Turn SECONDARY_MEMORY_NEEDED_MODE into a target hook
[official-gcc.git] / gcc / reload1.c
blobe59f6d900da69146ea59407b3cb122ccd7a732d6
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "predict.h"
28 #include "df.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "optabs.h"
32 #include "regs.h"
33 #include "ira.h"
34 #include "recog.h"
36 #include "rtl-error.h"
37 #include "expr.h"
38 #include "addresses.h"
39 #include "cfgrtl.h"
40 #include "cfgbuild.h"
41 #include "reload.h"
42 #include "except.h"
43 #include "dumpfile.h"
44 #include "rtl-iter.h"
46 /* This file contains the reload pass of the compiler, which is
47 run after register allocation has been done. It checks that
48 each insn is valid (operands required to be in registers really
49 are in registers of the proper class) and fixes up invalid ones
50 by copying values temporarily into registers for the insns
51 that need them.
53 The results of register allocation are described by the vector
54 reg_renumber; the insns still contain pseudo regs, but reg_renumber
55 can be used to find which hard reg, if any, a pseudo reg is in.
57 The technique we always use is to free up a few hard regs that are
58 called ``reload regs'', and for each place where a pseudo reg
59 must be in a hard reg, copy it temporarily into one of the reload regs.
61 Reload regs are allocated locally for every instruction that needs
62 reloads. When there are pseudos which are allocated to a register that
63 has been chosen as a reload reg, such pseudos must be ``spilled''.
64 This means that they go to other hard regs, or to stack slots if no other
65 available hard regs can be found. Spilling can invalidate more
66 insns, requiring additional need for reloads, so we must keep checking
67 until the process stabilizes.
69 For machines with different classes of registers, we must keep track
70 of the register class needed for each reload, and make sure that
71 we allocate enough reload registers of each class.
73 The file reload.c contains the code that checks one insn for
74 validity and reports the reloads that it needs. This file
75 is in charge of scanning the entire rtl code, accumulating the
76 reload needs, spilling, assigning reload registers to use for
77 fixing up each insn, and generating the new insns to copy values
78 into the reload registers. */
80 struct target_reload default_target_reload;
81 #if SWITCHABLE_TARGET
82 struct target_reload *this_target_reload = &default_target_reload;
83 #endif
85 #define spill_indirect_levels \
86 (this_target_reload->x_spill_indirect_levels)
88 /* During reload_as_needed, element N contains a REG rtx for the hard reg
89 into which reg N has been reloaded (perhaps for a previous insn). */
90 static rtx *reg_last_reload_reg;
92 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
93 for an output reload that stores into reg N. */
94 static regset_head reg_has_output_reload;
96 /* Indicates which hard regs are reload-registers for an output reload
97 in the current insn. */
98 static HARD_REG_SET reg_is_output_reload;
100 /* Widest width in which each pseudo reg is referred to (via subreg). */
101 static unsigned int *reg_max_ref_width;
103 /* Vector to remember old contents of reg_renumber before spilling. */
104 static short *reg_old_renumber;
106 /* During reload_as_needed, element N contains the last pseudo regno reloaded
107 into hard register N. If that pseudo reg occupied more than one register,
108 reg_reloaded_contents points to that pseudo for each spill register in
109 use; all of these must remain set for an inheritance to occur. */
110 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
112 /* During reload_as_needed, element N contains the insn for which
113 hard register N was last used. Its contents are significant only
114 when reg_reloaded_valid is set for this register. */
115 static rtx_insn *reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
117 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid. */
118 static HARD_REG_SET reg_reloaded_valid;
119 /* Indicate if the register was dead at the end of the reload.
120 This is only valid if reg_reloaded_contents is set and valid. */
121 static HARD_REG_SET reg_reloaded_dead;
123 /* Indicate whether the register's current value is one that is not
124 safe to retain across a call, even for registers that are normally
125 call-saved. This is only meaningful for members of reg_reloaded_valid. */
126 static HARD_REG_SET reg_reloaded_call_part_clobbered;
128 /* Number of spill-regs so far; number of valid elements of spill_regs. */
129 static int n_spills;
131 /* In parallel with spill_regs, contains REG rtx's for those regs.
132 Holds the last rtx used for any given reg, or 0 if it has never
133 been used for spilling yet. This rtx is reused, provided it has
134 the proper mode. */
135 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
137 /* In parallel with spill_regs, contains nonzero for a spill reg
138 that was stored after the last time it was used.
139 The precise value is the insn generated to do the store. */
140 static rtx_insn *spill_reg_store[FIRST_PSEUDO_REGISTER];
142 /* This is the register that was stored with spill_reg_store. This is a
143 copy of reload_out / reload_out_reg when the value was stored; if
144 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
145 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
147 /* This table is the inverse mapping of spill_regs:
148 indexed by hard reg number,
149 it contains the position of that reg in spill_regs,
150 or -1 for something that is not in spill_regs.
152 ?!? This is no longer accurate. */
153 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
155 /* This reg set indicates registers that can't be used as spill registers for
156 the currently processed insn. These are the hard registers which are live
157 during the insn, but not allocated to pseudos, as well as fixed
158 registers. */
159 static HARD_REG_SET bad_spill_regs;
161 /* These are the hard registers that can't be used as spill register for any
162 insn. This includes registers used for user variables and registers that
163 we can't eliminate. A register that appears in this set also can't be used
164 to retry register allocation. */
165 static HARD_REG_SET bad_spill_regs_global;
167 /* Describes order of use of registers for reloading
168 of spilled pseudo-registers. `n_spills' is the number of
169 elements that are actually valid; new ones are added at the end.
171 Both spill_regs and spill_reg_order are used on two occasions:
172 once during find_reload_regs, where they keep track of the spill registers
173 for a single insn, but also during reload_as_needed where they show all
174 the registers ever used by reload. For the latter case, the information
175 is calculated during finish_spills. */
176 static short spill_regs[FIRST_PSEUDO_REGISTER];
178 /* This vector of reg sets indicates, for each pseudo, which hard registers
179 may not be used for retrying global allocation because the register was
180 formerly spilled from one of them. If we allowed reallocating a pseudo to
181 a register that it was already allocated to, reload might not
182 terminate. */
183 static HARD_REG_SET *pseudo_previous_regs;
185 /* This vector of reg sets indicates, for each pseudo, which hard
186 registers may not be used for retrying global allocation because they
187 are used as spill registers during one of the insns in which the
188 pseudo is live. */
189 static HARD_REG_SET *pseudo_forbidden_regs;
191 /* All hard regs that have been used as spill registers for any insn are
192 marked in this set. */
193 static HARD_REG_SET used_spill_regs;
195 /* Index of last register assigned as a spill register. We allocate in
196 a round-robin fashion. */
197 static int last_spill_reg;
199 /* Record the stack slot for each spilled hard register. */
200 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
202 /* Width allocated so far for that stack slot. */
203 static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
205 /* Record which pseudos needed to be spilled. */
206 static regset_head spilled_pseudos;
208 /* Record which pseudos changed their allocation in finish_spills. */
209 static regset_head changed_allocation_pseudos;
211 /* Used for communication between order_regs_for_reload and count_pseudo.
212 Used to avoid counting one pseudo twice. */
213 static regset_head pseudos_counted;
215 /* First uid used by insns created by reload in this function.
216 Used in find_equiv_reg. */
217 int reload_first_uid;
219 /* Flag set by local-alloc or global-alloc if anything is live in
220 a call-clobbered reg across calls. */
221 int caller_save_needed;
223 /* Set to 1 while reload_as_needed is operating.
224 Required by some machines to handle any generated moves differently. */
225 int reload_in_progress = 0;
227 /* This obstack is used for allocation of rtl during register elimination.
228 The allocated storage can be freed once find_reloads has processed the
229 insn. */
230 static struct obstack reload_obstack;
232 /* Points to the beginning of the reload_obstack. All insn_chain structures
233 are allocated first. */
234 static char *reload_startobj;
236 /* The point after all insn_chain structures. Used to quickly deallocate
237 memory allocated in copy_reloads during calculate_needs_all_insns. */
238 static char *reload_firstobj;
240 /* This points before all local rtl generated by register elimination.
241 Used to quickly free all memory after processing one insn. */
242 static char *reload_insn_firstobj;
244 /* List of insn_chain instructions, one for every insn that reload needs to
245 examine. */
246 struct insn_chain *reload_insn_chain;
248 /* TRUE if we potentially left dead insns in the insn stream and want to
249 run DCE immediately after reload, FALSE otherwise. */
250 static bool need_dce;
252 /* List of all insns needing reloads. */
253 static struct insn_chain *insns_need_reload;
255 /* This structure is used to record information about register eliminations.
256 Each array entry describes one possible way of eliminating a register
257 in favor of another. If there is more than one way of eliminating a
258 particular register, the most preferred should be specified first. */
260 struct elim_table
262 int from; /* Register number to be eliminated. */
263 int to; /* Register number used as replacement. */
264 HOST_WIDE_INT initial_offset; /* Initial difference between values. */
265 int can_eliminate; /* Nonzero if this elimination can be done. */
266 int can_eliminate_previous; /* Value returned by TARGET_CAN_ELIMINATE
267 target hook in previous scan over insns
268 made by reload. */
269 HOST_WIDE_INT offset; /* Current offset between the two regs. */
270 HOST_WIDE_INT previous_offset;/* Offset at end of previous insn. */
271 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
272 rtx from_rtx; /* REG rtx for the register to be eliminated.
273 We cannot simply compare the number since
274 we might then spuriously replace a hard
275 register corresponding to a pseudo
276 assigned to the reg to be eliminated. */
277 rtx to_rtx; /* REG rtx for the replacement. */
280 static struct elim_table *reg_eliminate = 0;
282 /* This is an intermediate structure to initialize the table. It has
283 exactly the members provided by ELIMINABLE_REGS. */
284 static const struct elim_table_1
286 const int from;
287 const int to;
288 } reg_eliminate_1[] =
290 ELIMINABLE_REGS;
292 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
294 /* Record the number of pending eliminations that have an offset not equal
295 to their initial offset. If nonzero, we use a new copy of each
296 replacement result in any insns encountered. */
297 int num_not_at_initial_offset;
299 /* Count the number of registers that we may be able to eliminate. */
300 static int num_eliminable;
301 /* And the number of registers that are equivalent to a constant that
302 can be eliminated to frame_pointer / arg_pointer + constant. */
303 static int num_eliminable_invariants;
305 /* For each label, we record the offset of each elimination. If we reach
306 a label by more than one path and an offset differs, we cannot do the
307 elimination. This information is indexed by the difference of the
308 number of the label and the first label number. We can't offset the
309 pointer itself as this can cause problems on machines with segmented
310 memory. The first table is an array of flags that records whether we
311 have yet encountered a label and the second table is an array of arrays,
312 one entry in the latter array for each elimination. */
314 static int first_label_num;
315 static char *offsets_known_at;
316 static HOST_WIDE_INT (*offsets_at)[NUM_ELIMINABLE_REGS];
318 vec<reg_equivs_t, va_gc> *reg_equivs;
320 /* Stack of addresses where an rtx has been changed. We can undo the
321 changes by popping items off the stack and restoring the original
322 value at each location.
324 We use this simplistic undo capability rather than copy_rtx as copy_rtx
325 will not make a deep copy of a normally sharable rtx, such as
326 (const (plus (symbol_ref) (const_int))). If such an expression appears
327 as R1 in gen_reload_chain_without_interm_reg_p, then a shared
328 rtx expression would be changed. See PR 42431. */
330 typedef rtx *rtx_p;
331 static vec<rtx_p> substitute_stack;
333 /* Number of labels in the current function. */
335 static int num_labels;
337 static void replace_pseudos_in (rtx *, machine_mode, rtx);
338 static void maybe_fix_stack_asms (void);
339 static void copy_reloads (struct insn_chain *);
340 static void calculate_needs_all_insns (int);
341 static int find_reg (struct insn_chain *, int);
342 static void find_reload_regs (struct insn_chain *);
343 static void select_reload_regs (void);
344 static void delete_caller_save_insns (void);
346 static void spill_failure (rtx_insn *, enum reg_class);
347 static void count_spilled_pseudo (int, int, int);
348 static void delete_dead_insn (rtx_insn *);
349 static void alter_reg (int, int, bool);
350 static void set_label_offsets (rtx, rtx_insn *, int);
351 static void check_eliminable_occurrences (rtx);
352 static void elimination_effects (rtx, machine_mode);
353 static rtx eliminate_regs_1 (rtx, machine_mode, rtx, bool, bool);
354 static int eliminate_regs_in_insn (rtx_insn *, int);
355 static void update_eliminable_offsets (void);
356 static void mark_not_eliminable (rtx, const_rtx, void *);
357 static void set_initial_elim_offsets (void);
358 static bool verify_initial_elim_offsets (void);
359 static void set_initial_label_offsets (void);
360 static void set_offsets_for_label (rtx_insn *);
361 static void init_eliminable_invariants (rtx_insn *, bool);
362 static void init_elim_table (void);
363 static void free_reg_equiv (void);
364 static void update_eliminables (HARD_REG_SET *);
365 static bool update_eliminables_and_spill (void);
366 static void elimination_costs_in_insn (rtx_insn *);
367 static void spill_hard_reg (unsigned int, int);
368 static int finish_spills (int);
369 static void scan_paradoxical_subregs (rtx);
370 static void count_pseudo (int);
371 static void order_regs_for_reload (struct insn_chain *);
372 static void reload_as_needed (int);
373 static void forget_old_reloads_1 (rtx, const_rtx, void *);
374 static void forget_marked_reloads (regset);
375 static int reload_reg_class_lower (const void *, const void *);
376 static void mark_reload_reg_in_use (unsigned int, int, enum reload_type,
377 machine_mode);
378 static void clear_reload_reg_in_use (unsigned int, int, enum reload_type,
379 machine_mode);
380 static int reload_reg_free_p (unsigned int, int, enum reload_type);
381 static int reload_reg_free_for_value_p (int, int, int, enum reload_type,
382 rtx, rtx, int, int);
383 static int free_for_value_p (int, machine_mode, int, enum reload_type,
384 rtx, rtx, int, int);
385 static int allocate_reload_reg (struct insn_chain *, int, int);
386 static int conflicts_with_override (rtx);
387 static void failed_reload (rtx_insn *, int);
388 static int set_reload_reg (int, int);
389 static void choose_reload_regs_init (struct insn_chain *, rtx *);
390 static void choose_reload_regs (struct insn_chain *);
391 static void emit_input_reload_insns (struct insn_chain *, struct reload *,
392 rtx, int);
393 static void emit_output_reload_insns (struct insn_chain *, struct reload *,
394 int);
395 static void do_input_reload (struct insn_chain *, struct reload *, int);
396 static void do_output_reload (struct insn_chain *, struct reload *, int);
397 static void emit_reload_insns (struct insn_chain *);
398 static void delete_output_reload (rtx_insn *, int, int, rtx);
399 static void delete_address_reloads (rtx_insn *, rtx_insn *);
400 static void delete_address_reloads_1 (rtx_insn *, rtx, rtx_insn *);
401 static void inc_for_reload (rtx, rtx, rtx, int);
402 static void add_auto_inc_notes (rtx_insn *, rtx);
403 static void substitute (rtx *, const_rtx, rtx);
404 static bool gen_reload_chain_without_interm_reg_p (int, int);
405 static int reloads_conflict (int, int);
406 static rtx_insn *gen_reload (rtx, rtx, int, enum reload_type);
407 static rtx_insn *emit_insn_if_valid_for_reload (rtx);
409 /* Initialize the reload pass. This is called at the beginning of compilation
410 and may be called again if the target is reinitialized. */
412 void
413 init_reload (void)
415 int i;
417 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
418 Set spill_indirect_levels to the number of levels such addressing is
419 permitted, zero if it is not permitted at all. */
421 rtx tem
422 = gen_rtx_MEM (Pmode,
423 gen_rtx_PLUS (Pmode,
424 gen_rtx_REG (Pmode,
425 LAST_VIRTUAL_REGISTER + 1),
426 gen_int_mode (4, Pmode)));
427 spill_indirect_levels = 0;
429 while (memory_address_p (QImode, tem))
431 spill_indirect_levels++;
432 tem = gen_rtx_MEM (Pmode, tem);
435 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
437 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
438 indirect_symref_ok = memory_address_p (QImode, tem);
440 /* See if reg+reg is a valid (and offsettable) address. */
442 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
444 tem = gen_rtx_PLUS (Pmode,
445 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
446 gen_rtx_REG (Pmode, i));
448 /* This way, we make sure that reg+reg is an offsettable address. */
449 tem = plus_constant (Pmode, tem, 4);
451 for (int mode = 0; mode < MAX_MACHINE_MODE; mode++)
452 if (!double_reg_address_ok[mode]
453 && memory_address_p ((enum machine_mode)mode, tem))
454 double_reg_address_ok[mode] = 1;
457 /* Initialize obstack for our rtl allocation. */
458 if (reload_startobj == NULL)
460 gcc_obstack_init (&reload_obstack);
461 reload_startobj = XOBNEWVAR (&reload_obstack, char, 0);
464 INIT_REG_SET (&spilled_pseudos);
465 INIT_REG_SET (&changed_allocation_pseudos);
466 INIT_REG_SET (&pseudos_counted);
469 /* List of insn chains that are currently unused. */
470 static struct insn_chain *unused_insn_chains = 0;
472 /* Allocate an empty insn_chain structure. */
473 struct insn_chain *
474 new_insn_chain (void)
476 struct insn_chain *c;
478 if (unused_insn_chains == 0)
480 c = XOBNEW (&reload_obstack, struct insn_chain);
481 INIT_REG_SET (&c->live_throughout);
482 INIT_REG_SET (&c->dead_or_set);
484 else
486 c = unused_insn_chains;
487 unused_insn_chains = c->next;
489 c->is_caller_save_insn = 0;
490 c->need_operand_change = 0;
491 c->need_reload = 0;
492 c->need_elim = 0;
493 return c;
496 /* Small utility function to set all regs in hard reg set TO which are
497 allocated to pseudos in regset FROM. */
499 void
500 compute_use_by_pseudos (HARD_REG_SET *to, regset from)
502 unsigned int regno;
503 reg_set_iterator rsi;
505 EXECUTE_IF_SET_IN_REG_SET (from, FIRST_PSEUDO_REGISTER, regno, rsi)
507 int r = reg_renumber[regno];
509 if (r < 0)
511 /* reload_combine uses the information from DF_LIVE_IN,
512 which might still contain registers that have not
513 actually been allocated since they have an
514 equivalence. */
515 gcc_assert (ira_conflicts_p || reload_completed);
517 else
518 add_to_hard_reg_set (to, PSEUDO_REGNO_MODE (regno), r);
522 /* Replace all pseudos found in LOC with their corresponding
523 equivalences. */
525 static void
526 replace_pseudos_in (rtx *loc, machine_mode mem_mode, rtx usage)
528 rtx x = *loc;
529 enum rtx_code code;
530 const char *fmt;
531 int i, j;
533 if (! x)
534 return;
536 code = GET_CODE (x);
537 if (code == REG)
539 unsigned int regno = REGNO (x);
541 if (regno < FIRST_PSEUDO_REGISTER)
542 return;
544 x = eliminate_regs_1 (x, mem_mode, usage, true, false);
545 if (x != *loc)
547 *loc = x;
548 replace_pseudos_in (loc, mem_mode, usage);
549 return;
552 if (reg_equiv_constant (regno))
553 *loc = reg_equiv_constant (regno);
554 else if (reg_equiv_invariant (regno))
555 *loc = reg_equiv_invariant (regno);
556 else if (reg_equiv_mem (regno))
557 *loc = reg_equiv_mem (regno);
558 else if (reg_equiv_address (regno))
559 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address (regno));
560 else
562 gcc_assert (!REG_P (regno_reg_rtx[regno])
563 || REGNO (regno_reg_rtx[regno]) != regno);
564 *loc = regno_reg_rtx[regno];
567 return;
569 else if (code == MEM)
571 replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage);
572 return;
575 /* Process each of our operands recursively. */
576 fmt = GET_RTX_FORMAT (code);
577 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
578 if (*fmt == 'e')
579 replace_pseudos_in (&XEXP (x, i), mem_mode, usage);
580 else if (*fmt == 'E')
581 for (j = 0; j < XVECLEN (x, i); j++)
582 replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage);
585 /* Determine if the current function has an exception receiver block
586 that reaches the exit block via non-exceptional edges */
588 static bool
589 has_nonexceptional_receiver (void)
591 edge e;
592 edge_iterator ei;
593 basic_block *tos, *worklist, bb;
595 /* If we're not optimizing, then just err on the safe side. */
596 if (!optimize)
597 return true;
599 /* First determine which blocks can reach exit via normal paths. */
600 tos = worklist = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) + 1);
602 FOR_EACH_BB_FN (bb, cfun)
603 bb->flags &= ~BB_REACHABLE;
605 /* Place the exit block on our worklist. */
606 EXIT_BLOCK_PTR_FOR_FN (cfun)->flags |= BB_REACHABLE;
607 *tos++ = EXIT_BLOCK_PTR_FOR_FN (cfun);
609 /* Iterate: find everything reachable from what we've already seen. */
610 while (tos != worklist)
612 bb = *--tos;
614 FOR_EACH_EDGE (e, ei, bb->preds)
615 if (!(e->flags & EDGE_ABNORMAL))
617 basic_block src = e->src;
619 if (!(src->flags & BB_REACHABLE))
621 src->flags |= BB_REACHABLE;
622 *tos++ = src;
626 free (worklist);
628 /* Now see if there's a reachable block with an exceptional incoming
629 edge. */
630 FOR_EACH_BB_FN (bb, cfun)
631 if (bb->flags & BB_REACHABLE && bb_has_abnormal_pred (bb))
632 return true;
634 /* No exceptional block reached exit unexceptionally. */
635 return false;
638 /* Grow (or allocate) the REG_EQUIVS array from its current size (which may be
639 zero elements) to MAX_REG_NUM elements.
641 Initialize all new fields to NULL and update REG_EQUIVS_SIZE. */
642 void
643 grow_reg_equivs (void)
645 int old_size = vec_safe_length (reg_equivs);
646 int max_regno = max_reg_num ();
647 int i;
648 reg_equivs_t ze;
650 memset (&ze, 0, sizeof (reg_equivs_t));
651 vec_safe_reserve (reg_equivs, max_regno);
652 for (i = old_size; i < max_regno; i++)
653 reg_equivs->quick_insert (i, ze);
657 /* Global variables used by reload and its subroutines. */
659 /* The current basic block while in calculate_elim_costs_all_insns. */
660 static basic_block elim_bb;
662 /* Set during calculate_needs if an insn needs register elimination. */
663 static int something_needs_elimination;
664 /* Set during calculate_needs if an insn needs an operand changed. */
665 static int something_needs_operands_changed;
666 /* Set by alter_regs if we spilled a register to the stack. */
667 static bool something_was_spilled;
669 /* Nonzero means we couldn't get enough spill regs. */
670 static int failure;
672 /* Temporary array of pseudo-register number. */
673 static int *temp_pseudo_reg_arr;
675 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
676 If that insn didn't set the register (i.e., it copied the register to
677 memory), just delete that insn instead of the equivalencing insn plus
678 anything now dead. If we call delete_dead_insn on that insn, we may
679 delete the insn that actually sets the register if the register dies
680 there and that is incorrect. */
681 static void
682 remove_init_insns ()
684 for (int i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
686 if (reg_renumber[i] < 0 && reg_equiv_init (i) != 0)
688 rtx list;
689 for (list = reg_equiv_init (i); list; list = XEXP (list, 1))
691 rtx_insn *equiv_insn = as_a <rtx_insn *> (XEXP (list, 0));
693 /* If we already deleted the insn or if it may trap, we can't
694 delete it. The latter case shouldn't happen, but can
695 if an insn has a variable address, gets a REG_EH_REGION
696 note added to it, and then gets converted into a load
697 from a constant address. */
698 if (NOTE_P (equiv_insn)
699 || can_throw_internal (equiv_insn))
701 else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
702 delete_dead_insn (equiv_insn);
703 else
704 SET_INSN_DELETED (equiv_insn);
710 /* Return true if remove_init_insns will delete INSN. */
711 static bool
712 will_delete_init_insn_p (rtx_insn *insn)
714 rtx set = single_set (insn);
715 if (!set || !REG_P (SET_DEST (set)))
716 return false;
717 unsigned regno = REGNO (SET_DEST (set));
719 if (can_throw_internal (insn))
720 return false;
722 if (regno < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
723 return false;
725 for (rtx list = reg_equiv_init (regno); list; list = XEXP (list, 1))
727 rtx equiv_insn = XEXP (list, 0);
728 if (equiv_insn == insn)
729 return true;
731 return false;
734 /* Main entry point for the reload pass.
736 FIRST is the first insn of the function being compiled.
738 GLOBAL nonzero means we were called from global_alloc
739 and should attempt to reallocate any pseudoregs that we
740 displace from hard regs we will use for reloads.
741 If GLOBAL is zero, we do not have enough information to do that,
742 so any pseudo reg that is spilled must go to the stack.
744 Return value is TRUE if reload likely left dead insns in the
745 stream and a DCE pass should be run to elimiante them. Else the
746 return value is FALSE. */
748 bool
749 reload (rtx_insn *first, int global)
751 int i, n;
752 rtx_insn *insn;
753 struct elim_table *ep;
754 basic_block bb;
755 bool inserted;
757 /* Make sure even insns with volatile mem refs are recognizable. */
758 init_recog ();
760 failure = 0;
762 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
764 /* Make sure that the last insn in the chain
765 is not something that needs reloading. */
766 emit_note (NOTE_INSN_DELETED);
768 /* Enable find_equiv_reg to distinguish insns made by reload. */
769 reload_first_uid = get_max_uid ();
771 #ifdef SECONDARY_MEMORY_NEEDED
772 /* Initialize the secondary memory table. */
773 clear_secondary_mem ();
774 #endif
776 /* We don't have a stack slot for any spill reg yet. */
777 memset (spill_stack_slot, 0, sizeof spill_stack_slot);
778 memset (spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
780 /* Initialize the save area information for caller-save, in case some
781 are needed. */
782 init_save_areas ();
784 /* Compute which hard registers are now in use
785 as homes for pseudo registers.
786 This is done here rather than (eg) in global_alloc
787 because this point is reached even if not optimizing. */
788 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
789 mark_home_live (i);
791 /* A function that has a nonlocal label that can reach the exit
792 block via non-exceptional paths must save all call-saved
793 registers. */
794 if (cfun->has_nonlocal_label
795 && has_nonexceptional_receiver ())
796 crtl->saves_all_registers = 1;
798 if (crtl->saves_all_registers)
799 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
800 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
801 df_set_regs_ever_live (i, true);
803 /* Find all the pseudo registers that didn't get hard regs
804 but do have known equivalent constants or memory slots.
805 These include parameters (known equivalent to parameter slots)
806 and cse'd or loop-moved constant memory addresses.
808 Record constant equivalents in reg_equiv_constant
809 so they will be substituted by find_reloads.
810 Record memory equivalents in reg_mem_equiv so they can
811 be substituted eventually by altering the REG-rtx's. */
813 grow_reg_equivs ();
814 reg_old_renumber = XCNEWVEC (short, max_regno);
815 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
816 pseudo_forbidden_regs = XNEWVEC (HARD_REG_SET, max_regno);
817 pseudo_previous_regs = XCNEWVEC (HARD_REG_SET, max_regno);
819 CLEAR_HARD_REG_SET (bad_spill_regs_global);
821 init_eliminable_invariants (first, true);
822 init_elim_table ();
824 /* Alter each pseudo-reg rtx to contain its hard reg number. Assign
825 stack slots to the pseudos that lack hard regs or equivalents.
826 Do not touch virtual registers. */
828 temp_pseudo_reg_arr = XNEWVEC (int, max_regno - LAST_VIRTUAL_REGISTER - 1);
829 for (n = 0, i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
830 temp_pseudo_reg_arr[n++] = i;
832 if (ira_conflicts_p)
833 /* Ask IRA to order pseudo-registers for better stack slot
834 sharing. */
835 ira_sort_regnos_for_alter_reg (temp_pseudo_reg_arr, n, reg_max_ref_width);
837 for (i = 0; i < n; i++)
838 alter_reg (temp_pseudo_reg_arr[i], -1, false);
840 /* If we have some registers we think can be eliminated, scan all insns to
841 see if there is an insn that sets one of these registers to something
842 other than itself plus a constant. If so, the register cannot be
843 eliminated. Doing this scan here eliminates an extra pass through the
844 main reload loop in the most common case where register elimination
845 cannot be done. */
846 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
847 if (INSN_P (insn))
848 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
850 maybe_fix_stack_asms ();
852 insns_need_reload = 0;
853 something_needs_elimination = 0;
855 /* Initialize to -1, which means take the first spill register. */
856 last_spill_reg = -1;
858 /* Spill any hard regs that we know we can't eliminate. */
859 CLEAR_HARD_REG_SET (used_spill_regs);
860 /* There can be multiple ways to eliminate a register;
861 they should be listed adjacently.
862 Elimination for any register fails only if all possible ways fail. */
863 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; )
865 int from = ep->from;
866 int can_eliminate = 0;
869 can_eliminate |= ep->can_eliminate;
870 ep++;
872 while (ep < &reg_eliminate[NUM_ELIMINABLE_REGS] && ep->from == from);
873 if (! can_eliminate)
874 spill_hard_reg (from, 1);
877 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER && frame_pointer_needed)
878 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
880 finish_spills (global);
882 /* From now on, we may need to generate moves differently. We may also
883 allow modifications of insns which cause them to not be recognized.
884 Any such modifications will be cleaned up during reload itself. */
885 reload_in_progress = 1;
887 /* This loop scans the entire function each go-round
888 and repeats until one repetition spills no additional hard regs. */
889 for (;;)
891 int something_changed;
892 HOST_WIDE_INT starting_frame_size;
894 starting_frame_size = get_frame_size ();
895 something_was_spilled = false;
897 set_initial_elim_offsets ();
898 set_initial_label_offsets ();
900 /* For each pseudo register that has an equivalent location defined,
901 try to eliminate any eliminable registers (such as the frame pointer)
902 assuming initial offsets for the replacement register, which
903 is the normal case.
905 If the resulting location is directly addressable, substitute
906 the MEM we just got directly for the old REG.
908 If it is not addressable but is a constant or the sum of a hard reg
909 and constant, it is probably not addressable because the constant is
910 out of range, in that case record the address; we will generate
911 hairy code to compute the address in a register each time it is
912 needed. Similarly if it is a hard register, but one that is not
913 valid as an address register.
915 If the location is not addressable, but does not have one of the
916 above forms, assign a stack slot. We have to do this to avoid the
917 potential of producing lots of reloads if, e.g., a location involves
918 a pseudo that didn't get a hard register and has an equivalent memory
919 location that also involves a pseudo that didn't get a hard register.
921 Perhaps at some point we will improve reload_when_needed handling
922 so this problem goes away. But that's very hairy. */
924 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
925 if (reg_renumber[i] < 0 && reg_equiv_memory_loc (i))
927 rtx x = eliminate_regs (reg_equiv_memory_loc (i), VOIDmode,
928 NULL_RTX);
930 if (strict_memory_address_addr_space_p
931 (GET_MODE (regno_reg_rtx[i]), XEXP (x, 0),
932 MEM_ADDR_SPACE (x)))
933 reg_equiv_mem (i) = x, reg_equiv_address (i) = 0;
934 else if (CONSTANT_P (XEXP (x, 0))
935 || (REG_P (XEXP (x, 0))
936 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
937 || (GET_CODE (XEXP (x, 0)) == PLUS
938 && REG_P (XEXP (XEXP (x, 0), 0))
939 && (REGNO (XEXP (XEXP (x, 0), 0))
940 < FIRST_PSEUDO_REGISTER)
941 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
942 reg_equiv_address (i) = XEXP (x, 0), reg_equiv_mem (i) = 0;
943 else
945 /* Make a new stack slot. Then indicate that something
946 changed so we go back and recompute offsets for
947 eliminable registers because the allocation of memory
948 below might change some offset. reg_equiv_{mem,address}
949 will be set up for this pseudo on the next pass around
950 the loop. */
951 reg_equiv_memory_loc (i) = 0;
952 reg_equiv_init (i) = 0;
953 alter_reg (i, -1, true);
957 if (caller_save_needed)
958 setup_save_areas ();
960 if (starting_frame_size && crtl->stack_alignment_needed)
962 /* If we have a stack frame, we must align it now. The
963 stack size may be a part of the offset computation for
964 register elimination. So if this changes the stack size,
965 then repeat the elimination bookkeeping. We don't
966 realign when there is no stack, as that will cause a
967 stack frame when none is needed should
968 STARTING_FRAME_OFFSET not be already aligned to
969 STACK_BOUNDARY. */
970 assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
972 /* If we allocated another stack slot, redo elimination bookkeeping. */
973 if (something_was_spilled || starting_frame_size != get_frame_size ())
975 if (update_eliminables_and_spill ())
976 finish_spills (0);
977 continue;
980 if (caller_save_needed)
982 save_call_clobbered_regs ();
983 /* That might have allocated new insn_chain structures. */
984 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
987 calculate_needs_all_insns (global);
989 if (! ira_conflicts_p)
990 /* Don't do it for IRA. We need this info because we don't
991 change live_throughout and dead_or_set for chains when IRA
992 is used. */
993 CLEAR_REG_SET (&spilled_pseudos);
995 something_changed = 0;
997 /* If we allocated any new memory locations, make another pass
998 since it might have changed elimination offsets. */
999 if (something_was_spilled || starting_frame_size != get_frame_size ())
1000 something_changed = 1;
1002 /* Even if the frame size remained the same, we might still have
1003 changed elimination offsets, e.g. if find_reloads called
1004 force_const_mem requiring the back end to allocate a constant
1005 pool base register that needs to be saved on the stack. */
1006 else if (!verify_initial_elim_offsets ())
1007 something_changed = 1;
1009 if (update_eliminables_and_spill ())
1011 finish_spills (0);
1012 something_changed = 1;
1014 else
1016 select_reload_regs ();
1017 if (failure)
1018 goto failed;
1019 if (insns_need_reload)
1020 something_changed |= finish_spills (global);
1023 if (! something_changed)
1024 break;
1026 if (caller_save_needed)
1027 delete_caller_save_insns ();
1029 obstack_free (&reload_obstack, reload_firstobj);
1032 /* If global-alloc was run, notify it of any register eliminations we have
1033 done. */
1034 if (global)
1035 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1036 if (ep->can_eliminate)
1037 mark_elimination (ep->from, ep->to);
1039 remove_init_insns ();
1041 /* Use the reload registers where necessary
1042 by generating move instructions to move the must-be-register
1043 values into or out of the reload registers. */
1045 if (insns_need_reload != 0 || something_needs_elimination
1046 || something_needs_operands_changed)
1048 HOST_WIDE_INT old_frame_size = get_frame_size ();
1050 reload_as_needed (global);
1052 gcc_assert (old_frame_size == get_frame_size ());
1054 gcc_assert (verify_initial_elim_offsets ());
1057 /* If we were able to eliminate the frame pointer, show that it is no
1058 longer live at the start of any basic block. If it ls live by
1059 virtue of being in a pseudo, that pseudo will be marked live
1060 and hence the frame pointer will be known to be live via that
1061 pseudo. */
1063 if (! frame_pointer_needed)
1064 FOR_EACH_BB_FN (bb, cfun)
1065 bitmap_clear_bit (df_get_live_in (bb), HARD_FRAME_POINTER_REGNUM);
1067 /* Come here (with failure set nonzero) if we can't get enough spill
1068 regs. */
1069 failed:
1071 CLEAR_REG_SET (&changed_allocation_pseudos);
1072 CLEAR_REG_SET (&spilled_pseudos);
1073 reload_in_progress = 0;
1075 /* Now eliminate all pseudo regs by modifying them into
1076 their equivalent memory references.
1077 The REG-rtx's for the pseudos are modified in place,
1078 so all insns that used to refer to them now refer to memory.
