
1

Modular Consensus Algorithms
for the Crash-Recovery Model

Felix C. Freiling, Christian Lambertz, and Mila Majster-Cederbaum
Department of Computer Science, University of Mannheim, Germany

E-mail: {freiling, lambertz, mcb}@informatik.uni-mannheim.de

Abstract—In the crash-recovery failure model of asynchronous
distributed systems, processes can temporarily stop to execute
steps and later restart their computation from a predefined local
state. The crash-recovery model is much more realistic than the
crash-stop failure model in which processes merely are allowed
to stop executing steps. The additional complexity is reflected
in the multitude of assumptions and the technical complexity of
algorithms which have been developed for that model. We focus
on the problem of consensus in the crash-recovery model, but
instead of developing completely new algorithms from scratch,
our approach aims at reusing existing crash-stop consensus
algorithms in a modular way using the abstraction of failure
detectors. As a result, we present three new consensus algorithms
for the crash-recovery model for different types of assumptions.

Index Terms—asynchronous systems, consensus, fault toler-
ance, process crash and recovery, stable storage

I. INTRODUCTION

A. From Crash-Stop to Crash-Recovery

One of the most popular failure models for fault-tolerant
distributed algorithms is called crash-stop (or simply crash).
This model allows that a certain number of processes stops to
execute steps forever at some point during the execution of the
algorithm. Crash-stop is a very interesting model, especially
if it is paired with the asynchronous message-passing system
model of distributed computations. In this model, processes
communicate by sending messages, however, neither the mes-
sage delivery delay nor the relative processing speeds of
processes are bounded. It is well-known that in such systems
many important algorithmical problems are unsolvable, for
example consensus [7].

Despite its theoretical interest, the crash-stop model is
not expressive enough to model many realistic scenarios.
In practice, processes crash but their processors reboot, and
the crashed process is restarted from a recovery point and
rejoins the computation. This behavior is especially common
for long-lived applications like distributed operating systems,
grid computing, or web services and has been formalized as
a failure model called crash-recovery. In the crash-recovery
model, processes can crash multiple times. After crashing (and
before crashing the next time), a process recovers from a
predefined state.

Crash-recovery is a strict generalization of crash-stop, i.e.,
every faulty behavior allowed in crash-stop is also possible
in crash-recovery. This means that any impossibility result
for the crash-stop model also holds in the crash-recovery
model. However, algorithms designed for the crash-stop model

will not necessarily work in the crash-recovery model due
to the additional faulty behavior. This additional behavior
is surprisingly complex. For example, while in the crash-
stop model processes are usually classified into two distinct
classes (those which eventually crash and those which do not),
in the crash-recovery model we already have four distinct
classes of processes: (1) always up (processes that never
crash), (2) eventually up (processes that crash at least once but
eventually recover and do not crash anymore), (3) eventually
down (processes that crash at least once and eventually do
not recover anymore), and (4) unstable (processes that crash
and recover infinitely often). Note that the processes in class
(1) and (2) are called correct, and those in class (3) and
(4) incorrect. As another example of increased complexity,
processes in the crash-recovery model usually lose all state
information when they crash. The notion of stable storage
was invented to model a type of expensive persistent storage
which is usually available in practice in the form of hard disks.

The additional expressiveness of the crash-recovery model
makes it relatively hard to design algorithms for this model.
In this paper, we aim to develop algorithms for this model by
re-using algorithms from the crash-stop model, i.e., we target
at modular solutions.

B. Consensus in the Crash-Recovery Model
We choose the problem of distributed consensus as bench-

mark problem to study the modular derivation of algorithms
from crash-stop to crash-recovery. Roughly speaking, consen-
sus requires that a set of processes in a distributed system have
to agree on a common value from a set of input (or proposal)
values from each process. Consensus is fundamental to many
fault-tolerant synchronization problems but has mainly been
studied in the crash-stop model. As mentioned above, it is
even impossible to be solved deterministically in asynchronous
systems [7], but becomes solvable using extensions of the
model. In this paper, we use the failure detector abstraction [4]
to solve consensus in the crash-recovery model. Intuitively, a
failure detector is a distributed oracle that gives information
about the failures of other processes. We look at two classes of
such failure detectors in this paper: the class of perfect failure
detectors (P) that tell exactly who has failed, and the class of
eventually perfect failure detectors (♦P) that can make finitely
many mistakes in telling the failure state of other processes
(i.e., they eventually behave like perfect failure detectors).

Compared with the crash-stop model, consensus algorithms
in the crash-recovery model have to deal with several prob-



2

lems. The first problem is: How do we deal with recovering
processes? Recovering processes have to be re-integrated into
the computation so that they can terminate the protocol in a
well-defined way. For example, if they already had terminated
the protocol with a certain decision value v, then the algorithm
must ensure that they never terminate with a decision value
which is not v in the future.

