Daily bump.
[official-gcc.git] / gcc / cse.c
blob09f80fe564fda92bb8cbcce4fbf877ebff13f51f
1 /* Common subexpression elimination for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 /* stdio.h must precede rtl.h for FFS. */
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "hard-reg-set.h"
30 #include "regs.h"
31 #include "basic-block.h"
32 #include "flags.h"
33 #include "real.h"
34 #include "insn-config.h"
35 #include "recog.h"
36 #include "function.h"
37 #include "expr.h"
38 #include "toplev.h"
39 #include "output.h"
40 #include "ggc.h"
41 #include "timevar.h"
42 #include "except.h"
43 #include "target.h"
44 #include "params.h"
45 #include "rtlhooks-def.h"
46 #include "tree-pass.h"
47 #include "df.h"
48 #include "dbgcnt.h"
50 /* The basic idea of common subexpression elimination is to go
51 through the code, keeping a record of expressions that would
52 have the same value at the current scan point, and replacing
53 expressions encountered with the cheapest equivalent expression.
55 It is too complicated to keep track of the different possibilities
56 when control paths merge in this code; so, at each label, we forget all
57 that is known and start fresh. This can be described as processing each
58 extended basic block separately. We have a separate pass to perform
59 global CSE.
61 Note CSE can turn a conditional or computed jump into a nop or
62 an unconditional jump. When this occurs we arrange to run the jump
63 optimizer after CSE to delete the unreachable code.
65 We use two data structures to record the equivalent expressions:
66 a hash table for most expressions, and a vector of "quantity
67 numbers" to record equivalent (pseudo) registers.
69 The use of the special data structure for registers is desirable
70 because it is faster. It is possible because registers references
71 contain a fairly small number, the register number, taken from
72 a contiguously allocated series, and two register references are
73 identical if they have the same number. General expressions
74 do not have any such thing, so the only way to retrieve the
75 information recorded on an expression other than a register
76 is to keep it in a hash table.
78 Registers and "quantity numbers":
80 At the start of each basic block, all of the (hardware and pseudo)
81 registers used in the function are given distinct quantity
82 numbers to indicate their contents. During scan, when the code
83 copies one register into another, we copy the quantity number.
84 When a register is loaded in any other way, we allocate a new
85 quantity number to describe the value generated by this operation.
86 `REG_QTY (N)' records what quantity register N is currently thought
87 of as containing.
89 All real quantity numbers are greater than or equal to zero.
90 If register N has not been assigned a quantity, `REG_QTY (N)' will
91 equal -N - 1, which is always negative.
93 Quantity numbers below zero do not exist and none of the `qty_table'
94 entries should be referenced with a negative index.
96 We also maintain a bidirectional chain of registers for each
97 quantity number. The `qty_table` members `first_reg' and `last_reg',
98 and `reg_eqv_table' members `next' and `prev' hold these chains.
100 The first register in a chain is the one whose lifespan is least local.
101 Among equals, it is the one that was seen first.
102 We replace any equivalent register with that one.
104 If two registers have the same quantity number, it must be true that
105 REG expressions with qty_table `mode' must be in the hash table for both
106 registers and must be in the same class.
108 The converse is not true. Since hard registers may be referenced in
109 any mode, two REG expressions might be equivalent in the hash table
110 but not have the same quantity number if the quantity number of one
111 of the registers is not the same mode as those expressions.
113 Constants and quantity numbers
115 When a quantity has a known constant value, that value is stored
116 in the appropriate qty_table `const_rtx'. This is in addition to
117 putting the constant in the hash table as is usual for non-regs.
119 Whether a reg or a constant is preferred is determined by the configuration
120 macro CONST_COSTS and will often depend on the constant value. In any
121 event, expressions containing constants can be simplified, by fold_rtx.
123 When a quantity has a known nearly constant value (such as an address
124 of a stack slot), that value is stored in the appropriate qty_table
125 `const_rtx'.
127 Integer constants don't have a machine mode. However, cse
128 determines the intended machine mode from the destination
129 of the instruction that moves the constant. The machine mode
130 is recorded in the hash table along with the actual RTL
131 constant expression so that different modes are kept separate.
133 Other expressions:
135 To record known equivalences among expressions in general
136 we use a hash table called `table'. It has a fixed number of buckets
137 that contain chains of `struct table_elt' elements for expressions.
138 These chains connect the elements whose expressions have the same
139 hash codes.
141 Other chains through the same elements connect the elements which
142 currently have equivalent values.
144 Register references in an expression are canonicalized before hashing
145 the expression. This is done using `reg_qty' and qty_table `first_reg'.
146 The hash code of a register reference is computed using the quantity
147 number, not the register number.
149 When the value of an expression changes, it is necessary to remove from the
150 hash table not just that expression but all expressions whose values
151 could be different as a result.
153 1. If the value changing is in memory, except in special cases
154 ANYTHING referring to memory could be changed. That is because
155 nobody knows where a pointer does not point.
156 The function `invalidate_memory' removes what is necessary.
158 The special cases are when the address is constant or is
159 a constant plus a fixed register such as the frame pointer
160 or a static chain pointer. When such addresses are stored in,
161 we can tell exactly which other such addresses must be invalidated
162 due to overlap. `invalidate' does this.
163 All expressions that refer to non-constant
164 memory addresses are also invalidated. `invalidate_memory' does this.
166 2. If the value changing is a register, all expressions
167 containing references to that register, and only those,
168 must be removed.
170 Because searching the entire hash table for expressions that contain
171 a register is very slow, we try to figure out when it isn't necessary.
172 Precisely, this is necessary only when expressions have been
173 entered in the hash table using this register, and then the value has
174 changed, and then another expression wants to be added to refer to
175 the register's new value. This sequence of circumstances is rare
176 within any one basic block.
178 `REG_TICK' and `REG_IN_TABLE', accessors for members of
179 cse_reg_info, are used to detect this case. REG_TICK (i) is
180 incremented whenever a value is stored in register i.
181 REG_IN_TABLE (i) holds -1 if no references to register i have been
182 entered in the table; otherwise, it contains the value REG_TICK (i)
183 had when the references were entered. If we want to enter a
184 reference and REG_IN_TABLE (i) != REG_TICK (i), we must scan and
185 remove old references. Until we want to enter a new entry, the
186 mere fact that the two vectors don't match makes the entries be
187 ignored if anyone tries to match them.
189 Registers themselves are entered in the hash table as well as in
190 the equivalent-register chains. However, `REG_TICK' and
191 `REG_IN_TABLE' do not apply to expressions which are simple
192 register references. These expressions are removed from the table
193 immediately when they become invalid, and this can be done even if
194 we do not immediately search for all the expressions that refer to
195 the register.
197 A CLOBBER rtx in an instruction invalidates its operand for further
198 reuse. A CLOBBER or SET rtx whose operand is a MEM:BLK
199 invalidates everything that resides in memory.
201 Related expressions:
203 Constant expressions that differ only by an additive integer
204 are called related. When a constant expression is put in
205 the table, the related expression with no constant term
206 is also entered. These are made to point at each other
207 so that it is possible to find out if there exists any
208 register equivalent to an expression related to a given expression. */
210 /* Length of qty_table vector. We know in advance we will not need
211 a quantity number this big. */
213 static int max_qty;
215 /* Next quantity number to be allocated.
216 This is 1 + the largest number needed so far. */
218 static int next_qty;
220 /* Per-qty information tracking.
222 `first_reg' and `last_reg' track the head and tail of the
223 chain of registers which currently contain this quantity.
225 `mode' contains the machine mode of this quantity.
227 `const_rtx' holds the rtx of the constant value of this
228 quantity, if known. A summations of the frame/arg pointer
229 and a constant can also be entered here. When this holds
230 a known value, `const_insn' is the insn which stored the
231 constant value.
233 `comparison_{code,const,qty}' are used to track when a
234 comparison between a quantity and some constant or register has
235 been passed. In such a case, we know the results of the comparison
236 in case we see it again. These members record a comparison that
237 is known to be true. `comparison_code' holds the rtx code of such
238 a comparison, else it is set to UNKNOWN and the other two
239 comparison members are undefined. `comparison_const' holds
240 the constant being compared against, or zero if the comparison
241 is not against a constant. `comparison_qty' holds the quantity
242 being compared against when the result is known. If the comparison
243 is not with a register, `comparison_qty' is -1. */
245 struct qty_table_elem
247 rtx const_rtx;
248 rtx const_insn;
249 rtx comparison_const;
250 int comparison_qty;
251 unsigned int first_reg, last_reg;
252 /* The sizes of these fields should match the sizes of the
253 code and mode fields of struct rtx_def (see rtl.h). */
254 ENUM_BITFIELD(rtx_code) comparison_code : 16;
255 ENUM_BITFIELD(machine_mode) mode : 8;
258 /* The table of all qtys, indexed by qty number. */
259 static struct qty_table_elem *qty_table;
261 /* Structure used to pass arguments via for_each_rtx to function
262 cse_change_cc_mode. */
263 struct change_cc_mode_args
265 rtx insn;
266 rtx newreg;
269 #ifdef HAVE_cc0
270 /* For machines that have a CC0, we do not record its value in the hash
271 table since its use is guaranteed to be the insn immediately following
272 its definition and any other insn is presumed to invalidate it.
274 Instead, we store below the current and last value assigned to CC0.
275 If it should happen to be a constant, it is stored in preference
276 to the actual assigned value. In case it is a constant, we store
277 the mode in which the constant should be interpreted. */
279 static rtx this_insn_cc0, prev_insn_cc0;
280 static enum machine_mode this_insn_cc0_mode, prev_insn_cc0_mode;
281 #endif
283 /* Insn being scanned. */
285 static rtx this_insn;
287 /* Index by register number, gives the number of the next (or
288 previous) register in the chain of registers sharing the same
289 value.
291 Or -1 if this register is at the end of the chain.
293 If REG_QTY (N) == -N - 1, reg_eqv_table[N].next is undefined. */
295 /* Per-register equivalence chain. */
296 struct reg_eqv_elem
298 int next, prev;
301 /* The table of all register equivalence chains. */
302 static struct reg_eqv_elem *reg_eqv_table;
304 struct cse_reg_info
306 /* The timestamp at which this register is initialized. */
307 unsigned int timestamp;
309 /* The quantity number of the register's current contents. */
310 int reg_qty;
312 /* The number of times the register has been altered in the current
313 basic block. */
314 int reg_tick;
316 /* The REG_TICK value at which rtx's containing this register are
317 valid in the hash table. If this does not equal the current
318 reg_tick value, such expressions existing in the hash table are
319 invalid. */
320 int reg_in_table;
322 /* The SUBREG that was set when REG_TICK was last incremented. Set
323 to -1 if the last store was to the whole register, not a subreg. */
324 unsigned int subreg_ticked;
327 /* A table of cse_reg_info indexed by register numbers. */
328 static struct cse_reg_info *cse_reg_info_table;
330 /* The size of the above table. */
331 static unsigned int cse_reg_info_table_size;
333 /* The index of the first entry that has not been initialized. */
334 static unsigned int cse_reg_info_table_first_uninitialized;
336 /* The timestamp at the beginning of the current run of
337 cse_extended_basic_block. We increment this variable at the beginning of
338 the current run of cse_extended_basic_block. The timestamp field of a
339 cse_reg_info entry matches the value of this variable if and only
340 if the entry has been initialized during the current run of
341 cse_extended_basic_block. */
342 static unsigned int cse_reg_info_timestamp;
344 /* A HARD_REG_SET containing all the hard registers for which there is
345 currently a REG expression in the hash table. Note the difference
346 from the above variables, which indicate if the REG is mentioned in some
347 expression in the table. */
349 static HARD_REG_SET hard_regs_in_table;
351 /* True if CSE has altered the CFG. */
352 static bool cse_cfg_altered;
354 /* True if CSE has altered conditional jump insns in such a way
355 that jump optimization should be redone. */
356 static bool cse_jumps_altered;
358 /* True if we put a LABEL_REF into the hash table for an INSN
359 without a REG_LABEL_OPERAND, we have to rerun jump after CSE
360 to put in the note. */
361 static bool recorded_label_ref;
363 /* canon_hash stores 1 in do_not_record
364 if it notices a reference to CC0, PC, or some other volatile
365 subexpression. */
367 static int do_not_record;
369 /* canon_hash stores 1 in hash_arg_in_memory
370 if it notices a reference to memory within the expression being hashed. */
372 static int hash_arg_in_memory;
374 /* The hash table contains buckets which are chains of `struct table_elt's,
375 each recording one expression's information.
376 That expression is in the `exp' field.
378 The canon_exp field contains a canonical (from the point of view of
379 alias analysis) version of the `exp' field.
381 Those elements with the same hash code are chained in both directions
382 through the `next_same_hash' and `prev_same_hash' fields.
384 Each set of expressions with equivalent values
385 are on a two-way chain through the `next_same_value'
386 and `prev_same_value' fields, and all point with
387 the `first_same_value' field at the first element in
388 that chain. The chain is in order of increasing cost.
389 Each element's cost value is in its `cost' field.
391 The `in_memory' field is nonzero for elements that
392 involve any reference to memory. These elements are removed
393 whenever a write is done to an unidentified location in memory.
394 To be safe, we assume that a memory address is unidentified unless
395 the address is either a symbol constant or a constant plus
396 the frame pointer or argument pointer.
398 The `related_value' field is used to connect related expressions
399 (that differ by adding an integer).
400 The related expressions are chained in a circular fashion.
401 `related_value' is zero for expressions for which this
402 chain is not useful.
404 The `cost' field stores the cost of this element's expression.
405 The `regcost' field stores the value returned by approx_reg_cost for
406 this element's expression.
408 The `is_const' flag is set if the element is a constant (including
409 a fixed address).
411 The `flag' field is used as a temporary during some search routines.
413 The `mode' field is usually the same as GET_MODE (`exp'), but
414 if `exp' is a CONST_INT and has no machine mode then the `mode'
415 field is the mode it was being used as. Each constant is
416 recorded separately for each mode it is used with. */
418 struct table_elt
420 rtx exp;
421 rtx canon_exp;
422 struct table_elt *next_same_hash;
423 struct table_elt *prev_same_hash;
424 struct table_elt *next_same_value;
425 struct table_elt *prev_same_value;
426 struct table_elt *first_same_value;
427 struct table_elt *related_value;
428 int cost;
429 int regcost;
430 /* The size of this field should match the size
431 of the mode field of struct rtx_def (see rtl.h). */
432 ENUM_BITFIELD(machine_mode) mode : 8;
433 char in_memory;
434 char is_const;
435 char flag;
438 /* We don't want a lot of buckets, because we rarely have very many
439 things stored in the hash table, and a lot of buckets slows
440 down a lot of loops that happen frequently. */
441 #define HASH_SHIFT 5
442 #define HASH_SIZE (1 << HASH_SHIFT)
443 #define HASH_MASK (HASH_SIZE - 1)
445 /* Compute hash code of X in mode M. Special-case case where X is a pseudo
446 register (hard registers may require `do_not_record' to be set). */
448 #define HASH(X, M) \
449 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
450 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
451 : canon_hash (X, M)) & HASH_MASK)
453 /* Like HASH, but without side-effects. */
454 #define SAFE_HASH(X, M) \
455 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
456 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
457 : safe_hash (X, M)) & HASH_MASK)
459 /* Determine whether register number N is considered a fixed register for the
460 purpose of approximating register costs.
461 It is desirable to replace other regs with fixed regs, to reduce need for
462 non-fixed hard regs.
463 A reg wins if it is either the frame pointer or designated as fixed. */
464 #define FIXED_REGNO_P(N) \
465 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
466 || fixed_regs[N] || global_regs[N])
468 /* Compute cost of X, as stored in the `cost' field of a table_elt. Fixed
469 hard registers and pointers into the frame are the cheapest with a cost
470 of 0. Next come pseudos with a cost of one and other hard registers with
471 a cost of 2. Aside from these special cases, call `rtx_cost'. */
473 #define CHEAP_REGNO(N) \
474 (REGNO_PTR_FRAME_P(N) \
475 || (HARD_REGISTER_NUM_P (N) \
476 && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
478 #define COST(X) (REG_P (X) ? 0 : notreg_cost (X, SET))
479 #define COST_IN(X,OUTER) (REG_P (X) ? 0 : notreg_cost (X, OUTER))
481 /* Get the number of times this register has been updated in this
482 basic block. */
484 #define REG_TICK(N) (get_cse_reg_info (N)->reg_tick)
486 /* Get the point at which REG was recorded in the table. */
488 #define REG_IN_TABLE(N) (get_cse_reg_info (N)->reg_in_table)
490 /* Get the SUBREG set at the last increment to REG_TICK (-1 if not a
491 SUBREG). */
493 #define SUBREG_TICKED(N) (get_cse_reg_info (N)->subreg_ticked)
495 /* Get the quantity number for REG. */
497 #define REG_QTY(N) (get_cse_reg_info (N)->reg_qty)
499 /* Determine if the quantity number for register X represents a valid index
500 into the qty_table. */
502 #define REGNO_QTY_VALID_P(N) (REG_QTY (N) >= 0)
504 static struct table_elt *table[HASH_SIZE];
506 /* Chain of `struct table_elt's made so far for this function
507 but currently removed from the table. */
509 static struct table_elt *free_element_chain;
511 /* Set to the cost of a constant pool reference if one was found for a
512 symbolic constant. If this was found, it means we should try to
513 convert constants into constant pool entries if they don't fit in
514 the insn. */
516 static int constant_pool_entries_cost;
517 static int constant_pool_entries_regcost;
519 /* This data describes a block that will be processed by
520 cse_extended_basic_block. */
522 struct cse_basic_block_data
524 /* Total number of SETs in block. */
525 int nsets;
526 /* Size of current branch path, if any. */
527 int path_size;
528 /* Current path, indicating which basic_blocks will be processed. */
529 struct branch_path
531 /* The basic block for this path entry. */
532 basic_block bb;
533 } *path;
537 /* Pointers to the live in/live out bitmaps for the boundaries of the
538 current EBB. */
539 static bitmap cse_ebb_live_in, cse_ebb_live_out;
541 /* A simple bitmap to track which basic blocks have been visited
542 already as part of an already processed extended basic block. */
543 static sbitmap cse_visited_basic_blocks;
545 static bool fixed_base_plus_p (rtx x);
546 static int notreg_cost (rtx, enum rtx_code);
547 static int approx_reg_cost_1 (rtx *, void *);
548 static int approx_reg_cost (rtx);
549 static int preferable (int, int, int, int);
550 static void new_basic_block (void);
551 static void make_new_qty (unsigned int, enum machine_mode);
552 static void make_regs_eqv (unsigned int, unsigned int);
553 static void delete_reg_equiv (unsigned int);
554 static int mention_regs (rtx);
555 static int insert_regs (rtx, struct table_elt *, int);
556 static void remove_from_table (struct table_elt *, unsigned);
557 static struct table_elt *lookup (rtx, unsigned, enum machine_mode);
558 static struct table_elt *lookup_for_remove (rtx, unsigned, enum machine_mode);
559 static rtx lookup_as_function (rtx, enum rtx_code);
560 static struct table_elt *insert (rtx, struct table_elt *, unsigned,
561 enum machine_mode);
562 static void merge_equiv_classes (struct table_elt *, struct table_elt *);
563 static void invalidate (rtx, enum machine_mode);
564 static bool cse_rtx_varies_p (const_rtx, bool);
565 static void remove_invalid_refs (unsigned int);
566 static void remove_invalid_subreg_refs (unsigned int, unsigned int,
567 enum machine_mode);
568 static void rehash_using_reg (rtx);
569 static void invalidate_memory (void);
570 static void invalidate_for_call (void);
571 static rtx use_related_value (rtx, struct table_elt *);
573 static inline unsigned canon_hash (rtx, enum machine_mode);
574 static inline unsigned safe_hash (rtx, enum machine_mode);
575 static unsigned hash_rtx_string (const char *);
577 static rtx canon_reg (rtx, rtx);
578 static enum rtx_code find_comparison_args (enum rtx_code, rtx *, rtx *,
579 enum machine_mode *,
580 enum machine_mode *);
581 static rtx fold_rtx (rtx, rtx);
582 static rtx equiv_constant (rtx);
583 static void record_jump_equiv (rtx, bool);
584 static void record_jump_cond (enum rtx_code, enum machine_mode, rtx, rtx,
585 int);
586 static void cse_insn (rtx, rtx);
587 static void cse_prescan_path (struct cse_basic_block_data *);
588 static void invalidate_from_clobbers (rtx);
589 static rtx cse_process_notes (rtx, rtx, bool *);
590 static void cse_extended_basic_block (struct cse_basic_block_data *);
591 static void count_reg_usage (rtx, int *, rtx, int);
592 static int check_for_label_ref (rtx *, void *);
593 extern void dump_class (struct table_elt*);
594 static void get_cse_reg_info_1 (unsigned int regno);
595 static struct cse_reg_info * get_cse_reg_info (unsigned int regno);
596 static int check_dependence (rtx *, void *);
598 static void flush_hash_table (void);
599 static bool insn_live_p (rtx, int *);
600 static bool set_live_p (rtx, rtx, int *);
601 static bool dead_libcall_p (rtx, int *);
602 static int cse_change_cc_mode (rtx *, void *);
603 static void cse_change_cc_mode_insn (rtx, rtx);
604 static void cse_change_cc_mode_insns (rtx, rtx, rtx);
605 static enum machine_mode cse_cc_succs (basic_block, rtx, rtx, bool);
608 #undef RTL_HOOKS_GEN_LOWPART
609 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_if_possible
611 static const struct rtl_hooks cse_rtl_hooks = RTL_HOOKS_INITIALIZER;
613 /* Nonzero if X has the form (PLUS frame-pointer integer). We check for
614 virtual regs here because the simplify_*_operation routines are called
615 by integrate.c, which is called before virtual register instantiation. */
617 static bool
618 fixed_base_plus_p (rtx x)
620 switch (GET_CODE (x))
622 case REG:
623 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx)
624 return true;
625 if (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
626 return true;
627 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
628 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
629 return true;
630 return false;
632 case PLUS:
633 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
634 return false;
635 return fixed_base_plus_p (XEXP (x, 0));
637 default:
638 return false;
642 /* Dump the expressions in the equivalence class indicated by CLASSP.
643 This function is used only for debugging. */
644 void
645 dump_class (struct table_elt *classp)
647 struct table_elt *elt;
649 fprintf (stderr, "Equivalence chain for ");
650 print_rtl (stderr, classp->exp);
651 fprintf (stderr, ": \n");
653 for (elt = classp->first_same_value; elt; elt = elt->next_same_value)
655 print_rtl (stderr, elt->exp);
656 fprintf (stderr, "\n");
660 /* Subroutine of approx_reg_cost; called through for_each_rtx. */
662 static int
663 approx_reg_cost_1 (rtx *xp, void *data)
665 rtx x = *xp;
666 int *cost_p = data;
668 if (x && REG_P (x))
670 unsigned int regno = REGNO (x);
672 if (! CHEAP_REGNO (regno))
674 if (regno < FIRST_PSEUDO_REGISTER)
676 if (SMALL_REGISTER_CLASSES)
677 return 1;
678 *cost_p += 2;
680 else
681 *cost_p += 1;
685 return 0;
688 /* Return an estimate of the cost of the registers used in an rtx.
689 This is mostly the number of different REG expressions in the rtx;
690 however for some exceptions like fixed registers we use a cost of
691 0. If any other hard register reference occurs, return MAX_COST. */
693 static int
694 approx_reg_cost (rtx x)
696 int cost = 0;
698 if (for_each_rtx (&x, approx_reg_cost_1, (void *) &cost))
699 return MAX_COST;
701 return cost;
704 /* Return a negative value if an rtx A, whose costs are given by COST_A
705 and REGCOST_A, is more desirable than an rtx B.
706 Return a positive value if A is less desirable, or 0 if the two are
707 equally good. */
708 static int
709 preferable (int cost_a, int regcost_a, int cost_b, int regcost_b)
711 /* First, get rid of cases involving expressions that are entirely
712 unwanted. */
713 if (cost_a != cost_b)
715 if (cost_a == MAX_COST)
716 return 1;
717 if (cost_b == MAX_COST)
718 return -1;
721 /* Avoid extending lifetimes of hardregs. */
722 if (regcost_a != regcost_b)
724 if (regcost_a == MAX_COST)
725 return 1;
726 if (regcost_b == MAX_COST)
727 return -1;
730 /* Normal operation costs take precedence. */
731 if (cost_a != cost_b)
732 return cost_a - cost_b;
733 /* Only if these are identical consider effects on register pressure. */
734 if (regcost_a != regcost_b)
735 return regcost_a - regcost_b;
736 return 0;
739 /* Internal function, to compute cost when X is not a register; called
740 from COST macro to keep it simple. */
742 static int
743 notreg_cost (rtx x, enum rtx_code outer)
745 return ((GET_CODE (x) == SUBREG
746 && REG_P (SUBREG_REG (x))
747 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
748 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT
749 && (GET_MODE_SIZE (GET_MODE (x))
750 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
751 && subreg_lowpart_p (x)
752 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (x)),
753 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))))
755 : rtx_cost (x, outer) * 2);
759 /* Initialize CSE_REG_INFO_TABLE. */
761 static void
762 init_cse_reg_info (unsigned int nregs)
764 /* Do we need to grow the table? */
765 if (nregs > cse_reg_info_table_size)
767 unsigned int new_size;
769 if (cse_reg_info_table_size < 2048)
771 /* Compute a new size that is a power of 2 and no smaller
772 than the large of NREGS and 64. */
773 new_size = (cse_reg_info_table_size
774 ? cse_reg_info_table_size : 64);
776 while (new_size < nregs)
777 new_size *= 2;
779 else
781 /* If we need a big table, allocate just enough to hold
782 NREGS registers. */
783 new_size = nregs;
786 /* Reallocate the table with NEW_SIZE entries. */
787 if (cse_reg_info_table)
788 free (cse_reg_info_table);
789 cse_reg_info_table = XNEWVEC (struct cse_reg_info, new_size);
790 cse_reg_info_table_size = new_size;
791 cse_reg_info_table_first_uninitialized = 0;
794 /* Do we have all of the first NREGS entries initialized? */
795 if (cse_reg_info_table_first_uninitialized < nregs)
797 unsigned int old_timestamp = cse_reg_info_timestamp - 1;
798 unsigned int i;
800 /* Put the old timestamp on newly allocated entries so that they
801 will all be considered out of date. We do not touch those
802 entries beyond the first NREGS entries to be nice to the
803 virtual memory. */
804 for (i = cse_reg_info_table_first_uninitialized; i < nregs; i++)
805 cse_reg_info_table[i].timestamp = old_timestamp;
807 cse_reg_info_table_first_uninitialized = nregs;
811 /* Given REGNO, initialize the cse_reg_info entry for REGNO. */
813 static void
814 get_cse_reg_info_1 (unsigned int regno)
816 /* Set TIMESTAMP field to CSE_REG_INFO_TIMESTAMP so that this
817 entry will be considered to have been initialized. */
818 cse_reg_info_table[regno].timestamp = cse_reg_info_timestamp;
820 /* Initialize the rest of the entry. */
821 cse_reg_info_table[regno].reg_tick = 1;
822 cse_reg_info_table[regno].reg_in_table = -1;
823 cse_reg_info_table[regno].subreg_ticked = -1;
824 cse_reg_info_table[regno].reg_qty = -regno - 1;
827 /* Find a cse_reg_info entry for REGNO. */
829 static inline struct cse_reg_info *
830 get_cse_reg_info (unsigned int regno)
832 struct cse_reg_info *p = &cse_reg_info_table[regno];
834 /* If this entry has not been initialized, go ahead and initialize
835 it. */
836 if (p->timestamp != cse_reg_info_timestamp)
837 get_cse_reg_info_1 (regno);
839 return p;
842 /* Clear the hash table and initialize each register with its own quantity,
843 for a new basic block. */
845 static void
846 new_basic_block (void)
848 int i;
850 next_qty = 0;
852 /* Invalidate cse_reg_info_table. */
853 cse_reg_info_timestamp++;
855 /* Clear out hash table state for this pass. */
856 CLEAR_HARD_REG_SET (hard_regs_in_table);
858 /* The per-quantity values used to be initialized here, but it is
859 much faster to initialize each as it is made in `make_new_qty'. */
861 for (i = 0; i < HASH_SIZE; i++)
863 struct table_elt *first;
865 first = table[i];
866 if (first != NULL)
868 struct table_elt *last = first;
870 table[i] = NULL;
872 while (last->next_same_hash != NULL)
873 last = last->next_same_hash;
875 /* Now relink this hash entire chain into
876 the free element list. */
878 last->next_same_hash = free_element_chain;
879 free_element_chain = first;
883 #ifdef HAVE_cc0
884 prev_insn_cc0 = 0;
885 #endif
888 /* Say that register REG contains a quantity in mode MODE not in any
889 register before and initialize that quantity. */
891 static void
892 make_new_qty (unsigned int reg, enum machine_mode mode)
894 int q;
895 struct qty_table_elem *ent;
896 struct reg_eqv_elem *eqv;
898 gcc_assert (next_qty < max_qty);
900 q = REG_QTY (reg) = next_qty++;
901 ent = &qty_table[q];
902 ent->first_reg = reg;
903 ent->last_reg = reg;
904 ent->mode = mode;
905 ent->const_rtx = ent->const_insn = NULL_RTX;
906 ent->comparison_code = UNKNOWN;
908 eqv = &reg_eqv_table[reg];
909 eqv->next = eqv->prev = -1;
912 /* Make reg NEW equivalent to reg OLD.