1080 For a reg that has a reg_equiv_address, all those insns
1081 were changed by reloading so that no insns refer to it any longer;
1082 but the DECL_RTL of a variable decl may refer to it,
1083 and if so this causes the debugging info to mention the variable. */
1085 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1087 rtx addr = 0;
1089 if (reg_equiv_mem (i))
1090 addr = XEXP (reg_equiv_mem (i), 0);
1092 if (reg_equiv_address (i))
1093 addr = reg_equiv_address (i);
1095 if (addr)
1097 if (reg_renumber[i] < 0)
1099 rtx reg = regno_reg_rtx[i];
1101 REG_USERVAR_P (reg) = 0;
1102 PUT_CODE (reg, MEM);
1103 XEXP (reg, 0) = addr;
1104 if (reg_equiv_memory_loc (i))
1105 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc (i));
1106 else
1107 MEM_ATTRS (reg) = 0;
1108 MEM_NOTRAP_P (reg) = 1;
1110 else if (reg_equiv_mem (i))
1111 XEXP (reg_equiv_mem (i), 0) = addr;
1114 /* We don't want complex addressing modes in debug insns
1115 if simpler ones will do, so delegitimize equivalences
1116 in debug insns. */
1117 if (MAY_HAVE_DEBUG_INSNS && reg_renumber[i] < 0)
1119 rtx reg = regno_reg_rtx[i];
1120 rtx equiv = 0;
1121 df_ref use, next;
1123 if (reg_equiv_constant (i))
1124 equiv = reg_equiv_constant (i);
1125 else if (reg_equiv_invariant (i))
1126 equiv = reg_equiv_invariant (i);
1127 else if (reg && MEM_P (reg))
1128 equiv = targetm.delegitimize_address (reg);
1129 else if (reg && REG_P (reg) && (int)REGNO (reg) != i)
1130 equiv = reg;
1132 if (equiv == reg)
1133 continue;
1135 for (use = DF_REG_USE_CHAIN (i); use; use = next)
1137 insn = DF_REF_INSN (use);
1139 /* Make sure the next ref is for a different instruction,
1140 so that we're not affected by the rescan. */
1141 next = DF_REF_NEXT_REG (use);
1142 while (next && DF_REF_INSN (next) == insn)
1143 next = DF_REF_NEXT_REG (next);
1145 if (DEBUG_INSN_P (insn))
1147 if (!equiv)
1149 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1150 df_insn_rescan_debug_internal (insn);
1152 else
1153 INSN_VAR_LOCATION_LOC (insn)
1154 = simplify_replace_rtx (INSN_VAR_LOCATION_LOC (insn),
1155 reg, equiv);
1161 /* We must set reload_completed now since the cleanup_subreg_operands call
1162 below will re-recognize each insn and reload may have generated insns
1163 which are only valid during and after reload. */
1164 reload_completed = 1;
1166 /* Make a pass over all the insns and delete all USEs which we inserted
1167 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1168 notes. Delete all CLOBBER insns, except those that refer to the return
1169 value and the special mem:BLK CLOBBERs added to prevent the scheduler
1170 from misarranging variable-array code, and simplify (subreg (reg))
1171 operands. Strip and regenerate REG_INC notes that may have been moved
1172 around. */
1174 for (insn = first; insn; insn = NEXT_INSN (insn))
1175 if (INSN_P (insn))
1177 rtx *pnote;
1179 if (CALL_P (insn))
1180 replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn),
1181 VOIDmode, CALL_INSN_FUNCTION_USAGE (insn));
1183 if ((GET_CODE (PATTERN (insn)) == USE
1184 /* We mark with QImode USEs introduced by reload itself. */
1185 && (GET_MODE (insn) == QImode
1186 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1187 || (GET_CODE (PATTERN (insn)) == CLOBBER
1188 && (!MEM_P (XEXP (PATTERN (insn), 0))
1189 || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
1190 || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
1191 && XEXP (XEXP (PATTERN (insn), 0), 0)
1192 != stack_pointer_rtx))
1193 && (!REG_P (XEXP (PATTERN (insn), 0))
1194 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1196 delete_insn (insn);
1197 continue;
1200 /* Some CLOBBERs may survive until here and still reference unassigned
1201 pseudos with const equivalent, which may in turn cause ICE in later
1202 passes if the reference remains in place. */
1203 if (GET_CODE (PATTERN (insn)) == CLOBBER)
1204 replace_pseudos_in (& XEXP (PATTERN (insn), 0),
1205 VOIDmode, PATTERN (insn));
1207 /* Discard obvious no-ops, even without -O. This optimization
1208 is fast and doesn't interfere with debugging. */
1209 if (NONJUMP_INSN_P (insn)
1210 && GET_CODE (PATTERN (insn)) == SET
1211 && REG_P (SET_SRC (PATTERN (insn)))
1212 && REG_P (SET_DEST (PATTERN (insn)))
1213 && (REGNO (SET_SRC (PATTERN (insn)))
1214 == REGNO (SET_DEST (PATTERN (insn)))))
1216 delete_insn (insn);
1217 continue;
1220 pnote = &REG_NOTES (insn);
1221 while (*pnote != 0)
1223 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1224 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1225 || REG_NOTE_KIND (*pnote) == REG_INC)
1226 *pnote = XEXP (*pnote, 1);
1227 else
1228 pnote = &XEXP (*pnote, 1);
1231 if (AUTO_INC_DEC)
1232 add_auto_inc_notes (insn, PATTERN (insn));
1234 /* Simplify (subreg (reg)) if it appears as an operand. */
1235 cleanup_subreg_operands (insn);
1237 /* Clean up invalid ASMs so that they don't confuse later passes.
1238 See PR 21299. */
1239 if (asm_noperands (PATTERN (insn)) >= 0)
1241 extract_insn (insn);
1242 if (!constrain_operands (1, get_enabled_alternatives (insn)))
1244 error_for_asm (insn,
1245 "%<asm%> operand has impossible constraints");
1246 delete_insn (insn);
1247 continue;
1252 free (temp_pseudo_reg_arr);
1254 /* Indicate that we no longer have known memory locations or constants. */
1255 free_reg_equiv ();
1257 free (reg_max_ref_width);
1258 free (reg_old_renumber);
1259 free (pseudo_previous_regs);
1260 free (pseudo_forbidden_regs);
1262 CLEAR_HARD_REG_SET (used_spill_regs);
1263 for (i = 0; i < n_spills; i++)
1264 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1266 /* Free all the insn_chain structures at once. */
1267 obstack_free (&reload_obstack, reload_startobj);
1268 unused_insn_chains = 0;
1270 inserted = fixup_abnormal_edges ();
1272 /* We've possibly turned single trapping insn into multiple ones. */
1273 if (cfun->can_throw_non_call_exceptions)
1275 auto_sbitmap blocks (last_basic_block_for_fn (cfun));
1276 bitmap_ones (blocks);
1277 find_many_sub_basic_blocks (blocks);
1280 if (inserted)
1281 commit_edge_insertions ();
1283 /* Replacing pseudos with their memory equivalents might have
1284 created shared rtx. Subsequent passes would get confused
1285 by this, so unshare everything here. */
1286 unshare_all_rtl_again (first);
1288 #ifdef STACK_BOUNDARY
1289 /* init_emit has set the alignment of the hard frame pointer
1290 to STACK_BOUNDARY. It is very likely no longer valid if
1291 the hard frame pointer was used for register allocation. */
1292 if (!frame_pointer_needed)
1293 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT;
1294 #endif
1296 substitute_stack.release ();
1298 gcc_assert (bitmap_empty_p (&spilled_pseudos));
1300 reload_completed = !failure;
1302 return need_dce;
1305 /* Yet another special case. Unfortunately, reg-stack forces people to
1306 write incorrect clobbers in asm statements. These clobbers must not
1307 cause the register to appear in bad_spill_regs, otherwise we'll call
1308 fatal_insn later. We clear the corresponding regnos in the live
1309 register sets to avoid this.
1310 The whole thing is rather sick, I'm afraid. */
1312 static void
1313 maybe_fix_stack_asms (void)
1315 #ifdef STACK_REGS
1316 const char *constraints[MAX_RECOG_OPERANDS];
1317 machine_mode operand_mode[MAX_RECOG_OPERANDS];
1318 struct insn_chain *chain;
1320 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1322 int i, noperands;
1323 HARD_REG_SET clobbered, allowed;
1324 rtx pat;
1326 if (! INSN_P (chain->insn)
1327 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1328 continue;
1329 pat = PATTERN (chain->insn);
1330 if (GET_CODE (pat) != PARALLEL)
1331 continue;
1333 CLEAR_HARD_REG_SET (clobbered);
1334 CLEAR_HARD_REG_SET (allowed);
1336 /* First, make a mask of all stack regs that are clobbered. */
1337 for (i = 0; i < XVECLEN (pat, 0); i++)
1339 rtx t = XVECEXP (pat, 0, i);
1340 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1341 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1344 /* Get the operand values and constraints out of the insn. */
1345 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1346 constraints, operand_mode, NULL);
1348 /* For every operand, see what registers are allowed. */
1349 for (i = 0; i < noperands; i++)
1351 const char *p = constraints[i];
1352 /* For every alternative, we compute the class of registers allowed
1353 for reloading in CLS, and merge its contents into the reg set
1354 ALLOWED. */
1355 int cls = (int) NO_REGS;
1357 for (;;)
1359 char c = *p;
1361 if (c == '\0' || c == ',' || c == '#')
1363 /* End of one alternative - mark the regs in the current
1364 class, and reset the class. */
1365 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1366 cls = NO_REGS;
1367 p++;
1368 if (c == '#')
1369 do {
1370 c = *p++;
1371 } while (c != '\0' && c != ',');
1372 if (c == '\0')
1373 break;
1374 continue;
1377 switch (c)
1379 case 'g':
1380 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1381 break;
1383 default:
1384 enum constraint_num cn = lookup_constraint (p);
1385 if (insn_extra_address_constraint (cn))
1386 cls = (int) reg_class_subunion[cls]
1387 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
1388 ADDRESS, SCRATCH)];
1389 else
1390 cls = (int) reg_class_subunion[cls]
1391 [reg_class_for_constraint (cn)];
1392 break;
1394 p += CONSTRAINT_LEN (c, p);
1397 /* Those of the registers which are clobbered, but allowed by the
1398 constraints, must be usable as reload registers. So clear them
1399 out of the life information. */
1400 AND_HARD_REG_SET (allowed, clobbered);
1401 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1402 if (TEST_HARD_REG_BIT (allowed, i))
1404 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1405 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1409 #endif
1412 /* Copy the global variables n_reloads and rld into the corresponding elts
1413 of CHAIN. */
1414 static void
1415 copy_reloads (struct insn_chain *chain)
1417 chain->n_reloads = n_reloads;
1418 chain->rld = XOBNEWVEC (&reload_obstack, struct reload, n_reloads);
1419 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1420 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1423 /* Walk the chain of insns, and determine for each whether it needs reloads
1424 and/or eliminations. Build the corresponding insns_need_reload list, and
1425 set something_needs_elimination as appropriate. */
1426 static void
1427 calculate_needs_all_insns (int global)
1429 struct insn_chain **pprev_reload = &insns_need_reload;
1430 struct insn_chain *chain, *next = 0;
1432 something_needs_elimination = 0;
1434 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1435 for (chain = reload_insn_chain; chain != 0; chain = next)
1437 rtx_insn *insn = chain->insn;
1439 next = chain->next;
1441 /* Clear out the shortcuts. */
1442 chain->n_reloads = 0;
1443 chain->need_elim = 0;
1444 chain->need_reload = 0;
1445 chain->need_operand_change = 0;
1447 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1448 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1449 what effects this has on the known offsets at labels. */
1451 if (LABEL_P (insn) || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
1452 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1453 set_label_offsets (insn, insn, 0);
1455 if (INSN_P (insn))
1457 rtx old_body = PATTERN (insn);
1458 int old_code = INSN_CODE (insn);
1459 rtx old_notes = REG_NOTES (insn);
1460 int did_elimination = 0;
1461 int operands_changed = 0;
1463 /* Skip insns that only set an equivalence. */
1464 if (will_delete_init_insn_p (insn))
1465 continue;
1467 /* If needed, eliminate any eliminable registers. */
1468 if (num_eliminable || num_eliminable_invariants)
1469 did_elimination = eliminate_regs_in_insn (insn, 0);
1471 /* Analyze the instruction. */
1472 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1473 global, spill_reg_order);
1475 /* If a no-op set needs more than one reload, this is likely
1476 to be something that needs input address reloads. We
1477 can't get rid of this cleanly later, and it is of no use
1478 anyway, so discard it now.
1479 We only do this when expensive_optimizations is enabled,
1480 since this complements reload inheritance / output
1481 reload deletion, and it can make debugging harder. */
1482 if (flag_expensive_optimizations && n_reloads > 1)
1484 rtx set = single_set (insn);
1485 if (set
1487 ((SET_SRC (set) == SET_DEST (set)
1488 && REG_P (SET_SRC (set))
1489 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1490 || (REG_P (SET_SRC (set)) && REG_P (SET_DEST (set))
1491 && reg_renumber[REGNO (SET_SRC (set))] < 0
1492 && reg_renumber[REGNO (SET_DEST (set))] < 0
1493 && reg_equiv_memory_loc (REGNO (SET_SRC (set))) != NULL
1494 && reg_equiv_memory_loc (REGNO (SET_DEST (set))) != NULL
1495 && rtx_equal_p (reg_equiv_memory_loc (REGNO (SET_SRC (set))),
1496 reg_equiv_memory_loc (REGNO (SET_DEST (set)))))))
1498 if (ira_conflicts_p)
1499 /* Inform IRA about the insn deletion. */
1500 ira_mark_memory_move_deletion (REGNO (SET_DEST (set)),
1501 REGNO (SET_SRC (set)));
1502 delete_insn (insn);
1503 /* Delete it from the reload chain. */
1504 if (chain->prev)
1505 chain->prev->next = next;
1506 else
1507 reload_insn_chain = next;
1508 if (next)
1509 next->prev = chain->prev;
1510 chain->next = unused_insn_chains;
1511 unused_insn_chains = chain;
1512 continue;
1515 if (num_eliminable)
1516 update_eliminable_offsets ();
1518 /* Remember for later shortcuts which insns had any reloads or
1519 register eliminations. */
1520 chain->need_elim = did_elimination;
1521 chain->need_reload = n_reloads > 0;
1522 chain->need_operand_change = operands_changed;
1524 /* Discard any register replacements done. */
1525 if (did_elimination)
1527 obstack_free (&reload_obstack, reload_insn_firstobj);
1528 PATTERN (insn) = old_body;
1529 INSN_CODE (insn) = old_code;
1530 REG_NOTES (insn) = old_notes;
1531 something_needs_elimination = 1;
1534 something_needs_operands_changed |= operands_changed;
1536 if (n_reloads != 0)
1538 copy_reloads (chain);
1539 *pprev_reload = chain;
1540 pprev_reload = &chain->next_need_reload;
1544 *pprev_reload = 0;
1547 /* This function is called from the register allocator to set up estimates
1548 for the cost of eliminating pseudos which have REG_EQUIV equivalences to
1549 an invariant. The structure is similar to calculate_needs_all_insns. */
1551 void
1552 calculate_elim_costs_all_insns (void)
1554 int *reg_equiv_init_cost;
1555 basic_block bb;
1556 int i;
1558 reg_equiv_init_cost = XCNEWVEC (int, max_regno);
1559 init_elim_table ();
1560 init_eliminable_invariants (get_insns (), false);
1562 set_initial_elim_offsets ();
1563 set_initial_label_offsets ();
1565 FOR_EACH_BB_FN (bb, cfun)
1567 rtx_insn *insn;
1568 elim_bb = bb;
1570 FOR_BB_INSNS (bb, insn)
1572 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1573 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1574 what effects this has on the known offsets at labels. */
1576 if (LABEL_P (insn) || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
1577 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1578 set_label_offsets (insn, insn, 0);
1580 if (INSN_P (insn))
1582 rtx set = single_set (insn);
1584 /* Skip insns that only set an equivalence. */
1585 if (set && REG_P (SET_DEST (set))
1586 && reg_renumber[REGNO (SET_DEST (set))] < 0
1587 && (reg_equiv_constant (REGNO (SET_DEST (set)))
1588 || reg_equiv_invariant (REGNO (SET_DEST (set)))))
1590 unsigned regno = REGNO (SET_DEST (set));
1591 rtx_insn_list *init = reg_equiv_init (regno);
1592 if (init)
1594 rtx t = eliminate_regs_1 (SET_SRC (set), VOIDmode, insn,
1595 false, true);
1596 machine_mode mode = GET_MODE (SET_DEST (set));
1597 int cost = set_src_cost (t, mode,
1598 optimize_bb_for_speed_p (bb));
1599 int freq = REG_FREQ_FROM_BB (bb);
1601 reg_equiv_init_cost[regno] = cost * freq;
1602 continue;
1605 /* If needed, eliminate any eliminable registers. */
1606 if (num_eliminable || num_eliminable_invariants)
1607 elimination_costs_in_insn (insn);
1609 if (num_eliminable)
1610 update_eliminable_offsets ();
1614 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1616 if (reg_equiv_invariant (i))
1618 if (reg_equiv_init (i))
1620 int cost = reg_equiv_init_cost[i];
1621 if (dump_file)
1622 fprintf (dump_file,
1623 "Reg %d has equivalence, initial gains %d\n", i, cost);
1624 if (cost != 0)
1625 ira_adjust_equiv_reg_cost (i, cost);
1627 else
1629 if (dump_file)
1630 fprintf (dump_file,
1631 "Reg %d had equivalence, but can't be eliminated\n",
1633 ira_adjust_equiv_reg_cost (i, 0);
1638 free (reg_equiv_init_cost);
1639 free (offsets_known_at);
1640 free (offsets_at);
1641 offsets_at = NULL;
1642 offsets_known_at = NULL;
1645 /* Comparison function for qsort to decide which of two reloads
1646 should be handled first. *P1 and *P2 are the reload numbers. */
1648 static int
1649 reload_reg_class_lower (const void *r1p, const void *r2p)
1651 int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1652 int t;
1654 /* Consider required reloads before optional ones. */
1655 t = rld[r1].optional - rld[r2].optional;
1656 if (t != 0)
1657 return t;
1659 /* Count all solitary classes before non-solitary ones. */
1660 t = ((reg_class_size[(int) rld[r2].rclass] == 1)
1661 - (reg_class_size[(int) rld[r1].rclass] == 1));
1662 if (t != 0)
1663 return t;
1665 /* Aside from solitaires, consider all multi-reg groups first. */
1666 t = rld[r2].nregs - rld[r1].nregs;
1667 if (t != 0)
1668 return t;
1670 /* Consider reloads in order of increasing reg-class number. */
1671 t = (int) rld[r1].rclass - (int) rld[r2].rclass;
1672 if (t != 0)
1673 return t;
1675 /* If reloads are equally urgent, sort by reload number,
1676 so that the results of qsort leave nothing to chance. */
1677 return r1 - r2;
1680 /* The cost of spilling each hard reg. */
1681 static int spill_cost[FIRST_PSEUDO_REGISTER];
1683 /* When spilling multiple hard registers, we use SPILL_COST for the first
1684 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1685 only the first hard reg for a multi-reg pseudo. */
1686 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1688 /* Map of hard regno to pseudo regno currently occupying the hard
1689 reg. */
1690 static int hard_regno_to_pseudo_regno[FIRST_PSEUDO_REGISTER];
1692 /* Update the spill cost arrays, considering that pseudo REG is live. */
1694 static void
1695 count_pseudo (int reg)
1697 int freq = REG_FREQ (reg);
1698 int r = reg_renumber[reg];
1699 int nregs;
1701 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1702 if (ira_conflicts_p && r < 0)
1703 return;
1705 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1706 || REGNO_REG_SET_P (&spilled_pseudos, reg))
1707 return;
1709 SET_REGNO_REG_SET (&pseudos_counted, reg);
1711 gcc_assert (r >= 0);
1713 spill_add_cost[r] += freq;
1714 nregs = hard_regno_nregs (r, PSEUDO_REGNO_MODE (reg));
1715 while (nregs-- > 0)
1717 hard_regno_to_pseudo_regno[r + nregs] = reg;
1718 spill_cost[r + nregs] += freq;
1722 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1723 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1725 static void
1726 order_regs_for_reload (struct insn_chain *chain)
1728 unsigned i;
1729 HARD_REG_SET used_by_pseudos;
1730 HARD_REG_SET used_by_pseudos2;
1731 reg_set_iterator rsi;
1733 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1735 memset (spill_cost, 0, sizeof spill_cost);
1736 memset (spill_add_cost, 0, sizeof spill_add_cost);
1737 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1738 hard_regno_to_pseudo_regno[i] = -1;
1740 /* Count number of uses of each hard reg by pseudo regs allocated to it
1741 and then order them by decreasing use. First exclude hard registers
1742 that are live in or across this insn. */
1744 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1745 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1746 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1747 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1749 /* Now find out which pseudos are allocated to it, and update
1750 hard_reg_n_uses. */
1751 CLEAR_REG_SET (&pseudos_counted);
1753 EXECUTE_IF_SET_IN_REG_SET
1754 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
1756 count_pseudo (i);
1758 EXECUTE_IF_SET_IN_REG_SET
1759 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
1761 count_pseudo (i);
1763 CLEAR_REG_SET (&pseudos_counted);
1766 /* Vector of reload-numbers showing the order in which the reloads should
1767 be processed. */
1768 static short reload_order[MAX_RELOADS];
1770 /* This is used to keep track of the spill regs used in one insn. */
1771 static HARD_REG_SET used_spill_regs_local;
1773 /* We decided to spill hard register SPILLED, which has a size of
1774 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1775 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1776 update SPILL_COST/SPILL_ADD_COST. */
1778 static void
1779 count_spilled_pseudo (int spilled, int spilled_nregs, int reg)
1781 int freq = REG_FREQ (reg);
1782 int r = reg_renumber[reg];
1783 int nregs;
1785 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1786 if (ira_conflicts_p && r < 0)
1787 return;
1789 gcc_assert (r >= 0);
1791 nregs = hard_regno_nregs (r, PSEUDO_REGNO_MODE (reg));
1793 if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1794 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1795 return;
1797 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1799 spill_add_cost[r] -= freq;
1800 while (nregs-- > 0)
1802 hard_regno_to_pseudo_regno[r + nregs] = -1;
1803 spill_cost[r + nregs] -= freq;
1807 /* Find reload register to use for reload number ORDER. */
1809 static int
1810 find_reg (struct insn_chain *chain, int order)
1812 int rnum = reload_order[order];
1813 struct reload *rl = rld + rnum;
1814 int best_cost = INT_MAX;
1815 int best_reg = -1;
1816 unsigned int i, j, n;
1817 int k;
1818 HARD_REG_SET not_usable;
1819 HARD_REG_SET used_by_other_reload;
1820 reg_set_iterator rsi;
1821 static int regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1822 static int best_regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1824 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1825 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1826 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->rclass]);
1828 CLEAR_HARD_REG_SET (used_by_other_reload);
1829 for (k = 0; k < order; k++)
1831 int other = reload_order[k];
1833 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1834 for (j = 0; j < rld[other].nregs; j++)
1835 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1838 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1840 #ifdef REG_ALLOC_ORDER
1841 unsigned int regno = reg_alloc_order[i];
1842 #else
1843 unsigned int regno = i;
1844 #endif
1846 if (! TEST_HARD_REG_BIT (not_usable, regno)
1847 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1848 && targetm.hard_regno_mode_ok (regno, rl->mode))
1850 int this_cost = spill_cost[regno];
1851 int ok = 1;
1852 unsigned int this_nregs = hard_regno_nregs (regno, rl->mode);
1854 for (j = 1; j < this_nregs; j++)
1856 this_cost += spill_add_cost[regno + j];
1857 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1858 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1859 ok = 0;
1861 if (! ok)
1862 continue;
1864 if (ira_conflicts_p)
1866 /* Ask IRA to find a better pseudo-register for
1867 spilling. */
1868 for (n = j = 0; j < this_nregs; j++)
1870 int r = hard_regno_to_pseudo_regno[regno + j];
1872 if (r < 0)
1873 continue;
1874 if (n == 0 || regno_pseudo_regs[n - 1] != r)
1875 regno_pseudo_regs[n++] = r;
1877 regno_pseudo_regs[n++] = -1;
1878 if (best_reg < 0
1879 || ira_better_spill_reload_regno_p (regno_pseudo_regs,
1880 best_regno_pseudo_regs,
1881 rl->in, rl->out,
1882 chain->insn))
1884 best_reg = regno;
1885 for (j = 0;; j++)
1887 best_regno_pseudo_regs[j] = regno_pseudo_regs[j];
1888 if (regno_pseudo_regs[j] < 0)
1889 break;
1892 continue;
1895 if (rl->in && REG_P (rl->in) && REGNO (rl->in) == regno)
1896 this_cost--;
1897 if (rl->out && REG_P (rl->out) && REGNO (rl->out) == regno)
1898 this_cost--;
1899 if (this_cost < best_cost
1900 /* Among registers with equal cost, prefer caller-saved ones, or
1901 use REG_ALLOC_ORDER if it is defined. */
1902 || (this_cost == best_cost
1903 #ifdef REG_ALLOC_ORDER
1904 && (inv_reg_alloc_order[regno]
1905 < inv_reg_alloc_order[best_reg])
1906 #else
1907 && call_used_regs[regno]
1908 && ! call_used_regs[best_reg]
1909 #endif
1912 best_reg = regno;
1913 best_cost = this_cost;
1917 if (best_reg == -1)
1918 return 0;
1920 if (dump_file)
1921 fprintf (dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1923 rl->nregs = hard_regno_nregs (best_reg, rl->mode);
1924 rl->regno = best_reg;
1926 EXECUTE_IF_SET_IN_REG_SET
1927 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j, rsi)
1929 count_spilled_pseudo (best_reg, rl->nregs, j);
1932 EXECUTE_IF_SET_IN_REG_SET
1933 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j, rsi)
1935 count_spilled_pseudo (best_reg, rl->nregs, j);
1938 for (i = 0; i < rl->nregs; i++)
1940 gcc_assert (spill_cost[best_reg + i] == 0);
1941 gcc_assert (spill_add_cost[best_reg + i] == 0);
1942 gcc_assert (hard_regno_to_pseudo_regno[best_reg + i] == -1);
1943 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1945 return 1;
1948 /* Find more reload regs to satisfy the remaining need of an insn, which
1949 is given by CHAIN.
1950 Do it by ascending class number, since otherwise a reg
1951 might be spilled for a big class and might fail to count
1952 for a smaller class even though it belongs to that class. */
1954 static void
1955 find_reload_regs (struct insn_chain *chain)
1957 int i;
1959 /* In order to be certain of getting the registers we need,
1960 we must sort the reloads into order of increasing register class.
1961 Then our grabbing of reload registers will parallel the process
1962 that provided the reload registers. */
1963 for (i = 0; i < chain->n_reloads; i++)
1965 /* Show whether this reload already has a hard reg. */
1966 if (chain->rld[i].reg_rtx)
1968 chain->rld[i].regno = REGNO (chain->rld[i].reg_rtx);
1969 chain->rld[i].nregs = REG_NREGS (chain->rld[i].reg_rtx);
1971 else
1972 chain->rld[i].regno = -1;
1973 reload_order[i] = i;
1976 n_reloads = chain->n_reloads;
1977 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
1979 CLEAR_HARD_REG_SET (used_spill_regs_local);
1981 if (dump_file)
1982 fprintf (dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
1984 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
1986 /* Compute the order of preference for hard registers to spill. */
1988 order_regs_for_reload (chain);
1990 for (i = 0; i < n_reloads; i++)
1992 int r = reload_order[i];
1994 /* Ignore reloads that got marked inoperative. */
1995 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
1996 && ! rld[r].optional
1997 && rld[r].regno == -1)
1998 if (! find_reg (chain, i))
2000 if (dump_file)
2001 fprintf (dump_file, "reload failure for reload %d\n", r);
2002 spill_failure (chain->insn, rld[r].rclass);
2003 failure = 1;
2004 return;
2008 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
2009 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
2011 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
2014 static void
2015 select_reload_regs (void)
2017 struct insn_chain *chain;
2019 /* Try to satisfy the needs for each insn. */
2020 for (chain = insns_need_reload; chain != 0;
2021 chain = chain->next_need_reload)
2022 find_reload_regs (chain);
2025 /* Delete all insns that were inserted by emit_caller_save_insns during
2026 this iteration. */
2027 static void
2028 delete_caller_save_insns (void)
2030 struct insn_chain *c = reload_insn_chain;
2032 while (c != 0)
2034 while (c != 0 && c->is_caller_save_insn)
2036 struct insn_chain *next = c->next;
2037 rtx_insn *insn = c->insn;
2039 if (c == reload_insn_chain)
2040 reload_insn_chain = next;
2041 delete_insn (insn);
2043 if (next)
2044 next->prev = c->prev;
2045 if (c->prev)
2046 c->prev->next = next;
2047 c->next = unused_insn_chains;
2048 unused_insn_chains = c;
2049 c = next;
2051 if (c != 0)
2052 c = c->next;
2056 /* Handle the failure to find a register to spill.
2057 INSN should be one of the insns which needed this particular spill reg. */
2059 static void
2060 spill_failure (rtx_insn *insn, enum reg_class rclass)
2062 if (asm_noperands (PATTERN (insn)) >= 0)
2063 error_for_asm (insn, "can%'t find a register in class %qs while "
2064 "reloading %<asm%>",
2065 reg_class_names[rclass]);
2066 else
2068 error ("unable to find a register to spill in class %qs",
2069 reg_class_names[rclass]);
2071 if (dump_file)
2073 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
2074 debug_reload_to_stream (dump_file);
2076 fatal_insn ("this is the insn:", insn);
2080 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
2081 data that is dead in INSN. */
2083 static void
2084 delete_dead_insn (rtx_insn *insn)
2086 rtx_insn *prev = prev_active_insn (insn);
2087 rtx prev_dest;
2089 /* If the previous insn sets a register that dies in our insn make
2090 a note that we want to run DCE immediately after reload.
2092 We used to delete the previous insn & recurse, but that's wrong for
2093 block local equivalences. Instead of trying to figure out the exact
2094 circumstances where we can delete the potentially dead insns, just
2095 let DCE do the job. */
2096 if (prev && BLOCK_FOR_INSN (prev) == BLOCK_FOR_INSN (insn)
2097 && GET_CODE (PATTERN (prev)) == SET
2098 && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
2099 && reg_mentioned_p (prev_dest, PATTERN (insn))
2100 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
2101 && ! side_effects_p (SET_SRC (PATTERN (prev))))
2102 need_dce = 1;
2104 SET_INSN_DELETED (insn);
2107 /* Modify the home of pseudo-reg I.
2108 The new home is present in reg_renumber[I].
2110 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
2111 or it may be -1, meaning there is none or it is not relevant.
2112 This is used so that all pseudos spilled from a given hard reg
2113 can share one stack slot. */
2115 static void
2116 alter_reg (int i, int from_reg, bool dont_share_p)
2118 /* When outputting an inline function, this can happen
2119 for a reg that isn't actually used. */
2120 if (regno_reg_rtx[i] == 0)
2121 return;
2123 /* If the reg got changed to a MEM at rtl-generation time,
2124 ignore it. */
2125 if (!REG_P (regno_reg_rtx[i]))
2126 return;
2128 /* Modify the reg-rtx to contain the new hard reg
2129 number or else to contain its pseudo reg number. */
2130 SET_REGNO (regno_reg_rtx[i],
2131 reg_renumber[i] >= 0 ? reg_renumber[i] : i);
2133 /* If we have a pseudo that is needed but has no hard reg or equivalent,
2134 allocate a stack slot for it. */
2136 if (reg_renumber[i] < 0
2137 && REG_N_REFS (i) > 0
2138 && reg_equiv_constant (i) == 0
2139 && (reg_equiv_invariant (i) == 0
2140 || reg_equiv_init (i) == 0)
2141 && reg_equiv_memory_loc (i) == 0)
2143 rtx x = NULL_RTX;
2144 machine_mode mode = GET_MODE (regno_reg_rtx[i]);
2145 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
2146 unsigned int inherent_align = GET_MODE_ALIGNMENT (mode);
2147 unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
2148 unsigned int min_align = reg_max_ref_width[i] * BITS_PER_UNIT;
2149 int adjust = 0;
2151 something_was_spilled = true;
2153 if (ira_conflicts_p)
2155 /* Mark the spill for IRA. */
2156 SET_REGNO_REG_SET (&spilled_pseudos, i);
2157 if (!dont_share_p)
2158 x = ira_reuse_stack_slot (i, inherent_size, total_size);
2161 if (x)
2164 /* Each pseudo reg has an inherent size which comes from its own mode,
2165 and a total size which provides room for paradoxical subregs
2166 which refer to the pseudo reg in wider modes.
2168 We can use a slot already allocated if it provides both
2169 enough inherent space and enough total space.
2170 Otherwise, we allocate a new slot, making sure that it has no less
2171 inherent space, and no less total space, then the previous slot. */
2172 else if (from_reg == -1 || (!dont_share_p && ira_conflicts_p))
2174 rtx stack_slot;
2176 /* No known place to spill from => no slot to reuse. */
2177 x = assign_stack_local (mode, total_size,
2178 min_align > inherent_align
2179 || total_size > inherent_size ? -1 : 0);
2181 stack_slot = x;
2183 /* Cancel the big-endian correction done in assign_stack_local.
2184 Get the address of the beginning of the slot. This is so we
2185 can do a big-endian correction unconditionally below. */
2186 if (BYTES_BIG_ENDIAN)
2188 adjust = inherent_size - total_size;
2189 if (adjust)
2191 unsigned int total_bits = total_size * BITS_PER_UNIT;
2192 machine_mode mem_mode
2193 = int_mode_for_size (total_bits, 1).else_blk ();
2194 stack_slot = adjust_address_nv (x, mem_mode, adjust);
2198 if (! dont_share_p && ira_conflicts_p)
2199 /* Inform IRA about allocation a new stack slot. */
2200 ira_mark_new_stack_slot (stack_slot, i, total_size);
2203 /* Reuse a stack slot if possible. */
2204 else if (spill_stack_slot[from_reg] != 0
2205 && spill_stack_slot_width[from_reg] >= total_size
2206 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2207 >= inherent_size)
2208 && MEM_ALIGN (spill_stack_slot[from_reg]) >= min_align)
2209 x = spill_stack_slot[from_reg];
2211 /* Allocate a bigger slot. */
2212 else
2214 /* Compute maximum size needed, both for inherent size
2215 and for total size. */
2216 rtx stack_slot;
2218 if (spill_stack_slot[from_reg])
2220 if (partial_subreg_p (mode,
2221 GET_MODE (spill_stack_slot[from_reg])))
2222 mode = GET_MODE (spill_stack_slot[from_reg]);
2223 if (spill_stack_slot_width[from_reg] > total_size)
2224 total_size = spill_stack_slot_width[from_reg];
2225 if (MEM_ALIGN (spill_stack_slot[from_reg]) > min_align)
2226 min_align = MEM_ALIGN (spill_stack_slot[from_reg]);
2229 /* Make a slot with that size. */
2230 x = assign_stack_local (mode, total_size,
2231 min_align > inherent_align
2232 || total_size > inherent_size ? -1 : 0);
2233 stack_slot = x;
2235 /* Cancel the big-endian correction done in assign_stack_local.
2236 Get the address of the beginning of the slot. This is so we
2237 can do a big-endian correction unconditionally below. */
2238 if (BYTES_BIG_ENDIAN)
2240 adjust = GET_MODE_SIZE (mode) - total_size;
2241 if (adjust)
2243 unsigned int total_bits = total_size * BITS_PER_UNIT;
2244 machine_mode mem_mode
2245 = int_mode_for_size (total_bits, 1).else_blk ();
2246 stack_slot = adjust_address_nv (x, mem_mode, adjust);
2250 spill_stack_slot[from_reg] = stack_slot;
2251 spill_stack_slot_width[from_reg] = total_size;
2254 /* On a big endian machine, the "address" of the slot
2255 is the address of the low part that fits its inherent mode. */
2256 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
2257 adjust += (total_size - inherent_size);
2259 /* If we have any adjustment to make, or if the stack slot is the
2260 wrong mode, make a new stack slot. */
2261 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2263 /* Set all of the memory attributes as appropriate for a spill. */
2264 set_mem_attrs_for_spill (x);
2266 /* Save the stack slot for later. */
2267 reg_equiv_memory_loc (i) = x;
2271 /* Mark the slots in regs_ever_live for the hard regs used by
2272 pseudo-reg number REGNO, accessed in MODE. */
2274 static void
2275 mark_home_live_1 (int regno, machine_mode mode)
2277 int i, lim;
2279 i = reg_renumber[regno];
2280 if (i < 0)
2281 return;
2282 lim = end_hard_regno (mode, i);
2283 while (i < lim)
2284 df_set_regs_ever_live (i++, true);
2287 /* Mark the slots in regs_ever_live for the hard regs
2288 used by pseudo-reg number REGNO. */
2290 void
2291 mark_home_live (int regno)
2293 if (reg_renumber[regno] >= 0)
2294 mark_home_live_1 (regno, PSEUDO_REGNO_MODE (regno));
2297 /* This function handles the tracking of elimination offsets around branches.
2299 X is a piece of RTL being scanned.
2301 INSN is the insn that it came from, if any.
2303 INITIAL_P is nonzero if we are to set the offset to be the initial
2304 offset and zero if we are setting the offset of the label to be the
2305 current offset. */
2307 static void
2308 set_label_offsets (rtx x, rtx_insn *insn, int initial_p)
2310 enum rtx_code code = GET_CODE (x);
2311 rtx tem;
2312 unsigned int i;
2313 struct elim_table *p;
2315 switch (code)
2317 case LABEL_REF:
2318 if (LABEL_REF_NONLOCAL_P (x))
2319 return;
2321 x = label_ref_label (x);
2323 /* fall through */
2325 case CODE_LABEL:
2326 /* If we know nothing about this label, set the desired offsets. Note
2327 that this sets the offset at a label to be the offset before a label
2328 if we don't know anything about the label. This is not correct for
2329 the label after a BARRIER, but is the best guess we can make. If
2330 we guessed wrong, we will suppress an elimination that might have
2331 been possible had we been able to guess correctly. */
2333 if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
2335 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2336 offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2337 = (initial_p ? reg_eliminate[i].initial_offset
2338 : reg_eliminate[i].offset);
2339 offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
2342 /* Otherwise, if this is the definition of a label and it is
2343 preceded by a BARRIER, set our offsets to the known offset of
2344 that label. */
2346 else if (x == insn
2347 && (tem = prev_nonnote_insn (insn)) != 0
2348 && BARRIER_P (tem))
2349 set_offsets_for_label (insn);
2350 else
2351 /* If neither of the above cases is true, compare each offset
2352 with those previously recorded and suppress any eliminations
2353 where the offsets disagree. */
2355 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2356 if (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2357 != (initial_p ? reg_eliminate[i].initial_offset
2358 : reg_eliminate[i].offset))
2359 reg_eliminate[i].can_eliminate = 0;
2361 return;
2363 case JUMP_TABLE_DATA:
2364 set_label_offsets (PATTERN (insn), insn, initial_p);
2365 return;
2367 case JUMP_INSN:
2368 set_label_offsets (PATTERN (insn), insn, initial_p);
2370 /* fall through */
2372 case INSN:
2373 case CALL_INSN:
2374 /* Any labels mentioned in REG_LABEL_OPERAND notes can be branched
2375 to indirectly and hence must have all eliminations at their
2376 initial offsets. */
2377 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2378 if (REG_NOTE_KIND (tem) == REG_LABEL_OPERAND)
2379 set_label_offsets (XEXP (tem, 0), insn, 1);
2380 return;
2382 case PARALLEL:
2383 case ADDR_VEC:
2384 case ADDR_DIFF_VEC:
2385 /* Each of the labels in the parallel or address vector must be
2386 at their initial offsets. We want the first field for PARALLEL
2387 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2389 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2390 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2391 insn, initial_p);
2392 return;
2394 case SET:
2395 /* We only care about setting PC. If the source is not RETURN,
2396 IF_THEN_ELSE, or a label, disable any eliminations not at
2397 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2398 isn't one of those possibilities. For branches to a label,
2399 call ourselves recursively.
