 return NULL;
2661 if (!TREE_ADDRESSABLE (x))
2663 error ("address taken, but ADDRESSABLE bit not set");
2664 return x;
2667 break;
2670 case COND_EXPR:
2671 x = COND_EXPR_COND (t);
2672 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
2674 error ("non-integral used in condition");
2675 return x;
2677 if (!is_gimple_condexpr (x))
2679 error ("invalid conditional operand");
2680 return x;
2682 break;
2684 case NON_LVALUE_EXPR:
2685 case TRUTH_NOT_EXPR:
2686 gcc_unreachable ();
2688 CASE_CONVERT:
2689 case FIX_TRUNC_EXPR:
2690 case FLOAT_EXPR:
2691 case NEGATE_EXPR:
2692 case ABS_EXPR:
2693 case BIT_NOT_EXPR:
2694 CHECK_OP (0, "invalid operand to unary operator");
2695 break;
2697 case REALPART_EXPR:
2698 case IMAGPART_EXPR:
2699 case COMPONENT_REF:
2700 case ARRAY_REF:
2701 case ARRAY_RANGE_REF:
2702 case BIT_FIELD_REF:
2703 case VIEW_CONVERT_EXPR:
2704 /* We have a nest of references. Verify that each of the operands
2705 that determine where to reference is either a constant or a variable,
2706 verify that the base is valid, and then show we've already checked
2707 the subtrees. */
2708 while (handled_component_p (t))
2710 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
2711 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2712 else if (TREE_CODE (t) == ARRAY_REF
2713 || TREE_CODE (t) == ARRAY_RANGE_REF)
2715 CHECK_OP (1, "invalid array index");
2716 if (TREE_OPERAND (t, 2))
2717 CHECK_OP (2, "invalid array lower bound");
2718 if (TREE_OPERAND (t, 3))
2719 CHECK_OP (3, "invalid array stride");
2721 else if (TREE_CODE (t) == BIT_FIELD_REF)
2723 if (!host_integerp (TREE_OPERAND (t, 1), 1)
2724 || !host_integerp (TREE_OPERAND (t, 2), 1))
2726 error ("invalid position or size operand to BIT_FIELD_REF");
2727 return t;
2729 else if (INTEGRAL_TYPE_P (TREE_TYPE (t))
2730 && (TYPE_PRECISION (TREE_TYPE (t))
2731 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2733 error ("integral result type precision does not match "
2734 "field size of BIT_FIELD_REF");
2735 return t;
2737 if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
2738 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t)))
2739 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2741 error ("mode precision of non-integral result does not "
2742 "match field size of BIT_FIELD_REF");
2743 return t;
2747 t = TREE_OPERAND (t, 0);
2750 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
2752 error ("invalid reference prefix");
2753 return t;
2755 *walk_subtrees = 0;
2756 break;
2757 case PLUS_EXPR:
2758 case MINUS_EXPR:
2759 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
2760 POINTER_PLUS_EXPR. */
2761 if (POINTER_TYPE_P (TREE_TYPE (t)))
2763 error ("invalid operand to plus/minus, type is a pointer");
2764 return t;
2766 CHECK_OP (0, "invalid operand to binary operator");
2767 CHECK_OP (1, "invalid operand to binary operator");
2768 break;
2770 case POINTER_PLUS_EXPR:
2771 /* Check to make sure the first operand is a pointer or reference type. */
2772 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
2774 error ("invalid operand to pointer plus, first operand is not a pointer");
2775 return t;
2777 /* Check to make sure the second operand is a ptrofftype. */
2778 if (!ptrofftype_p (TREE_TYPE (TREE_OPERAND (t, 1))))
2780 error ("invalid operand to pointer plus, second operand is not an "
2781 "integer type of appropriate width");
2782 return t;
2784 /* FALLTHROUGH */
2785 case LT_EXPR:
2786 case LE_EXPR:
2787 case GT_EXPR:
2788 case GE_EXPR:
2789 case EQ_EXPR:
2790 case NE_EXPR:
2791 case UNORDERED_EXPR:
2792 case ORDERED_EXPR:
2793 case UNLT_EXPR:
2794 case UNLE_EXPR:
2795 case UNGT_EXPR:
2796 case UNGE_EXPR:
2797 case UNEQ_EXPR:
2798 case LTGT_EXPR:
2799 case MULT_EXPR:
2800 case TRUNC_DIV_EXPR:
2801 case CEIL_DIV_EXPR:
2802 case FLOOR_DIV_EXPR:
2803 case ROUND_DIV_EXPR:
2804 case TRUNC_MOD_EXPR:
2805 case CEIL_MOD_EXPR:
2806 case FLOOR_MOD_EXPR:
2807 case ROUND_MOD_EXPR:
2808 case RDIV_EXPR:
2809 case EXACT_DIV_EXPR:
2810 case MIN_EXPR:
2811 case MAX_EXPR:
2812 case LSHIFT_EXPR:
2813 case RSHIFT_EXPR:
2814 case LROTATE_EXPR:
2815 case RROTATE_EXPR:
2816 case BIT_IOR_EXPR:
2817 case BIT_XOR_EXPR:
2818 case BIT_AND_EXPR:
2819 CHECK_OP (0, "invalid operand to binary operator");
2820 CHECK_OP (1, "invalid operand to binary operator");
2821 break;
2823 case CONSTRUCTOR:
2824 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2825 *walk_subtrees = 0;
2826 break;
2828 case CASE_LABEL_EXPR:
2829 if (CASE_CHAIN (t))
2831 error ("invalid CASE_CHAIN");
2832 return t;
2834 break;
2836 default:
2837 break;
2839 return NULL;
2841 #undef CHECK_OP
2845 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
2846 Returns true if there is an error, otherwise false. */
2848 static bool
2849 verify_types_in_gimple_min_lval (tree expr)
2851 tree op;
2853 if (is_gimple_id (expr))
2854 return false;
2856 if (TREE_CODE (expr) != TARGET_MEM_REF
2857 && TREE_CODE (expr) != MEM_REF)
2859 error ("invalid expression for min lvalue");
2860 return true;
2863 /* TARGET_MEM_REFs are strange beasts. */
2864 if (TREE_CODE (expr) == TARGET_MEM_REF)
2865 return false;
2867 op = TREE_OPERAND (expr, 0);
2868 if (!is_gimple_val (op))
2870 error ("invalid operand in indirect reference");
2871 debug_generic_stmt (op);
2872 return true;
2874 /* Memory references now generally can involve a value conversion. */
2876 return false;
2879 /* Verify if EXPR is a valid GIMPLE reference expression. If
2880 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
2881 if there is an error, otherwise false. */
2883 static bool
2884 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
2886 while (handled_component_p (expr))
2888 tree op = TREE_OPERAND (expr, 0);
2890 if (TREE_CODE (expr) == ARRAY_REF
2891 || TREE_CODE (expr) == ARRAY_RANGE_REF)
2893 if (!is_gimple_val (TREE_OPERAND (expr, 1))
2894 || (TREE_OPERAND (expr, 2)
2895 && !is_gimple_val (TREE_OPERAND (expr, 2)))
2896 || (TREE_OPERAND (expr, 3)
2897 && !is_gimple_val (TREE_OPERAND (expr, 3))))
2899 error ("invalid operands to array reference");
2900 debug_generic_stmt (expr);
2901 return true;
2905 /* Verify if the reference array element types are compatible. */
2906 if (TREE_CODE (expr) == ARRAY_REF
2907 && !useless_type_conversion_p (TREE_TYPE (expr),
2908 TREE_TYPE (TREE_TYPE (op))))
2910 error ("type mismatch in array reference");
2911 debug_generic_stmt (TREE_TYPE (expr));
2912 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2913 return true;
2915 if (TREE_CODE (expr) == ARRAY_RANGE_REF
2916 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
2917 TREE_TYPE (TREE_TYPE (op))))
2919 error ("type mismatch in array range reference");
2920 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
2921 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2922 return true;
2925 if ((TREE_CODE (expr) == REALPART_EXPR
2926 || TREE_CODE (expr) == IMAGPART_EXPR)
2927 && !useless_type_conversion_p (TREE_TYPE (expr),
2928 TREE_TYPE (TREE_TYPE (op))))
2930 error ("type mismatch in real/imagpart reference");
2931 debug_generic_stmt (TREE_TYPE (expr));
2932 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2933 return true;
2936 if (TREE_CODE (expr) == COMPONENT_REF
2937 && !useless_type_conversion_p (TREE_TYPE (expr),
2938 TREE_TYPE (TREE_OPERAND (expr, 1))))
2940 error ("type mismatch in component reference");
2941 debug_generic_stmt (TREE_TYPE (expr));
2942 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
2943 return true;
2946 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
2948 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
2949 that their operand is not an SSA name or an invariant when
2950 requiring an lvalue (this usually means there is a SRA or IPA-SRA
2951 bug). Otherwise there is nothing to verify, gross mismatches at
2952 most invoke undefined behavior. */
2953 if (require_lvalue
2954 && (TREE_CODE (op) == SSA_NAME
2955 || is_gimple_min_invariant (op)))
2957 error ("conversion of an SSA_NAME on the left hand side");
2958 debug_generic_stmt (expr);
2959 return true;
2961 else if (TREE_CODE (op) == SSA_NAME
2962 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
2964 error ("conversion of register to a different size");
2965 debug_generic_stmt (expr);
2966 return true;
2968 else if (!handled_component_p (op))
2969 return false;
2972 expr = op;
2975 if (TREE_CODE (expr) == MEM_REF)
2977 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0)))
2979 error ("invalid address operand in MEM_REF");
2980 debug_generic_stmt (expr);
2981 return true;
2983 if (TREE_CODE (TREE_OPERAND (expr, 1)) != INTEGER_CST
2984 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
2986 error ("invalid offset operand in MEM_REF");
2987 debug_generic_stmt (expr);
2988 return true;
2991 else if (TREE_CODE (expr) == TARGET_MEM_REF)
2993 if (!TMR_BASE (expr)
2994 || !is_gimple_mem_ref_addr (TMR_BASE (expr)))
2996 error ("invalid address operand in TARGET_MEM_REF");
2997 return true;
2999 if (!TMR_OFFSET (expr)
3000 || TREE_CODE (TMR_OFFSET (expr)) != INTEGER_CST
3001 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
3003 error ("invalid offset operand in TARGET_MEM_REF");
3004 debug_generic_stmt (expr);
3005 return true;
3009 return ((require_lvalue || !is_gimple_min_invariant (expr))
3010 && verify_types_in_gimple_min_lval (expr));
3013 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3014 list of pointer-to types that is trivially convertible to DEST. */
3016 static bool
3017 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3019 tree src;
3021 if (!TYPE_POINTER_TO (src_obj))
3022 return true;
3024 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3025 if (useless_type_conversion_p (dest, src))
3026 return true;
3028 return false;
3031 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3032 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3034 static bool
3035 valid_fixed_convert_types_p (tree type1, tree type2)
3037 return (FIXED_POINT_TYPE_P (type1)
3038 && (INTEGRAL_TYPE_P (type2)
3039 || SCALAR_FLOAT_TYPE_P (type2)
3040 || FIXED_POINT_TYPE_P (type2)));
3043 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3044 is a problem, otherwise false. */
3046 static bool
3047 verify_gimple_call (gimple stmt)
3049 tree fn = gimple_call_fn (stmt);
3050 tree fntype, fndecl;
3051 unsigned i;
3053 if (gimple_call_internal_p (stmt))
3055 if (fn)
3057 error ("gimple call has two targets");
3058 debug_generic_stmt (fn);
3059 return true;
3062 else
3064 if (!fn)
3066 error ("gimple call has no target");
3067 return true;
3071 if (fn && !is_gimple_call_addr (fn))
3073 error ("invalid function in gimple call");
3074 debug_generic_stmt (fn);
3075 return true;
3078 if (fn
3079 && (!POINTER_TYPE_P (TREE_TYPE (fn))
3080 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3081 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE)))
3083 error ("non-function in gimple call");
3084 return true;
3087 fndecl = gimple_call_fndecl (stmt);
3088 if (fndecl
3089 && TREE_CODE (fndecl) == FUNCTION_DECL
3090 && DECL_LOOPING_CONST_OR_PURE_P (fndecl)
3091 && !DECL_PURE_P (fndecl)
3092 && !TREE_READONLY (fndecl))
3094 error ("invalid pure const state for function");
3095 return true;
3098 if (gimple_call_lhs (stmt)
3099 && (!is_gimple_lvalue (gimple_call_lhs (stmt))
3100 || verify_types_in_gimple_reference (gimple_call_lhs (stmt), true)))
3102 error ("invalid LHS in gimple call");
3103 return true;
3106 if (gimple_call_lhs (stmt) && gimple_call_noreturn_p (stmt))
3108 error ("LHS in noreturn call");
3109 return true;
3112 fntype = gimple_call_fntype (stmt);
3113 if (fntype
3114 && gimple_call_lhs (stmt)
3115 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt)),
3116 TREE_TYPE (fntype))
3117 /* ??? At least C++ misses conversions at assignments from
3118 void * call results.
3119 ??? Java is completely off. Especially with functions
3120 returning java.lang.Object.
3121 For now simply allow arbitrary pointer type conversions. */
3122 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt)))
3123 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3125 error ("invalid conversion in gimple call");
3126 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt)));
3127 debug_generic_stmt (TREE_TYPE (fntype));
3128 return true;
3131 if (gimple_call_chain (stmt)
3132 && !is_gimple_val (gimple_call_chain (stmt)))
3134 error ("invalid static chain in gimple call");
3135 debug_generic_stmt (gimple_call_chain (stmt));
3136 return true;
3139 /* If there is a static chain argument, this should not be an indirect
3140 call, and the decl should have DECL_STATIC_CHAIN set. */
3141 if (gimple_call_chain (stmt))
3143 if (!gimple_call_fndecl (stmt))
3145 error ("static chain in indirect gimple call");
3146 return true;
3148 fn = TREE_OPERAND (fn, 0);
3150 if (!DECL_STATIC_CHAIN (fn))
3152 error ("static chain with function that doesn%'t use one");
3153 return true;
3157 /* ??? The C frontend passes unpromoted arguments in case it
3158 didn't see a function declaration before the call. So for now
3159 leave the call arguments mostly unverified. Once we gimplify
3160 unit-at-a-time we have a chance to fix this. */
3162 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3164 tree arg = gimple_call_arg (stmt, i);
3165 if ((is_gimple_reg_type (TREE_TYPE (arg))
3166 && !is_gimple_val (arg))
3167 || (!is_gimple_reg_type (TREE_TYPE (arg))
3168 && !is_gimple_lvalue (arg)))
3170 error ("invalid argument to gimple call");
3171 debug_generic_expr (arg);
3172 return true;
3176 return false;
3179 /* Verifies the gimple comparison with the result type TYPE and
3180 the operands OP0 and OP1. */
3182 static bool
3183 verify_gimple_comparison (tree type, tree op0, tree op1)
3185 tree op0_type = TREE_TYPE (op0);
3186 tree op1_type = TREE_TYPE (op1);
3188 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3190 error ("invalid operands in gimple comparison");
3191 return true;
3194 /* For comparisons we do not have the operations type as the
3195 effective type the comparison is carried out in. Instead
3196 we require that either the first operand is trivially
3197 convertible into the second, or the other way around.
3198 Because we special-case pointers to void we allow
3199 comparisons of pointers with the same mode as well. */
3200 if (!useless_type_conversion_p (op0_type, op1_type)
3201 && !useless_type_conversion_p (op1_type, op0_type)
3202 && (!POINTER_TYPE_P (op0_type)
3203 || !POINTER_TYPE_P (op1_type)
3204 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3206 error ("mismatching comparison operand types");
3207 debug_generic_expr (op0_type);
3208 debug_generic_expr (op1_type);
3209 return true;
3212 /* The resulting type of a comparison may be an effective boolean type. */
3213 if (INTEGRAL_TYPE_P (type)
3214 && (TREE_CODE (type) == BOOLEAN_TYPE
3215 || TYPE_PRECISION (type) == 1))
3217 /* Or an integer vector type with the same size and element count
3218 as the comparison operand types. */
3219 else if (TREE_CODE (type) == VECTOR_TYPE
3220 && TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE)
3222 if (TREE_CODE (op0_type) != VECTOR_TYPE
3223 || TREE_CODE (op1_type) != VECTOR_TYPE)
3225 error ("non-vector operands in vector comparison");
3226 debug_generic_expr (op0_type);
3227 debug_generic_expr (op1_type);
3228 return true;
3231 if (TYPE_VECTOR_SUBPARTS (type) != TYPE_VECTOR_SUBPARTS (op0_type)
3232 || (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (type)))
3233 != GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0_type)))))
3235 error ("invalid vector comparison resulting type");
3236 debug_generic_expr (type);
3237 return true;
3240 else
3242 error ("bogus comparison result type");
3243 debug_generic_expr (type);
3244 return true;
3247 return false;
3250 /* Verify a gimple assignment statement STMT with an unary rhs.
3251 Returns true if anything is wrong. */
3253 static bool
3254 verify_gimple_assign_unary (gimple stmt)
3256 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3257 tree lhs = gimple_assign_lhs (stmt);
3258 tree lhs_type = TREE_TYPE (lhs);
3259 tree rhs1 = gimple_assign_rhs1 (stmt);
3260 tree rhs1_type = TREE_TYPE (rhs1);
3262 if (!is_gimple_reg (lhs))
3264 error ("non-register as LHS of unary operation");
3265 return true;
3268 if (!is_gimple_val (rhs1))
3270 error ("invalid operand in unary operation");
3271 return true;
3274 /* First handle conversions. */
3275 switch (rhs_code)
3277 CASE_CONVERT:
3279 /* Allow conversions between integral types and pointers only if
3280 there is no sign or zero extension involved.