913 OLD is not changing; NEW is. */
915 static void
916 make_regs_eqv (unsigned int new, unsigned int old)
918 unsigned int lastr, firstr;
919 int q = REG_QTY (old);
920 struct qty_table_elem *ent;
922 ent = &qty_table[q];
924 /* Nothing should become eqv until it has a "non-invalid" qty number. */
925 gcc_assert (REGNO_QTY_VALID_P (old));
927 REG_QTY (new) = q;
928 firstr = ent->first_reg;
929 lastr = ent->last_reg;
931 /* Prefer fixed hard registers to anything. Prefer pseudo regs to other
932 hard regs. Among pseudos, if NEW will live longer than any other reg
933 of the same qty, and that is beyond the current basic block,
934 make it the new canonical replacement for this qty. */
935 if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
936 /* Certain fixed registers might be of the class NO_REGS. This means
937 that not only can they not be allocated by the compiler, but
938 they cannot be used in substitutions or canonicalizations
939 either. */
940 && (new >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new) != NO_REGS)
941 && ((new < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new))
942 || (new >= FIRST_PSEUDO_REGISTER
943 && (firstr < FIRST_PSEUDO_REGISTER
944 || (bitmap_bit_p (cse_ebb_live_out, new)
945 && !bitmap_bit_p (cse_ebb_live_out, firstr))
946 || (bitmap_bit_p (cse_ebb_live_in, new)
947 && !bitmap_bit_p (cse_ebb_live_in, firstr))))))
949 reg_eqv_table[firstr].prev = new;
950 reg_eqv_table[new].next = firstr;
951 reg_eqv_table[new].prev = -1;
952 ent->first_reg = new;
954 else
956 /* If NEW is a hard reg (known to be non-fixed), insert at end.
957 Otherwise, insert before any non-fixed hard regs that are at the
958 end. Registers of class NO_REGS cannot be used as an
959 equivalent for anything. */
960 while (lastr < FIRST_PSEUDO_REGISTER && reg_eqv_table[lastr].prev >= 0
961 && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
962 && new >= FIRST_PSEUDO_REGISTER)
963 lastr = reg_eqv_table[lastr].prev;
964 reg_eqv_table[new].next = reg_eqv_table[lastr].next;
965 if (reg_eqv_table[lastr].next >= 0)
966 reg_eqv_table[reg_eqv_table[lastr].next].prev = new;
967 else
968 qty_table[q].last_reg = new;
969 reg_eqv_table[lastr].next = new;
970 reg_eqv_table[new].prev = lastr;
974 /* Remove REG from its equivalence class. */
976 static void
977 delete_reg_equiv (unsigned int reg)
979 struct qty_table_elem *ent;
980 int q = REG_QTY (reg);
981 int p, n;
983 /* If invalid, do nothing. */
984 if (! REGNO_QTY_VALID_P (reg))
985 return;
987 ent = &qty_table[q];
989 p = reg_eqv_table[reg].prev;
990 n = reg_eqv_table[reg].next;
992 if (n != -1)
993 reg_eqv_table[n].prev = p;
994 else
995 ent->last_reg = p;
996 if (p != -1)
997 reg_eqv_table[p].next = n;
998 else
999 ent->first_reg = n;
1001 REG_QTY (reg) = -reg - 1;
1004 /* Remove any invalid expressions from the hash table
1005 that refer to any of the registers contained in expression X.
1007 Make sure that newly inserted references to those registers
1008 as subexpressions will be considered valid.
1010 mention_regs is not called when a register itself
1011 is being stored in the table.
1013 Return 1 if we have done something that may have changed the hash code
1014 of X. */
1016 static int
1017 mention_regs (rtx x)
1019 enum rtx_code code;
1020 int i, j;
1021 const char *fmt;
1022 int changed = 0;
1024 if (x == 0)
1025 return 0;
1027 code = GET_CODE (x);
1028 if (code == REG)
1030 unsigned int regno = REGNO (x);
1031 unsigned int endregno = END_REGNO (x);
1032 unsigned int i;
1034 for (i = regno; i < endregno; i++)
1036 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1037 remove_invalid_refs (i);
1039 REG_IN_TABLE (i) = REG_TICK (i);
1040 SUBREG_TICKED (i) = -1;
1043 return 0;
1046 /* If this is a SUBREG, we don't want to discard other SUBREGs of the same
1047 pseudo if they don't use overlapping words. We handle only pseudos
1048 here for simplicity. */
1049 if (code == SUBREG && REG_P (SUBREG_REG (x))
1050 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
1052 unsigned int i = REGNO (SUBREG_REG (x));
1054 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1056 /* If REG_IN_TABLE (i) differs from REG_TICK (i) by one, and
1057 the last store to this register really stored into this
1058 subreg, then remove the memory of this subreg.
1059 Otherwise, remove any memory of the entire register and
1060 all its subregs from the table. */
1061 if (REG_TICK (i) - REG_IN_TABLE (i) > 1
1062 || SUBREG_TICKED (i) != REGNO (SUBREG_REG (x)))
1063 remove_invalid_refs (i);
1064 else
1065 remove_invalid_subreg_refs (i, SUBREG_BYTE (x), GET_MODE (x));
1068 REG_IN_TABLE (i) = REG_TICK (i);
1069 SUBREG_TICKED (i) = REGNO (SUBREG_REG (x));
1070 return 0;
1073 /* If X is a comparison or a COMPARE and either operand is a register
1074 that does not have a quantity, give it one. This is so that a later
1075 call to record_jump_equiv won't cause X to be assigned a different
1076 hash code and not found in the table after that call.
1078 It is not necessary to do this here, since rehash_using_reg can
1079 fix up the table later, but doing this here eliminates the need to
1080 call that expensive function in the most common case where the only
1081 use of the register is in the comparison. */
1083 if (code == COMPARE || COMPARISON_P (x))
1085 if (REG_P (XEXP (x, 0))
1086 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
1087 if (insert_regs (XEXP (x, 0), NULL, 0))
1089 rehash_using_reg (XEXP (x, 0));
1090 changed = 1;
1093 if (REG_P (XEXP (x, 1))
1094 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
1095 if (insert_regs (XEXP (x, 1), NULL, 0))
1097 rehash_using_reg (XEXP (x, 1));
1098 changed = 1;
1102 fmt = GET_RTX_FORMAT (code);
1103 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1104 if (fmt[i] == 'e')
1105 changed |= mention_regs (XEXP (x, i));
1106 else if (fmt[i] == 'E')
1107 for (j = 0; j < XVECLEN (x, i); j++)
1108 changed |= mention_regs (XVECEXP (x, i, j));
1110 return changed;
1113 /* Update the register quantities for inserting X into the hash table
1114 with a value equivalent to CLASSP.
1115 (If the class does not contain a REG, it is irrelevant.)
1116 If MODIFIED is nonzero, X is a destination; it is being modified.
1117 Note that delete_reg_equiv should be called on a register
1118 before insert_regs is done on that register with MODIFIED != 0.
1120 Nonzero value means that elements of reg_qty have changed
1121 so X's hash code may be different. */
1123 static int
1124 insert_regs (rtx x, struct table_elt *classp, int modified)
1126 if (REG_P (x))
1128 unsigned int regno = REGNO (x);
1129 int qty_valid;
1131 /* If REGNO is in the equivalence table already but is of the
1132 wrong mode for that equivalence, don't do anything here. */
1134 qty_valid = REGNO_QTY_VALID_P (regno);
1135 if (qty_valid)
1137 struct qty_table_elem *ent = &qty_table[REG_QTY (regno)];
1139 if (ent->mode != GET_MODE (x))
1140 return 0;
1143 if (modified || ! qty_valid)
1145 if (classp)
1146 for (classp = classp->first_same_value;
1147 classp != 0;
1148 classp = classp->next_same_value)
1149 if (REG_P (classp->exp)
1150 && GET_MODE (classp->exp) == GET_MODE (x))
1152 unsigned c_regno = REGNO (classp->exp);
1154 gcc_assert (REGNO_QTY_VALID_P (c_regno));
1156 /* Suppose that 5 is hard reg and 100 and 101 are
1157 pseudos. Consider
1159 (set (reg:si 100) (reg:si 5))
1160 (set (reg:si 5) (reg:si 100))
1161 (set (reg:di 101) (reg:di 5))
1163 We would now set REG_QTY (101) = REG_QTY (5), but the
1164 entry for 5 is in SImode. When we use this later in
1165 copy propagation, we get the register in wrong mode. */
1166 if (qty_table[REG_QTY (c_regno)].mode != GET_MODE (x))
1167 continue;
1169 make_regs_eqv (regno, c_regno);
1170 return 1;
1173 /* Mention_regs for a SUBREG checks if REG_TICK is exactly one larger
1174 than REG_IN_TABLE to find out if there was only a single preceding
1175 invalidation - for the SUBREG - or another one, which would be
1176 for the full register. However, if we find here that REG_TICK
1177 indicates that the register is invalid, it means that it has
1178 been invalidated in a separate operation. The SUBREG might be used
1179 now (then this is a recursive call), or we might use the full REG
1180 now and a SUBREG of it later. So bump up REG_TICK so that
1181 mention_regs will do the right thing. */
1182 if (! modified
1183 && REG_IN_TABLE (regno) >= 0
1184 && REG_TICK (regno) == REG_IN_TABLE (regno) + 1)
1185 REG_TICK (regno)++;
1186 make_new_qty (regno, GET_MODE (x));
1187 return 1;
1190 return 0;
1193 /* If X is a SUBREG, we will likely be inserting the inner register in the
1194 table. If that register doesn't have an assigned quantity number at
1195 this point but does later, the insertion that we will be doing now will
1196 not be accessible because its hash code will have changed. So assign
1197 a quantity number now. */
1199 else if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x))
1200 && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
1202 insert_regs (SUBREG_REG (x), NULL, 0);
1203 mention_regs (x);
1204 return 1;
1206 else
1207 return mention_regs (x);
1210 /* Look in or update the hash table. */
1212 /* Remove table element ELT from use in the table.
1213 HASH is its hash code, made using the HASH macro.
1214 It's an argument because often that is known in advance
1215 and we save much time not recomputing it. */
1217 static void
1218 remove_from_table (struct table_elt *elt, unsigned int hash)
1220 if (elt == 0)
1221 return;
1223 /* Mark this element as removed. See cse_insn. */
1224 elt->first_same_value = 0;
1226 /* Remove the table element from its equivalence class. */
1229 struct table_elt *prev = elt->prev_same_value;
1230 struct table_elt *next = elt->next_same_value;
1232 if (next)
1233 next->prev_same_value = prev;
1235 if (prev)
1236 prev->next_same_value = next;
1237 else
1239 struct table_elt *newfirst = next;
1240 while (next)
1242 next->first_same_value = newfirst;
1243 next = next->next_same_value;
1248 /* Remove the table element from its hash bucket. */
1251 struct table_elt *prev = elt->prev_same_hash;
1252 struct table_elt *next = elt->next_same_hash;
1254 if (next)
1255 next->prev_same_hash = prev;
1257 if (prev)
1258 prev->next_same_hash = next;
1259 else if (table[hash] == elt)
1260 table[hash] = next;
1261 else
1263 /* This entry is not in the proper hash bucket. This can happen
1264 when two classes were merged by `merge_equiv_classes'. Search
1265 for the hash bucket that it heads. This happens only very
1266 rarely, so the cost is acceptable. */
1267 for (hash = 0; hash < HASH_SIZE; hash++)
1268 if (table[hash] == elt)
1269 table[hash] = next;
1273 /* Remove the table element from its related-value circular chain. */
1275 if (elt->related_value != 0 && elt->related_value != elt)
1277 struct table_elt *p = elt->related_value;
1279 while (p->related_value != elt)
1280 p = p->related_value;
1281 p->related_value = elt->related_value;
1282 if (p->related_value == p)
1283 p->related_value = 0;
1286 /* Now add it to the free element chain. */
1287 elt->next_same_hash = free_element_chain;
1288 free_element_chain = elt;
1291 /* Look up X in the hash table and return its table element,
1292 or 0 if X is not in the table.
1294 MODE is the machine-mode of X, or if X is an integer constant
1295 with VOIDmode then MODE is the mode with which X will be used.
1297 Here we are satisfied to find an expression whose tree structure
1298 looks like X. */
1300 static struct table_elt *
1301 lookup (rtx x, unsigned int hash, enum machine_mode mode)
1303 struct table_elt *p;
1305 for (p = table[hash]; p; p = p->next_same_hash)
1306 if (mode == p->mode && ((x == p->exp && REG_P (x))
1307 || exp_equiv_p (x, p->exp, !REG_P (x), false)))
1308 return p;
1310 return 0;
1313 /* Like `lookup' but don't care whether the table element uses invalid regs.
1314 Also ignore discrepancies in the machine mode of a register. */
1316 static struct table_elt *
1317 lookup_for_remove (rtx x, unsigned int hash, enum machine_mode mode)
1319 struct table_elt *p;
1321 if (REG_P (x))
1323 unsigned int regno = REGNO (x);
1325 /* Don't check the machine mode when comparing registers;
1326 invalidating (REG:SI 0) also invalidates (REG:DF 0). */
1327 for (p = table[hash]; p; p = p->next_same_hash)
1328 if (REG_P (p->exp)
1329 && REGNO (p->exp) == regno)
1330 return p;
1332 else
1334 for (p = table[hash]; p; p = p->next_same_hash)
1335 if (mode == p->mode
1336 && (x == p->exp || exp_equiv_p (x, p->exp, 0, false)))
1337 return p;
1340 return 0;
1343 /* Look for an expression equivalent to X and with code CODE.
1344 If one is found, return that expression. */
1346 static rtx
1347 lookup_as_function (rtx x, enum rtx_code code)
1349 struct table_elt *p
1350 = lookup (x, SAFE_HASH (x, VOIDmode), GET_MODE (x));
1352 /* If we are looking for a CONST_INT, the mode doesn't really matter, as
1353 long as we are narrowing. So if we looked in vain for a mode narrower
1354 than word_mode before, look for word_mode now. */
1355 if (p == 0 && code == CONST_INT
1356 && GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (word_mode))
1358 x = copy_rtx (x);
1359 PUT_MODE (x, word_mode);
1360 p = lookup (x, SAFE_HASH (x, VOIDmode), word_mode);
1363 if (p == 0)
1364 return 0;
1366 for (p = p->first_same_value; p; p = p->next_same_value)
1367 if (GET_CODE (p->exp) == code
1368 /* Make sure this is a valid entry in the table. */
1369 && exp_equiv_p (p->exp, p->exp, 1, false))
1370 return p->exp;
1372 return 0;
1375 /* Insert X in the hash table, assuming HASH is its hash code
1376 and CLASSP is an element of the class it should go in
1377 (or 0 if a new class should be made).
1378 It is inserted at the proper position to keep the class in
1379 the order cheapest first.
1381 MODE is the machine-mode of X, or if X is an integer constant
1382 with VOIDmode then MODE is the mode with which X will be used.
1384 For elements of equal cheapness, the most recent one
1385 goes in front, except that the first element in the list
1386 remains first unless a cheaper element is added. The order of
1387 pseudo-registers does not matter, as canon_reg will be called to
1388 find the cheapest when a register is retrieved from the table.
1390 The in_memory field in the hash table element is set to 0.
1391 The caller must set it nonzero if appropriate.
1393 You should call insert_regs (X, CLASSP, MODIFY) before calling here,
1394 and if insert_regs returns a nonzero value
1395 you must then recompute its hash code before calling here.
1397 If necessary, update table showing constant values of quantities. */
1399 #define CHEAPER(X, Y) \
1400 (preferable ((X)->cost, (X)->regcost, (Y)->cost, (Y)->regcost) < 0)
1402 static struct table_elt *
1403 insert (rtx x, struct table_elt *classp, unsigned int hash, enum machine_mode mode)
1405 struct table_elt *elt;
1407 /* If X is a register and we haven't made a quantity for it,
1408 something is wrong. */
1409 gcc_assert (!REG_P (x) || REGNO_QTY_VALID_P (REGNO (x)));
1411 /* If X is a hard register, show it is being put in the table. */
1412 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1413 add_to_hard_reg_set (&hard_regs_in_table, GET_MODE (x), REGNO (x));
1415 /* Put an element for X into the right hash bucket. */
1417 elt = free_element_chain;
1418 if (elt)
1419 free_element_chain = elt->next_same_hash;
1420 else
1421 elt = XNEW (struct table_elt);
1423 elt->exp = x;
1424 elt->canon_exp = NULL_RTX;
1425 elt->cost = COST (x);
1426 elt->regcost = approx_reg_cost (x);
1427 elt->next_same_value = 0;
1428 elt->prev_same_value = 0;
1429 elt->next_same_hash = table[hash];
1430 elt->prev_same_hash = 0;
1431 elt->related_value = 0;
1432 elt->in_memory = 0;
1433 elt->mode = mode;
1434 elt->is_const = (CONSTANT_P (x) || fixed_base_plus_p (x));
1436 if (table[hash])
1437 table[hash]->prev_same_hash = elt;
1438 table[hash] = elt;
1440 /* Put it into the proper value-class. */
1441 if (classp)
1443 classp = classp->first_same_value;
1444 if (CHEAPER (elt, classp))
1445 /* Insert at the head of the class. */
1447 struct table_elt *p;
1448 elt->next_same_value = classp;
1449 classp->prev_same_value = elt;
1450 elt->first_same_value = elt;
1452 for (p = classp; p; p = p->next_same_value)
1453 p->first_same_value = elt;
1455 else
1457 /* Insert not at head of the class. */
1458 /* Put it after the last element cheaper than X. */
1459 struct table_elt *p, *next;
1461 for (p = classp; (next = p->next_same_value) && CHEAPER (next, elt);
1462 p = next);
1464 /* Put it after P and before NEXT. */
1465 elt->next_same_value = next;
1466 if (next)
1467 next->prev_same_value = elt;
1469 elt->prev_same_value = p;
1470 p->next_same_value = elt;
1471 elt->first_same_value = classp;
1474 else
1475 elt->first_same_value = elt;
1477 /* If this is a constant being set equivalent to a register or a register
1478 being set equivalent to a constant, note the constant equivalence.
1480 If this is a constant, it cannot be equivalent to a different constant,
1481 and a constant is the only thing that can be cheaper than a register. So
1482 we know the register is the head of the class (before the constant was
1483 inserted).
1485 If this is a register that is not already known equivalent to a
1486 constant, we must check the entire class.
1488 If this is a register that is already known equivalent to an insn,
1489 update the qtys `const_insn' to show that `this_insn' is the latest
1490 insn making that quantity equivalent to the constant. */
1492 if (elt->is_const && classp && REG_P (classp->exp)
1493 && !REG_P (x))
1495 int exp_q = REG_QTY (REGNO (classp->exp));
1496 struct qty_table_elem *exp_ent = &qty_table[exp_q];
1498 exp_ent->const_rtx = gen_lowpart (exp_ent->mode, x);
1499 exp_ent->const_insn = this_insn;
1502 else if (REG_P (x)
1503 && classp
1504 && ! qty_table[REG_QTY (REGNO (x))].const_rtx
1505 && ! elt->is_const)
1507 struct table_elt *p;
1509 for (p = classp; p != 0; p = p->next_same_value)
1511 if (p->is_const && !REG_P (p->exp))
1513 int x_q = REG_QTY (REGNO (x));
1514 struct qty_table_elem *x_ent = &qty_table[x_q];
1516 x_ent->const_rtx
1517 = gen_lowpart (GET_MODE (x), p->exp);
1518 x_ent->const_insn = this_insn;
1519 break;
1524 else if (REG_P (x)
1525 && qty_table[REG_QTY (REGNO (x))].const_rtx
1526 && GET_MODE (x) == qty_table[REG_QTY (REGNO (x))].mode)
1527 qty_table[REG_QTY (REGNO (x))].const_insn = this_insn;
1529 /* If this is a constant with symbolic value,
1530 and it has a term with an explicit integer value,
1531 link it up with related expressions. */
1532 if (GET_CODE (x) == CONST)
1534 rtx subexp = get_related_value (x);
1535 unsigned subhash;
1536 struct table_elt *subelt, *subelt_prev;
1538 if (subexp != 0)
1540 /* Get the integer-free subexpression in the hash table. */
1541 subhash = SAFE_HASH (subexp, mode);
1542 subelt = lookup (subexp, subhash, mode);
1543 if (subelt == 0)
1544 subelt = insert (subexp, NULL, subhash, mode);
1545 /* Initialize SUBELT's circular chain if it has none. */
1546 if (subelt->related_value == 0)
1547 subelt->related_value = subelt;
1548 /* Find the element in the circular chain that precedes SUBELT. */
1549 subelt_prev = subelt;
1550 while (subelt_prev->related_value != subelt)
1551 subelt_prev = subelt_prev->related_value;
1552 /* Put new ELT into SUBELT's circular chain just before SUBELT.
1553 This way the element that follows SUBELT is the oldest one. */
1554 elt->related_value = subelt_prev->related_value;
1555 subelt_prev->related_value = elt;
1559 return elt;
1562 /* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
1563 CLASS2 into CLASS1. This is done when we have reached an insn which makes
1564 the two classes equivalent.
1566 CLASS1 will be the surviving class; CLASS2 should not be used after this
1567 call.
1569 Any invalid entries in CLASS2 will not be copied. */
1571 static void
1572 merge_equiv_classes (struct table_elt *class1, struct table_elt *class2)
1574 struct table_elt *elt, *next, *new;
1576 /* Ensure we start with the head of the classes. */
1577 class1 = class1->first_same_value;
1578 class2 = class2->first_same_value;
1580 /* If they were already equal, forget it. */
1581 if (class1 == class2)
1582 return;
1584 for (elt = class2; elt; elt = next)
1586 unsigned int hash;
1587 rtx exp = elt->exp;
1588 enum machine_mode mode = elt->mode;
1590 next = elt->next_same_value;
1592 /* Remove old entry, make a new one in CLASS1's class.
1593 Don't do this for invalid entries as we cannot find their
1594 hash code (it also isn't necessary). */
1595 if (REG_P (exp) || exp_equiv_p (exp, exp, 1, false))
1597 bool need_rehash = false;
1599 hash_arg_in_memory = 0;
1600 hash = HASH (exp, mode);
1602 if (REG_P (exp))
1604 need_rehash = REGNO_QTY_VALID_P (REGNO (exp));
1605 delete_reg_equiv (REGNO (exp));
1608 remove_from_table (elt, hash);
1610 if (insert_regs (exp, class1, 0) || need_rehash)
1612 rehash_using_reg (exp);
1613 hash = HASH (exp, mode);
1615 new = insert (exp, class1, hash, mode);
1616 new->in_memory = hash_arg_in_memory;
1621 /* Flush the entire hash table. */
1623 static void
1624 flush_hash_table (void)
1626 int i;
1627 struct table_elt *p;
1629 for (i = 0; i < HASH_SIZE; i++)
1630 for (p = table[i]; p; p = table[i])
1632 /* Note that invalidate can remove elements
1633 after P in the current hash chain. */
1634 if (REG_P (p->exp))
1635 invalidate (p->exp, VOIDmode);
1636 else
1637 remove_from_table (p, i);
1641 /* Function called for each rtx to check whether true dependence exist. */
1642 struct check_dependence_data
1644 enum machine_mode mode;
1645 rtx exp;
1646 rtx addr;
1649 static int
1650 check_dependence (rtx *x, void *data)
1652 struct check_dependence_data *d = (struct check_dependence_data *) data;
1653 if (*x && MEM_P (*x))
1654 return canon_true_dependence (d->exp, d->mode, d->addr, *x,
1655 cse_rtx_varies_p);
1656 else
1657 return 0;
1660 /* Remove from the hash table, or mark as invalid, all expressions whose
1661 values could be altered by storing in X. X is a register, a subreg, or
1662 a memory reference with nonvarying address (because, when a memory
1663 reference with a varying address is stored in, all memory references are
1664 removed by invalidate_memory so specific invalidation is superfluous).
1665 FULL_MODE, if not VOIDmode, indicates that this much should be
1666 invalidated instead of just the amount indicated by the mode of X. This
1667 is only used for bitfield stores into memory.
1669 A nonvarying address may be just a register or just a symbol reference,
1670 or it may be either of those plus a numeric offset. */
1672 static void
1673 invalidate (rtx x, enum machine_mode full_mode)
1675 int i;
1676 struct table_elt *p;
1677 rtx addr;
1679 switch (GET_CODE (x))
1681 case REG:
1683 /* If X is a register, dependencies on its contents are recorded
1684 through the qty number mechanism. Just change the qty number of
1685 the register, mark it as invalid for expressions that refer to it,
1686 and remove it itself. */
1687 unsigned int regno = REGNO (x);
1688 unsigned int hash = HASH (x, GET_MODE (x));
1690 /* Remove REGNO from any quantity list it might be on and indicate
1691 that its value might have changed. If it is a pseudo, remove its
1692 entry from the hash table.
1694 For a hard register, we do the first two actions above for any
1695 additional hard registers corresponding to X. Then, if any of these
1696 registers are in the table, we must remove any REG entries that
1697 overlap these registers. */
1699 delete_reg_equiv (regno);
1700 REG_TICK (regno)++;
1701 SUBREG_TICKED (regno) = -1;
1703 if (regno >= FIRST_PSEUDO_REGISTER)
1705 /* Because a register can be referenced in more than one mode,
1706 we might have to remove more than one table entry. */
1707 struct table_elt *elt;
1709 while ((elt = lookup_for_remove (x, hash, GET_MODE (x))))
1710 remove_from_table (elt, hash);
1712 else
1714 HOST_WIDE_INT in_table
1715 = TEST_HARD_REG_BIT (hard_regs_in_table, regno);
1716 unsigned int endregno = END_HARD_REGNO (x);
1717 unsigned int tregno, tendregno, rn;
1718 struct table_elt *p, *next;
1720 CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);
1722 for (rn = regno + 1; rn < endregno; rn++)
1724 in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, rn);
1725 CLEAR_HARD_REG_BIT (hard_regs_in_table, rn);
1726 delete_reg_equiv (rn);
1727 REG_TICK (rn)++;
1728 SUBREG_TICKED (rn) = -1;
1731 if (in_table)
1732 for (hash = 0; hash < HASH_SIZE; hash++)
1733 for (p = table[hash]; p; p = next)
1735 next = p->next_same_hash;
1737 if (!REG_P (p->exp)
1738 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1739 continue;
1741 tregno = REGNO (p->exp);
1742 tendregno = END_HARD_REGNO (p->exp);
1743 if (tendregno > regno && tregno < endregno)
1744 remove_from_table (p, hash);
1748 return;
1750 case SUBREG:
1751 invalidate (SUBREG_REG (x), VOIDmode);
1752 return;
1754 case PARALLEL:
1755 for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
1756 invalidate (XVECEXP (x, 0, i), VOIDmode);
1757 return;
1759 case EXPR_LIST:
1760 /* This is part of a disjoint return value; extract the location in
1761 question ignoring the offset. */
1762 invalidate (XEXP (x, 0), VOIDmode);
1763 return;
1765 case MEM:
1766 addr = canon_rtx (get_addr (XEXP (x, 0)));
1767 /* Calculate the canonical version of X here so that
1768 true_dependence doesn't generate new RTL for X on each call. */
1769 x = canon_rtx (x);
1771 /* Remove all hash table elements that refer to overlapping pieces of
1772 memory. */
1773 if (full_mode == VOIDmode)
1774 full_mode = GET_MODE (x);
1776 for (i = 0; i < HASH_SIZE; i++)
1778 struct table_elt *next;
1780 for (p = table[i]; p; p = next)
1782 next = p->next_same_hash;
1783 if (p->in_memory)
1785 struct check_dependence_data d;
1787 /* Just canonicalize the expression once;
1788 otherwise each time we call invalidate
1789 true_dependence will canonicalize the
1790 expression again. */
1791 if (!p->canon_exp)
1792 p->canon_exp = canon_rtx (p->exp);
1793 d.exp = x;
1794 d.addr = addr;
1795 d.mode = full_mode;
1796 if (for_each_rtx (&p->canon_exp, check_dependence, &d))
1797 remove_from_table (p, i);
1801 return;
1803 default:
1804 gcc_unreachable ();
1808 /* Remove all expressions that refer to register REGNO,
1809 since they are already invalid, and we are about to
1810 mark that register valid again and don't want the old
1811 expressions to reappear as valid. */
1813 static void
1814 remove_invalid_refs (unsigned int regno)
1816 unsigned int i;
1817 struct table_elt *p, *next;
1819 for (i = 0; i < HASH_SIZE; i++)
1820 for (p = table[i]; p; p = next)
1822 next = p->next_same_hash;
1823 if (!REG_P (p->exp)
1824 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
1825 remove_from_table (p, i);
1829 /* Likewise for a subreg with subreg_reg REGNO, subreg_byte OFFSET,
1830 and mode MODE. */
1831 static void
1832 remove_invalid_subreg_refs (unsigned int regno, unsigned int offset,
1833 enum machine_mode mode)
1835 unsigned int i;
1836 struct table_elt *p, *next;
1837 unsigned int end = offset + (GET_MODE_SIZE (mode) - 1);
1839 for (i = 0; i < HASH_SIZE; i++)
1840 for (p = table[i]; p; p = next)
1842 rtx exp = p->exp;
1843 next = p->next_same_hash;
1845 if (!REG_P (exp)
1846 && (GET_CODE (exp) != SUBREG
1847 || !REG_P (SUBREG_REG (exp))
1848 || REGNO (SUBREG_REG (exp)) != regno
1849 || (((SUBREG_BYTE (exp)
1850 + (GET_MODE_SIZE (GET_MODE (exp)) - 1)) >= offset)
1851 && SUBREG_BYTE (exp) <= end))
1852 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
1853 remove_from_table (p, i);
1857 /* Recompute the hash codes of any valid entries in the hash table that
1858 reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.