2401 Note that this can disable elimination unnecessarily when we have
2402 a non-local goto since it will look like a non-constant jump to
2403 someplace in the current function. This isn't a significant
2404 problem since such jumps will normally be when all elimination
2405 pairs are back to their initial offsets. */
2407 if (SET_DEST (x) != pc_rtx)
2408 return;
2410 switch (GET_CODE (SET_SRC (x)))
2412 case PC:
2413 case RETURN:
2414 return;
2416 case LABEL_REF:
2417 set_label_offsets (SET_SRC (x), insn, initial_p);
2418 return;
2420 case IF_THEN_ELSE:
2421 tem = XEXP (SET_SRC (x), 1);
2422 if (GET_CODE (tem) == LABEL_REF)
2423 set_label_offsets (label_ref_label (tem), insn, initial_p);
2424 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2425 break;
2427 tem = XEXP (SET_SRC (x), 2);
2428 if (GET_CODE (tem) == LABEL_REF)
2429 set_label_offsets (label_ref_label (tem), insn, initial_p);
2430 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2431 break;
2432 return;
2434 default:
2435 break;
2438 /* If we reach here, all eliminations must be at their initial
2439 offset because we are doing a jump to a variable address. */
2440 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2441 if (p->offset != p->initial_offset)
2442 p->can_eliminate = 0;
2443 break;
2445 default:
2446 break;
2450 /* This function examines every reg that occurs in X and adjusts the
2451 costs for its elimination which are gathered by IRA. INSN is the
2452 insn in which X occurs. We do not recurse into MEM expressions. */
2454 static void
2455 note_reg_elim_costly (const_rtx x, rtx insn)
2457 subrtx_iterator::array_type array;
2458 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
2460 const_rtx x = *iter;
2461 if (MEM_P (x))
2462 iter.skip_subrtxes ();
2463 else if (REG_P (x)
2464 && REGNO (x) >= FIRST_PSEUDO_REGISTER
2465 && reg_equiv_init (REGNO (x))
2466 && reg_equiv_invariant (REGNO (x)))
2468 rtx t = reg_equiv_invariant (REGNO (x));
2469 rtx new_rtx = eliminate_regs_1 (t, Pmode, insn, true, true);
2470 int cost = set_src_cost (new_rtx, Pmode,
2471 optimize_bb_for_speed_p (elim_bb));
2472 int freq = REG_FREQ_FROM_BB (elim_bb);
2474 if (cost != 0)
2475 ira_adjust_equiv_reg_cost (REGNO (x), -cost * freq);
2480 /* Scan X and replace any eliminable registers (such as fp) with a
2481 replacement (such as sp), plus an offset.
2483 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2484 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2485 MEM, we are allowed to replace a sum of a register and the constant zero
2486 with the register, which we cannot do outside a MEM. In addition, we need
2487 to record the fact that a register is referenced outside a MEM.
2489 If INSN is an insn, it is the insn containing X. If we replace a REG
2490 in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
2491 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2492 the REG is being modified.
2494 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2495 That's used when we eliminate in expressions stored in notes.
2496 This means, do not set ref_outside_mem even if the reference
2497 is outside of MEMs.
2499 If FOR_COSTS is true, we are being called before reload in order to
2500 estimate the costs of keeping registers with an equivalence unallocated.
2502 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2503 replacements done assuming all offsets are at their initial values. If
2504 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2505 encounter, return the actual location so that find_reloads will do
2506 the proper thing. */
2508 static rtx
2509 eliminate_regs_1 (rtx x, machine_mode mem_mode, rtx insn,
2510 bool may_use_invariant, bool for_costs)
2512 enum rtx_code code = GET_CODE (x);
2513 struct elim_table *ep;
2514 int regno;
2515 rtx new_rtx;
2516 int i, j;
2517 const char *fmt;
2518 int copied = 0;
2520 if (! current_function_decl)
2521 return x;
2523 switch (code)
2525 CASE_CONST_ANY:
2526 case CONST:
2527 case SYMBOL_REF:
2528 case CODE_LABEL:
2529 case PC:
2530 case CC0:
2531 case ASM_INPUT:
2532 case ADDR_VEC:
2533 case ADDR_DIFF_VEC:
2534 case RETURN:
2535 return x;
2537 case REG:
2538 regno = REGNO (x);
2540 /* First handle the case where we encounter a bare register that
2541 is eliminable. Replace it with a PLUS. */
2542 if (regno < FIRST_PSEUDO_REGISTER)
2544 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2545 ep++)
2546 if (ep->from_rtx == x && ep->can_eliminate)
2547 return plus_constant (Pmode, ep->to_rtx, ep->previous_offset);
2550 else if (reg_renumber && reg_renumber[regno] < 0
2551 && reg_equivs
2552 && reg_equiv_invariant (regno))
2554 if (may_use_invariant || (insn && DEBUG_INSN_P (insn)))
2555 return eliminate_regs_1 (copy_rtx (reg_equiv_invariant (regno)),
2556 mem_mode, insn, true, for_costs);
2557 /* There exists at least one use of REGNO that cannot be
2558 eliminated. Prevent the defining insn from being deleted. */
2559 reg_equiv_init (regno) = NULL;
2560 if (!for_costs)
2561 alter_reg (regno, -1, true);
2563 return x;
2565 /* You might think handling MINUS in a manner similar to PLUS is a
2566 good idea. It is not. It has been tried multiple times and every
2567 time the change has had to have been reverted.
2569 Other parts of reload know a PLUS is special (gen_reload for example)
2570 and require special code to handle code a reloaded PLUS operand.
2572 Also consider backends where the flags register is clobbered by a
2573 MINUS, but we can emit a PLUS that does not clobber flags (IA-32,
2574 lea instruction comes to mind). If we try to reload a MINUS, we
2575 may kill the flags register that was holding a useful value.
2577 So, please before trying to handle MINUS, consider reload as a
2578 whole instead of this little section as well as the backend issues. */
2579 case PLUS:
2580 /* If this is the sum of an eliminable register and a constant, rework
2581 the sum. */
2582 if (REG_P (XEXP (x, 0))
2583 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2584 && CONSTANT_P (XEXP (x, 1)))
2586 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2587 ep++)
2588 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2590 /* The only time we want to replace a PLUS with a REG (this
2591 occurs when the constant operand of the PLUS is the negative
2592 of the offset) is when we are inside a MEM. We won't want
2593 to do so at other times because that would change the
2594 structure of the insn in a way that reload can't handle.
2595 We special-case the commonest situation in
2596 eliminate_regs_in_insn, so just replace a PLUS with a
2597 PLUS here, unless inside a MEM. */
2598 if (mem_mode != 0 && CONST_INT_P (XEXP (x, 1))
2599 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2600 return ep->to_rtx;
2601 else
2602 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2603 plus_constant (Pmode, XEXP (x, 1),
2604 ep->previous_offset));
2607 /* If the register is not eliminable, we are done since the other
2608 operand is a constant. */
2609 return x;
2612 /* If this is part of an address, we want to bring any constant to the
2613 outermost PLUS. We will do this by doing register replacement in
2614 our operands and seeing if a constant shows up in one of them.
2616 Note that there is no risk of modifying the structure of the insn,
2617 since we only get called for its operands, thus we are either
2618 modifying the address inside a MEM, or something like an address
2619 operand of a load-address insn. */
2622 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2623 for_costs);
2624 rtx new1 = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2625 for_costs);
2627 if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
2629 /* If one side is a PLUS and the other side is a pseudo that
2630 didn't get a hard register but has a reg_equiv_constant,
2631 we must replace the constant here since it may no longer
2632 be in the position of any operand. */
2633 if (GET_CODE (new0) == PLUS && REG_P (new1)
2634 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2635 && reg_renumber[REGNO (new1)] < 0
2636 && reg_equivs
2637 && reg_equiv_constant (REGNO (new1)) != 0)
2638 new1 = reg_equiv_constant (REGNO (new1));
2639 else if (GET_CODE (new1) == PLUS && REG_P (new0)
2640 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2641 && reg_renumber[REGNO (new0)] < 0
2642 && reg_equiv_constant (REGNO (new0)) != 0)
2643 new0 = reg_equiv_constant (REGNO (new0));
2645 new_rtx = form_sum (GET_MODE (x), new0, new1);
2647 /* As above, if we are not inside a MEM we do not want to
2648 turn a PLUS into something else. We might try to do so here
2649 for an addition of 0 if we aren't optimizing. */
2650 if (! mem_mode && GET_CODE (new_rtx) != PLUS)
2651 return gen_rtx_PLUS (GET_MODE (x), new_rtx, const0_rtx);
2652 else
2653 return new_rtx;
2656 return x;
2658 case MULT:
2659 /* If this is the product of an eliminable register and a
2660 constant, apply the distribute law and move the constant out
2661 so that we have (plus (mult ..) ..). This is needed in order
2662 to keep load-address insns valid. This case is pathological.
2663 We ignore the possibility of overflow here. */
2664 if (REG_P (XEXP (x, 0))
2665 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2666 && CONST_INT_P (XEXP (x, 1)))
2667 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2668 ep++)
2669 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2671 if (! mem_mode
2672 /* Refs inside notes or in DEBUG_INSNs don't count for
2673 this purpose. */
2674 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2675 || GET_CODE (insn) == INSN_LIST
2676 || DEBUG_INSN_P (insn))))
2677 ep->ref_outside_mem = 1;
2679 return
2680 plus_constant (Pmode,
2681 gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2682 ep->previous_offset * INTVAL (XEXP (x, 1)));
2685 /* fall through */
2687 case CALL:
2688 case COMPARE:
2689 /* See comments before PLUS about handling MINUS. */
2690 case MINUS:
2691 case DIV: case UDIV:
2692 case MOD: case UMOD:
2693 case AND: case IOR: case XOR:
2694 case ROTATERT: case ROTATE:
2695 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2696 case NE: case EQ:
2697 case GE: case GT: case GEU: case GTU:
2698 case LE: case LT: case LEU: case LTU:
2700 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2701 for_costs);
2702 rtx new1 = XEXP (x, 1)
2703 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, false,
2704 for_costs) : 0;
2706 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2707 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2709 return x;
2711 case EXPR_LIST:
2712 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2713 if (XEXP (x, 0))
2715 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2716 for_costs);
2717 if (new_rtx != XEXP (x, 0))
2719 /* If this is a REG_DEAD note, it is not valid anymore.
2720 Using the eliminated version could result in creating a
2721 REG_DEAD note for the stack or frame pointer. */
2722 if (REG_NOTE_KIND (x) == REG_DEAD)
2723 return (XEXP (x, 1)
2724 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2725 for_costs)
2726 : NULL_RTX);
2728 x = alloc_reg_note (REG_NOTE_KIND (x), new_rtx, XEXP (x, 1));
2732 /* fall through */
2734 case INSN_LIST:
2735 case INT_LIST:
2736 /* Now do eliminations in the rest of the chain. If this was
2737 an EXPR_LIST, this might result in allocating more memory than is
2738 strictly needed, but it simplifies the code. */
2739 if (XEXP (x, 1))
2741 new_rtx = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2742 for_costs);
2743 if (new_rtx != XEXP (x, 1))
2744 return
2745 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new_rtx);
2747 return x;
2749 case PRE_INC:
2750 case POST_INC:
2751 case PRE_DEC:
2752 case POST_DEC:
2753 /* We do not support elimination of a register that is modified.
2754 elimination_effects has already make sure that this does not
2755 happen. */
2756 return x;
2758 case PRE_MODIFY:
2759 case POST_MODIFY:
2760 /* We do not support elimination of a register that is modified.
2761 elimination_effects has already make sure that this does not
2762 happen. The only remaining case we need to consider here is
2763 that the increment value may be an eliminable register. */
2764 if (GET_CODE (XEXP (x, 1)) == PLUS
2765 && XEXP (XEXP (x, 1), 0) == XEXP (x, 0))
2767 rtx new_rtx = eliminate_regs_1 (XEXP (XEXP (x, 1), 1), mem_mode,
2768 insn, true, for_costs);
2770 if (new_rtx != XEXP (XEXP (x, 1), 1))
2771 return gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (x, 0),
2772 gen_rtx_PLUS (GET_MODE (x),
2773 XEXP (x, 0), new_rtx));
2775 return x;
2777 case STRICT_LOW_PART:
2778 case NEG: case NOT:
2779 case SIGN_EXTEND: case ZERO_EXTEND:
2780 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2781 case FLOAT: case FIX:
2782 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2783 case ABS:
2784 case SQRT:
2785 case FFS:
2786 case CLZ:
2787 case CTZ:
2788 case POPCOUNT:
2789 case PARITY:
2790 case BSWAP:
2791 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2792 for_costs);
2793 if (new_rtx != XEXP (x, 0))
2794 return gen_rtx_fmt_e (code, GET_MODE (x), new_rtx);
2795 return x;
2797 case SUBREG:
2798 /* Similar to above processing, but preserve SUBREG_BYTE.
2799 Convert (subreg (mem)) to (mem) if not paradoxical.
2800 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2801 pseudo didn't get a hard reg, we must replace this with the
2802 eliminated version of the memory location because push_reload
2803 may do the replacement in certain circumstances. */
2804 if (REG_P (SUBREG_REG (x))
2805 && !paradoxical_subreg_p (x)
2806 && reg_equivs
2807 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
2809 new_rtx = SUBREG_REG (x);
2811 else
2812 new_rtx = eliminate_regs_1 (SUBREG_REG (x), mem_mode, insn, false, for_costs);
2814 if (new_rtx != SUBREG_REG (x))
2816 int x_size = GET_MODE_SIZE (GET_MODE (x));
2817 int new_size = GET_MODE_SIZE (GET_MODE (new_rtx));
2819 if (MEM_P (new_rtx)
2820 && ((partial_subreg_p (GET_MODE (x), GET_MODE (new_rtx))
2821 /* On RISC machines, combine can create rtl of the form
2822 (set (subreg:m1 (reg:m2 R) 0) ...)
2823 where m1 < m2, and expects something interesting to
2824 happen to the entire word. Moreover, it will use the
2825 (reg:m2 R) later, expecting all bits to be preserved.
2826 So if the number of words is the same, preserve the
2827 subreg so that push_reload can see it. */
2828 && !(WORD_REGISTER_OPERATIONS
2829 && (x_size - 1) / UNITS_PER_WORD
2830 == (new_size -1 ) / UNITS_PER_WORD))
2831 || x_size == new_size)
2833 return adjust_address_nv (new_rtx, GET_MODE (x), SUBREG_BYTE (x));
2834 else if (insn && GET_CODE (insn) == DEBUG_INSN)
2835 return gen_rtx_raw_SUBREG (GET_MODE (x), new_rtx, SUBREG_BYTE (x));
2836 else
2837 return gen_rtx_SUBREG (GET_MODE (x), new_rtx, SUBREG_BYTE (x));
2840 return x;
2842 case MEM:
2843 /* Our only special processing is to pass the mode of the MEM to our
2844 recursive call and copy the flags. While we are here, handle this
2845 case more efficiently. */
2847 new_rtx = eliminate_regs_1 (XEXP (x, 0), GET_MODE (x), insn, true,
2848 for_costs);
2849 if (for_costs
2850 && memory_address_p (GET_MODE (x), XEXP (x, 0))
2851 && !memory_address_p (GET_MODE (x), new_rtx))
2852 note_reg_elim_costly (XEXP (x, 0), insn);
2854 return replace_equiv_address_nv (x, new_rtx);
2856 case USE:
2857 /* Handle insn_list USE that a call to a pure function may generate. */
2858 new_rtx = eliminate_regs_1 (XEXP (x, 0), VOIDmode, insn, false,
2859 for_costs);
2860 if (new_rtx != XEXP (x, 0))
2861 return gen_rtx_USE (GET_MODE (x), new_rtx);
2862 return x;
2864 case CLOBBER:
2865 case ASM_OPERANDS:
2866 gcc_assert (insn && DEBUG_INSN_P (insn));
2867 break;
2869 case SET:
2870 gcc_unreachable ();
2872 default:
2873 break;
2876 /* Process each of our operands recursively. If any have changed, make a
2877 copy of the rtx. */
2878 fmt = GET_RTX_FORMAT (code);
2879 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2881 if (*fmt == 'e')
2883 new_rtx = eliminate_regs_1 (XEXP (x, i), mem_mode, insn, false,
2884 for_costs);
2885 if (new_rtx != XEXP (x, i) && ! copied)
2887 x = shallow_copy_rtx (x);
2888 copied = 1;
2890 XEXP (x, i) = new_rtx;
2892 else if (*fmt == 'E')
2894 int copied_vec = 0;
2895 for (j = 0; j < XVECLEN (x, i); j++)
2897 new_rtx = eliminate_regs_1 (XVECEXP (x, i, j), mem_mode, insn, false,
2898 for_costs);
2899 if (new_rtx != XVECEXP (x, i, j) && ! copied_vec)
2901 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2902 XVEC (x, i)->elem);
2903 if (! copied)
2905 x = shallow_copy_rtx (x);
2906 copied = 1;
2908 XVEC (x, i) = new_v;
2909 copied_vec = 1;
2911 XVECEXP (x, i, j) = new_rtx;
2916 return x;
2920 eliminate_regs (rtx x, machine_mode mem_mode, rtx insn)
2922 if (reg_eliminate == NULL)
2924 gcc_assert (targetm.no_register_allocation);
2925 return x;
2927 return eliminate_regs_1 (x, mem_mode, insn, false, false);
2930 /* Scan rtx X for modifications of elimination target registers. Update
2931 the table of eliminables to reflect the changed state. MEM_MODE is
2932 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2934 static void
2935 elimination_effects (rtx x, machine_mode mem_mode)
2937 enum rtx_code code = GET_CODE (x);
2938 struct elim_table *ep;
2939 int regno;
2940 int i, j;
2941 const char *fmt;
2943 switch (code)
2945 CASE_CONST_ANY:
2946 case CONST:
2947 case SYMBOL_REF:
2948 case CODE_LABEL:
2949 case PC:
2950 case CC0:
2951 case ASM_INPUT:
2952 case ADDR_VEC:
2953 case ADDR_DIFF_VEC:
2954 case RETURN:
2955 return;
2957 case REG:
2958 regno = REGNO (x);
2960 /* First handle the case where we encounter a bare register that
2961 is eliminable. Replace it with a PLUS. */
2962 if (regno < FIRST_PSEUDO_REGISTER)
2964 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2965 ep++)
2966 if (ep->from_rtx == x && ep->can_eliminate)
2968 if (! mem_mode)
2969 ep->ref_outside_mem = 1;
2970 return;
2974 else if (reg_renumber[regno] < 0
2975 && reg_equivs
2976 && reg_equiv_constant (regno)
2977 && ! function_invariant_p (reg_equiv_constant (regno)))
2978 elimination_effects (reg_equiv_constant (regno), mem_mode);
2979 return;
2981 case PRE_INC:
2982 case POST_INC:
2983 case PRE_DEC:
2984 case POST_DEC:
2985 case POST_MODIFY:
2986 case PRE_MODIFY:
2987 /* If we modify the source of an elimination rule, disable it. */
2988 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2989 if (ep->from_rtx == XEXP (x, 0))
2990 ep->can_eliminate = 0;
2992 /* If we modify the target of an elimination rule by adding a constant,
2993 update its offset. If we modify the target in any other way, we'll
2994 have to disable the rule as well. */
2995 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2996 if (ep->to_rtx == XEXP (x, 0))
2998 int size = GET_MODE_SIZE (mem_mode);
3000 /* If more bytes than MEM_MODE are pushed, account for them. */
3001 #ifdef PUSH_ROUNDING
3002 if (ep->to_rtx == stack_pointer_rtx)
3003 size = PUSH_ROUNDING (size);
3004 #endif
3005 if (code == PRE_DEC || code == POST_DEC)
3006 ep->offset += size;
3007 else if (code == PRE_INC || code == POST_INC)
3008 ep->offset -= size;
3009 else if (code == PRE_MODIFY || code == POST_MODIFY)
3011 if (GET_CODE (XEXP (x, 1)) == PLUS
3012 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
3013 && CONST_INT_P (XEXP (XEXP (x, 1), 1)))
3014 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
3015 else
3016 ep->can_eliminate = 0;
3020 /* These two aren't unary operators. */
3021 if (code == POST_MODIFY || code == PRE_MODIFY)
3022 break;
3024 /* Fall through to generic unary operation case. */
3025 gcc_fallthrough ();
3026 case STRICT_LOW_PART:
3027 case NEG: case NOT:
3028 case SIGN_EXTEND: case ZERO_EXTEND:
3029 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
3030 case FLOAT: case FIX:
3031 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
3032 case ABS:
3033 case SQRT:
3034 case FFS:
3035 case CLZ:
3036 case CTZ:
3037 case POPCOUNT:
3038 case PARITY:
3039 case BSWAP:
3040 elimination_effects (XEXP (x, 0), mem_mode);
3041 return;
3043 case SUBREG:
3044 if (REG_P (SUBREG_REG (x))
3045 && !paradoxical_subreg_p (x)
3046 && reg_equivs
3047 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
3048 return;
3050 elimination_effects (SUBREG_REG (x), mem_mode);
3051 return;
3053 case USE:
3054 /* If using a register that is the source of an eliminate we still
3055 think can be performed, note it cannot be performed since we don't
3056 know how this register is used. */
3057 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3058 if (ep->from_rtx == XEXP (x, 0))
3059 ep->can_eliminate = 0;
3061 elimination_effects (XEXP (x, 0), mem_mode);
3062 return;
3064 case CLOBBER:
3065 /* If clobbering a register that is the replacement register for an
3066 elimination we still think can be performed, note that it cannot
3067 be performed. Otherwise, we need not be concerned about it. */
3068 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3069 if (ep->to_rtx == XEXP (x, 0))
3070 ep->can_eliminate = 0;
3072 elimination_effects (XEXP (x, 0), mem_mode);
3073 return;
3075 case SET:
3076 /* Check for setting a register that we know about. */
3077 if (REG_P (SET_DEST (x)))
3079 /* See if this is setting the replacement register for an
3080 elimination.
3082 If DEST is the hard frame pointer, we do nothing because we
3083 assume that all assignments to the frame pointer are for
3084 non-local gotos and are being done at a time when they are valid
3085 and do not disturb anything else. Some machines want to
3086 eliminate a fake argument pointer (or even a fake frame pointer)
3087 with either the real frame or the stack pointer. Assignments to
3088 the hard frame pointer must not prevent this elimination. */
3090 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3091 ep++)
3092 if (ep->to_rtx == SET_DEST (x)
3093 && SET_DEST (x) != hard_frame_pointer_rtx)
3095 /* If it is being incremented, adjust the offset. Otherwise,
3096 this elimination can't be done. */
3097 rtx src = SET_SRC (x);
3099 if (GET_CODE (src) == PLUS
3100 && XEXP (src, 0) == SET_DEST (x)
3101 && CONST_INT_P (XEXP (src, 1)))
3102 ep->offset -= INTVAL (XEXP (src, 1));
3103 else
3104 ep->can_eliminate = 0;
3108 elimination_effects (SET_DEST (x), VOIDmode);
3109 elimination_effects (SET_SRC (x), VOIDmode);
3110 return;
3112 case MEM:
3113 /* Our only special processing is to pass the mode of the MEM to our
3114 recursive call. */
3115 elimination_effects (XEXP (x, 0), GET_MODE (x));
3116 return;
3118 default:
3119 break;
3122 fmt = GET_RTX_FORMAT (code);
3123 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3125 if (*fmt == 'e')
3126 elimination_effects (XEXP (x, i), mem_mode);
3127 else if (*fmt == 'E')
3128 for (j = 0; j < XVECLEN (x, i); j++)
3129 elimination_effects (XVECEXP (x, i, j), mem_mode);
3133 /* Descend through rtx X and verify that no references to eliminable registers
3134 remain. If any do remain, mark the involved register as not
3135 eliminable. */
3137 static void
3138 check_eliminable_occurrences (rtx x)
3140 const char *fmt;
3141 int i;
3142 enum rtx_code code;
3144 if (x == 0)
3145 return;
3147 code = GET_CODE (x);
3149 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
3151 struct elim_table *ep;
3153 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3154 if (ep->from_rtx == x)
3155 ep->can_eliminate = 0;
3156 return;
3159 fmt = GET_RTX_FORMAT (code);
3160 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3162 if (*fmt == 'e')
3163 check_eliminable_occurrences (XEXP (x, i));
3164 else if (*fmt == 'E')
3166 int j;
3167 for (j = 0; j < XVECLEN (x, i); j++)
3168 check_eliminable_occurrences (XVECEXP (x, i, j));
3173 /* Scan INSN and eliminate all eliminable registers in it.
3175 If REPLACE is nonzero, do the replacement destructively. Also
3176 delete the insn as dead it if it is setting an eliminable register.
3178 If REPLACE is zero, do all our allocations in reload_obstack.
3180 If no eliminations were done and this insn doesn't require any elimination
3181 processing (these are not identical conditions: it might be updating sp,
3182 but not referencing fp; this needs to be seen during reload_as_needed so
3183 that the offset between fp and sp can be taken into consideration), zero
3184 is returned. Otherwise, 1 is returned. */
3186 static int
3187 eliminate_regs_in_insn (rtx_insn *insn, int replace)
3189 int icode = recog_memoized (insn);
3190 rtx old_body = PATTERN (insn);
3191 int insn_is_asm = asm_noperands (old_body) >= 0;
3192 rtx old_set = single_set (insn);
3193 rtx new_body;
3194 int val = 0;
3195 int i;
3196 rtx substed_operand[MAX_RECOG_OPERANDS];
3197 rtx orig_operand[MAX_RECOG_OPERANDS];
3198 struct elim_table *ep;
3199 rtx plus_src, plus_cst_src;
3201 if (! insn_is_asm && icode < 0)
3203 gcc_assert (DEBUG_INSN_P (insn)
3204 || GET_CODE (PATTERN (insn)) == USE
3205 || GET_CODE (PATTERN (insn)) == CLOBBER
3206 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
3207 if (DEBUG_INSN_P (insn))
3208 INSN_VAR_LOCATION_LOC (insn)
3209 = eliminate_regs (INSN_VAR_LOCATION_LOC (insn), VOIDmode, insn);
3210 return 0;
3213 if (old_set != 0 && REG_P (SET_DEST (old_set))
3214 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3216 /* Check for setting an eliminable register. */
3217 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3218 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3220 /* If this is setting the frame pointer register to the
3221 hardware frame pointer register and this is an elimination
3222 that will be done (tested above), this insn is really
3223 adjusting the frame pointer downward to compensate for
3224 the adjustment done before a nonlocal goto. */
3225 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER
3226 && ep->from == FRAME_POINTER_REGNUM
3227 && ep->to == HARD_FRAME_POINTER_REGNUM)
3229 rtx base = SET_SRC (old_set);
3230 rtx_insn *base_insn = insn;
3231 HOST_WIDE_INT offset = 0;
3233 while (base != ep->to_rtx)
3235 rtx_insn *prev_insn;
3236 rtx prev_set;
3238 if (GET_CODE (base) == PLUS
3239 && CONST_INT_P (XEXP (base, 1)))
3241 offset += INTVAL (XEXP (base, 1));
3242 base = XEXP (base, 0);
3244 else if ((prev_insn = prev_nonnote_insn (base_insn)) != 0
3245 && (prev_set = single_set (prev_insn)) != 0
3246 && rtx_equal_p (SET_DEST (prev_set), base))
3248 base = SET_SRC (prev_set);
3249 base_insn = prev_insn;
3251 else
3252 break;
3255 if (base == ep->to_rtx)
3257 rtx src = plus_constant (Pmode, ep->to_rtx,
3258 offset - ep->offset);
3260 new_body = old_body;
3261 if (! replace)
3263 new_body = copy_insn (old_body);
3264 if (REG_NOTES (insn))
3265 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3267 PATTERN (insn) = new_body;
3268 old_set = single_set (insn);
3270 /* First see if this insn remains valid when we
3271 make the change. If not, keep the INSN_CODE
3272 the same and let reload fit it up. */
3273 validate_change (insn, &SET_SRC (old_set), src, 1);
3274 validate_change (insn, &SET_DEST (old_set),
3275 ep->to_rtx, 1);
3276 if (! apply_change_group ())
3278 SET_SRC (old_set) = src;
3279 SET_DEST (old_set) = ep->to_rtx;
3282 val = 1;
3283 goto done;
3287 /* In this case this insn isn't serving a useful purpose. We
3288 will delete it in reload_as_needed once we know that this
3289 elimination is, in fact, being done.
3291 If REPLACE isn't set, we can't delete this insn, but needn't
3292 process it since it won't be used unless something changes. */
3293 if (replace)
3295 delete_dead_insn (insn);
3296 return 1;
3298 val = 1;
3299 goto done;
3303 /* We allow one special case which happens to work on all machines we
3304 currently support: a single set with the source or a REG_EQUAL
3305 note being a PLUS of an eliminable register and a constant. */
3306 plus_src = plus_cst_src = 0;
3307 if (old_set && REG_P (SET_DEST (old_set)))
3309 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3310 plus_src = SET_SRC (old_set);
3311 /* First see if the source is of the form (plus (...) CST). */
3312 if (plus_src
3313 && CONST_INT_P (XEXP (plus_src, 1)))
3314 plus_cst_src = plus_src;
3315 else if (REG_P (SET_SRC (old_set))
3316 || plus_src)
3318 /* Otherwise, see if we have a REG_EQUAL note of the form
3319 (plus (...) CST). */
3320 rtx links;
3321 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3323 if ((REG_NOTE_KIND (links) == REG_EQUAL
3324 || REG_NOTE_KIND (links) == REG_EQUIV)
3325 && GET_CODE (XEXP (links, 0)) == PLUS
3326 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3328 plus_cst_src = XEXP (links, 0);
3329 break;
3334 /* Check that the first operand of the PLUS is a hard reg or
3335 the lowpart subreg of one. */
3336 if (plus_cst_src)
3338 rtx reg = XEXP (plus_cst_src, 0);
3339 if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg))
3340 reg = SUBREG_REG (reg);
3342 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
3343 plus_cst_src = 0;
3346 if (plus_cst_src)
3348 rtx reg = XEXP (plus_cst_src, 0);
3349 HOST_WIDE_INT offset = INTVAL (XEXP (plus_cst_src, 1));
3351 if (GET_CODE (reg) == SUBREG)
3352 reg = SUBREG_REG (reg);
3354 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3355 if (ep->from_rtx == reg && ep->can_eliminate)
3357 rtx to_rtx = ep->to_rtx;
3358 offset += ep->offset;
3359 offset = trunc_int_for_mode (offset, GET_MODE (plus_cst_src));
3361 if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG)
3362 to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)),
3363 to_rtx);
3364 /* If we have a nonzero offset, and the source is already
3365 a simple REG, the following transformation would
3366 increase the cost of the insn by replacing a simple REG
3367 with (plus (reg sp) CST). So try only when we already
3368 had a PLUS before. */
3369 if (offset == 0 || plus_src)
3371 rtx new_src = plus_constant (GET_MODE (to_rtx),
3372 to_rtx, offset);
3374 new_body = old_body;
3375 if (! replace)
3377 new_body = copy_insn (old_body);
3378 if (REG_NOTES (insn))
3379 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3381 PATTERN (insn) = new_body;
3382 old_set = single_set (insn);
3384 /* First see if this insn remains valid when we make the
3385 change. If not, try to replace the whole pattern with
3386 a simple set (this may help if the original insn was a
3387 PARALLEL that was only recognized as single_set due to
3388 REG_UNUSED notes). If this isn't valid either, keep
3389 the INSN_CODE the same and let reload fix it up. */
3390 if (!validate_change (insn, &SET_SRC (old_set), new_src, 0))
3392 rtx new_pat = gen_rtx_SET (SET_DEST (old_set), new_src);
3394 if (!validate_change (insn, &PATTERN (insn), new_pat, 0))
3395 SET_SRC (old_set) = new_src;
3398 else
3399 break;
3401 val = 1;
3402 /* This can't have an effect on elimination offsets, so skip right
3403 to the end. */
3404 goto done;
3408 /* Determine the effects of this insn on elimination offsets. */
3409 elimination_effects (old_body, VOIDmode);
3411 /* Eliminate all eliminable registers occurring in operands that
3412 can be handled by reload. */
3413 extract_insn (insn);
3414 for (i = 0; i < recog_data.n_operands; i++)
3416 orig_operand[i] = recog_data.operand[i];
3417 substed_operand[i] = recog_data.operand[i];
3419 /* For an asm statement, every operand is eliminable. */
3420 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3422 bool is_set_src, in_plus;
3424 /* Check for setting a register that we know about. */
3425 if (recog_data.operand_type[i] != OP_IN
3426 && REG_P (orig_operand[i]))
3428 /* If we are assigning to a register that can be eliminated, it
3429 must be as part of a PARALLEL, since the code above handles
3430 single SETs. We must indicate that we can no longer
3431 eliminate this reg. */
3432 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3433 ep++)
3434 if (ep->from_rtx == orig_operand[i])
3435 ep->can_eliminate = 0;
3438 /* Companion to the above plus substitution, we can allow
3439 invariants as the source of a plain move. */
3440 is_set_src = false;
3441 if (old_set
3442 && recog_data.operand_loc[i] == &SET_SRC (old_set))
3443 is_set_src = true;
3444 in_plus = false;
3445 if (plus_src
3446 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3447 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3448 in_plus = true;
3450 substed_operand[i]
3451 = eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3452 replace ? insn : NULL_RTX,
3453 is_set_src || in_plus, false);
3454 if (substed_operand[i] != orig_operand[i])
3455 val = 1;
3456 /* Terminate the search in check_eliminable_occurrences at
3457 this point. */
3458 *recog_data.operand_loc[i] = 0;
3460 /* If an output operand changed from a REG to a MEM and INSN is an
3461 insn, write a CLOBBER insn. */
3462 if (recog_data.operand_type[i] != OP_IN
3463 && REG_P (orig_operand[i])
3464 && MEM_P (substed_operand[i])
3465 && replace)
3466 emit_insn_after (gen_clobber (orig_operand[i]), insn);
3470 for (i = 0; i < recog_data.n_dups; i++)
3471 *recog_data.dup_loc[i]
3472 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3474 /* If any eliminable remain, they aren't eliminable anymore. */
3475 check_eliminable_occurrences (old_body);
3477 /* Substitute the operands; the new values are in the substed_operand
3478 array. */
3479 for (i = 0; i < recog_data.n_operands; i++)
3480 *recog_data.operand_loc[i] = substed_operand[i];
3481 for (i = 0; i < recog_data.n_dups; i++)
3482 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3484 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3485 re-recognize the insn. We do this in case we had a simple addition
3486 but now can do this as a load-address. This saves an insn in this
3487 common case.
3488 If re-recognition fails, the old insn code number will still be used,
3489 and some register operands may have changed into PLUS expressions.
3490 These will be handled by find_reloads by loading them into a register
3491 again. */
3493 if (val)
3495 /* If we aren't replacing things permanently and we changed something,
3496 make another copy to ensure that all the RTL is new. Otherwise
3497 things can go wrong if find_reload swaps commutative operands
3498 and one is inside RTL that has been copied while the other is not. */
3499 new_body = old_body;
3500 if (! replace)
3502 new_body = copy_insn (old_body);
3503 if (REG_NOTES (insn))
3504 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3506 PATTERN (insn) = new_body;
3508 /* If we had a move insn but now we don't, rerecognize it. This will
3509 cause spurious re-recognition if the old move had a PARALLEL since
3510 the new one still will, but we can't call single_set without
3511 having put NEW_BODY into the insn and the re-recognition won't
3512 hurt in this rare case. */
3513 /* ??? Why this huge if statement - why don't we just rerecognize the
3514 thing always? */
3515 if (! insn_is_asm
3516 && old_set != 0
3517 && ((REG_P (SET_SRC (old_set))
3518 && (GET_CODE (new_body) != SET
3519 || !REG_P (SET_SRC (new_body))))
3520 /* If this was a load from or store to memory, compare
3521 the MEM in recog_data.operand to the one in the insn.