The second problem we have to deal with is: How do we
deal with unstable processes? In unfavourable circumstances,
unstable processes can cause algorithms to run forever. An
unstable process can crash, then recover, then crash, then re-
cover, infinitely often. Between each recovery and subsequent
crash, the process can upset and delay the decision making
process by requesting a state update or proposing a new
decision value. It is this problem that leads to the definition of
quiescence of algorithms. Intuitively, an algorithm is quiescent
if it eventually stops to send messages. Obviously, consensus
algorithms in the crash-recovery model can only be quiescent
if there are no unstable processes.

Finally, the third problem to handle in crash-recovery is:
How to deal with messages sent to processes which are crashed
but later recover? In the crash-stop model, communication
channels were usually assumed to be reliable, but in crash-
recovery, message loss is a natural effect which increases the
complexity. Most often, this problem is dealt with using the
abstraction of stubborn communication channels [9]. Briefly
spoken, such channels infinitely often re-send a message as
long as the sender does not crash. Therefore, a message sent
over a stubborn channel will eventually be received at its
destination as long as the receiver eventually recovers.

C. Related Work

A seminal paper on consensus in the crash-recovery model
was published by Aguilera, Chen, and Toueg [1]. They in-
troduce the four classes of processes mentioned above and
prove necessary conditions to solve consensus without stable
storage. They also give a necessary condition for the case with
stable storage assuming that only the proposal and decision
value may be saved. For this condition they give a rather
complex algorithm. The condition states that more always
up than incorrect—eventually down and unstable—processes
must be present, if only an eventually perfect failure detector is
available. If more information is allowed to be saved on stable
storage, a further algorithm is constructed which assumes the
presence of a majority of correct processes.

Oliveira, Guerraoui, and Schiper [14] also give an inter-
esting consensus algorithm for the crash-recovery model, but
in their model the processes do not lose any state information
due to crashes. Hurfin, Mostéfaoui, and Raynal [10] developed
a complex voting based consensus algorithm that uses stable
storage. Both papers [10], [14] use a failure detector definition
that was later shown [1] to exhibit anomalous behavior: The
definition allows runs in which correct processes eventually
permanently trust unstable processes. We avoid such behavior
in this paper.

Although mentioning neither crash-recovery nor failure de-
tectors, Lamport’s Paxos algorithm [11] also solves consensus

in the setting of this paper. While re-using algorithmical ideas
from the area of crash-stop algorithms, Paxos as well as all
previously mentioned algorithms were built from scratch.

Modular derivations of fault-tolerant consensus algorithms
have been extensively studied before [2], [13], [6], [3], [12],
[5] but in different contexts than our work. Neiger and Toueg
[13], Delporte-Gallet et al. [6], and Bazzi and Neiger [3]
assume synchronous systems and no failure detectors. Asyn-
chronous systems are considered by Basu, Charron-Bost, and
Toueg [2] but in the context of link failures and also without
failure detectors. Mittal et al. [12] consider the problem of
termination detection and derive algorithms for the crash-stop
model from algorithms that assume no failures.

D. Contributions

Similarly to Aguilera, Chen, and Toueg [1] we investigate
the solvability of consensus in the crash-recovery model
under varying assumptions. Our approach is to re-use existing
algorithms from the crash-stop failure model in a modular way.
One main task of our algorithms therefore is to partly emulate
a crash-stop system on top of a crash-recovery system to be
able to run a crash-stop consensus algorithm. We are able to
close many previously open cases and present a complete map
of consensus solvability in the crash-recovery model under
varying assumptions.

Table I gives an overview over the cases we study in
this paper. The table is structured along three dimensions:
(1) the availability of stable storage (large columns left and
right), (2) a process state assumption (rows of the table), and
(3) the availability of failure detectors (sub-columns within
large columns). Impossibility results are denoted by “×” and
solvability by “X”. Impossibility results with stronger assump-
tions imply impossibility for cases with weaker assumptions,
while solvability with weak assumptions implies solutions with
stronger assumptions. We have ordered the strength of the
parameters so that they are increased from left to right and
from top to bottom.

As mentioned before, the case of no stable storage, ♦P ,
and more always up than incorrect processes was proven to
be the weakest for consensus [1], and thus all weaker process
state assumptions are impossible. We first focus on P and the
unavailability of stable storage. We argue in Sect. III-A that
at least one always up process is necessary and sufficient. The
sufficiency part is proved in Sect. III-B. Therefore, consensus
is also solvable under stronger process assumptions. Then we
weaken P to ♦P and present a modular algorithm for the
always up majority of processes case in Sect. III-C. This
completes the discussion for the case with no stable storage.