1860 This is called when we make a jump equivalence. */
1862 static void
1863 rehash_using_reg (rtx x)
1865 unsigned int i;
1866 struct table_elt *p, *next;
1867 unsigned hash;
1869 if (GET_CODE (x) == SUBREG)
1870 x = SUBREG_REG (x);
1872 /* If X is not a register or if the register is known not to be in any
1873 valid entries in the table, we have no work to do. */
1875 if (!REG_P (x)
1876 || REG_IN_TABLE (REGNO (x)) < 0
1877 || REG_IN_TABLE (REGNO (x)) != REG_TICK (REGNO (x)))
1878 return;
1880 /* Scan all hash chains looking for valid entries that mention X.
1881 If we find one and it is in the wrong hash chain, move it. */
1883 for (i = 0; i < HASH_SIZE; i++)
1884 for (p = table[i]; p; p = next)
1886 next = p->next_same_hash;
1887 if (reg_mentioned_p (x, p->exp)
1888 && exp_equiv_p (p->exp, p->exp, 1, false)
1889 && i != (hash = SAFE_HASH (p->exp, p->mode)))
1891 if (p->next_same_hash)
1892 p->next_same_hash->prev_same_hash = p->prev_same_hash;
1894 if (p->prev_same_hash)
1895 p->prev_same_hash->next_same_hash = p->next_same_hash;
1896 else
1897 table[i] = p->next_same_hash;
1899 p->next_same_hash = table[hash];
1900 p->prev_same_hash = 0;
1901 if (table[hash])
1902 table[hash]->prev_same_hash = p;
1903 table[hash] = p;
1908 /* Remove from the hash table any expression that is a call-clobbered
1909 register. Also update their TICK values. */
1911 static void
1912 invalidate_for_call (void)
1914 unsigned int regno, endregno;
1915 unsigned int i;
1916 unsigned hash;
1917 struct table_elt *p, *next;
1918 int in_table = 0;
1920 /* Go through all the hard registers. For each that is clobbered in
1921 a CALL_INSN, remove the register from quantity chains and update
1922 reg_tick if defined. Also see if any of these registers is currently
1923 in the table. */
1925 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
1926 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
1928 delete_reg_equiv (regno);
1929 if (REG_TICK (regno) >= 0)
1931 REG_TICK (regno)++;
1932 SUBREG_TICKED (regno) = -1;
1935 in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0);
1938 /* In the case where we have no call-clobbered hard registers in the
1939 table, we are done. Otherwise, scan the table and remove any
1940 entry that overlaps a call-clobbered register. */
1942 if (in_table)
1943 for (hash = 0; hash < HASH_SIZE; hash++)
1944 for (p = table[hash]; p; p = next)
1946 next = p->next_same_hash;
1948 if (!REG_P (p->exp)
1949 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1950 continue;
1952 regno = REGNO (p->exp);
1953 endregno = END_HARD_REGNO (p->exp);
1955 for (i = regno; i < endregno; i++)
1956 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1958 remove_from_table (p, hash);
1959 break;
1964 /* Given an expression X of type CONST,
1965 and ELT which is its table entry (or 0 if it
1966 is not in the hash table),
1967 return an alternate expression for X as a register plus integer.
1968 If none can be found, return 0. */
1970 static rtx
1971 use_related_value (rtx x, struct table_elt *elt)
1973 struct table_elt *relt = 0;
1974 struct table_elt *p, *q;
1975 HOST_WIDE_INT offset;
1977 /* First, is there anything related known?
1978 If we have a table element, we can tell from that.
1979 Otherwise, must look it up. */
1981 if (elt != 0 && elt->related_value != 0)
1982 relt = elt;
1983 else if (elt == 0 && GET_CODE (x) == CONST)
1985 rtx subexp = get_related_value (x);
1986 if (subexp != 0)
1987 relt = lookup (subexp,
1988 SAFE_HASH (subexp, GET_MODE (subexp)),
1989 GET_MODE (subexp));
1992 if (relt == 0)
1993 return 0;
1995 /* Search all related table entries for one that has an
1996 equivalent register. */
1998 p = relt;
1999 while (1)
2001 /* This loop is strange in that it is executed in two different cases.
2002 The first is when X is already in the table. Then it is searching
2003 the RELATED_VALUE list of X's class (RELT). The second case is when
2004 X is not in the table. Then RELT points to a class for the related
2005 value.
2007 Ensure that, whatever case we are in, that we ignore classes that have
2008 the same value as X. */
2010 if (rtx_equal_p (x, p->exp))
2011 q = 0;
2012 else
2013 for (q = p->first_same_value; q; q = q->next_same_value)
2014 if (REG_P (q->exp))
2015 break;
2017 if (q)
2018 break;
2020 p = p->related_value;
2022 /* We went all the way around, so there is nothing to be found.
2023 Alternatively, perhaps RELT was in the table for some other reason
2024 and it has no related values recorded. */
2025 if (p == relt || p == 0)
2026 break;
2029 if (q == 0)
2030 return 0;
2032 offset = (get_integer_term (x) - get_integer_term (p->exp));
2033 /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity. */
2034 return plus_constant (q->exp, offset);
2037 /* Hash a string. Just add its bytes up. */
2038 static inline unsigned
2039 hash_rtx_string (const char *ps)
2041 unsigned hash = 0;
2042 const unsigned char *p = (const unsigned char *) ps;
2044 if (p)
2045 while (*p)
2046 hash += *p++;
2048 return hash;
2051 /* Hash an rtx. We are careful to make sure the value is never negative.
2052 Equivalent registers hash identically.
2053 MODE is used in hashing for CONST_INTs only;
2054 otherwise the mode of X is used.
2056 Store 1 in DO_NOT_RECORD_P if any subexpression is volatile.
2058 If HASH_ARG_IN_MEMORY_P is not NULL, store 1 in it if X contains
2059 a MEM rtx which does not have the RTX_UNCHANGING_P bit set.
2061 Note that cse_insn knows that the hash code of a MEM expression
2062 is just (int) MEM plus the hash code of the address. */
2064 unsigned
2065 hash_rtx (const_rtx x, enum machine_mode mode, int *do_not_record_p,
2066 int *hash_arg_in_memory_p, bool have_reg_qty)
2068 int i, j;
2069 unsigned hash = 0;
2070 enum rtx_code code;
2071 const char *fmt;
2073 /* Used to turn recursion into iteration. We can't rely on GCC's
2074 tail-recursion elimination since we need to keep accumulating values
2075 in HASH. */
2076 repeat:
2077 if (x == 0)
2078 return hash;
2080 code = GET_CODE (x);
2081 switch (code)
2083 case REG:
2085 unsigned int regno = REGNO (x);
2087 if (!reload_completed)
2089 /* On some machines, we can't record any non-fixed hard register,
2090 because extending its life will cause reload problems. We
2091 consider ap, fp, sp, gp to be fixed for this purpose.
2093 We also consider CCmode registers to be fixed for this purpose;
2094 failure to do so leads to failure to simplify 0<100 type of
2095 conditionals.
2097 On all machines, we can't record any global registers.
2098 Nor should we record any register that is in a small
2099 class, as defined by CLASS_LIKELY_SPILLED_P. */
2100 bool record;
2102 if (regno >= FIRST_PSEUDO_REGISTER)
2103 record = true;
2104 else if (x == frame_pointer_rtx
2105 || x == hard_frame_pointer_rtx
2106 || x == arg_pointer_rtx
2107 || x == stack_pointer_rtx
2108 || x == pic_offset_table_rtx)
2109 record = true;
2110 else if (global_regs[regno])
2111 record = false;
2112 else if (fixed_regs[regno])
2113 record = true;
2114 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
2115 record = true;
2116 else if (SMALL_REGISTER_CLASSES)
2117 record = false;
2118 else if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (regno)))
2119 record = false;
2120 else
2121 record = true;
2123 if (!record)
2125 *do_not_record_p = 1;
2126 return 0;
2130 hash += ((unsigned int) REG << 7);
2131 hash += (have_reg_qty ? (unsigned) REG_QTY (regno) : regno);
2132 return hash;
2135 /* We handle SUBREG of a REG specially because the underlying
2136 reg changes its hash value with every value change; we don't
2137 want to have to forget unrelated subregs when one subreg changes. */
2138 case SUBREG:
2140 if (REG_P (SUBREG_REG (x)))
2142 hash += (((unsigned int) SUBREG << 7)
2143 + REGNO (SUBREG_REG (x))
2144 + (SUBREG_BYTE (x) / UNITS_PER_WORD));
2145 return hash;
2147 break;
2150 case CONST_INT:
2151 hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
2152 + (unsigned int) INTVAL (x));
2153 return hash;
2155 case CONST_DOUBLE:
2156 /* This is like the general case, except that it only counts
2157 the integers representing the constant. */
2158 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2159 if (GET_MODE (x) != VOIDmode)
2160 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
2161 else
2162 hash += ((unsigned int) CONST_DOUBLE_LOW (x)
2163 + (unsigned int) CONST_DOUBLE_HIGH (x));
2164 return hash;
2166 case CONST_FIXED:
2167 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2168 hash += fixed_hash (CONST_FIXED_VALUE (x));
2169 return hash;
2171 case CONST_VECTOR:
2173 int units;
2174 rtx elt;
2176 units = CONST_VECTOR_NUNITS (x);
2178 for (i = 0; i < units; ++i)
2180 elt = CONST_VECTOR_ELT (x, i);
2181 hash += hash_rtx (elt, GET_MODE (elt), do_not_record_p,
2182 hash_arg_in_memory_p, have_reg_qty);
2185 return hash;
2188 /* Assume there is only one rtx object for any given label. */
2189 case LABEL_REF:
2190 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
2191 differences and differences between each stage's debugging dumps. */
2192 hash += (((unsigned int) LABEL_REF << 7)
2193 + CODE_LABEL_NUMBER (XEXP (x, 0)));
2194 return hash;
2196 case SYMBOL_REF:
2198 /* Don't hash on the symbol's address to avoid bootstrap differences.
2199 Different hash values may cause expressions to be recorded in
2200 different orders and thus different registers to be used in the
2201 final assembler. This also avoids differences in the dump files
2202 between various stages. */
2203 unsigned int h = 0;
2204 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
2206 while (*p)
2207 h += (h << 7) + *p++; /* ??? revisit */
2209 hash += ((unsigned int) SYMBOL_REF << 7) + h;
2210 return hash;
2213 case MEM:
2214 /* We don't record if marked volatile or if BLKmode since we don't
2215 know the size of the move. */
2216 if (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode)
2218 *do_not_record_p = 1;
2219 return 0;
2221 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2222 *hash_arg_in_memory_p = 1;
2224 /* Now that we have already found this special case,
2225 might as well speed it up as much as possible. */
2226 hash += (unsigned) MEM;
2227 x = XEXP (x, 0);
2228 goto repeat;
2230 case USE:
2231 /* A USE that mentions non-volatile memory needs special
2232 handling since the MEM may be BLKmode which normally
2233 prevents an entry from being made. Pure calls are
2234 marked by a USE which mentions BLKmode memory.
2235 See calls.c:emit_call_1. */
2236 if (MEM_P (XEXP (x, 0))
2237 && ! MEM_VOLATILE_P (XEXP (x, 0)))
2239 hash += (unsigned) USE;
2240 x = XEXP (x, 0);
2242 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2243 *hash_arg_in_memory_p = 1;
2245 /* Now that we have already found this special case,
2246 might as well speed it up as much as possible. */
2247 hash += (unsigned) MEM;
2248 x = XEXP (x, 0);
2249 goto repeat;
2251 break;
2253 case PRE_DEC:
2254 case PRE_INC:
2255 case POST_DEC:
2256 case POST_INC:
2257 case PRE_MODIFY:
2258 case POST_MODIFY:
2259 case PC:
2260 case CC0:
2261 case CALL:
2262 case UNSPEC_VOLATILE:
2263 *do_not_record_p = 1;
2264 return 0;
2266 case ASM_OPERANDS:
2267 if (MEM_VOLATILE_P (x))
2269 *do_not_record_p = 1;
2270 return 0;
2272 else
2274 /* We don't want to take the filename and line into account. */
2275 hash += (unsigned) code + (unsigned) GET_MODE (x)
2276 + hash_rtx_string (ASM_OPERANDS_TEMPLATE (x))
2277 + hash_rtx_string (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
2278 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
2280 if (ASM_OPERANDS_INPUT_LENGTH (x))
2282 for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
2284 hash += (hash_rtx (ASM_OPERANDS_INPUT (x, i),
2285 GET_MODE (ASM_OPERANDS_INPUT (x, i)),
2286 do_not_record_p, hash_arg_in_memory_p,
2287 have_reg_qty)
2288 + hash_rtx_string
2289 (ASM_OPERANDS_INPUT_CONSTRAINT (x, i)));
2292 hash += hash_rtx_string (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
2293 x = ASM_OPERANDS_INPUT (x, 0);
2294 mode = GET_MODE (x);
2295 goto repeat;
2298 return hash;
2300 break;
2302 default:
2303 break;
2306 i = GET_RTX_LENGTH (code) - 1;
2307 hash += (unsigned) code + (unsigned) GET_MODE (x);
2308 fmt = GET_RTX_FORMAT (code);
2309 for (; i >= 0; i--)
2311 switch (fmt[i])
2313 case 'e':
2314 /* If we are about to do the last recursive call
2315 needed at this level, change it into iteration.
2316 This function is called enough to be worth it. */
2317 if (i == 0)
2319 x = XEXP (x, i);
2320 goto repeat;
2323 hash += hash_rtx (XEXP (x, i), 0, do_not_record_p,
2324 hash_arg_in_memory_p, have_reg_qty);
2325 break;
2327 case 'E':
2328 for (j = 0; j < XVECLEN (x, i); j++)
2329 hash += hash_rtx (XVECEXP (x, i, j), 0, do_not_record_p,
2330 hash_arg_in_memory_p, have_reg_qty);
2331 break;
2333 case 's':
2334 hash += hash_rtx_string (XSTR (x, i));
2335 break;
2337 case 'i':
2338 hash += (unsigned int) XINT (x, i);
2339 break;
2341 case '0': case 't':
2342 /* Unused. */
2343 break;
2345 default:
2346 gcc_unreachable ();
2350 return hash;
2353 /* Hash an rtx X for cse via hash_rtx.
2354 Stores 1 in do_not_record if any subexpression is volatile.
2355 Stores 1 in hash_arg_in_memory if X contains a mem rtx which
2356 does not have the RTX_UNCHANGING_P bit set. */
2358 static inline unsigned
2359 canon_hash (rtx x, enum machine_mode mode)
2361 return hash_rtx (x, mode, &do_not_record, &hash_arg_in_memory, true);
2364 /* Like canon_hash but with no side effects, i.e. do_not_record
2365 and hash_arg_in_memory are not changed. */
2367 static inline unsigned
2368 safe_hash (rtx x, enum machine_mode mode)
2370 int dummy_do_not_record;
2371 return hash_rtx (x, mode, &dummy_do_not_record, NULL, true);
2374 /* Return 1 iff X and Y would canonicalize into the same thing,
2375 without actually constructing the canonicalization of either one.
2376 If VALIDATE is nonzero,
2377 we assume X is an expression being processed from the rtl
2378 and Y was found in the hash table. We check register refs
2379 in Y for being marked as valid.
2381 If FOR_GCSE is true, we compare X and Y for equivalence for GCSE. */
2384 exp_equiv_p (const_rtx x, const_rtx y, int validate, bool for_gcse)
2386 int i, j;
2387 enum rtx_code code;
2388 const char *fmt;
2390 /* Note: it is incorrect to assume an expression is equivalent to itself
2391 if VALIDATE is nonzero. */
2392 if (x == y && !validate)
2393 return 1;
2395 if (x == 0 || y == 0)
2396 return x == y;
2398 code = GET_CODE (x);
2399 if (code != GET_CODE (y))
2400 return 0;
2402 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2403 if (GET_MODE (x) != GET_MODE (y))
2404 return 0;
2406 switch (code)
2408 case PC:
2409 case CC0:
2410 case CONST_INT:
2411 case CONST_DOUBLE:
2412 case CONST_FIXED:
2413 return x == y;
2415 case LABEL_REF:
2416 return XEXP (x, 0) == XEXP (y, 0);
2418 case SYMBOL_REF:
2419 return XSTR (x, 0) == XSTR (y, 0);
2421 case REG:
2422 if (for_gcse)
2423 return REGNO (x) == REGNO (y);
2424 else
2426 unsigned int regno = REGNO (y);
2427 unsigned int i;
2428 unsigned int endregno = END_REGNO (y);
2430 /* If the quantities are not the same, the expressions are not
2431 equivalent. If there are and we are not to validate, they
2432 are equivalent. Otherwise, ensure all regs are up-to-date. */
2434 if (REG_QTY (REGNO (x)) != REG_QTY (regno))
2435 return 0;
2437 if (! validate)
2438 return 1;
2440 for (i = regno; i < endregno; i++)
2441 if (REG_IN_TABLE (i) != REG_TICK (i))
2442 return 0;
2444 return 1;
2447 case MEM:
2448 if (for_gcse)
2450 /* A volatile mem should not be considered equivalent to any
2451 other. */
2452 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2453 return 0;
2455 /* Can't merge two expressions in different alias sets, since we
2456 can decide that the expression is transparent in a block when
2457 it isn't, due to it being set with the different alias set.
2459 Also, can't merge two expressions with different MEM_ATTRS.
2460 They could e.g. be two different entities allocated into the
2461 same space on the stack (see e.g. PR25130). In that case, the
2462 MEM addresses can be the same, even though the two MEMs are
2463 absolutely not equivalent.
2465 But because really all MEM attributes should be the same for
2466 equivalent MEMs, we just use the invariant that MEMs that have
2467 the same attributes share the same mem_attrs data structure. */
2468 if (MEM_ATTRS (x) != MEM_ATTRS (y))
2469 return 0;
2471 break;
2473 /* For commutative operations, check both orders. */
2474 case PLUS:
2475 case MULT:
2476 case AND:
2477 case IOR:
2478 case XOR:
2479 case NE:
2480 case EQ:
2481 return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0),
2482 validate, for_gcse)
2483 && exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
2484 validate, for_gcse))
2485 || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
2486 validate, for_gcse)
2487 && exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
2488 validate, for_gcse)));
2490 case ASM_OPERANDS:
2491 /* We don't use the generic code below because we want to
2492 disregard filename and line numbers. */
2494 /* A volatile asm isn't equivalent to any other. */
2495 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2496 return 0;
2498 if (GET_MODE (x) != GET_MODE (y)
2499 || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
2500 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
2501 ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
2502 || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
2503 || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
2504 return 0;
2506 if (ASM_OPERANDS_INPUT_LENGTH (x))
2508 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
2509 if (! exp_equiv_p (ASM_OPERANDS_INPUT (x, i),
2510 ASM_OPERANDS_INPUT (y, i),
2511 validate, for_gcse)
2512 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
2513 ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
2514 return 0;
2517 return 1;
2519 default:
2520 break;
2523 /* Compare the elements. If any pair of corresponding elements
2524 fail to match, return 0 for the whole thing. */
2526 fmt = GET_RTX_FORMAT (code);
2527 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2529 switch (fmt[i])
2531 case 'e':
2532 if (! exp_equiv_p (XEXP (x, i), XEXP (y, i),
2533 validate, for_gcse))
2534 return 0;
2535 break;
2537 case 'E':
2538 if (XVECLEN (x, i) != XVECLEN (y, i))
2539 return 0;
2540 for (j = 0; j < XVECLEN (x, i); j++)
2541 if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
2542 validate, for_gcse))
2543 return 0;
2544 break;
2546 case 's':
2547 if (strcmp (XSTR (x, i), XSTR (y, i)))
2548 return 0;
2549 break;
2551 case 'i':
2552 if (XINT (x, i) != XINT (y, i))
2553 return 0;
2554 break;
2556 case 'w':
2557 if (XWINT (x, i) != XWINT (y, i))
2558 return 0;
2559 break;
2561 case '0':
2562 case 't':
2563 break;
2565 default:
2566 gcc_unreachable ();
2570 return 1;
2573 /* Return 1 if X has a value that can vary even between two
2574 executions of the program. 0 means X can be compared reliably
2575 against certain constants or near-constants. */
2577 static bool
2578 cse_rtx_varies_p (const_rtx x, bool from_alias)
2580 /* We need not check for X and the equivalence class being of the same
2581 mode because if X is equivalent to a constant in some mode, it
2582 doesn't vary in any mode. */
2584 if (REG_P (x)
2585 && REGNO_QTY_VALID_P (REGNO (x)))
2587 int x_q = REG_QTY (REGNO (x));
2588 struct qty_table_elem *x_ent = &qty_table[x_q];
2590 if (GET_MODE (x) == x_ent->mode
2591 && x_ent->const_rtx != NULL_RTX)
2592 return 0;
2595 if (GET_CODE (x) == PLUS
2596 && GET_CODE (XEXP (x, 1)) == CONST_INT
2597 && REG_P (XEXP (x, 0))
2598 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
2600 int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
2601 struct qty_table_elem *x0_ent = &qty_table[x0_q];
2603 if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
2604 && x0_ent->const_rtx != NULL_RTX)
2605 return 0;
2608 /* This can happen as the result of virtual register instantiation, if
2609 the initial constant is too large to be a valid address. This gives
2610 us a three instruction sequence, load large offset into a register,
2611 load fp minus a constant into a register, then a MEM which is the
2612 sum of the two `constant' registers. */
2613 if (GET_CODE (x) == PLUS
2614 && REG_P (XEXP (x, 0))
2615 && REG_P (XEXP (x, 1))
2616 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0)))
2617 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
2619 int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
2620 int x1_q = REG_QTY (REGNO (XEXP (x, 1)));
2621 struct qty_table_elem *x0_ent = &qty_table[x0_q];
2622 struct qty_table_elem *x1_ent = &qty_table[x1_q];
2624 if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
2625 && x0_ent->const_rtx != NULL_RTX
2626 && (GET_MODE (XEXP (x, 1)) == x1_ent->mode)
2627 && x1_ent->const_rtx != NULL_RTX)
2628 return 0;
2631 return rtx_varies_p (x, from_alias);
2634 /* Subroutine of canon_reg. Pass *XLOC through canon_reg, and validate
2635 the result if necessary. INSN is as for canon_reg. */
2637 static void
2638 validate_canon_reg (rtx *xloc, rtx insn)
2640 if (*xloc)
2642 rtx new = canon_reg (*xloc, insn);
2644 /* If replacing pseudo with hard reg or vice versa, ensure the
2645 insn remains valid. Likewise if the insn has MATCH_DUPs. */
2646 gcc_assert (insn && new);
2647 validate_change (insn, xloc, new, 1);
2651 /* Canonicalize an expression:
2652 replace each register reference inside it
2653 with the "oldest" equivalent register.
2655 If INSN is nonzero validate_change is used to ensure that INSN remains valid
2656 after we make our substitution. The calls are made with IN_GROUP nonzero
2657 so apply_change_group must be called upon the outermost return from this
2658 function (unless INSN is zero). The result of apply_change_group can
2659 generally be discarded since the changes we are making are optional. */
2661 static rtx
2662 canon_reg (rtx x, rtx insn)
2664 int i;
2665 enum rtx_code code;
2666 const char *fmt;
2668 if (x == 0)
2669 return x;
2671 code = GET_CODE (x);
2672 switch (code)
2674 case PC:
2675 case CC0:
2676 case CONST:
2677 case CONST_INT:
2678 case CONST_DOUBLE:
2679 case CONST_FIXED:
2680 case CONST_VECTOR:
2681 case SYMBOL_REF:
2682 case LABEL_REF:
2683 case ADDR_VEC:
2684 case ADDR_DIFF_VEC:
2685 return x;
2687 case REG:
2689 int first;
2690 int q;
2691 struct qty_table_elem *ent;
2693 /* Never replace a hard reg, because hard regs can appear
2694 in more than one machine mode, and we must preserve the mode
2695 of each occurrence. Also, some hard regs appear in
2696 MEMs that are shared and mustn't be altered. Don't try to
2697 replace any reg that maps to a reg of class NO_REGS. */
2698 if (REGNO (x) < FIRST_PSEUDO_REGISTER
2699 || ! REGNO_QTY_VALID_P (REGNO (x)))
2700 return x;
2702 q = REG_QTY (REGNO (x));
2703 ent = &qty_table[q];
2704 first = ent->first_reg;
2705 return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
2706 : REGNO_REG_CLASS (first) == NO_REGS ? x
2707 : gen_rtx_REG (ent->mode, first));
2710 default:
2711 break;
2714 fmt = GET_RTX_FORMAT (code);
2715 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2717 int j;
2719 if (fmt[i] == 'e')
2720 validate_canon_reg (&XEXP (x, i), insn);
2721 else if (fmt[i] == 'E')
2722 for (j = 0; j < XVECLEN (x, i); j++)
2723 validate_canon_reg (&XVECEXP (x, i, j), insn);
2726 return x;
2729 /* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
2730 operation (EQ, NE, GT, etc.), follow it back through the hash table and
2731 what values are being compared.
2733 *PARG1 and *PARG2 are updated to contain the rtx representing the values
2734 actually being compared. For example, if *PARG1 was (cc0) and *PARG2
2735 was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
2736 compared to produce cc0.
2738 The return value is the comparison operator and is either the code of
2739 A or the code corresponding to the inverse of the comparison. */
2741 static enum rtx_code
2742 find_comparison_args (enum rtx_code code, rtx *parg1, rtx *parg2,
2743 enum machine_mode *pmode1, enum machine_mode *pmode2)
2745 rtx arg1, arg2;
2747 arg1 = *parg1, arg2 = *parg2;
2749 /* If ARG2 is const0_rtx, see what ARG1 is equivalent to. */
2751 while (arg2 == CONST0_RTX (GET_MODE (arg1)))
2753 /* Set nonzero when we find something of interest. */
2754 rtx x = 0;
2755 int reverse_code = 0;
2756 struct table_elt *p = 0;
2758 /* If arg1 is a COMPARE, extract the comparison arguments from it.