3522 If they are not equal, then rerecognize the insn. */
3523 || (old_set != 0
3524 && ((MEM_P (SET_SRC (old_set))
3525 && SET_SRC (old_set) != recog_data.operand[1])
3526 || (MEM_P (SET_DEST (old_set))
3527 && SET_DEST (old_set) != recog_data.operand[0])))
3528 /* If this was an add insn before, rerecognize. */
3529 || GET_CODE (SET_SRC (old_set)) == PLUS))
3531 int new_icode = recog (PATTERN (insn), insn, 0);
3532 if (new_icode >= 0)
3533 INSN_CODE (insn) = new_icode;
3537 /* Restore the old body. If there were any changes to it, we made a copy
3538 of it while the changes were still in place, so we'll correctly return
3539 a modified insn below. */
3540 if (! replace)
3542 /* Restore the old body. */
3543 for (i = 0; i < recog_data.n_operands; i++)
3544 /* Restoring a top-level match_parallel would clobber the new_body
3545 we installed in the insn. */
3546 if (recog_data.operand_loc[i] != &PATTERN (insn))
3547 *recog_data.operand_loc[i] = orig_operand[i];
3548 for (i = 0; i < recog_data.n_dups; i++)
3549 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3552 /* Update all elimination pairs to reflect the status after the current
3553 insn. The changes we make were determined by the earlier call to
3554 elimination_effects.
3556 We also detect cases where register elimination cannot be done,
3557 namely, if a register would be both changed and referenced outside a MEM
3558 in the resulting insn since such an insn is often undefined and, even if
3559 not, we cannot know what meaning will be given to it. Note that it is
3560 valid to have a register used in an address in an insn that changes it
3561 (presumably with a pre- or post-increment or decrement).
3563 If anything changes, return nonzero. */
3565 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3567 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3568 ep->can_eliminate = 0;
3570 ep->ref_outside_mem = 0;
3572 if (ep->previous_offset != ep->offset)
3573 val = 1;
3576 done:
3577 /* If we changed something, perform elimination in REG_NOTES. This is
3578 needed even when REPLACE is zero because a REG_DEAD note might refer
3579 to a register that we eliminate and could cause a different number
3580 of spill registers to be needed in the final reload pass than in
3581 the pre-passes. */
3582 if (val && REG_NOTES (insn) != 0)
3583 REG_NOTES (insn)
3584 = eliminate_regs_1 (REG_NOTES (insn), VOIDmode, REG_NOTES (insn), true,
3585 false);
3587 return val;
3590 /* Like eliminate_regs_in_insn, but only estimate costs for the use of the
3591 register allocator. INSN is the instruction we need to examine, we perform
3592 eliminations in its operands and record cases where eliminating a reg with
3593 an invariant equivalence would add extra cost. */
3595 #pragma GCC diagnostic push
3596 #pragma GCC diagnostic warning "-Wmaybe-uninitialized"
3597 static void
3598 elimination_costs_in_insn (rtx_insn *insn)
3600 int icode = recog_memoized (insn);
3601 rtx old_body = PATTERN (insn);
3602 int insn_is_asm = asm_noperands (old_body) >= 0;
3603 rtx old_set = single_set (insn);
3604 int i;
3605 rtx orig_operand[MAX_RECOG_OPERANDS];
3606 rtx orig_dup[MAX_RECOG_OPERANDS];
3607 struct elim_table *ep;
3608 rtx plus_src, plus_cst_src;
3609 bool sets_reg_p;
3611 if (! insn_is_asm && icode < 0)
3613 gcc_assert (DEBUG_INSN_P (insn)
3614 || GET_CODE (PATTERN (insn)) == USE
3615 || GET_CODE (PATTERN (insn)) == CLOBBER
3616 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
3617 return;
3620 if (old_set != 0 && REG_P (SET_DEST (old_set))
3621 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3623 /* Check for setting an eliminable register. */
3624 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3625 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3626 return;
3629 /* We allow one special case which happens to work on all machines we
3630 currently support: a single set with the source or a REG_EQUAL
3631 note being a PLUS of an eliminable register and a constant. */
3632 plus_src = plus_cst_src = 0;
3633 sets_reg_p = false;
3634 if (old_set && REG_P (SET_DEST (old_set)))
3636 sets_reg_p = true;
3637 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3638 plus_src = SET_SRC (old_set);
3639 /* First see if the source is of the form (plus (...) CST). */
3640 if (plus_src
3641 && CONST_INT_P (XEXP (plus_src, 1)))
3642 plus_cst_src = plus_src;
3643 else if (REG_P (SET_SRC (old_set))
3644 || plus_src)
3646 /* Otherwise, see if we have a REG_EQUAL note of the form
3647 (plus (...) CST). */
3648 rtx links;
3649 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3651 if ((REG_NOTE_KIND (links) == REG_EQUAL
3652 || REG_NOTE_KIND (links) == REG_EQUIV)
3653 && GET_CODE (XEXP (links, 0)) == PLUS
3654 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3656 plus_cst_src = XEXP (links, 0);
3657 break;
3663 /* Determine the effects of this insn on elimination offsets. */
3664 elimination_effects (old_body, VOIDmode);
3666 /* Eliminate all eliminable registers occurring in operands that
3667 can be handled by reload. */
3668 extract_insn (insn);
3669 int n_dups = recog_data.n_dups;
3670 for (i = 0; i < n_dups; i++)
3671 orig_dup[i] = *recog_data.dup_loc[i];
3673 int n_operands = recog_data.n_operands;
3674 for (i = 0; i < n_operands; i++)
3676 orig_operand[i] = recog_data.operand[i];
3678 /* For an asm statement, every operand is eliminable. */
3679 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3681 bool is_set_src, in_plus;
3683 /* Check for setting a register that we know about. */
3684 if (recog_data.operand_type[i] != OP_IN
3685 && REG_P (orig_operand[i]))
3687 /* If we are assigning to a register that can be eliminated, it
3688 must be as part of a PARALLEL, since the code above handles
3689 single SETs. We must indicate that we can no longer
3690 eliminate this reg. */
3691 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3692 ep++)
3693 if (ep->from_rtx == orig_operand[i])
3694 ep->can_eliminate = 0;
3697 /* Companion to the above plus substitution, we can allow
3698 invariants as the source of a plain move. */
3699 is_set_src = false;
3700 if (old_set && recog_data.operand_loc[i] == &SET_SRC (old_set))
3701 is_set_src = true;
3702 if (is_set_src && !sets_reg_p)
3703 note_reg_elim_costly (SET_SRC (old_set), insn);
3704 in_plus = false;
3705 if (plus_src && sets_reg_p
3706 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3707 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3708 in_plus = true;
3710 eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3711 NULL_RTX,
3712 is_set_src || in_plus, true);
3713 /* Terminate the search in check_eliminable_occurrences at
3714 this point. */
3715 *recog_data.operand_loc[i] = 0;
3719 for (i = 0; i < n_dups; i++)
3720 *recog_data.dup_loc[i]
3721 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3723 /* If any eliminable remain, they aren't eliminable anymore. */
3724 check_eliminable_occurrences (old_body);
3726 /* Restore the old body. */
3727 for (i = 0; i < n_operands; i++)
3728 *recog_data.operand_loc[i] = orig_operand[i];
3729 for (i = 0; i < n_dups; i++)
3730 *recog_data.dup_loc[i] = orig_dup[i];
3732 /* Update all elimination pairs to reflect the status after the current
3733 insn. The changes we make were determined by the earlier call to
3734 elimination_effects. */
3736 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3738 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3739 ep->can_eliminate = 0;
3741 ep->ref_outside_mem = 0;
3744 return;
3746 #pragma GCC diagnostic pop
3748 /* Loop through all elimination pairs.
3749 Recalculate the number not at initial offset.
3751 Compute the maximum offset (minimum offset if the stack does not
3752 grow downward) for each elimination pair. */
3754 static void
3755 update_eliminable_offsets (void)
3757 struct elim_table *ep;
3759 num_not_at_initial_offset = 0;
3760 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3762 ep->previous_offset = ep->offset;
3763 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3764 num_not_at_initial_offset++;
3768 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3769 replacement we currently believe is valid, mark it as not eliminable if X
3770 modifies DEST in any way other than by adding a constant integer to it.
3772 If DEST is the frame pointer, we do nothing because we assume that
3773 all assignments to the hard frame pointer are nonlocal gotos and are being
3774 done at a time when they are valid and do not disturb anything else.
3775 Some machines want to eliminate a fake argument pointer with either the
3776 frame or stack pointer. Assignments to the hard frame pointer must not
3777 prevent this elimination.
3779 Called via note_stores from reload before starting its passes to scan
3780 the insns of the function. */
3782 static void
3783 mark_not_eliminable (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
3785 unsigned int i;
3787 /* A SUBREG of a hard register here is just changing its mode. We should
3788 not see a SUBREG of an eliminable hard register, but check just in
3789 case. */
3790 if (GET_CODE (dest) == SUBREG)
3791 dest = SUBREG_REG (dest);
3793 if (dest == hard_frame_pointer_rtx)
3794 return;
3796 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3797 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3798 && (GET_CODE (x) != SET
3799 || GET_CODE (SET_SRC (x)) != PLUS
3800 || XEXP (SET_SRC (x), 0) != dest
3801 || !CONST_INT_P (XEXP (SET_SRC (x), 1))))
3803 reg_eliminate[i].can_eliminate_previous
3804 = reg_eliminate[i].can_eliminate = 0;
3805 num_eliminable--;
3809 /* Verify that the initial elimination offsets did not change since the
3810 last call to set_initial_elim_offsets. This is used to catch cases
3811 where something illegal happened during reload_as_needed that could
3812 cause incorrect code to be generated if we did not check for it. */
3814 static bool
3815 verify_initial_elim_offsets (void)
3817 HOST_WIDE_INT t;
3818 struct elim_table *ep;
3820 if (!num_eliminable)
3821 return true;
3823 targetm.compute_frame_layout ();
3824 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3826 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3827 if (t != ep->initial_offset)
3828 return false;
3831 return true;
3834 /* Reset all offsets on eliminable registers to their initial values. */
3836 static void
3837 set_initial_elim_offsets (void)
3839 struct elim_table *ep = reg_eliminate;
3841 targetm.compute_frame_layout ();
3842 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3844 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3845 ep->previous_offset = ep->offset = ep->initial_offset;
3848 num_not_at_initial_offset = 0;
3851 /* Subroutine of set_initial_label_offsets called via for_each_eh_label. */
3853 static void
3854 set_initial_eh_label_offset (rtx label)
3856 set_label_offsets (label, NULL, 1);
3859 /* Initialize the known label offsets.
3860 Set a known offset for each forced label to be at the initial offset
3861 of each elimination. We do this because we assume that all
3862 computed jumps occur from a location where each elimination is
3863 at its initial offset.
3864 For all other labels, show that we don't know the offsets. */
3866 static void
3867 set_initial_label_offsets (void)
3869 memset (offsets_known_at, 0, num_labels);
3871 unsigned int i;
3872 rtx_insn *insn;
3873 FOR_EACH_VEC_SAFE_ELT (forced_labels, i, insn)
3874 set_label_offsets (insn, NULL, 1);
3876 for (rtx_insn_list *x = nonlocal_goto_handler_labels; x; x = x->next ())
3877 if (x->insn ())
3878 set_label_offsets (x->insn (), NULL, 1);
3880 for_each_eh_label (set_initial_eh_label_offset);
3883 /* Set all elimination offsets to the known values for the code label given
3884 by INSN. */
3886 static void
3887 set_offsets_for_label (rtx_insn *insn)
3889 unsigned int i;
3890 int label_nr = CODE_LABEL_NUMBER (insn);
3891 struct elim_table *ep;
3893 num_not_at_initial_offset = 0;
3894 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3896 ep->offset = ep->previous_offset
3897 = offsets_at[label_nr - first_label_num][i];
3898 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3899 num_not_at_initial_offset++;
3903 /* See if anything that happened changes which eliminations are valid.
3904 For example, on the SPARC, whether or not the frame pointer can
3905 be eliminated can depend on what registers have been used. We need
3906 not check some conditions again (such as flag_omit_frame_pointer)
3907 since they can't have changed. */
3909 static void
3910 update_eliminables (HARD_REG_SET *pset)
3912 int previous_frame_pointer_needed = frame_pointer_needed;
3913 struct elim_table *ep;
3915 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3916 if ((ep->from == HARD_FRAME_POINTER_REGNUM
3917 && targetm.frame_pointer_required ())
3918 || ! targetm.can_eliminate (ep->from, ep->to)
3920 ep->can_eliminate = 0;
3922 /* Look for the case where we have discovered that we can't replace
3923 register A with register B and that means that we will now be
3924 trying to replace register A with register C. This means we can
3925 no longer replace register C with register B and we need to disable
3926 such an elimination, if it exists. This occurs often with A == ap,
3927 B == sp, and C == fp. */
3929 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3931 struct elim_table *op;
3932 int new_to = -1;
3934 if (! ep->can_eliminate && ep->can_eliminate_previous)
3936 /* Find the current elimination for ep->from, if there is a
3937 new one. */
3938 for (op = reg_eliminate;
3939 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3940 if (op->from == ep->from && op->can_eliminate)
3942 new_to = op->to;
3943 break;
3946 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3947 disable it. */
3948 for (op = reg_eliminate;
3949 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3950 if (op->from == new_to && op->to == ep->to)
3951 op->can_eliminate = 0;
3955 /* See if any registers that we thought we could eliminate the previous
3956 time are no longer eliminable. If so, something has changed and we
3957 must spill the register. Also, recompute the number of eliminable
3958 registers and see if the frame pointer is needed; it is if there is
3959 no elimination of the frame pointer that we can perform. */
3961 frame_pointer_needed = 1;
3962 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3964 if (ep->can_eliminate
3965 && ep->from == FRAME_POINTER_REGNUM
3966 && ep->to != HARD_FRAME_POINTER_REGNUM
3967 && (! SUPPORTS_STACK_ALIGNMENT
3968 || ! crtl->stack_realign_needed))
3969 frame_pointer_needed = 0;
3971 if (! ep->can_eliminate && ep->can_eliminate_previous)
3973 ep->can_eliminate_previous = 0;
3974 SET_HARD_REG_BIT (*pset, ep->from);
3975 num_eliminable--;
3979 /* If we didn't need a frame pointer last time, but we do now, spill
3980 the hard frame pointer. */
3981 if (frame_pointer_needed && ! previous_frame_pointer_needed)
3982 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
3985 /* Call update_eliminables an spill any registers we can't eliminate anymore.
3986 Return true iff a register was spilled. */
3988 static bool
3989 update_eliminables_and_spill (void)
3991 int i;
3992 bool did_spill = false;
3993 HARD_REG_SET to_spill;
3994 CLEAR_HARD_REG_SET (to_spill);
3995 update_eliminables (&to_spill);
3996 AND_COMPL_HARD_REG_SET (used_spill_regs, to_spill);
3998 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3999 if (TEST_HARD_REG_BIT (to_spill, i))
4001 spill_hard_reg (i, 1);
4002 did_spill = true;
4004 /* Regardless of the state of spills, if we previously had
4005 a register that we thought we could eliminate, but now can
4006 not eliminate, we must run another pass.
4008 Consider pseudos which have an entry in reg_equiv_* which
4009 reference an eliminable register. We must make another pass
4010 to update reg_equiv_* so that we do not substitute in the
4011 old value from when we thought the elimination could be
4012 performed. */
4014 return did_spill;
4017 /* Return true if X is used as the target register of an elimination. */
4019 bool
4020 elimination_target_reg_p (rtx x)
4022 struct elim_table *ep;
4024 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4025 if (ep->to_rtx == x && ep->can_eliminate)
4026 return true;
4028 return false;
4031 /* Initialize the table of registers to eliminate.
4032 Pre-condition: global flag frame_pointer_needed has been set before
4033 calling this function. */
4035 static void
4036 init_elim_table (void)
4038 struct elim_table *ep;
4039 const struct elim_table_1 *ep1;
4041 if (!reg_eliminate)
4042 reg_eliminate = XCNEWVEC (struct elim_table, NUM_ELIMINABLE_REGS);
4044 num_eliminable = 0;
4046 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
4047 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
4049 ep->from = ep1->from;
4050 ep->to = ep1->to;
4051 ep->can_eliminate = ep->can_eliminate_previous
4052 = (targetm.can_eliminate (ep->from, ep->to)
4053 && ! (ep->to == STACK_POINTER_REGNUM
4054 && frame_pointer_needed
4055 && (! SUPPORTS_STACK_ALIGNMENT
4056 || ! stack_realign_fp)));
4059 /* Count the number of eliminable registers and build the FROM and TO
4060 REG rtx's. Note that code in gen_rtx_REG will cause, e.g.,
4061 gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
4062 We depend on this. */
4063 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4065 num_eliminable += ep->can_eliminate;
4066 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
4067 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
4071 /* Find all the pseudo registers that didn't get hard regs
4072 but do have known equivalent constants or memory slots.
4073 These include parameters (known equivalent to parameter slots)
4074 and cse'd or loop-moved constant memory addresses.
4076 Record constant equivalents in reg_equiv_constant
4077 so they will be substituted by find_reloads.
4078 Record memory equivalents in reg_mem_equiv so they can
4079 be substituted eventually by altering the REG-rtx's. */
4081 static void
4082 init_eliminable_invariants (rtx_insn *first, bool do_subregs)
4084 int i;
4085 rtx_insn *insn;
4087 grow_reg_equivs ();
4088 if (do_subregs)
4089 reg_max_ref_width = XCNEWVEC (unsigned int, max_regno);
4090 else
4091 reg_max_ref_width = NULL;
4093 num_eliminable_invariants = 0;
4095 first_label_num = get_first_label_num ();
4096 num_labels = max_label_num () - first_label_num;
4098 /* Allocate the tables used to store offset information at labels. */
4099 offsets_known_at = XNEWVEC (char, num_labels);
4100 offsets_at = (HOST_WIDE_INT (*)[NUM_ELIMINABLE_REGS]) xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (HOST_WIDE_INT));
4102 /* Look for REG_EQUIV notes; record what each pseudo is equivalent
4103 to. If DO_SUBREGS is true, also find all paradoxical subregs and
4104 find largest such for each pseudo. FIRST is the head of the insn
4105 list. */
4107 for (insn = first; insn; insn = NEXT_INSN (insn))
4109 rtx set = single_set (insn);
4111 /* We may introduce USEs that we want to remove at the end, so
4112 we'll mark them with QImode. Make sure there are no
4113 previously-marked insns left by say regmove. */
4114 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
4115 && GET_MODE (insn) != VOIDmode)
4116 PUT_MODE (insn, VOIDmode);
4118 if (do_subregs && NONDEBUG_INSN_P (insn))
4119 scan_paradoxical_subregs (PATTERN (insn));
4121 if (set != 0 && REG_P (SET_DEST (set)))
4123 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
4124 rtx x;
4126 if (! note)
4127 continue;
4129 i = REGNO (SET_DEST (set));
4130 x = XEXP (note, 0);
4132 if (i <= LAST_VIRTUAL_REGISTER)
4133 continue;
4135 /* If flag_pic and we have constant, verify it's legitimate. */
4136 if (!CONSTANT_P (x)
4137 || !flag_pic || LEGITIMATE_PIC_OPERAND_P (x))
4139 /* It can happen that a REG_EQUIV note contains a MEM
4140 that is not a legitimate memory operand. As later
4141 stages of reload assume that all addresses found
4142 in the reg_equiv_* arrays were originally legitimate,
4143 we ignore such REG_EQUIV notes. */
4144 if (memory_operand (x, VOIDmode))
4146 /* Always unshare the equivalence, so we can
4147 substitute into this insn without touching the
4148 equivalence. */
4149 reg_equiv_memory_loc (i) = copy_rtx (x);
4151 else if (function_invariant_p (x))
4153 machine_mode mode;
4155 mode = GET_MODE (SET_DEST (set));
4156 if (GET_CODE (x) == PLUS)
4158 /* This is PLUS of frame pointer and a constant,
4159 and might be shared. Unshare it. */
4160 reg_equiv_invariant (i) = copy_rtx (x);
4161 num_eliminable_invariants++;
4163 else if (x == frame_pointer_rtx || x == arg_pointer_rtx)
4165 reg_equiv_invariant (i) = x;
4166 num_eliminable_invariants++;
4168 else if (targetm.legitimate_constant_p (mode, x))
4169 reg_equiv_constant (i) = x;
4170 else
4172 reg_equiv_memory_loc (i) = force_const_mem (mode, x);
4173 if (! reg_equiv_memory_loc (i))
4174 reg_equiv_init (i) = NULL;
4177 else
4179 reg_equiv_init (i) = NULL;
4180 continue;
4183 else
4184 reg_equiv_init (i) = NULL;
4188 if (dump_file)
4189 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4190 if (reg_equiv_init (i))
4192 fprintf (dump_file, "init_insns for %u: ", i);
4193 print_inline_rtx (dump_file, reg_equiv_init (i), 20);
4194 fprintf (dump_file, "\n");
4198 /* Indicate that we no longer have known memory locations or constants.
4199 Free all data involved in tracking these. */
4201 static void
4202 free_reg_equiv (void)
4204 int i;
4206 free (offsets_known_at);
4207 free (offsets_at);
4208 offsets_at = 0;
4209 offsets_known_at = 0;
4211 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4212 if (reg_equiv_alt_mem_list (i))
4213 free_EXPR_LIST_list (&reg_equiv_alt_mem_list (i));
4214 vec_free (reg_equivs);
4217 /* Kick all pseudos out of hard register REGNO.
4219 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
4220 because we found we can't eliminate some register. In the case, no pseudos
4221 are allowed to be in the register, even if they are only in a block that
4222 doesn't require spill registers, unlike the case when we are spilling this
4223 hard reg to produce another spill register.
4225 Return nonzero if any pseudos needed to be kicked out. */
4227 static void
4228 spill_hard_reg (unsigned int regno, int cant_eliminate)
4230 int i;
4232 if (cant_eliminate)
4234 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
4235 df_set_regs_ever_live (regno, true);
4238 /* Spill every pseudo reg that was allocated to this reg
4239 or to something that overlaps this reg. */
4241 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4242 if (reg_renumber[i] >= 0
4243 && (unsigned int) reg_renumber[i] <= regno
4244 && end_hard_regno (PSEUDO_REGNO_MODE (i), reg_renumber[i]) > regno)
4245 SET_REGNO_REG_SET (&spilled_pseudos, i);
4248 /* After spill_hard_reg was called and/or find_reload_regs was run for all
4249 insns that need reloads, this function is used to actually spill pseudo
4250 registers and try to reallocate them. It also sets up the spill_regs
4251 array for use by choose_reload_regs.
4253 GLOBAL nonzero means we should attempt to reallocate any pseudo registers
4254 that we displace from hard registers. */
4256 static int
4257 finish_spills (int global)
4259 struct insn_chain *chain;
4260 int something_changed = 0;
4261 unsigned i;
4262 reg_set_iterator rsi;
4264 /* Build the spill_regs array for the function. */
4265 /* If there are some registers still to eliminate and one of the spill regs
4266 wasn't ever used before, additional stack space may have to be
4267 allocated to store this register. Thus, we may have changed the offset
4268 between the stack and frame pointers, so mark that something has changed.
4270 One might think that we need only set VAL to 1 if this is a call-used
4271 register. However, the set of registers that must be saved by the
4272 prologue is not identical to the call-used set. For example, the
4273 register used by the call insn for the return PC is a call-used register,
4274 but must be saved by the prologue. */
4276 n_spills = 0;
4277 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4278 if (TEST_HARD_REG_BIT (used_spill_regs, i))
4280 spill_reg_order[i] = n_spills;
4281 spill_regs[n_spills++] = i;
4282 if (num_eliminable && ! df_regs_ever_live_p (i))
4283 something_changed = 1;
4284 df_set_regs_ever_live (i, true);
4286 else
4287 spill_reg_order[i] = -1;
4289 EXECUTE_IF_SET_IN_REG_SET (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i, rsi)
4290 if (! ira_conflicts_p || reg_renumber[i] >= 0)
4292 /* Record the current hard register the pseudo is allocated to
4293 in pseudo_previous_regs so we avoid reallocating it to the
4294 same hard reg in a later pass. */
4295 gcc_assert (reg_renumber[i] >= 0);
4297 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
4298 /* Mark it as no longer having a hard register home. */
4299 reg_renumber[i] = -1;
4300 if (ira_conflicts_p)
4301 /* Inform IRA about the change. */
4302 ira_mark_allocation_change (i);
4303 /* We will need to scan everything again. */
4304 something_changed = 1;
4307 /* Retry global register allocation if possible. */
4308 if (global && ira_conflicts_p)
4310 unsigned int n;
4312 memset (pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
4313 /* For every insn that needs reloads, set the registers used as spill
4314 regs in pseudo_forbidden_regs for every pseudo live across the
4315 insn. */
4316 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
4318 EXECUTE_IF_SET_IN_REG_SET
4319 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
4321 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4322 chain->used_spill_regs);
4324 EXECUTE_IF_SET_IN_REG_SET
4325 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
4327 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4328 chain->used_spill_regs);
4332 /* Retry allocating the pseudos spilled in IRA and the
4333 reload. For each reg, merge the various reg sets that
4334 indicate which hard regs can't be used, and call
4335 ira_reassign_pseudos. */
4336 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < (unsigned) max_regno; i++)
4337 if (reg_old_renumber[i] != reg_renumber[i])
4339 if (reg_renumber[i] < 0)
4340 temp_pseudo_reg_arr[n++] = i;
4341 else
4342 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
4344 if (ira_reassign_pseudos (temp_pseudo_reg_arr, n,
4345 bad_spill_regs_global,
4346 pseudo_forbidden_regs, pseudo_previous_regs,
4347 &spilled_pseudos))
4348 something_changed = 1;
4350 /* Fix up the register information in the insn chain.
4351 This involves deleting those of the spilled pseudos which did not get
4352 a new hard register home from the live_{before,after} sets. */
4353 for (chain = reload_insn_chain; chain; chain = chain->next)
4355 HARD_REG_SET used_by_pseudos;
4356 HARD_REG_SET used_by_pseudos2;
4358 if (! ira_conflicts_p)
4360 /* Don't do it for IRA because IRA and the reload still can
4361 assign hard registers to the spilled pseudos on next
4362 reload iterations. */
4363 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
4364 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
4366 /* Mark any unallocated hard regs as available for spills. That
4367 makes inheritance work somewhat better. */
4368 if (chain->need_reload)
4370 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
4371 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
4372 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
4374 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
4375 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
4376 /* Value of chain->used_spill_regs from previous iteration
4377 may be not included in the value calculated here because
4378 of possible removing caller-saves insns (see function
4379 delete_caller_save_insns. */
4380 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
4381 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
4385 CLEAR_REG_SET (&changed_allocation_pseudos);
4386 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
4387 for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
4389 int regno = reg_renumber[i];
4390 if (reg_old_renumber[i] == regno)
4391 continue;
4393 SET_REGNO_REG_SET (&changed_allocation_pseudos, i);
4395 alter_reg (i, reg_old_renumber[i], false);
4396 reg_old_renumber[i] = regno;
4397 if (dump_file)
4399 if (regno == -1)
4400 fprintf (dump_file, " Register %d now on stack.\n\n", i);
4401 else
4402 fprintf (dump_file, " Register %d now in %d.\n\n",
4403 i, reg_renumber[i]);
4407 return something_changed;
4410 /* Find all paradoxical subregs within X and update reg_max_ref_width. */
4412 static void
4413 scan_paradoxical_subregs (rtx x)
4415 int i;
4416 const char *fmt;
4417 enum rtx_code code = GET_CODE (x);
4419 switch (code)
4421 case REG:
4422 case CONST:
4423 case SYMBOL_REF:
4424 case LABEL_REF:
4425 CASE_CONST_ANY:
4426 case CC0:
4427 case PC:
4428 case USE:
4429 case CLOBBER:
4430 return;
4432 case SUBREG:
4433 if (REG_P (SUBREG_REG (x))
4434 && (GET_MODE_SIZE (GET_MODE (x))
4435 > reg_max_ref_width[REGNO (SUBREG_REG (x))]))
4437 reg_max_ref_width[REGNO (SUBREG_REG (x))]
4438 = GET_MODE_SIZE (GET_MODE (x));
4439 mark_home_live_1 (REGNO (SUBREG_REG (x)), GET_MODE (x));
4441 return;
4443 default:
4444 break;
4447 fmt = GET_RTX_FORMAT (code);
4448 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4450 if (fmt[i] == 'e')
4451 scan_paradoxical_subregs (XEXP (x, i));
4452 else if (fmt[i] == 'E')
4454 int j;
4455 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4456 scan_paradoxical_subregs (XVECEXP (x, i, j));
4461 /* *OP_PTR and *OTHER_PTR are two operands to a conceptual reload.
4462 If *OP_PTR is a paradoxical subreg, try to remove that subreg
4463 and apply the corresponding narrowing subreg to *OTHER_PTR.
4464 Return true if the operands were changed, false otherwise. */
4466 static bool
4467 strip_paradoxical_subreg (rtx *op_ptr, rtx *other_ptr)
4469 rtx op, inner, other, tem;
4471 op = *op_ptr;
4472 if (!paradoxical_subreg_p (op))
4473 return false;
4474 inner = SUBREG_REG (op);
4476 other = *other_ptr;
4477 tem = gen_lowpart_common (GET_MODE (inner), other);
4478 if (!tem)
4479 return false;
4481 /* If the lowpart operation turned a hard register into a subreg,
4482 rather than simplifying it to another hard register, then the
4483 mode change cannot be properly represented. For example, OTHER
4484 might be valid in its current mode, but not in the new one. */
4485 if (GET_CODE (tem) == SUBREG
4486 && REG_P (other)
4487 && HARD_REGISTER_P (other))
4488 return false;
4490 *op_ptr = inner;
4491 *other_ptr = tem;
4492 return true;
4495 /* A subroutine of reload_as_needed. If INSN has a REG_EH_REGION note,
4496 examine all of the reload insns between PREV and NEXT exclusive, and
4497 annotate all that may trap. */
4499 static void
4500 fixup_eh_region_note (rtx_insn *insn, rtx_insn *prev, rtx_insn *next)
4502 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
4503 if (note == NULL)
4504 return;
4505 if (!insn_could_throw_p (insn))
4506 remove_note (insn, note);
4507 copy_reg_eh_region_note_forward (note, NEXT_INSN (prev), next);
4510 /* Reload pseudo-registers into hard regs around each insn as needed.
4511 Additional register load insns are output before the insn that needs it
4512 and perhaps store insns after insns that modify the reloaded pseudo reg.
4514 reg_last_reload_reg and reg_reloaded_contents keep track of
4515 which registers are already available in reload registers.
4516 We update these for the reloads that we perform,
4517 as the insns are scanned. */
4519 static void
4520 reload_as_needed (int live_known)
4522 struct insn_chain *chain;
4523 #if AUTO_INC_DEC
4524 int i;
4525 #endif
4526 rtx_note *marker;
4528 memset (spill_reg_rtx, 0, sizeof spill_reg_rtx);
4529 memset (spill_reg_store, 0, sizeof spill_reg_store);
4530 reg_last_reload_reg = XCNEWVEC (rtx, max_regno);
4531 INIT_REG_SET (&reg_has_output_reload);
4532 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4533 CLEAR_HARD_REG_SET (reg_reloaded_call_part_clobbered);
4535 set_initial_elim_offsets ();
4537 /* Generate a marker insn that we will move around. */
4538 marker = emit_note (NOTE_INSN_DELETED);
4539 unlink_insn_chain (marker, marker);
4541 for (chain = reload_insn_chain; chain; chain = chain->next)
4543 rtx_insn *prev = 0;
4544 rtx_insn *insn = chain->insn;
4545 rtx_insn *old_next = NEXT_INSN (insn);
4546 #if AUTO_INC_DEC
4547 rtx_insn *old_prev = PREV_INSN (insn);
4548 #endif
4550 if (will_delete_init_insn_p (insn))
4551 continue;
4553 /* If we pass a label, copy the offsets from the label information
4554 into the current offsets of each elimination. */
4555 if (LABEL_P (insn))
4556 set_offsets_for_label (insn);
4558 else if (INSN_P (insn))
4560 regset_head regs_to_forget;
4561 INIT_REG_SET (&regs_to_forget);
4562 note_stores (PATTERN (insn), forget_old_reloads_1, &regs_to_forget);
4564 /* If this is a USE and CLOBBER of a MEM, ensure that any
4565 references to eliminable registers have been removed. */
4567 if ((GET_CODE (PATTERN (insn)) == USE
4568 || GET_CODE (PATTERN (insn)) == CLOBBER)
4569 && MEM_P (XEXP (PATTERN (insn), 0)))
4570 XEXP (XEXP (PATTERN (insn), 0), 0)
4571 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
4572 GET_MODE (XEXP (PATTERN (insn), 0)),
4573 NULL_RTX);
4575 /* If we need to do register elimination processing, do so.
4576 This might delete the insn, in which case we are done. */
4577 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
4579 eliminate_regs_in_insn (insn, 1);
4580 if (NOTE_P (insn))
4582 update_eliminable_offsets ();
4583 CLEAR_REG_SET (&regs_to_forget);
4584 continue;
4588 /* If need_elim is nonzero but need_reload is zero, one might think
4589 that we could simply set n_reloads to 0. However, find_reloads
4590 could have done some manipulation of the insn (such as swapping
4591 commutative operands), and these manipulations are lost during
4592 the first pass for every insn that needs register elimination.
4593 So the actions of find_reloads must be redone here. */
4595 if (! chain->need_elim && ! chain->need_reload
4596 && ! chain->need_operand_change)
4597 n_reloads = 0;
4598 /* First find the pseudo regs that must be reloaded for this insn.
4599 This info is returned in the tables reload_... (see reload.h).
4600 Also modify the body of INSN by substituting RELOAD
4601 rtx's for those pseudo regs. */
4602 else
4604 CLEAR_REG_SET (&reg_has_output_reload);
4605 CLEAR_HARD_REG_SET (reg_is_output_reload);
4607 find_reloads (insn, 1, spill_indirect_levels, live_known,
4608 spill_reg_order);
4611 if (n_reloads > 0)
4613 rtx_insn *next = NEXT_INSN (insn);
4615 /* ??? PREV can get deleted by reload inheritance.
4616 Work around this by emitting a marker note. */
4617 prev = PREV_INSN (insn);
4618 reorder_insns_nobb (marker, marker, prev);
4620 /* Now compute which reload regs to reload them into. Perhaps
4621 reusing reload regs from previous insns, or else output
4622 load insns to reload them. Maybe output store insns too.
4623 Record the choices of reload reg in reload_reg_rtx. */
4624 choose_reload_regs (chain);
4626 /* Generate the insns to reload operands into or out of
4627 their reload regs. */
4628 emit_reload_insns (chain);
4630 /* Substitute the chosen reload regs from reload_reg_rtx
4631 into the insn's body (or perhaps into the bodies of other
4632 load and store insn that we just made for reloading
4633 and that we moved the structure into). */
4634 subst_reloads (insn);
4636 prev = PREV_INSN (marker);
4637 unlink_insn_chain (marker, marker);
4639 /* Adjust the exception region notes for loads and stores. */
4640 if (cfun->can_throw_non_call_exceptions && !CALL_P (insn))
4641 fixup_eh_region_note (insn, prev, next);
4643 /* Adjust the location of REG_ARGS_SIZE. */
4644 rtx p = find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX);
4645 if (p)
4647 remove_note (insn, p);
4648 fixup_args_size_notes (prev, PREV_INSN (next),
4649 INTVAL (XEXP (p, 0)));
4652 /* If this was an ASM, make sure that all the reload insns
4653 we have generated are valid. If not, give an error
4654 and delete them. */
4655 if (asm_noperands (PATTERN (insn)) >= 0)
4656 for (rtx_insn *p = NEXT_INSN (prev);
4657 p != next;
4658 p = NEXT_INSN (p))
4659 if (p != insn && INSN_P (p)
4660 && GET_CODE (PATTERN (p)) != USE
4661 && (recog_memoized (p) < 0
4662 || (extract_insn (p),
4663 !(constrain_operands (1,
4664 get_enabled_alternatives (p))))))
4666 error_for_asm (insn,
4667 "%<asm%> operand requires "
4668 "impossible reload");
4669 delete_insn (p);
4673 if (num_eliminable && chain->need_elim)
4674 update_eliminable_offsets ();
4676 /* Any previously reloaded spilled pseudo reg, stored in this insn,
4677 is no longer validly lying around to save a future reload.
4678 Note that this does not detect pseudos that were reloaded
4679 for this insn in order to be stored in
4680 (obeying register constraints). That is correct; such reload
4681 registers ARE still valid. */
4682 forget_marked_reloads (&regs_to_forget);
4683 CLEAR_REG_SET (&regs_to_forget);
4685 /* There may have been CLOBBER insns placed after INSN. So scan
4686 between INSN and NEXT and use them to forget old reloads. */
4687 for (rtx_insn *x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
4688 if (NONJUMP_INSN_P (x) && GET_CODE (PATTERN (x)) == CLOBBER)
4689 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
4691 #if AUTO_INC_DEC
4692 /* Likewise for regs altered by auto-increment in this insn.