3281 For targets were the precision of ptrofftype doesn't match that
3282 of pointers we need to allow arbitrary conversions from and
3283 to ptrofftype. */
3284 if ((POINTER_TYPE_P (lhs_type)
3285 && INTEGRAL_TYPE_P (rhs1_type)
3286 && (TYPE_PRECISION (lhs_type) >= TYPE_PRECISION (rhs1_type)
3287 || ptrofftype_p (rhs1_type)))
3288 || (POINTER_TYPE_P (rhs1_type)
3289 && INTEGRAL_TYPE_P (lhs_type)
3290 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3291 || ptrofftype_p (sizetype))))
3292 return false;
3294 /* Allow conversion from integer to offset type and vice versa. */
3295 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3296 && TREE_CODE (rhs1_type) == INTEGER_TYPE)
3297 || (TREE_CODE (lhs_type) == INTEGER_TYPE
3298 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3299 return false;
3301 /* Otherwise assert we are converting between types of the
3302 same kind. */
3303 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3305 error ("invalid types in nop conversion");
3306 debug_generic_expr (lhs_type);
3307 debug_generic_expr (rhs1_type);
3308 return true;
3311 return false;
3314 case ADDR_SPACE_CONVERT_EXPR:
3316 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3317 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3318 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3320 error ("invalid types in address space conversion");
3321 debug_generic_expr (lhs_type);
3322 debug_generic_expr (rhs1_type);
3323 return true;
3326 return false;
3329 case FIXED_CONVERT_EXPR:
3331 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3332 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3334 error ("invalid types in fixed-point conversion");
3335 debug_generic_expr (lhs_type);
3336 debug_generic_expr (rhs1_type);
3337 return true;
3340 return false;
3343 case FLOAT_EXPR:
3345 if (!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3347 error ("invalid types in conversion to floating point");
3348 debug_generic_expr (lhs_type);
3349 debug_generic_expr (rhs1_type);
3350 return true;
3353 return false;
3356 case FIX_TRUNC_EXPR:
3358 if (!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3360 error ("invalid types in conversion to integer");
3361 debug_generic_expr (lhs_type);
3362 debug_generic_expr (rhs1_type);
3363 return true;
3366 return false;
3369 case VEC_UNPACK_HI_EXPR:
3370 case VEC_UNPACK_LO_EXPR:
3371 case REDUC_MAX_EXPR:
3372 case REDUC_MIN_EXPR:
3373 case REDUC_PLUS_EXPR:
3374 case VEC_UNPACK_FLOAT_HI_EXPR:
3375 case VEC_UNPACK_FLOAT_LO_EXPR:
3376 /* FIXME. */
3377 return false;
3379 case NEGATE_EXPR:
3380 case ABS_EXPR:
3381 case BIT_NOT_EXPR:
3382 case PAREN_EXPR:
3383 case NON_LVALUE_EXPR:
3384 case CONJ_EXPR:
3385 break;
3387 default:
3388 gcc_unreachable ();
3391 /* For the remaining codes assert there is no conversion involved. */
3392 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3394 error ("non-trivial conversion in unary operation");
3395 debug_generic_expr (lhs_type);
3396 debug_generic_expr (rhs1_type);
3397 return true;
3400 return false;
3403 /* Verify a gimple assignment statement STMT with a binary rhs.
3404 Returns true if anything is wrong. */
3406 static bool
3407 verify_gimple_assign_binary (gimple stmt)
3409 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3410 tree lhs = gimple_assign_lhs (stmt);
3411 tree lhs_type = TREE_TYPE (lhs);
3412 tree rhs1 = gimple_assign_rhs1 (stmt);
3413 tree rhs1_type = TREE_TYPE (rhs1);
3414 tree rhs2 = gimple_assign_rhs2 (stmt);
3415 tree rhs2_type = TREE_TYPE (rhs2);
3417 if (!is_gimple_reg (lhs))
3419 error ("non-register as LHS of binary operation");
3420 return true;
3423 if (!is_gimple_val (rhs1)
3424 || !is_gimple_val (rhs2))
3426 error ("invalid operands in binary operation");
3427 return true;
3430 /* First handle operations that involve different types. */
3431 switch (rhs_code)
3433 case COMPLEX_EXPR:
3435 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3436 || !(INTEGRAL_TYPE_P (rhs1_type)
3437 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3438 || !(INTEGRAL_TYPE_P (rhs2_type)
3439 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3441 error ("type mismatch in complex expression");
3442 debug_generic_expr (lhs_type);
3443 debug_generic_expr (rhs1_type);
3444 debug_generic_expr (rhs2_type);
3445 return true;
3448 return false;
3451 case LSHIFT_EXPR:
3452 case RSHIFT_EXPR:
3453 case LROTATE_EXPR:
3454 case RROTATE_EXPR:
3456 /* Shifts and rotates are ok on integral types, fixed point
3457 types and integer vector types. */
3458 if ((!INTEGRAL_TYPE_P (rhs1_type)
3459 && !FIXED_POINT_TYPE_P (rhs1_type)
3460 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3461 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3462 || (!INTEGRAL_TYPE_P (rhs2_type)
3463 /* Vector shifts of vectors are also ok. */
3464 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3465 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3466 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3467 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3468 || !useless_type_conversion_p (lhs_type, rhs1_type))
3470 error ("type mismatch in shift expression");
3471 debug_generic_expr (lhs_type);
3472 debug_generic_expr (rhs1_type);
3473 debug_generic_expr (rhs2_type);
3474 return true;
3477 return false;
3480 case VEC_LSHIFT_EXPR:
3481 case VEC_RSHIFT_EXPR:
3483 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3484 || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3485 || POINTER_TYPE_P (TREE_TYPE (rhs1_type))
3486 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type))
3487 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type)))
3488 || (!INTEGRAL_TYPE_P (rhs2_type)
3489 && (TREE_CODE (rhs2_type) != VECTOR_TYPE
3490 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3491 || !useless_type_conversion_p (lhs_type, rhs1_type))
3493 error ("type mismatch in vector shift expression");
3494 debug_generic_expr (lhs_type);
3495 debug_generic_expr (rhs1_type);
3496 debug_generic_expr (rhs2_type);
3497 return true;
3499 /* For shifting a vector of non-integral components we
3500 only allow shifting by a constant multiple of the element size. */
3501 if (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3502 && (TREE_CODE (rhs2) != INTEGER_CST
3503 || !div_if_zero_remainder (EXACT_DIV_EXPR, rhs2,
3504 TYPE_SIZE (TREE_TYPE (rhs1_type)))))
3506 error ("non-element sized vector shift of floating point vector");
3507 return true;
3510 return false;
3513 case WIDEN_LSHIFT_EXPR:
3515 if (!INTEGRAL_TYPE_P (lhs_type)
3516 || !INTEGRAL_TYPE_P (rhs1_type)
3517 || TREE_CODE (rhs2) != INTEGER_CST
3518 || (2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)))
3520 error ("type mismatch in widening vector shift expression");
3521 debug_generic_expr (lhs_type);
3522 debug_generic_expr (rhs1_type);
3523 debug_generic_expr (rhs2_type);
3524 return true;
3527 return false;
3530 case VEC_WIDEN_LSHIFT_HI_EXPR:
3531 case VEC_WIDEN_LSHIFT_LO_EXPR:
3533 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3534 || TREE_CODE (lhs_type) != VECTOR_TYPE
3535 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3536 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
3537 || TREE_CODE (rhs2) != INTEGER_CST
3538 || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type))
3539 > TYPE_PRECISION (TREE_TYPE (lhs_type))))
3541 error ("type mismatch in widening vector shift expression");
3542 debug_generic_expr (lhs_type);
3543 debug_generic_expr (rhs1_type);
3544 debug_generic_expr (rhs2_type);
3545 return true;
3548 return false;
3551 case PLUS_EXPR:
3552 case MINUS_EXPR:
3554 /* We use regular PLUS_EXPR and MINUS_EXPR for vectors.
3555 ??? This just makes the checker happy and may not be what is
3556 intended. */
3557 if (TREE_CODE (lhs_type) == VECTOR_TYPE
3558 && POINTER_TYPE_P (TREE_TYPE (lhs_type)))
3560 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3561 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
3563 error ("invalid non-vector operands to vector valued plus");
3564 return true;
3566 lhs_type = TREE_TYPE (lhs_type);
3567 rhs1_type = TREE_TYPE (rhs1_type);
3568 rhs2_type = TREE_TYPE (rhs2_type);
3569 /* PLUS_EXPR is commutative, so we might end up canonicalizing
3570 the pointer to 2nd place. */
3571 if (POINTER_TYPE_P (rhs2_type))
3573 tree tem = rhs1_type;
3574 rhs1_type = rhs2_type;
3575 rhs2_type = tem;
3577 goto do_pointer_plus_expr_check;
3579 if (POINTER_TYPE_P (lhs_type)
3580 || POINTER_TYPE_P (rhs1_type)
3581 || POINTER_TYPE_P (rhs2_type))
3583 error ("invalid (pointer) operands to plus/minus");
3584 return true;
3587 /* Continue with generic binary expression handling. */
3588 break;
3591 case POINTER_PLUS_EXPR:
3593 do_pointer_plus_expr_check:
3594 if (!POINTER_TYPE_P (rhs1_type)
3595 || !useless_type_conversion_p (lhs_type, rhs1_type)
3596 || !ptrofftype_p (rhs2_type))
3598 error ("type mismatch in pointer plus expression");
3599 debug_generic_stmt (lhs_type);
3600 debug_generic_stmt (rhs1_type);
3601 debug_generic_stmt (rhs2_type);
3602 return true;
3605 return false;
3608 case TRUTH_ANDIF_EXPR:
3609 case TRUTH_ORIF_EXPR:
3610 case TRUTH_AND_EXPR:
3611 case TRUTH_OR_EXPR:
3612 case TRUTH_XOR_EXPR:
3614 gcc_unreachable ();
3616 case LT_EXPR:
3617 case LE_EXPR:
3618 case GT_EXPR:
3619 case GE_EXPR:
3620 case EQ_EXPR:
3621 case NE_EXPR:
3622 case UNORDERED_EXPR:
3623 case ORDERED_EXPR:
3624 case UNLT_EXPR:
3625 case UNLE_EXPR:
3626 case UNGT_EXPR:
3627 case UNGE_EXPR:
3628 case UNEQ_EXPR:
3629 case LTGT_EXPR:
3630 /* Comparisons are also binary, but the result type is not
3631 connected to the operand types. */
3632 return verify_gimple_comparison (lhs_type, rhs1, rhs2);
3634 case WIDEN_MULT_EXPR:
3635 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
3636 return true;
3637 return ((2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type))
3638 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
3640 case WIDEN_SUM_EXPR:
3641 case VEC_WIDEN_MULT_HI_EXPR:
3642 case VEC_WIDEN_MULT_LO_EXPR:
3643 case VEC_PACK_TRUNC_EXPR:
3644 case VEC_PACK_SAT_EXPR:
3645 case VEC_PACK_FIX_TRUNC_EXPR:
3646 case VEC_EXTRACT_EVEN_EXPR:
3647 case VEC_EXTRACT_ODD_EXPR:
3648 case VEC_INTERLEAVE_HIGH_EXPR:
3649 case VEC_INTERLEAVE_LOW_EXPR:
3650 /* FIXME. */
3651 return false;
3653 case MULT_EXPR:
3654 case TRUNC_DIV_EXPR:
3655 case CEIL_DIV_EXPR:
3656 case FLOOR_DIV_EXPR:
3657 case ROUND_DIV_EXPR:
3658 case TRUNC_MOD_EXPR:
3659 case CEIL_MOD_EXPR:
3660 case FLOOR_MOD_EXPR:
3661 case ROUND_MOD_EXPR:
3662 case RDIV_EXPR:
3663 case EXACT_DIV_EXPR:
3664 case MIN_EXPR:
3665 case MAX_EXPR:
3666 case BIT_IOR_EXPR:
3667 case BIT_XOR_EXPR:
3668 case BIT_AND_EXPR:
3669 /* Continue with generic binary expression handling. */
3670 break;
3672 default:
3673 gcc_unreachable ();
3676 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3677 || !useless_type_conversion_p (lhs_type, rhs2_type))
3679 error ("type mismatch in binary expression");
3680 debug_generic_stmt (lhs_type);
3681 debug_generic_stmt (rhs1_type);
3682 debug_generic_stmt (rhs2_type);
3683 return true;
3686 return false;
3689 /* Verify a gimple assignment statement STMT with a ternary rhs.
3690 Returns true if anything is wrong. */
3692 static bool
3693 verify_gimple_assign_ternary (gimple stmt)
3695 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3696 tree lhs = gimple_assign_lhs (stmt);
3697 tree lhs_type = TREE_TYPE (lhs);
3698 tree rhs1 = gimple_assign_rhs1 (stmt);
3699 tree rhs1_type = TREE_TYPE (rhs1);
3700 tree rhs2 = gimple_assign_rhs2 (stmt);
3701 tree rhs2_type = TREE_TYPE (rhs2);
3702 tree rhs3 = gimple_assign_rhs3 (stmt);
3703 tree rhs3_type = TREE_TYPE (rhs3);
3705 if (!is_gimple_reg (lhs))
3707 error ("non-register as LHS of ternary operation");
3708 return true;
3711 if (((rhs_code == VEC_COND_EXPR || rhs_code == COND_EXPR)
3712 ? !is_gimple_condexpr (rhs1) : !is_gimple_val (rhs1))
3713 || !is_gimple_val (rhs2)
3714 || !is_gimple_val (rhs3))
3716 error ("invalid operands in ternary operation");
3717 return true;
3720 /* First handle operations that involve different types. */
3721 switch (rhs_code)
3723 case WIDEN_MULT_PLUS_EXPR:
3724 case WIDEN_MULT_MINUS_EXPR:
3725 if ((!INTEGRAL_TYPE_P (rhs1_type)
3726 && !FIXED_POINT_TYPE_P (rhs1_type))
3727 || !useless_type_conversion_p (rhs1_type, rhs2_type)
3728 || !useless_type_conversion_p (lhs_type, rhs3_type)
3729 || 2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)
3730 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
3732 error ("type mismatch in widening multiply-accumulate expression");
3733 debug_generic_expr (lhs_type);
3734 debug_generic_expr (rhs1_type);
3735 debug_generic_expr (rhs2_type);
3736 debug_generic_expr (rhs3_type);
3737 return true;
3739 break;
3741 case FMA_EXPR:
3742 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3743 || !useless_type_conversion_p (lhs_type, rhs2_type)
3744 || !useless_type_conversion_p (lhs_type, rhs3_type))
3746 error ("type mismatch in fused multiply-add expression");
3747 debug_generic_expr (lhs_type);
3748 debug_generic_expr (rhs1_type);
3749 debug_generic_expr (rhs2_type);
3750 debug_generic_expr (rhs3_type);
3751 return true;
3753 break;
3755 case COND_EXPR:
3756 case VEC_COND_EXPR:
3757 if (!useless_type_conversion_p (lhs_type, rhs2_type)
3758 || !useless_type_conversion_p (lhs_type, rhs3_type))
3760 error ("type mismatch in conditional expression");
3761 debug_generic_expr (lhs_type);
3762 debug_generic_expr (rhs2_type);
3763 debug_generic_expr (rhs3_type);
3764 return true;
3766 break;
3768 case VEC_PERM_EXPR:
3769 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3770 || !useless_type_conversion_p (lhs_type, rhs2_type))
3772 error ("type mismatch in vector permute expression");
3773 debug_generic_expr (lhs_type);
3774 debug_generic_expr (rhs1_type);
3775 debug_generic_expr (rhs2_type);
3776 debug_generic_expr (rhs3_type);
3777 return true;
3780 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3781 || TREE_CODE (rhs2_type) != VECTOR_TYPE
3782 || TREE_CODE (rhs3_type) != VECTOR_TYPE)
3784 error ("vector types expected in vector permute expression");
3785 debug_generic_expr (lhs_type);
3786 debug_generic_expr (rhs1_type);
3787 debug_generic_expr (rhs2_type);
3788 debug_generic_expr (rhs3_type);
3789 return true;
3792 if (TYPE_VECTOR_SUBPARTS (rhs1_type) != TYPE_VECTOR_SUBPARTS (rhs2_type)
3793 || TYPE_VECTOR_SUBPARTS (rhs2_type)
3794 != TYPE_VECTOR_SUBPARTS (rhs3_type)
3795 || TYPE_VECTOR_SUBPARTS (rhs3_type)
3796 != TYPE_VECTOR_SUBPARTS (lhs_type))
3798 error ("vectors with different element number found "
3799 "in vector permute expression");
3800 debug_generic_expr (lhs_type);
3801 debug_generic_expr (rhs1_type);
3802 debug_generic_expr (rhs2_type);
3803 debug_generic_expr (rhs3_type);
3804 return true;
3807 if (TREE_CODE (TREE_TYPE (rhs3_type)) != INTEGER_TYPE
3808 || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs3_type)))
3809 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type))))
3811 error ("invalid mask type in vector permute expression");
3812 debug_generic_expr (lhs_type);
3813 debug_generic_expr (rhs1_type);
3814 debug_generic_expr (rhs2_type);
3815 debug_generic_expr (rhs3_type);
3816 return true;
3819 return false;
3821 case DOT_PROD_EXPR:
3822 case REALIGN_LOAD_EXPR:
3823 /* FIXME. */
3824 return false;
3826 default:
3827 gcc_unreachable ();
3829 return false;
3832 /* Verify a gimple assignment statement STMT with a single rhs.