2759 On machines with CC0, this is the only case that can occur, since
2760 fold_rtx will return the COMPARE or item being compared with zero
2761 when given CC0. */
2763 if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
2764 x = arg1;
2766 /* If ARG1 is a comparison operator and CODE is testing for
2767 STORE_FLAG_VALUE, get the inner arguments. */
2769 else if (COMPARISON_P (arg1))
2771 #ifdef FLOAT_STORE_FLAG_VALUE
2772 REAL_VALUE_TYPE fsfv;
2773 #endif
2775 if (code == NE
2776 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2777 && code == LT && STORE_FLAG_VALUE == -1)
2778 #ifdef FLOAT_STORE_FLAG_VALUE
2779 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2780 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2781 REAL_VALUE_NEGATIVE (fsfv)))
2782 #endif
2784 x = arg1;
2785 else if (code == EQ
2786 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2787 && code == GE && STORE_FLAG_VALUE == -1)
2788 #ifdef FLOAT_STORE_FLAG_VALUE
2789 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2790 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2791 REAL_VALUE_NEGATIVE (fsfv)))
2792 #endif
2794 x = arg1, reverse_code = 1;
2797 /* ??? We could also check for
2799 (ne (and (eq (...) (const_int 1))) (const_int 0))
2801 and related forms, but let's wait until we see them occurring. */
2803 if (x == 0)
2804 /* Look up ARG1 in the hash table and see if it has an equivalence
2805 that lets us see what is being compared. */
2806 p = lookup (arg1, SAFE_HASH (arg1, GET_MODE (arg1)), GET_MODE (arg1));
2807 if (p)
2809 p = p->first_same_value;
2811 /* If what we compare is already known to be constant, that is as
2812 good as it gets.
2813 We need to break the loop in this case, because otherwise we
2814 can have an infinite loop when looking at a reg that is known
2815 to be a constant which is the same as a comparison of a reg
2816 against zero which appears later in the insn stream, which in
2817 turn is constant and the same as the comparison of the first reg
2818 against zero... */
2819 if (p->is_const)
2820 break;
2823 for (; p; p = p->next_same_value)
2825 enum machine_mode inner_mode = GET_MODE (p->exp);
2826 #ifdef FLOAT_STORE_FLAG_VALUE
2827 REAL_VALUE_TYPE fsfv;
2828 #endif
2830 /* If the entry isn't valid, skip it. */
2831 if (! exp_equiv_p (p->exp, p->exp, 1, false))
2832 continue;
2834 if (GET_CODE (p->exp) == COMPARE
2835 /* Another possibility is that this machine has a compare insn
2836 that includes the comparison code. In that case, ARG1 would
2837 be equivalent to a comparison operation that would set ARG1 to
2838 either STORE_FLAG_VALUE or zero. If this is an NE operation,
2839 ORIG_CODE is the actual comparison being done; if it is an EQ,
2840 we must reverse ORIG_CODE. On machine with a negative value
2841 for STORE_FLAG_VALUE, also look at LT and GE operations. */
2842 || ((code == NE
2843 || (code == LT
2844 && GET_MODE_CLASS (inner_mode) == MODE_INT
2845 && (GET_MODE_BITSIZE (inner_mode)
2846 <= HOST_BITS_PER_WIDE_INT)
2847 && (STORE_FLAG_VALUE
2848 & ((HOST_WIDE_INT) 1
2849 << (GET_MODE_BITSIZE (inner_mode) - 1))))
2850 #ifdef FLOAT_STORE_FLAG_VALUE
2851 || (code == LT
2852 && SCALAR_FLOAT_MODE_P (inner_mode)
2853 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2854 REAL_VALUE_NEGATIVE (fsfv)))
2855 #endif
2857 && COMPARISON_P (p->exp)))
2859 x = p->exp;
2860 break;
2862 else if ((code == EQ
2863 || (code == GE
2864 && GET_MODE_CLASS (inner_mode) == MODE_INT
2865 && (GET_MODE_BITSIZE (inner_mode)
2866 <= HOST_BITS_PER_WIDE_INT)
2867 && (STORE_FLAG_VALUE
2868 & ((HOST_WIDE_INT) 1
2869 << (GET_MODE_BITSIZE (inner_mode) - 1))))
2870 #ifdef FLOAT_STORE_FLAG_VALUE
2871 || (code == GE
2872 && SCALAR_FLOAT_MODE_P (inner_mode)
2873 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2874 REAL_VALUE_NEGATIVE (fsfv)))
2875 #endif
2877 && COMPARISON_P (p->exp))
2879 reverse_code = 1;
2880 x = p->exp;
2881 break;
2884 /* If this non-trapping address, e.g. fp + constant, the
2885 equivalent is a better operand since it may let us predict
2886 the value of the comparison. */
2887 else if (!rtx_addr_can_trap_p (p->exp))
2889 arg1 = p->exp;
2890 continue;
2894 /* If we didn't find a useful equivalence for ARG1, we are done.
2895 Otherwise, set up for the next iteration. */
2896 if (x == 0)
2897 break;
2899 /* If we need to reverse the comparison, make sure that that is
2900 possible -- we can't necessarily infer the value of GE from LT
2901 with floating-point operands. */
2902 if (reverse_code)
2904 enum rtx_code reversed = reversed_comparison_code (x, NULL_RTX);
2905 if (reversed == UNKNOWN)
2906 break;
2907 else
2908 code = reversed;
2910 else if (COMPARISON_P (x))
2911 code = GET_CODE (x);
2912 arg1 = XEXP (x, 0), arg2 = XEXP (x, 1);
2915 /* Return our results. Return the modes from before fold_rtx
2916 because fold_rtx might produce const_int, and then it's too late. */
2917 *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2);
2918 *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);
2920 return code;
2923 /* If X is a nontrivial arithmetic operation on an argument for which
2924 a constant value can be determined, return the result of operating
2925 on that value, as a constant. Otherwise, return X, possibly with
2926 one or more operands changed to a forward-propagated constant.
2928 If X is a register whose contents are known, we do NOT return
2929 those contents here; equiv_constant is called to perform that task.
2930 For SUBREGs and MEMs, we do that both here and in equiv_constant.
2932 INSN is the insn that we may be modifying. If it is 0, make a copy
2933 of X before modifying it. */
2935 static rtx
2936 fold_rtx (rtx x, rtx insn)
2938 enum rtx_code code;
2939 enum machine_mode mode;
2940 const char *fmt;
2941 int i;
2942 rtx new = 0;
2943 int changed = 0;
2945 /* Operands of X. */
2946 rtx folded_arg0;
2947 rtx folded_arg1;
2949 /* Constant equivalents of first three operands of X;
2950 0 when no such equivalent is known. */
2951 rtx const_arg0;
2952 rtx const_arg1;
2953 rtx const_arg2;
2955 /* The mode of the first operand of X. We need this for sign and zero
2956 extends. */
2957 enum machine_mode mode_arg0;
2959 if (x == 0)
2960 return x;
2962 /* Try to perform some initial simplifications on X. */
2963 code = GET_CODE (x);
2964 switch (code)
2966 case MEM:
2967 case SUBREG:
2968 if ((new = equiv_constant (x)) != NULL_RTX)
2969 return new;
2970 return x;
2972 case CONST:
2973 case CONST_INT:
2974 case CONST_DOUBLE:
2975 case CONST_FIXED:
2976 case CONST_VECTOR:
2977 case SYMBOL_REF:
2978 case LABEL_REF:
2979 case REG:
2980 case PC:
2981 /* No use simplifying an EXPR_LIST
2982 since they are used only for lists of args
2983 in a function call's REG_EQUAL note. */
2984 case EXPR_LIST:
2985 return x;
2987 #ifdef HAVE_cc0
2988 case CC0:
2989 return prev_insn_cc0;
2990 #endif
2992 case ASM_OPERANDS:
2993 if (insn)
2995 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
2996 validate_change (insn, &ASM_OPERANDS_INPUT (x, i),
2997 fold_rtx (ASM_OPERANDS_INPUT (x, i), insn), 0);
2999 return x;
3001 #ifdef NO_FUNCTION_CSE
3002 case CALL:
3003 if (CONSTANT_P (XEXP (XEXP (x, 0), 0)))
3004 return x;
3005 break;
3006 #endif
3008 /* Anything else goes through the loop below. */
3009 default:
3010 break;
3013 mode = GET_MODE (x);
3014 const_arg0 = 0;
3015 const_arg1 = 0;
3016 const_arg2 = 0;
3017 mode_arg0 = VOIDmode;
3019 /* Try folding our operands.
3020 Then see which ones have constant values known. */
3022 fmt = GET_RTX_FORMAT (code);
3023 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3024 if (fmt[i] == 'e')
3026 rtx folded_arg = XEXP (x, i), const_arg;
3027 enum machine_mode mode_arg = GET_MODE (folded_arg);
3029 switch (GET_CODE (folded_arg))
3031 case MEM:
3032 case REG:
3033 case SUBREG:
3034 const_arg = equiv_constant (folded_arg);
3035 break;
3037 case CONST:
3038 case CONST_INT:
3039 case SYMBOL_REF:
3040 case LABEL_REF:
3041 case CONST_DOUBLE:
3042 case CONST_FIXED:
3043 case CONST_VECTOR:
3044 const_arg = folded_arg;
3045 break;
3047 #ifdef HAVE_cc0
3048 case CC0:
3049 folded_arg = prev_insn_cc0;
3050 mode_arg = prev_insn_cc0_mode;
3051 const_arg = equiv_constant (folded_arg);
3052 break;
3053 #endif
3055 default:
3056 folded_arg = fold_rtx (folded_arg, insn);
3057 const_arg = equiv_constant (folded_arg);
3058 break;
3061 /* For the first three operands, see if the operand
3062 is constant or equivalent to a constant. */
3063 switch (i)
3065 case 0:
3066 folded_arg0 = folded_arg;
3067 const_arg0 = const_arg;
3068 mode_arg0 = mode_arg;
3069 break;
3070 case 1:
3071 folded_arg1 = folded_arg;
3072 const_arg1 = const_arg;
3073 break;
3074 case 2:
3075 const_arg2 = const_arg;
3076 break;
3079 /* Pick the least expensive of the argument and an equivalent constant
3080 argument. */
3081 if (const_arg != 0
3082 && const_arg != folded_arg
3083 && COST_IN (const_arg, code) <= COST_IN (folded_arg, code)
3085 /* It's not safe to substitute the operand of a conversion
3086 operator with a constant, as the conversion's identity
3087 depends upon the mode of its operand. This optimization
3088 is handled by the call to simplify_unary_operation. */
3089 && (GET_RTX_CLASS (code) != RTX_UNARY
3090 || GET_MODE (const_arg) == mode_arg0
3091 || (code != ZERO_EXTEND
3092 && code != SIGN_EXTEND
3093 && code != TRUNCATE
3094 && code != FLOAT_TRUNCATE
3095 && code != FLOAT_EXTEND
3096 && code != FLOAT
3097 && code != FIX
3098 && code != UNSIGNED_FLOAT
3099 && code != UNSIGNED_FIX)))
3100 folded_arg = const_arg;
3102 if (folded_arg == XEXP (x, i))
3103 continue;
3105 if (insn == NULL_RTX && !changed)
3106 x = copy_rtx (x);
3107 changed = 1;
3108 validate_unshare_change (insn, &XEXP (x, i), folded_arg, 1);
3111 if (changed)
3113 /* Canonicalize X if necessary, and keep const_argN and folded_argN
3114 consistent with the order in X. */
3115 if (canonicalize_change_group (insn, x))
3117 rtx tem;
3118 tem = const_arg0, const_arg0 = const_arg1, const_arg1 = tem;
3119 tem = folded_arg0, folded_arg0 = folded_arg1, folded_arg1 = tem;
3122 apply_change_group ();
3125 /* If X is an arithmetic operation, see if we can simplify it. */
3127 switch (GET_RTX_CLASS (code))
3129 case RTX_UNARY:
3131 int is_const = 0;
3133 /* We can't simplify extension ops unless we know the
3134 original mode. */
3135 if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
3136 && mode_arg0 == VOIDmode)
3137 break;
3139 /* If we had a CONST, strip it off and put it back later if we
3140 fold. */
3141 if (const_arg0 != 0 && GET_CODE (const_arg0) == CONST)
3142 is_const = 1, const_arg0 = XEXP (const_arg0, 0);
3144 new = simplify_unary_operation (code, mode,
3145 const_arg0 ? const_arg0 : folded_arg0,
3146 mode_arg0);
3147 /* NEG of PLUS could be converted into MINUS, but that causes
3148 expressions of the form
3149 (CONST (MINUS (CONST_INT) (SYMBOL_REF)))
3150 which many ports mistakenly treat as LEGITIMATE_CONSTANT_P.
3151 FIXME: those ports should be fixed. */
3152 if (new != 0 && is_const
3153 && GET_CODE (new) == PLUS
3154 && (GET_CODE (XEXP (new, 0)) == SYMBOL_REF
3155 || GET_CODE (XEXP (new, 0)) == LABEL_REF)
3156 && GET_CODE (XEXP (new, 1)) == CONST_INT)
3157 new = gen_rtx_CONST (mode, new);
3159 break;
3161 case RTX_COMPARE:
3162 case RTX_COMM_COMPARE:
3163 /* See what items are actually being compared and set FOLDED_ARG[01]
3164 to those values and CODE to the actual comparison code. If any are
3165 constant, set CONST_ARG0 and CONST_ARG1 appropriately. We needn't
3166 do anything if both operands are already known to be constant. */
3168 /* ??? Vector mode comparisons are not supported yet. */
3169 if (VECTOR_MODE_P (mode))
3170 break;
3172 if (const_arg0 == 0 || const_arg1 == 0)
3174 struct table_elt *p0, *p1;
3175 rtx true_rtx = const_true_rtx, false_rtx = const0_rtx;
3176 enum machine_mode mode_arg1;
3178 #ifdef FLOAT_STORE_FLAG_VALUE
3179 if (SCALAR_FLOAT_MODE_P (mode))
3181 true_rtx = (CONST_DOUBLE_FROM_REAL_VALUE
3182 (FLOAT_STORE_FLAG_VALUE (mode), mode));
3183 false_rtx = CONST0_RTX (mode);
3185 #endif
3187 code = find_comparison_args (code, &folded_arg0, &folded_arg1,
3188 &mode_arg0, &mode_arg1);
3190 /* If the mode is VOIDmode or a MODE_CC mode, we don't know
3191 what kinds of things are being compared, so we can't do
3192 anything with this comparison. */
3194 if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
3195 break;
3197 const_arg0 = equiv_constant (folded_arg0);
3198 const_arg1 = equiv_constant (folded_arg1);
3200 /* If we do not now have two constants being compared, see
3201 if we can nevertheless deduce some things about the
3202 comparison. */
3203 if (const_arg0 == 0 || const_arg1 == 0)
3205 if (const_arg1 != NULL)
3207 rtx cheapest_simplification;
3208 int cheapest_cost;
3209 rtx simp_result;
3210 struct table_elt *p;
3212 /* See if we can find an equivalent of folded_arg0
3213 that gets us a cheaper expression, possibly a
3214 constant through simplifications. */
3215 p = lookup (folded_arg0, SAFE_HASH (folded_arg0, mode_arg0),
3216 mode_arg0);
3218 if (p != NULL)
3220 cheapest_simplification = x;
3221 cheapest_cost = COST (x);
3223 for (p = p->first_same_value; p != NULL; p = p->next_same_value)
3225 int cost;
3227 /* If the entry isn't valid, skip it. */
3228 if (! exp_equiv_p (p->exp, p->exp, 1, false))
3229 continue;
3231 /* Try to simplify using this equivalence. */
3232 simp_result
3233 = simplify_relational_operation (code, mode,
3234 mode_arg0,
3235 p->exp,
3236 const_arg1);
3238 if (simp_result == NULL)
3239 continue;
3241 cost = COST (simp_result);
3242 if (cost < cheapest_cost)
3244 cheapest_cost = cost;
3245 cheapest_simplification = simp_result;
3249 /* If we have a cheaper expression now, use that
3250 and try folding it further, from the top. */
3251 if (cheapest_simplification != x)
3252 return fold_rtx (copy_rtx (cheapest_simplification),
3253 insn);
3257 /* See if the two operands are the same. */
3259 if ((REG_P (folded_arg0)
3260 && REG_P (folded_arg1)
3261 && (REG_QTY (REGNO (folded_arg0))
3262 == REG_QTY (REGNO (folded_arg1))))
3263 || ((p0 = lookup (folded_arg0,
3264 SAFE_HASH (folded_arg0, mode_arg0),
3265 mode_arg0))
3266 && (p1 = lookup (folded_arg1,
3267 SAFE_HASH (folded_arg1, mode_arg0),
3268 mode_arg0))
3269 && p0->first_same_value == p1->first_same_value))
3270 folded_arg1 = folded_arg0;
3272 /* If FOLDED_ARG0 is a register, see if the comparison we are
3273 doing now is either the same as we did before or the reverse
3274 (we only check the reverse if not floating-point). */
3275 else if (REG_P (folded_arg0))
3277 int qty = REG_QTY (REGNO (folded_arg0));
3279 if (REGNO_QTY_VALID_P (REGNO (folded_arg0)))
3281 struct qty_table_elem *ent = &qty_table[qty];
3283 if ((comparison_dominates_p (ent->comparison_code, code)
3284 || (! FLOAT_MODE_P (mode_arg0)
3285 && comparison_dominates_p (ent->comparison_code,
3286 reverse_condition (code))))
3287 && (rtx_equal_p (ent->comparison_const, folded_arg1)
3288 || (const_arg1
3289 && rtx_equal_p (ent->comparison_const,
3290 const_arg1))
3291 || (REG_P (folded_arg1)
3292 && (REG_QTY (REGNO (folded_arg1)) == ent->comparison_qty))))
3293 return (comparison_dominates_p (ent->comparison_code, code)
3294 ? true_rtx : false_rtx);
3300 /* If we are comparing against zero, see if the first operand is
3301 equivalent to an IOR with a constant. If so, we may be able to
3302 determine the result of this comparison. */
3303 if (const_arg1 == const0_rtx && !const_arg0)
3305 rtx y = lookup_as_function (folded_arg0, IOR);
3306 rtx inner_const;
3308 if (y != 0
3309 && (inner_const = equiv_constant (XEXP (y, 1))) != 0
3310 && GET_CODE (inner_const) == CONST_INT
3311 && INTVAL (inner_const) != 0)
3312 folded_arg0 = gen_rtx_IOR (mode_arg0, XEXP (y, 0), inner_const);
3316 rtx op0 = const_arg0 ? const_arg0 : folded_arg0;
3317 rtx op1 = const_arg1 ? const_arg1 : folded_arg1;
3318 new = simplify_relational_operation (code, mode, mode_arg0, op0, op1);
3320 break;
3322 case RTX_BIN_ARITH:
3323 case RTX_COMM_ARITH:
3324 switch (code)
3326 case PLUS:
3327 /* If the second operand is a LABEL_REF, see if the first is a MINUS
3328 with that LABEL_REF as its second operand. If so, the result is
3329 the first operand of that MINUS. This handles switches with an
3330 ADDR_DIFF_VEC table. */
3331 if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
3333 rtx y
3334 = GET_CODE (folded_arg0) == MINUS ? folded_arg0
3335 : lookup_as_function (folded_arg0, MINUS);
3337 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3338 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg1, 0))
3339 return XEXP (y, 0);
3341 /* Now try for a CONST of a MINUS like the above. */
3342 if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0
3343 : lookup_as_function (folded_arg0, CONST))) != 0
3344 && GET_CODE (XEXP (y, 0)) == MINUS
3345 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3346 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg1, 0))
3347 return XEXP (XEXP (y, 0), 0);
3350 /* Likewise if the operands are in the other order. */
3351 if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF)
3353 rtx y
3354 = GET_CODE (folded_arg1) == MINUS ? folded_arg1
3355 : lookup_as_function (folded_arg1, MINUS);
3357 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3358 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg0, 0))
3359 return XEXP (y, 0);
3361 /* Now try for a CONST of a MINUS like the above. */
3362 if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1
3363 : lookup_as_function (folded_arg1, CONST))) != 0
3364 && GET_CODE (XEXP (y, 0)) == MINUS
3365 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3366 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg0, 0))
3367 return XEXP (XEXP (y, 0), 0);
3370 /* If second operand is a register equivalent to a negative
3371 CONST_INT, see if we can find a register equivalent to the
3372 positive constant. Make a MINUS if so. Don't do this for
3373 a non-negative constant since we might then alternate between
3374 choosing positive and negative constants. Having the positive
3375 constant previously-used is the more common case. Be sure
3376 the resulting constant is non-negative; if const_arg1 were
3377 the smallest negative number this would overflow: depending
3378 on the mode, this would either just be the same value (and
3379 hence not save anything) or be incorrect. */
3380 if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT
3381 && INTVAL (const_arg1) < 0
3382 /* This used to test
3384 -INTVAL (const_arg1) >= 0
3386 But The Sun V5.0 compilers mis-compiled that test. So
3387 instead we test for the problematic value in a more direct
3388 manner and hope the Sun compilers get it correct. */
3389 && INTVAL (const_arg1) !=
3390 ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1))
3391 && REG_P (folded_arg1))
3393 rtx new_const = GEN_INT (-INTVAL (const_arg1));
3394 struct table_elt *p
3395 = lookup (new_const, SAFE_HASH (new_const, mode), mode);
3397 if (p)
3398 for (p = p->first_same_value; p; p = p->next_same_value)
3399 if (REG_P (p->exp))
3400 return simplify_gen_binary (MINUS, mode, folded_arg0,
3401 canon_reg (p->exp, NULL_RTX));
3403 goto from_plus;
3405 case MINUS:
3406 /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
3407 If so, produce (PLUS Z C2-C). */
3408 if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT)
3410 rtx y = lookup_as_function (XEXP (x, 0), PLUS);
3411 if (y && GET_CODE (XEXP (y, 1)) == CONST_INT)
3412 return fold_rtx (plus_constant (copy_rtx (y),
3413 -INTVAL (const_arg1)),
3414 NULL_RTX);
3417 /* Fall through. */
3419 from_plus:
3420 case SMIN: case SMAX: case UMIN: case UMAX:
3421 case IOR: case AND: case XOR:
3422 case MULT:
3423 case ASHIFT: case LSHIFTRT: case ASHIFTRT:
3424 /* If we have (<op> <reg> <const_int>) for an associative OP and REG
3425 is known to be of similar form, we may be able to replace the
3426 operation with a combined operation. This may eliminate the
3427 intermediate operation if every use is simplified in this way.
3428 Note that the similar optimization done by combine.c only works
3429 if the intermediate operation's result has only one reference. */
3431 if (REG_P (folded_arg0)
3432 && const_arg1 && GET_CODE (const_arg1) == CONST_INT)
3434 int is_shift
3435 = (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
3436 rtx y, inner_const, new_const;
3437 enum rtx_code associate_code;
3439 if (is_shift
3440 && (INTVAL (const_arg1) >= GET_MODE_BITSIZE (mode)
3441 || INTVAL (const_arg1) < 0))
3443 if (SHIFT_COUNT_TRUNCATED)
3444 const_arg1 = GEN_INT (INTVAL (const_arg1)
3445 & (GET_MODE_BITSIZE (mode) - 1));
3446 else
3447 break;
3450 y = lookup_as_function (folded_arg0, code);
3451 if (y == 0)
3452 break;
3454 /* If we have compiled a statement like
3455 "if (x == (x & mask1))", and now are looking at
3456 "x & mask2", we will have a case where the first operand
3457 of Y is the same as our first operand. Unless we detect
3458 this case, an infinite loop will result. */
3459 if (XEXP (y, 0) == folded_arg0)
3460 break;
3462 inner_const = equiv_constant (fold_rtx (XEXP (y, 1), 0));
3463 if (!inner_const || GET_CODE (inner_const) != CONST_INT)
3464 break;
3466 /* Don't associate these operations if they are a PLUS with the
3467 same constant and it is a power of two. These might be doable
3468 with a pre- or post-increment. Similarly for two subtracts of
3469 identical powers of two with post decrement. */
3471 if (code == PLUS && const_arg1 == inner_const
3472 && ((HAVE_PRE_INCREMENT
3473 && exact_log2 (INTVAL (const_arg1)) >= 0)
3474 || (HAVE_POST_INCREMENT
3475 && exact_log2 (INTVAL (const_arg1)) >= 0)
3476 || (HAVE_PRE_DECREMENT
3477 && exact_log2 (- INTVAL (const_arg1)) >= 0)
3478 || (HAVE_POST_DECREMENT
3479 && exact_log2 (- INTVAL (const_arg1)) >= 0)))
3480 break;
3482 if (is_shift
3483 && (INTVAL (inner_const) >= GET_MODE_BITSIZE (mode)
3484 || INTVAL (inner_const) < 0))
3486 if (SHIFT_COUNT_TRUNCATED)
3487 inner_const = GEN_INT (INTVAL (inner_const)
3488 & (GET_MODE_BITSIZE (mode) - 1));
3489 else
3490 break;
3493 /* Compute the code used to compose the constants. For example,
3494 A-C1-C2 is A-(C1 + C2), so if CODE == MINUS, we want PLUS. */
3496 associate_code = (is_shift || code == MINUS ? PLUS : code);
3498 new_const = simplify_binary_operation (associate_code, mode,
3499 const_arg1, inner_const);
3501 if (new_const == 0)
3502 break;
3504 /* If we are associating shift operations, don't let this
3505 produce a shift of the size of the object or larger.
3506 This could occur when we follow a sign-extend by a right
3507 shift on a machine that does a sign-extend as a pair
3508 of shifts. */
3510 if (is_shift
3511 && GET_CODE (new_const) == CONST_INT
3512 && INTVAL (new_const) >= GET_MODE_BITSIZE (mode))
3514 /* As an exception, we can turn an ASHIFTRT of this
3515 form into a shift of the number of bits - 1. */
3516 if (code == ASHIFTRT)
3517 new_const = GEN_INT (GET_MODE_BITSIZE (mode) - 1);
3518 else if (!side_effects_p (XEXP (y, 0)))
3519 return CONST0_RTX (mode);
3520 else
3521 break;
3524 y = copy_rtx (XEXP (y, 0));
3526 /* If Y contains our first operand (the most common way this
3527 can happen is if Y is a MEM), we would do into an infinite
3528 loop if we tried to fold it. So don't in that case. */
3530 if (! reg_mentioned_p (folded_arg0, y))
3531 y = fold_rtx (y, insn);
3533 return simplify_gen_binary (code, mode, y, new_const);
3535 break;
3537 case DIV: case UDIV:
3538 /* ??? The associative optimization performed immediately above is
3539 also possible for DIV and UDIV using associate_code of MULT.
3540 However, we would need extra code to verify that the
3541 multiplication does not overflow, that is, there is no overflow
3542 in the calculation of new_const. */
3543 break;
3545 default:
3546 break;
3549 new = simplify_binary_operation (code, mode,
3550 const_arg0 ? const_arg0 : folded_arg0,
3551 const_arg1 ? const_arg1 : folded_arg1);
3552 break;
3554 case RTX_OBJ:
3555 /* (lo_sum (high X) X) is simply X. */
3556 if (code == LO_SUM && const_arg0 != 0
3557 && GET_CODE (const_arg0) == HIGH
3558 && rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
3559 return const_arg1;
3560 break;
3562 case RTX_TERNARY:
3563 case RTX_BITFIELD_OPS:
3564 new = simplify_ternary_operation (code, mode, mode_arg0,
3565 const_arg0 ? const_arg0 : folded_arg0,
3566 const_arg1 ? const_arg1 : folded_arg1,
3567 const_arg2 ? const_arg2 : XEXP (x, 2));
3568 break;
3570 default:
3571 break;
3574 return new ? new : x;
3577 /* Return a constant value currently equivalent to X.
3578 Return 0 if we don't know one. */
3580 static rtx
3581 equiv_constant (rtx x)
3583 if (REG_P (x)
3584 && REGNO_QTY_VALID_P (REGNO (x)))
3586 int x_q = REG_QTY (REGNO (x));
3587 struct qty_table_elem *x_ent = &qty_table[x_q];
3589 if (x_ent->const_rtx)
3590 x = gen_lowpart (GET_MODE (x), x_ent->const_rtx);
3593 if (x == 0 || CONSTANT_P (x))
3594 return x;
3596 if (GET_CODE (x) == SUBREG)
3598 rtx new;
3600 /* See if we previously assigned a constant value to this SUBREG. */
3601 if ((new = lookup_as_function (x, CONST_INT)) != 0
3602 || (new = lookup_as_function (x, CONST_DOUBLE)) != 0
3603 || (new = lookup_as_function (x, CONST_FIXED)) != 0)
3604 return new;
3606 if (REG_P (SUBREG_REG (x))
3607 && (new = equiv_constant (SUBREG_REG (x))) != 0)
3608 return simplify_subreg (GET_MODE (x), SUBREG_REG (x),
3609 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
3611 return 0;
3614 /* If X is a MEM, see if it is a constant-pool reference, or look it up in
3615 the hash table in case its value was seen before. */
3617 if (MEM_P (x))
3619 struct table_elt *elt;
3621 x = avoid_constant_pool_reference (x);
3622 if (CONSTANT_P (x))
3623 return x;
3625 elt = lookup (x, SAFE_HASH (x, GET_MODE (x)), GET_MODE (x));
3626 if (elt == 0)
3627 return 0;
3629 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
3630 if (elt->is_const && CONSTANT_P (elt->exp))
3631 return elt->exp;
3634 return 0;
3637 /* Given INSN, a jump insn, TAKEN indicates if we are following the
3638 "taken" branch.