4693 REG_INC notes have been changed by reloading:
4694 find_reloads_address_1 records substitutions for them,
4695 which have been performed by subst_reloads above. */
4696 for (i = n_reloads - 1; i >= 0; i--)
4698 rtx in_reg = rld[i].in_reg;
4699 if (in_reg)
4701 enum rtx_code code = GET_CODE (in_reg);
4702 /* PRE_INC / PRE_DEC will have the reload register ending up
4703 with the same value as the stack slot, but that doesn't
4704 hold true for POST_INC / POST_DEC. Either we have to
4705 convert the memory access to a true POST_INC / POST_DEC,
4706 or we can't use the reload register for inheritance. */
4707 if ((code == POST_INC || code == POST_DEC)
4708 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4709 REGNO (rld[i].reg_rtx))
4710 /* Make sure it is the inc/dec pseudo, and not
4711 some other (e.g. output operand) pseudo. */
4712 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4713 == REGNO (XEXP (in_reg, 0))))
4716 rtx reload_reg = rld[i].reg_rtx;
4717 machine_mode mode = GET_MODE (reload_reg);
4718 int n = 0;
4719 rtx_insn *p;
4721 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
4723 /* We really want to ignore REG_INC notes here, so
4724 use PATTERN (p) as argument to reg_set_p . */
4725 if (reg_set_p (reload_reg, PATTERN (p)))
4726 break;
4727 n = count_occurrences (PATTERN (p), reload_reg, 0);
4728 if (! n)
4729 continue;
4730 if (n == 1)
4732 rtx replace_reg
4733 = gen_rtx_fmt_e (code, mode, reload_reg);
4735 validate_replace_rtx_group (reload_reg,
4736 replace_reg, p);
4737 n = verify_changes (0);
4739 /* We must also verify that the constraints
4740 are met after the replacement. Make sure
4741 extract_insn is only called for an insn
4742 where the replacements were found to be
4743 valid so far. */
4744 if (n)
4746 extract_insn (p);
4747 n = constrain_operands (1,
4748 get_enabled_alternatives (p));
4751 /* If the constraints were not met, then
4752 undo the replacement, else confirm it. */
4753 if (!n)
4754 cancel_changes (0);
4755 else
4756 confirm_change_group ();
4758 break;
4760 if (n == 1)
4762 add_reg_note (p, REG_INC, reload_reg);
4763 /* Mark this as having an output reload so that the
4764 REG_INC processing code below won't invalidate
4765 the reload for inheritance. */
4766 SET_HARD_REG_BIT (reg_is_output_reload,
4767 REGNO (reload_reg));
4768 SET_REGNO_REG_SET (&reg_has_output_reload,
4769 REGNO (XEXP (in_reg, 0)));
4771 else
4772 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
4773 NULL);
4775 else if ((code == PRE_INC || code == PRE_DEC)
4776 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4777 REGNO (rld[i].reg_rtx))
4778 /* Make sure it is the inc/dec pseudo, and not
4779 some other (e.g. output operand) pseudo. */
4780 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4781 == REGNO (XEXP (in_reg, 0))))
4783 SET_HARD_REG_BIT (reg_is_output_reload,
4784 REGNO (rld[i].reg_rtx));
4785 SET_REGNO_REG_SET (&reg_has_output_reload,
4786 REGNO (XEXP (in_reg, 0)));
4788 else if (code == PRE_INC || code == PRE_DEC
4789 || code == POST_INC || code == POST_DEC)
4791 int in_regno = REGNO (XEXP (in_reg, 0));
4793 if (reg_last_reload_reg[in_regno] != NULL_RTX)
4795 int in_hard_regno;
4796 bool forget_p = true;
4798 in_hard_regno = REGNO (reg_last_reload_reg[in_regno]);
4799 if (TEST_HARD_REG_BIT (reg_reloaded_valid,
4800 in_hard_regno))
4802 for (rtx_insn *x = (old_prev ?
4803 NEXT_INSN (old_prev) : insn);
4804 x != old_next;
4805 x = NEXT_INSN (x))
4806 if (x == reg_reloaded_insn[in_hard_regno])
4808 forget_p = false;
4809 break;
4812 /* If for some reasons, we didn't set up
4813 reg_last_reload_reg in this insn,
4814 invalidate inheritance from previous
4815 insns for the incremented/decremented
4816 register. Such registers will be not in
4817 reg_has_output_reload. Invalidate it
4818 also if the corresponding element in
4819 reg_reloaded_insn is also
4820 invalidated. */
4821 if (forget_p)
4822 forget_old_reloads_1 (XEXP (in_reg, 0),
4823 NULL_RTX, NULL);
4828 /* If a pseudo that got a hard register is auto-incremented,
4829 we must purge records of copying it into pseudos without
4830 hard registers. */
4831 for (rtx x = REG_NOTES (insn); x; x = XEXP (x, 1))
4832 if (REG_NOTE_KIND (x) == REG_INC)
4834 /* See if this pseudo reg was reloaded in this insn.
4835 If so, its last-reload info is still valid
4836 because it is based on this insn's reload. */
4837 for (i = 0; i < n_reloads; i++)
4838 if (rld[i].out == XEXP (x, 0))
4839 break;
4841 if (i == n_reloads)
4842 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4844 #endif
4846 /* A reload reg's contents are unknown after a label. */
4847 if (LABEL_P (insn))
4848 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4850 /* Don't assume a reload reg is still good after a call insn
4851 if it is a call-used reg, or if it contains a value that will
4852 be partially clobbered by the call. */
4853 else if (CALL_P (insn))
4855 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
4856 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, reg_reloaded_call_part_clobbered);
4858 /* If this is a call to a setjmp-type function, we must not
4859 reuse any reload reg contents across the call; that will
4860 just be clobbered by other uses of the register in later
4861 code, before the longjmp. */
4862 if (find_reg_note (insn, REG_SETJMP, NULL_RTX))
4863 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4867 /* Clean up. */
4868 free (reg_last_reload_reg);
4869 CLEAR_REG_SET (&reg_has_output_reload);
4872 /* Discard all record of any value reloaded from X,
4873 or reloaded in X from someplace else;
4874 unless X is an output reload reg of the current insn.
4876 X may be a hard reg (the reload reg)
4877 or it may be a pseudo reg that was reloaded from.
4879 When DATA is non-NULL just mark the registers in regset
4880 to be forgotten later. */
4882 static void
4883 forget_old_reloads_1 (rtx x, const_rtx ignored ATTRIBUTE_UNUSED,
4884 void *data)
4886 unsigned int regno;
4887 unsigned int nr;
4888 regset regs = (regset) data;
4890 /* note_stores does give us subregs of hard regs,
4891 subreg_regno_offset requires a hard reg. */
4892 while (GET_CODE (x) == SUBREG)
4894 /* We ignore the subreg offset when calculating the regno,
4895 because we are using the entire underlying hard register
4896 below. */
4897 x = SUBREG_REG (x);
4900 if (!REG_P (x))
4901 return;
4903 regno = REGNO (x);
4905 if (regno >= FIRST_PSEUDO_REGISTER)
4906 nr = 1;
4907 else
4909 unsigned int i;
4911 nr = REG_NREGS (x);
4912 /* Storing into a spilled-reg invalidates its contents.
4913 This can happen if a block-local pseudo is allocated to that reg
4914 and it wasn't spilled because this block's total need is 0.
4915 Then some insn might have an optional reload and use this reg. */
4916 if (!regs)
4917 for (i = 0; i < nr; i++)
4918 /* But don't do this if the reg actually serves as an output
4919 reload reg in the current instruction. */
4920 if (n_reloads == 0
4921 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4923 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4924 spill_reg_store[regno + i] = 0;
4928 if (regs)
4929 while (nr-- > 0)
4930 SET_REGNO_REG_SET (regs, regno + nr);
4931 else
4933 /* Since value of X has changed,
4934 forget any value previously copied from it. */
4936 while (nr-- > 0)
4937 /* But don't forget a copy if this is the output reload
4938 that establishes the copy's validity. */
4939 if (n_reloads == 0
4940 || !REGNO_REG_SET_P (&reg_has_output_reload, regno + nr))
4941 reg_last_reload_reg[regno + nr] = 0;
4945 /* Forget the reloads marked in regset by previous function. */
4946 static void
4947 forget_marked_reloads (regset regs)
4949 unsigned int reg;
4950 reg_set_iterator rsi;
4951 EXECUTE_IF_SET_IN_REG_SET (regs, 0, reg, rsi)
4953 if (reg < FIRST_PSEUDO_REGISTER
4954 /* But don't do this if the reg actually serves as an output
4955 reload reg in the current instruction. */
4956 && (n_reloads == 0
4957 || ! TEST_HARD_REG_BIT (reg_is_output_reload, reg)))
4959 CLEAR_HARD_REG_BIT (reg_reloaded_valid, reg);
4960 spill_reg_store[reg] = 0;
4962 if (n_reloads == 0
4963 || !REGNO_REG_SET_P (&reg_has_output_reload, reg))
4964 reg_last_reload_reg[reg] = 0;
4968 /* The following HARD_REG_SETs indicate when each hard register is
4969 used for a reload of various parts of the current insn. */
4971 /* If reg is unavailable for all reloads. */
4972 static HARD_REG_SET reload_reg_unavailable;
4973 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
4974 static HARD_REG_SET reload_reg_used;
4975 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
4976 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
4977 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
4978 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
4979 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
4980 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
4981 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
4982 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
4983 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
4984 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
4985 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
4986 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
4987 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
4988 static HARD_REG_SET reload_reg_used_in_op_addr;
4989 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
4990 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
4991 /* If reg is in use for a RELOAD_FOR_INSN reload. */
4992 static HARD_REG_SET reload_reg_used_in_insn;
4993 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
4994 static HARD_REG_SET reload_reg_used_in_other_addr;
4996 /* If reg is in use as a reload reg for any sort of reload. */
4997 static HARD_REG_SET reload_reg_used_at_all;
4999 /* If reg is use as an inherited reload. We just mark the first register
5000 in the group. */
5001 static HARD_REG_SET reload_reg_used_for_inherit;
5003 /* Records which hard regs are used in any way, either as explicit use or
5004 by being allocated to a pseudo during any point of the current insn. */
5005 static HARD_REG_SET reg_used_in_insn;
5007 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
5008 TYPE. MODE is used to indicate how many consecutive regs are
5009 actually used. */
5011 static void
5012 mark_reload_reg_in_use (unsigned int regno, int opnum, enum reload_type type,
5013 machine_mode mode)
5015 switch (type)
5017 case RELOAD_OTHER:
5018 add_to_hard_reg_set (&reload_reg_used, mode, regno);
5019 break;
5021 case RELOAD_FOR_INPUT_ADDRESS:
5022 add_to_hard_reg_set (&reload_reg_used_in_input_addr[opnum], mode, regno);
5023 break;
5025 case RELOAD_FOR_INPADDR_ADDRESS:
5026 add_to_hard_reg_set (&reload_reg_used_in_inpaddr_addr[opnum], mode, regno);
5027 break;
5029 case RELOAD_FOR_OUTPUT_ADDRESS:
5030 add_to_hard_reg_set (&reload_reg_used_in_output_addr[opnum], mode, regno);
5031 break;
5033 case RELOAD_FOR_OUTADDR_ADDRESS:
5034 add_to_hard_reg_set (&reload_reg_used_in_outaddr_addr[opnum], mode, regno);
5035 break;
5037 case RELOAD_FOR_OPERAND_ADDRESS:
5038 add_to_hard_reg_set (&reload_reg_used_in_op_addr, mode, regno);
5039 break;
5041 case RELOAD_FOR_OPADDR_ADDR:
5042 add_to_hard_reg_set (&reload_reg_used_in_op_addr_reload, mode, regno);
5043 break;
5045 case RELOAD_FOR_OTHER_ADDRESS:
5046 add_to_hard_reg_set (&reload_reg_used_in_other_addr, mode, regno);
5047 break;
5049 case RELOAD_FOR_INPUT:
5050 add_to_hard_reg_set (&reload_reg_used_in_input[opnum], mode, regno);
5051 break;
5053 case RELOAD_FOR_OUTPUT:
5054 add_to_hard_reg_set (&reload_reg_used_in_output[opnum], mode, regno);
5055 break;
5057 case RELOAD_FOR_INSN:
5058 add_to_hard_reg_set (&reload_reg_used_in_insn, mode, regno);
5059 break;
5062 add_to_hard_reg_set (&reload_reg_used_at_all, mode, regno);
5065 /* Similarly, but show REGNO is no longer in use for a reload. */
5067 static void
5068 clear_reload_reg_in_use (unsigned int regno, int opnum,
5069 enum reload_type type, machine_mode mode)
5071 unsigned int nregs = hard_regno_nregs (regno, mode);
5072 unsigned int start_regno, end_regno, r;
5073 int i;
5074 /* A complication is that for some reload types, inheritance might
5075 allow multiple reloads of the same types to share a reload register.
5076 We set check_opnum if we have to check only reloads with the same
5077 operand number, and check_any if we have to check all reloads. */
5078 int check_opnum = 0;
5079 int check_any = 0;
5080 HARD_REG_SET *used_in_set;
5082 switch (type)
5084 case RELOAD_OTHER:
5085 used_in_set = &reload_reg_used;
5086 break;
5088 case RELOAD_FOR_INPUT_ADDRESS:
5089 used_in_set = &reload_reg_used_in_input_addr[opnum];
5090 break;
5092 case RELOAD_FOR_INPADDR_ADDRESS:
5093 check_opnum = 1;
5094 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
5095 break;
5097 case RELOAD_FOR_OUTPUT_ADDRESS:
5098 used_in_set = &reload_reg_used_in_output_addr[opnum];
5099 break;
5101 case RELOAD_FOR_OUTADDR_ADDRESS:
5102 check_opnum = 1;
5103 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
5104 break;
5106 case RELOAD_FOR_OPERAND_ADDRESS:
5107 used_in_set = &reload_reg_used_in_op_addr;
5108 break;
5110 case RELOAD_FOR_OPADDR_ADDR:
5111 check_any = 1;
5112 used_in_set = &reload_reg_used_in_op_addr_reload;
5113 break;
5115 case RELOAD_FOR_OTHER_ADDRESS:
5116 used_in_set = &reload_reg_used_in_other_addr;
5117 check_any = 1;
5118 break;
5120 case RELOAD_FOR_INPUT:
5121 used_in_set = &reload_reg_used_in_input[opnum];
5122 break;
5124 case RELOAD_FOR_OUTPUT:
5125 used_in_set = &reload_reg_used_in_output[opnum];
5126 break;
5128 case RELOAD_FOR_INSN:
5129 used_in_set = &reload_reg_used_in_insn;
5130 break;
5131 default:
5132 gcc_unreachable ();
5134 /* We resolve conflicts with remaining reloads of the same type by
5135 excluding the intervals of reload registers by them from the
5136 interval of freed reload registers. Since we only keep track of
5137 one set of interval bounds, we might have to exclude somewhat
5138 more than what would be necessary if we used a HARD_REG_SET here.
5139 But this should only happen very infrequently, so there should
5140 be no reason to worry about it. */
5142 start_regno = regno;
5143 end_regno = regno + nregs;
5144 if (check_opnum || check_any)
5146 for (i = n_reloads - 1; i >= 0; i--)
5148 if (rld[i].when_needed == type
5149 && (check_any || rld[i].opnum == opnum)
5150 && rld[i].reg_rtx)
5152 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
5153 unsigned int conflict_end
5154 = end_hard_regno (rld[i].mode, conflict_start);
5156 /* If there is an overlap with the first to-be-freed register,
5157 adjust the interval start. */
5158 if (conflict_start <= start_regno && conflict_end > start_regno)
5159 start_regno = conflict_end;
5160 /* Otherwise, if there is a conflict with one of the other
5161 to-be-freed registers, adjust the interval end. */
5162 if (conflict_start > start_regno && conflict_start < end_regno)
5163 end_regno = conflict_start;
5168 for (r = start_regno; r < end_regno; r++)
5169 CLEAR_HARD_REG_BIT (*used_in_set, r);
5172 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
5173 specified by OPNUM and TYPE. */
5175 static int
5176 reload_reg_free_p (unsigned int regno, int opnum, enum reload_type type)
5178 int i;
5180 /* In use for a RELOAD_OTHER means it's not available for anything. */
5181 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
5182 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5183 return 0;
5185 switch (type)
5187 case RELOAD_OTHER:
5188 /* In use for anything means we can't use it for RELOAD_OTHER. */
5189 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
5190 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5191 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5192 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5193 return 0;
5195 for (i = 0; i < reload_n_operands; i++)
5196 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5197 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5198 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5199 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5200 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5201 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5202 return 0;
5204 return 1;
5206 case RELOAD_FOR_INPUT:
5207 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5208 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
5209 return 0;
5211 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5212 return 0;
5214 /* If it is used for some other input, can't use it. */
5215 for (i = 0; i < reload_n_operands; i++)
5216 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5217 return 0;
5219 /* If it is used in a later operand's address, can't use it. */
5220 for (i = opnum + 1; i < reload_n_operands; i++)
5221 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5222 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5223 return 0;
5225 return 1;
5227 case RELOAD_FOR_INPUT_ADDRESS:
5228 /* Can't use a register if it is used for an input address for this
5229 operand or used as an input in an earlier one. */
5230 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
5231 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5232 return 0;
5234 for (i = 0; i < opnum; i++)
5235 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5236 return 0;
5238 return 1;
5240 case RELOAD_FOR_INPADDR_ADDRESS:
5241 /* Can't use a register if it is used for an input address
5242 for this operand or used as an input in an earlier
5243 one. */
5244 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5245 return 0;
5247 for (i = 0; i < opnum; i++)
5248 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5249 return 0;
5251 return 1;
5253 case RELOAD_FOR_OUTPUT_ADDRESS:
5254 /* Can't use a register if it is used for an output address for this
5255 operand or used as an output in this or a later operand. Note
5256 that multiple output operands are emitted in reverse order, so
5257 the conflicting ones are those with lower indices. */
5258 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
5259 return 0;
5261 for (i = 0; i <= opnum; i++)
5262 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5263 return 0;
5265 return 1;
5267 case RELOAD_FOR_OUTADDR_ADDRESS:
5268 /* Can't use a register if it is used for an output address
5269 for this operand or used as an output in this or a
5270 later operand. Note that multiple output operands are
5271 emitted in reverse order, so the conflicting ones are
5272 those with lower indices. */
5273 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5274 return 0;
5276 for (i = 0; i <= opnum; i++)
5277 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5278 return 0;
5280 return 1;
5282 case RELOAD_FOR_OPERAND_ADDRESS:
5283 for (i = 0; i < reload_n_operands; i++)
5284 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5285 return 0;
5287 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5288 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5290 case RELOAD_FOR_OPADDR_ADDR:
5291 for (i = 0; i < reload_n_operands; i++)
5292 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5293 return 0;
5295 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
5297 case RELOAD_FOR_OUTPUT:
5298 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
5299 outputs, or an operand address for this or an earlier output.
5300 Note that multiple output operands are emitted in reverse order,
5301 so the conflicting ones are those with higher indices. */
5302 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5303 return 0;
5305 for (i = 0; i < reload_n_operands; i++)
5306 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5307 return 0;
5309 for (i = opnum; i < reload_n_operands; i++)
5310 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5311 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5312 return 0;
5314 return 1;
5316 case RELOAD_FOR_INSN:
5317 for (i = 0; i < reload_n_operands; i++)
5318 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5319 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5320 return 0;
5322 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5323 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5325 case RELOAD_FOR_OTHER_ADDRESS:
5326 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
5328 default:
5329 gcc_unreachable ();
5333 /* Return 1 if the value in reload reg REGNO, as used by the reload with
5334 the number RELOADNUM, is still available in REGNO at the end of the insn.
5336 We can assume that the reload reg was already tested for availability
5337 at the time it is needed, and we should not check this again,
5338 in case the reg has already been marked in use. */
5340 static int
5341 reload_reg_reaches_end_p (unsigned int regno, int reloadnum)
5343 int opnum = rld[reloadnum].opnum;
5344 enum reload_type type = rld[reloadnum].when_needed;
5345 int i;
5347 /* See if there is a reload with the same type for this operand, using
5348 the same register. This case is not handled by the code below. */
5349 for (i = reloadnum + 1; i < n_reloads; i++)
5351 rtx reg;
5353 if (rld[i].opnum != opnum || rld[i].when_needed != type)
5354 continue;
5355 reg = rld[i].reg_rtx;
5356 if (reg == NULL_RTX)
5357 continue;
5358 if (regno >= REGNO (reg) && regno < END_REGNO (reg))
5359 return 0;
5362 switch (type)
5364 case RELOAD_OTHER:
5365 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
5366 its value must reach the end. */
5367 return 1;
5369 /* If this use is for part of the insn,
5370 its value reaches if no subsequent part uses the same register.
5371 Just like the above function, don't try to do this with lots
5372 of fallthroughs. */
5374 case RELOAD_FOR_OTHER_ADDRESS:
5375 /* Here we check for everything else, since these don't conflict
5376 with anything else and everything comes later. */
5378 for (i = 0; i < reload_n_operands; i++)
5379 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5380 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5381 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
5382 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5383 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5384 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5385 return 0;
5387 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5388 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5389 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5390 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
5392 case RELOAD_FOR_INPUT_ADDRESS:
5393 case RELOAD_FOR_INPADDR_ADDRESS:
5394 /* Similar, except that we check only for this and subsequent inputs
5395 and the address of only subsequent inputs and we do not need
5396 to check for RELOAD_OTHER objects since they are known not to
5397 conflict. */
5399 for (i = opnum; i < reload_n_operands; i++)
5400 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5401 return 0;
5403 /* Reload register of reload with type RELOAD_FOR_INPADDR_ADDRESS
5404 could be killed if the register is also used by reload with type
5405 RELOAD_FOR_INPUT_ADDRESS, so check it. */
5406 if (type == RELOAD_FOR_INPADDR_ADDRESS
5407 && TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno))
5408 return 0;
5410 for (i = opnum + 1; i < reload_n_operands; i++)
5411 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5412 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5413 return 0;
5415 for (i = 0; i < reload_n_operands; i++)
5416 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5417 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5418 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5419 return 0;
5421 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5422 return 0;
5424 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5425 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5426 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5428 case RELOAD_FOR_INPUT:
5429 /* Similar to input address, except we start at the next operand for
5430 both input and input address and we do not check for
5431 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
5432 would conflict. */
5434 for (i = opnum + 1; i < reload_n_operands; i++)
5435 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5436 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5437 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5438 return 0;
5440 /* ... fall through ... */
5442 case RELOAD_FOR_OPERAND_ADDRESS:
5443 /* Check outputs and their addresses. */
5445 for (i = 0; i < reload_n_operands; i++)
5446 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5447 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5448 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5449 return 0;
5451 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
5453 case RELOAD_FOR_OPADDR_ADDR:
5454 for (i = 0; i < reload_n_operands; i++)
5455 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5456 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5457 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5458 return 0;
5460 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5461 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5462 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5464 case RELOAD_FOR_INSN:
5465 /* These conflict with other outputs with RELOAD_OTHER. So
5466 we need only check for output addresses. */
5468 opnum = reload_n_operands;
5470 /* fall through */
5472 case RELOAD_FOR_OUTPUT:
5473 case RELOAD_FOR_OUTPUT_ADDRESS:
5474 case RELOAD_FOR_OUTADDR_ADDRESS:
5475 /* We already know these can't conflict with a later output. So the
5476 only thing to check are later output addresses.
5477 Note that multiple output operands are emitted in reverse order,
5478 so the conflicting ones are those with lower indices. */
5479 for (i = 0; i < opnum; i++)
5480 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5481 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5482 return 0;
5484 /* Reload register of reload with type RELOAD_FOR_OUTADDR_ADDRESS
5485 could be killed if the register is also used by reload with type
5486 RELOAD_FOR_OUTPUT_ADDRESS, so check it. */
5487 if (type == RELOAD_FOR_OUTADDR_ADDRESS
5488 && TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5489 return 0;
5491 return 1;
5493 default:
5494 gcc_unreachable ();
5498 /* Like reload_reg_reaches_end_p, but check that the condition holds for
5499 every register in REG. */
5501 static bool
5502 reload_reg_rtx_reaches_end_p (rtx reg, int reloadnum)
5504 unsigned int i;
5506 for (i = REGNO (reg); i < END_REGNO (reg); i++)
5507 if (!reload_reg_reaches_end_p (i, reloadnum))
5508 return false;
5509 return true;
5513 /* Returns whether R1 and R2 are uniquely chained: the value of one
5514 is used by the other, and that value is not used by any other
5515 reload for this insn. This is used to partially undo the decision
5516 made in find_reloads when in the case of multiple
5517 RELOAD_FOR_OPERAND_ADDRESS reloads it converts all
5518 RELOAD_FOR_OPADDR_ADDR reloads into RELOAD_FOR_OPERAND_ADDRESS
5519 reloads. This code tries to avoid the conflict created by that
5520 change. It might be cleaner to explicitly keep track of which
5521 RELOAD_FOR_OPADDR_ADDR reload is associated with which
5522 RELOAD_FOR_OPERAND_ADDRESS reload, rather than to try to detect
5523 this after the fact. */
5524 static bool
5525 reloads_unique_chain_p (int r1, int r2)
5527 int i;
5529 /* We only check input reloads. */
5530 if (! rld[r1].in || ! rld[r2].in)
5531 return false;
5533 /* Avoid anything with output reloads. */
5534 if (rld[r1].out || rld[r2].out)
5535 return false;
5537 /* "chained" means one reload is a component of the other reload,
5538 not the same as the other reload. */
5539 if (rld[r1].opnum != rld[r2].opnum
5540 || rtx_equal_p (rld[r1].in, rld[r2].in)
5541 || rld[r1].optional || rld[r2].optional
5542 || ! (reg_mentioned_p (rld[r1].in, rld[r2].in)
5543 || reg_mentioned_p (rld[r2].in, rld[r1].in)))
5544 return false;
5546 /* The following loop assumes that r1 is the reload that feeds r2. */
5547 if (r1 > r2)
5548 std::swap (r1, r2);
5550 for (i = 0; i < n_reloads; i ++)
5551 /* Look for input reloads that aren't our two */
5552 if (i != r1 && i != r2 && rld[i].in)
5554 /* If our reload is mentioned at all, it isn't a simple chain. */
5555 if (reg_mentioned_p (rld[r1].in, rld[i].in))
5556 return false;
5558 return true;
5561 /* The recursive function change all occurrences of WHAT in *WHERE
5562 to REPL. */
5563 static void
5564 substitute (rtx *where, const_rtx what, rtx repl)
5566 const char *fmt;
5567 int i;
5568 enum rtx_code code;
5570 if (*where == 0)
5571 return;
5573 if (*where == what || rtx_equal_p (*where, what))
5575 /* Record the location of the changed rtx. */
5576 substitute_stack.safe_push (where);
5577 *where = repl;
5578 return;
5581 code = GET_CODE (*where);
5582 fmt = GET_RTX_FORMAT (code);
5583 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5585 if (fmt[i] == 'E')
5587 int j;
5589 for (j = XVECLEN (*where, i) - 1; j >= 0; j--)
5590 substitute (&XVECEXP (*where, i, j), what, repl);
5592 else if (fmt[i] == 'e')
5593 substitute (&XEXP (*where, i), what, repl);
5597 /* The function returns TRUE if chain of reload R1 and R2 (in any
5598 order) can be evaluated without usage of intermediate register for
5599 the reload containing another reload. It is important to see
5600 gen_reload to understand what the function is trying to do. As an
5601 example, let us have reload chain
5603 r2: const
5604 r1: <something> + const
5606 and reload R2 got reload reg HR. The function returns true if
5607 there is a correct insn HR = HR + <something>. Otherwise,
5608 gen_reload will use intermediate register (and this is the reload
5609 reg for R1) to reload <something>.
5611 We need this function to find a conflict for chain reloads. In our
5612 example, if HR = HR + <something> is incorrect insn, then we cannot
5613 use HR as a reload register for R2. If we do use it then we get a
5614 wrong code:
5616 HR = const
5617 HR = <something>
5618 HR = HR + HR
5621 static bool
5622 gen_reload_chain_without_interm_reg_p (int r1, int r2)
5624 /* Assume other cases in gen_reload are not possible for
5625 chain reloads or do need an intermediate hard registers. */
5626 bool result = true;
5627 int regno, code;
5628 rtx out, in;
5629 rtx_insn *insn;
5630 rtx_insn *last = get_last_insn ();
5632 /* Make r2 a component of r1. */
5633 if (reg_mentioned_p (rld[r1].in, rld[r2].in))
5634 std::swap (r1, r2);
5636 gcc_assert (reg_mentioned_p (rld[r2].in, rld[r1].in));
5637 regno = rld[r1].regno >= 0 ? rld[r1].regno : rld[r2].regno;
5638 gcc_assert (regno >= 0);
5639 out = gen_rtx_REG (rld[r1].mode, regno);
5640 in = rld[r1].in;
5641 substitute (&in, rld[r2].in, gen_rtx_REG (rld[r2].mode, regno));
5643 /* If IN is a paradoxical SUBREG, remove it and try to put the
5644 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
5645 strip_paradoxical_subreg (&in, &out);
5647 if (GET_CODE (in) == PLUS
5648 && (REG_P (XEXP (in, 0))
5649 || GET_CODE (XEXP (in, 0)) == SUBREG
5650 || MEM_P (XEXP (in, 0)))
5651 && (REG_P (XEXP (in, 1))
5652 || GET_CODE (XEXP (in, 1)) == SUBREG
5653 || CONSTANT_P (XEXP (in, 1))
5654 || MEM_P (XEXP (in, 1))))
5656 insn = emit_insn (gen_rtx_SET (out, in));
5657 code = recog_memoized (insn);
5658 result = false;
5660 if (code >= 0)
5662 extract_insn (insn);
5663 /* We want constrain operands to treat this insn strictly in
5664 its validity determination, i.e., the way it would after
5665 reload has completed. */
5666 result = constrain_operands (1, get_enabled_alternatives (insn));
5669 delete_insns_since (last);
5672 /* Restore the original value at each changed address within R1. */
5673 while (!substitute_stack.is_empty ())
5675 rtx *where = substitute_stack.pop ();
5676 *where = rld[r2].in;
5679 return result;
5682 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
5683 Return 0 otherwise.
5685 This function uses the same algorithm as reload_reg_free_p above. */
5687 static int
5688 reloads_conflict (int r1, int r2)
5690 enum reload_type r1_type = rld[r1].when_needed;
5691 enum reload_type r2_type = rld[r2].when_needed;
5692 int r1_opnum = rld[r1].opnum;
5693 int r2_opnum = rld[r2].opnum;
5695 /* RELOAD_OTHER conflicts with everything. */
5696 if (r2_type == RELOAD_OTHER)
5697 return 1;
5699 /* Otherwise, check conflicts differently for each type. */
5701 switch (r1_type)
5703 case RELOAD_FOR_INPUT:
5704 return (r2_type == RELOAD_FOR_INSN
5705 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
5706 || r2_type == RELOAD_FOR_OPADDR_ADDR
5707 || r2_type == RELOAD_FOR_INPUT
5708 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
5709 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
5710 && r2_opnum > r1_opnum));
5712 case RELOAD_FOR_INPUT_ADDRESS:
5713 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
5714 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5716 case RELOAD_FOR_INPADDR_ADDRESS:
5717 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
5718 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5720 case RELOAD_FOR_OUTPUT_ADDRESS:
5721 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
5722 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5724 case RELOAD_FOR_OUTADDR_ADDRESS:
5725 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
5726 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5728 case RELOAD_FOR_OPERAND_ADDRESS:
5729 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
5730 || (r2_type == RELOAD_FOR_OPERAND_ADDRESS
5731 && (!reloads_unique_chain_p (r1, r2)
5732 || !gen_reload_chain_without_interm_reg_p (r1, r2))));
5734 case RELOAD_FOR_OPADDR_ADDR:
5735 return (r2_type == RELOAD_FOR_INPUT
5736 || r2_type == RELOAD_FOR_OPADDR_ADDR);
5738 case RELOAD_FOR_OUTPUT:
5739 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
5740 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
5741 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
5742 && r2_opnum >= r1_opnum));
5744 case RELOAD_FOR_INSN:
5745 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
5746 || r2_type == RELOAD_FOR_INSN
5747 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
5749 case RELOAD_FOR_OTHER_ADDRESS:
5750 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
5752 case RELOAD_OTHER:
5753 return 1;
5755 default:
5756 gcc_unreachable ();
5760 /* Indexed by reload number, 1 if incoming value
5761 inherited from previous insns. */
5762 static char reload_inherited[MAX_RELOADS];
5764 /* For an inherited reload, this is the insn the reload was inherited from,
5765 if we know it. Otherwise, this is 0. */
5766 static rtx_insn *reload_inheritance_insn[MAX_RELOADS];
5768 /* If nonzero, this is a place to get the value of the reload,
5769 rather than using reload_in. */
5770 static rtx reload_override_in[MAX_RELOADS];
5772 /* For each reload, the hard register number of the register used,
5773 or -1 if we did not need a register for this reload. */
5774 static int reload_spill_index[MAX_RELOADS];
5776 /* Index X is the value of rld[X].reg_rtx, adjusted for the input mode. */
5777 static rtx reload_reg_rtx_for_input[MAX_RELOADS];
5779 /* Index X is the value of rld[X].reg_rtx, adjusted for the output mode. */
5780 static rtx reload_reg_rtx_for_output[MAX_RELOADS];
5782 /* Subroutine of free_for_value_p, used to check a single register.
5783 START_REGNO is the starting regno of the full reload register
5784 (possibly comprising multiple hard registers) that we are considering. */
5786 static int
5787 reload_reg_free_for_value_p (int start_regno, int regno, int opnum,
5788 enum reload_type type, rtx value, rtx out,
5789 int reloadnum, int ignore_address_reloads)
5791 int time1;
5792 /* Set if we see an input reload that must not share its reload register
5793 with any new earlyclobber, but might otherwise share the reload
5794 register with an output or input-output reload. */
5795 int check_earlyclobber = 0;
5796 int i;
5797 int copy = 0;
5799 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5800 return 0;
5802 if (out == const0_rtx)
5804 copy = 1;
5805 out = NULL_RTX;
5808 /* We use some pseudo 'time' value to check if the lifetimes of the
5809 new register use would overlap with the one of a previous reload
5810 that is not read-only or uses a different value.
5811 The 'time' used doesn't have to be linear in any shape or form, just
5812 monotonic.
5813 Some reload types use different 'buckets' for each operand.
5814 So there are MAX_RECOG_OPERANDS different time values for each
5815 such reload type.
5816 We compute TIME1 as the time when the register for the prospective
5817 new reload ceases to be live, and TIME2 for each existing
5818 reload as the time when that the reload register of that reload
5819 becomes live.
5820 Where there is little to be gained by exact lifetime calculations,
5821 we just make conservative assumptions, i.e. a longer lifetime;
5822 this is done in the 'default:' cases. */
5823 switch (type)
5825 case RELOAD_FOR_OTHER_ADDRESS:
5826 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
5827 time1 = copy ? 0 : 1;
5828 break;
5829 case RELOAD_OTHER:
5830 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
5831 break;
5832 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
5833 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
5834 respectively, to the time values for these, we get distinct time
5835 values. To get distinct time values for each operand, we have to
5836 multiply opnum by at least three. We round that up to four because
5837 multiply by four is often cheaper. */
5838 case RELOAD_FOR_INPADDR_ADDRESS:
5839 time1 = opnum * 4 + 2;
5840 break;
5841 case RELOAD_FOR_INPUT_ADDRESS:
5842 time1 = opnum * 4 + 3;
5843 break;
5844 case RELOAD_FOR_INPUT:
5845 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
5846 executes (inclusive). */
5847 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
5848 break;
5849 case RELOAD_FOR_OPADDR_ADDR:
5850 /* opnum * 4 + 4
5851 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
5852 time1 = MAX_RECOG_OPERANDS * 4 + 1;
5853 break;
5854 case RELOAD_FOR_OPERAND_ADDRESS:
5855 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
5856 is executed. */
5857 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
5858 break;
5859 case RELOAD_FOR_OUTADDR_ADDRESS:
5860 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
5861 break;
5862 case RELOAD_FOR_OUTPUT_ADDRESS:
5863 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
5864 break;
5865 default:
5866 time1 = MAX_RECOG_OPERANDS * 5 + 5;
5869 for (i = 0; i < n_reloads; i++)
5871 rtx reg = rld[i].reg_rtx;
5872 if (reg && REG_P (reg)
5873 && (unsigned) regno - true_regnum (reg) < REG_NREGS (reg)
5874 && i != reloadnum)
5876 rtx other_input = rld[i].in;
5878 /* If the other reload loads the same input value, that
5879 will not cause a conflict only if it's loading it into
5880 the same register. */
5881 if (true_regnum (reg) != start_regno)
5882 other_input = NULL_RTX;
5883 if (! other_input || ! rtx_equal_p (other_input, value)
5884 || rld[i].out || out)
5886 int time2;
5887 switch (rld[i].when_needed)
5889 case RELOAD_FOR_OTHER_ADDRESS:
5890 time2 = 0;
5891 break;
5892 case RELOAD_FOR_INPADDR_ADDRESS:
5893 /* find_reloads makes sure that a
5894 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
5895 by at most one - the first -
5896 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
5897 address reload is inherited, the address address reload
5898 goes away, so we can ignore this conflict. */
5899 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
5900 && ignore_address_reloads
5901 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
5902 Then the address address is still needed to store
5903 back the new address. */
5904 && ! rld[reloadnum].out)
5905 continue;
5906 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
5907 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
5908 reloads go away. */
5909 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5910 && ignore_address_reloads
5911 /* Unless we are reloading an auto_inc expression. */
5912 && ! rld[reloadnum].out)
5913 continue;
5914 time2 = rld[i].opnum * 4 + 2;
5915 break;
5916 case RELOAD_FOR_INPUT_ADDRESS:
5917 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5918 && ignore_address_reloads
5919 && ! rld[reloadnum].out)
5920 continue;
5921 time2 = rld[i].opnum * 4 + 3;
5922 break;
5923 case RELOAD_FOR_INPUT:
5924 time2 = rld[i].opnum * 4 + 4;
5925 check_earlyclobber = 1;
5926 break;
5927 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
5928 == MAX_RECOG_OPERAND * 4 */
5929 case RELOAD_FOR_OPADDR_ADDR:
5930 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
5931 && ignore_address_reloads
5932 && ! rld[reloadnum].out)
5933 continue;
5934 time2 = MAX_RECOG_OPERANDS * 4 + 1;
5935 break;
5936 case RELOAD_FOR_OPERAND_ADDRESS:
5937 time2 = MAX_RECOG_OPERANDS * 4 + 2;
5938 check_earlyclobber = 1;
5939 break;
5940 case RELOAD_FOR_INSN:
5941 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5942 break;
5943 case RELOAD_FOR_OUTPUT:
5944 /* All RELOAD_FOR_OUTPUT reloads become live just after the
5945 instruction is executed. */
5946 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5947 break;
5948 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
5949 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
5950 value. */
5951 case RELOAD_FOR_OUTADDR_ADDRESS:
5952 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
5953 && ignore_address_reloads
5954 && ! rld[reloadnum].out)
5955 continue;
5956 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
5957 break;
5958 case RELOAD_FOR_OUTPUT_ADDRESS:
5959 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
5960 break;
5961 case RELOAD_OTHER:
5962 /* If there is no conflict in the input part, handle this
5963 like an output reload. */
5964 if (! rld[i].in || rtx_equal_p (other_input, value))
5966 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5967 /* Earlyclobbered outputs must conflict with inputs. */
5968 if (earlyclobber_operand_p (rld[i].out))
5969 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5971 break;
5973 time2 = 1;
5974 /* RELOAD_OTHER might be live beyond instruction execution,
5975 but this is not obvious when we set time2 = 1. So check
5976 here if there might be a problem with the new reload
5977 clobbering the register used by the RELOAD_OTHER. */
5978 if (out)
5979 return 0;
5980 break;
5981 default:
5982 return 0;
5984 if ((time1 >= time2
5985 && (! rld[i].in || rld[i].out
5986 || ! rtx_equal_p (other_input, value)))
5987 || (out && rld[reloadnum].out_reg
5988 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
5989 return 0;
5994 /* Earlyclobbered outputs must conflict with inputs. */
5995 if (check_earlyclobber && out && earlyclobber_operand_p (out))
5996 return 0;
5998 return 1;
6001 /* Return 1 if the value in reload reg REGNO, as used by a reload
6002 needed for the part of the insn specified by OPNUM and TYPE,
6003 may be used to load VALUE into it.