3833 Returns true if anything is wrong. */
3835 static bool
3836 verify_gimple_assign_single (gimple stmt)
3838 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3839 tree lhs = gimple_assign_lhs (stmt);
3840 tree lhs_type = TREE_TYPE (lhs);
3841 tree rhs1 = gimple_assign_rhs1 (stmt);
3842 tree rhs1_type = TREE_TYPE (rhs1);
3843 bool res = false;
3845 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3847 error ("non-trivial conversion at assignment");
3848 debug_generic_expr (lhs_type);
3849 debug_generic_expr (rhs1_type);
3850 return true;
3853 if (handled_component_p (lhs))
3854 res |= verify_types_in_gimple_reference (lhs, true);
3856 /* Special codes we cannot handle via their class. */
3857 switch (rhs_code)
3859 case ADDR_EXPR:
3861 tree op = TREE_OPERAND (rhs1, 0);
3862 if (!is_gimple_addressable (op))
3864 error ("invalid operand in unary expression");
3865 return true;
3868 /* Technically there is no longer a need for matching types, but
3869 gimple hygiene asks for this check. In LTO we can end up
3870 combining incompatible units and thus end up with addresses
3871 of globals that change their type to a common one. */
3872 if (!in_lto_p
3873 && !types_compatible_p (TREE_TYPE (op),
3874 TREE_TYPE (TREE_TYPE (rhs1)))
3875 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
3876 TREE_TYPE (op)))
3878 error ("type mismatch in address expression");
3879 debug_generic_stmt (TREE_TYPE (rhs1));
3880 debug_generic_stmt (TREE_TYPE (op));
3881 return true;
3884 return verify_types_in_gimple_reference (op, true);
3887 /* tcc_reference */
3888 case INDIRECT_REF:
3889 error ("INDIRECT_REF in gimple IL");
3890 return true;
3892 case COMPONENT_REF:
3893 case BIT_FIELD_REF:
3894 case ARRAY_REF:
3895 case ARRAY_RANGE_REF:
3896 case VIEW_CONVERT_EXPR:
3897 case REALPART_EXPR:
3898 case IMAGPART_EXPR:
3899 case TARGET_MEM_REF:
3900 case MEM_REF:
3901 if (!is_gimple_reg (lhs)
3902 && is_gimple_reg_type (TREE_TYPE (lhs)))
3904 error ("invalid rhs for gimple memory store");
3905 debug_generic_stmt (lhs);
3906 debug_generic_stmt (rhs1);
3907 return true;
3909 return res || verify_types_in_gimple_reference (rhs1, false);
3911 /* tcc_constant */
3912 case SSA_NAME:
3913 case INTEGER_CST:
3914 case REAL_CST:
3915 case FIXED_CST:
3916 case COMPLEX_CST:
3917 case VECTOR_CST:
3918 case STRING_CST:
3919 return res;
3921 /* tcc_declaration */
3922 case CONST_DECL:
3923 return res;
3924 case VAR_DECL:
3925 case PARM_DECL:
3926 if (!is_gimple_reg (lhs)
3927 && !is_gimple_reg (rhs1)
3928 && is_gimple_reg_type (TREE_TYPE (lhs)))
3930 error ("invalid rhs for gimple memory store");
3931 debug_generic_stmt (lhs);
3932 debug_generic_stmt (rhs1);
3933 return true;
3935 return res;
3937 case CONSTRUCTOR:
3938 case OBJ_TYPE_REF:
3939 case ASSERT_EXPR:
3940 case WITH_SIZE_EXPR:
3941 /* FIXME. */
3942 return res;
3944 default:;
3947 return res;
3950 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
3951 is a problem, otherwise false. */
3953 static bool
3954 verify_gimple_assign (gimple stmt)
3956 switch (gimple_assign_rhs_class (stmt))
3958 case GIMPLE_SINGLE_RHS:
3959 return verify_gimple_assign_single (stmt);
3961 case GIMPLE_UNARY_RHS:
3962 return verify_gimple_assign_unary (stmt);
3964 case GIMPLE_BINARY_RHS:
3965 return verify_gimple_assign_binary (stmt);
3967 case GIMPLE_TERNARY_RHS:
3968 return verify_gimple_assign_ternary (stmt);
3970 default:
3971 gcc_unreachable ();
3975 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
3976 is a problem, otherwise false. */
3978 static bool
3979 verify_gimple_return (gimple stmt)
3981 tree op = gimple_return_retval (stmt);
3982 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
3984 /* We cannot test for present return values as we do not fix up missing
3985 return values from the original source. */
3986 if (op == NULL)
3987 return false;
3989 if (!is_gimple_val (op)
3990 && TREE_CODE (op) != RESULT_DECL)
3992 error ("invalid operand in return statement");
3993 debug_generic_stmt (op);
3994 return true;
3997 if ((TREE_CODE (op) == RESULT_DECL
3998 && DECL_BY_REFERENCE (op))
3999 || (TREE_CODE (op) == SSA_NAME
4000 && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
4001 && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
4002 op = TREE_TYPE (op);
4004 if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
4006 error ("invalid conversion in return statement");
4007 debug_generic_stmt (restype);
4008 debug_generic_stmt (TREE_TYPE (op));
4009 return true;
4012 return false;
4016 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
4017 is a problem, otherwise false. */
4019 static bool
4020 verify_gimple_goto (gimple stmt)
4022 tree dest = gimple_goto_dest (stmt);
4024 /* ??? We have two canonical forms of direct goto destinations, a
4025 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
4026 if (TREE_CODE (dest) != LABEL_DECL
4027 && (!is_gimple_val (dest)
4028 || !POINTER_TYPE_P (TREE_TYPE (dest))))
4030 error ("goto destination is neither a label nor a pointer");
4031 return true;
4034 return false;
4037 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
4038 is a problem, otherwise false. */
4040 static bool
4041 verify_gimple_switch (gimple stmt)
4043 if (!is_gimple_val (gimple_switch_index (stmt)))
4045 error ("invalid operand to switch statement");
4046 debug_generic_stmt (gimple_switch_index (stmt));
4047 return true;
4050 return false;
4054 /* Verify a gimple debug statement STMT.
4055 Returns true if anything is wrong. */
4057 static bool
4058 verify_gimple_debug (gimple stmt ATTRIBUTE_UNUSED)
4060 /* There isn't much that could be wrong in a gimple debug stmt. A
4061 gimple debug bind stmt, for example, maps a tree, that's usually
4062 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
4063 component or member of an aggregate type, to another tree, that
4064 can be an arbitrary expression. These stmts expand into debug
4065 insns, and are converted to debug notes by var-tracking.c. */
4066 return false;
4069 /* Verify a gimple label statement STMT.
4070 Returns true if anything is wrong. */
4072 static bool
4073 verify_gimple_label (gimple stmt)
4075 tree decl = gimple_label_label (stmt);
4076 int uid;
4077 bool err = false;
4079 if (TREE_CODE (decl) != LABEL_DECL)
4080 return true;
4082 uid = LABEL_DECL_UID (decl);
4083 if (cfun->cfg
4084 && (uid == -1
4085 || VEC_index (basic_block,
4086 label_to_block_map, uid) != gimple_bb (stmt)))
4088 error ("incorrect entry in label_to_block_map");
4089 err |= true;
4092 uid = EH_LANDING_PAD_NR (decl);
4093 if (uid)
4095 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
4096 if (decl != lp->post_landing_pad)
4098 error ("incorrect setting of landing pad number");
4099 err |= true;
4103 return err;
4106 /* Verify the GIMPLE statement STMT. Returns true if there is an
4107 error, otherwise false. */
4109 static bool
4110 verify_gimple_stmt (gimple stmt)
4112 switch (gimple_code (stmt))
4114 case GIMPLE_ASSIGN:
4115 return verify_gimple_assign (stmt);
4117 case GIMPLE_LABEL:
4118 return verify_gimple_label (stmt);
4120 case GIMPLE_CALL:
4121 return verify_gimple_call (stmt);
4123 case GIMPLE_COND:
4124 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
4126 error ("invalid comparison code in gimple cond");
4127 return true;
4129 if (!(!gimple_cond_true_label (stmt)
4130 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
4131 || !(!gimple_cond_false_label (stmt)
4132 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
4134 error ("invalid labels in gimple cond");
4135 return true;
4138 return verify_gimple_comparison (boolean_type_node,
4139 gimple_cond_lhs (stmt),
4140 gimple_cond_rhs (stmt));
4142 case GIMPLE_GOTO:
4143 return verify_gimple_goto (stmt);
4145 case GIMPLE_SWITCH:
4146 return verify_gimple_switch (stmt);
4148 case GIMPLE_RETURN:
4149 return verify_gimple_return (stmt);
4151 case GIMPLE_ASM:
4152 return false;
4154 /* Tuples that do not have tree operands. */
4155 case GIMPLE_NOP:
4156 case GIMPLE_PREDICT:
4157 case GIMPLE_RESX:
4158 case GIMPLE_EH_DISPATCH:
4159 case GIMPLE_EH_MUST_NOT_THROW:
4160 return false;
4162 CASE_GIMPLE_OMP:
4163 /* OpenMP directives are validated by the FE and never operated
4164 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4165 non-gimple expressions when the main index variable has had
4166 its address taken. This does not affect the loop itself
4167 because the header of an GIMPLE_OMP_FOR is merely used to determine
4168 how to setup the parallel iteration. */
4169 return false;
4171 case GIMPLE_DEBUG:
4172 return verify_gimple_debug (stmt);
4174 default:
4175 gcc_unreachable ();
4179 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4180 and false otherwise. */
4182 static bool
4183 verify_gimple_phi (gimple phi)
4185 bool err = false;
4186 unsigned i;
4187 tree phi_result = gimple_phi_result (phi);
4188 bool virtual_p;
4190 if (!phi_result)
4192 error ("invalid PHI result");
4193 return true;
4196 virtual_p = !is_gimple_reg (phi_result);
4197 if (TREE_CODE (phi_result) != SSA_NAME
4198 || (virtual_p
4199 && SSA_NAME_VAR (phi_result) != gimple_vop (cfun)))
4201 error ("invalid PHI result");
4202 err = true;
4205 for (i = 0; i < gimple_phi_num_args (phi); i++)
4207 tree t = gimple_phi_arg_def (phi, i);
4209 if (!t)
4211 error ("missing PHI def");
4212 err |= true;
4213 continue;
4215 /* Addressable variables do have SSA_NAMEs but they
4216 are not considered gimple values. */
4217 else if ((TREE_CODE (t) == SSA_NAME
4218 && virtual_p != !is_gimple_reg (t))
4219 || (virtual_p
4220 && (TREE_CODE (t) != SSA_NAME
4221 || SSA_NAME_VAR (t) != gimple_vop (cfun)))
4222 || (!virtual_p
4223 && !is_gimple_val (t)))
4225 error ("invalid PHI argument");
4226 debug_generic_expr (t);
4227 err |= true;
4229 #ifdef ENABLE_TYPES_CHECKING
4230 if (!useless_type_conversion_p (TREE_TYPE (phi_result), TREE_TYPE (t)))
4232 error ("incompatible types in PHI argument %u", i);
4233 debug_generic_stmt (TREE_TYPE (phi_result));
4234 debug_generic_stmt (TREE_TYPE (t));
4235 err |= true;
4237 #endif
4240 return err;
4243 /* Verify the GIMPLE statements inside the sequence STMTS. */
4245 static bool
4246 verify_gimple_in_seq_2 (gimple_seq stmts)
4248 gimple_stmt_iterator ittr;
4249 bool err = false;
4251 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
4253 gimple stmt = gsi_stmt (ittr);
4255 switch (gimple_code (stmt))
4257 case GIMPLE_BIND:
4258 err |= verify_gimple_in_seq_2 (gimple_bind_body (stmt));
4259 break;
4261 case GIMPLE_TRY:
4262 err |= verify_gimple_in_seq_2 (gimple_try_eval (stmt));
4263 err |= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt));
4264 break;
4266 case GIMPLE_EH_FILTER:
4267 err |= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt));
4268 break;
4270 case GIMPLE_CATCH:
4271 err |= verify_gimple_in_seq_2 (gimple_catch_handler (stmt));
4272 break;
4274 default:
4276 bool err2 = verify_gimple_stmt (stmt);
4277 if (err2)
4278 debug_gimple_stmt (stmt);
4279 err |= err2;
4284 return err;
4288 /* Verify the GIMPLE statements inside the statement list STMTS. */
4290 DEBUG_FUNCTION void
4291 verify_gimple_in_seq (gimple_seq stmts)
4293 timevar_push (TV_TREE_STMT_VERIFY);
4294 if (verify_gimple_in_seq_2 (stmts))
4295 internal_error ("verify_gimple failed");
4296 timevar_pop (TV_TREE_STMT_VERIFY);
4299 /* Return true when the T can be shared. */
4301 bool
4302 tree_node_can_be_shared (tree t)
4304 if (IS_TYPE_OR_DECL_P (t)
4305 || is_gimple_min_invariant (t)
4306 || TREE_CODE (t) == SSA_NAME
4307 || t == error_mark_node
4308 || TREE_CODE (t) == IDENTIFIER_NODE)
4309 return true;
4311 if (TREE_CODE (t) == CASE_LABEL_EXPR)
4312 return true;
4314 while (((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
4315 && is_gimple_min_invariant (TREE_OPERAND (t, 1)))
4316 || TREE_CODE (t) == COMPONENT_REF
4317 || TREE_CODE (t) == REALPART_EXPR
4318 || TREE_CODE (t) == IMAGPART_EXPR)
4319 t = TREE_OPERAND (t, 0);
4321 if (DECL_P (t))
4322 return true;
4324 return false;
4327 /* Called via walk_gimple_stmt. Verify tree sharing. */
4329 static tree
4330 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
4332 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4333 struct pointer_set_t *visited = (struct pointer_set_t *) wi->info;
4335 if (tree_node_can_be_shared (*tp))
4337 *walk_subtrees = false;
4338 return NULL;
4341 if (pointer_set_insert (visited, *tp))
4342 return *tp;
4344 return NULL;
4347 static bool eh_error_found;
4348 static int
4349 verify_eh_throw_stmt_node (void **slot, void *data)
4351 struct throw_stmt_node *node = (struct throw_stmt_node *)*slot;
4352 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4354 if (!pointer_set_contains (visited, node->stmt))
4356 error ("dead STMT in EH table");
4357 debug_gimple_stmt (node->stmt);
4358 eh_error_found = true;
4360 return 1;
4363 /* Verify the GIMPLE statements in the CFG of FN. */
4365 DEBUG_FUNCTION void
4366 verify_gimple_in_cfg (struct function *fn)
4368 basic_block bb;
4369 bool err = false;
4370 struct pointer_set_t *visited, *visited_stmts;
4372 timevar_push (TV_TREE_STMT_VERIFY);
4373 visited = pointer_set_create ();
4374 visited_stmts = pointer_set_create ();
4376 FOR_EACH_BB_FN (bb, fn)
4378 gimple_stmt_iterator gsi;
4380 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4382 gimple phi = gsi_stmt (gsi);
4383 bool err2 = false;
4384 unsigned i;
4386 pointer_set_insert (visited_stmts, phi);
4388 if (gimple_bb (phi) != bb)
4390 error ("gimple_bb (phi) is set to a wrong basic block");
4391 err2 = true;
4394 err2 |= verify_gimple_phi (phi);
4396 for (i = 0; i < gimple_phi_num_args (phi); i++)
4398 tree arg = gimple_phi_arg_def (phi, i);
4399 tree addr = walk_tree (&arg, verify_node_sharing, visited, NULL);
4400 if (addr)
4402 error ("incorrect sharing of tree nodes");
4403 debug_generic_expr (addr);
4404 err2 |= true;
4408 if (err2)
4409 debug_gimple_stmt (phi);
4410 err |= err2;
4413 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4415 gimple stmt = gsi_stmt (gsi);
4416 bool err2 = false;
4417 struct walk_stmt_info wi;
4418 tree addr;
4419 int lp_nr;
4421 pointer_set_insert (visited_stmts, stmt);
4423 if (gimple_bb (stmt) != bb)
4425 error ("gimple_bb (stmt) is set to a wrong basic block");
4426 err2 = true;
4429 err2 |= verify_gimple_stmt (stmt);
4431 memset (&wi, 0, sizeof (wi));
4432 wi.info = (void *) visited;
4433 addr = walk_gimple_op (stmt, verify_node_sharing, &wi);
4434 if (addr)
4436 error ("incorrect sharing of tree nodes");
4437 debug_generic_expr (addr);
4438 err2 |= true;
4441 /* ??? Instead of not checking these stmts at all the walker
4442 should know its context via wi. */
4443 if (!is_gimple_debug (stmt)
4444 && !is_gimple_omp (stmt))
4446 memset (&wi, 0, sizeof (wi));
4447 addr = walk_gimple_op (stmt, verify_expr, &wi);
4448 if (addr)
4450 debug_generic_expr (addr);
4451 inform (gimple_location (stmt), "in statement");
4452 err2 |= true;
4456 /* If the statement is marked as part of an EH region, then it is
4457 expected that the statement could throw. Verify that when we
4458 have optimizations that simplify statements such that we prove
4459 that they cannot throw, that we update other data structures
4460 to match. */
4461 lp_nr = lookup_stmt_eh_lp (stmt);
4462 if (lp_nr != 0)
4464 if (!stmt_could_throw_p (stmt))