3640 In certain cases, this can cause us to add an equivalence. For example,
3641 if we are following the taken case of
3642 if (i == 2)
3643 we can add the fact that `i' and '2' are now equivalent.
3645 In any case, we can record that this comparison was passed. If the same
3646 comparison is seen later, we will know its value. */
3648 static void
3649 record_jump_equiv (rtx insn, bool taken)
3651 int cond_known_true;
3652 rtx op0, op1;
3653 rtx set;
3654 enum machine_mode mode, mode0, mode1;
3655 int reversed_nonequality = 0;
3656 enum rtx_code code;
3658 /* Ensure this is the right kind of insn. */
3659 gcc_assert (any_condjump_p (insn));
3661 set = pc_set (insn);
3663 /* See if this jump condition is known true or false. */
3664 if (taken)
3665 cond_known_true = (XEXP (SET_SRC (set), 2) == pc_rtx);
3666 else
3667 cond_known_true = (XEXP (SET_SRC (set), 1) == pc_rtx);
3669 /* Get the type of comparison being done and the operands being compared.
3670 If we had to reverse a non-equality condition, record that fact so we
3671 know that it isn't valid for floating-point. */
3672 code = GET_CODE (XEXP (SET_SRC (set), 0));
3673 op0 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 0), insn);
3674 op1 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 1), insn);
3676 code = find_comparison_args (code, &op0, &op1, &mode0, &mode1);
3677 if (! cond_known_true)
3679 code = reversed_comparison_code_parts (code, op0, op1, insn);
3681 /* Don't remember if we can't find the inverse. */
3682 if (code == UNKNOWN)
3683 return;
3686 /* The mode is the mode of the non-constant. */
3687 mode = mode0;
3688 if (mode1 != VOIDmode)
3689 mode = mode1;
3691 record_jump_cond (code, mode, op0, op1, reversed_nonequality);
3694 /* Yet another form of subreg creation. In this case, we want something in
3695 MODE, and we should assume OP has MODE iff it is naturally modeless. */
3697 static rtx
3698 record_jump_cond_subreg (enum machine_mode mode, rtx op)
3700 enum machine_mode op_mode = GET_MODE (op);
3701 if (op_mode == mode || op_mode == VOIDmode)
3702 return op;
3703 return lowpart_subreg (mode, op, op_mode);
3706 /* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
3707 REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
3708 Make any useful entries we can with that information. Called from
3709 above function and called recursively. */
3711 static void
3712 record_jump_cond (enum rtx_code code, enum machine_mode mode, rtx op0,
3713 rtx op1, int reversed_nonequality)
3715 unsigned op0_hash, op1_hash;
3716 int op0_in_memory, op1_in_memory;
3717 struct table_elt *op0_elt, *op1_elt;
3719 /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
3720 we know that they are also equal in the smaller mode (this is also
3721 true for all smaller modes whether or not there is a SUBREG, but
3722 is not worth testing for with no SUBREG). */
3724 /* Note that GET_MODE (op0) may not equal MODE. */
3725 if (code == EQ && GET_CODE (op0) == SUBREG
3726 && (GET_MODE_SIZE (GET_MODE (op0))
3727 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
3729 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3730 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3731 if (tem)
3732 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3733 reversed_nonequality);
3736 if (code == EQ && GET_CODE (op1) == SUBREG
3737 && (GET_MODE_SIZE (GET_MODE (op1))
3738 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
3740 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
3741 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3742 if (tem)
3743 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3744 reversed_nonequality);
3747 /* Similarly, if this is an NE comparison, and either is a SUBREG
3748 making a smaller mode, we know the whole thing is also NE. */
3750 /* Note that GET_MODE (op0) may not equal MODE;
3751 if we test MODE instead, we can get an infinite recursion
3752 alternating between two modes each wider than MODE. */
3754 if (code == NE && GET_CODE (op0) == SUBREG
3755 && subreg_lowpart_p (op0)
3756 && (GET_MODE_SIZE (GET_MODE (op0))
3757 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
3759 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3760 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3761 if (tem)
3762 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3763 reversed_nonequality);
3766 if (code == NE && GET_CODE (op1) == SUBREG
3767 && subreg_lowpart_p (op1)
3768 && (GET_MODE_SIZE (GET_MODE (op1))
3769 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
3771 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
3772 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3773 if (tem)
3774 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3775 reversed_nonequality);
3778 /* Hash both operands. */
3780 do_not_record = 0;
3781 hash_arg_in_memory = 0;
3782 op0_hash = HASH (op0, mode);
3783 op0_in_memory = hash_arg_in_memory;
3785 if (do_not_record)
3786 return;
3788 do_not_record = 0;
3789 hash_arg_in_memory = 0;
3790 op1_hash = HASH (op1, mode);
3791 op1_in_memory = hash_arg_in_memory;
3793 if (do_not_record)
3794 return;
3796 /* Look up both operands. */
3797 op0_elt = lookup (op0, op0_hash, mode);
3798 op1_elt = lookup (op1, op1_hash, mode);
3800 /* If both operands are already equivalent or if they are not in the
3801 table but are identical, do nothing. */
3802 if ((op0_elt != 0 && op1_elt != 0
3803 && op0_elt->first_same_value == op1_elt->first_same_value)
3804 || op0 == op1 || rtx_equal_p (op0, op1))
3805 return;
3807 /* If we aren't setting two things equal all we can do is save this
3808 comparison. Similarly if this is floating-point. In the latter
3809 case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
3810 If we record the equality, we might inadvertently delete code
3811 whose intent was to change -0 to +0. */
3813 if (code != EQ || FLOAT_MODE_P (GET_MODE (op0)))
3815 struct qty_table_elem *ent;
3816 int qty;
3818 /* If we reversed a floating-point comparison, if OP0 is not a
3819 register, or if OP1 is neither a register or constant, we can't
3820 do anything. */
3822 if (!REG_P (op1))
3823 op1 = equiv_constant (op1);
3825 if ((reversed_nonequality && FLOAT_MODE_P (mode))
3826 || !REG_P (op0) || op1 == 0)
3827 return;
3829 /* Put OP0 in the hash table if it isn't already. This gives it a
3830 new quantity number. */
3831 if (op0_elt == 0)
3833 if (insert_regs (op0, NULL, 0))
3835 rehash_using_reg (op0);
3836 op0_hash = HASH (op0, mode);
3838 /* If OP0 is contained in OP1, this changes its hash code
3839 as well. Faster to rehash than to check, except
3840 for the simple case of a constant. */
3841 if (! CONSTANT_P (op1))
3842 op1_hash = HASH (op1,mode);
3845 op0_elt = insert (op0, NULL, op0_hash, mode);
3846 op0_elt->in_memory = op0_in_memory;
3849 qty = REG_QTY (REGNO (op0));
3850 ent = &qty_table[qty];
3852 ent->comparison_code = code;
3853 if (REG_P (op1))
3855 /* Look it up again--in case op0 and op1 are the same. */
3856 op1_elt = lookup (op1, op1_hash, mode);
3858 /* Put OP1 in the hash table so it gets a new quantity number. */
3859 if (op1_elt == 0)
3861 if (insert_regs (op1, NULL, 0))
3863 rehash_using_reg (op1);
3864 op1_hash = HASH (op1, mode);
3867 op1_elt = insert (op1, NULL, op1_hash, mode);
3868 op1_elt->in_memory = op1_in_memory;
3871 ent->comparison_const = NULL_RTX;
3872 ent->comparison_qty = REG_QTY (REGNO (op1));
3874 else
3876 ent->comparison_const = op1;
3877 ent->comparison_qty = -1;
3880 return;
3883 /* If either side is still missing an equivalence, make it now,
3884 then merge the equivalences. */
3886 if (op0_elt == 0)
3888 if (insert_regs (op0, NULL, 0))
3890 rehash_using_reg (op0);
3891 op0_hash = HASH (op0, mode);
3894 op0_elt = insert (op0, NULL, op0_hash, mode);
3895 op0_elt->in_memory = op0_in_memory;
3898 if (op1_elt == 0)
3900 if (insert_regs (op1, NULL, 0))
3902 rehash_using_reg (op1);
3903 op1_hash = HASH (op1, mode);
3906 op1_elt = insert (op1, NULL, op1_hash, mode);
3907 op1_elt->in_memory = op1_in_memory;
3910 merge_equiv_classes (op0_elt, op1_elt);
3913 /* CSE processing for one instruction.
3914 First simplify sources and addresses of all assignments
3915 in the instruction, using previously-computed equivalents values.
3916 Then install the new sources and destinations in the table
3917 of available values.
3919 If LIBCALL_INSN is nonzero, don't record any equivalence made in
3920 the insn. It means that INSN is inside libcall block. In this
3921 case LIBCALL_INSN is the corresponding insn with REG_LIBCALL. */
3923 /* Data on one SET contained in the instruction. */
3925 struct set
3927 /* The SET rtx itself. */
3928 rtx rtl;
3929 /* The SET_SRC of the rtx (the original value, if it is changing). */
3930 rtx src;
3931 /* The hash-table element for the SET_SRC of the SET. */
3932 struct table_elt *src_elt;
3933 /* Hash value for the SET_SRC. */
3934 unsigned src_hash;
3935 /* Hash value for the SET_DEST. */
3936 unsigned dest_hash;
3937 /* The SET_DEST, with SUBREG, etc., stripped. */
3938 rtx inner_dest;
3939 /* Nonzero if the SET_SRC is in memory. */
3940 char src_in_memory;
3941 /* Nonzero if the SET_SRC contains something
3942 whose value cannot be predicted and understood. */
3943 char src_volatile;
3944 /* Original machine mode, in case it becomes a CONST_INT.
3945 The size of this field should match the size of the mode
3946 field of struct rtx_def (see rtl.h). */
3947 ENUM_BITFIELD(machine_mode) mode : 8;
3948 /* A constant equivalent for SET_SRC, if any. */
3949 rtx src_const;
3950 /* Original SET_SRC value used for libcall notes. */
3951 rtx orig_src;
3952 /* Hash value of constant equivalent for SET_SRC. */
3953 unsigned src_const_hash;
3954 /* Table entry for constant equivalent for SET_SRC, if any. */
3955 struct table_elt *src_const_elt;
3956 /* Table entry for the destination address. */
3957 struct table_elt *dest_addr_elt;
3960 static void
3961 cse_insn (rtx insn, rtx libcall_insn)
3963 rtx x = PATTERN (insn);
3964 int i;
3965 rtx tem;
3966 int n_sets = 0;
3968 rtx src_eqv = 0;
3969 struct table_elt *src_eqv_elt = 0;
3970 int src_eqv_volatile = 0;
3971 int src_eqv_in_memory = 0;
3972 unsigned src_eqv_hash = 0;
3974 struct set *sets = (struct set *) 0;
3976 this_insn = insn;
3977 #ifdef HAVE_cc0
3978 /* Records what this insn does to set CC0. */
3979 this_insn_cc0 = 0;
3980 this_insn_cc0_mode = VOIDmode;
3981 #endif
3983 /* Find all the SETs and CLOBBERs in this instruction.
3984 Record all the SETs in the array `set' and count them.
3985 Also determine whether there is a CLOBBER that invalidates
3986 all memory references, or all references at varying addresses. */
3988 if (CALL_P (insn))
3990 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
3992 if (GET_CODE (XEXP (tem, 0)) == CLOBBER)
3993 invalidate (SET_DEST (XEXP (tem, 0)), VOIDmode);
3994 XEXP (tem, 0) = canon_reg (XEXP (tem, 0), insn);
3998 if (GET_CODE (x) == SET)
4000 sets = alloca (sizeof (struct set));
4001 sets[0].rtl = x;
4003 /* Ignore SETs that are unconditional jumps.
4004 They never need cse processing, so this does not hurt.
4005 The reason is not efficiency but rather
4006 so that we can test at the end for instructions
4007 that have been simplified to unconditional jumps
4008 and not be misled by unchanged instructions
4009 that were unconditional jumps to begin with. */
4010 if (SET_DEST (x) == pc_rtx
4011 && GET_CODE (SET_SRC (x)) == LABEL_REF)
4014 /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
4015 The hard function value register is used only once, to copy to
4016 someplace else, so it isn't worth cse'ing (and on 80386 is unsafe)!
4017 Ensure we invalidate the destination register. On the 80386 no
4018 other code would invalidate it since it is a fixed_reg.
4019 We need not check the return of apply_change_group; see canon_reg. */
4021 else if (GET_CODE (SET_SRC (x)) == CALL)
4023 canon_reg (SET_SRC (x), insn);
4024 apply_change_group ();
4025 fold_rtx (SET_SRC (x), insn);
4026 invalidate (SET_DEST (x), VOIDmode);
4028 else
4029 n_sets = 1;
4031 else if (GET_CODE (x) == PARALLEL)
4033 int lim = XVECLEN (x, 0);
4035 sets = alloca (lim * sizeof (struct set));
4037 /* Find all regs explicitly clobbered in this insn,
4038 and ensure they are not replaced with any other regs
4039 elsewhere in this insn.
4040 When a reg that is clobbered is also used for input,
4041 we should presume that that is for a reason,
4042 and we should not substitute some other register
4043 which is not supposed to be clobbered.
4044 Therefore, this loop cannot be merged into the one below
4045 because a CALL may precede a CLOBBER and refer to the
4046 value clobbered. We must not let a canonicalization do
4047 anything in that case. */
4048 for (i = 0; i < lim; i++)
4050 rtx y = XVECEXP (x, 0, i);
4051 if (GET_CODE (y) == CLOBBER)
4053 rtx clobbered = XEXP (y, 0);
4055 if (REG_P (clobbered)
4056 || GET_CODE (clobbered) == SUBREG)
4057 invalidate (clobbered, VOIDmode);
4058 else if (GET_CODE (clobbered) == STRICT_LOW_PART
4059 || GET_CODE (clobbered) == ZERO_EXTRACT)
4060 invalidate (XEXP (clobbered, 0), GET_MODE (clobbered));
4064 for (i = 0; i < lim; i++)
4066 rtx y = XVECEXP (x, 0, i);
4067 if (GET_CODE (y) == SET)
4069 /* As above, we ignore unconditional jumps and call-insns and
4070 ignore the result of apply_change_group. */
4071 if (GET_CODE (SET_SRC (y)) == CALL)
4073 canon_reg (SET_SRC (y), insn);
4074 apply_change_group ();
4075 fold_rtx (SET_SRC (y), insn);
4076 invalidate (SET_DEST (y), VOIDmode);
4078 else if (SET_DEST (y) == pc_rtx
4079 && GET_CODE (SET_SRC (y)) == LABEL_REF)
4081 else
4082 sets[n_sets++].rtl = y;
4084 else if (GET_CODE (y) == CLOBBER)
4086 /* If we clobber memory, canon the address.
4087 This does nothing when a register is clobbered
4088 because we have already invalidated the reg. */
4089 if (MEM_P (XEXP (y, 0)))
4090 canon_reg (XEXP (y, 0), insn);
4092 else if (GET_CODE (y) == USE
4093 && ! (REG_P (XEXP (y, 0))
4094 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
4095 canon_reg (y, insn);
4096 else if (GET_CODE (y) == CALL)
4098 /* The result of apply_change_group can be ignored; see
4099 canon_reg. */
4100 canon_reg (y, insn);
4101 apply_change_group ();
4102 fold_rtx (y, insn);
4106 else if (GET_CODE (x) == CLOBBER)
4108 if (MEM_P (XEXP (x, 0)))
4109 canon_reg (XEXP (x, 0), insn);
4112 /* Canonicalize a USE of a pseudo register or memory location. */
4113 else if (GET_CODE (x) == USE
4114 && ! (REG_P (XEXP (x, 0))
4115 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
4116 canon_reg (XEXP (x, 0), insn);
4117 else if (GET_CODE (x) == CALL)
4119 /* The result of apply_change_group can be ignored; see canon_reg. */
4120 canon_reg (x, insn);
4121 apply_change_group ();
4122 fold_rtx (x, insn);
4125 /* Store the equivalent value in SRC_EQV, if different, or if the DEST
4126 is a STRICT_LOW_PART. The latter condition is necessary because SRC_EQV
4127 is handled specially for this case, and if it isn't set, then there will
4128 be no equivalence for the destination. */
4129 if (n_sets == 1 && REG_NOTES (insn) != 0
4130 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0
4131 && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))
4132 || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART))
4134 /* The result of apply_change_group can be ignored; see canon_reg. */
4135 canon_reg (XEXP (tem, 0), insn);
4136 apply_change_group ();
4137 src_eqv = fold_rtx (XEXP (tem, 0), insn);
4138 XEXP (tem, 0) = copy_rtx (src_eqv);
4139 df_notes_rescan (insn);
4142 /* Canonicalize sources and addresses of destinations.
4143 We do this in a separate pass to avoid problems when a MATCH_DUP is
4144 present in the insn pattern. In that case, we want to ensure that
4145 we don't break the duplicate nature of the pattern. So we will replace
4146 both operands at the same time. Otherwise, we would fail to find an
4147 equivalent substitution in the loop calling validate_change below.
4149 We used to suppress canonicalization of DEST if it appears in SRC,
4150 but we don't do this any more. */
4152 for (i = 0; i < n_sets; i++)
4154 rtx dest = SET_DEST (sets[i].rtl);
4155 rtx src = SET_SRC (sets[i].rtl);
4156 rtx new = canon_reg (src, insn);
4158 sets[i].orig_src = src;
4159 validate_change (insn, &SET_SRC (sets[i].rtl), new, 1);
4161 if (GET_CODE (dest) == ZERO_EXTRACT)
4163 validate_change (insn, &XEXP (dest, 1),
4164 canon_reg (XEXP (dest, 1), insn), 1);
4165 validate_change (insn, &XEXP (dest, 2),
4166 canon_reg (XEXP (dest, 2), insn), 1);
4169 while (GET_CODE (dest) == SUBREG
4170 || GET_CODE (dest) == ZERO_EXTRACT
4171 || GET_CODE (dest) == STRICT_LOW_PART)
4172 dest = XEXP (dest, 0);
4174 if (MEM_P (dest))
4175 canon_reg (dest, insn);
4178 /* Now that we have done all the replacements, we can apply the change
4179 group and see if they all work. Note that this will cause some
4180 canonicalizations that would have worked individually not to be applied
4181 because some other canonicalization didn't work, but this should not
4182 occur often.
4184 The result of apply_change_group can be ignored; see canon_reg. */
4186 apply_change_group ();
4188 /* Set sets[i].src_elt to the class each source belongs to.
4189 Detect assignments from or to volatile things
4190 and set set[i] to zero so they will be ignored
4191 in the rest of this function.
4193 Nothing in this loop changes the hash table or the register chains. */
4195 for (i = 0; i < n_sets; i++)
4197 rtx src, dest;
4198 rtx src_folded;
4199 struct table_elt *elt = 0, *p;
4200 enum machine_mode mode;
4201 rtx src_eqv_here;
4202 rtx src_const = 0;
4203 rtx src_related = 0;
4204 struct table_elt *src_const_elt = 0;
4205 int src_cost = MAX_COST;
4206 int src_eqv_cost = MAX_COST;
4207 int src_folded_cost = MAX_COST;
4208 int src_related_cost = MAX_COST;
4209 int src_elt_cost = MAX_COST;
4210 int src_regcost = MAX_COST;
4211 int src_eqv_regcost = MAX_COST;
4212 int src_folded_regcost = MAX_COST;
4213 int src_related_regcost = MAX_COST;
4214 int src_elt_regcost = MAX_COST;
4215 /* Set nonzero if we need to call force_const_mem on with the
4216 contents of src_folded before using it. */
4217 int src_folded_force_flag = 0;
4219 dest = SET_DEST (sets[i].rtl);
4220 src = SET_SRC (sets[i].rtl);
4222 /* If SRC is a constant that has no machine mode,
4223 hash it with the destination's machine mode.
4224 This way we can keep different modes separate. */
4226 mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
4227 sets[i].mode = mode;
4229 if (src_eqv)
4231 enum machine_mode eqvmode = mode;
4232 if (GET_CODE (dest) == STRICT_LOW_PART)
4233 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
4234 do_not_record = 0;
4235 hash_arg_in_memory = 0;
4236 src_eqv_hash = HASH (src_eqv, eqvmode);
4238 /* Find the equivalence class for the equivalent expression. */
4240 if (!do_not_record)
4241 src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode);
4243 src_eqv_volatile = do_not_record;
4244 src_eqv_in_memory = hash_arg_in_memory;
4247 /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
4248 value of the INNER register, not the destination. So it is not
4249 a valid substitution for the source. But save it for later. */
4250 if (GET_CODE (dest) == STRICT_LOW_PART)
4251 src_eqv_here = 0;
4252 else
4253 src_eqv_here = src_eqv;
4255 /* Simplify and foldable subexpressions in SRC. Then get the fully-
4256 simplified result, which may not necessarily be valid. */
4257 src_folded = fold_rtx (src, insn);
4259 #if 0
4260 /* ??? This caused bad code to be generated for the m68k port with -O2.
4261 Suppose src is (CONST_INT -1), and that after truncation src_folded
4262 is (CONST_INT 3). Suppose src_folded is then used for src_const.
4263 At the end we will add src and src_const to the same equivalence
4264 class. We now have 3 and -1 on the same equivalence class. This
4265 causes later instructions to be mis-optimized. */
4266 /* If storing a constant in a bitfield, pre-truncate the constant
4267 so we will be able to record it later. */
4268 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
4270 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
4272 if (GET_CODE (src) == CONST_INT
4273 && GET_CODE (width) == CONST_INT
4274 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
4275 && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
4276 src_folded
4277 = GEN_INT (INTVAL (src) & (((HOST_WIDE_INT) 1
4278 << INTVAL (width)) - 1));
4280 #endif
4282 /* Compute SRC's hash code, and also notice if it
4283 should not be recorded at all. In that case,
4284 prevent any further processing of this assignment. */
4285 do_not_record = 0;
4286 hash_arg_in_memory = 0;
4288 sets[i].src = src;
4289 sets[i].src_hash = HASH (src, mode);
4290 sets[i].src_volatile = do_not_record;
4291 sets[i].src_in_memory = hash_arg_in_memory;
4293 /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
4294 a pseudo, do not record SRC. Using SRC as a replacement for
4295 anything else will be incorrect in that situation. Note that
4296 this usually occurs only for stack slots, in which case all the
4297 RTL would be referring to SRC, so we don't lose any optimization
4298 opportunities by not having SRC in the hash table. */
4300 if (MEM_P (src)
4301 && find_reg_note (insn, REG_EQUIV, NULL_RTX) != 0
4302 && REG_P (dest)
4303 && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
4304 sets[i].src_volatile = 1;
4306 #if 0
4307 /* It is no longer clear why we used to do this, but it doesn't
4308 appear to still be needed. So let's try without it since this
4309 code hurts cse'ing widened ops. */
4310 /* If source is a paradoxical subreg (such as QI treated as an SI),
4311 treat it as volatile. It may do the work of an SI in one context
4312 where the extra bits are not being used, but cannot replace an SI
4313 in general. */
4314 if (GET_CODE (src) == SUBREG
4315 && (GET_MODE_SIZE (GET_MODE (src))
4316 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
4317 sets[i].src_volatile = 1;
4318 #endif
4320 /* Locate all possible equivalent forms for SRC. Try to replace
4321 SRC in the insn with each cheaper equivalent.
4323 We have the following types of equivalents: SRC itself, a folded
4324 version, a value given in a REG_EQUAL note, or a value related
4325 to a constant.
4327 Each of these equivalents may be part of an additional class
4328 of equivalents (if more than one is in the table, they must be in
4329 the same class; we check for this).
4331 If the source is volatile, we don't do any table lookups.
4333 We note any constant equivalent for possible later use in a
4334 REG_NOTE. */
4336 if (!sets[i].src_volatile)
4337 elt = lookup (src, sets[i].src_hash, mode);
4339 sets[i].src_elt = elt;
4341 if (elt && src_eqv_here && src_eqv_elt)
4343 if (elt->first_same_value != src_eqv_elt->first_same_value)
4345 /* The REG_EQUAL is indicating that two formerly distinct
4346 classes are now equivalent. So merge them. */
4347 merge_equiv_classes (elt, src_eqv_elt);
4348 src_eqv_hash = HASH (src_eqv, elt->mode);
4349 src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode);
4352 src_eqv_here = 0;
4355 else if (src_eqv_elt)
4356 elt = src_eqv_elt;
4358 /* Try to find a constant somewhere and record it in `src_const'.
4359 Record its table element, if any, in `src_const_elt'. Look in
4360 any known equivalences first. (If the constant is not in the
4361 table, also set `sets[i].src_const_hash'). */
4362 if (elt)
4363 for (p = elt->first_same_value; p; p = p->next_same_value)
4364 if (p->is_const)
4366 src_const = p->exp;
4367 src_const_elt = elt;
4368 break;
4371 if (src_const == 0
4372 && (CONSTANT_P (src_folded)
4373 /* Consider (minus (label_ref L1) (label_ref L2)) as
4374 "constant" here so we will record it. This allows us
4375 to fold switch statements when an ADDR_DIFF_VEC is used. */
4376 || (GET_CODE (src_folded) == MINUS
4377 && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
4378 && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
4379 src_const = src_folded, src_const_elt = elt;
4380 else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
4381 src_const = src_eqv_here, src_const_elt = src_eqv_elt;
4383 /* If we don't know if the constant is in the table, get its
4384 hash code and look it up. */
4385 if (src_const && src_const_elt == 0)
4387 sets[i].src_const_hash = HASH (src_const, mode);
4388 src_const_elt = lookup (src_const, sets[i].src_const_hash, mode);
4391 sets[i].src_const = src_const;
4392 sets[i].src_const_elt = src_const_elt;
4394 /* If the constant and our source are both in the table, mark them as
4395 equivalent. Otherwise, if a constant is in the table but the source
4396 isn't, set ELT to it. */
4397 if (src_const_elt && elt
4398 && src_const_elt->first_same_value != elt->first_same_value)
4399 merge_equiv_classes (elt, src_const_elt);
4400 else if (src_const_elt && elt == 0)
4401 elt = src_const_elt;
4403 /* See if there is a register linearly related to a constant
4404 equivalent of SRC. */
4405 if (src_const
4406 && (GET_CODE (src_const) == CONST
4407 || (src_const_elt && src_const_elt->related_value != 0)))
4409 src_related = use_related_value (src_const, src_const_elt);
4410 if (src_related)
4412 struct table_elt *src_related_elt
4413 = lookup (src_related, HASH (src_related, mode), mode);
4414 if (src_related_elt && elt)
4416 if (elt->first_same_value
4417 != src_related_elt->first_same_value)
4418 /* This can occur when we previously saw a CONST
4419 involving a SYMBOL_REF and then see the SYMBOL_REF
4420 twice. Merge the involved classes. */
4421 merge_equiv_classes (elt, src_related_elt);
4423 src_related = 0;
4424 src_related_elt = 0;
4426 else if (src_related_elt && elt == 0)
4427 elt = src_related_elt;
4431 /* See if we have a CONST_INT that is already in a register in a
4432 wider mode. */
4434 if (src_const && src_related == 0 && GET_CODE (src_const) == CONST_INT
4435 && GET_MODE_CLASS (mode) == MODE_INT
4436 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD)
4438 enum machine_mode wider_mode;
4440 for (wider_mode = GET_MODE_WIDER_MODE (mode);
4441 GET_MODE_BITSIZE (wider_mode) <= BITS_PER_WORD
4442 && src_related == 0;
4443 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
4445 struct table_elt *const_elt
4446 = lookup (src_const, HASH (src_const, wider_mode), wider_mode);
4448 if (const_elt == 0)
4449 continue;
4451 for (const_elt = const_elt->first_same_value;
4452 const_elt; const_elt = const_elt->next_same_value)
4453 if (REG_P (const_elt->exp))
4455 src_related = gen_lowpart (mode, const_elt->exp);
4456 break;
4461 /* Another possibility is that we have an AND with a constant in
4462 a mode narrower than a word. If so, it might have been generated
4463 as part of an "if" which would narrow the AND. If we already
4464 have done the AND in a wider mode, we can use a SUBREG of that
4465 value. */
4467 if (flag_expensive_optimizations && ! src_related
4468 && GET_CODE (src) == AND && GET_CODE (XEXP (src, 1)) == CONST_INT
4469 && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
4471 enum machine_mode tmode;
4472 rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1));
4474 for (tmode = GET_MODE_WIDER_MODE (mode);
4475 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
4476 tmode = GET_MODE_WIDER_MODE (tmode))
4478 rtx inner = gen_lowpart (tmode, XEXP (src, 0));
4479 struct table_elt *larger_elt;
4481 if (inner)
4483 PUT_MODE (new_and, tmode);
4484 XEXP (new_and, 0) = inner;
4485 larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
4486 if (larger_elt == 0)
4487 continue;
4489 for (larger_elt = larger_elt->first_same_value;
4490 larger_elt; larger_elt = larger_elt->next_same_value)
4491 if (REG_P (larger_elt->exp))
4493 src_related
4494 = gen_lowpart (mode, larger_elt->exp);
4495 break;
4498 if (src_related)
4499 break;
4504 #ifdef LOAD_EXTEND_OP
4505 /* See if a MEM has already been loaded with a widening operation;
4506 if it has, we can use a subreg of that. Many CISC machines
4507 also have such operations, but this is only likely to be
4508 beneficial on these machines. */
4510 if (flag_expensive_optimizations && src_related == 0
4511 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
4512 && GET_MODE_CLASS (mode) == MODE_INT
4513 && MEM_P (src) && ! do_not_record
4514 && LOAD_EXTEND_OP (mode) != UNKNOWN)
4516 struct rtx_def memory_extend_buf;
4517 rtx memory_extend_rtx = &memory_extend_buf;
4518 enum machine_mode tmode;
4520 /* Set what we are trying to extend and the operation it might
4521 have been extended with. */
4522 memset (memory_extend_rtx, 0, sizeof(*memory_extend_rtx));
4523 PUT_CODE (memory_extend_rtx, LOAD_EXTEND_OP (mode));
4524 XEXP (memory_extend_rtx, 0) = src;
4526 for (tmode = GET_MODE_WIDER_MODE (mode);
4527 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
4528 tmode = GET_MODE_WIDER_MODE (tmode))
4530 struct table_elt *larger_elt;
4532 PUT_MODE (memory_extend_rtx, tmode);
4533 larger_elt = lookup (memory_extend_rtx,
4534 HASH (memory_extend_rtx, tmode), tmode);
4535 if (larger_elt == 0)
4536 continue;
4538 for (larger_elt = larger_elt->first_same_value;
4539 larger_elt; larger_elt = larger_elt->next_same_value)
4540 if (REG_P (larger_elt->exp))
4542 src_related = gen_lowpart (mode, larger_elt->exp);
4543 break;
4546 if (src_related)
4547 break;
4550 #endif /* LOAD_EXTEND_OP */
4552 if (src == src_folded)
4553 src_folded = 0;
4555 /* At this point, ELT, if nonzero, points to a class of expressions
4556 equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
4557 and SRC_RELATED, if nonzero, each contain additional equivalent
4558 expressions. Prune these latter expressions by deleting expressions
4559 already in the equivalence class.