6005 MODE is the mode in which the register is used, this is needed to
6006 determine how many hard regs to test.
6008 Other read-only reloads with the same value do not conflict
6009 unless OUT is nonzero and these other reloads have to live while
6010 output reloads live.
6011 If OUT is CONST0_RTX, this is a special case: it means that the
6012 test should not be for using register REGNO as reload register, but
6013 for copying from register REGNO into the reload register.
6015 RELOADNUM is the number of the reload we want to load this value for;
6016 a reload does not conflict with itself.
6018 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
6019 reloads that load an address for the very reload we are considering.
6021 The caller has to make sure that there is no conflict with the return
6022 register. */
6024 static int
6025 free_for_value_p (int regno, machine_mode mode, int opnum,
6026 enum reload_type type, rtx value, rtx out, int reloadnum,
6027 int ignore_address_reloads)
6029 int nregs = hard_regno_nregs (regno, mode);
6030 while (nregs-- > 0)
6031 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
6032 value, out, reloadnum,
6033 ignore_address_reloads))
6034 return 0;
6035 return 1;
6038 /* Return nonzero if the rtx X is invariant over the current function. */
6039 /* ??? Actually, the places where we use this expect exactly what is
6040 tested here, and not everything that is function invariant. In
6041 particular, the frame pointer and arg pointer are special cased;
6042 pic_offset_table_rtx is not, and we must not spill these things to
6043 memory. */
6046 function_invariant_p (const_rtx x)
6048 if (CONSTANT_P (x))
6049 return 1;
6050 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
6051 return 1;
6052 if (GET_CODE (x) == PLUS
6053 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
6054 && GET_CODE (XEXP (x, 1)) == CONST_INT)
6055 return 1;
6056 return 0;
6059 /* Determine whether the reload reg X overlaps any rtx'es used for
6060 overriding inheritance. Return nonzero if so. */
6062 static int
6063 conflicts_with_override (rtx x)
6065 int i;
6066 for (i = 0; i < n_reloads; i++)
6067 if (reload_override_in[i]
6068 && reg_overlap_mentioned_p (x, reload_override_in[i]))
6069 return 1;
6070 return 0;
6073 /* Give an error message saying we failed to find a reload for INSN,
6074 and clear out reload R. */
6075 static void
6076 failed_reload (rtx_insn *insn, int r)
6078 if (asm_noperands (PATTERN (insn)) < 0)
6079 /* It's the compiler's fault. */
6080 fatal_insn ("could not find a spill register", insn);
6082 /* It's the user's fault; the operand's mode and constraint
6083 don't match. Disable this reload so we don't crash in final. */
6084 error_for_asm (insn,
6085 "%<asm%> operand constraint incompatible with operand size");
6086 rld[r].in = 0;
6087 rld[r].out = 0;
6088 rld[r].reg_rtx = 0;
6089 rld[r].optional = 1;
6090 rld[r].secondary_p = 1;
6093 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
6094 for reload R. If it's valid, get an rtx for it. Return nonzero if
6095 successful. */
6096 static int
6097 set_reload_reg (int i, int r)
6099 int regno;
6100 rtx reg = spill_reg_rtx[i];
6102 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
6103 spill_reg_rtx[i] = reg
6104 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
6106 regno = true_regnum (reg);
6108 /* Detect when the reload reg can't hold the reload mode.
6109 This used to be one `if', but Sequent compiler can't handle that. */
6110 if (targetm.hard_regno_mode_ok (regno, rld[r].mode))
6112 machine_mode test_mode = VOIDmode;
6113 if (rld[r].in)
6114 test_mode = GET_MODE (rld[r].in);
6115 /* If rld[r].in has VOIDmode, it means we will load it
6116 in whatever mode the reload reg has: to wit, rld[r].mode.
6117 We have already tested that for validity. */
6118 /* Aside from that, we need to test that the expressions
6119 to reload from or into have modes which are valid for this
6120 reload register. Otherwise the reload insns would be invalid. */
6121 if (! (rld[r].in != 0 && test_mode != VOIDmode
6122 && !targetm.hard_regno_mode_ok (regno, test_mode)))
6123 if (! (rld[r].out != 0
6124 && !targetm.hard_regno_mode_ok (regno, GET_MODE (rld[r].out))))
6126 /* The reg is OK. */
6127 last_spill_reg = i;
6129 /* Mark as in use for this insn the reload regs we use
6130 for this. */
6131 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
6132 rld[r].when_needed, rld[r].mode);
6134 rld[r].reg_rtx = reg;
6135 reload_spill_index[r] = spill_regs[i];
6136 return 1;
6139 return 0;
6142 /* Find a spill register to use as a reload register for reload R.
6143 LAST_RELOAD is nonzero if this is the last reload for the insn being
6144 processed.
6146 Set rld[R].reg_rtx to the register allocated.
6148 We return 1 if successful, or 0 if we couldn't find a spill reg and
6149 we didn't change anything. */
6151 static int
6152 allocate_reload_reg (struct insn_chain *chain ATTRIBUTE_UNUSED, int r,
6153 int last_reload)
6155 int i, pass, count;
6157 /* If we put this reload ahead, thinking it is a group,
6158 then insist on finding a group. Otherwise we can grab a
6159 reg that some other reload needs.
6160 (That can happen when we have a 68000 DATA_OR_FP_REG
6161 which is a group of data regs or one fp reg.)
6162 We need not be so restrictive if there are no more reloads
6163 for this insn.
6165 ??? Really it would be nicer to have smarter handling
6166 for that kind of reg class, where a problem like this is normal.
6167 Perhaps those classes should be avoided for reloading
6168 by use of more alternatives. */
6170 int force_group = rld[r].nregs > 1 && ! last_reload;
6172 /* If we want a single register and haven't yet found one,
6173 take any reg in the right class and not in use.
6174 If we want a consecutive group, here is where we look for it.
6176 We use three passes so we can first look for reload regs to
6177 reuse, which are already in use for other reloads in this insn,
6178 and only then use additional registers which are not "bad", then
6179 finally any register.
6181 I think that maximizing reuse is needed to make sure we don't
6182 run out of reload regs. Suppose we have three reloads, and
6183 reloads A and B can share regs. These need two regs.
6184 Suppose A and B are given different regs.
6185 That leaves none for C. */
6186 for (pass = 0; pass < 3; pass++)
6188 /* I is the index in spill_regs.
6189 We advance it round-robin between insns to use all spill regs
6190 equally, so that inherited reloads have a chance
6191 of leapfrogging each other. */
6193 i = last_spill_reg;
6195 for (count = 0; count < n_spills; count++)
6197 int rclass = (int) rld[r].rclass;
6198 int regnum;
6200 i++;
6201 if (i >= n_spills)
6202 i -= n_spills;
6203 regnum = spill_regs[i];
6205 if ((reload_reg_free_p (regnum, rld[r].opnum,
6206 rld[r].when_needed)
6207 || (rld[r].in
6208 /* We check reload_reg_used to make sure we
6209 don't clobber the return register. */
6210 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
6211 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
6212 rld[r].when_needed, rld[r].in,
6213 rld[r].out, r, 1)))
6214 && TEST_HARD_REG_BIT (reg_class_contents[rclass], regnum)
6215 && targetm.hard_regno_mode_ok (regnum, rld[r].mode)
6216 /* Look first for regs to share, then for unshared. But
6217 don't share regs used for inherited reloads; they are
6218 the ones we want to preserve. */
6219 && (pass
6220 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
6221 regnum)
6222 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
6223 regnum))))
6225 int nr = hard_regno_nregs (regnum, rld[r].mode);
6227 /* During the second pass we want to avoid reload registers
6228 which are "bad" for this reload. */
6229 if (pass == 1
6230 && ira_bad_reload_regno (regnum, rld[r].in, rld[r].out))
6231 continue;
6233 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
6234 (on 68000) got us two FP regs. If NR is 1,
6235 we would reject both of them. */
6236 if (force_group)
6237 nr = rld[r].nregs;
6238 /* If we need only one reg, we have already won. */
6239 if (nr == 1)
6241 /* But reject a single reg if we demand a group. */
6242 if (force_group)
6243 continue;
6244 break;
6246 /* Otherwise check that as many consecutive regs as we need
6247 are available here. */
6248 while (nr > 1)
6250 int regno = regnum + nr - 1;
6251 if (!(TEST_HARD_REG_BIT (reg_class_contents[rclass], regno)
6252 && spill_reg_order[regno] >= 0
6253 && reload_reg_free_p (regno, rld[r].opnum,
6254 rld[r].when_needed)))
6255 break;
6256 nr--;
6258 if (nr == 1)
6259 break;
6263 /* If we found something on the current pass, omit later passes. */
6264 if (count < n_spills)
6265 break;
6268 /* We should have found a spill register by now. */
6269 if (count >= n_spills)
6270 return 0;
6272 /* I is the index in SPILL_REG_RTX of the reload register we are to
6273 allocate. Get an rtx for it and find its register number. */
6275 return set_reload_reg (i, r);
6278 /* Initialize all the tables needed to allocate reload registers.
6279 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
6280 is the array we use to restore the reg_rtx field for every reload. */
6282 static void
6283 choose_reload_regs_init (struct insn_chain *chain, rtx *save_reload_reg_rtx)
6285 int i;
6287 for (i = 0; i < n_reloads; i++)
6288 rld[i].reg_rtx = save_reload_reg_rtx[i];
6290 memset (reload_inherited, 0, MAX_RELOADS);
6291 memset (reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
6292 memset (reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
6294 CLEAR_HARD_REG_SET (reload_reg_used);
6295 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
6296 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
6297 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
6298 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
6299 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
6301 CLEAR_HARD_REG_SET (reg_used_in_insn);
6303 HARD_REG_SET tmp;
6304 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
6305 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6306 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
6307 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6308 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
6309 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
6312 for (i = 0; i < reload_n_operands; i++)
6314 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
6315 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
6316 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
6317 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
6318 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
6319 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
6322 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
6324 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
6326 for (i = 0; i < n_reloads; i++)
6327 /* If we have already decided to use a certain register,
6328 don't use it in another way. */
6329 if (rld[i].reg_rtx)
6330 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
6331 rld[i].when_needed, rld[i].mode);
6334 #ifdef SECONDARY_MEMORY_NEEDED
6335 /* If X is not a subreg, return it unmodified. If it is a subreg,
6336 look up whether we made a replacement for the SUBREG_REG. Return
6337 either the replacement or the SUBREG_REG. */
6339 static rtx
6340 replaced_subreg (rtx x)
6342 if (GET_CODE (x) == SUBREG)
6343 return find_replacement (&SUBREG_REG (x));
6344 return x;
6346 #endif
6348 /* Compute the offset to pass to subreg_regno_offset, for a pseudo of
6349 mode OUTERMODE that is available in a hard reg of mode INNERMODE.
6350 SUBREG is non-NULL if the pseudo is a subreg whose reg is a pseudo,
6351 otherwise it is NULL. */
6353 static int
6354 compute_reload_subreg_offset (machine_mode outermode,
6355 rtx subreg,
6356 machine_mode innermode)
6358 int outer_offset;
6359 machine_mode middlemode;
6361 if (!subreg)
6362 return subreg_lowpart_offset (outermode, innermode);
6364 outer_offset = SUBREG_BYTE (subreg);
6365 middlemode = GET_MODE (SUBREG_REG (subreg));
6367 /* If SUBREG is paradoxical then return the normal lowpart offset
6368 for OUTERMODE and INNERMODE. Our caller has already checked
6369 that OUTERMODE fits in INNERMODE. */
6370 if (paradoxical_subreg_p (outermode, middlemode))
6371 return subreg_lowpart_offset (outermode, innermode);
6373 /* SUBREG is normal, but may not be lowpart; return OUTER_OFFSET
6374 plus the normal lowpart offset for MIDDLEMODE and INNERMODE. */
6375 return outer_offset + subreg_lowpart_offset (middlemode, innermode);
6378 /* Assign hard reg targets for the pseudo-registers we must reload
6379 into hard regs for this insn.
6380 Also output the instructions to copy them in and out of the hard regs.
6382 For machines with register classes, we are responsible for
6383 finding a reload reg in the proper class. */
6385 static void
6386 choose_reload_regs (struct insn_chain *chain)
6388 rtx_insn *insn = chain->insn;
6389 int i, j;
6390 unsigned int max_group_size = 1;
6391 enum reg_class group_class = NO_REGS;
6392 int pass, win, inheritance;
6394 rtx save_reload_reg_rtx[MAX_RELOADS];
6396 /* In order to be certain of getting the registers we need,
6397 we must sort the reloads into order of increasing register class.
6398 Then our grabbing of reload registers will parallel the process
6399 that provided the reload registers.
6401 Also note whether any of the reloads wants a consecutive group of regs.
6402 If so, record the maximum size of the group desired and what
6403 register class contains all the groups needed by this insn. */
6405 for (j = 0; j < n_reloads; j++)
6407 reload_order[j] = j;
6408 if (rld[j].reg_rtx != NULL_RTX)
6410 gcc_assert (REG_P (rld[j].reg_rtx)
6411 && HARD_REGISTER_P (rld[j].reg_rtx));
6412 reload_spill_index[j] = REGNO (rld[j].reg_rtx);
6414 else
6415 reload_spill_index[j] = -1;
6417 if (rld[j].nregs > 1)
6419 max_group_size = MAX (rld[j].nregs, max_group_size);
6420 group_class
6421 = reg_class_superunion[(int) rld[j].rclass][(int) group_class];
6424 save_reload_reg_rtx[j] = rld[j].reg_rtx;
6427 if (n_reloads > 1)
6428 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
6430 /* If -O, try first with inheritance, then turning it off.
6431 If not -O, don't do inheritance.
6432 Using inheritance when not optimizing leads to paradoxes
6433 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
6434 because one side of the comparison might be inherited. */
6435 win = 0;
6436 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
6438 choose_reload_regs_init (chain, save_reload_reg_rtx);
6440 /* Process the reloads in order of preference just found.
6441 Beyond this point, subregs can be found in reload_reg_rtx.
6443 This used to look for an existing reloaded home for all of the
6444 reloads, and only then perform any new reloads. But that could lose
6445 if the reloads were done out of reg-class order because a later
6446 reload with a looser constraint might have an old home in a register
6447 needed by an earlier reload with a tighter constraint.
6449 To solve this, we make two passes over the reloads, in the order
6450 described above. In the first pass we try to inherit a reload
6451 from a previous insn. If there is a later reload that needs a
6452 class that is a proper subset of the class being processed, we must
6453 also allocate a spill register during the first pass.
6455 Then make a second pass over the reloads to allocate any reloads
6456 that haven't been given registers yet. */
6458 for (j = 0; j < n_reloads; j++)
6460 int r = reload_order[j];
6461 rtx search_equiv = NULL_RTX;
6463 /* Ignore reloads that got marked inoperative. */
6464 if (rld[r].out == 0 && rld[r].in == 0
6465 && ! rld[r].secondary_p)
6466 continue;
6468 /* If find_reloads chose to use reload_in or reload_out as a reload
6469 register, we don't need to chose one. Otherwise, try even if it
6470 found one since we might save an insn if we find the value lying
6471 around.
6472 Try also when reload_in is a pseudo without a hard reg. */
6473 if (rld[r].in != 0 && rld[r].reg_rtx != 0
6474 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
6475 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
6476 && !MEM_P (rld[r].in)
6477 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
6478 continue;
6480 #if 0 /* No longer needed for correct operation.
6481 It might give better code, or might not; worth an experiment? */
6482 /* If this is an optional reload, we can't inherit from earlier insns
6483 until we are sure that any non-optional reloads have been allocated.
6484 The following code takes advantage of the fact that optional reloads
6485 are at the end of reload_order. */
6486 if (rld[r].optional != 0)
6487 for (i = 0; i < j; i++)
6488 if ((rld[reload_order[i]].out != 0
6489 || rld[reload_order[i]].in != 0
6490 || rld[reload_order[i]].secondary_p)
6491 && ! rld[reload_order[i]].optional
6492 && rld[reload_order[i]].reg_rtx == 0)
6493 allocate_reload_reg (chain, reload_order[i], 0);
6494 #endif
6496 /* First see if this pseudo is already available as reloaded
6497 for a previous insn. We cannot try to inherit for reloads
6498 that are smaller than the maximum number of registers needed
6499 for groups unless the register we would allocate cannot be used
6500 for the groups.
6502 We could check here to see if this is a secondary reload for
6503 an object that is already in a register of the desired class.
6504 This would avoid the need for the secondary reload register.
6505 But this is complex because we can't easily determine what
6506 objects might want to be loaded via this reload. So let a
6507 register be allocated here. In `emit_reload_insns' we suppress
6508 one of the loads in the case described above. */
6510 if (inheritance)
6512 int byte = 0;
6513 int regno = -1;
6514 machine_mode mode = VOIDmode;
6515 rtx subreg = NULL_RTX;
6517 if (rld[r].in == 0)
6519 else if (REG_P (rld[r].in))
6521 regno = REGNO (rld[r].in);
6522 mode = GET_MODE (rld[r].in);
6524 else if (REG_P (rld[r].in_reg))
6526 regno = REGNO (rld[r].in_reg);
6527 mode = GET_MODE (rld[r].in_reg);
6529 else if (GET_CODE (rld[r].in_reg) == SUBREG
6530 && REG_P (SUBREG_REG (rld[r].in_reg)))
6532 regno = REGNO (SUBREG_REG (rld[r].in_reg));
6533 if (regno < FIRST_PSEUDO_REGISTER)
6534 regno = subreg_regno (rld[r].in_reg);
6535 else
6537 subreg = rld[r].in_reg;
6538 byte = SUBREG_BYTE (subreg);
6540 mode = GET_MODE (rld[r].in_reg);
6542 #if AUTO_INC_DEC
6543 else if (GET_RTX_CLASS (GET_CODE (rld[r].in_reg)) == RTX_AUTOINC
6544 && REG_P (XEXP (rld[r].in_reg, 0)))
6546 regno = REGNO (XEXP (rld[r].in_reg, 0));
6547 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
6548 rld[r].out = rld[r].in;
6550 #endif
6551 #if 0
6552 /* This won't work, since REGNO can be a pseudo reg number.
6553 Also, it takes much more hair to keep track of all the things
6554 that can invalidate an inherited reload of part of a pseudoreg. */
6555 else if (GET_CODE (rld[r].in) == SUBREG
6556 && REG_P (SUBREG_REG (rld[r].in)))
6557 regno = subreg_regno (rld[r].in);
6558 #endif
6560 if (regno >= 0
6561 && reg_last_reload_reg[regno] != 0
6562 && (GET_MODE_SIZE (GET_MODE (reg_last_reload_reg[regno]))
6563 >= GET_MODE_SIZE (mode) + byte)
6564 #ifdef CANNOT_CHANGE_MODE_CLASS
6565 /* Verify that the register it's in can be used in
6566 mode MODE. */
6567 && !REG_CANNOT_CHANGE_MODE_P (REGNO (reg_last_reload_reg[regno]),
6568 GET_MODE (reg_last_reload_reg[regno]),
6569 mode)
6570 #endif
6573 enum reg_class rclass = rld[r].rclass, last_class;
6574 rtx last_reg = reg_last_reload_reg[regno];
6576 i = REGNO (last_reg);
6577 byte = compute_reload_subreg_offset (mode,
6578 subreg,
6579 GET_MODE (last_reg));
6580 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
6581 last_class = REGNO_REG_CLASS (i);
6583 if (reg_reloaded_contents[i] == regno
6584 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
6585 && targetm.hard_regno_mode_ok (i, rld[r].mode)
6586 && (TEST_HARD_REG_BIT (reg_class_contents[(int) rclass], i)
6587 /* Even if we can't use this register as a reload
6588 register, we might use it for reload_override_in,
6589 if copying it to the desired class is cheap
6590 enough. */
6591 || ((register_move_cost (mode, last_class, rclass)
6592 < memory_move_cost (mode, rclass, true))
6593 && (secondary_reload_class (1, rclass, mode,
6594 last_reg)
6595 == NO_REGS)
6596 #ifdef SECONDARY_MEMORY_NEEDED
6597 && ! SECONDARY_MEMORY_NEEDED (last_class, rclass,
6598 mode)
6599 #endif
6602 && (rld[r].nregs == max_group_size
6603 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
6605 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
6606 rld[r].when_needed, rld[r].in,
6607 const0_rtx, r, 1))
6609 /* If a group is needed, verify that all the subsequent
6610 registers still have their values intact. */
6611 int nr = hard_regno_nregs (i, rld[r].mode);
6612 int k;
6614 for (k = 1; k < nr; k++)
6615 if (reg_reloaded_contents[i + k] != regno
6616 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
6617 break;
6619 if (k == nr)
6621 int i1;
6622 int bad_for_class;
6624 last_reg = (GET_MODE (last_reg) == mode
6625 ? last_reg : gen_rtx_REG (mode, i));
6627 bad_for_class = 0;
6628 for (k = 0; k < nr; k++)
6629 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6630 i+k);
6632 /* We found a register that contains the
6633 value we need. If this register is the
6634 same as an `earlyclobber' operand of the
6635 current insn, just mark it as a place to
6636 reload from since we can't use it as the
6637 reload register itself. */
6639 for (i1 = 0; i1 < n_earlyclobbers; i1++)
6640 if (reg_overlap_mentioned_for_reload_p
6641 (reg_last_reload_reg[regno],
6642 reload_earlyclobbers[i1]))
6643 break;
6645 if (i1 != n_earlyclobbers
6646 || ! (free_for_value_p (i, rld[r].mode,
6647 rld[r].opnum,
6648 rld[r].when_needed, rld[r].in,
6649 rld[r].out, r, 1))
6650 /* Don't use it if we'd clobber a pseudo reg. */
6651 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
6652 && rld[r].out
6653 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
6654 /* Don't clobber the frame pointer. */
6655 || (i == HARD_FRAME_POINTER_REGNUM
6656 && frame_pointer_needed
6657 && rld[r].out)
6658 /* Don't really use the inherited spill reg
6659 if we need it wider than we've got it. */
6660 || paradoxical_subreg_p (rld[r].mode, mode)
6661 || bad_for_class
6663 /* If find_reloads chose reload_out as reload
6664 register, stay with it - that leaves the
6665 inherited register for subsequent reloads. */
6666 || (rld[r].out && rld[r].reg_rtx
6667 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
6669 if (! rld[r].optional)
6671 reload_override_in[r] = last_reg;
6672 reload_inheritance_insn[r]
6673 = reg_reloaded_insn[i];
6676 else
6678 int k;
6679 /* We can use this as a reload reg. */
6680 /* Mark the register as in use for this part of
6681 the insn. */
6682 mark_reload_reg_in_use (i,
6683 rld[r].opnum,
6684 rld[r].when_needed,
6685 rld[r].mode);
6686 rld[r].reg_rtx = last_reg;
6687 reload_inherited[r] = 1;
6688 reload_inheritance_insn[r]
6689 = reg_reloaded_insn[i];
6690 reload_spill_index[r] = i;
6691 for (k = 0; k < nr; k++)
6692 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6693 i + k);
6700 /* Here's another way to see if the value is already lying around. */
6701 if (inheritance
6702 && rld[r].in != 0
6703 && ! reload_inherited[r]
6704 && rld[r].out == 0
6705 && (CONSTANT_P (rld[r].in)
6706 || GET_CODE (rld[r].in) == PLUS
6707 || REG_P (rld[r].in)
6708 || MEM_P (rld[r].in))
6709 && (rld[r].nregs == max_group_size
6710 || ! reg_classes_intersect_p (rld[r].rclass, group_class)))
6711 search_equiv = rld[r].in;
6713 if (search_equiv)
6715 rtx equiv
6716 = find_equiv_reg (search_equiv, insn, rld[r].rclass,
6717 -1, NULL, 0, rld[r].mode);
6718 int regno = 0;
6720 if (equiv != 0)
6722 if (REG_P (equiv))
6723 regno = REGNO (equiv);
6724 else
6726 /* This must be a SUBREG of a hard register.
6727 Make a new REG since this might be used in an
6728 address and not all machines support SUBREGs
6729 there. */
6730 gcc_assert (GET_CODE (equiv) == SUBREG);
6731 regno = subreg_regno (equiv);
6732 equiv = gen_rtx_REG (rld[r].mode, regno);
6733 /* If we choose EQUIV as the reload register, but the
6734 loop below decides to cancel the inheritance, we'll
6735 end up reloading EQUIV in rld[r].mode, not the mode
6736 it had originally. That isn't safe when EQUIV isn't
6737 available as a spill register since its value might
6738 still be live at this point. */
6739 for (i = regno; i < regno + (int) rld[r].nregs; i++)
6740 if (TEST_HARD_REG_BIT (reload_reg_unavailable, i))
6741 equiv = 0;
6745 /* If we found a spill reg, reject it unless it is free
6746 and of the desired class. */
6747 if (equiv != 0)
6749 int regs_used = 0;
6750 int bad_for_class = 0;
6751 int max_regno = regno + rld[r].nregs;
6753 for (i = regno; i < max_regno; i++)
6755 regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all,
6757 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6761 if ((regs_used
6762 && ! free_for_value_p (regno, rld[r].mode,
6763 rld[r].opnum, rld[r].when_needed,
6764 rld[r].in, rld[r].out, r, 1))
6765 || bad_for_class)
6766 equiv = 0;
6769 if (equiv != 0
6770 && !targetm.hard_regno_mode_ok (regno, rld[r].mode))
6771 equiv = 0;
6773 /* We found a register that contains the value we need.
6774 If this register is the same as an `earlyclobber' operand
6775 of the current insn, just mark it as a place to reload from
6776 since we can't use it as the reload register itself. */
6778 if (equiv != 0)
6779 for (i = 0; i < n_earlyclobbers; i++)
6780 if (reg_overlap_mentioned_for_reload_p (equiv,
6781 reload_earlyclobbers[i]))
6783 if (! rld[r].optional)
6784 reload_override_in[r] = equiv;
6785 equiv = 0;
6786 break;
6789 /* If the equiv register we have found is explicitly clobbered
6790 in the current insn, it depends on the reload type if we
6791 can use it, use it for reload_override_in, or not at all.
6792 In particular, we then can't use EQUIV for a
6793 RELOAD_FOR_OUTPUT_ADDRESS reload. */
6795 if (equiv != 0)
6797 if (regno_clobbered_p (regno, insn, rld[r].mode, 2))
6798 switch (rld[r].when_needed)
6800 case RELOAD_FOR_OTHER_ADDRESS:
6801 case RELOAD_FOR_INPADDR_ADDRESS:
6802 case RELOAD_FOR_INPUT_ADDRESS:
6803 case RELOAD_FOR_OPADDR_ADDR:
6804 break;
6805 case RELOAD_OTHER:
6806 case RELOAD_FOR_INPUT:
6807 case RELOAD_FOR_OPERAND_ADDRESS:
6808 if (! rld[r].optional)
6809 reload_override_in[r] = equiv;
6810 /* Fall through. */
6811 default:
6812 equiv = 0;
6813 break;
6815 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
6816 switch (rld[r].when_needed)
6818 case RELOAD_FOR_OTHER_ADDRESS:
6819 case RELOAD_FOR_INPADDR_ADDRESS:
6820 case RELOAD_FOR_INPUT_ADDRESS:
6821 case RELOAD_FOR_OPADDR_ADDR:
6822 case RELOAD_FOR_OPERAND_ADDRESS:
6823 case RELOAD_FOR_INPUT:
6824 break;
6825 case RELOAD_OTHER:
6826 if (! rld[r].optional)
6827 reload_override_in[r] = equiv;
6828 /* Fall through. */
6829 default:
6830 equiv = 0;
6831 break;
6835 /* If we found an equivalent reg, say no code need be generated
6836 to load it, and use it as our reload reg. */
6837 if (equiv != 0
6838 && (regno != HARD_FRAME_POINTER_REGNUM
6839 || !frame_pointer_needed))
6841 int nr = hard_regno_nregs (regno, rld[r].mode);
6842 int k;
6843 rld[r].reg_rtx = equiv;
6844 reload_spill_index[r] = regno;
6845 reload_inherited[r] = 1;
6847 /* If reg_reloaded_valid is not set for this register,
6848 there might be a stale spill_reg_store lying around.
6849 We must clear it, since otherwise emit_reload_insns
6850 might delete the store. */
6851 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
6852 spill_reg_store[regno] = NULL;
6853 /* If any of the hard registers in EQUIV are spill
6854 registers, mark them as in use for this insn. */
6855 for (k = 0; k < nr; k++)
6857 i = spill_reg_order[regno + k];
6858 if (i >= 0)
6860 mark_reload_reg_in_use (regno, rld[r].opnum,
6861 rld[r].when_needed,
6862 rld[r].mode);
6863 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6864 regno + k);
6870 /* If we found a register to use already, or if this is an optional
6871 reload, we are done. */
6872 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
6873 continue;
6875 #if 0
6876 /* No longer needed for correct operation. Might or might
6877 not give better code on the average. Want to experiment? */
6879 /* See if there is a later reload that has a class different from our
6880 class that intersects our class or that requires less register
6881 than our reload. If so, we must allocate a register to this
6882 reload now, since that reload might inherit a previous reload
6883 and take the only available register in our class. Don't do this
6884 for optional reloads since they will force all previous reloads
6885 to be allocated. Also don't do this for reloads that have been
6886 turned off. */
6888 for (i = j + 1; i < n_reloads; i++)
6890 int s = reload_order[i];
6892 if ((rld[s].in == 0 && rld[s].out == 0
6893 && ! rld[s].secondary_p)
6894 || rld[s].optional)
6895 continue;
6897 if ((rld[s].rclass != rld[r].rclass
6898 && reg_classes_intersect_p (rld[r].rclass,
6899 rld[s].rclass))
6900 || rld[s].nregs < rld[r].nregs)
6901 break;
6904 if (i == n_reloads)
6905 continue;
6907 allocate_reload_reg (chain, r, j == n_reloads - 1);
6908 #endif
6911 /* Now allocate reload registers for anything non-optional that
6912 didn't get one yet. */
6913 for (j = 0; j < n_reloads; j++)
6915 int r = reload_order[j];
6917 /* Ignore reloads that got marked inoperative. */
6918 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
6919 continue;
6921 /* Skip reloads that already have a register allocated or are
6922 optional. */
6923 if (rld[r].reg_rtx != 0 || rld[r].optional)
6924 continue;
6926 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
6927 break;
6930 /* If that loop got all the way, we have won. */
6931 if (j == n_reloads)
6933 win = 1;
6934 break;
6937 /* Loop around and try without any inheritance. */
6940 if (! win)
6942 /* First undo everything done by the failed attempt
6943 to allocate with inheritance. */
6944 choose_reload_regs_init (chain, save_reload_reg_rtx);
6946 /* Some sanity tests to verify that the reloads found in the first
6947 pass are identical to the ones we have now. */
6948 gcc_assert (chain->n_reloads == n_reloads);
6950 for (i = 0; i < n_reloads; i++)
6952 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
6953 continue;
6954 gcc_assert (chain->rld[i].when_needed == rld[i].when_needed);
6955 for (j = 0; j < n_spills; j++)
6956 if (spill_regs[j] == chain->rld[i].regno)
6957 if (! set_reload_reg (j, i))
6958 failed_reload (chain->insn, i);
6962 /* If we thought we could inherit a reload, because it seemed that
6963 nothing else wanted the same reload register earlier in the insn,
6964 verify that assumption, now that all reloads have been assigned.
6965 Likewise for reloads where reload_override_in has been set. */
6967 /* If doing expensive optimizations, do one preliminary pass that doesn't
6968 cancel any inheritance, but removes reloads that have been needed only
6969 for reloads that we know can be inherited. */
6970 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
6972 for (j = 0; j < n_reloads; j++)
6974 int r = reload_order[j];
6975 rtx check_reg;
6976 #ifdef SECONDARY_MEMORY_NEEDED
6977 rtx tem;
6978 #endif
6979 if (reload_inherited[r] && rld[r].reg_rtx)
6980 check_reg = rld[r].reg_rtx;
6981 else if (reload_override_in[r]
6982 && (REG_P (reload_override_in[r])
6983 || GET_CODE (reload_override_in[r]) == SUBREG))
6984 check_reg = reload_override_in[r];
6985 else
6986 continue;
6987 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
6988 rld[r].opnum, rld[r].when_needed, rld[r].in,
6989 (reload_inherited[r]
6990 ? rld[r].out : const0_rtx),
6991 r, 1))
6993 if (pass)
6994 continue;
6995 reload_inherited[r] = 0;
6996 reload_override_in[r] = 0;
6998 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
6999 reload_override_in, then we do not need its related
7000 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
7001 likewise for other reload types.
7002 We handle this by removing a reload when its only replacement
7003 is mentioned in reload_in of the reload we are going to inherit.
7004 A special case are auto_inc expressions; even if the input is
7005 inherited, we still need the address for the output. We can
7006 recognize them because they have RELOAD_OUT set to RELOAD_IN.
7007 If we succeeded removing some reload and we are doing a preliminary
7008 pass just to remove such reloads, make another pass, since the
7009 removal of one reload might allow us to inherit another one. */
7010 else if (rld[r].in
7011 && rld[r].out != rld[r].in
7012 && remove_address_replacements (rld[r].in))
7014 if (pass)
7015 pass = 2;
7017 #ifdef SECONDARY_MEMORY_NEEDED
7018 /* If we needed a memory location for the reload, we also have to
7019 remove its related reloads. */
7020 else if (rld[r].in
7021 && rld[r].out != rld[r].in
7022 && (tem = replaced_subreg (rld[r].in), REG_P (tem))
7023 && REGNO (tem) < FIRST_PSEUDO_REGISTER
7024 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (tem)),
7025 rld[r].rclass, rld[r].inmode)
7026 && remove_address_replacements
7027 (get_secondary_mem (tem, rld[r].inmode, rld[r].opnum,
7028 rld[r].when_needed)))
7030 if (pass)
7031 pass = 2;
7033 #endif
7037 /* Now that reload_override_in is known valid,
7038 actually override reload_in. */
7039 for (j = 0; j < n_reloads; j++)
7040 if (reload_override_in[j])
7041 rld[j].in = reload_override_in[j];
7043 /* If this reload won't be done because it has been canceled or is
7044 optional and not inherited, clear reload_reg_rtx so other
7045 routines (such as subst_reloads) don't get confused. */
7046 for (j = 0; j < n_reloads; j++)
7047 if (rld[j].reg_rtx != 0
7048 && ((rld[j].optional && ! reload_inherited[j])
7049 || (rld[j].in == 0 && rld[j].out == 0
7050 && ! rld[j].secondary_p)))
7052 int regno = true_regnum (rld[j].reg_rtx);
7054 if (spill_reg_order[regno] >= 0)
7055 clear_reload_reg_in_use (regno, rld[j].opnum,
7056 rld[j].when_needed, rld[j].mode);
7057 rld[j].reg_rtx = 0;
7058 reload_spill_index[j] = -1;
7061 /* Record which pseudos and which spill regs have output reloads. */
7062 for (j = 0; j < n_reloads; j++)
7064 int r = reload_order[j];
7066 i = reload_spill_index[r];
7068 /* I is nonneg if this reload uses a register.