4466 error ("statement marked for throw, but doesn%'t");
4467 err2 |= true;
4469 else if (lp_nr > 0
4470 && !gsi_one_before_end_p (gsi)
4471 && stmt_can_throw_internal (stmt))
4473 error ("statement marked for throw in middle of block");
4474 err2 |= true;
4478 if (err2)
4479 debug_gimple_stmt (stmt);
4480 err |= err2;
4484 eh_error_found = false;
4485 if (get_eh_throw_stmt_table (cfun))
4486 htab_traverse (get_eh_throw_stmt_table (cfun),
4487 verify_eh_throw_stmt_node,
4488 visited_stmts);
4490 if (err || eh_error_found)
4491 internal_error ("verify_gimple failed");
4493 pointer_set_destroy (visited);
4494 pointer_set_destroy (visited_stmts);
4495 verify_histograms ();
4496 timevar_pop (TV_TREE_STMT_VERIFY);
4500 /* Verifies that the flow information is OK. */
4502 static int
4503 gimple_verify_flow_info (void)
4505 int err = 0;
4506 basic_block bb;
4507 gimple_stmt_iterator gsi;
4508 gimple stmt;
4509 edge e;
4510 edge_iterator ei;
4512 if (ENTRY_BLOCK_PTR->il.gimple)
4514 error ("ENTRY_BLOCK has IL associated with it");
4515 err = 1;
4518 if (EXIT_BLOCK_PTR->il.gimple)
4520 error ("EXIT_BLOCK has IL associated with it");
4521 err = 1;
4524 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
4525 if (e->flags & EDGE_FALLTHRU)
4527 error ("fallthru to exit from bb %d", e->src->index);
4528 err = 1;
4531 FOR_EACH_BB (bb)
4533 bool found_ctrl_stmt = false;
4535 stmt = NULL;
4537 /* Skip labels on the start of basic block. */
4538 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4540 tree label;
4541 gimple prev_stmt = stmt;
4543 stmt = gsi_stmt (gsi);
4545 if (gimple_code (stmt) != GIMPLE_LABEL)
4546 break;
4548 label = gimple_label_label (stmt);
4549 if (prev_stmt && DECL_NONLOCAL (label))
4551 error ("nonlocal label ");
4552 print_generic_expr (stderr, label, 0);
4553 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4554 bb->index);
4555 err = 1;
4558 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
4560 error ("EH landing pad label ");
4561 print_generic_expr (stderr, label, 0);
4562 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4563 bb->index);
4564 err = 1;
4567 if (label_to_block (label) != bb)
4569 error ("label ");
4570 print_generic_expr (stderr, label, 0);
4571 fprintf (stderr, " to block does not match in bb %d",
4572 bb->index);
4573 err = 1;
4576 if (decl_function_context (label) != current_function_decl)
4578 error ("label ");
4579 print_generic_expr (stderr, label, 0);
4580 fprintf (stderr, " has incorrect context in bb %d",
4581 bb->index);
4582 err = 1;
4586 /* Verify that body of basic block BB is free of control flow. */
4587 for (; !gsi_end_p (gsi); gsi_next (&gsi))
4589 gimple stmt = gsi_stmt (gsi);
4591 if (found_ctrl_stmt)
4593 error ("control flow in the middle of basic block %d",
4594 bb->index);
4595 err = 1;
4598 if (stmt_ends_bb_p (stmt))
4599 found_ctrl_stmt = true;
4601 if (gimple_code (stmt) == GIMPLE_LABEL)
4603 error ("label ");
4604 print_generic_expr (stderr, gimple_label_label (stmt), 0);
4605 fprintf (stderr, " in the middle of basic block %d", bb->index);
4606 err = 1;
4610 gsi = gsi_last_bb (bb);
4611 if (gsi_end_p (gsi))
4612 continue;
4614 stmt = gsi_stmt (gsi);
4616 if (gimple_code (stmt) == GIMPLE_LABEL)
4617 continue;
4619 err |= verify_eh_edges (stmt);
4621 if (is_ctrl_stmt (stmt))
4623 FOR_EACH_EDGE (e, ei, bb->succs)
4624 if (e->flags & EDGE_FALLTHRU)
4626 error ("fallthru edge after a control statement in bb %d",
4627 bb->index);
4628 err = 1;
4632 if (gimple_code (stmt) != GIMPLE_COND)
4634 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
4635 after anything else but if statement. */
4636 FOR_EACH_EDGE (e, ei, bb->succs)
4637 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
4639 error ("true/false edge after a non-GIMPLE_COND in bb %d",
4640 bb->index);
4641 err = 1;
4645 switch (gimple_code (stmt))
4647 case GIMPLE_COND:
4649 edge true_edge;
4650 edge false_edge;
4652 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
4654 if (!true_edge
4655 || !false_edge
4656 || !(true_edge->flags & EDGE_TRUE_VALUE)
4657 || !(false_edge->flags & EDGE_FALSE_VALUE)
4658 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4659 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4660 || EDGE_COUNT (bb->succs) >= 3)
4662 error ("wrong outgoing edge flags at end of bb %d",
4663 bb->index);
4664 err = 1;
4667 break;
4669 case GIMPLE_GOTO:
4670 if (simple_goto_p (stmt))
4672 error ("explicit goto at end of bb %d", bb->index);
4673 err = 1;
4675 else
4677 /* FIXME. We should double check that the labels in the
4678 destination blocks have their address taken. */
4679 FOR_EACH_EDGE (e, ei, bb->succs)
4680 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
4681 | EDGE_FALSE_VALUE))
4682 || !(e->flags & EDGE_ABNORMAL))
4684 error ("wrong outgoing edge flags at end of bb %d",
4685 bb->index);
4686 err = 1;
4689 break;
4691 case GIMPLE_CALL:
4692 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
4693 break;
4694 /* ... fallthru ... */
4695 case GIMPLE_RETURN:
4696 if (!single_succ_p (bb)
4697 || (single_succ_edge (bb)->flags
4698 & (EDGE_FALLTHRU | EDGE_ABNORMAL
4699 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4701 error ("wrong outgoing edge flags at end of bb %d", bb->index);
4702 err = 1;
4704 if (single_succ (bb) != EXIT_BLOCK_PTR)
4706 error ("return edge does not point to exit in bb %d",
4707 bb->index);
4708 err = 1;
4710 break;
4712 case GIMPLE_SWITCH:
4714 tree prev;
4715 edge e;
4716 size_t i, n;
4718 n = gimple_switch_num_labels (stmt);
4720 /* Mark all the destination basic blocks. */
4721 for (i = 0; i < n; ++i)
4723 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4724 basic_block label_bb = label_to_block (lab);
4725 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
4726 label_bb->aux = (void *)1;
4729 /* Verify that the case labels are sorted. */
4730 prev = gimple_switch_label (stmt, 0);
4731 for (i = 1; i < n; ++i)
4733 tree c = gimple_switch_label (stmt, i);
4734 if (!CASE_LOW (c))
4736 error ("found default case not at the start of "
4737 "case vector");
4738 err = 1;
4739 continue;
4741 if (CASE_LOW (prev)
4742 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
4744 error ("case labels not sorted: ");
4745 print_generic_expr (stderr, prev, 0);
4746 fprintf (stderr," is greater than ");
4747 print_generic_expr (stderr, c, 0);
4748 fprintf (stderr," but comes before it.\n");
4749 err = 1;
4751 prev = c;
4753 /* VRP will remove the default case if it can prove it will
4754 never be executed. So do not verify there always exists
4755 a default case here. */
4757 FOR_EACH_EDGE (e, ei, bb->succs)
4759 if (!e->dest->aux)
4761 error ("extra outgoing edge %d->%d",
4762 bb->index, e->dest->index);
4763 err = 1;
4766 e->dest->aux = (void *)2;
4767 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
4768 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4770 error ("wrong outgoing edge flags at end of bb %d",
4771 bb->index);
4772 err = 1;
4776 /* Check that we have all of them. */
4777 for (i = 0; i < n; ++i)
4779 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4780 basic_block label_bb = label_to_block (lab);
4782 if (label_bb->aux != (void *)2)
4784 error ("missing edge %i->%i", bb->index, label_bb->index);
4785 err = 1;
4789 FOR_EACH_EDGE (e, ei, bb->succs)
4790 e->dest->aux = (void *)0;
4792 break;
4794 case GIMPLE_EH_DISPATCH:
4795 err |= verify_eh_dispatch_edge (stmt);
4796 break;
4798 default:
4799 break;
4803 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
4804 verify_dominators (CDI_DOMINATORS);
4806 return err;
4810 /* Updates phi nodes after creating a forwarder block joined
4811 by edge FALLTHRU. */
4813 static void
4814 gimple_make_forwarder_block (edge fallthru)
4816 edge e;
4817 edge_iterator ei;
4818 basic_block dummy, bb;
4819 tree var;
4820 gimple_stmt_iterator gsi;
4822 dummy = fallthru->src;
4823 bb = fallthru->dest;
4825 if (single_pred_p (bb))
4826 return;
4828 /* If we redirected a branch we must create new PHI nodes at the
4829 start of BB. */
4830 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
4832 gimple phi, new_phi;
4834 phi = gsi_stmt (gsi);
4835 var = gimple_phi_result (phi);
4836 new_phi = create_phi_node (var, bb);
4837 SSA_NAME_DEF_STMT (var) = new_phi;
4838 gimple_phi_set_result (phi, make_ssa_name (SSA_NAME_VAR (var), phi));
4839 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
4840 UNKNOWN_LOCATION);
4843 /* Add the arguments we have stored on edges. */
4844 FOR_EACH_EDGE (e, ei, bb->preds)
4846 if (e == fallthru)
4847 continue;
4849 flush_pending_stmts (e);
4854 /* Return a non-special label in the head of basic block BLOCK.
4855 Create one if it doesn't exist. */
4857 tree
4858 gimple_block_label (basic_block bb)
4860 gimple_stmt_iterator i, s = gsi_start_bb (bb);
4861 bool first = true;
4862 tree label;
4863 gimple stmt;
4865 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
4867 stmt = gsi_stmt (i);
4868 if (gimple_code (stmt) != GIMPLE_LABEL)
4869 break;
4870 label = gimple_label_label (stmt);
4871 if (!DECL_NONLOCAL (label))
4873 if (!first)
4874 gsi_move_before (&i, &s);
4875 return label;
4879 label = create_artificial_label (UNKNOWN_LOCATION);
4880 stmt = gimple_build_label (label);
4881 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
4882 return label;
4886 /* Attempt to perform edge redirection by replacing a possibly complex
4887 jump instruction by a goto or by removing the jump completely.
4888 This can apply only if all edges now point to the same block. The
4889 parameters and return values are equivalent to
4890 redirect_edge_and_branch. */
4892 static edge
4893 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
4895 basic_block src = e->src;
4896 gimple_stmt_iterator i;
4897 gimple stmt;
4899 /* We can replace or remove a complex jump only when we have exactly
4900 two edges. */
4901 if (EDGE_COUNT (src->succs) != 2
4902 /* Verify that all targets will be TARGET. Specifically, the
4903 edge that is not E must also go to TARGET. */
4904 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
4905 return NULL;
4907 i = gsi_last_bb (src);
4908 if (gsi_end_p (i))
4909 return NULL;
4911 stmt = gsi_stmt (i);
4913 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
4915 gsi_remove (&i, true);
4916 e = ssa_redirect_edge (e, target);
4917 e->flags = EDGE_FALLTHRU;
4918 return e;
4921 return NULL;
4925 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
4926 edge representing the redirected branch. */
4928 static edge
4929 gimple_redirect_edge_and_branch (edge e, basic_block dest)
4931 basic_block bb = e->src;
4932 gimple_stmt_iterator gsi;
4933 edge ret;
4934 gimple stmt;
4936 if (e->flags & EDGE_ABNORMAL)
4937 return NULL;
4939 if (e->dest == dest)
4940 return NULL;
4942 if (e->flags & EDGE_EH)
4943 return redirect_eh_edge (e, dest);
4945 if (e->src != ENTRY_BLOCK_PTR)
4947 ret = gimple_try_redirect_by_replacing_jump (e, dest);
4948 if (ret)
4949 return ret;
4952 gsi = gsi_last_bb (bb);
4953 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
4955 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
4957 case GIMPLE_COND:
4958 /* For COND_EXPR, we only need to redirect the edge. */
4959 break;
4961 case GIMPLE_GOTO:
4962 /* No non-abnormal edges should lead from a non-simple goto, and
4963 simple ones should be represented implicitly. */
4964 gcc_unreachable ();
4966 case GIMPLE_SWITCH:
4968 tree label = gimple_block_label (dest);
4969 tree cases = get_cases_for_edge (e, stmt);
4971 /* If we have a list of cases associated with E, then use it
4972 as it's a lot faster than walking the entire case vector. */
4973 if (cases)
4975 edge e2 = find_edge (e->src, dest);
4976 tree last, first;
4978 first = cases;
4979 while (cases)
4981 last = cases;
4982 CASE_LABEL (cases) = label;
4983 cases = CASE_CHAIN (cases);
4986 /* If there was already an edge in the CFG, then we need
4987 to move all the cases associated with E to E2. */
4988 if (e2)
4990 tree cases2 = get_cases_for_edge (e2, stmt);
4992 CASE_CHAIN (last) = CASE_CHAIN (cases2);
4993 CASE_CHAIN (cases2) = first;
4995 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
4997 else
4999 size_t i, n = gimple_switch_num_labels (stmt);
5001 for (i = 0; i < n; i++)
5003 tree elt = gimple_switch_label (stmt, i);
5004 if (label_to_block (CASE_LABEL (elt)) == e->dest)
5005 CASE_LABEL (elt) = label;
5009 break;
5011 case GIMPLE_ASM:
5013 int i, n = gimple_asm_nlabels (stmt);
5014 tree label = NULL;
5016 for (i = 0; i < n; ++i)
5018 tree cons = gimple_asm_label_op (stmt, i);
5019 if (label_to_block (TREE_VALUE (cons)) == e->dest)
5021 if (!label)
5022 label = gimple_block_label (dest);
5023 TREE_VALUE (cons) = label;
5027 /* If we didn't find any label matching the former edge in the
5028 asm labels, we must be redirecting the fallthrough
5029 edge. */
5030 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
5032 break;
5034 case GIMPLE_RETURN:
5035 gsi_remove (&gsi, true);
5036 e->flags |= EDGE_FALLTHRU;
5037 break;
5039 case GIMPLE_OMP_RETURN:
5040 case GIMPLE_OMP_CONTINUE:
5041 case GIMPLE_OMP_SECTIONS_SWITCH:
5042 case GIMPLE_OMP_FOR:
5043 /* The edges from OMP constructs can be simply redirected. */
5044 break;
5046 case GIMPLE_EH_DISPATCH:
5047 if (!(e->flags & EDGE_FALLTHRU))
5048 redirect_eh_dispatch_edge (stmt, e, dest);
5049 break;
5051 default:
5052 /* Otherwise it must be a fallthru edge, and we don't need to
5053 do anything besides redirecting it. */
5054 gcc_assert (e->flags & EDGE_FALLTHRU);
5055 break;
5058 /* Update/insert PHI nodes as necessary. */
5060 /* Now update the edges in the CFG. */
5061 e = ssa_redirect_edge (e, dest);
5063 return e;
5066 /* Returns true if it is possible to remove edge E by redirecting
5067 it to the destination of the other edge from E->src. */
5069 static bool
5070 gimple_can_remove_branch_p (const_edge e)
5072 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
5073 return false;
5075 return true;
5078 /* Simple wrapper, as we can always redirect fallthru edges. */
5080 static basic_block
5081 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
5083 e = gimple_redirect_edge_and_branch (e, dest);
5084 gcc_assert (e);
5086 return NULL;
5090 /* Splits basic block BB after statement STMT (but at least after the
5091 labels). If STMT is NULL, BB is split just after the labels. */
5093 static basic_block
5094 gimple_split_block (basic_block bb, void *stmt)
5096 gimple_stmt_iterator gsi;
5097 gimple_stmt_iterator gsi_tgt;
5098 gimple act;
5099 gimple_seq list;
5100 basic_block new_bb;
5101 edge e;
5102 edge_iterator ei;
5104 new_bb = create_empty_bb (bb);
5106 /* Redirect the outgoing edges. */
5107 new_bb->succs = bb->succs;
5108 bb->succs = NULL;
5109 FOR_EACH_EDGE (e, ei, new_bb->succs)
5110 e->src = new_bb;
5112 if (stmt && gimple_code ((gimple) stmt) == GIMPLE_LABEL)
5113 stmt = NULL;
5115 /* Move everything from GSI to the new basic block. */
5116 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5118 act = gsi_stmt (gsi);
5119 if (gimple_code (act) == GIMPLE_LABEL)
5120 continue;
5122 if (!stmt)
5123 break;
5125 if (stmt == act)
5127 gsi_next (&gsi);
5128 break;
5132 if (gsi_end_p (gsi))
5133 return new_bb;
5135 /* Split the statement list - avoid re-creating new containers as this
5136 brings ugly quadratic memory consumption in the inliner.