4561 Check for an equivalent identical to the destination. If found,
4562 this is the preferred equivalent since it will likely lead to
4563 elimination of the insn. Indicate this by placing it in
4564 `src_related'. */
4566 if (elt)
4567 elt = elt->first_same_value;
4568 for (p = elt; p; p = p->next_same_value)
4570 enum rtx_code code = GET_CODE (p->exp);
4572 /* If the expression is not valid, ignore it. Then we do not
4573 have to check for validity below. In most cases, we can use
4574 `rtx_equal_p', since canonicalization has already been done. */
4575 if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, false))
4576 continue;
4578 /* Also skip paradoxical subregs, unless that's what we're
4579 looking for. */
4580 if (code == SUBREG
4581 && (GET_MODE_SIZE (GET_MODE (p->exp))
4582 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))
4583 && ! (src != 0
4584 && GET_CODE (src) == SUBREG
4585 && GET_MODE (src) == GET_MODE (p->exp)
4586 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
4587 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))))
4588 continue;
4590 if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
4591 src = 0;
4592 else if (src_folded && GET_CODE (src_folded) == code
4593 && rtx_equal_p (src_folded, p->exp))
4594 src_folded = 0;
4595 else if (src_eqv_here && GET_CODE (src_eqv_here) == code
4596 && rtx_equal_p (src_eqv_here, p->exp))
4597 src_eqv_here = 0;
4598 else if (src_related && GET_CODE (src_related) == code
4599 && rtx_equal_p (src_related, p->exp))
4600 src_related = 0;
4602 /* This is the same as the destination of the insns, we want
4603 to prefer it. Copy it to src_related. The code below will
4604 then give it a negative cost. */
4605 if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
4606 src_related = dest;
4609 /* Find the cheapest valid equivalent, trying all the available
4610 possibilities. Prefer items not in the hash table to ones
4611 that are when they are equal cost. Note that we can never
4612 worsen an insn as the current contents will also succeed.
4613 If we find an equivalent identical to the destination, use it as best,
4614 since this insn will probably be eliminated in that case. */
4615 if (src)
4617 if (rtx_equal_p (src, dest))
4618 src_cost = src_regcost = -1;
4619 else
4621 src_cost = COST (src);
4622 src_regcost = approx_reg_cost (src);
4626 if (src_eqv_here)
4628 if (rtx_equal_p (src_eqv_here, dest))
4629 src_eqv_cost = src_eqv_regcost = -1;
4630 else
4632 src_eqv_cost = COST (src_eqv_here);
4633 src_eqv_regcost = approx_reg_cost (src_eqv_here);
4637 if (src_folded)
4639 if (rtx_equal_p (src_folded, dest))
4640 src_folded_cost = src_folded_regcost = -1;
4641 else
4643 src_folded_cost = COST (src_folded);
4644 src_folded_regcost = approx_reg_cost (src_folded);
4648 if (src_related)
4650 if (rtx_equal_p (src_related, dest))
4651 src_related_cost = src_related_regcost = -1;
4652 else
4654 src_related_cost = COST (src_related);
4655 src_related_regcost = approx_reg_cost (src_related);
4659 /* If this was an indirect jump insn, a known label will really be
4660 cheaper even though it looks more expensive. */
4661 if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
4662 src_folded = src_const, src_folded_cost = src_folded_regcost = -1;
4664 /* Terminate loop when replacement made. This must terminate since
4665 the current contents will be tested and will always be valid. */
4666 while (1)
4668 rtx trial;
4670 /* Skip invalid entries. */
4671 while (elt && !REG_P (elt->exp)
4672 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
4673 elt = elt->next_same_value;
4675 /* A paradoxical subreg would be bad here: it'll be the right
4676 size, but later may be adjusted so that the upper bits aren't
4677 what we want. So reject it. */
4678 if (elt != 0
4679 && GET_CODE (elt->exp) == SUBREG
4680 && (GET_MODE_SIZE (GET_MODE (elt->exp))
4681 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))
4682 /* It is okay, though, if the rtx we're trying to match
4683 will ignore any of the bits we can't predict. */
4684 && ! (src != 0
4685 && GET_CODE (src) == SUBREG
4686 && GET_MODE (src) == GET_MODE (elt->exp)
4687 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
4688 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))))
4690 elt = elt->next_same_value;
4691 continue;
4694 if (elt)
4696 src_elt_cost = elt->cost;
4697 src_elt_regcost = elt->regcost;
4700 /* Find cheapest and skip it for the next time. For items
4701 of equal cost, use this order:
4702 src_folded, src, src_eqv, src_related and hash table entry. */
4703 if (src_folded
4704 && preferable (src_folded_cost, src_folded_regcost,
4705 src_cost, src_regcost) <= 0
4706 && preferable (src_folded_cost, src_folded_regcost,
4707 src_eqv_cost, src_eqv_regcost) <= 0
4708 && preferable (src_folded_cost, src_folded_regcost,
4709 src_related_cost, src_related_regcost) <= 0
4710 && preferable (src_folded_cost, src_folded_regcost,
4711 src_elt_cost, src_elt_regcost) <= 0)
4713 trial = src_folded, src_folded_cost = MAX_COST;
4714 if (src_folded_force_flag)
4716 rtx forced = force_const_mem (mode, trial);
4717 if (forced)
4718 trial = forced;
4721 else if (src
4722 && preferable (src_cost, src_regcost,
4723 src_eqv_cost, src_eqv_regcost) <= 0
4724 && preferable (src_cost, src_regcost,
4725 src_related_cost, src_related_regcost) <= 0
4726 && preferable (src_cost, src_regcost,
4727 src_elt_cost, src_elt_regcost) <= 0)
4728 trial = src, src_cost = MAX_COST;
4729 else if (src_eqv_here
4730 && preferable (src_eqv_cost, src_eqv_regcost,
4731 src_related_cost, src_related_regcost) <= 0
4732 && preferable (src_eqv_cost, src_eqv_regcost,
4733 src_elt_cost, src_elt_regcost) <= 0)
4734 trial = src_eqv_here, src_eqv_cost = MAX_COST;
4735 else if (src_related
4736 && preferable (src_related_cost, src_related_regcost,
4737 src_elt_cost, src_elt_regcost) <= 0)
4738 trial = src_related, src_related_cost = MAX_COST;
4739 else
4741 trial = elt->exp;
4742 elt = elt->next_same_value;
4743 src_elt_cost = MAX_COST;
4746 /* We don't normally have an insn matching (set (pc) (pc)), so
4747 check for this separately here. We will delete such an
4748 insn below.
4750 For other cases such as a table jump or conditional jump
4751 where we know the ultimate target, go ahead and replace the
4752 operand. While that may not make a valid insn, we will
4753 reemit the jump below (and also insert any necessary
4754 barriers). */
4755 if (n_sets == 1 && dest == pc_rtx
4756 && (trial == pc_rtx
4757 || (GET_CODE (trial) == LABEL_REF
4758 && ! condjump_p (insn))))
4760 /* Don't substitute non-local labels, this confuses CFG. */
4761 if (GET_CODE (trial) == LABEL_REF
4762 && LABEL_REF_NONLOCAL_P (trial))
4763 continue;
4765 SET_SRC (sets[i].rtl) = trial;
4766 cse_jumps_altered = true;
4767 break;
4770 /* Reject certain invalid forms of CONST that we create. */
4771 else if (CONSTANT_P (trial)
4772 && GET_CODE (trial) == CONST
4773 /* Reject cases that will cause decode_rtx_const to
4774 die. On the alpha when simplifying a switch, we
4775 get (const (truncate (minus (label_ref)
4776 (label_ref)))). */
4777 && (GET_CODE (XEXP (trial, 0)) == TRUNCATE
4778 /* Likewise on IA-64, except without the
4779 truncate. */
4780 || (GET_CODE (XEXP (trial, 0)) == MINUS
4781 && GET_CODE (XEXP (XEXP (trial, 0), 0)) == LABEL_REF
4782 && GET_CODE (XEXP (XEXP (trial, 0), 1)) == LABEL_REF)))
4783 /* Do nothing for this case. */
4786 /* Look for a substitution that makes a valid insn. */
4787 else if (validate_unshare_change
4788 (insn, &SET_SRC (sets[i].rtl), trial, 0))
4790 rtx new = canon_reg (SET_SRC (sets[i].rtl), insn);
4792 /* If we just made a substitution inside a libcall, then we
4793 need to make the same substitution in any notes attached
4794 to the RETVAL insn. */
4795 if (libcall_insn
4796 && (REG_P (sets[i].orig_src)
4797 || GET_CODE (sets[i].orig_src) == SUBREG
4798 || MEM_P (sets[i].orig_src)))
4800 rtx note = find_reg_equal_equiv_note (libcall_insn);
4801 if (note != 0)
4802 XEXP (note, 0) = simplify_replace_rtx (XEXP (note, 0),
4803 sets[i].orig_src,
4804 copy_rtx (new));
4805 df_notes_rescan (libcall_insn);
4808 /* The result of apply_change_group can be ignored; see
4809 canon_reg. */
4811 validate_change (insn, &SET_SRC (sets[i].rtl), new, 1);
4812 apply_change_group ();
4814 break;
4817 /* If we previously found constant pool entries for
4818 constants and this is a constant, try making a
4819 pool entry. Put it in src_folded unless we already have done
4820 this since that is where it likely came from. */
4822 else if (constant_pool_entries_cost
4823 && CONSTANT_P (trial)
4824 && (src_folded == 0
4825 || (!MEM_P (src_folded)
4826 && ! src_folded_force_flag))
4827 && GET_MODE_CLASS (mode) != MODE_CC
4828 && mode != VOIDmode)
4830 src_folded_force_flag = 1;
4831 src_folded = trial;
4832 src_folded_cost = constant_pool_entries_cost;
4833 src_folded_regcost = constant_pool_entries_regcost;
4837 src = SET_SRC (sets[i].rtl);
4839 /* In general, it is good to have a SET with SET_SRC == SET_DEST.
4840 However, there is an important exception: If both are registers
4841 that are not the head of their equivalence class, replace SET_SRC
4842 with the head of the class. If we do not do this, we will have
4843 both registers live over a portion of the basic block. This way,
4844 their lifetimes will likely abut instead of overlapping. */
4845 if (REG_P (dest)
4846 && REGNO_QTY_VALID_P (REGNO (dest)))
4848 int dest_q = REG_QTY (REGNO (dest));
4849 struct qty_table_elem *dest_ent = &qty_table[dest_q];
4851 if (dest_ent->mode == GET_MODE (dest)
4852 && dest_ent->first_reg != REGNO (dest)
4853 && REG_P (src) && REGNO (src) == REGNO (dest)
4854 /* Don't do this if the original insn had a hard reg as
4855 SET_SRC or SET_DEST. */
4856 && (!REG_P (sets[i].src)
4857 || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER)
4858 && (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER))
4859 /* We can't call canon_reg here because it won't do anything if
4860 SRC is a hard register. */
4862 int src_q = REG_QTY (REGNO (src));
4863 struct qty_table_elem *src_ent = &qty_table[src_q];
4864 int first = src_ent->first_reg;
4865 rtx new_src
4866 = (first >= FIRST_PSEUDO_REGISTER
4867 ? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first));
4869 /* We must use validate-change even for this, because this
4870 might be a special no-op instruction, suitable only to
4871 tag notes onto. */
4872 if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0))
4874 src = new_src;
4875 /* If we had a constant that is cheaper than what we are now
4876 setting SRC to, use that constant. We ignored it when we
4877 thought we could make this into a no-op. */
4878 if (src_const && COST (src_const) < COST (src)
4879 && validate_change (insn, &SET_SRC (sets[i].rtl),
4880 src_const, 0))
4881 src = src_const;
4886 /* If we made a change, recompute SRC values. */
4887 if (src != sets[i].src)
4889 do_not_record = 0;
4890 hash_arg_in_memory = 0;
4891 sets[i].src = src;
4892 sets[i].src_hash = HASH (src, mode);
4893 sets[i].src_volatile = do_not_record;
4894 sets[i].src_in_memory = hash_arg_in_memory;
4895 sets[i].src_elt = lookup (src, sets[i].src_hash, mode);
4898 /* If this is a single SET, we are setting a register, and we have an
4899 equivalent constant, we want to add a REG_NOTE. We don't want
4900 to write a REG_EQUAL note for a constant pseudo since verifying that
4901 that pseudo hasn't been eliminated is a pain. Such a note also
4902 won't help anything.
4904 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF)))
4905 which can be created for a reference to a compile time computable
4906 entry in a jump table. */
4908 if (n_sets == 1 && src_const && REG_P (dest)
4909 && !REG_P (src_const)
4910 && ! (GET_CODE (src_const) == CONST
4911 && GET_CODE (XEXP (src_const, 0)) == MINUS
4912 && GET_CODE (XEXP (XEXP (src_const, 0), 0)) == LABEL_REF
4913 && GET_CODE (XEXP (XEXP (src_const, 0), 1)) == LABEL_REF))
4915 /* We only want a REG_EQUAL note if src_const != src. */
4916 if (! rtx_equal_p (src, src_const))
4918 /* Make sure that the rtx is not shared. */
4919 src_const = copy_rtx (src_const);
4921 /* Record the actual constant value in a REG_EQUAL note,
4922 making a new one if one does not already exist. */
4923 set_unique_reg_note (insn, REG_EQUAL, src_const);
4924 df_notes_rescan (insn);
4928 /* Now deal with the destination. */
4929 do_not_record = 0;
4931 /* Look within any ZERO_EXTRACT to the MEM or REG within it. */
4932 while (GET_CODE (dest) == SUBREG
4933 || GET_CODE (dest) == ZERO_EXTRACT
4934 || GET_CODE (dest) == STRICT_LOW_PART)
4935 dest = XEXP (dest, 0);
4937 sets[i].inner_dest = dest;
4939 if (MEM_P (dest))
4941 #ifdef PUSH_ROUNDING
4942 /* Stack pushes invalidate the stack pointer. */
4943 rtx addr = XEXP (dest, 0);
4944 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC
4945 && XEXP (addr, 0) == stack_pointer_rtx)
4946 invalidate (stack_pointer_rtx, VOIDmode);
4947 #endif
4948 dest = fold_rtx (dest, insn);
4951 /* Compute the hash code of the destination now,
4952 before the effects of this instruction are recorded,
4953 since the register values used in the address computation
4954 are those before this instruction. */
4955 sets[i].dest_hash = HASH (dest, mode);
4957 /* Don't enter a bit-field in the hash table
4958 because the value in it after the store
4959 may not equal what was stored, due to truncation. */
4961 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
4963 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
4965 if (src_const != 0 && GET_CODE (src_const) == CONST_INT
4966 && GET_CODE (width) == CONST_INT
4967 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
4968 && ! (INTVAL (src_const)
4969 & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
4970 /* Exception: if the value is constant,
4971 and it won't be truncated, record it. */
4973 else
4975 /* This is chosen so that the destination will be invalidated
4976 but no new value will be recorded.
4977 We must invalidate because sometimes constant
4978 values can be recorded for bitfields. */
4979 sets[i].src_elt = 0;
4980 sets[i].src_volatile = 1;
4981 src_eqv = 0;
4982 src_eqv_elt = 0;
4986 /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
4987 the insn. */
4988 else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
4990 /* One less use of the label this insn used to jump to. */
4991 delete_insn_and_edges (insn);
4992 cse_jumps_altered = true;
4993 /* No more processing for this set. */
4994 sets[i].rtl = 0;
4997 /* If this SET is now setting PC to a label, we know it used to
4998 be a conditional or computed branch. */
4999 else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF
5000 && !LABEL_REF_NONLOCAL_P (src))
5002 /* We reemit the jump in as many cases as possible just in
5003 case the form of an unconditional jump is significantly
5004 different than a computed jump or conditional jump.
5006 If this insn has multiple sets, then reemitting the
5007 jump is nontrivial. So instead we just force rerecognition
5008 and hope for the best. */
5009 if (n_sets == 1)
5011 rtx new, note;
5013 new = emit_jump_insn_before (gen_jump (XEXP (src, 0)), insn);
5014 JUMP_LABEL (new) = XEXP (src, 0);
5015 LABEL_NUSES (XEXP (src, 0))++;
5017 /* Make sure to copy over REG_NON_LOCAL_GOTO. */
5018 note = find_reg_note (insn, REG_NON_LOCAL_GOTO, 0);
5019 if (note)
5021 XEXP (note, 1) = NULL_RTX;
5022 REG_NOTES (new) = note;
5025 delete_insn_and_edges (insn);
5026 insn = new;
5028 else
5029 INSN_CODE (insn) = -1;
5031 /* Do not bother deleting any unreachable code, let jump do it. */
5032 cse_jumps_altered = true;
5033 sets[i].rtl = 0;
5036 /* If destination is volatile, invalidate it and then do no further
5037 processing for this assignment. */
5039 else if (do_not_record)
5041 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5042 invalidate (dest, VOIDmode);
5043 else if (MEM_P (dest))
5044 invalidate (dest, VOIDmode);
5045 else if (GET_CODE (dest) == STRICT_LOW_PART
5046 || GET_CODE (dest) == ZERO_EXTRACT)
5047 invalidate (XEXP (dest, 0), GET_MODE (dest));
5048 sets[i].rtl = 0;
5051 if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
5052 sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode);
5054 #ifdef HAVE_cc0
5055 /* If setting CC0, record what it was set to, or a constant, if it
5056 is equivalent to a constant. If it is being set to a floating-point
5057 value, make a COMPARE with the appropriate constant of 0. If we
5058 don't do this, later code can interpret this as a test against
5059 const0_rtx, which can cause problems if we try to put it into an
5060 insn as a floating-point operand. */
5061 if (dest == cc0_rtx)
5063 this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src;
5064 this_insn_cc0_mode = mode;
5065 if (FLOAT_MODE_P (mode))
5066 this_insn_cc0 = gen_rtx_COMPARE (VOIDmode, this_insn_cc0,
5067 CONST0_RTX (mode));
5069 #endif
5072 /* Now enter all non-volatile source expressions in the hash table
5073 if they are not already present.
5074 Record their equivalence classes in src_elt.
5075 This way we can insert the corresponding destinations into
5076 the same classes even if the actual sources are no longer in them
5077 (having been invalidated). */
5079 if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
5080 && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
5082 struct table_elt *elt;
5083 struct table_elt *classp = sets[0].src_elt;
5084 rtx dest = SET_DEST (sets[0].rtl);
5085 enum machine_mode eqvmode = GET_MODE (dest);
5087 if (GET_CODE (dest) == STRICT_LOW_PART)
5089 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
5090 classp = 0;
5092 if (insert_regs (src_eqv, classp, 0))
5094 rehash_using_reg (src_eqv);
5095 src_eqv_hash = HASH (src_eqv, eqvmode);
5097 elt = insert (src_eqv, classp, src_eqv_hash, eqvmode);
5098 elt->in_memory = src_eqv_in_memory;
5099 src_eqv_elt = elt;
5101 /* Check to see if src_eqv_elt is the same as a set source which
5102 does not yet have an elt, and if so set the elt of the set source
5103 to src_eqv_elt. */
5104 for (i = 0; i < n_sets; i++)
5105 if (sets[i].rtl && sets[i].src_elt == 0
5106 && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv))
5107 sets[i].src_elt = src_eqv_elt;
5110 for (i = 0; i < n_sets; i++)
5111 if (sets[i].rtl && ! sets[i].src_volatile
5112 && ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
5114 if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
5116 /* REG_EQUAL in setting a STRICT_LOW_PART
5117 gives an equivalent for the entire destination register,
5118 not just for the subreg being stored in now.
5119 This is a more interesting equivalence, so we arrange later
5120 to treat the entire reg as the destination. */
5121 sets[i].src_elt = src_eqv_elt;
5122 sets[i].src_hash = src_eqv_hash;
5124 else
5126 /* Insert source and constant equivalent into hash table, if not
5127 already present. */
5128 struct table_elt *classp = src_eqv_elt;
5129 rtx src = sets[i].src;
5130 rtx dest = SET_DEST (sets[i].rtl);
5131 enum machine_mode mode
5132 = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
5134 /* It's possible that we have a source value known to be
5135 constant but don't have a REG_EQUAL note on the insn.
5136 Lack of a note will mean src_eqv_elt will be NULL. This
5137 can happen where we've generated a SUBREG to access a
5138 CONST_INT that is already in a register in a wider mode.
5139 Ensure that the source expression is put in the proper
5140 constant class. */
5141 if (!classp)
5142 classp = sets[i].src_const_elt;
5144 if (sets[i].src_elt == 0)
5146 /* Don't put a hard register source into the table if this is
5147 the last insn of a libcall. In this case, we only need
5148 to put src_eqv_elt in src_elt. */
5149 if (! find_reg_note (insn, REG_RETVAL, NULL_RTX))
5151 struct table_elt *elt;
5153 /* Note that these insert_regs calls cannot remove
5154 any of the src_elt's, because they would have failed to
5155 match if not still valid. */
5156 if (insert_regs (src, classp, 0))
5158 rehash_using_reg (src);
5159 sets[i].src_hash = HASH (src, mode);
5161 elt = insert (src, classp, sets[i].src_hash, mode);
5162 elt->in_memory = sets[i].src_in_memory;
5163 sets[i].src_elt = classp = elt;
5165 else
5166 sets[i].src_elt = classp;
5168 if (sets[i].src_const && sets[i].src_const_elt == 0
5169 && src != sets[i].src_const
5170 && ! rtx_equal_p (sets[i].src_const, src))
5171 sets[i].src_elt = insert (sets[i].src_const, classp,
5172 sets[i].src_const_hash, mode);
5175 else if (sets[i].src_elt == 0)
5176 /* If we did not insert the source into the hash table (e.g., it was
5177 volatile), note the equivalence class for the REG_EQUAL value, if any,
5178 so that the destination goes into that class. */
5179 sets[i].src_elt = src_eqv_elt;
5181 /* Record destination addresses in the hash table. This allows us to
5182 check if they are invalidated by other sets. */
5183 for (i = 0; i < n_sets; i++)
5185 if (sets[i].rtl)
5187 rtx x = sets[i].inner_dest;
5188 struct table_elt *elt;
5189 enum machine_mode mode;
5190 unsigned hash;
5192 if (MEM_P (x))
5194 x = XEXP (x, 0);
5195 mode = GET_MODE (x);
5196 hash = HASH (x, mode);
5197 elt = lookup (x, hash, mode);
5198 if (!elt)
5200 if (insert_regs (x, NULL, 0))
5202 rtx dest = SET_DEST (sets[i].rtl);
5204 rehash_using_reg (x);
5205 hash = HASH (x, mode);
5206 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5208 elt = insert (x, NULL, hash, mode);
5211 sets[i].dest_addr_elt = elt;
5213 else
5214 sets[i].dest_addr_elt = NULL;
5218 invalidate_from_clobbers (x);
5220 /* Some registers are invalidated by subroutine calls. Memory is
5221 invalidated by non-constant calls. */
5223 if (CALL_P (insn))
5225 if (! CONST_OR_PURE_CALL_P (insn))
5226 invalidate_memory ();
5227 invalidate_for_call ();
5230 /* Now invalidate everything set by this instruction.
5231 If a SUBREG or other funny destination is being set,
5232 sets[i].rtl is still nonzero, so here we invalidate the reg
5233 a part of which is being set. */
5235 for (i = 0; i < n_sets; i++)
5236 if (sets[i].rtl)
5238 /* We can't use the inner dest, because the mode associated with
5239 a ZERO_EXTRACT is significant. */
5240 rtx dest = SET_DEST (sets[i].rtl);
5242 /* Needed for registers to remove the register from its
5243 previous quantity's chain.
5244 Needed for memory if this is a nonvarying address, unless
5245 we have just done an invalidate_memory that covers even those. */
5246 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5247 invalidate (dest, VOIDmode);
5248 else if (MEM_P (dest))
5249 invalidate (dest, VOIDmode);
5250 else if (GET_CODE (dest) == STRICT_LOW_PART
5251 || GET_CODE (dest) == ZERO_EXTRACT)
5252 invalidate (XEXP (dest, 0), GET_MODE (dest));
5255 /* A volatile ASM invalidates everything. */
5256 if (NONJUMP_INSN_P (insn)
5257 && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
5258 && MEM_VOLATILE_P (PATTERN (insn)))
5259 flush_hash_table ();
5261 /* Don't cse over a call to setjmp; on some machines (eg VAX)
5262 the regs restored by the longjmp come from a later time
5263 than the setjmp. */
5264 if (CALL_P (insn) && find_reg_note (insn, REG_SETJMP, NULL))
5266 flush_hash_table ();
5267 goto done;
5270 /* Make sure registers mentioned in destinations
5271 are safe for use in an expression to be inserted.
5272 This removes from the hash table
5273 any invalid entry that refers to one of these registers.
5275 We don't care about the return value from mention_regs because
5276 we are going to hash the SET_DEST values unconditionally. */
5278 for (i = 0; i < n_sets; i++)
5280 if (sets[i].rtl)
5282 rtx x = SET_DEST (sets[i].rtl);
5284 if (!REG_P (x))
5285 mention_regs (x);
5286 else
5288 /* We used to rely on all references to a register becoming
5289 inaccessible when a register changes to a new quantity,
5290 since that changes the hash code. However, that is not
5291 safe, since after HASH_SIZE new quantities we get a
5292 hash 'collision' of a register with its own invalid
5293 entries. And since SUBREGs have been changed not to
5294 change their hash code with the hash code of the register,
5295 it wouldn't work any longer at all. So we have to check
5296 for any invalid references lying around now.