We then turn in Sect. IV-A to the case where processes are
allowed to use stable storage. We first prove two impossibility
results regarding the presence of correct processes. The first
impossibility arises in the case where we have only ♦P and
one always up process. The second one arises in the case where
P is available and one eventually up process is present. We
then give an algorithm for the remaining case in Sect. IV-B: It
uses ♦P , a majority of always up or eventually up processes,
and some minimal insight about the used crash-stop consensus



3

assumptions ♦P P ♦P P
no stable storage stable storage

one correct

correct majority

one always up

correct majority
& one always up

more always up
than incorrect

always up majority

×

×

×

×
[1]

X
[1]

X
Sect. III-C

×

×
Sect. III-A

X
Sect. III-B

X

X

X

×

X
Sect. IV-B, [1]

×
Sect. IV-A

X

X
[1]

X
Sect. III-C

×
Sect. IV-A

X

X
Sect. III-B

X

X

X

TABLE I: Overview of the results of this paper. An arrow that connects two cells depicts a logical implication.

algorithm which needs to be saved on stable storage. But, with
this insight the algorithm is not completely modular, and thus
we call it semi-modular.

Note that we use failure detectors with strong accuracy
properties instead of detectors with weak accuracy properties,
although we are aware that consensus is solvable with weaker
failure detectors in the crash-recovery model [1]. Due to
pedagogical reasons, we prefer to present our approach with
the stronger assumptions because weakening them does not
add any insight to understand our approach. Additionally, this
weakening of the accuracy property of our failure detectors
is possible without any further change in our emulation
algorithms.

Since we assume that the consensus problem (with its
termination, uniform agreement, and validity properties), the
crash-recovery model, and the asynchronous system are well-
known, we omit their formal definition here. These, together
with pseudo code of our algorithms and correctness proofs, can
be found elsewhere [8]. Here, we only include the definition
of the two failure detectors. A perfect failure detector (P)
satisfies: Strong Completeness: Every incorrect process is
suspected infinitely often by every correct process, Eventually
Up Completeness: Eventually, every correct process is not
suspected any longer by every correct process, and Strong
Accuracy: No process is suspected before it crashes. An
eventually perfect failure detector (♦P) satisfies Strong Com-
pleteness, Eventually Up Completeness, and Eventually Strong
Accuracy: Correct processes are only finitely often suspected.

II. THE EMULATION TECHNIQUE AND ITS LIMITATIONS

A. The Emulator Idea
The aim of this paper is, for different assumptions, to

construct a consensus algorithm ACR in the crash-recovery
model by using a consensus algorithm ACS from the crash-
stop model as a building block. Our basic assumptions about
ACS are that it uses a failure detector (either P or ♦P) as
synchrony abstraction and reliable or stubborn links as mes-
sage passing abstraction. Of course, we assume that ACS also

solves consensus in the crash-stop model. We now describe the
interface of an emulator which simulates a crash-stop failure
model on top of a crash-recovery system. The idea is depicted
in Fig. 1. At the top of the figure we see the interface of an
arbitrary crash-stop consensus algorithm ACS . The available
resources within the crash-recovery model are depicted at the
bottom of Fig. 1. There we have the failure detector (of class
P or ♦P) and a stubborn communication channel abstraction.
The emulator is a distributed algorithm inbetween both layers.
It must map events to each other such that ACS together with
the emulator solve consensus in the crash-recovery model.
Hence, ACS together with the emulator result in ACR.

B. Limitations of Modular Solutions

Aguilera, Chen, and Toueg [1] proved a necessary and
sufficient requirement for solvability of consensus in the crash-
recovery model. Without stable storage and only equipped
with an eventually perfect failure detector there must be more
always up than incorrect processes in the system. Note that this
implies that there must be at least one always up process in the
system. We now argue, that we cannot employ the emulation
technique in these cases.

Any known eventually perfect failure detector based crash-
stop consensus algorithm requires the presence of a majority
of crash-stop correct processes in the system. But, the new
condition in the crash-recovery model of more always up than
incorrect processes allows, that a majority of processes crashes
finitely often. Thus, the crash-stop algorithm running in the
crash-recovery model cannot rely on an always up majority
as actually required. A potential consensus algorithm needs
to determine the set of currently up processes in each round
and rely on this set to guarantee uniform agreement. But,
this determination can only be handled by a “non-modular”
algorithm, because an emulator cannot influence the number of
processes for which the crash-stop consensus algorithm needs
to wait in individual rounds. Note that Aguilera, Chen, and
Toueg [1] present such a (non-modular) algorithm.