5137 (We are still quadratic since we need to update stmt BB pointers,
5138 sadly.) */
5139 list = gsi_split_seq_before (&gsi);
5140 set_bb_seq (new_bb, list);
5141 for (gsi_tgt = gsi_start (list);
5142 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
5143 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
5145 return new_bb;
5149 /* Moves basic block BB after block AFTER. */
5151 static bool
5152 gimple_move_block_after (basic_block bb, basic_block after)
5154 if (bb->prev_bb == after)
5155 return true;
5157 unlink_block (bb);
5158 link_block (bb, after);
5160 return true;
5164 /* Return true if basic_block can be duplicated. */
5166 static bool
5167 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
5169 return true;
5172 /* Create a duplicate of the basic block BB. NOTE: This does not
5173 preserve SSA form. */
5175 static basic_block
5176 gimple_duplicate_bb (basic_block bb)
5178 basic_block new_bb;
5179 gimple_stmt_iterator gsi, gsi_tgt;
5180 gimple_seq phis = phi_nodes (bb);
5181 gimple phi, stmt, copy;
5183 new_bb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
5185 /* Copy the PHI nodes. We ignore PHI node arguments here because
5186 the incoming edges have not been setup yet. */
5187 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
5189 phi = gsi_stmt (gsi);
5190 copy = create_phi_node (gimple_phi_result (phi), new_bb);
5191 create_new_def_for (gimple_phi_result (copy), copy,
5192 gimple_phi_result_ptr (copy));
5195 gsi_tgt = gsi_start_bb (new_bb);
5196 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5198 def_operand_p def_p;
5199 ssa_op_iter op_iter;
5200 tree lhs;
5202 stmt = gsi_stmt (gsi);
5203 if (gimple_code (stmt) == GIMPLE_LABEL)
5204 continue;
5206 /* Create a new copy of STMT and duplicate STMT's virtual
5207 operands. */
5208 copy = gimple_copy (stmt);
5209 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
5211 maybe_duplicate_eh_stmt (copy, stmt);
5212 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
5214 /* When copying around a stmt writing into a local non-user
5215 aggregate, make sure it won't share stack slot with other
5216 vars. */
5217 lhs = gimple_get_lhs (stmt);
5218 if (lhs && TREE_CODE (lhs) != SSA_NAME)
5220 tree base = get_base_address (lhs);
5221 if (base
5222 && (TREE_CODE (base) == VAR_DECL
5223 || TREE_CODE (base) == RESULT_DECL)
5224 && DECL_IGNORED_P (base)
5225 && !TREE_STATIC (base)
5226 && !DECL_EXTERNAL (base)
5227 && (TREE_CODE (base) != VAR_DECL
5228 || !DECL_HAS_VALUE_EXPR_P (base)))
5229 DECL_NONSHAREABLE (base) = 1;
5232 /* Create new names for all the definitions created by COPY and
5233 add replacement mappings for each new name. */
5234 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
5235 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
5238 return new_bb;
5241 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
5243 static void
5244 add_phi_args_after_copy_edge (edge e_copy)
5246 basic_block bb, bb_copy = e_copy->src, dest;
5247 edge e;
5248 edge_iterator ei;
5249 gimple phi, phi_copy;
5250 tree def;
5251 gimple_stmt_iterator psi, psi_copy;
5253 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
5254 return;
5256 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
5258 if (e_copy->dest->flags & BB_DUPLICATED)
5259 dest = get_bb_original (e_copy->dest);
5260 else
5261 dest = e_copy->dest;
5263 e = find_edge (bb, dest);
5264 if (!e)
5266 /* During loop unrolling the target of the latch edge is copied.
5267 In this case we are not looking for edge to dest, but to
5268 duplicated block whose original was dest. */
5269 FOR_EACH_EDGE (e, ei, bb->succs)
5271 if ((e->dest->flags & BB_DUPLICATED)
5272 && get_bb_original (e->dest) == dest)
5273 break;
5276 gcc_assert (e != NULL);
5279 for (psi = gsi_start_phis (e->dest),
5280 psi_copy = gsi_start_phis (e_copy->dest);
5281 !gsi_end_p (psi);
5282 gsi_next (&psi), gsi_next (&psi_copy))
5284 phi = gsi_stmt (psi);
5285 phi_copy = gsi_stmt (psi_copy);
5286 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
5287 add_phi_arg (phi_copy, def, e_copy,
5288 gimple_phi_arg_location_from_edge (phi, e));
5293 /* Basic block BB_COPY was created by code duplication. Add phi node
5294 arguments for edges going out of BB_COPY. The blocks that were
5295 duplicated have BB_DUPLICATED set. */
5297 void
5298 add_phi_args_after_copy_bb (basic_block bb_copy)
5300 edge e_copy;
5301 edge_iterator ei;
5303 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
5305 add_phi_args_after_copy_edge (e_copy);
5309 /* Blocks in REGION_COPY array of length N_REGION were created by
5310 duplication of basic blocks. Add phi node arguments for edges
5311 going from these blocks. If E_COPY is not NULL, also add
5312 phi node arguments for its destination.*/
5314 void
5315 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
5316 edge e_copy)
5318 unsigned i;
5320 for (i = 0; i < n_region; i++)
5321 region_copy[i]->flags |= BB_DUPLICATED;
5323 for (i = 0; i < n_region; i++)
5324 add_phi_args_after_copy_bb (region_copy[i]);
5325 if (e_copy)
5326 add_phi_args_after_copy_edge (e_copy);
5328 for (i = 0; i < n_region; i++)
5329 region_copy[i]->flags &= ~BB_DUPLICATED;
5332 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5333 important exit edge EXIT. By important we mean that no SSA name defined
5334 inside region is live over the other exit edges of the region. All entry
5335 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
5336 to the duplicate of the region. SSA form, dominance and loop information
5337 is updated. The new basic blocks are stored to REGION_COPY in the same
5338 order as they had in REGION, provided that REGION_COPY is not NULL.
5339 The function returns false if it is unable to copy the region,
5340 true otherwise. */
5342 bool
5343 gimple_duplicate_sese_region (edge entry, edge exit,
5344 basic_block *region, unsigned n_region,
5345 basic_block *region_copy)
5347 unsigned i;
5348 bool free_region_copy = false, copying_header = false;
5349 struct loop *loop = entry->dest->loop_father;
5350 edge exit_copy;
5351 VEC (basic_block, heap) *doms;
5352 edge redirected;
5353 int total_freq = 0, entry_freq = 0;
5354 gcov_type total_count = 0, entry_count = 0;
5356 if (!can_copy_bbs_p (region, n_region))
5357 return false;
5359 /* Some sanity checking. Note that we do not check for all possible
5360 missuses of the functions. I.e. if you ask to copy something weird,
5361 it will work, but the state of structures probably will not be
5362 correct. */
5363 for (i = 0; i < n_region; i++)
5365 /* We do not handle subloops, i.e. all the blocks must belong to the
5366 same loop. */
5367 if (region[i]->loop_father != loop)
5368 return false;
5370 if (region[i] != entry->dest
5371 && region[i] == loop->header)
5372 return false;
5375 set_loop_copy (loop, loop);
5377 /* In case the function is used for loop header copying (which is the primary
5378 use), ensure that EXIT and its copy will be new latch and entry edges. */
5379 if (loop->header == entry->dest)
5381 copying_header = true;
5382 set_loop_copy (loop, loop_outer (loop));
5384 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
5385 return false;
5387 for (i = 0; i < n_region; i++)
5388 if (region[i] != exit->src
5389 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
5390 return false;
5393 if (!region_copy)
5395 region_copy = XNEWVEC (basic_block, n_region);
5396 free_region_copy = true;
5399 gcc_assert (!need_ssa_update_p (cfun));
5401 /* Record blocks outside the region that are dominated by something
5402 inside. */
5403 doms = NULL;
5404 initialize_original_copy_tables ();
5406 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5408 if (entry->dest->count)
5410 total_count = entry->dest->count;
5411 entry_count = entry->count;
5412 /* Fix up corner cases, to avoid division by zero or creation of negative
5413 frequencies. */
5414 if (entry_count > total_count)
5415 entry_count = total_count;
5417 else
5419 total_freq = entry->dest->frequency;
5420 entry_freq = EDGE_FREQUENCY (entry);
5421 /* Fix up corner cases, to avoid division by zero or creation of negative
5422 frequencies. */
5423 if (total_freq == 0)
5424 total_freq = 1;
5425 else if (entry_freq > total_freq)
5426 entry_freq = total_freq;
5429 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
5430 split_edge_bb_loc (entry));
5431 if (total_count)
5433 scale_bbs_frequencies_gcov_type (region, n_region,
5434 total_count - entry_count,
5435 total_count);
5436 scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
5437 total_count);
5439 else
5441 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
5442 total_freq);
5443 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
5446 if (copying_header)
5448 loop->header = exit->dest;
5449 loop->latch = exit->src;
5452 /* Redirect the entry and add the phi node arguments. */
5453 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
5454 gcc_assert (redirected != NULL);
5455 flush_pending_stmts (entry);
5457 /* Concerning updating of dominators: We must recount dominators
5458 for entry block and its copy. Anything that is outside of the
5459 region, but was dominated by something inside needs recounting as
5460 well. */
5461 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
5462 VEC_safe_push (basic_block, heap, doms, get_bb_original (entry->dest));
5463 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5464 VEC_free (basic_block, heap, doms);
5466 /* Add the other PHI node arguments. */
5467 add_phi_args_after_copy (region_copy, n_region, NULL);
5469 /* Update the SSA web. */
5470 update_ssa (TODO_update_ssa);
5472 if (free_region_copy)
5473 free (region_copy);
5475 free_original_copy_tables ();
5476 return true;
5479 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
5480 are stored to REGION_COPY in the same order in that they appear
5481 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
5482 the region, EXIT an exit from it. The condition guarding EXIT
5483 is moved to ENTRY. Returns true if duplication succeeds, false
5484 otherwise.
5486 For example,
5488 some_code;
5489 if (cond)
5491 else
5494 is transformed to
5496 if (cond)
5498 some_code;
5501 else
5503 some_code;
5508 bool
5509 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED,
5510 basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED,
5511 basic_block *region_copy ATTRIBUTE_UNUSED)
5513 unsigned i;
5514 bool free_region_copy = false;
5515 struct loop *loop = exit->dest->loop_father;
5516 struct loop *orig_loop = entry->dest->loop_father;
5517 basic_block switch_bb, entry_bb, nentry_bb;
5518 VEC (basic_block, heap) *doms;
5519 int total_freq = 0, exit_freq = 0;
5520 gcov_type total_count = 0, exit_count = 0;
5521 edge exits[2], nexits[2], e;
5522 gimple_stmt_iterator gsi;
5523 gimple cond_stmt;
5524 edge sorig, snew;
5525 basic_block exit_bb;
5526 gimple_stmt_iterator psi;
5527 gimple phi;
5528 tree def;
5530 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
5531 exits[0] = exit;
5532 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
5534 if (!can_copy_bbs_p (region, n_region))
5535 return false;
5537 initialize_original_copy_tables ();
5538 set_loop_copy (orig_loop, loop);
5539 duplicate_subloops (orig_loop, loop);
5541 if (!region_copy)
5543 region_copy = XNEWVEC (basic_block, n_region);
5544 free_region_copy = true;
5547 gcc_assert (!need_ssa_update_p (cfun));
5549 /* Record blocks outside the region that are dominated by something
5550 inside. */
5551 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5553 if (exit->src->count)
5555 total_count = exit->src->count;
5556 exit_count = exit->count;
5557 /* Fix up corner cases, to avoid division by zero or creation of negative
5558 frequencies. */
5559 if (exit_count > total_count)
5560 exit_count = total_count;
5562 else
5564 total_freq = exit->src->frequency;
5565 exit_freq = EDGE_FREQUENCY (exit);
5566 /* Fix up corner cases, to avoid division by zero or creation of negative
5567 frequencies. */
5568 if (total_freq == 0)
5569 total_freq = 1;
5570 if (exit_freq > total_freq)
5571 exit_freq = total_freq;
5574 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
5575 split_edge_bb_loc (exit));
5576 if (total_count)
5578 scale_bbs_frequencies_gcov_type (region, n_region,
5579 total_count - exit_count,
5580 total_count);
5581 scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count,
5582 total_count);
5584 else
5586 scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq,
5587 total_freq);
5588 scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq);
5591 /* Create the switch block, and put the exit condition to it. */
5592 entry_bb = entry->dest;
5593 nentry_bb = get_bb_copy (entry_bb);
5594 if (!last_stmt (entry->src)
5595 || !stmt_ends_bb_p (last_stmt (entry->src)))
5596 switch_bb = entry->src;
5597 else
5598 switch_bb = split_edge (entry);
5599 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
5601 gsi = gsi_last_bb (switch_bb);
5602 cond_stmt = last_stmt (exit->src);
5603 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
5604 cond_stmt = gimple_copy (cond_stmt);
5606 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
5608 sorig = single_succ_edge (switch_bb);
5609 sorig->flags = exits[1]->flags;
5610 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
5612 /* Register the new edge from SWITCH_BB in loop exit lists. */
5613 rescan_loop_exit (snew, true, false);
5615 /* Add the PHI node arguments. */
5616 add_phi_args_after_copy (region_copy, n_region, snew);
5618 /* Get rid of now superfluous conditions and associated edges (and phi node
5619 arguments). */
5620 exit_bb = exit->dest;
5622 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
5623 PENDING_STMT (e) = NULL;
5625 /* The latch of ORIG_LOOP was copied, and so was the backedge
5626 to the original header. We redirect this backedge to EXIT_BB. */
5627 for (i = 0; i < n_region; i++)
5628 if (get_bb_original (region_copy[i]) == orig_loop->latch)
5630 gcc_assert (single_succ_edge (region_copy[i]));
5631 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
5632 PENDING_STMT (e) = NULL;
5633 for (psi = gsi_start_phis (exit_bb);
5634 !gsi_end_p (psi);
5635 gsi_next (&psi))
5637 phi = gsi_stmt (psi);
5638 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
5639 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
5642 e = redirect_edge_and_branch (nexits[0], nexits[1]->dest);
5643 PENDING_STMT (e) = NULL;
5645 /* Anything that is outside of the region, but was dominated by something
5646 inside needs to update dominance info. */
5647 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5648 VEC_free (basic_block, heap, doms);
5649 /* Update the SSA web. */
5650 update_ssa (TODO_update_ssa);
5652 if (free_region_copy)
5653 free (region_copy);
5655 free_original_copy_tables ();
5656 return true;
5659 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
5660 adding blocks when the dominator traversal reaches EXIT. This
5661 function silently assumes that ENTRY strictly dominates EXIT. */
5663 void
5664 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
5665 VEC(basic_block,heap) **bbs_p)
5667 basic_block son;
5669 for (son = first_dom_son (CDI_DOMINATORS, entry);
5670 son;
5671 son = next_dom_son (CDI_DOMINATORS, son))
5673 VEC_safe_push (basic_block, heap, *bbs_p, son);
5674 if (son != exit)
5675 gather_blocks_in_sese_region (son, exit, bbs_p);
5679 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
5680 The duplicates are recorded in VARS_MAP. */
5682 static void
5683 replace_by_duplicate_decl (tree *tp, struct pointer_map_t *vars_map,
5684 tree to_context)
5686 tree t = *tp, new_t;
5687 struct function *f = DECL_STRUCT_FUNCTION (to_context);
5688 void **loc;
5690 if (DECL_CONTEXT (t) == to_context)
5691 return;
5693 loc = pointer_map_contains (vars_map, t);
5695 if (!loc)
5697 loc = pointer_map_insert (vars_map, t);
5699 if (SSA_VAR_P (t))
5701 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
5702 add_local_decl (f, new_t);
5704 else
5706 gcc_assert (TREE_CODE (t) == CONST_DECL);
5707 new_t = copy_node (t);
5709 DECL_CONTEXT (new_t) = to_context;
5711 *loc = new_t;
5713 else
5714 new_t = (tree) *loc;
5716 *tp = new_t;
5720 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
5721 VARS_MAP maps old ssa names and var_decls to the new ones. */
5723 static tree
5724 replace_ssa_name (tree name, struct pointer_map_t *vars_map,
5725 tree to_context)
5727 void **loc;
5728 tree new_name, decl = SSA_NAME_VAR (name);
5730 gcc_assert (is_gimple_reg (name));
5732 loc = pointer_map_contains (vars_map, name);
5734 if (!loc)
5736 replace_by_duplicate_decl (&decl, vars_map, to_context);
5738 push_cfun (DECL_STRUCT_FUNCTION (to_context));
5739 if (gimple_in_ssa_p (cfun))
5740 add_referenced_var (decl);
5742 new_name = make_ssa_name (decl, SSA_NAME_DEF_STMT (name));
5743 if (SSA_NAME_IS_DEFAULT_DEF (name))
5744 set_default_def (decl, new_name);
5745 pop_cfun ();
5747 loc = pointer_map_insert (vars_map, name);
5748 *loc = new_name;
5750 else
5751 new_name = (tree) *loc;
5753 return new_name;
5756 struct move_stmt_d
5758 tree orig_block;
5759 tree new_block;
5760 tree from_context;
5761 tree to_context;
5762 struct pointer_map_t *vars_map;
5763 htab_t new_label_map;
5764 struct pointer_map_t *eh_map;
5765 bool remap_decls_p;
5768 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
5769 contained in *TP if it has been ORIG_BLOCK previously and change the
5770 DECL_CONTEXT of every local variable referenced in *TP. */
5772 static tree
5773 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
5775 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5776 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5777 tree t = *tp;
5779 if (EXPR_P (t))
5780 /* We should never have TREE_BLOCK set on non-statements. */
5781 gcc_assert (!TREE_BLOCK (t));
5783 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
5785 if (TREE_CODE (t) == SSA_NAME)
5786 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
5787 else if (TREE_CODE (t) == LABEL_DECL)
5789 if (p->new_label_map)
5791 struct tree_map in, *out;
5792 in.base.from = t;
5793 out = (struct tree_map *)
5794 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
5795 if (out)
5796 *tp = t = out->to;
5799 DECL_CONTEXT (t) = p->to_context;
5801 else if (p->remap_decls_p)
5803 /* Replace T with its duplicate. T should no longer appear in the
5804 parent function, so this looks wasteful; however, it may appear
5805 in referenced_vars, and more importantly, as virtual operands of
5806 statements, and in alias lists of other variables. It would be
5807 quite difficult to expunge it from all those places. ??? It might
5808 suffice to do this for addressable variables. */
5809 if ((TREE_CODE (t) == VAR_DECL
5810 && !is_global_var (t))
5811 || TREE_CODE (t) == CONST_DECL)
5812 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
5814 if (SSA_VAR_P (t)
5815 && gimple_in_ssa_p (cfun))
5817 push_cfun (DECL_STRUCT_FUNCTION (p->to_context));
5818 add_referenced_var (*tp);
5819 pop_cfun ();
5822 *walk_subtrees = 0;
5824 else if (TYPE_P (t))
5825 *walk_subtrees = 0;
5827 return NULL_TREE;
5830 /* Helper for move_stmt_r. Given an EH region number for the source
5831 function, map that to the duplicate EH regio number in the dest. */
5833 static int
5834 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
5836 eh_region old_r, new_r;
5837 void **slot;
5839 old_r = get_eh_region_from_number (old_nr);
5840 slot = pointer_map_contains (p->eh_map, old_r);
5841 new_r = (eh_region) *slot;
5843 return new_r->index;
5846 /* Similar, but operate on INTEGER_CSTs. */
5848 static tree
5849 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
5851 int old_nr, new_nr;
5853 old_nr = tree_low_cst (old_t_nr, 0);
5854 new_nr = move_stmt_eh_region_nr (old_nr, p);
5856 return build_int_cst (integer_type_node, new_nr);
5859 /* Like move_stmt_op, but for gimple statements.