5297 This code is similar to the REG case in mention_regs,
5298 but it knows that reg_tick has been incremented, and
5299 it leaves reg_in_table as -1 . */
5300 unsigned int regno = REGNO (x);
5301 unsigned int endregno = END_REGNO (x);
5302 unsigned int i;
5304 for (i = regno; i < endregno; i++)
5306 if (REG_IN_TABLE (i) >= 0)
5308 remove_invalid_refs (i);
5309 REG_IN_TABLE (i) = -1;
5316 /* We may have just removed some of the src_elt's from the hash table.
5317 So replace each one with the current head of the same class.
5318 Also check if destination addresses have been removed. */
5320 for (i = 0; i < n_sets; i++)
5321 if (sets[i].rtl)
5323 if (sets[i].dest_addr_elt
5324 && sets[i].dest_addr_elt->first_same_value == 0)
5326 /* The elt was removed, which means this destination is not
5327 valid after this instruction. */
5328 sets[i].rtl = NULL_RTX;
5330 else if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
5331 /* If elt was removed, find current head of same class,
5332 or 0 if nothing remains of that class. */
5334 struct table_elt *elt = sets[i].src_elt;
5336 while (elt && elt->prev_same_value)
5337 elt = elt->prev_same_value;
5339 while (elt && elt->first_same_value == 0)
5340 elt = elt->next_same_value;
5341 sets[i].src_elt = elt ? elt->first_same_value : 0;
5345 /* Now insert the destinations into their equivalence classes. */
5347 for (i = 0; i < n_sets; i++)
5348 if (sets[i].rtl)
5350 rtx dest = SET_DEST (sets[i].rtl);
5351 struct table_elt *elt;
5353 /* Don't record value if we are not supposed to risk allocating
5354 floating-point values in registers that might be wider than
5355 memory. */
5356 if ((flag_float_store
5357 && MEM_P (dest)
5358 && FLOAT_MODE_P (GET_MODE (dest)))
5359 /* Don't record BLKmode values, because we don't know the
5360 size of it, and can't be sure that other BLKmode values
5361 have the same or smaller size. */
5362 || GET_MODE (dest) == BLKmode
5363 /* Don't record values of destinations set inside a libcall block
5364 since we might delete the libcall. Things should have been set
5365 up so we won't want to reuse such a value, but we play it safe
5366 here. */
5367 || libcall_insn
5368 /* If we didn't put a REG_EQUAL value or a source into the hash
5369 table, there is no point is recording DEST. */
5370 || sets[i].src_elt == 0
5371 /* If DEST is a paradoxical SUBREG and SRC is a ZERO_EXTEND
5372 or SIGN_EXTEND, don't record DEST since it can cause
5373 some tracking to be wrong.
5375 ??? Think about this more later. */
5376 || (GET_CODE (dest) == SUBREG
5377 && (GET_MODE_SIZE (GET_MODE (dest))
5378 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
5379 && (GET_CODE (sets[i].src) == SIGN_EXTEND
5380 || GET_CODE (sets[i].src) == ZERO_EXTEND)))
5381 continue;
5383 /* STRICT_LOW_PART isn't part of the value BEING set,
5384 and neither is the SUBREG inside it.
5385 Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT. */
5386 if (GET_CODE (dest) == STRICT_LOW_PART)
5387 dest = SUBREG_REG (XEXP (dest, 0));
5389 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5390 /* Registers must also be inserted into chains for quantities. */
5391 if (insert_regs (dest, sets[i].src_elt, 1))
5393 /* If `insert_regs' changes something, the hash code must be
5394 recalculated. */
5395 rehash_using_reg (dest);
5396 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5399 elt = insert (dest, sets[i].src_elt,
5400 sets[i].dest_hash, GET_MODE (dest));
5402 elt->in_memory = (MEM_P (sets[i].inner_dest)
5403 && !MEM_READONLY_P (sets[i].inner_dest));
5405 /* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
5406 narrower than M2, and both M1 and M2 are the same number of words,
5407 we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
5408 make that equivalence as well.
5410 However, BAR may have equivalences for which gen_lowpart
5411 will produce a simpler value than gen_lowpart applied to
5412 BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
5413 BAR's equivalences. If we don't get a simplified form, make
5414 the SUBREG. It will not be used in an equivalence, but will
5415 cause two similar assignments to be detected.
5417 Note the loop below will find SUBREG_REG (DEST) since we have
5418 already entered SRC and DEST of the SET in the table. */
5420 if (GET_CODE (dest) == SUBREG
5421 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1)
5422 / UNITS_PER_WORD)
5423 == (GET_MODE_SIZE (GET_MODE (dest)) - 1) / UNITS_PER_WORD)
5424 && (GET_MODE_SIZE (GET_MODE (dest))
5425 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
5426 && sets[i].src_elt != 0)
5428 enum machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
5429 struct table_elt *elt, *classp = 0;
5431 for (elt = sets[i].src_elt->first_same_value; elt;
5432 elt = elt->next_same_value)
5434 rtx new_src = 0;
5435 unsigned src_hash;
5436 struct table_elt *src_elt;
5437 int byte = 0;
5439 /* Ignore invalid entries. */
5440 if (!REG_P (elt->exp)
5441 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
5442 continue;
5444 /* We may have already been playing subreg games. If the
5445 mode is already correct for the destination, use it. */
5446 if (GET_MODE (elt->exp) == new_mode)
5447 new_src = elt->exp;
5448 else
5450 /* Calculate big endian correction for the SUBREG_BYTE.
5451 We have already checked that M1 (GET_MODE (dest))
5452 is not narrower than M2 (new_mode). */
5453 if (BYTES_BIG_ENDIAN)
5454 byte = (GET_MODE_SIZE (GET_MODE (dest))
5455 - GET_MODE_SIZE (new_mode));
5457 new_src = simplify_gen_subreg (new_mode, elt->exp,
5458 GET_MODE (dest), byte);
5461 /* The call to simplify_gen_subreg fails if the value
5462 is VOIDmode, yet we can't do any simplification, e.g.
5463 for EXPR_LISTs denoting function call results.
5464 It is invalid to construct a SUBREG with a VOIDmode
5465 SUBREG_REG, hence a zero new_src means we can't do
5466 this substitution. */
5467 if (! new_src)
5468 continue;
5470 src_hash = HASH (new_src, new_mode);
5471 src_elt = lookup (new_src, src_hash, new_mode);
5473 /* Put the new source in the hash table is if isn't
5474 already. */
5475 if (src_elt == 0)
5477 if (insert_regs (new_src, classp, 0))
5479 rehash_using_reg (new_src);
5480 src_hash = HASH (new_src, new_mode);
5482 src_elt = insert (new_src, classp, src_hash, new_mode);
5483 src_elt->in_memory = elt->in_memory;
5485 else if (classp && classp != src_elt->first_same_value)
5486 /* Show that two things that we've seen before are
5487 actually the same. */
5488 merge_equiv_classes (src_elt, classp);
5490 classp = src_elt->first_same_value;
5491 /* Ignore invalid entries. */
5492 while (classp
5493 && !REG_P (classp->exp)
5494 && ! exp_equiv_p (classp->exp, classp->exp, 1, false))
5495 classp = classp->next_same_value;
5500 /* Special handling for (set REG0 REG1) where REG0 is the
5501 "cheapest", cheaper than REG1. After cse, REG1 will probably not
5502 be used in the sequel, so (if easily done) change this insn to
5503 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
5504 that computed their value. Then REG1 will become a dead store
5505 and won't cloud the situation for later optimizations.
5507 Do not make this change if REG1 is a hard register, because it will
5508 then be used in the sequel and we may be changing a two-operand insn
5509 into a three-operand insn.
5511 Also do not do this if we are operating on a copy of INSN.
5513 Also don't do this if INSN ends a libcall; this would cause an unrelated
5514 register to be set in the middle of a libcall, and we then get bad code
5515 if the libcall is deleted. */
5517 if (n_sets == 1 && sets[0].rtl && REG_P (SET_DEST (sets[0].rtl))
5518 && NEXT_INSN (PREV_INSN (insn)) == insn
5519 && REG_P (SET_SRC (sets[0].rtl))
5520 && REGNO (SET_SRC (sets[0].rtl)) >= FIRST_PSEUDO_REGISTER
5521 && REGNO_QTY_VALID_P (REGNO (SET_SRC (sets[0].rtl))))
5523 int src_q = REG_QTY (REGNO (SET_SRC (sets[0].rtl)));
5524 struct qty_table_elem *src_ent = &qty_table[src_q];
5526 if ((src_ent->first_reg == REGNO (SET_DEST (sets[0].rtl)))
5527 && ! find_reg_note (insn, REG_RETVAL, NULL_RTX))
5529 /* Scan for the previous nonnote insn, but stop at a basic
5530 block boundary. */
5531 rtx prev = insn;
5532 rtx bb_head = BB_HEAD (BLOCK_FOR_INSN (insn));
5535 prev = PREV_INSN (prev);
5537 while (prev != bb_head && NOTE_P (prev));
5539 /* Do not swap the registers around if the previous instruction
5540 attaches a REG_EQUIV note to REG1.
5542 ??? It's not entirely clear whether we can transfer a REG_EQUIV
5543 from the pseudo that originally shadowed an incoming argument
5544 to another register. Some uses of REG_EQUIV might rely on it
5545 being attached to REG1 rather than REG2.
5547 This section previously turned the REG_EQUIV into a REG_EQUAL
5548 note. We cannot do that because REG_EQUIV may provide an
5549 uninitialized stack slot when REG_PARM_STACK_SPACE is used. */
5550 if (NONJUMP_INSN_P (prev)
5551 && GET_CODE (PATTERN (prev)) == SET
5552 && SET_DEST (PATTERN (prev)) == SET_SRC (sets[0].rtl)
5553 && ! find_reg_note (prev, REG_EQUIV, NULL_RTX))
5555 rtx dest = SET_DEST (sets[0].rtl);
5556 rtx src = SET_SRC (sets[0].rtl);
5557 rtx note;
5559 validate_change (prev, &SET_DEST (PATTERN (prev)), dest, 1);
5560 validate_change (insn, &SET_DEST (sets[0].rtl), src, 1);
5561 validate_change (insn, &SET_SRC (sets[0].rtl), dest, 1);
5562 apply_change_group ();
5564 /* If INSN has a REG_EQUAL note, and this note mentions
5565 REG0, then we must delete it, because the value in
5566 REG0 has changed. If the note's value is REG1, we must
5567 also delete it because that is now this insn's dest. */
5568 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
5569 if (note != 0
5570 && (reg_mentioned_p (dest, XEXP (note, 0))
5571 || rtx_equal_p (src, XEXP (note, 0))))
5572 remove_note (insn, note);
5577 done:;
5580 /* Remove from the hash table all expressions that reference memory. */
5582 static void
5583 invalidate_memory (void)
5585 int i;
5586 struct table_elt *p, *next;
5588 for (i = 0; i < HASH_SIZE; i++)
5589 for (p = table[i]; p; p = next)
5591 next = p->next_same_hash;
5592 if (p->in_memory)
5593 remove_from_table (p, i);
5597 /* Perform invalidation on the basis of everything about an insn
5598 except for invalidating the actual places that are SET in it.
5599 This includes the places CLOBBERed, and anything that might
5600 alias with something that is SET or CLOBBERed.
5602 X is the pattern of the insn. */
5604 static void
5605 invalidate_from_clobbers (rtx x)
5607 if (GET_CODE (x) == CLOBBER)
5609 rtx ref = XEXP (x, 0);
5610 if (ref)
5612 if (REG_P (ref) || GET_CODE (ref) == SUBREG
5613 || MEM_P (ref))
5614 invalidate (ref, VOIDmode);
5615 else if (GET_CODE (ref) == STRICT_LOW_PART
5616 || GET_CODE (ref) == ZERO_EXTRACT)
5617 invalidate (XEXP (ref, 0), GET_MODE (ref));
5620 else if (GET_CODE (x) == PARALLEL)
5622 int i;
5623 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
5625 rtx y = XVECEXP (x, 0, i);
5626 if (GET_CODE (y) == CLOBBER)
5628 rtx ref = XEXP (y, 0);
5629 if (REG_P (ref) || GET_CODE (ref) == SUBREG
5630 || MEM_P (ref))
5631 invalidate (ref, VOIDmode);
5632 else if (GET_CODE (ref) == STRICT_LOW_PART
5633 || GET_CODE (ref) == ZERO_EXTRACT)
5634 invalidate (XEXP (ref, 0), GET_MODE (ref));
5640 /* Process X, part of the REG_NOTES of an insn. Look at any REG_EQUAL notes
5641 and replace any registers in them with either an equivalent constant
5642 or the canonical form of the register. If we are inside an address,
5643 only do this if the address remains valid.
5645 OBJECT is 0 except when within a MEM in which case it is the MEM.
5647 Return the replacement for X. */
5649 static rtx
5650 cse_process_notes_1 (rtx x, rtx object, bool *changed)
5652 enum rtx_code code = GET_CODE (x);
5653 const char *fmt = GET_RTX_FORMAT (code);
5654 int i;
5656 switch (code)
5658 case CONST_INT:
5659 case CONST:
5660 case SYMBOL_REF:
5661 case LABEL_REF:
5662 case CONST_DOUBLE:
5663 case CONST_FIXED:
5664 case CONST_VECTOR:
5665 case PC:
5666 case CC0:
5667 case LO_SUM:
5668 return x;
5670 case MEM:
5671 validate_change (x, &XEXP (x, 0),
5672 cse_process_notes (XEXP (x, 0), x, changed), 0);
5673 return x;
5675 case EXPR_LIST:
5676 case INSN_LIST:
5677 if (REG_NOTE_KIND (x) == REG_EQUAL)
5678 XEXP (x, 0) = cse_process_notes (XEXP (x, 0), NULL_RTX, changed);
5679 if (XEXP (x, 1))
5680 XEXP (x, 1) = cse_process_notes (XEXP (x, 1), NULL_RTX, changed);
5681 return x;
5683 case SIGN_EXTEND:
5684 case ZERO_EXTEND:
5685 case SUBREG:
5687 rtx new = cse_process_notes (XEXP (x, 0), object, changed);
5688 /* We don't substitute VOIDmode constants into these rtx,
5689 since they would impede folding. */
5690 if (GET_MODE (new) != VOIDmode)
5691 validate_change (object, &XEXP (x, 0), new, 0);
5692 return x;
5695 case REG:
5696 i = REG_QTY (REGNO (x));
5698 /* Return a constant or a constant register. */
5699 if (REGNO_QTY_VALID_P (REGNO (x)))
5701 struct qty_table_elem *ent = &qty_table[i];
5703 if (ent->const_rtx != NULL_RTX
5704 && (CONSTANT_P (ent->const_rtx)
5705 || REG_P (ent->const_rtx)))
5707 rtx new = gen_lowpart (GET_MODE (x), ent->const_rtx);
5708 if (new)
5709 return copy_rtx (new);
5713 /* Otherwise, canonicalize this register. */
5714 return canon_reg (x, NULL_RTX);
5716 default:
5717 break;
5720 for (i = 0; i < GET_RTX_LENGTH (code); i++)
5721 if (fmt[i] == 'e')
5722 validate_change (object, &XEXP (x, i),
5723 cse_process_notes (XEXP (x, i), object, changed), 0);
5725 return x;
5728 static rtx
5729 cse_process_notes (rtx x, rtx object, bool *changed)
5731 rtx new = cse_process_notes_1 (x, object, changed);
5732 if (new != x)
5733 *changed = true;
5734 return new;
5738 /* Find a path in the CFG, starting with FIRST_BB to perform CSE on.
5740 DATA is a pointer to a struct cse_basic_block_data, that is used to
5741 describe the path.
5742 It is filled with a queue of basic blocks, starting with FIRST_BB
5743 and following a trace through the CFG.
5745 If all paths starting at FIRST_BB have been followed, or no new path
5746 starting at FIRST_BB can be constructed, this function returns FALSE.
5747 Otherwise, DATA->path is filled and the function returns TRUE indicating
5748 that a path to follow was found.
5750 If FOLLOW_JUMPS is false, the maximum path length is 1 and the only
5751 block in the path will be FIRST_BB. */
5753 static bool
5754 cse_find_path (basic_block first_bb, struct cse_basic_block_data *data,
5755 int follow_jumps)
5757 basic_block bb;
5758 edge e;
5759 int path_size;
5761 SET_BIT (cse_visited_basic_blocks, first_bb->index);
5763 /* See if there is a previous path. */
5764 path_size = data->path_size;
5766 /* There is a previous path. Make sure it started with FIRST_BB. */
5767 if (path_size)
5768 gcc_assert (data->path[0].bb == first_bb);
5770 /* There was only one basic block in the last path. Clear the path and
5771 return, so that paths starting at another basic block can be tried. */
5772 if (path_size == 1)
5774 path_size = 0;
5775 goto done;
5778 /* If the path was empty from the beginning, construct a new path. */
5779 if (path_size == 0)
5780 data->path[path_size++].bb = first_bb;
5781 else
5783 /* Otherwise, path_size must be equal to or greater than 2, because
5784 a previous path exists that is at least two basic blocks long.
5786 Update the previous branch path, if any. If the last branch was
5787 previously along the branch edge, take the fallthrough edge now. */
5788 while (path_size >= 2)
5790 basic_block last_bb_in_path, previous_bb_in_path;
5791 edge e;
5793 --path_size;
5794 last_bb_in_path = data->path[path_size].bb;
5795 previous_bb_in_path = data->path[path_size - 1].bb;
5797 /* If we previously followed a path along the branch edge, try
5798 the fallthru edge now. */
5799 if (EDGE_COUNT (previous_bb_in_path->succs) == 2
5800 && any_condjump_p (BB_END (previous_bb_in_path))
5801 && (e = find_edge (previous_bb_in_path, last_bb_in_path))
5802 && e == BRANCH_EDGE (previous_bb_in_path))
5804 bb = FALLTHRU_EDGE (previous_bb_in_path)->dest;
5805 if (bb != EXIT_BLOCK_PTR
5806 && single_pred_p (bb)
5807 /* We used to assert here that we would only see blocks
5808 that we have not visited yet. But we may end up
5809 visiting basic blocks twice if the CFG has changed
5810 in this run of cse_main, because when the CFG changes
5811 the topological sort of the CFG also changes. A basic
5812 blocks that previously had more than two predecessors
5813 may now have a single predecessor, and become part of
5814 a path that starts at another basic block.
5816 We still want to visit each basic block only once, so
5817 halt the path here if we have already visited BB. */
5818 && !TEST_BIT (cse_visited_basic_blocks, bb->index))
5820 SET_BIT (cse_visited_basic_blocks, bb->index);
5821 data->path[path_size++].bb = bb;
5822 break;
5826 data->path[path_size].bb = NULL;
5829 /* If only one block remains in the path, bail. */
5830 if (path_size == 1)
5832 path_size = 0;
5833 goto done;
5837 /* Extend the path if possible. */
5838 if (follow_jumps)
5840 bb = data->path[path_size - 1].bb;
5841 while (bb && path_size < PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH))
5843 if (single_succ_p (bb))
5844 e = single_succ_edge (bb);
5845 else if (EDGE_COUNT (bb->succs) == 2
5846 && any_condjump_p (BB_END (bb)))
5848 /* First try to follow the branch. If that doesn't lead
5849 to a useful path, follow the fallthru edge. */
5850 e = BRANCH_EDGE (bb);
5851 if (!single_pred_p (e->dest))
5852 e = FALLTHRU_EDGE (bb);
5854 else
5855 e = NULL;
5857 if (e && e->dest != EXIT_BLOCK_PTR
5858 && single_pred_p (e->dest)
5859 /* Avoid visiting basic blocks twice. The large comment
5860 above explains why this can happen. */
5861 && !TEST_BIT (cse_visited_basic_blocks, e->dest->index))
5863 basic_block bb2 = e->dest;
5864 SET_BIT (cse_visited_basic_blocks, bb2->index);
5865 data->path[path_size++].bb = bb2;
5866 bb = bb2;
5868 else
5869 bb = NULL;
5873 done:
5874 data->path_size = path_size;
5875 return path_size != 0;
5878 /* Dump the path in DATA to file F. NSETS is the number of sets
5879 in the path. */
5881 static void
5882 cse_dump_path (struct cse_basic_block_data *data, int nsets, FILE *f)
5884 int path_entry;
5886 fprintf (f, ";; Following path with %d sets: ", nsets);
5887 for (path_entry = 0; path_entry < data->path_size; path_entry++)
5888 fprintf (f, "%d ", (data->path[path_entry].bb)->index);
5889 fputc ('\n', dump_file);
5890 fflush (f);
5894 /* Return true if BB has exception handling successor edges. */
5896 static bool
5897 have_eh_succ_edges (basic_block bb)
5899 edge e;
5900 edge_iterator ei;
5902 FOR_EACH_EDGE (e, ei, bb->succs)
5903 if (e->flags & EDGE_EH)
5904 return true;
5906 return false;
5910 /* Scan to the end of the path described by DATA. Return an estimate of
5911 the total number of SETs of all insns in the path. */
5913 static void
5914 cse_prescan_path (struct cse_basic_block_data *data)
5916 int nsets = 0;
5917 int path_size = data->path_size;
5918 int path_entry;
5920 /* Scan to end of each basic block in the path. */
5921 for (path_entry = 0; path_entry < path_size; path_entry++)
5923 basic_block bb;
5924 rtx insn;
5926 bb = data->path[path_entry].bb;
5928 FOR_BB_INSNS (bb, insn)
5930 if (!INSN_P (insn))
5931 continue;
5933 /* A PARALLEL can have lots of SETs in it,
5934 especially if it is really an ASM_OPERANDS. */
5935 if (GET_CODE (PATTERN (insn)) == PARALLEL)
5936 nsets += XVECLEN (PATTERN (insn), 0);
5937 else
5938 nsets += 1;
5942 data->nsets = nsets;
5945 /* Process a single extended basic block described by EBB_DATA. */
5947 static void
5948 cse_extended_basic_block (struct cse_basic_block_data *ebb_data)
5950 int path_size = ebb_data->path_size;
5951 int path_entry;
5952 int num_insns = 0;
5954 /* Allocate the space needed by qty_table. */
5955 qty_table = XNEWVEC (struct qty_table_elem, max_qty);
5957 new_basic_block ();
5958 cse_ebb_live_in = df_get_live_in (ebb_data->path[0].bb);
5959 cse_ebb_live_out = df_get_live_out (ebb_data->path[path_size - 1].bb);
5960 for (path_entry = 0; path_entry < path_size; path_entry++)
5962 basic_block bb;
5963 rtx insn;
5964 rtx libcall_insn = NULL_RTX;
5965 int no_conflict = 0;
5967 bb = ebb_data->path[path_entry].bb;
5968 FOR_BB_INSNS (bb, insn)
5970 /* If we have processed 1,000 insns, flush the hash table to
5971 avoid extreme quadratic behavior. We must not include NOTEs
5972 in the count since there may be more of them when generating
5973 debugging information. If we clear the table at different
5974 times, code generated with -g -O might be different than code
5975 generated with -O but not -g.
5977 FIXME: This is a real kludge and needs to be done some other
5978 way. */
5979 if (INSN_P (insn)
5980 && num_insns++ > PARAM_VALUE (PARAM_MAX_CSE_INSNS))
5982 flush_hash_table ();
5983 num_insns = 0;
5986 if (INSN_P (insn))
5988 /* Process notes first so we have all notes in canonical forms
5989 when looking for duplicate operations. */
5990 if (REG_NOTES (insn))
5992 bool changed = false;
5993 REG_NOTES (insn) = cse_process_notes (REG_NOTES (insn),
5994 NULL_RTX, &changed);
5995 if (changed)
5996 df_notes_rescan (insn);
5999 /* Track when we are inside in LIBCALL block. Inside such
6000 a block we do not want to record destinations. The last
6001 insn of a LIBCALL block is not considered to be part of
6002 the block, since its destination is the result of the
6003 block and hence should be recorded. */
6004 if (REG_NOTES (insn) != 0)
6006 rtx p;
6008 if ((p = find_reg_note (insn, REG_LIBCALL, NULL_RTX)))
6009 libcall_insn = XEXP (p, 0);
6010 else if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
6012 /* Keep libcall_insn for the last SET insn of
6013 a no-conflict block to prevent changing the
6014 destination. */
6015 if (!no_conflict)
6016 libcall_insn = NULL_RTX;
6017 else
6018 no_conflict = -1;
6020 else if (find_reg_note (insn, REG_NO_CONFLICT, NULL_RTX))
6021 no_conflict = 1;
6024 cse_insn (insn, libcall_insn);
6026 /* If we kept libcall_insn for a no-conflict bock,
6027 clear it here. */
6028 if (no_conflict == -1)
6030 libcall_insn = NULL_RTX;
6031 no_conflict = 0;
6034 /* If we haven't already found an insn where we added a LABEL_REF,
6035 check this one. */
6036 if (INSN_P (insn) && !recorded_label_ref
6037 && for_each_rtx (&PATTERN (insn), check_for_label_ref,
6038 (void *) insn))
6039 recorded_label_ref = true;
6041 #ifdef HAVE_cc0
6042 /* If the previous insn set CC0 and this insn no longer
6043 references CC0, delete the previous insn. Here we use
6044 fact that nothing expects CC0 to be valid over an insn,
6045 which is true until the final pass. */
6047 rtx prev_insn, tem;
6049 prev_insn = PREV_INSN (insn);
6050 if (prev_insn && NONJUMP_INSN_P (prev_insn)
6051 && (tem = single_set (prev_insn)) != 0
6052 && SET_DEST (tem) == cc0_rtx
6053 && ! reg_mentioned_p (cc0_rtx, PATTERN (insn)))
6054 delete_insn (prev_insn);
6057 /* If this insn is not the last insn in the basic block,
6058 it will be PREV_INSN(insn) in the next iteration. If
6059 we recorded any CC0-related information for this insn,
6060 remember it. */
6061 if (insn != BB_END (bb))
6063 prev_insn_cc0 = this_insn_cc0;
6064 prev_insn_cc0_mode = this_insn_cc0_mode;
6066 #endif
6070 /* Make sure that libcalls don't span multiple basic blocks. */
6071 gcc_assert (libcall_insn == NULL_RTX);
6073 /* With non-call exceptions, we are not always able to update
6074 the CFG properly inside cse_insn. So clean up possibly
6075 redundant EH edges here. */
6076 if (flag_non_call_exceptions && have_eh_succ_edges (bb))
6077 cse_cfg_altered |= purge_dead_edges (bb);
6079 /* If we changed a conditional jump, we may have terminated
6080 the path we are following. Check that by verifying that
6081 the edge we would take still exists. If the edge does
6082 not exist anymore, purge the remainder of the path.
6083 Note that this will cause us to return to the caller. */
6084 if (path_entry < path_size - 1)
6086 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6087 if (!find_edge (bb, next_bb))
6091 path_size--;
6093 /* If we truncate the path, we must also reset the
6094 visited bit on the remaining blocks in the path,
6095 or we will never visit them at all. */
6096 RESET_BIT (cse_visited_basic_blocks,
6097 ebb_data->path[path_size].bb->index);
6098 ebb_data->path[path_size].bb = NULL;
6100 while (path_size - 1 != path_entry);
6101 ebb_data->path_size = path_size;
6105 /* If this is a conditional jump insn, record any known
6106 equivalences due to the condition being tested. */
6107 insn = BB_END (bb);
6108 if (path_entry < path_size - 1
6109 && JUMP_P (insn)
6110 && single_set (insn)
6111 && any_condjump_p (insn))
6113 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6114 bool taken = (next_bb == BRANCH_EDGE (bb)->dest);
6115 record_jump_equiv (insn, taken);
6118 #ifdef HAVE_cc0
6119 /* Clear the CC0-tracking related insns, they can't provide
6120 useful information across basic block boundaries. */
6121 prev_insn_cc0 = 0;
6122 #endif
6125 gcc_assert (next_qty <= max_qty);
6127 free (qty_table);
6131 /* Perform cse on the instructions of a function.
6132 F is the first instruction.
6133 NREGS is one plus the highest pseudo-reg number used in the instruction.
6135 Return 2 if jump optimizations should be redone due to simplifications
6136 in conditional jump instructions.