7069 If rld[r].reg_rtx is 0, this is an optional reload
7070 that we opted to ignore. */
7071 if (rld[r].out_reg != 0 && REG_P (rld[r].out_reg)
7072 && rld[r].reg_rtx != 0)
7074 int nregno = REGNO (rld[r].out_reg);
7075 int nr = 1;
7077 if (nregno < FIRST_PSEUDO_REGISTER)
7078 nr = hard_regno_nregs (nregno, rld[r].mode);
7080 while (--nr >= 0)
7081 SET_REGNO_REG_SET (&reg_has_output_reload,
7082 nregno + nr);
7084 if (i >= 0)
7085 add_to_hard_reg_set (&reg_is_output_reload, rld[r].mode, i);
7087 gcc_assert (rld[r].when_needed == RELOAD_OTHER
7088 || rld[r].when_needed == RELOAD_FOR_OUTPUT
7089 || rld[r].when_needed == RELOAD_FOR_INSN);
7094 /* Deallocate the reload register for reload R. This is called from
7095 remove_address_replacements. */
7097 void
7098 deallocate_reload_reg (int r)
7100 int regno;
7102 if (! rld[r].reg_rtx)
7103 return;
7104 regno = true_regnum (rld[r].reg_rtx);
7105 rld[r].reg_rtx = 0;
7106 if (spill_reg_order[regno] >= 0)
7107 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
7108 rld[r].mode);
7109 reload_spill_index[r] = -1;
7112 /* These arrays are filled by emit_reload_insns and its subroutines. */
7113 static rtx_insn *input_reload_insns[MAX_RECOG_OPERANDS];
7114 static rtx_insn *other_input_address_reload_insns = 0;
7115 static rtx_insn *other_input_reload_insns = 0;
7116 static rtx_insn *input_address_reload_insns[MAX_RECOG_OPERANDS];
7117 static rtx_insn *inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7118 static rtx_insn *output_reload_insns[MAX_RECOG_OPERANDS];
7119 static rtx_insn *output_address_reload_insns[MAX_RECOG_OPERANDS];
7120 static rtx_insn *outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7121 static rtx_insn *operand_reload_insns = 0;
7122 static rtx_insn *other_operand_reload_insns = 0;
7123 static rtx_insn *other_output_reload_insns[MAX_RECOG_OPERANDS];
7125 /* Values to be put in spill_reg_store are put here first. Instructions
7126 must only be placed here if the associated reload register reaches
7127 the end of the instruction's reload sequence. */
7128 static rtx_insn *new_spill_reg_store[FIRST_PSEUDO_REGISTER];
7129 static HARD_REG_SET reg_reloaded_died;
7131 /* Check if *RELOAD_REG is suitable as an intermediate or scratch register
7132 of class NEW_CLASS with mode NEW_MODE. Or alternatively, if alt_reload_reg
7133 is nonzero, if that is suitable. On success, change *RELOAD_REG to the
7134 adjusted register, and return true. Otherwise, return false. */
7135 static bool
7136 reload_adjust_reg_for_temp (rtx *reload_reg, rtx alt_reload_reg,
7137 enum reg_class new_class,
7138 machine_mode new_mode)
7141 rtx reg;
7143 for (reg = *reload_reg; reg; reg = alt_reload_reg, alt_reload_reg = 0)
7145 unsigned regno = REGNO (reg);
7147 if (!TEST_HARD_REG_BIT (reg_class_contents[(int) new_class], regno))
7148 continue;
7149 if (GET_MODE (reg) != new_mode)
7151 if (!targetm.hard_regno_mode_ok (regno, new_mode))
7152 continue;
7153 if (hard_regno_nregs (regno, new_mode) > REG_NREGS (reg))
7154 continue;
7155 reg = reload_adjust_reg_for_mode (reg, new_mode);
7157 *reload_reg = reg;
7158 return true;
7160 return false;
7163 /* Check if *RELOAD_REG is suitable as a scratch register for the reload
7164 pattern with insn_code ICODE, or alternatively, if alt_reload_reg is
7165 nonzero, if that is suitable. On success, change *RELOAD_REG to the
7166 adjusted register, and return true. Otherwise, return false. */
7167 static bool
7168 reload_adjust_reg_for_icode (rtx *reload_reg, rtx alt_reload_reg,
7169 enum insn_code icode)
7172 enum reg_class new_class = scratch_reload_class (icode);
7173 machine_mode new_mode = insn_data[(int) icode].operand[2].mode;
7175 return reload_adjust_reg_for_temp (reload_reg, alt_reload_reg,
7176 new_class, new_mode);
7179 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
7180 has the number J. OLD contains the value to be used as input. */
7182 static void
7183 emit_input_reload_insns (struct insn_chain *chain, struct reload *rl,
7184 rtx old, int j)
7186 rtx_insn *insn = chain->insn;
7187 rtx reloadreg;
7188 rtx oldequiv_reg = 0;
7189 rtx oldequiv = 0;
7190 int special = 0;
7191 machine_mode mode;
7192 rtx_insn **where;
7194 /* delete_output_reload is only invoked properly if old contains
7195 the original pseudo register. Since this is replaced with a
7196 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
7197 find the pseudo in RELOAD_IN_REG. This is also used to
7198 determine whether a secondary reload is needed. */
7199 if (reload_override_in[j]
7200 && (REG_P (rl->in_reg)
7201 || (GET_CODE (rl->in_reg) == SUBREG
7202 && REG_P (SUBREG_REG (rl->in_reg)))))
7204 oldequiv = old;
7205 old = rl->in_reg;
7207 if (oldequiv == 0)
7208 oldequiv = old;
7209 else if (REG_P (oldequiv))
7210 oldequiv_reg = oldequiv;
7211 else if (GET_CODE (oldequiv) == SUBREG)
7212 oldequiv_reg = SUBREG_REG (oldequiv);
7214 reloadreg = reload_reg_rtx_for_input[j];
7215 mode = GET_MODE (reloadreg);
7217 /* If we are reloading from a register that was recently stored in
7218 with an output-reload, see if we can prove there was
7219 actually no need to store the old value in it. */
7221 if (optimize && REG_P (oldequiv)
7222 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
7223 && spill_reg_store[REGNO (oldequiv)]
7224 && REG_P (old)
7225 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
7226 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
7227 rl->out_reg)))
7228 delete_output_reload (insn, j, REGNO (oldequiv), reloadreg);
7230 /* Encapsulate OLDEQUIV into the reload mode, then load RELOADREG from
7231 OLDEQUIV. */
7233 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
7234 oldequiv = SUBREG_REG (oldequiv);
7235 if (GET_MODE (oldequiv) != VOIDmode
7236 && mode != GET_MODE (oldequiv))
7237 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
7239 /* Switch to the right place to emit the reload insns. */
7240 switch (rl->when_needed)
7242 case RELOAD_OTHER:
7243 where = &other_input_reload_insns;
7244 break;
7245 case RELOAD_FOR_INPUT:
7246 where = &input_reload_insns[rl->opnum];
7247 break;
7248 case RELOAD_FOR_INPUT_ADDRESS:
7249 where = &input_address_reload_insns[rl->opnum];
7250 break;
7251 case RELOAD_FOR_INPADDR_ADDRESS:
7252 where = &inpaddr_address_reload_insns[rl->opnum];
7253 break;
7254 case RELOAD_FOR_OUTPUT_ADDRESS:
7255 where = &output_address_reload_insns[rl->opnum];
7256 break;
7257 case RELOAD_FOR_OUTADDR_ADDRESS:
7258 where = &outaddr_address_reload_insns[rl->opnum];
7259 break;
7260 case RELOAD_FOR_OPERAND_ADDRESS:
7261 where = &operand_reload_insns;
7262 break;
7263 case RELOAD_FOR_OPADDR_ADDR:
7264 where = &other_operand_reload_insns;
7265 break;
7266 case RELOAD_FOR_OTHER_ADDRESS:
7267 where = &other_input_address_reload_insns;
7268 break;
7269 default:
7270 gcc_unreachable ();
7273 push_to_sequence (*where);
7275 /* Auto-increment addresses must be reloaded in a special way. */
7276 if (rl->out && ! rl->out_reg)
7278 /* We are not going to bother supporting the case where a
7279 incremented register can't be copied directly from
7280 OLDEQUIV since this seems highly unlikely. */
7281 gcc_assert (rl->secondary_in_reload < 0);
7283 if (reload_inherited[j])
7284 oldequiv = reloadreg;
7286 old = XEXP (rl->in_reg, 0);
7288 /* Prevent normal processing of this reload. */
7289 special = 1;
7290 /* Output a special code sequence for this case. */
7291 inc_for_reload (reloadreg, oldequiv, rl->out, rl->inc);
7294 /* If we are reloading a pseudo-register that was set by the previous
7295 insn, see if we can get rid of that pseudo-register entirely
7296 by redirecting the previous insn into our reload register. */
7298 else if (optimize && REG_P (old)
7299 && REGNO (old) >= FIRST_PSEUDO_REGISTER
7300 && dead_or_set_p (insn, old)
7301 /* This is unsafe if some other reload
7302 uses the same reg first. */
7303 && ! conflicts_with_override (reloadreg)
7304 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
7305 rl->when_needed, old, rl->out, j, 0))
7307 rtx_insn *temp = PREV_INSN (insn);
7308 while (temp && (NOTE_P (temp) || DEBUG_INSN_P (temp)))
7309 temp = PREV_INSN (temp);
7310 if (temp
7311 && NONJUMP_INSN_P (temp)
7312 && GET_CODE (PATTERN (temp)) == SET
7313 && SET_DEST (PATTERN (temp)) == old
7314 /* Make sure we can access insn_operand_constraint. */
7315 && asm_noperands (PATTERN (temp)) < 0
7316 /* This is unsafe if operand occurs more than once in current
7317 insn. Perhaps some occurrences aren't reloaded. */
7318 && count_occurrences (PATTERN (insn), old, 0) == 1)
7320 rtx old = SET_DEST (PATTERN (temp));
7321 /* Store into the reload register instead of the pseudo. */
7322 SET_DEST (PATTERN (temp)) = reloadreg;
7324 /* Verify that resulting insn is valid.
7326 Note that we have replaced the destination of TEMP with
7327 RELOADREG. If TEMP references RELOADREG within an
7328 autoincrement addressing mode, then the resulting insn
7329 is ill-formed and we must reject this optimization. */
7330 extract_insn (temp);
7331 if (constrain_operands (1, get_enabled_alternatives (temp))
7332 && (!AUTO_INC_DEC || ! find_reg_note (temp, REG_INC, reloadreg)))
7334 /* If the previous insn is an output reload, the source is
7335 a reload register, and its spill_reg_store entry will
7336 contain the previous destination. This is now
7337 invalid. */
7338 if (REG_P (SET_SRC (PATTERN (temp)))
7339 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
7341 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7342 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7345 /* If these are the only uses of the pseudo reg,
7346 pretend for GDB it lives in the reload reg we used. */
7347 if (REG_N_DEATHS (REGNO (old)) == 1
7348 && REG_N_SETS (REGNO (old)) == 1)
7350 reg_renumber[REGNO (old)] = REGNO (reloadreg);
7351 if (ira_conflicts_p)
7352 /* Inform IRA about the change. */
7353 ira_mark_allocation_change (REGNO (old));
7354 alter_reg (REGNO (old), -1, false);
7356 special = 1;
7358 /* Adjust any debug insns between temp and insn. */
7359 while ((temp = NEXT_INSN (temp)) != insn)
7360 if (DEBUG_INSN_P (temp))
7361 INSN_VAR_LOCATION_LOC (temp)
7362 = simplify_replace_rtx (INSN_VAR_LOCATION_LOC (temp),
7363 old, reloadreg);
7364 else
7365 gcc_assert (NOTE_P (temp));
7367 else
7369 SET_DEST (PATTERN (temp)) = old;
7374 /* We can't do that, so output an insn to load RELOADREG. */
7376 /* If we have a secondary reload, pick up the secondary register
7377 and icode, if any. If OLDEQUIV and OLD are different or
7378 if this is an in-out reload, recompute whether or not we
7379 still need a secondary register and what the icode should
7380 be. If we still need a secondary register and the class or
7381 icode is different, go back to reloading from OLD if using
7382 OLDEQUIV means that we got the wrong type of register. We
7383 cannot have different class or icode due to an in-out reload
7384 because we don't make such reloads when both the input and
7385 output need secondary reload registers. */
7387 if (! special && rl->secondary_in_reload >= 0)
7389 rtx second_reload_reg = 0;
7390 rtx third_reload_reg = 0;
7391 int secondary_reload = rl->secondary_in_reload;
7392 rtx real_oldequiv = oldequiv;
7393 rtx real_old = old;
7394 rtx tmp;
7395 enum insn_code icode;
7396 enum insn_code tertiary_icode = CODE_FOR_nothing;
7398 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
7399 and similarly for OLD.
7400 See comments in get_secondary_reload in reload.c. */
7401 /* If it is a pseudo that cannot be replaced with its
7402 equivalent MEM, we must fall back to reload_in, which
7403 will have all the necessary substitutions registered.
7404 Likewise for a pseudo that can't be replaced with its
7405 equivalent constant.
7407 Take extra care for subregs of such pseudos. Note that
7408 we cannot use reg_equiv_mem in this case because it is
7409 not in the right mode. */
7411 tmp = oldequiv;
7412 if (GET_CODE (tmp) == SUBREG)
7413 tmp = SUBREG_REG (tmp);
7414 if (REG_P (tmp)
7415 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7416 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7417 || reg_equiv_constant (REGNO (tmp)) != 0))
7419 if (! reg_equiv_mem (REGNO (tmp))
7420 || num_not_at_initial_offset
7421 || GET_CODE (oldequiv) == SUBREG)
7422 real_oldequiv = rl->in;
7423 else
7424 real_oldequiv = reg_equiv_mem (REGNO (tmp));
7427 tmp = old;
7428 if (GET_CODE (tmp) == SUBREG)
7429 tmp = SUBREG_REG (tmp);
7430 if (REG_P (tmp)
7431 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7432 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7433 || reg_equiv_constant (REGNO (tmp)) != 0))
7435 if (! reg_equiv_mem (REGNO (tmp))
7436 || num_not_at_initial_offset
7437 || GET_CODE (old) == SUBREG)
7438 real_old = rl->in;
7439 else
7440 real_old = reg_equiv_mem (REGNO (tmp));
7443 second_reload_reg = rld[secondary_reload].reg_rtx;
7444 if (rld[secondary_reload].secondary_in_reload >= 0)
7446 int tertiary_reload = rld[secondary_reload].secondary_in_reload;
7448 third_reload_reg = rld[tertiary_reload].reg_rtx;
7449 tertiary_icode = rld[secondary_reload].secondary_in_icode;
7450 /* We'd have to add more code for quartary reloads. */
7451 gcc_assert (rld[tertiary_reload].secondary_in_reload < 0);
7453 icode = rl->secondary_in_icode;
7455 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
7456 || (rl->in != 0 && rl->out != 0))
7458 secondary_reload_info sri, sri2;
7459 enum reg_class new_class, new_t_class;
7461 sri.icode = CODE_FOR_nothing;
7462 sri.prev_sri = NULL;
7463 new_class
7464 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7465 rl->rclass, mode,
7466 &sri);
7468 if (new_class == NO_REGS && sri.icode == CODE_FOR_nothing)
7469 second_reload_reg = 0;
7470 else if (new_class == NO_REGS)
7472 if (reload_adjust_reg_for_icode (&second_reload_reg,
7473 third_reload_reg,
7474 (enum insn_code) sri.icode))
7476 icode = (enum insn_code) sri.icode;
7477 third_reload_reg = 0;
7479 else
7481 oldequiv = old;
7482 real_oldequiv = real_old;
7485 else if (sri.icode != CODE_FOR_nothing)
7486 /* We currently lack a way to express this in reloads. */
7487 gcc_unreachable ();
7488 else
7490 sri2.icode = CODE_FOR_nothing;
7491 sri2.prev_sri = &sri;
7492 new_t_class
7493 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7494 new_class, mode,
7495 &sri);
7496 if (new_t_class == NO_REGS && sri2.icode == CODE_FOR_nothing)
7498 if (reload_adjust_reg_for_temp (&second_reload_reg,
7499 third_reload_reg,
7500 new_class, mode))
7502 third_reload_reg = 0;
7503 tertiary_icode = (enum insn_code) sri2.icode;
7505 else
7507 oldequiv = old;
7508 real_oldequiv = real_old;
7511 else if (new_t_class == NO_REGS && sri2.icode != CODE_FOR_nothing)
7513 rtx intermediate = second_reload_reg;
7515 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7516 new_class, mode)
7517 && reload_adjust_reg_for_icode (&third_reload_reg, NULL,
7518 ((enum insn_code)
7519 sri2.icode)))
7521 second_reload_reg = intermediate;
7522 tertiary_icode = (enum insn_code) sri2.icode;
7524 else
7526 oldequiv = old;
7527 real_oldequiv = real_old;
7530 else if (new_t_class != NO_REGS && sri2.icode == CODE_FOR_nothing)
7532 rtx intermediate = second_reload_reg;
7534 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7535 new_class, mode)
7536 && reload_adjust_reg_for_temp (&third_reload_reg, NULL,
7537 new_t_class, mode))
7539 second_reload_reg = intermediate;
7540 tertiary_icode = (enum insn_code) sri2.icode;
7542 else
7544 oldequiv = old;
7545 real_oldequiv = real_old;
7548 else
7550 /* This could be handled more intelligently too. */
7551 oldequiv = old;
7552 real_oldequiv = real_old;
7557 /* If we still need a secondary reload register, check
7558 to see if it is being used as a scratch or intermediate
7559 register and generate code appropriately. If we need
7560 a scratch register, use REAL_OLDEQUIV since the form of
7561 the insn may depend on the actual address if it is
7562 a MEM. */
7564 if (second_reload_reg)
7566 if (icode != CODE_FOR_nothing)
7568 /* We'd have to add extra code to handle this case. */
7569 gcc_assert (!third_reload_reg);
7571 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
7572 second_reload_reg));
7573 special = 1;
7575 else
7577 /* See if we need a scratch register to load the
7578 intermediate register (a tertiary reload). */
7579 if (tertiary_icode != CODE_FOR_nothing)
7581 emit_insn ((GEN_FCN (tertiary_icode)
7582 (second_reload_reg, real_oldequiv,
7583 third_reload_reg)));
7585 else if (third_reload_reg)
7587 gen_reload (third_reload_reg, real_oldequiv,
7588 rl->opnum,
7589 rl->when_needed);
7590 gen_reload (second_reload_reg, third_reload_reg,
7591 rl->opnum,
7592 rl->when_needed);
7594 else
7595 gen_reload (second_reload_reg, real_oldequiv,
7596 rl->opnum,
7597 rl->when_needed);
7599 oldequiv = second_reload_reg;
7604 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
7606 rtx real_oldequiv = oldequiv;
7608 if ((REG_P (oldequiv)
7609 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
7610 && (reg_equiv_memory_loc (REGNO (oldequiv)) != 0
7611 || reg_equiv_constant (REGNO (oldequiv)) != 0))
7612 || (GET_CODE (oldequiv) == SUBREG
7613 && REG_P (SUBREG_REG (oldequiv))
7614 && (REGNO (SUBREG_REG (oldequiv))
7615 >= FIRST_PSEUDO_REGISTER)
7616 && ((reg_equiv_memory_loc (REGNO (SUBREG_REG (oldequiv))) != 0)
7617 || (reg_equiv_constant (REGNO (SUBREG_REG (oldequiv))) != 0)))
7618 || (CONSTANT_P (oldequiv)
7619 && (targetm.preferred_reload_class (oldequiv,
7620 REGNO_REG_CLASS (REGNO (reloadreg)))
7621 == NO_REGS)))
7622 real_oldequiv = rl->in;
7623 gen_reload (reloadreg, real_oldequiv, rl->opnum,
7624 rl->when_needed);
7627 if (cfun->can_throw_non_call_exceptions)
7628 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7630 /* End this sequence. */
7631 *where = get_insns ();
7632 end_sequence ();
7634 /* Update reload_override_in so that delete_address_reloads_1
7635 can see the actual register usage. */
7636 if (oldequiv_reg)
7637 reload_override_in[j] = oldequiv;
7640 /* Generate insns to for the output reload RL, which is for the insn described
7641 by CHAIN and has the number J. */
7642 static void
7643 emit_output_reload_insns (struct insn_chain *chain, struct reload *rl,
7644 int j)
7646 rtx reloadreg;
7647 rtx_insn *insn = chain->insn;
7648 int special = 0;
7649 rtx old = rl->out;
7650 machine_mode mode;
7651 rtx_insn *p;
7652 rtx rl_reg_rtx;
7654 if (rl->when_needed == RELOAD_OTHER)
7655 start_sequence ();
7656 else
7657 push_to_sequence (output_reload_insns[rl->opnum]);
7659 rl_reg_rtx = reload_reg_rtx_for_output[j];
7660 mode = GET_MODE (rl_reg_rtx);
7662 reloadreg = rl_reg_rtx;
7664 /* If we need two reload regs, set RELOADREG to the intermediate
7665 one, since it will be stored into OLD. We might need a secondary
7666 register only for an input reload, so check again here. */
7668 if (rl->secondary_out_reload >= 0)
7670 rtx real_old = old;
7671 int secondary_reload = rl->secondary_out_reload;
7672 int tertiary_reload = rld[secondary_reload].secondary_out_reload;
7674 if (REG_P (old) && REGNO (old) >= FIRST_PSEUDO_REGISTER
7675 && reg_equiv_mem (REGNO (old)) != 0)
7676 real_old = reg_equiv_mem (REGNO (old));
7678 if (secondary_reload_class (0, rl->rclass, mode, real_old) != NO_REGS)
7680 rtx second_reloadreg = reloadreg;
7681 reloadreg = rld[secondary_reload].reg_rtx;
7683 /* See if RELOADREG is to be used as a scratch register
7684 or as an intermediate register. */
7685 if (rl->secondary_out_icode != CODE_FOR_nothing)
7687 /* We'd have to add extra code to handle this case. */
7688 gcc_assert (tertiary_reload < 0);
7690 emit_insn ((GEN_FCN (rl->secondary_out_icode)
7691 (real_old, second_reloadreg, reloadreg)));
7692 special = 1;
7694 else
7696 /* See if we need both a scratch and intermediate reload
7697 register. */
7699 enum insn_code tertiary_icode
7700 = rld[secondary_reload].secondary_out_icode;
7702 /* We'd have to add more code for quartary reloads. */
7703 gcc_assert (tertiary_reload < 0
7704 || rld[tertiary_reload].secondary_out_reload < 0);
7706 if (GET_MODE (reloadreg) != mode)
7707 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
7709 if (tertiary_icode != CODE_FOR_nothing)
7711 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7713 /* Copy primary reload reg to secondary reload reg.
7714 (Note that these have been swapped above, then
7715 secondary reload reg to OLD using our insn.) */
7717 /* If REAL_OLD is a paradoxical SUBREG, remove it
7718 and try to put the opposite SUBREG on
7719 RELOADREG. */
7720 strip_paradoxical_subreg (&real_old, &reloadreg);
7722 gen_reload (reloadreg, second_reloadreg,
7723 rl->opnum, rl->when_needed);
7724 emit_insn ((GEN_FCN (tertiary_icode)
7725 (real_old, reloadreg, third_reloadreg)));
7726 special = 1;
7729 else
7731 /* Copy between the reload regs here and then to
7732 OUT later. */
7734 gen_reload (reloadreg, second_reloadreg,
7735 rl->opnum, rl->when_needed);
7736 if (tertiary_reload >= 0)
7738 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7740 gen_reload (third_reloadreg, reloadreg,
7741 rl->opnum, rl->when_needed);
7742 reloadreg = third_reloadreg;
7749 /* Output the last reload insn. */
7750 if (! special)
7752 rtx set;
7754 /* Don't output the last reload if OLD is not the dest of
7755 INSN and is in the src and is clobbered by INSN. */
7756 if (! flag_expensive_optimizations
7757 || !REG_P (old)
7758 || !(set = single_set (insn))
7759 || rtx_equal_p (old, SET_DEST (set))
7760 || !reg_mentioned_p (old, SET_SRC (set))
7761 || !((REGNO (old) < FIRST_PSEUDO_REGISTER)
7762 && regno_clobbered_p (REGNO (old), insn, rl->mode, 0)))
7763 gen_reload (old, reloadreg, rl->opnum,
7764 rl->when_needed);
7767 /* Look at all insns we emitted, just to be safe. */
7768 for (p = get_insns (); p; p = NEXT_INSN (p))
7769 if (INSN_P (p))
7771 rtx pat = PATTERN (p);
7773 /* If this output reload doesn't come from a spill reg,
7774 clear any memory of reloaded copies of the pseudo reg.
7775 If this output reload comes from a spill reg,
7776 reg_has_output_reload will make this do nothing. */
7777 note_stores (pat, forget_old_reloads_1, NULL);
7779 if (reg_mentioned_p (rl_reg_rtx, pat))
7781 rtx set = single_set (insn);
7782 if (reload_spill_index[j] < 0
7783 && set
7784 && SET_SRC (set) == rl_reg_rtx)
7786 int src = REGNO (SET_SRC (set));
7788 reload_spill_index[j] = src;
7789 SET_HARD_REG_BIT (reg_is_output_reload, src);
7790 if (find_regno_note (insn, REG_DEAD, src))
7791 SET_HARD_REG_BIT (reg_reloaded_died, src);
7793 if (HARD_REGISTER_P (rl_reg_rtx))
7795 int s = rl->secondary_out_reload;
7796 set = single_set (p);
7797 /* If this reload copies only to the secondary reload
7798 register, the secondary reload does the actual
7799 store. */
7800 if (s >= 0 && set == NULL_RTX)
7801 /* We can't tell what function the secondary reload
7802 has and where the actual store to the pseudo is
7803 made; leave new_spill_reg_store alone. */
7805 else if (s >= 0
7806 && SET_SRC (set) == rl_reg_rtx
7807 && SET_DEST (set) == rld[s].reg_rtx)
7809 /* Usually the next instruction will be the
7810 secondary reload insn; if we can confirm
7811 that it is, setting new_spill_reg_store to
7812 that insn will allow an extra optimization. */
7813 rtx s_reg = rld[s].reg_rtx;
7814 rtx_insn *next = NEXT_INSN (p);
7815 rld[s].out = rl->out;
7816 rld[s].out_reg = rl->out_reg;
7817 set = single_set (next);
7818 if (set && SET_SRC (set) == s_reg
7819 && reload_reg_rtx_reaches_end_p (s_reg, s))
7821 SET_HARD_REG_BIT (reg_is_output_reload,
7822 REGNO (s_reg));
7823 new_spill_reg_store[REGNO (s_reg)] = next;
7826 else if (reload_reg_rtx_reaches_end_p (rl_reg_rtx, j))
7827 new_spill_reg_store[REGNO (rl_reg_rtx)] = p;
7832 if (rl->when_needed == RELOAD_OTHER)
7834 emit_insn (other_output_reload_insns[rl->opnum]);
7835 other_output_reload_insns[rl->opnum] = get_insns ();
7837 else
7838 output_reload_insns[rl->opnum] = get_insns ();
7840 if (cfun->can_throw_non_call_exceptions)
7841 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7843 end_sequence ();
7846 /* Do input reloading for reload RL, which is for the insn described by CHAIN
7847 and has the number J. */
7848 static void
7849 do_input_reload (struct insn_chain *chain, struct reload *rl, int j)
7851 rtx_insn *insn = chain->insn;
7852 rtx old = (rl->in && MEM_P (rl->in)
7853 ? rl->in_reg : rl->in);
7854 rtx reg_rtx = rl->reg_rtx;
7856 if (old && reg_rtx)
7858 machine_mode mode;
7860 /* Determine the mode to reload in.
7861 This is very tricky because we have three to choose from.
7862 There is the mode the insn operand wants (rl->inmode).
7863 There is the mode of the reload register RELOADREG.
7864 There is the intrinsic mode of the operand, which we could find
7865 by stripping some SUBREGs.
7866 It turns out that RELOADREG's mode is irrelevant:
7867 we can change that arbitrarily.
7869 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
7870 then the reload reg may not support QImode moves, so use SImode.
7871 If foo is in memory due to spilling a pseudo reg, this is safe,
7872 because the QImode value is in the least significant part of a
7873 slot big enough for a SImode. If foo is some other sort of
7874 memory reference, then it is impossible to reload this case,
7875 so previous passes had better make sure this never happens.
7877 Then consider a one-word union which has SImode and one of its
7878 members is a float, being fetched as (SUBREG:SF union:SI).
7879 We must fetch that as SFmode because we could be loading into
7880 a float-only register. In this case OLD's mode is correct.
7882 Consider an immediate integer: it has VOIDmode. Here we need
7883 to get a mode from something else.
7885 In some cases, there is a fourth mode, the operand's
7886 containing mode. If the insn specifies a containing mode for
7887 this operand, it overrides all others.
7889 I am not sure whether the algorithm here is always right,
7890 but it does the right things in those cases. */
7892 mode = GET_MODE (old);
7893 if (mode == VOIDmode)
7894 mode = rl->inmode;
7896 /* We cannot use gen_lowpart_common since it can do the wrong thing
7897 when REG_RTX has a multi-word mode. Note that REG_RTX must
7898 always be a REG here. */
7899 if (GET_MODE (reg_rtx) != mode)
7900 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7902 reload_reg_rtx_for_input[j] = reg_rtx;
7904 if (old != 0
7905 /* AUTO_INC reloads need to be handled even if inherited. We got an
7906 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
7907 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
7908 && ! rtx_equal_p (reg_rtx, old)
7909 && reg_rtx != 0)
7910 emit_input_reload_insns (chain, rld + j, old, j);
7912 /* When inheriting a wider reload, we have a MEM in rl->in,
7913 e.g. inheriting a SImode output reload for
7914 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
7915 if (optimize && reload_inherited[j] && rl->in
7916 && MEM_P (rl->in)
7917 && MEM_P (rl->in_reg)
7918 && reload_spill_index[j] >= 0
7919 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
7920 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
7922 /* If we are reloading a register that was recently stored in with an
7923 output-reload, see if we can prove there was
7924 actually no need to store the old value in it. */
7926 if (optimize
7927 && (reload_inherited[j] || reload_override_in[j])
7928 && reg_rtx
7929 && REG_P (reg_rtx)
7930 && spill_reg_store[REGNO (reg_rtx)] != 0
7931 #if 0
7932 /* There doesn't seem to be any reason to restrict this to pseudos
7933 and doing so loses in the case where we are copying from a
7934 register of the wrong class. */
7935 && !HARD_REGISTER_P (spill_reg_stored_to[REGNO (reg_rtx)])
7936 #endif
7937 /* The insn might have already some references to stackslots
7938 replaced by MEMs, while reload_out_reg still names the
7939 original pseudo. */
7940 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (reg_rtx)])
7941 || rtx_equal_p (spill_reg_stored_to[REGNO (reg_rtx)], rl->out_reg)))
7942 delete_output_reload (insn, j, REGNO (reg_rtx), reg_rtx);
7945 /* Do output reloading for reload RL, which is for the insn described by
7946 CHAIN and has the number J.
7947 ??? At some point we need to support handling output reloads of
7948 JUMP_INSNs or insns that set cc0. */
7949 static void
7950 do_output_reload (struct insn_chain *chain, struct reload *rl, int j)
7952 rtx note, old;
7953 rtx_insn *insn = chain->insn;
7954 /* If this is an output reload that stores something that is
7955 not loaded in this same reload, see if we can eliminate a previous
7956 store. */
7957 rtx pseudo = rl->out_reg;
7958 rtx reg_rtx = rl->reg_rtx;
7960 if (rl->out && reg_rtx)
7962 machine_mode mode;
7964 /* Determine the mode to reload in.
7965 See comments above (for input reloading). */
7966 mode = GET_MODE (rl->out);
7967 if (mode == VOIDmode)
7969 /* VOIDmode should never happen for an output. */
7970 if (asm_noperands (PATTERN (insn)) < 0)
7971 /* It's the compiler's fault. */
7972 fatal_insn ("VOIDmode on an output", insn);
7973 error_for_asm (insn, "output operand is constant in %<asm%>");
7974 /* Prevent crash--use something we know is valid. */
7975 mode = word_mode;
7976 rl->out = gen_rtx_REG (mode, REGNO (reg_rtx));
7978 if (GET_MODE (reg_rtx) != mode)
7979 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7981 reload_reg_rtx_for_output[j] = reg_rtx;
7983 if (pseudo
7984 && optimize
7985 && REG_P (pseudo)
7986 && ! rtx_equal_p (rl->in_reg, pseudo)
7987 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
7988 && reg_last_reload_reg[REGNO (pseudo)])
7990 int pseudo_no = REGNO (pseudo);
7991 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
7993 /* We don't need to test full validity of last_regno for
7994 inherit here; we only want to know if the store actually
7995 matches the pseudo. */
7996 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
7997 && reg_reloaded_contents[last_regno] == pseudo_no
7998 && spill_reg_store[last_regno]
7999 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
8000 delete_output_reload (insn, j, last_regno, reg_rtx);
8003 old = rl->out_reg;
8004 if (old == 0
8005 || reg_rtx == 0
8006 || rtx_equal_p (old, reg_rtx))
8007 return;
8009 /* An output operand that dies right away does need a reload,
8010 but need not be copied from it. Show the new location in the
8011 REG_UNUSED note. */
8012 if ((REG_P (old) || GET_CODE (old) == SCRATCH)
8013 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
8015 XEXP (note, 0) = reg_rtx;
8016 return;
8018 /* Likewise for a SUBREG of an operand that dies. */
8019 else if (GET_CODE (old) == SUBREG
8020 && REG_P (SUBREG_REG (old))
8021 && 0 != (note = find_reg_note (insn, REG_UNUSED,
8022 SUBREG_REG (old))))
8024 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old), reg_rtx);
8025 return;
8027 else if (GET_CODE (old) == SCRATCH)
8028 /* If we aren't optimizing, there won't be a REG_UNUSED note,
8029 but we don't want to make an output reload. */
8030 return;
8032 /* If is a JUMP_INSN, we can't support output reloads yet. */
8033 gcc_assert (NONJUMP_INSN_P (insn));
8035 emit_output_reload_insns (chain, rld + j, j);
8038 /* A reload copies values of MODE from register SRC to register DEST.
8039 Return true if it can be treated for inheritance purposes like a
8040 group of reloads, each one reloading a single hard register. The
8041 caller has already checked that (reg:MODE SRC) and (reg:MODE DEST)
8042 occupy the same number of hard registers. */
8044 static bool
8045 inherit_piecemeal_p (int dest ATTRIBUTE_UNUSED,
8046 int src ATTRIBUTE_UNUSED,
8047 machine_mode mode ATTRIBUTE_UNUSED)
8049 #ifdef CANNOT_CHANGE_MODE_CLASS
8050 return (!REG_CANNOT_CHANGE_MODE_P (dest, mode, reg_raw_mode[dest])
8051 && !REG_CANNOT_CHANGE_MODE_P (src, mode, reg_raw_mode[src]));
8052 #else
8053 return true;
8054 #endif
8057 /* Output insns to reload values in and out of the chosen reload regs. */
8059 static void
8060 emit_reload_insns (struct insn_chain *chain)
8062 rtx_insn *insn = chain->insn;
8064 int j;
8066 CLEAR_HARD_REG_SET (reg_reloaded_died);
8068 for (j = 0; j < reload_n_operands; j++)
8069 input_reload_insns[j] = input_address_reload_insns[j]
8070 = inpaddr_address_reload_insns[j]
8071 = output_reload_insns[j] = output_address_reload_insns[j]
8072 = outaddr_address_reload_insns[j]
8073 = other_output_reload_insns[j] = 0;
8074 other_input_address_reload_insns = 0;
8075 other_input_reload_insns = 0;
8076 operand_reload_insns = 0;
8077 other_operand_reload_insns = 0;
8079 /* Dump reloads into the dump file. */
8080 if (dump_file)
8082 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
8083 debug_reload_to_stream (dump_file);
8086 for (j = 0; j < n_reloads; j++)
8087 if (rld[j].reg_rtx && HARD_REGISTER_P (rld[j].reg_rtx))
8089 unsigned int i;
8091 for (i = REGNO (rld[j].reg_rtx); i < END_REGNO (rld[j].reg_rtx); i++)
8092 new_spill_reg_store[i] = 0;
8095 /* Now output the instructions to copy the data into and out of the
8096 reload registers. Do these in the order that the reloads were reported,
8097 since reloads of base and index registers precede reloads of operands
8098 and the operands may need the base and index registers reloaded. */
8100 for (j = 0; j < n_reloads; j++)
8102 do_input_reload (chain, rld + j, j);
8103 do_output_reload (chain, rld + j, j);
8106 /* Now write all the insns we made for reloads in the order expected by
8107 the allocation functions. Prior to the insn being reloaded, we write
8108 the following reloads:
8110 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
8112 RELOAD_OTHER reloads.
8114 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
8115 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
8116 RELOAD_FOR_INPUT reload for the operand.
8118 RELOAD_FOR_OPADDR_ADDRS reloads.
8120 RELOAD_FOR_OPERAND_ADDRESS reloads.
8122 After the insn being reloaded, we write the following:
8124 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
8125 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
8126 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
8127 reloads for the operand. The RELOAD_OTHER output reloads are
8128 output in descending order by reload number. */
8130 emit_insn_before (other_input_address_reload_insns, insn);
8131 emit_insn_before (other_input_reload_insns, insn);
8133 for (j = 0; j < reload_n_operands; j++)
8135 emit_insn_before (inpaddr_address_reload_insns[j], insn);
8136 emit_insn_before (input_address_reload_insns[j], insn);
8137 emit_insn_before (input_reload_insns[j], insn);
8140 emit_insn_before (other_operand_reload_insns, insn);
8141 emit_insn_before (operand_reload_insns, insn);
8143 for (j = 0; j < reload_n_operands; j++)
8145 rtx_insn *x = emit_insn_after (outaddr_address_reload_insns[j], insn);
8146 x = emit_insn_after (output_address_reload_insns[j], x);
8147 x = emit_insn_after (output_reload_insns[j], x);
8148 emit_insn_after (other_output_reload_insns[j], x);
8151 /* For all the spill regs newly reloaded in this instruction,
8152 record what they were reloaded from, so subsequent instructions
8153 can inherit the reloads.