5861 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
5862 contained in the current statement in *GSI_P and change the
5863 DECL_CONTEXT of every local variable referenced in the current
5864 statement. */
5866 static tree
5867 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
5868 struct walk_stmt_info *wi)
5870 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5871 gimple stmt = gsi_stmt (*gsi_p);
5872 tree block = gimple_block (stmt);
5874 if (p->orig_block == NULL_TREE
5875 || block == p->orig_block
5876 || block == NULL_TREE)
5877 gimple_set_block (stmt, p->new_block);
5878 #ifdef ENABLE_CHECKING
5879 else if (block != p->new_block)
5881 while (block && block != p->orig_block)
5882 block = BLOCK_SUPERCONTEXT (block);
5883 gcc_assert (block);
5885 #endif
5887 switch (gimple_code (stmt))
5889 case GIMPLE_CALL:
5890 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
5892 tree r, fndecl = gimple_call_fndecl (stmt);
5893 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
5894 switch (DECL_FUNCTION_CODE (fndecl))
5896 case BUILT_IN_EH_COPY_VALUES:
5897 r = gimple_call_arg (stmt, 1);
5898 r = move_stmt_eh_region_tree_nr (r, p);
5899 gimple_call_set_arg (stmt, 1, r);
5900 /* FALLTHRU */
5902 case BUILT_IN_EH_POINTER:
5903 case BUILT_IN_EH_FILTER:
5904 r = gimple_call_arg (stmt, 0);
5905 r = move_stmt_eh_region_tree_nr (r, p);
5906 gimple_call_set_arg (stmt, 0, r);
5907 break;
5909 default:
5910 break;
5913 break;
5915 case GIMPLE_RESX:
5917 int r = gimple_resx_region (stmt);
5918 r = move_stmt_eh_region_nr (r, p);
5919 gimple_resx_set_region (stmt, r);
5921 break;
5923 case GIMPLE_EH_DISPATCH:
5925 int r = gimple_eh_dispatch_region (stmt);
5926 r = move_stmt_eh_region_nr (r, p);
5927 gimple_eh_dispatch_set_region (stmt, r);
5929 break;
5931 case GIMPLE_OMP_RETURN:
5932 case GIMPLE_OMP_CONTINUE:
5933 break;
5934 default:
5935 if (is_gimple_omp (stmt))
5937 /* Do not remap variables inside OMP directives. Variables
5938 referenced in clauses and directive header belong to the
5939 parent function and should not be moved into the child
5940 function. */
5941 bool save_remap_decls_p = p->remap_decls_p;
5942 p->remap_decls_p = false;
5943 *handled_ops_p = true;
5945 walk_gimple_seq (gimple_omp_body (stmt), move_stmt_r,
5946 move_stmt_op, wi);
5948 p->remap_decls_p = save_remap_decls_p;
5950 break;
5953 return NULL_TREE;
5956 /* Move basic block BB from function CFUN to function DEST_FN. The
5957 block is moved out of the original linked list and placed after
5958 block AFTER in the new list. Also, the block is removed from the
5959 original array of blocks and placed in DEST_FN's array of blocks.
5960 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
5961 updated to reflect the moved edges.
5963 The local variables are remapped to new instances, VARS_MAP is used
5964 to record the mapping. */
5966 static void
5967 move_block_to_fn (struct function *dest_cfun, basic_block bb,
5968 basic_block after, bool update_edge_count_p,
5969 struct move_stmt_d *d)
5971 struct control_flow_graph *cfg;
5972 edge_iterator ei;
5973 edge e;
5974 gimple_stmt_iterator si;
5975 unsigned old_len, new_len;
5977 /* Remove BB from dominance structures. */
5978 delete_from_dominance_info (CDI_DOMINATORS, bb);
5979 if (current_loops)
5980 remove_bb_from_loops (bb);
5982 /* Link BB to the new linked list. */
5983 move_block_after (bb, after);
5985 /* Update the edge count in the corresponding flowgraphs. */
5986 if (update_edge_count_p)
5987 FOR_EACH_EDGE (e, ei, bb->succs)
5989 cfun->cfg->x_n_edges--;
5990 dest_cfun->cfg->x_n_edges++;
5993 /* Remove BB from the original basic block array. */
5994 VEC_replace (basic_block, cfun->cfg->x_basic_block_info, bb->index, NULL);
5995 cfun->cfg->x_n_basic_blocks--;
5997 /* Grow DEST_CFUN's basic block array if needed. */
5998 cfg = dest_cfun->cfg;
5999 cfg->x_n_basic_blocks++;
6000 if (bb->index >= cfg->x_last_basic_block)
6001 cfg->x_last_basic_block = bb->index + 1;
6003 old_len = VEC_length (basic_block, cfg->x_basic_block_info);
6004 if ((unsigned) cfg->x_last_basic_block >= old_len)
6006 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
6007 VEC_safe_grow_cleared (basic_block, gc, cfg->x_basic_block_info,
6008 new_len);
6011 VEC_replace (basic_block, cfg->x_basic_block_info,
6012 bb->index, bb);
6014 /* Remap the variables in phi nodes. */
6015 for (si = gsi_start_phis (bb); !gsi_end_p (si); )
6017 gimple phi = gsi_stmt (si);
6018 use_operand_p use;
6019 tree op = PHI_RESULT (phi);
6020 ssa_op_iter oi;
6022 if (!is_gimple_reg (op))
6024 /* Remove the phi nodes for virtual operands (alias analysis will be
6025 run for the new function, anyway). */
6026 remove_phi_node (&si, true);
6027 continue;
6030 SET_PHI_RESULT (phi,
6031 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6032 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
6034 op = USE_FROM_PTR (use);
6035 if (TREE_CODE (op) == SSA_NAME)
6036 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6039 gsi_next (&si);
6042 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6044 gimple stmt = gsi_stmt (si);
6045 struct walk_stmt_info wi;
6047 memset (&wi, 0, sizeof (wi));
6048 wi.info = d;
6049 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
6051 if (gimple_code (stmt) == GIMPLE_LABEL)
6053 tree label = gimple_label_label (stmt);
6054 int uid = LABEL_DECL_UID (label);
6056 gcc_assert (uid > -1);
6058 old_len = VEC_length (basic_block, cfg->x_label_to_block_map);
6059 if (old_len <= (unsigned) uid)
6061 new_len = 3 * uid / 2 + 1;
6062 VEC_safe_grow_cleared (basic_block, gc,
6063 cfg->x_label_to_block_map, new_len);
6066 VEC_replace (basic_block, cfg->x_label_to_block_map, uid, bb);
6067 VEC_replace (basic_block, cfun->cfg->x_label_to_block_map, uid, NULL);
6069 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
6071 if (uid >= dest_cfun->cfg->last_label_uid)
6072 dest_cfun->cfg->last_label_uid = uid + 1;
6075 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
6076 remove_stmt_from_eh_lp_fn (cfun, stmt);
6078 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
6079 gimple_remove_stmt_histograms (cfun, stmt);
6081 /* We cannot leave any operands allocated from the operand caches of
6082 the current function. */
6083 free_stmt_operands (stmt);
6084 push_cfun (dest_cfun);
6085 update_stmt (stmt);
6086 pop_cfun ();
6089 FOR_EACH_EDGE (e, ei, bb->succs)
6090 if (e->goto_locus)
6092 tree block = e->goto_block;
6093 if (d->orig_block == NULL_TREE
6094 || block == d->orig_block)
6095 e->goto_block = d->new_block;
6096 #ifdef ENABLE_CHECKING
6097 else if (block != d->new_block)
6099 while (block && block != d->orig_block)
6100 block = BLOCK_SUPERCONTEXT (block);
6101 gcc_assert (block);
6103 #endif
6107 /* Examine the statements in BB (which is in SRC_CFUN); find and return
6108 the outermost EH region. Use REGION as the incoming base EH region. */
6110 static eh_region
6111 find_outermost_region_in_block (struct function *src_cfun,
6112 basic_block bb, eh_region region)
6114 gimple_stmt_iterator si;
6116 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6118 gimple stmt = gsi_stmt (si);
6119 eh_region stmt_region;
6120 int lp_nr;
6122 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
6123 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
6124 if (stmt_region)
6126 if (region == NULL)
6127 region = stmt_region;
6128 else if (stmt_region != region)
6130 region = eh_region_outermost (src_cfun, stmt_region, region);
6131 gcc_assert (region != NULL);
6136 return region;
6139 static tree
6140 new_label_mapper (tree decl, void *data)
6142 htab_t hash = (htab_t) data;
6143 struct tree_map *m;
6144 void **slot;
6146 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
6148 m = XNEW (struct tree_map);
6149 m->hash = DECL_UID (decl);
6150 m->base.from = decl;
6151 m->to = create_artificial_label (UNKNOWN_LOCATION);
6152 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
6153 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
6154 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
6156 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
6157 gcc_assert (*slot == NULL);
6159 *slot = m;
6161 return m->to;
6164 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
6165 subblocks. */
6167 static void
6168 replace_block_vars_by_duplicates (tree block, struct pointer_map_t *vars_map,
6169 tree to_context)
6171 tree *tp, t;
6173 for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
6175 t = *tp;
6176 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != CONST_DECL)
6177 continue;
6178 replace_by_duplicate_decl (&t, vars_map, to_context);
6179 if (t != *tp)
6181 if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*tp))
6183 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (*tp));
6184 DECL_HAS_VALUE_EXPR_P (t) = 1;
6186 DECL_CHAIN (t) = DECL_CHAIN (*tp);
6187 *tp = t;
6191 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
6192 replace_block_vars_by_duplicates (block, vars_map, to_context);
6195 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
6196 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
6197 single basic block in the original CFG and the new basic block is
6198 returned. DEST_CFUN must not have a CFG yet.
6200 Note that the region need not be a pure SESE region. Blocks inside
6201 the region may contain calls to abort/exit. The only restriction
6202 is that ENTRY_BB should be the only entry point and it must
6203 dominate EXIT_BB.
6205 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
6206 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
6207 to the new function.
6209 All local variables referenced in the region are assumed to be in
6210 the corresponding BLOCK_VARS and unexpanded variable lists
6211 associated with DEST_CFUN. */
6213 basic_block
6214 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
6215 basic_block exit_bb, tree orig_block)
6217 VEC(basic_block,heap) *bbs, *dom_bbs;
6218 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
6219 basic_block after, bb, *entry_pred, *exit_succ, abb;
6220 struct function *saved_cfun = cfun;
6221 int *entry_flag, *exit_flag;
6222 unsigned *entry_prob, *exit_prob;
6223 unsigned i, num_entry_edges, num_exit_edges;
6224 edge e;
6225 edge_iterator ei;
6226 htab_t new_label_map;
6227 struct pointer_map_t *vars_map, *eh_map;
6228 struct loop *loop = entry_bb->loop_father;
6229 struct move_stmt_d d;
6231 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
6232 region. */
6233 gcc_assert (entry_bb != exit_bb
6234 && (!exit_bb
6235 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
6237 /* Collect all the blocks in the region. Manually add ENTRY_BB
6238 because it won't be added by dfs_enumerate_from. */
6239 bbs = NULL;
6240 VEC_safe_push (basic_block, heap, bbs, entry_bb);
6241 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
6243 /* The blocks that used to be dominated by something in BBS will now be
6244 dominated by the new block. */
6245 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
6246 VEC_address (basic_block, bbs),
6247 VEC_length (basic_block, bbs));
6249 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
6250 the predecessor edges to ENTRY_BB and the successor edges to
6251 EXIT_BB so that we can re-attach them to the new basic block that
6252 will replace the region. */
6253 num_entry_edges = EDGE_COUNT (entry_bb->preds);
6254 entry_pred = (basic_block *) xcalloc (num_entry_edges, sizeof (basic_block));
6255 entry_flag = (int *) xcalloc (num_entry_edges, sizeof (int));
6256 entry_prob = XNEWVEC (unsigned, num_entry_edges);
6257 i = 0;
6258 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
6260 entry_prob[i] = e->probability;
6261 entry_flag[i] = e->flags;
6262 entry_pred[i++] = e->src;
6263 remove_edge (e);
6266 if (exit_bb)
6268 num_exit_edges = EDGE_COUNT (exit_bb->succs);
6269 exit_succ = (basic_block *) xcalloc (num_exit_edges,
6270 sizeof (basic_block));
6271 exit_flag = (int *) xcalloc (num_exit_edges, sizeof (int));
6272 exit_prob = XNEWVEC (unsigned, num_exit_edges);
6273 i = 0;
6274 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
6276 exit_prob[i] = e->probability;
6277 exit_flag[i] = e->flags;
6278 exit_succ[i++] = e->dest;
6279 remove_edge (e);
6282 else
6284 num_exit_edges = 0;
6285 exit_succ = NULL;
6286 exit_flag = NULL;
6287 exit_prob = NULL;
6290 /* Switch context to the child function to initialize DEST_FN's CFG. */
6291 gcc_assert (dest_cfun->cfg == NULL);
6292 push_cfun (dest_cfun);
6294 init_empty_tree_cfg ();
6296 /* Initialize EH information for the new function. */
6297 eh_map = NULL;
6298 new_label_map = NULL;
6299 if (saved_cfun->eh)
6301 eh_region region = NULL;
6303 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
6304 region = find_outermost_region_in_block (saved_cfun, bb, region);
6306 init_eh_for_function ();
6307 if (region != NULL)
6309 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
6310 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
6311 new_label_mapper, new_label_map);
6315 pop_cfun ();
6317 /* Move blocks from BBS into DEST_CFUN. */
6318 gcc_assert (VEC_length (basic_block, bbs) >= 2);
6319 after = dest_cfun->cfg->x_entry_block_ptr;
6320 vars_map = pointer_map_create ();
6322 memset (&d, 0, sizeof (d));
6323 d.orig_block = orig_block;
6324 d.new_block = DECL_INITIAL (dest_cfun->decl);
6325 d.from_context = cfun->decl;
6326 d.to_context = dest_cfun->decl;
6327 d.vars_map = vars_map;
6328 d.new_label_map = new_label_map;
6329 d.eh_map = eh_map;
6330 d.remap_decls_p = true;
6332 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
6334 /* No need to update edge counts on the last block. It has
6335 already been updated earlier when we detached the region from
6336 the original CFG. */
6337 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
6338 after = bb;
6341 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
6342 if (orig_block)
6344 tree block;
6345 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6346 == NULL_TREE);
6347 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6348 = BLOCK_SUBBLOCKS (orig_block);
6349 for (block = BLOCK_SUBBLOCKS (orig_block);
6350 block; block = BLOCK_CHAIN (block))
6351 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
6352 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
6355 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
6356 vars_map, dest_cfun->decl);
6358 if (new_label_map)
6359 htab_delete (new_label_map);
6360 if (eh_map)
6361 pointer_map_destroy (eh_map);
6362 pointer_map_destroy (vars_map);
6364 /* Rewire the entry and exit blocks. The successor to the entry
6365 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
6366 the child function. Similarly, the predecessor of DEST_FN's
6367 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
6368 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
6369 various CFG manipulation function get to the right CFG.