6137 Return 1 if the CFG should be cleaned up because it has been modified.
6138 Return 0 otherwise. */
6141 cse_main (rtx f ATTRIBUTE_UNUSED, int nregs)
6143 struct cse_basic_block_data ebb_data;
6144 basic_block bb;
6145 int *rc_order = XNEWVEC (int, last_basic_block);
6146 int i, n_blocks;
6148 df_set_flags (DF_LR_RUN_DCE);
6149 df_analyze ();
6150 df_set_flags (DF_DEFER_INSN_RESCAN);
6152 reg_scan (get_insns (), max_reg_num ());
6153 init_cse_reg_info (nregs);
6155 ebb_data.path = XNEWVEC (struct branch_path,
6156 PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH));
6158 cse_cfg_altered = false;
6159 cse_jumps_altered = false;
6160 recorded_label_ref = false;
6161 constant_pool_entries_cost = 0;
6162 constant_pool_entries_regcost = 0;
6163 ebb_data.path_size = 0;
6164 ebb_data.nsets = 0;
6165 rtl_hooks = cse_rtl_hooks;
6167 init_recog ();
6168 init_alias_analysis ();
6170 reg_eqv_table = XNEWVEC (struct reg_eqv_elem, nregs);
6172 /* Set up the table of already visited basic blocks. */
6173 cse_visited_basic_blocks = sbitmap_alloc (last_basic_block);
6174 sbitmap_zero (cse_visited_basic_blocks);
6176 /* Loop over basic blocks in reverse completion order (RPO),
6177 excluding the ENTRY and EXIT blocks. */
6178 n_blocks = pre_and_rev_post_order_compute (NULL, rc_order, false);
6179 i = 0;
6180 while (i < n_blocks)
6182 /* Find the first block in the RPO queue that we have not yet
6183 processed before. */
6186 bb = BASIC_BLOCK (rc_order[i++]);
6188 while (TEST_BIT (cse_visited_basic_blocks, bb->index)
6189 && i < n_blocks);
6191 /* Find all paths starting with BB, and process them. */
6192 while (cse_find_path (bb, &ebb_data, flag_cse_follow_jumps))
6194 /* Pre-scan the path. */
6195 cse_prescan_path (&ebb_data);
6197 /* If this basic block has no sets, skip it. */
6198 if (ebb_data.nsets == 0)
6199 continue;
6201 /* Get a reasonable estimate for the maximum number of qty's
6202 needed for this path. For this, we take the number of sets
6203 and multiply that by MAX_RECOG_OPERANDS. */
6204 max_qty = ebb_data.nsets * MAX_RECOG_OPERANDS;
6206 /* Dump the path we're about to process. */
6207 if (dump_file)
6208 cse_dump_path (&ebb_data, ebb_data.nsets, dump_file);
6210 cse_extended_basic_block (&ebb_data);
6214 /* Clean up. */
6215 end_alias_analysis ();
6216 free (reg_eqv_table);
6217 free (ebb_data.path);
6218 sbitmap_free (cse_visited_basic_blocks);
6219 free (rc_order);
6220 rtl_hooks = general_rtl_hooks;
6222 if (cse_jumps_altered || recorded_label_ref)
6223 return 2;
6224 else if (cse_cfg_altered)
6225 return 1;
6226 else
6227 return 0;
6230 /* Called via for_each_rtx to see if an insn is using a LABEL_REF for
6231 which there isn't a REG_LABEL_OPERAND note.
6232 Return one if so. DATA is the insn. */
6234 static int
6235 check_for_label_ref (rtx *rtl, void *data)
6237 rtx insn = (rtx) data;
6239 /* If this insn uses a LABEL_REF and there isn't a REG_LABEL_OPERAND
6240 note for it, we must rerun jump since it needs to place the note. If
6241 this is a LABEL_REF for a CODE_LABEL that isn't in the insn chain,
6242 don't do this since no REG_LABEL_OPERAND will be added. */
6243 return (GET_CODE (*rtl) == LABEL_REF
6244 && ! LABEL_REF_NONLOCAL_P (*rtl)
6245 && (!JUMP_P (insn)
6246 || !label_is_jump_target_p (XEXP (*rtl, 0), insn))
6247 && LABEL_P (XEXP (*rtl, 0))
6248 && INSN_UID (XEXP (*rtl, 0)) != 0
6249 && ! find_reg_note (insn, REG_LABEL_OPERAND, XEXP (*rtl, 0)));
6252 /* Count the number of times registers are used (not set) in X.
6253 COUNTS is an array in which we accumulate the count, INCR is how much
6254 we count each register usage.
6256 Don't count a usage of DEST, which is the SET_DEST of a SET which
6257 contains X in its SET_SRC. This is because such a SET does not
6258 modify the liveness of DEST.
6259 DEST is set to pc_rtx for a trapping insn, which means that we must count
6260 uses of a SET_DEST regardless because the insn can't be deleted here. */
6262 static void
6263 count_reg_usage (rtx x, int *counts, rtx dest, int incr)
6265 enum rtx_code code;
6266 rtx note;
6267 const char *fmt;
6268 int i, j;
6270 if (x == 0)
6271 return;
6273 switch (code = GET_CODE (x))
6275 case REG:
6276 if (x != dest)
6277 counts[REGNO (x)] += incr;
6278 return;
6280 case PC:
6281 case CC0:
6282 case CONST:
6283 case CONST_INT:
6284 case CONST_DOUBLE:
6285 case CONST_FIXED:
6286 case CONST_VECTOR:
6287 case SYMBOL_REF:
6288 case LABEL_REF:
6289 return;
6291 case CLOBBER:
6292 /* If we are clobbering a MEM, mark any registers inside the address
6293 as being used. */
6294 if (MEM_P (XEXP (x, 0)))
6295 count_reg_usage (XEXP (XEXP (x, 0), 0), counts, NULL_RTX, incr);
6296 return;
6298 case SET:
6299 /* Unless we are setting a REG, count everything in SET_DEST. */
6300 if (!REG_P (SET_DEST (x)))
6301 count_reg_usage (SET_DEST (x), counts, NULL_RTX, incr);
6302 count_reg_usage (SET_SRC (x), counts,
6303 dest ? dest : SET_DEST (x),
6304 incr);
6305 return;
6307 case CALL_INSN:
6308 case INSN:
6309 case JUMP_INSN:
6310 /* We expect dest to be NULL_RTX here. If the insn may trap, mark
6311 this fact by setting DEST to pc_rtx. */
6312 if (flag_non_call_exceptions && may_trap_p (PATTERN (x)))
6313 dest = pc_rtx;
6314 if (code == CALL_INSN)
6315 count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, dest, incr);
6316 count_reg_usage (PATTERN (x), counts, dest, incr);
6318 /* Things used in a REG_EQUAL note aren't dead since loop may try to
6319 use them. */
6321 note = find_reg_equal_equiv_note (x);
6322 if (note)
6324 rtx eqv = XEXP (note, 0);
6326 if (GET_CODE (eqv) == EXPR_LIST)
6327 /* This REG_EQUAL note describes the result of a function call.
6328 Process all the arguments. */
6331 count_reg_usage (XEXP (eqv, 0), counts, dest, incr);
6332 eqv = XEXP (eqv, 1);
6334 while (eqv && GET_CODE (eqv) == EXPR_LIST);
6335 else
6336 count_reg_usage (eqv, counts, dest, incr);
6338 return;
6340 case EXPR_LIST:
6341 if (REG_NOTE_KIND (x) == REG_EQUAL
6342 || (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE)
6343 /* FUNCTION_USAGE expression lists may include (CLOBBER (mem /u)),
6344 involving registers in the address. */
6345 || GET_CODE (XEXP (x, 0)) == CLOBBER)
6346 count_reg_usage (XEXP (x, 0), counts, NULL_RTX, incr);
6348 count_reg_usage (XEXP (x, 1), counts, NULL_RTX, incr);
6349 return;
6351 case ASM_OPERANDS:
6352 /* If the asm is volatile, then this insn cannot be deleted,
6353 and so the inputs *must* be live. */
6354 if (MEM_VOLATILE_P (x))
6355 dest = NULL_RTX;
6356 /* Iterate over just the inputs, not the constraints as well. */
6357 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
6358 count_reg_usage (ASM_OPERANDS_INPUT (x, i), counts, dest, incr);
6359 return;
6361 case INSN_LIST:
6362 gcc_unreachable ();
6364 default:
6365 break;
6368 fmt = GET_RTX_FORMAT (code);
6369 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6371 if (fmt[i] == 'e')
6372 count_reg_usage (XEXP (x, i), counts, dest, incr);
6373 else if (fmt[i] == 'E')
6374 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6375 count_reg_usage (XVECEXP (x, i, j), counts, dest, incr);
6379 /* Return true if set is live. */
6380 static bool
6381 set_live_p (rtx set, rtx insn ATTRIBUTE_UNUSED, /* Only used with HAVE_cc0. */
6382 int *counts)
6384 #ifdef HAVE_cc0
6385 rtx tem;
6386 #endif
6388 if (set_noop_p (set))
6391 #ifdef HAVE_cc0
6392 else if (GET_CODE (SET_DEST (set)) == CC0
6393 && !side_effects_p (SET_SRC (set))
6394 && ((tem = next_nonnote_insn (insn)) == 0
6395 || !INSN_P (tem)
6396 || !reg_referenced_p (cc0_rtx, PATTERN (tem))))
6397 return false;
6398 #endif
6399 else if (!REG_P (SET_DEST (set))
6400 || REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
6401 || counts[REGNO (SET_DEST (set))] != 0
6402 || side_effects_p (SET_SRC (set)))
6403 return true;
6404 return false;
6407 /* Return true if insn is live. */
6409 static bool
6410 insn_live_p (rtx insn, int *counts)
6412 int i;
6413 if (flag_non_call_exceptions && may_trap_p (PATTERN (insn)))
6414 return true;
6415 else if (GET_CODE (PATTERN (insn)) == SET)
6416 return set_live_p (PATTERN (insn), insn, counts);
6417 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
6419 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
6421 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6423 if (GET_CODE (elt) == SET)
6425 if (set_live_p (elt, insn, counts))
6426 return true;
6428 else if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != USE)
6429 return true;
6431 return false;
6433 else
6434 return true;
6437 /* Return true if libcall is dead as a whole. */
6439 static bool
6440 dead_libcall_p (rtx insn, int *counts)
6442 rtx note, set, new;
6444 /* See if there's a REG_EQUAL note on this insn and try to
6445 replace the source with the REG_EQUAL expression.
6447 We assume that insns with REG_RETVALs can only be reg->reg
6448 copies at this point. */
6449 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
6450 if (!note)
6451 return false;
6453 set = single_set (insn);
6454 if (!set)
6455 return false;
6457 new = simplify_rtx (XEXP (note, 0));
6458 if (!new)
6459 new = XEXP (note, 0);
6461 /* While changing insn, we must update the counts accordingly. */
6462 count_reg_usage (insn, counts, NULL_RTX, -1);
6464 if (validate_change (insn, &SET_SRC (set), new, 0))
6466 count_reg_usage (insn, counts, NULL_RTX, 1);
6467 remove_note (insn, find_reg_note (insn, REG_RETVAL, NULL_RTX));
6468 remove_note (insn, note);
6469 return true;
6472 if (CONSTANT_P (new))
6474 new = force_const_mem (GET_MODE (SET_DEST (set)), new);
6475 if (new && validate_change (insn, &SET_SRC (set), new, 0))
6477 count_reg_usage (insn, counts, NULL_RTX, 1);
6478 remove_note (insn, find_reg_note (insn, REG_RETVAL, NULL_RTX));
6479 remove_note (insn, note);
6480 return true;
6484 count_reg_usage (insn, counts, NULL_RTX, 1);
6485 return false;
6488 /* Scan all the insns and delete any that are dead; i.e., they store a register
6489 that is never used or they copy a register to itself.
6491 This is used to remove insns made obviously dead by cse, loop or other
6492 optimizations. It improves the heuristics in loop since it won't try to
6493 move dead invariants out of loops or make givs for dead quantities. The
6494 remaining passes of the compilation are also sped up. */
6497 delete_trivially_dead_insns (rtx insns, int nreg)
6499 int *counts;
6500 rtx insn, prev;
6501 int in_libcall = 0, dead_libcall = 0;
6502 int ndead = 0;
6504 timevar_push (TV_DELETE_TRIVIALLY_DEAD);
6505 /* First count the number of times each register is used. */
6506 counts = XCNEWVEC (int, nreg);
6507 for (insn = insns; insn; insn = NEXT_INSN (insn))
6508 if (INSN_P (insn))
6509 count_reg_usage (insn, counts, NULL_RTX, 1);
6511 /* Go from the last insn to the first and delete insns that only set unused
6512 registers or copy a register to itself. As we delete an insn, remove
6513 usage counts for registers it uses.
6515 The first jump optimization pass may leave a real insn as the last
6516 insn in the function. We must not skip that insn or we may end
6517 up deleting code that is not really dead. */
6518 for (insn = get_last_insn (); insn; insn = prev)
6520 int live_insn = 0;
6522 prev = PREV_INSN (insn);
6523 if (!INSN_P (insn))
6524 continue;
6526 /* Don't delete any insns that are part of a libcall block unless
6527 we can delete the whole libcall block.
6529 Flow or loop might get confused if we did that. Remember
6530 that we are scanning backwards. */
6531 if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
6533 in_libcall = 1;
6534 live_insn = 1;
6535 dead_libcall = dead_libcall_p (insn, counts);
6537 else if (in_libcall)
6538 live_insn = ! dead_libcall;
6539 else
6540 live_insn = insn_live_p (insn, counts);
6542 /* If this is a dead insn, delete it and show registers in it aren't
6543 being used. */
6545 if (! live_insn && dbg_cnt (delete_trivial_dead))
6547 count_reg_usage (insn, counts, NULL_RTX, -1);
6548 delete_insn_and_edges (insn);
6549 ndead++;
6552 if (in_libcall && find_reg_note (insn, REG_LIBCALL, NULL_RTX))
6554 in_libcall = 0;
6555 dead_libcall = 0;
6559 if (dump_file && ndead)
6560 fprintf (dump_file, "Deleted %i trivially dead insns\n",
6561 ndead);
6562 /* Clean up. */
6563 free (counts);
6564 timevar_pop (TV_DELETE_TRIVIALLY_DEAD);
6565 return ndead;
6568 /* This function is called via for_each_rtx. The argument, NEWREG, is
6569 a condition code register with the desired mode. If we are looking
6570 at the same register in a different mode, replace it with
6571 NEWREG. */
6573 static int
6574 cse_change_cc_mode (rtx *loc, void *data)
6576 struct change_cc_mode_args* args = (struct change_cc_mode_args*)data;
6578 if (*loc
6579 && REG_P (*loc)
6580 && REGNO (*loc) == REGNO (args->newreg)
6581 && GET_MODE (*loc) != GET_MODE (args->newreg))
6583 validate_change (args->insn, loc, args->newreg, 1);
6585 return -1;
6587 return 0;
6590 /* Change the mode of any reference to the register REGNO (NEWREG) to
6591 GET_MODE (NEWREG) in INSN. */
6593 static void
6594 cse_change_cc_mode_insn (rtx insn, rtx newreg)
6596 struct change_cc_mode_args args;
6597 int success;
6599 if (!INSN_P (insn))
6600 return;
6602 args.insn = insn;
6603 args.newreg = newreg;
6605 for_each_rtx (&PATTERN (insn), cse_change_cc_mode, &args);
6606 for_each_rtx (&REG_NOTES (insn), cse_change_cc_mode, &args);
6608 /* If the following assertion was triggered, there is most probably
6609 something wrong with the cc_modes_compatible back end function.
6610 CC modes only can be considered compatible if the insn - with the mode
6611 replaced by any of the compatible modes - can still be recognized. */
6612 success = apply_change_group ();
6613 gcc_assert (success);
6616 /* Change the mode of any reference to the register REGNO (NEWREG) to
6617 GET_MODE (NEWREG), starting at START. Stop before END. Stop at
6618 any instruction which modifies NEWREG. */
6620 static void
6621 cse_change_cc_mode_insns (rtx start, rtx end, rtx newreg)
6623 rtx insn;
6625 for (insn = start; insn != end; insn = NEXT_INSN (insn))
6627 if (! INSN_P (insn))
6628 continue;
6630 if (reg_set_p (newreg, insn))
6631 return;
6633 cse_change_cc_mode_insn (insn, newreg);
6637 /* BB is a basic block which finishes with CC_REG as a condition code
6638 register which is set to CC_SRC. Look through the successors of BB
6639 to find blocks which have a single predecessor (i.e., this one),
6640 and look through those blocks for an assignment to CC_REG which is
6641 equivalent to CC_SRC. CAN_CHANGE_MODE indicates whether we are
6642 permitted to change the mode of CC_SRC to a compatible mode. This
6643 returns VOIDmode if no equivalent assignments were found.
6644 Otherwise it returns the mode which CC_SRC should wind up with.
6646 The main complexity in this function is handling the mode issues.
6647 We may have more than one duplicate which we can eliminate, and we
6648 try to find a mode which will work for multiple duplicates. */
6650 static enum machine_mode
6651 cse_cc_succs (basic_block bb, rtx cc_reg, rtx cc_src, bool can_change_mode)
6653 bool found_equiv;
6654 enum machine_mode mode;
6655 unsigned int insn_count;
6656 edge e;
6657 rtx insns[2];
6658 enum machine_mode modes[2];
6659 rtx last_insns[2];
6660 unsigned int i;
6661 rtx newreg;
6662 edge_iterator ei;
6664 /* We expect to have two successors. Look at both before picking
6665 the final mode for the comparison. If we have more successors
6666 (i.e., some sort of table jump, although that seems unlikely),
6667 then we require all beyond the first two to use the same
6668 mode. */
6670 found_equiv = false;
6671 mode = GET_MODE (cc_src);
6672 insn_count = 0;
6673 FOR_EACH_EDGE (e, ei, bb->succs)
6675 rtx insn;
6676 rtx end;
6678 if (e->flags & EDGE_COMPLEX)
6679 continue;
6681 if (EDGE_COUNT (e->dest->preds) != 1
6682 || e->dest == EXIT_BLOCK_PTR)
6683 continue;
6685 end = NEXT_INSN (BB_END (e->dest));
6686 for (insn = BB_HEAD (e->dest); insn != end; insn = NEXT_INSN (insn))
6688 rtx set;
6690 if (! INSN_P (insn))
6691 continue;
6693 /* If CC_SRC is modified, we have to stop looking for
6694 something which uses it. */
6695 if (modified_in_p (cc_src, insn))
6696 break;
6698 /* Check whether INSN sets CC_REG to CC_SRC. */
6699 set = single_set (insn);
6700 if (set
6701 && REG_P (SET_DEST (set))
6702 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
6704 bool found;
6705 enum machine_mode set_mode;
6706 enum machine_mode comp_mode;
6708 found = false;
6709 set_mode = GET_MODE (SET_SRC (set));
6710 comp_mode = set_mode;
6711 if (rtx_equal_p (cc_src, SET_SRC (set)))
6712 found = true;
6713 else if (GET_CODE (cc_src) == COMPARE
6714 && GET_CODE (SET_SRC (set)) == COMPARE
6715 && mode != set_mode
6716 && rtx_equal_p (XEXP (cc_src, 0),
6717 XEXP (SET_SRC (set), 0))
6718 && rtx_equal_p (XEXP (cc_src, 1),
6719 XEXP (SET_SRC (set), 1)))
6722 comp_mode = targetm.cc_modes_compatible (mode, set_mode);
6723 if (comp_mode != VOIDmode
6724 && (can_change_mode || comp_mode == mode))
6725 found = true;
6728 if (found)
6730 found_equiv = true;
6731 if (insn_count < ARRAY_SIZE (insns))
6733 insns[insn_count] = insn;
6734 modes[insn_count] = set_mode;
6735 last_insns[insn_count] = end;
6736 ++insn_count;
6738 if (mode != comp_mode)
6740 gcc_assert (can_change_mode);
6741 mode = comp_mode;
6743 /* The modified insn will be re-recognized later. */
6744 PUT_MODE (cc_src, mode);
6747 else
6749 if (set_mode != mode)
6751 /* We found a matching expression in the
6752 wrong mode, but we don't have room to
6753 store it in the array. Punt. This case
6754 should be rare. */
6755 break;
6757 /* INSN sets CC_REG to a value equal to CC_SRC
6758 with the right mode. We can simply delete
6759 it. */
6760 delete_insn (insn);
6763 /* We found an instruction to delete. Keep looking,
6764 in the hopes of finding a three-way jump. */
6765 continue;
6768 /* We found an instruction which sets the condition
6769 code, so don't look any farther. */
6770 break;
6773 /* If INSN sets CC_REG in some other way, don't look any
6774 farther. */
6775 if (reg_set_p (cc_reg, insn))
6776 break;
6779 /* If we fell off the bottom of the block, we can keep looking
6780 through successors. We pass CAN_CHANGE_MODE as false because
6781 we aren't prepared to handle compatibility between the
6782 further blocks and this block. */
6783 if (insn == end)
6785 enum machine_mode submode;
6787 submode = cse_cc_succs (e->dest, cc_reg, cc_src, false);
6788 if (submode != VOIDmode)
6790 gcc_assert (submode == mode);
6791 found_equiv = true;
6792 can_change_mode = false;
6797 if (! found_equiv)
6798 return VOIDmode;
6800 /* Now INSN_COUNT is the number of instructions we found which set
6801 CC_REG to a value equivalent to CC_SRC. The instructions are in
6802 INSNS. The modes used by those instructions are in MODES. */
6804 newreg = NULL_RTX;
6805 for (i = 0; i < insn_count; ++i)
6807 if (modes[i] != mode)
6809 /* We need to change the mode of CC_REG in INSNS[i] and
6810 subsequent instructions. */
6811 if (! newreg)
6813 if (GET_MODE (cc_reg) == mode)
6814 newreg = cc_reg;
6815 else
6816 newreg = gen_rtx_REG (mode, REGNO (cc_reg));
6818 cse_change_cc_mode_insns (NEXT_INSN (insns[i]), last_insns[i],
6819 newreg);
6822 delete_insn (insns[i]);
6825 return mode;
6828 /* If we have a fixed condition code register (or two), walk through
6829 the instructions and try to eliminate duplicate assignments. */
6831 static void
6832 cse_condition_code_reg (void)
6834 unsigned int cc_regno_1;
6835 unsigned int cc_regno_2;
6836 rtx cc_reg_1;
6837 rtx cc_reg_2;
6838 basic_block bb;
6840 if (! targetm.fixed_condition_code_regs (&cc_regno_1, &cc_regno_2))
6841 return;
6843 cc_reg_1 = gen_rtx_REG (CCmode, cc_regno_1);
6844 if (cc_regno_2 != INVALID_REGNUM)
6845 cc_reg_2 = gen_rtx_REG (CCmode, cc_regno_2);
6846 else
6847 cc_reg_2 = NULL_RTX;
6849 FOR_EACH_BB (bb)
6851 rtx last_insn;
6852 rtx cc_reg;
6853 rtx insn;
6854 rtx cc_src_insn;
6855 rtx cc_src;
6856 enum machine_mode mode;
6857 enum machine_mode orig_mode;
6859 /* Look for blocks which end with a conditional jump based on a
6860 condition code register. Then look for the instruction which
6861 sets the condition code register. Then look through the
6862 successor blocks for instructions which set the condition
6863 code register to the same value. There are other possible
6864 uses of the condition code register, but these are by far the
6865 most common and the ones which we are most likely to be able
6866 to optimize. */
6868 last_insn = BB_END (bb);
6869 if (!JUMP_P (last_insn))
6870 continue;
6872 if (reg_referenced_p (cc_reg_1, PATTERN (last_insn)))
6873 cc_reg = cc_reg_1;
6874 else if (cc_reg_2 && reg_referenced_p (cc_reg_2, PATTERN (last_insn)))
6875 cc_reg = cc_reg_2;
6876 else
6877 continue;
6879 cc_src_insn = NULL_RTX;
6880 cc_src = NULL_RTX;
6881 for (insn = PREV_INSN (last_insn);
6882 insn && insn != PREV_INSN (BB_HEAD (bb));
6883 insn = PREV_INSN (insn))
6885 rtx set;
6887 if (! INSN_P (insn))
6888 continue;
6889 set = single_set (insn);
6890 if (set
6891 && REG_P (SET_DEST (set))
6892 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
6894 cc_src_insn = insn;
6895 cc_src = SET_SRC (set);
6896 break;
6898 else if (reg_set_p (cc_reg, insn))
6899 break;
6902 if (! cc_src_insn)
6903 continue;
6905 if (modified_between_p (cc_src, cc_src_insn, NEXT_INSN (last_insn)))
6906 continue;
6908 /* Now CC_REG is a condition code register used for a
6909 conditional jump at the end of the block, and CC_SRC, in
6910 CC_SRC_INSN, is the value to which that condition code
6911 register is set, and CC_SRC is still meaningful at the end of
6912 the basic block. */
6914 orig_mode = GET_MODE (cc_src);
6915 mode = cse_cc_succs (bb, cc_reg, cc_src, true);
6916 if (mode != VOIDmode)
6918 gcc_assert (mode == GET_MODE (cc_src));
6919 if (mode != orig_mode)
6921 rtx newreg = gen_rtx_REG (mode, REGNO (cc_reg));
6923 cse_change_cc_mode_insn (cc_src_insn, newreg);
6925 /* Do the same in the following insns that use the
6926 current value of CC_REG within BB. */
6927 cse_change_cc_mode_insns (NEXT_INSN (cc_src_insn),
6928 NEXT_INSN (last_insn),
6929 newreg);
6936 /* Perform common subexpression elimination. Nonzero value from
6937 `cse_main' means that jumps were simplified and some code may now
6938 be unreachable, so do jump optimization again. */
6939 static bool
6940 gate_handle_cse (void)
6942 return optimize > 0;
6945 static unsigned int
6946 rest_of_handle_cse (void)
6948 int tem;
6950 if (dump_file)
6951 dump_flow_info (dump_file, dump_flags);
6953 tem = cse_main (get_insns (), max_reg_num ());
6955 /* If we are not running more CSE passes, then we are no longer
6956 expecting CSE to be run. But always rerun it in a cheap mode. */
6957 cse_not_expected = !flag_rerun_cse_after_loop && !flag_gcse;
6959 if (tem == 2)
6961 timevar_push (TV_JUMP);
6962 rebuild_jump_labels (get_insns ());
6963 cleanup_cfg (0);
6964 timevar_pop (TV_JUMP);
6966 else if (tem == 1 || optimize > 1)
6967 cleanup_cfg (0);
6969 return 0;
6972 struct tree_opt_pass pass_cse =
6974 "cse1", /* name */
6975 gate_handle_cse, /* gate */
6976 rest_of_handle_cse, /* execute */
6977 NULL, /* sub */
6978 NULL, /* next */
6979 0, /* static_pass_number */
6980 TV_CSE, /* tv_id */
6981 0, /* properties_required */
6982 0, /* properties_provided */
6983 0, /* properties_destroyed */
6984 0, /* todo_flags_start */
6985 TODO_df_finish | TODO_verify_rtl_sharing |
6986 TODO_dump_func |
6987 TODO_ggc_collect |
6988 TODO_verify_flow, /* todo_flags_finish */
6989 's' /* letter */
6993 static bool
6994 gate_handle_cse2 (void)
6996 return optimize > 0 && flag_rerun_cse_after_loop;
6999 /* Run second CSE pass after loop optimizations. */
7000 static unsigned int
7001 rest_of_handle_cse2 (void)
7003 int tem;
7005 if (dump_file)
7006 dump_flow_info (dump_file, dump_flags);
7008 tem = cse_main (get_insns (), max_reg_num ());
7010 /* Run a pass to eliminate duplicated assignments to condition code
7011 registers. We have to run this after bypass_jumps, because it
7012 makes it harder for that pass to determine whether a jump can be
7013 bypassed safely. */
7014 cse_condition_code_reg ();
7016 delete_trivially_dead_insns (get_insns (), max_reg_num ());
7018 if (tem == 2)
7020 timevar_push (TV_JUMP);
7021 rebuild_jump_labels (get_insns ());
7022 cleanup_cfg (0);
7023 timevar_pop (TV_JUMP);
7025 else if (tem == 1)
7026 cleanup_cfg (0);
7028 cse_not_expected = 1;
7029 return 0;
7033 struct tree_opt_pass pass_cse2 =
7035 "cse2", /* name */
7036 gate_handle_cse2, /* gate */
7037 rest_of_handle_cse2, /* execute */
7038 NULL, /* sub */
7039 NULL, /* next */
7040 0, /* static_pass_number */
7041 TV_CSE2, /* tv_id */
7042 0, /* properties_required */
7043 0, /* properties_provided */
7044 0, /* properties_destroyed */
7045 0, /* todo_flags_start */
7046 TODO_df_finish | TODO_verify_rtl_sharing |
7047 TODO_dump_func |
7048 TODO_ggc_collect |
7049 TODO_verify_flow, /* todo_flags_finish */
7050 't' /* letter */