8155 Update spill_reg_store for the reloads of this insn.
8156 Copy the elements that were updated in the loop above. */
8158 for (j = 0; j < n_reloads; j++)
8160 int r = reload_order[j];
8161 int i = reload_spill_index[r];
8163 /* If this is a non-inherited input reload from a pseudo, we must
8164 clear any memory of a previous store to the same pseudo. Only do
8165 something if there will not be an output reload for the pseudo
8166 being reloaded. */
8167 if (rld[r].in_reg != 0
8168 && ! (reload_inherited[r] || reload_override_in[r]))
8170 rtx reg = rld[r].in_reg;
8172 if (GET_CODE (reg) == SUBREG)
8173 reg = SUBREG_REG (reg);
8175 if (REG_P (reg)
8176 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
8177 && !REGNO_REG_SET_P (&reg_has_output_reload, REGNO (reg)))
8179 int nregno = REGNO (reg);
8181 if (reg_last_reload_reg[nregno])
8183 int last_regno = REGNO (reg_last_reload_reg[nregno]);
8185 if (reg_reloaded_contents[last_regno] == nregno)
8186 spill_reg_store[last_regno] = 0;
8191 /* I is nonneg if this reload used a register.
8192 If rld[r].reg_rtx is 0, this is an optional reload
8193 that we opted to ignore. */
8195 if (i >= 0 && rld[r].reg_rtx != 0)
8197 int nr = hard_regno_nregs (i, GET_MODE (rld[r].reg_rtx));
8198 int k;
8200 /* For a multi register reload, we need to check if all or part
8201 of the value lives to the end. */
8202 for (k = 0; k < nr; k++)
8203 if (reload_reg_reaches_end_p (i + k, r))
8204 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
8206 /* Maybe the spill reg contains a copy of reload_out. */
8207 if (rld[r].out != 0
8208 && (REG_P (rld[r].out)
8209 || (rld[r].out_reg
8210 ? REG_P (rld[r].out_reg)
8211 /* The reload value is an auto-modification of
8212 some kind. For PRE_INC, POST_INC, PRE_DEC
8213 and POST_DEC, we record an equivalence
8214 between the reload register and the operand
8215 on the optimistic assumption that we can make
8216 the equivalence hold. reload_as_needed must
8217 then either make it hold or invalidate the
8218 equivalence.
8220 PRE_MODIFY and POST_MODIFY addresses are reloaded
8221 somewhat differently, and allowing them here leads
8222 to problems. */
8223 : (GET_CODE (rld[r].out) != POST_MODIFY
8224 && GET_CODE (rld[r].out) != PRE_MODIFY))))
8226 rtx reg;
8228 reg = reload_reg_rtx_for_output[r];
8229 if (reload_reg_rtx_reaches_end_p (reg, r))
8231 machine_mode mode = GET_MODE (reg);
8232 int regno = REGNO (reg);
8233 int nregs = REG_NREGS (reg);
8234 rtx out = (REG_P (rld[r].out)
8235 ? rld[r].out
8236 : rld[r].out_reg
8237 ? rld[r].out_reg
8238 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
8239 int out_regno = REGNO (out);
8240 int out_nregs = (!HARD_REGISTER_NUM_P (out_regno) ? 1
8241 : hard_regno_nregs (out_regno, mode));
8242 bool piecemeal;
8244 spill_reg_store[regno] = new_spill_reg_store[regno];
8245 spill_reg_stored_to[regno] = out;
8246 reg_last_reload_reg[out_regno] = reg;
8248 piecemeal = (HARD_REGISTER_NUM_P (out_regno)
8249 && nregs == out_nregs
8250 && inherit_piecemeal_p (out_regno, regno, mode));
8252 /* If OUT_REGNO is a hard register, it may occupy more than
8253 one register. If it does, say what is in the
8254 rest of the registers assuming that both registers
8255 agree on how many words the object takes. If not,
8256 invalidate the subsequent registers. */
8258 if (HARD_REGISTER_NUM_P (out_regno))
8259 for (k = 1; k < out_nregs; k++)
8260 reg_last_reload_reg[out_regno + k]
8261 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8263 /* Now do the inverse operation. */
8264 for (k = 0; k < nregs; k++)
8266 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8267 reg_reloaded_contents[regno + k]
8268 = (!HARD_REGISTER_NUM_P (out_regno) || !piecemeal
8269 ? out_regno
8270 : out_regno + k);
8271 reg_reloaded_insn[regno + k] = insn;
8272 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8273 if (targetm.hard_regno_call_part_clobbered (regno + k,
8274 mode))
8275 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8276 regno + k);
8277 else
8278 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8279 regno + k);
8283 /* Maybe the spill reg contains a copy of reload_in. Only do
8284 something if there will not be an output reload for
8285 the register being reloaded. */
8286 else if (rld[r].out_reg == 0
8287 && rld[r].in != 0
8288 && ((REG_P (rld[r].in)
8289 && !HARD_REGISTER_P (rld[r].in)
8290 && !REGNO_REG_SET_P (&reg_has_output_reload,
8291 REGNO (rld[r].in)))
8292 || (REG_P (rld[r].in_reg)
8293 && !REGNO_REG_SET_P (&reg_has_output_reload,
8294 REGNO (rld[r].in_reg))))
8295 && !reg_set_p (reload_reg_rtx_for_input[r], PATTERN (insn)))
8297 rtx reg;
8299 reg = reload_reg_rtx_for_input[r];
8300 if (reload_reg_rtx_reaches_end_p (reg, r))
8302 machine_mode mode;
8303 int regno;
8304 int nregs;
8305 int in_regno;
8306 int in_nregs;
8307 rtx in;
8308 bool piecemeal;
8310 mode = GET_MODE (reg);
8311 regno = REGNO (reg);
8312 nregs = REG_NREGS (reg);
8313 if (REG_P (rld[r].in)
8314 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
8315 in = rld[r].in;
8316 else if (REG_P (rld[r].in_reg))
8317 in = rld[r].in_reg;
8318 else
8319 in = XEXP (rld[r].in_reg, 0);
8320 in_regno = REGNO (in);
8322 in_nregs = (!HARD_REGISTER_NUM_P (in_regno) ? 1
8323 : hard_regno_nregs (in_regno, mode));
8325 reg_last_reload_reg[in_regno] = reg;
8327 piecemeal = (HARD_REGISTER_NUM_P (in_regno)
8328 && nregs == in_nregs
8329 && inherit_piecemeal_p (regno, in_regno, mode));
8331 if (HARD_REGISTER_NUM_P (in_regno))
8332 for (k = 1; k < in_nregs; k++)
8333 reg_last_reload_reg[in_regno + k]
8334 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8336 /* Unless we inherited this reload, show we haven't
8337 recently done a store.
8338 Previous stores of inherited auto_inc expressions
8339 also have to be discarded. */
8340 if (! reload_inherited[r]
8341 || (rld[r].out && ! rld[r].out_reg))
8342 spill_reg_store[regno] = 0;
8344 for (k = 0; k < nregs; k++)
8346 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8347 reg_reloaded_contents[regno + k]
8348 = (!HARD_REGISTER_NUM_P (in_regno) || !piecemeal
8349 ? in_regno
8350 : in_regno + k);
8351 reg_reloaded_insn[regno + k] = insn;
8352 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8353 if (targetm.hard_regno_call_part_clobbered (regno + k,
8354 mode))
8355 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8356 regno + k);
8357 else
8358 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8359 regno + k);
8365 /* The following if-statement was #if 0'd in 1.34 (or before...).
8366 It's reenabled in 1.35 because supposedly nothing else
8367 deals with this problem. */
8369 /* If a register gets output-reloaded from a non-spill register,
8370 that invalidates any previous reloaded copy of it.
8371 But forget_old_reloads_1 won't get to see it, because
8372 it thinks only about the original insn. So invalidate it here.
8373 Also do the same thing for RELOAD_OTHER constraints where the
8374 output is discarded. */
8375 if (i < 0
8376 && ((rld[r].out != 0
8377 && (REG_P (rld[r].out)
8378 || (MEM_P (rld[r].out)
8379 && REG_P (rld[r].out_reg))))
8380 || (rld[r].out == 0 && rld[r].out_reg
8381 && REG_P (rld[r].out_reg))))
8383 rtx out = ((rld[r].out && REG_P (rld[r].out))
8384 ? rld[r].out : rld[r].out_reg);
8385 int out_regno = REGNO (out);
8386 machine_mode mode = GET_MODE (out);
8388 /* REG_RTX is now set or clobbered by the main instruction.
8389 As the comment above explains, forget_old_reloads_1 only
8390 sees the original instruction, and there is no guarantee
8391 that the original instruction also clobbered REG_RTX.
8392 For example, if find_reloads sees that the input side of
8393 a matched operand pair dies in this instruction, it may
8394 use the input register as the reload register.
8396 Calling forget_old_reloads_1 is a waste of effort if
8397 REG_RTX is also the output register.
8399 If we know that REG_RTX holds the value of a pseudo
8400 register, the code after the call will record that fact. */
8401 if (rld[r].reg_rtx && rld[r].reg_rtx != out)
8402 forget_old_reloads_1 (rld[r].reg_rtx, NULL_RTX, NULL);
8404 if (!HARD_REGISTER_NUM_P (out_regno))
8406 rtx src_reg;
8407 rtx_insn *store_insn = NULL;
8409 reg_last_reload_reg[out_regno] = 0;
8411 /* If we can find a hard register that is stored, record
8412 the storing insn so that we may delete this insn with
8413 delete_output_reload. */
8414 src_reg = reload_reg_rtx_for_output[r];
8416 if (src_reg)
8418 if (reload_reg_rtx_reaches_end_p (src_reg, r))
8419 store_insn = new_spill_reg_store[REGNO (src_reg)];
8420 else
8421 src_reg = NULL_RTX;
8423 else
8425 /* If this is an optional reload, try to find the
8426 source reg from an input reload. */
8427 rtx set = single_set (insn);
8428 if (set && SET_DEST (set) == rld[r].out)
8430 int k;
8432 src_reg = SET_SRC (set);
8433 store_insn = insn;
8434 for (k = 0; k < n_reloads; k++)
8436 if (rld[k].in == src_reg)
8438 src_reg = reload_reg_rtx_for_input[k];
8439 break;
8444 if (src_reg && REG_P (src_reg)
8445 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
8447 int src_regno, src_nregs, k;
8448 rtx note;
8450 gcc_assert (GET_MODE (src_reg) == mode);
8451 src_regno = REGNO (src_reg);
8452 src_nregs = hard_regno_nregs (src_regno, mode);
8453 /* The place where to find a death note varies with
8454 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
8455 necessarily checked exactly in the code that moves
8456 notes, so just check both locations. */
8457 note = find_regno_note (insn, REG_DEAD, src_regno);
8458 if (! note && store_insn)
8459 note = find_regno_note (store_insn, REG_DEAD, src_regno);
8460 for (k = 0; k < src_nregs; k++)
8462 spill_reg_store[src_regno + k] = store_insn;
8463 spill_reg_stored_to[src_regno + k] = out;
8464 reg_reloaded_contents[src_regno + k] = out_regno;
8465 reg_reloaded_insn[src_regno + k] = store_insn;
8466 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + k);
8467 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + k);
8468 if (targetm.hard_regno_call_part_clobbered
8469 (src_regno + k, mode))
8470 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8471 src_regno + k);
8472 else
8473 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8474 src_regno + k);
8475 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + k);
8476 if (note)
8477 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
8478 else
8479 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
8481 reg_last_reload_reg[out_regno] = src_reg;
8482 /* We have to set reg_has_output_reload here, or else
8483 forget_old_reloads_1 will clear reg_last_reload_reg
8484 right away. */
8485 SET_REGNO_REG_SET (&reg_has_output_reload,
8486 out_regno);
8489 else
8491 int k, out_nregs = hard_regno_nregs (out_regno, mode);
8493 for (k = 0; k < out_nregs; k++)
8494 reg_last_reload_reg[out_regno + k] = 0;
8498 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
8501 /* Go through the motions to emit INSN and test if it is strictly valid.
8502 Return the emitted insn if valid, else return NULL. */
8504 static rtx_insn *
8505 emit_insn_if_valid_for_reload (rtx pat)
8507 rtx_insn *last = get_last_insn ();
8508 int code;
8510 rtx_insn *insn = emit_insn (pat);
8511 code = recog_memoized (insn);
8513 if (code >= 0)
8515 extract_insn (insn);
8516 /* We want constrain operands to treat this insn strictly in its
8517 validity determination, i.e., the way it would after reload has
8518 completed. */
8519 if (constrain_operands (1, get_enabled_alternatives (insn)))
8520 return insn;
8523 delete_insns_since (last);
8524 return NULL;
8527 /* Emit code to perform a reload from IN (which may be a reload register) to
8528 OUT (which may also be a reload register). IN or OUT is from operand
8529 OPNUM with reload type TYPE.
8531 Returns first insn emitted. */
8533 static rtx_insn *
8534 gen_reload (rtx out, rtx in, int opnum, enum reload_type type)
8536 rtx_insn *last = get_last_insn ();
8537 rtx_insn *tem;
8538 #ifdef SECONDARY_MEMORY_NEEDED
8539 rtx tem1, tem2;
8540 #endif
8542 /* If IN is a paradoxical SUBREG, remove it and try to put the
8543 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
8544 if (!strip_paradoxical_subreg (&in, &out))
8545 strip_paradoxical_subreg (&out, &in);
8547 /* How to do this reload can get quite tricky. Normally, we are being
8548 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
8549 register that didn't get a hard register. In that case we can just
8550 call emit_move_insn.
8552 We can also be asked to reload a PLUS that adds a register or a MEM to
8553 another register, constant or MEM. This can occur during frame pointer
8554 elimination and while reloading addresses. This case is handled by
8555 trying to emit a single insn to perform the add. If it is not valid,
8556 we use a two insn sequence.
8558 Or we can be asked to reload an unary operand that was a fragment of
8559 an addressing mode, into a register. If it isn't recognized as-is,
8560 we try making the unop operand and the reload-register the same:
8561 (set reg:X (unop:X expr:Y))
8562 -> (set reg:Y expr:Y) (set reg:X (unop:X reg:Y)).
8564 Finally, we could be called to handle an 'o' constraint by putting
8565 an address into a register. In that case, we first try to do this
8566 with a named pattern of "reload_load_address". If no such pattern
8567 exists, we just emit a SET insn and hope for the best (it will normally
8568 be valid on machines that use 'o').
8570 This entire process is made complex because reload will never
8571 process the insns we generate here and so we must ensure that
8572 they will fit their constraints and also by the fact that parts of
8573 IN might be being reloaded separately and replaced with spill registers.
8574 Because of this, we are, in some sense, just guessing the right approach
8575 here. The one listed above seems to work.
8577 ??? At some point, this whole thing needs to be rethought. */
8579 if (GET_CODE (in) == PLUS
8580 && (REG_P (XEXP (in, 0))
8581 || GET_CODE (XEXP (in, 0)) == SUBREG
8582 || MEM_P (XEXP (in, 0)))
8583 && (REG_P (XEXP (in, 1))
8584 || GET_CODE (XEXP (in, 1)) == SUBREG
8585 || CONSTANT_P (XEXP (in, 1))
8586 || MEM_P (XEXP (in, 1))))
8588 /* We need to compute the sum of a register or a MEM and another
8589 register, constant, or MEM, and put it into the reload
8590 register. The best possible way of doing this is if the machine
8591 has a three-operand ADD insn that accepts the required operands.
8593 The simplest approach is to try to generate such an insn and see if it
8594 is recognized and matches its constraints. If so, it can be used.
8596 It might be better not to actually emit the insn unless it is valid,
8597 but we need to pass the insn as an operand to `recog' and
8598 `extract_insn' and it is simpler to emit and then delete the insn if
8599 not valid than to dummy things up. */
8601 rtx op0, op1, tem;
8602 rtx_insn *insn;
8603 enum insn_code code;
8605 op0 = find_replacement (&XEXP (in, 0));
8606 op1 = find_replacement (&XEXP (in, 1));
8608 /* Since constraint checking is strict, commutativity won't be
8609 checked, so we need to do that here to avoid spurious failure
8610 if the add instruction is two-address and the second operand
8611 of the add is the same as the reload reg, which is frequently
8612 the case. If the insn would be A = B + A, rearrange it so
8613 it will be A = A + B as constrain_operands expects. */
8615 if (REG_P (XEXP (in, 1))
8616 && REGNO (out) == REGNO (XEXP (in, 1)))
8617 tem = op0, op0 = op1, op1 = tem;
8619 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
8620 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
8622 insn = emit_insn_if_valid_for_reload (gen_rtx_SET (out, in));
8623 if (insn)
8624 return insn;
8626 /* If that failed, we must use a conservative two-insn sequence.
8628 Use a move to copy one operand into the reload register. Prefer
8629 to reload a constant, MEM or pseudo since the move patterns can
8630 handle an arbitrary operand. If OP1 is not a constant, MEM or
8631 pseudo and OP1 is not a valid operand for an add instruction, then
8632 reload OP1.
8634 After reloading one of the operands into the reload register, add
8635 the reload register to the output register.
8637 If there is another way to do this for a specific machine, a
8638 DEFINE_PEEPHOLE should be specified that recognizes the sequence
8639 we emit below. */
8641 code = optab_handler (add_optab, GET_MODE (out));
8643 if (CONSTANT_P (op1) || MEM_P (op1) || GET_CODE (op1) == SUBREG
8644 || (REG_P (op1)
8645 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
8646 || (code != CODE_FOR_nothing
8647 && !insn_operand_matches (code, 2, op1)))
8648 tem = op0, op0 = op1, op1 = tem;
8650 gen_reload (out, op0, opnum, type);
8652 /* If OP0 and OP1 are the same, we can use OUT for OP1.
8653 This fixes a problem on the 32K where the stack pointer cannot
8654 be used as an operand of an add insn. */
8656 if (rtx_equal_p (op0, op1))
8657 op1 = out;
8659 insn = emit_insn_if_valid_for_reload (gen_add2_insn (out, op1));
8660 if (insn)
8662 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
8663 set_dst_reg_note (insn, REG_EQUIV, in, out);
8664 return insn;
8667 /* If that failed, copy the address register to the reload register.
8668 Then add the constant to the reload register. */
8670 gcc_assert (!reg_overlap_mentioned_p (out, op0));
8671 gen_reload (out, op1, opnum, type);
8672 insn = emit_insn (gen_add2_insn (out, op0));
8673 set_dst_reg_note (insn, REG_EQUIV, in, out);
8676 #ifdef SECONDARY_MEMORY_NEEDED
8677 /* If we need a memory location to do the move, do it that way. */
8678 else if ((tem1 = replaced_subreg (in), tem2 = replaced_subreg (out),
8679 (REG_P (tem1) && REG_P (tem2)))
8680 && REGNO (tem1) < FIRST_PSEUDO_REGISTER
8681 && REGNO (tem2) < FIRST_PSEUDO_REGISTER
8682 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (tem1)),
8683 REGNO_REG_CLASS (REGNO (tem2)),
8684 GET_MODE (out)))
8686 /* Get the memory to use and rewrite both registers to its mode. */
8687 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
8689 if (GET_MODE (loc) != GET_MODE (out))
8690 out = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (out));
8692 if (GET_MODE (loc) != GET_MODE (in))
8693 in = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (in));
8695 gen_reload (loc, in, opnum, type);
8696 gen_reload (out, loc, opnum, type);
8698 #endif
8699 else if (REG_P (out) && UNARY_P (in))
8701 rtx op1;
8702 rtx out_moded;
8703 rtx_insn *set;
8705 op1 = find_replacement (&XEXP (in, 0));
8706 if (op1 != XEXP (in, 0))
8707 in = gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in), op1);
8709 /* First, try a plain SET. */
8710 set = emit_insn_if_valid_for_reload (gen_rtx_SET (out, in));
8711 if (set)
8712 return set;
8714 /* If that failed, move the inner operand to the reload
8715 register, and try the same unop with the inner expression
8716 replaced with the reload register. */
8718 if (GET_MODE (op1) != GET_MODE (out))
8719 out_moded = gen_rtx_REG (GET_MODE (op1), REGNO (out));
8720 else
8721 out_moded = out;
8723 gen_reload (out_moded, op1, opnum, type);
8725 rtx temp = gen_rtx_SET (out, gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in),
8726 out_moded));
8727 rtx_insn *insn = emit_insn_if_valid_for_reload (temp);
8728 if (insn)
8730 set_unique_reg_note (insn, REG_EQUIV, in);
8731 return insn;
8734 fatal_insn ("failure trying to reload:", set);
8736 /* If IN is a simple operand, use gen_move_insn. */
8737 else if (OBJECT_P (in) || GET_CODE (in) == SUBREG)
8739 tem = emit_insn (gen_move_insn (out, in));
8740 /* IN may contain a LABEL_REF, if so add a REG_LABEL_OPERAND note. */
8741 mark_jump_label (in, tem, 0);
8744 else if (targetm.have_reload_load_address ())
8745 emit_insn (targetm.gen_reload_load_address (out, in));
8747 /* Otherwise, just write (set OUT IN) and hope for the best. */
8748 else
8749 emit_insn (gen_rtx_SET (out, in));
8751 /* Return the first insn emitted.
8752 We can not just return get_last_insn, because there may have
8753 been multiple instructions emitted. Also note that gen_move_insn may
8754 emit more than one insn itself, so we can not assume that there is one
8755 insn emitted per emit_insn_before call. */
8757 return last ? NEXT_INSN (last) : get_insns ();
8760 /* Delete a previously made output-reload whose result we now believe
8761 is not needed. First we double-check.
8763 INSN is the insn now being processed.
8764 LAST_RELOAD_REG is the hard register number for which we want to delete
8765 the last output reload.
8766 J is the reload-number that originally used REG. The caller has made
8767 certain that reload J doesn't use REG any longer for input.
8768 NEW_RELOAD_REG is reload register that reload J is using for REG. */
8770 static void
8771 delete_output_reload (rtx_insn *insn, int j, int last_reload_reg,
8772 rtx new_reload_reg)
8774 rtx_insn *output_reload_insn = spill_reg_store[last_reload_reg];
8775 rtx reg = spill_reg_stored_to[last_reload_reg];
8776 int k;
8777 int n_occurrences;
8778 int n_inherited = 0;
8779 rtx substed;
8780 unsigned regno;
8781 int nregs;
8783 /* It is possible that this reload has been only used to set another reload
8784 we eliminated earlier and thus deleted this instruction too. */
8785 if (output_reload_insn->deleted ())
8786 return;
8788 /* Get the raw pseudo-register referred to. */
8790 while (GET_CODE (reg) == SUBREG)
8791 reg = SUBREG_REG (reg);
8792 substed = reg_equiv_memory_loc (REGNO (reg));
8794 /* This is unsafe if the operand occurs more often in the current
8795 insn than it is inherited. */
8796 for (k = n_reloads - 1; k >= 0; k--)
8798 rtx reg2 = rld[k].in;
8799 if (! reg2)
8800 continue;
8801 if (MEM_P (reg2) || reload_override_in[k])
8802 reg2 = rld[k].in_reg;
8804 if (AUTO_INC_DEC && rld[k].out && ! rld[k].out_reg)
8805 reg2 = XEXP (rld[k].in_reg, 0);
8807 while (GET_CODE (reg2) == SUBREG)
8808 reg2 = SUBREG_REG (reg2);
8809 if (rtx_equal_p (reg2, reg))
8811 if (reload_inherited[k] || reload_override_in[k] || k == j)
8812 n_inherited++;
8813 else
8814 return;
8817 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
8818 if (CALL_P (insn) && CALL_INSN_FUNCTION_USAGE (insn))
8819 n_occurrences += count_occurrences (CALL_INSN_FUNCTION_USAGE (insn),
8820 reg, 0);
8821 if (substed)
8822 n_occurrences += count_occurrences (PATTERN (insn),
8823 eliminate_regs (substed, VOIDmode,
8824 NULL_RTX), 0);
8825 for (rtx i1 = reg_equiv_alt_mem_list (REGNO (reg)); i1; i1 = XEXP (i1, 1))
8827 gcc_assert (!rtx_equal_p (XEXP (i1, 0), substed));
8828 n_occurrences += count_occurrences (PATTERN (insn), XEXP (i1, 0), 0);
8830 if (n_occurrences > n_inherited)
8831 return;
8833 regno = REGNO (reg);
8834 nregs = REG_NREGS (reg);
8836 /* If the pseudo-reg we are reloading is no longer referenced
8837 anywhere between the store into it and here,
8838 and we're within the same basic block, then the value can only
8839 pass through the reload reg and end up here.
8840 Otherwise, give up--return. */
8841 for (rtx_insn *i1 = NEXT_INSN (output_reload_insn);
8842 i1 != insn; i1 = NEXT_INSN (i1))
8844 if (NOTE_INSN_BASIC_BLOCK_P (i1))
8845 return;
8846 if ((NONJUMP_INSN_P (i1) || CALL_P (i1))
8847 && refers_to_regno_p (regno, regno + nregs, PATTERN (i1), NULL))
8849 /* If this is USE in front of INSN, we only have to check that
8850 there are no more references than accounted for by inheritance. */
8851 while (NONJUMP_INSN_P (i1) && GET_CODE (PATTERN (i1)) == USE)
8853 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
8854 i1 = NEXT_INSN (i1);
8856 if (n_occurrences <= n_inherited && i1 == insn)
8857 break;
8858 return;
8862 /* We will be deleting the insn. Remove the spill reg information. */
8863 for (k = hard_regno_nregs (last_reload_reg, GET_MODE (reg)); k-- > 0; )
8865 spill_reg_store[last_reload_reg + k] = 0;
8866 spill_reg_stored_to[last_reload_reg + k] = 0;
8869 /* The caller has already checked that REG dies or is set in INSN.
8870 It has also checked that we are optimizing, and thus some
8871 inaccuracies in the debugging information are acceptable.
8872 So we could just delete output_reload_insn. But in some cases
8873 we can improve the debugging information without sacrificing
8874 optimization - maybe even improving the code: See if the pseudo
8875 reg has been completely replaced with reload regs. If so, delete
8876 the store insn and forget we had a stack slot for the pseudo. */
8877 if (rld[j].out != rld[j].in
8878 && REG_N_DEATHS (REGNO (reg)) == 1
8879 && REG_N_SETS (REGNO (reg)) == 1
8880 && REG_BASIC_BLOCK (REGNO (reg)) >= NUM_FIXED_BLOCKS
8881 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
8883 rtx_insn *i2;
8885 /* We know that it was used only between here and the beginning of
8886 the current basic block. (We also know that the last use before
8887 INSN was the output reload we are thinking of deleting, but never
8888 mind that.) Search that range; see if any ref remains. */
8889 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8891 rtx set = single_set (i2);
8893 /* Uses which just store in the pseudo don't count,
8894 since if they are the only uses, they are dead. */
8895 if (set != 0 && SET_DEST (set) == reg)
8896 continue;
8897 if (LABEL_P (i2) || JUMP_P (i2))
8898 break;
8899 if ((NONJUMP_INSN_P (i2) || CALL_P (i2))
8900 && reg_mentioned_p (reg, PATTERN (i2)))
8902 /* Some other ref remains; just delete the output reload we
8903 know to be dead. */
8904 delete_address_reloads (output_reload_insn, insn);
8905 delete_insn (output_reload_insn);
8906 return;
8910 /* Delete the now-dead stores into this pseudo. Note that this
8911 loop also takes care of deleting output_reload_insn. */
8912 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8914 rtx set = single_set (i2);
8916 if (set != 0 && SET_DEST (set) == reg)
8918 delete_address_reloads (i2, insn);
8919 delete_insn (i2);
8921 if (LABEL_P (i2) || JUMP_P (i2))
8922 break;
8925 /* For the debugging info, say the pseudo lives in this reload reg. */
8926 reg_renumber[REGNO (reg)] = REGNO (new_reload_reg);
8927 if (ira_conflicts_p)
8928 /* Inform IRA about the change. */
8929 ira_mark_allocation_change (REGNO (reg));
8930 alter_reg (REGNO (reg), -1, false);
8932 else
8934 delete_address_reloads (output_reload_insn, insn);
8935 delete_insn (output_reload_insn);
8939 /* We are going to delete DEAD_INSN. Recursively delete loads of
8940 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
8941 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
8942 static void
8943 delete_address_reloads (rtx_insn *dead_insn, rtx_insn *current_insn)
8945 rtx set = single_set (dead_insn);
8946 rtx set2, dst;
8947 rtx_insn *prev, *next;
8948 if (set)
8950 rtx dst = SET_DEST (set);
8951 if (MEM_P (dst))
8952 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
8954 /* If we deleted the store from a reloaded post_{in,de}c expression,
8955 we can delete the matching adds. */
8956 prev = PREV_INSN (dead_insn);
8957 next = NEXT_INSN (dead_insn);
8958 if (! prev || ! next)
8959 return;
8960 set = single_set (next);
8961 set2 = single_set (prev);
8962 if (! set || ! set2
8963 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
8964 || !CONST_INT_P (XEXP (SET_SRC (set), 1))
8965 || !CONST_INT_P (XEXP (SET_SRC (set2), 1)))
8966 return;
8967 dst = SET_DEST (set);
8968 if (! rtx_equal_p (dst, SET_DEST (set2))
8969 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
8970 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
8971 || (INTVAL (XEXP (SET_SRC (set), 1))
8972 != -INTVAL (XEXP (SET_SRC (set2), 1))))
8973 return;
8974 delete_related_insns (prev);
8975 delete_related_insns (next);
8978 /* Subfunction of delete_address_reloads: process registers found in X. */
8979 static void
8980 delete_address_reloads_1 (rtx_insn *dead_insn, rtx x, rtx_insn *current_insn)
8982 rtx_insn *prev, *i2;
8983 rtx set, dst;
8984 int i, j;
8985 enum rtx_code code = GET_CODE (x);
8987 if (code != REG)
8989 const char *fmt = GET_RTX_FORMAT (code);
8990 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8992 if (fmt[i] == 'e')
8993 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
8994 else if (fmt[i] == 'E')
8996 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8997 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
8998 current_insn);
9001 return;
9004 if (spill_reg_order[REGNO (x)] < 0)
9005 return;
9007 /* Scan backwards for the insn that sets x. This might be a way back due
9008 to inheritance. */
9009 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
9011 code = GET_CODE (prev);
9012 if (code == CODE_LABEL || code == JUMP_INSN)
9013 return;
9014 if (!INSN_P (prev))
9015 continue;
9016 if (reg_set_p (x, PATTERN (prev)))
9017 break;
9018 if (reg_referenced_p (x, PATTERN (prev)))
9019 return;
9021 if (! prev || INSN_UID (prev) < reload_first_uid)
9022 return;
9023 /* Check that PREV only sets the reload register. */
9024 set = single_set (prev);
9025 if (! set)
9026 return;
9027 dst = SET_DEST (set);
9028 if (!REG_P (dst)
9029 || ! rtx_equal_p (dst, x))
9030 return;
9031 if (! reg_set_p (dst, PATTERN (dead_insn)))
9033 /* Check if DST was used in a later insn -
9034 it might have been inherited. */
9035 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
9037 if (LABEL_P (i2))
9038 break;
9039 if (! INSN_P (i2))
9040 continue;
9041 if (reg_referenced_p (dst, PATTERN (i2)))
9043 /* If there is a reference to the register in the current insn,
9044 it might be loaded in a non-inherited reload. If no other
9045 reload uses it, that means the register is set before
9046 referenced. */
9047 if (i2 == current_insn)
9049 for (j = n_reloads - 1; j >= 0; j--)
9050 if ((rld[j].reg_rtx == dst && reload_inherited[j])
9051 || reload_override_in[j] == dst)
9052 return;
9053 for (j = n_reloads - 1; j >= 0; j--)
9054 if (rld[j].in && rld[j].reg_rtx == dst)
9055 break;
9056 if (j >= 0)
9057 break;
9059 return;
9061 if (JUMP_P (i2))
9062 break;
9063 /* If DST is still live at CURRENT_INSN, check if it is used for
9064 any reload. Note that even if CURRENT_INSN sets DST, we still
9065 have to check the reloads. */
9066 if (i2 == current_insn)
9068 for (j = n_reloads - 1; j >= 0; j--)
9069 if ((rld[j].reg_rtx == dst && reload_inherited[j])
9070 || reload_override_in[j] == dst)
9071 return;
9072 /* ??? We can't finish the loop here, because dst might be
9073 allocated to a pseudo in this block if no reload in this
9074 block needs any of the classes containing DST - see
9075 spill_hard_reg. There is no easy way to tell this, so we
9076 have to scan till the end of the basic block. */
9078 if (reg_set_p (dst, PATTERN (i2)))
9079 break;
9082 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
9083 reg_reloaded_contents[REGNO (dst)] = -1;
9084 delete_insn (prev);
9087 /* Output reload-insns to reload VALUE into RELOADREG.
9088 VALUE is an autoincrement or autodecrement RTX whose operand
9089 is a register or memory location;
9090 so reloading involves incrementing that location.
9091 IN is either identical to VALUE, or some cheaper place to reload from.
9093 INC_AMOUNT is the number to increment or decrement by (always positive).
9094 This cannot be deduced from VALUE. */
9096 static void
9097 inc_for_reload (rtx reloadreg, rtx in, rtx value, int inc_amount)
9099 /* REG or MEM to be copied and incremented. */
9100 rtx incloc = find_replacement (&XEXP (value, 0));
9101 /* Nonzero if increment after copying. */
9102 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
9103 || GET_CODE (value) == POST_MODIFY);
9104 rtx_insn *last;
9105 rtx inc;
9106 rtx_insn *add_insn;
9107 int code;
9108 rtx real_in = in == value ? incloc : in;
9110 /* No hard register is equivalent to this register after
9111 inc/dec operation. If REG_LAST_RELOAD_REG were nonzero,
9112 we could inc/dec that register as well (maybe even using it for
9113 the source), but I'm not sure it's worth worrying about. */
9114 if (REG_P (incloc))
9115 reg_last_reload_reg[REGNO (incloc)] = 0;
9117 if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
9119 gcc_assert (GET_CODE (XEXP (value, 1)) == PLUS);
9120 inc = find_replacement (&XEXP (XEXP (value, 1), 1));
9122 else
9124 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
9125 inc_amount = -inc_amount;
9127 inc = GEN_INT (inc_amount);
9130 /* If this is post-increment, first copy the location to the reload reg. */
9131 if (post && real_in != reloadreg)
9132 emit_insn (gen_move_insn (reloadreg, real_in));
9134 if (in == value)
9136 /* See if we can directly increment INCLOC. Use a method similar to
9137 that in gen_reload. */
9139 last = get_last_insn ();
9140 add_insn = emit_insn (gen_rtx_SET (incloc,
9141 gen_rtx_PLUS (GET_MODE (incloc),
9142 incloc, inc)));
9144 code = recog_memoized (add_insn);
9145 if (code >= 0)
9147 extract_insn (add_insn);
9148 if (constrain_operands (1, get_enabled_alternatives (add_insn)))
9150 /* If this is a pre-increment and we have incremented the value
9151 where it lives, copy the incremented value to RELOADREG to
9152 be used as an address. */
9154 if (! post)
9155 emit_insn (gen_move_insn (reloadreg, incloc));
9156 return;
9159 delete_insns_since (last);
9162 /* If couldn't do the increment directly, must increment in RELOADREG.
9163 The way we do this depends on whether this is pre- or post-increment.
9164 For pre-increment, copy INCLOC to the reload register, increment it
9165 there, then save back. */
9167 if (! post)
9169 if (in != reloadreg)
9170 emit_insn (gen_move_insn (reloadreg, real_in));
9171 emit_insn (gen_add2_insn (reloadreg, inc));
9172 emit_insn (gen_move_insn (incloc, reloadreg));
9174 else
9176 /* Postincrement.
9177 Because this might be a jump insn or a compare, and because RELOADREG
9178 may not be available after the insn in an input reload, we must do
9179 the incrementation before the insn being reloaded for.
9181 We have already copied IN to RELOADREG. Increment the copy in
9182 RELOADREG, save that back, then decrement RELOADREG so it has
9183 the original value. */
9185 emit_insn (gen_add2_insn (reloadreg, inc));
9186 emit_insn (gen_move_insn (incloc, reloadreg));
9187 if (CONST_INT_P (inc))
9188 emit_insn (gen_add2_insn (reloadreg,
9189 gen_int_mode (-INTVAL (inc),
9190 GET_MODE (reloadreg))));
9191 else
9192 emit_insn (gen_sub2_insn (reloadreg, inc));
9196 static void
9197 add_auto_inc_notes (rtx_insn *insn, rtx x)
9199 enum rtx_code code = GET_CODE (x);
9200 const char *fmt;
9201 int i, j;
9203 if (code == MEM && auto_inc_p (XEXP (x, 0)))
9205 add_reg_note (insn, REG_INC, XEXP (XEXP (x, 0), 0));
9206 return;
9209 /* Scan all the operand sub-expressions. */
9210 fmt = GET_RTX_FORMAT (code);
9211 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9213 if (fmt[i] == 'e')
9214 add_auto_inc_notes (insn, XEXP (x, i));
9215 else if (fmt[i] == 'E')
9216 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9217 add_auto_inc_notes (insn, XVECEXP (x, i, j));