6371 FIXME, this is silly. The CFG ought to become a parameter to
6372 these helpers. */
6373 push_cfun (dest_cfun);
6374 make_edge (ENTRY_BLOCK_PTR, entry_bb, EDGE_FALLTHRU);
6375 if (exit_bb)
6376 make_edge (exit_bb, EXIT_BLOCK_PTR, 0);
6377 pop_cfun ();
6379 /* Back in the original function, the SESE region has disappeared,
6380 create a new basic block in its place. */
6381 bb = create_empty_bb (entry_pred[0]);
6382 if (current_loops)
6383 add_bb_to_loop (bb, loop);
6384 for (i = 0; i < num_entry_edges; i++)
6386 e = make_edge (entry_pred[i], bb, entry_flag[i]);
6387 e->probability = entry_prob[i];
6390 for (i = 0; i < num_exit_edges; i++)
6392 e = make_edge (bb, exit_succ[i], exit_flag[i]);
6393 e->probability = exit_prob[i];
6396 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
6397 FOR_EACH_VEC_ELT (basic_block, dom_bbs, i, abb)
6398 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
6399 VEC_free (basic_block, heap, dom_bbs);
6401 if (exit_bb)
6403 free (exit_prob);
6404 free (exit_flag);
6405 free (exit_succ);
6407 free (entry_prob);
6408 free (entry_flag);
6409 free (entry_pred);
6410 VEC_free (basic_block, heap, bbs);
6412 return bb;
6416 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in tree-pass.h)
6419 void
6420 dump_function_to_file (tree fn, FILE *file, int flags)
6422 tree arg, var;
6423 struct function *dsf;
6424 bool ignore_topmost_bind = false, any_var = false;
6425 basic_block bb;
6426 tree chain;
6428 fprintf (file, "%s (", lang_hooks.decl_printable_name (fn, 2));
6430 arg = DECL_ARGUMENTS (fn);
6431 while (arg)
6433 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
6434 fprintf (file, " ");
6435 print_generic_expr (file, arg, dump_flags);
6436 if (flags & TDF_VERBOSE)
6437 print_node (file, "", arg, 4);
6438 if (DECL_CHAIN (arg))
6439 fprintf (file, ", ");
6440 arg = DECL_CHAIN (arg);
6442 fprintf (file, ")\n");
6444 if (flags & TDF_VERBOSE)
6445 print_node (file, "", fn, 2);
6447 dsf = DECL_STRUCT_FUNCTION (fn);
6448 if (dsf && (flags & TDF_EH))
6449 dump_eh_tree (file, dsf);
6451 if (flags & TDF_RAW && !gimple_has_body_p (fn))
6453 dump_node (fn, TDF_SLIM | flags, file);
6454 return;
6457 /* Switch CFUN to point to FN. */
6458 push_cfun (DECL_STRUCT_FUNCTION (fn));
6460 /* When GIMPLE is lowered, the variables are no longer available in
6461 BIND_EXPRs, so display them separately. */
6462 if (cfun && cfun->decl == fn && !VEC_empty (tree, cfun->local_decls))
6464 unsigned ix;
6465 ignore_topmost_bind = true;
6467 fprintf (file, "{\n");
6468 FOR_EACH_LOCAL_DECL (cfun, ix, var)
6470 print_generic_decl (file, var, flags);
6471 if (flags & TDF_VERBOSE)
6472 print_node (file, "", var, 4);
6473 fprintf (file, "\n");
6475 any_var = true;
6479 if (cfun && cfun->decl == fn && cfun->cfg && basic_block_info)
6481 /* If the CFG has been built, emit a CFG-based dump. */
6482 check_bb_profile (ENTRY_BLOCK_PTR, file);
6483 if (!ignore_topmost_bind)
6484 fprintf (file, "{\n");
6486 if (any_var && n_basic_blocks)
6487 fprintf (file, "\n");
6489 FOR_EACH_BB (bb)
6490 gimple_dump_bb (bb, file, 2, flags);
6492 fprintf (file, "}\n");
6493 check_bb_profile (EXIT_BLOCK_PTR, file);
6495 else if (DECL_SAVED_TREE (fn) == NULL)
6497 /* The function is now in GIMPLE form but the CFG has not been
6498 built yet. Emit the single sequence of GIMPLE statements
6499 that make up its body. */
6500 gimple_seq body = gimple_body (fn);
6502 if (gimple_seq_first_stmt (body)
6503 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
6504 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
6505 print_gimple_seq (file, body, 0, flags);
6506 else
6508 if (!ignore_topmost_bind)
6509 fprintf (file, "{\n");
6511 if (any_var)
6512 fprintf (file, "\n");
6514 print_gimple_seq (file, body, 2, flags);
6515 fprintf (file, "}\n");
6518 else
6520 int indent;
6522 /* Make a tree based dump. */
6523 chain = DECL_SAVED_TREE (fn);
6525 if (chain && TREE_CODE (chain) == BIND_EXPR)
6527 if (ignore_topmost_bind)
6529 chain = BIND_EXPR_BODY (chain);
6530 indent = 2;
6532 else
6533 indent = 0;
6535 else
6537 if (!ignore_topmost_bind)
6538 fprintf (file, "{\n");
6539 indent = 2;
6542 if (any_var)
6543 fprintf (file, "\n");
6545 print_generic_stmt_indented (file, chain, flags, indent);
6546 if (ignore_topmost_bind)
6547 fprintf (file, "}\n");
6550 if (flags & TDF_ENUMERATE_LOCALS)
6551 dump_enumerated_decls (file, flags);
6552 fprintf (file, "\n\n");
6554 /* Restore CFUN. */
6555 pop_cfun ();
6559 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
6561 DEBUG_FUNCTION void
6562 debug_function (tree fn, int flags)
6564 dump_function_to_file (fn, stderr, flags);
6568 /* Print on FILE the indexes for the predecessors of basic_block BB. */
6570 static void
6571 print_pred_bbs (FILE *file, basic_block bb)
6573 edge e;
6574 edge_iterator ei;
6576 FOR_EACH_EDGE (e, ei, bb->preds)
6577 fprintf (file, "bb_%d ", e->src->index);
6581 /* Print on FILE the indexes for the successors of basic_block BB. */
6583 static void
6584 print_succ_bbs (FILE *file, basic_block bb)
6586 edge e;
6587 edge_iterator ei;
6589 FOR_EACH_EDGE (e, ei, bb->succs)
6590 fprintf (file, "bb_%d ", e->dest->index);
6593 /* Print to FILE the basic block BB following the VERBOSITY level. */
6595 void
6596 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
6598 char *s_indent = (char *) alloca ((size_t) indent + 1);
6599 memset ((void *) s_indent, ' ', (size_t) indent);
6600 s_indent[indent] = '\0';
6602 /* Print basic_block's header. */
6603 if (verbosity >= 2)
6605 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
6606 print_pred_bbs (file, bb);
6607 fprintf (file, "}, succs = {");
6608 print_succ_bbs (file, bb);
6609 fprintf (file, "})\n");
6612 /* Print basic_block's body. */
6613 if (verbosity >= 3)
6615 fprintf (file, "%s {\n", s_indent);
6616 gimple_dump_bb (bb, file, indent + 4, TDF_VOPS|TDF_MEMSYMS);
6617 fprintf (file, "%s }\n", s_indent);
6621 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
6623 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
6624 VERBOSITY level this outputs the contents of the loop, or just its
6625 structure. */
6627 static void
6628 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
6630 char *s_indent;
6631 basic_block bb;
6633 if (loop == NULL)
6634 return;
6636 s_indent = (char *) alloca ((size_t) indent + 1);
6637 memset ((void *) s_indent, ' ', (size_t) indent);
6638 s_indent[indent] = '\0';
6640 /* Print loop's header. */
6641 fprintf (file, "%sloop_%d (header = %d, latch = %d", s_indent,
6642 loop->num, loop->header->index, loop->latch->index);
6643 fprintf (file, ", niter = ");
6644 print_generic_expr (file, loop->nb_iterations, 0);
6646 if (loop->any_upper_bound)
6648 fprintf (file, ", upper_bound = ");
6649 dump_double_int (file, loop->nb_iterations_upper_bound, true);
6652 if (loop->any_estimate)
6654 fprintf (file, ", estimate = ");
6655 dump_double_int (file, loop->nb_iterations_estimate, true);
6657 fprintf (file, ")\n");
6659 /* Print loop's body. */
6660 if (verbosity >= 1)
6662 fprintf (file, "%s{\n", s_indent);
6663 FOR_EACH_BB (bb)
6664 if (bb->loop_father == loop)
6665 print_loops_bb (file, bb, indent, verbosity);
6667 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
6668 fprintf (file, "%s}\n", s_indent);
6672 /* Print the LOOP and its sibling loops on FILE, indented INDENT
6673 spaces. Following VERBOSITY level this outputs the contents of the
6674 loop, or just its structure. */
6676 static void
6677 print_loop_and_siblings (FILE *file, struct loop *loop, int indent, int verbosity)
6679 if (loop == NULL)
6680 return;
6682 print_loop (file, loop, indent, verbosity);
6683 print_loop_and_siblings (file, loop->next, indent, verbosity);
6686 /* Follow a CFG edge from the entry point of the program, and on entry
6687 of a loop, pretty print the loop structure on FILE. */
6689 void
6690 print_loops (FILE *file, int verbosity)
6692 basic_block bb;
6694 bb = ENTRY_BLOCK_PTR;
6695 if (bb && bb->loop_father)
6696 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
6700 /* Debugging loops structure at tree level, at some VERBOSITY level. */
6702 DEBUG_FUNCTION void
6703 debug_loops (int verbosity)
6705 print_loops (stderr, verbosity);
6708 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
6710 DEBUG_FUNCTION void
6711 debug_loop (struct loop *loop, int verbosity)
6713 print_loop (stderr, loop, 0, verbosity);
6716 /* Print on stderr the code of loop number NUM, at some VERBOSITY
6717 level. */
6719 DEBUG_FUNCTION void
6720 debug_loop_num (unsigned num, int verbosity)
6722 debug_loop (get_loop (num), verbosity);
6725 /* Return true if BB ends with a call, possibly followed by some
6726 instructions that must stay with the call. Return false,
6727 otherwise. */
6729 static bool
6730 gimple_block_ends_with_call_p (basic_block bb)
6732 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
6733 return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
6737 /* Return true if BB ends with a conditional branch. Return false,
6738 otherwise. */
6740 static bool
6741 gimple_block_ends_with_condjump_p (const_basic_block bb)
6743 gimple stmt = last_stmt (CONST_CAST_BB (bb));
6744 return (stmt && gimple_code (stmt) == GIMPLE_COND);
6748 /* Return true if we need to add fake edge to exit at statement T.
6749 Helper function for gimple_flow_call_edges_add. */
6751 static bool
6752 need_fake_edge_p (gimple t)
6754 tree fndecl = NULL_TREE;
6755 int call_flags = 0;
6757 /* NORETURN and LONGJMP calls already have an edge to exit.
6758 CONST and PURE calls do not need one.
6759 We don't currently check for CONST and PURE here, although
6760 it would be a good idea, because those attributes are
6761 figured out from the RTL in mark_constant_function, and
6762 the counter incrementation code from -fprofile-arcs
6763 leads to different results from -fbranch-probabilities. */
6764 if (is_gimple_call (t))
6766 fndecl = gimple_call_fndecl (t);
6767 call_flags = gimple_call_flags (t);
6770 if (is_gimple_call (t)
6771 && fndecl
6772 && DECL_BUILT_IN (fndecl)
6773 && (call_flags & ECF_NOTHROW)
6774 && !(call_flags & ECF_RETURNS_TWICE)
6775 /* fork() doesn't really return twice, but the effect of
6776 wrapping it in __gcov_fork() which calls __gcov_flush()
6777 and clears the counters before forking has the same
6778 effect as returning twice. Force a fake edge. */
6779 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
6780 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
6781 return false;
6783 if (is_gimple_call (t)
6784 && !(call_flags & ECF_NORETURN))
6785 return true;
6787 if (gimple_code (t) == GIMPLE_ASM
6788 && (gimple_asm_volatile_p (t) || gimple_asm_input_p (t)))
6789 return true;
6791 return false;
6795 /* Add fake edges to the function exit for any non constant and non
6796 noreturn calls, volatile inline assembly in the bitmap of blocks
6797 specified by BLOCKS or to the whole CFG if BLOCKS is zero. Return
6798 the number of blocks that were split.
6800 The goal is to expose cases in which entering a basic block does
6801 not imply that all subsequent instructions must be executed. */
6803 static int
6804 gimple_flow_call_edges_add (sbitmap blocks)
6806 int i;
6807 int blocks_split = 0;
6808 int last_bb = last_basic_block;
6809 bool check_last_block = false;
6811 if (n_basic_blocks == NUM_FIXED_BLOCKS)
6812 return 0;
6814 if (! blocks)
6815 check_last_block = true;
6816 else
6817 check_last_block = TEST_BIT (blocks, EXIT_BLOCK_PTR->prev_bb->index);
6819 /* In the last basic block, before epilogue generation, there will be
6820 a fallthru edge to EXIT. Special care is required if the last insn
6821 of the last basic block is a call because make_edge folds duplicate
6822 edges, which would result in the fallthru edge also being marked
6823 fake, which would result in the fallthru edge being removed by
6824 remove_fake_edges, which would result in an invalid CFG.
6826 Moreover, we can't elide the outgoing fake edge, since the block
6827 profiler needs to take this into account in order to solve the minimal
6828 spanning tree in the case that the call doesn't return.
6830 Handle this by adding a dummy instruction in a new last basic block. */
6831 if (check_last_block)
6833 basic_block bb = EXIT_BLOCK_PTR->prev_bb;
6834 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
6835 gimple t = NULL;
6837 if (!gsi_end_p (gsi))
6838 t = gsi_stmt (gsi);
6840 if (t && need_fake_edge_p (t))
6842 edge e;
6844 e = find_edge (bb, EXIT_BLOCK_PTR);
6845 if (e)
6847 gsi_insert_on_edge (e, gimple_build_nop ());
6848 gsi_commit_edge_inserts ();
6853 /* Now add fake edges to the function exit for any non constant
6854 calls since there is no way that we can determine if they will
6855 return or not... */
6856 for (i = 0; i < last_bb; i++)
6858 basic_block bb = BASIC_BLOCK (i);
6859 gimple_stmt_iterator gsi;
6860 gimple stmt, last_stmt;
6862 if (!bb)
6863 continue;
6865 if (blocks && !TEST_BIT (blocks, i))
6866 continue;
6868 gsi = gsi_last_nondebug_bb (bb);
6869 if (!gsi_end_p (gsi))
6871 last_stmt = gsi_stmt (gsi);
6874 stmt = gsi_stmt (gsi);
6875 if (need_fake_edge_p (stmt))
6877 edge e;
6879 /* The handling above of the final block before the
6880 epilogue should be enough to verify that there is
6881 no edge to the exit block in CFG already.
6882 Calling make_edge in such case would cause us to
6883 mark that edge as fake and remove it later. */
6884 #ifdef ENABLE_CHECKING
6885 if (stmt == last_stmt)
6887 e = find_edge (bb, EXIT_BLOCK_PTR);
6888 gcc_assert (e == NULL);
6890 #endif
6892 /* Note that the following may create a new basic block
6893 and renumber the existing basic blocks. */
6894 if (stmt != last_stmt)
6896 e = split_block (bb, stmt);
6897 if (e)
6898 blocks_split++;
6900 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
6902 gsi_prev (&gsi);
6904 while (!gsi_end_p (gsi));
6908 if (blocks_split)
6909 verify_flow_info ();
6911 return blocks_split;
6914 /* Removes edge E and all the blocks dominated by it, and updates dominance
6915 information. The IL in E->src needs to be updated separately.
6916 If dominance info is not available, only the edge E is removed.*/
6918 void
6919 remove_edge_and_dominated_blocks (edge e)
6921 VEC (basic_block, heap) *bbs_to_remove = NULL;
6922 VEC (basic_block, heap) *bbs_to_fix_dom = NULL;
6923 bitmap df, df_idom;
6924 edge f;
6925 edge_iterator ei;
6926 bool none_removed = false;
6927 unsigned i;
6928 basic_block bb, dbb;
6929 bitmap_iterator bi;
6931 if (!dom_info_available_p (CDI_DOMINATORS))
6933 remove_edge (e);
6934 return;
6937 /* No updating is needed for edges to exit. */
6938 if (e->dest == EXIT_BLOCK_PTR)
6940 if (cfgcleanup_altered_bbs)
6941 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
6942 remove_edge (e);
6943 return;
6946 /* First, we find the basic blocks to remove. If E->dest has a predecessor
6947 that is not dominated by E->dest, then this set is empty. Otherwise,
6948 all the basic blocks dominated by E->dest are removed.
6950 Also, to DF_IDOM we store the immediate dominators of the blocks in
6951 the dominance frontier of E (i.e., of the successors of the
6952 removed blocks, if there are any, and of E->dest otherwise). */
6953 FOR_EACH_EDGE (f, ei, e->dest->preds)
6955 if (f == e)
6956 continue;
6958 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
6960 none_removed = true;
6961 break;
6965 df = BITMAP_ALLOC (NULL);
6966 df_idom = BITMAP_ALLOC (NULL);
6968 if (none_removed)
6969 bitmap_set_bit (df_idom,
6970 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
6971 else
6973 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
6974 FOR_EACH_VEC_ELT (basic_block, bbs_to_remove, i, bb)
6976 FOR_EACH_EDGE (f, ei, bb->succs)
6978 if (f->dest != EXIT_BLOCK_PTR)
6979 bitmap_set_bit (df, f->dest->index);
6982 FOR_EACH_VEC_ELT (basic_block, bbs_to_remove, i, bb)
6983 bitmap_clear_bit (df, bb->index);
6985 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
6987 bb = BASIC_BLOCK (i);
6988 bitmap_set_bit (df_idom,
6989 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
6993 if (cfgcleanup_altered_bbs)
6995 /* Record the set of the altered basic blocks. */
6996 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
6997 bitmap_ior_into (cfgcleanup_altered_bbs, df);
7000 /* Remove E and the cancelled blocks. */
7001 if (none_removed)
7002 remove_edge (e);
7003 else
7005 /* Walk backwards so as to get a chance to substitute all
7006 released DEFs into debug stmts. See
7007 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
7008 details. */
7009 for (i = VEC_length (basic_block, bbs_to_remove); i-- > 0; )
7010 delete_basic_block (VEC_index (basic_block, bbs_to_remove, i));
7013 /* Update the dominance information. The immediate dominator may change only
7014 for blocks whose immediate dominator belongs to DF_IDOM:
7016 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
7017 removal. Let Z the arbitrary block such that idom(Z) = Y and
7018 Z dominates X after the removal. Before removal, there exists a path P
7019 from Y to X that avoids Z. Let F be the last edge on P that is
7020 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
7021 dominates W, and because of P, Z does not dominate W), and W belongs to
7022 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
7023 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
7025 bb = BASIC_BLOCK (i);
7026 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
7027 dbb;
7028 dbb = next_dom_son (CDI_DOMINATORS, dbb))
7029 VEC_safe_push (basic_block, heap, bbs_to_fix_dom, dbb);
7032 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
7034 BITMAP_FREE (df);
7035 BITMAP_FREE (df_idom);
7036 VEC_free (basic_block, heap, bbs_to_remove);
7037 VEC_free (basic_block, heap, bbs_to_fix_dom);
7040 /* Purge dead EH edges from basic block BB. */
7042 bool
7043 gimple_purge_dead_eh_edges (basic_block bb)
7045 bool changed = false;
7046 edge e;
7047 edge_iterator ei;
7048 gimple stmt = last_stmt (bb);
7050 if (stmt && stmt_can_throw_internal (stmt))
7051 return false;
7053 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7055 if (e->flags & EDGE_EH)
7057 remove_edge_and_dominated_blocks (e);
7058 changed = true;
7060 else
7061 ei_next (&ei);
7064 return changed;
7067 /* Purge dead EH edges from basic block listed in BLOCKS. */
7069 bool
7070 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
7072 bool changed = false;
7073 unsigned i;
7074 bitmap_iterator bi;
7076 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7078 basic_block bb = BASIC_BLOCK (i);
7080 /* Earlier gimple_purge_dead_eh_edges could have removed
7081 this basic block already. */
7082 gcc_assert (bb || changed);
7083 if (bb != NULL)
7084 changed |= gimple_purge_dead_eh_edges (bb);
7087 return changed;
7090 /* Purge dead abnormal call edges from basic block BB. */
7092 bool
7093 gimple_purge_dead_abnormal_call_edges (basic_block bb)
7095 bool changed = false;
7096 edge e;
7097 edge_iterator ei;
7098 gimple stmt = last_stmt (bb);
7100 if (!cfun->has_nonlocal_label)
7101 return false;
7103 if (stmt && stmt_can_make_abnormal_goto (stmt))
7104 return false;
7106 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7108 if (e->flags & EDGE_ABNORMAL)
7110 remove_edge_and_dominated_blocks (e);
7111 changed = true;
7113 else
7114 ei_next (&ei);
7117 return changed;
7120 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
7122 bool
7123 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks)
7125 bool changed = false;
7126 unsigned i;
7127 bitmap_iterator bi;
7129 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7131 basic_block bb = BASIC_BLOCK (i);
7133 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
7134 this basic block already. */
7135 gcc_assert (bb || changed);
7136 if (bb != NULL)
7137 changed |= gimple_purge_dead_abnormal_call_edges (bb);
7140 return changed;
7143 /* This function is called whenever a new edge is created or
7144 redirected. */
7146 static void
7147 gimple_execute_on_growing_pred (edge e)
7149 basic_block bb = e->dest;
7151 if (!gimple_seq_empty_p (phi_nodes (bb)))
7152 reserve_phi_args_for_new_edge (bb);
7155 /* This function is called immediately before edge E is removed from
7156 the edge vector E->dest->preds. */
7158 static void
7159 gimple_execute_on_shrinking_pred (edge e)
7161 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
7162 remove_phi_args (e);
7165 /*---------------------------------------------------------------------------
7166 Helper functions for Loop versioning
7167 ---------------------------------------------------------------------------*/
7169 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
7170 of 'first'. Both of them are dominated by 'new_head' basic block. When
7171 'new_head' was created by 'second's incoming edge it received phi arguments
7172 on the edge by split_edge(). Later, additional edge 'e' was created to
7173 connect 'new_head' and 'first'. Now this routine adds phi args on this
7174 additional edge 'e' that new_head to second edge received as part of edge
7175 splitting. */
7177 static void
7178 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
7179 basic_block new_head, edge e)
7181 gimple phi1, phi2;
7182 gimple_stmt_iterator psi1, psi2;
7183 tree def;
7184 edge e2 = find_edge (new_head, second);
7186 /* Because NEW_HEAD has been created by splitting SECOND's incoming
7187 edge, we should always have an edge from NEW_HEAD to SECOND. */
7188 gcc_assert (e2 != NULL);
7190 /* Browse all 'second' basic block phi nodes and add phi args to
7191 edge 'e' for 'first' head. PHI args are always in correct order. */
7193 for (psi2 = gsi_start_phis (second),
7194 psi1 = gsi_start_phis (first);
7195 !gsi_end_p (psi2) && !gsi_end_p (psi1);
7196 gsi_next (&psi2), gsi_next (&psi1))
7198 phi1 = gsi_stmt (psi1);
7199 phi2 = gsi_stmt (psi2);
7200 def = PHI_ARG_DEF (phi2, e2->dest_idx);
7201 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
7206 /* Adds a if else statement to COND_BB with condition COND_EXPR.
7207 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
7208 the destination of the ELSE part. */
7210 static void
7211 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
7212 basic_block second_head ATTRIBUTE_UNUSED,
7213 basic_block cond_bb, void *cond_e)
7215 gimple_stmt_iterator gsi;
7216 gimple new_cond_expr;
7217 tree cond_expr = (tree) cond_e;
7218 edge e0;
7220 /* Build new conditional expr */
7221 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
7222 NULL_TREE, NULL_TREE);
7224 /* Add new cond in cond_bb. */
7225 gsi = gsi_last_bb (cond_bb);
7226 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
7228 /* Adjust edges appropriately to connect new head with first head
7229 as well as second head. */
7230 e0 = single_succ_edge (cond_bb);
7231 e0->flags &= ~EDGE_FALLTHRU;
7232 e0->flags |= EDGE_FALSE_VALUE;
7235 struct cfg_hooks gimple_cfg_hooks = {
7236 "gimple",
7237 gimple_verify_flow_info,
7238 gimple_dump_bb, /* dump_bb */
7239 create_bb, /* create_basic_block */
7240 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
7241 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
7242 gimple_can_remove_branch_p, /* can_remove_branch_p */
7243 remove_bb, /* delete_basic_block */
7244 gimple_split_block, /* split_block */
7245 gimple_move_block_after, /* move_block_after */
7246 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
7247 gimple_merge_blocks, /* merge_blocks */
7248 gimple_predict_edge, /* predict_edge */
7249 gimple_predicted_by_p, /* predicted_by_p */
7250 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
7251 gimple_duplicate_bb, /* duplicate_block */
7252 gimple_split_edge, /* split_edge */
7253 gimple_make_forwarder_block, /* make_forward_block */
7254 NULL, /* tidy_fallthru_edge */
7255 NULL, /* force_nonfallthru */
7256 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
7257 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
7258 gimple_flow_call_edges_add, /* flow_call_edges_add */
7259 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
7260 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
7261 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
7262 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
7263 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
7264 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
7265 flush_pending_stmts /* flush_pending_stmts */
7269 /* Split all critical edges. */
7271 static unsigned int
7272 split_critical_edges (void)
7274 basic_block bb;
7275 edge e;
7276 edge_iterator ei;
7278 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
7279 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
7280 mappings around the calls to split_edge. */
7281 start_recording_case_labels ();
7282 FOR_ALL_BB (bb)
7284 FOR_EACH_EDGE (e, ei, bb->succs)
7286 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
7287 split_edge (e);
7288 /* PRE inserts statements to edges and expects that
7289 since split_critical_edges was done beforehand, committing edge
7290 insertions will not split more edges. In addition to critical
7291 edges we must split edges that have multiple successors and
7292 end by control flow statements, such as RESX.
7293 Go ahead and split them too. This matches the logic in
7294 gimple_find_edge_insert_loc. */
7295 else if ((!single_pred_p (e->dest)
7296 || !gimple_seq_empty_p (phi_nodes (e->dest))
7297 || e->dest == EXIT_BLOCK_PTR)
7298 && e->src != ENTRY_BLOCK_PTR
7299 && !(e->flags & EDGE_ABNORMAL))
7301 gimple_stmt_iterator gsi;
7303 gsi = gsi_last_bb (e->src);
7304 if (!gsi_end_p (gsi)
7305 && stmt_ends_bb_p (gsi_stmt (gsi))
7306 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
7307 && !gimple_call_builtin_p (gsi_stmt (gsi),
7308 BUILT_IN_RETURN)))
7309 split_edge (e);
7313 end_recording_case_labels ();
7314 return 0;
7317 struct gimple_opt_pass pass_split_crit_edges =
7320 GIMPLE_PASS,
7321 "crited", /* name */
7322 NULL, /* gate */
7323 split_critical_edges, /* execute */
7324 NULL, /* sub */
7325 NULL, /* next */
7326 0, /* static_pass_number */
7327 TV_TREE_SPLIT_EDGES, /* tv_id */
7328 PROP_cfg, /* properties required */
7329 PROP_no_crit_edges, /* properties_provided */
7330 0, /* properties_destroyed */
7331 0, /* todo_flags_start */
7332 TODO_verify_flow /* todo_flags_finish */
7337 /* Build a ternary operation and gimplify it. Emit code before GSI.
7338 Return the gimple_val holding the result. */
7340 tree
7341 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
7342 tree type, tree a, tree b, tree c)
7344 tree ret;
7345 location_t loc = gimple_location (gsi_stmt (*gsi));
7347 ret = fold_build3_loc (loc, code, type, a, b, c);
7348 STRIP_NOPS (ret);
7350 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7351 GSI_SAME_STMT);
7354 /* Build a binary operation and gimplify it. Emit code before GSI.
7355 Return the gimple_val holding the result. */
7357 tree
7358 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
7359 tree type, tree a, tree b)
7361 tree ret;
7363 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
7364 STRIP_NOPS (ret);
7366 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7367 GSI_SAME_STMT);
7370 /* Build a unary operation and gimplify it. Emit code before GSI.
7371 Return the gimple_val holding the result. */
7373 tree
7374 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
7375 tree a)
7377 tree ret;
7379 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
7380 STRIP_NOPS (ret);
7382 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7383 GSI_SAME_STMT);
7388 /* Emit return warnings. */
7390 static unsigned int
7391 execute_warn_function_return (void)
7393 source_location location;
7394 gimple last;
7395 edge e;
7396 edge_iterator ei;
7398 /* If we have a path to EXIT, then we do return. */
7399 if (TREE_THIS_VOLATILE (cfun->decl)
7400 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0)
7402 location = UNKNOWN_LOCATION;
7403 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7405 last = last_stmt (e->src);
7406 if ((gimple_code (last) == GIMPLE_RETURN
7407 || gimple_call_builtin_p (last, BUILT_IN_RETURN))
7408 && (location = gimple_location (last)) != UNKNOWN_LOCATION)
7409 break;
7411 if (location == UNKNOWN_LOCATION)
7412 location = cfun->function_end_locus;
7413 warning_at (location, 0, "%<noreturn%> function does return");
7416 /* If we see "return;" in some basic block, then we do reach the end
7417 without returning a value. */
7418 else if (warn_return_type
7419 && !TREE_NO_WARNING (cfun->decl)
7420 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0
7421 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
7423 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7425 gimple last = last_stmt (e->src);
7426 if (gimple_code (last) == GIMPLE_RETURN
7427 && gimple_return_retval (last) == NULL
7428 && !gimple_no_warning_p (last))
7430 location = gimple_location (last);
7431 if (location == UNKNOWN_LOCATION)
7432 location = cfun->function_end_locus;
7433 warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function");
7434 TREE_NO_WARNING (cfun->decl) = 1;
7435 break;
7439 return 0;
7443 /* Given a basic block B which ends with a conditional and has
7444 precisely two successors, determine which of the edges is taken if
7445 the conditional is true and which is taken if the conditional is
7446 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
7448 void
7449 extract_true_false_edges_from_block (basic_block b,
7450 edge *true_edge,
7451 edge *false_edge)
7453 edge e = EDGE_SUCC (b, 0);
7455 if (e->flags & EDGE_TRUE_VALUE)
7457 *true_edge = e;
7458 *false_edge = EDGE_SUCC (b, 1);
7460 else
7462 *false_edge = e;
7463 *true_edge = EDGE_SUCC (b, 1);
7467 struct gimple_opt_pass pass_warn_function_return =
7470 GIMPLE_PASS,
7471 "*warn_function_return", /* name */
7472 NULL, /* gate */
7473 execute_warn_function_return, /* execute */
7474 NULL, /* sub */
7475 NULL, /* next */
7476 0, /* static_pass_number */
7477 TV_NONE, /* tv_id */
7478 PROP_cfg, /* properties_required */
7479 0, /* properties_provided */
7480 0, /* properties_destroyed */
7481 0, /* todo_flags_start */
7482 0 /* todo_flags_finish */
7486 /* Emit noreturn warnings. */
7488 static unsigned int
7489 execute_warn_function_noreturn (void)
7491 if (!TREE_THIS_VOLATILE (current_function_decl)
7492 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) == 0)
7493 warn_function_noreturn (current_function_decl);
7494 return 0;
7497 static bool
7498 gate_warn_function_noreturn (void)
7500 return warn_suggest_attribute_noreturn;
7503 struct gimple_opt_pass pass_warn_function_noreturn =
7506 GIMPLE_PASS,
7507 "*warn_function_noreturn", /* name */
7508 gate_warn_function_noreturn, /* gate */
7509 execute_warn_function_noreturn, /* execute */
7510 NULL, /* sub */
7511 NULL, /* next */
7512 0, /* static_pass_number */
7513 TV_NONE, /* tv_id */
7514 PROP_cfg, /* properties_required */
7515 0, /* properties_provided */
7516 0, /* properties_destroyed */
7517 0, /* todo_flags_start */
7518 0 /* todo_flags_finish */
7523 /* Walk a gimplified function and warn for functions whose return value is
7524 ignored and attribute((warn_unused_result)) is set. This is done before
7525 inlining, so we don't have to worry about that. */
7527 static void
7528 do_warn_unused_result (gimple_seq seq)
7530 tree fdecl, ftype;
7531 gimple_stmt_iterator i;
7533 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
7535 gimple g = gsi_stmt (i);
7537 switch (gimple_code (g))
7539 case GIMPLE_BIND:
7540 do_warn_unused_result (gimple_bind_body (g));
7541 break;
7542 case GIMPLE_TRY:
7543 do_warn_unused_result (gimple_try_eval (g));
7544 do_warn_unused_result (gimple_try_cleanup (g));
7545 break;
7546 case GIMPLE_CATCH:
7547 do_warn_unused_result (gimple_catch_handler (g));
7548 break;
7549 case GIMPLE_EH_FILTER:
7550 do_warn_unused_result (gimple_eh_filter_failure (g));
7551 break;
7553 case GIMPLE_CALL:
7554 if (gimple_call_lhs (g))
7555 break;
7556 if (gimple_call_internal_p (g))
7557 break;
7559 /* This is a naked call, as opposed to a GIMPLE_CALL with an
7560 LHS. All calls whose value is ignored should be
7561 represented like this. Look for the attribute. */
7562 fdecl = gimple_call_fndecl (g);
7563 ftype = gimple_call_fntype (g);
7565 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
7567 location_t loc = gimple_location (g);
7569 if (fdecl)
7570 warning_at (loc, OPT_Wunused_result,
7571 "ignoring return value of %qD, "
7572 "declared with attribute warn_unused_result",
7573 fdecl);
7574 else
7575 warning_at (loc, OPT_Wunused_result,
7576 "ignoring return value of function "
7577 "declared with attribute warn_unused_result");
7579 break;
7581 default:
7582 /* Not a container, not a call, or a call whose value is used. */
7583 break;
7588 static unsigned int
7589 run_warn_unused_result (void)
7591 do_warn_unused_result (gimple_body (current_function_decl));
7592 return 0;
7595 static bool
7596 gate_warn_unused_result (void)
7598 return flag_warn_unused_result;
7601 struct gimple_opt_pass pass_warn_unused_result =
7604 GIMPLE_PASS,
7605 "*warn_unused_result", /* name */
7606 gate_warn_unused_result, /* gate */
7607 run_warn_unused_result, /* execute */
7608 NULL, /* sub */
7609 NULL, /* next */
7610 0, /* static_pass_number */
7611 TV_NONE, /* tv_id */
7612 PROP_gimple_any, /* properties_required */
7613 0, /* properties_provided */
7614 0, /* properties_destroyed */
7615 0, /* todo_flags_start */
7616 0, /* todo_flags_finish */