4

ACS

CS-propose CS-decide CS-suspect CS-send CS-receive CS-single-send CS-stop-retransmit

Emulator
CS-propose CS-decide CS-suspect CS-send CS-receive CS-single-send CS-stop-retransmit

propose decide suspect send receive single-send stop-retransmit

Stubborn Links
send receive single-send stop-retransmit

P
suspect

FIG. 1: An emulator algorithm and its connection to the ACS interface.

III. MODULAR CONSENSUS ALGORITHMS WITHOUT
STABLE STORAGE

We now study modular consensus algorithms for the crash-
recovery model under the assumption that no stable storage is
used.

A. Necessary Condition Without Stable Storage

The minimal number of correct processes that have to be
present in the system to solve consensus in the absence of
stable storage is one always up process. To see this, assume
that all processes are allowed to crash at least once. In this case
all crashes could happen simultaneously. But, in the absence
of stable storage a simultaneous crash leads to a total loss of
information in the system, because all proposed values are lost.
Therefore, the processes have no way to decide. No failure
detector is able to prevent this total loss.

We give an algorithm using the perfect failure detector in
Sect. III-B, thereby showing that at least one always up process
is a necessary and sufficient condition in this setting.

As in the crash-stop model, the availability of only an even-
tually perfect failure detector requires stronger assumptions for
consensus to be solvable. In the crash-stop model, a majority
of correct processes (i.e., a majority of processes that never
crash) is commonly assumed (e.g., in the original paper by
Chandra and Toueg [4]). These can preserve variables and
cope with false suspicions of the eventually perfect failure
detector. However, in the crash-recovery model the assumption
of a majority of correct processes allows that all processes of
this majority crash several times as long as they remain up
eventually. Even the presence of one always up process and a
majority of correct processes cannot preserve a future decision
value through asynchronous rounds in a consensus algorithm
without stable storage, because the majority of processes can
forget the value due to crashes [1].

B. Modular Algorithm based on P
Assuming at least one always up process, we now present a

modular consensus algorithm using a perfect failure detector.
Any failure detector based quiescent crash-stop consensus
algorithm that requires a perfect failure detector and works
with at least one crash-stop correct process can be used as

ACS in the transformation. The main idea of the algorithm is
to exclude recovered processes from the computation of the
crash-stop consensus algorithm. This is achieved by collecting
recovered processes together with the crashed processes in a
set Suspectedp and by requesting that the crash-stop consen-
sus algorithm should suspect all these processes. Note that
recovered processes can be identified by special “I recovered”
messages which they broadcast when they recover. Because
uniform consensus requires that the eventually up processes
among those which are excluded from ACS also decide,
special decision messages are broadcast after the decision of
the first process. Note that all other events besides the decision
event are relayed by the emulator, e.g., if ACS wants to send
a message. Furthermore, all messages of ACS are tagged with
a special identifier in order to prevent the reception of any
non-ACS message by the ACS module. The processes stop
the stubborn sending of their last message once they decided.
This is important in order to guarantee quiescence. Equally
important for quiescence is that “I recovered” messages are
answered in a non-stubborn fashion.

C. Modular Algorithm based on ♦P
We now turn to the case where in the absence of stable

storage only an eventually perfect failure detector is available.
Our solution assumes a majority of always up processes to
be present in the system. Any failure detector based quies-
cent crash-stop consensus algorithm that requires at least an
eventually perfect failure detector and works with a majority
of crash-stop correct processes can be used as ACS in the
transformation.

The idea of the algorithm is similar to the previous one. The
main difference is the handling of the false suspicions made
by ♦P . In order to separate the possibly falsely suspected pro-
cesses and the recovered ones, two sets are defined: Suspectedp

and Recoveredp. The union of these two sets is used as
the input for the failure detector of the crash-stop consensus
algorithm. Note that the set Suspectedp is updated with any
change in the output of the failure detector. The separation
of the suspected and recovered processes is important in
order to determine the definite state of the processes. The
information about the recovery of processes and the possibly
false suspicions are not mixed. Thus, no information is lost.



5

Interestingly, the always up majority assumption is only
needed until ACS terminates. After the decision of ACS

happened, the emulator needs only at least one always up
process in order to disseminate the decision value.

D. Transformation Complexity

Both presented algorithms do not increase the complexity of
the used crash-stop consensus algorithm much. Let n denote
the number of processes and ncorrect the number of correct
processes. Assume that ACS needs mcs messages and rcs
rounds to find a decision. If no recoveries occur, at most
ncorrect×n additional decision messages—every correct process
broadcasts the decision—are sent and only one more round is
needed. Since typically mcs > ncorrect×n, we obtain the same
bounds.

With every recovery n+ncorrect additional messages are sent
after the decision already occurred. These are the broadcast
of the recovered process plus the answers of every correct
process. Before the decision happens, typically only n mes-
sages are sent by the recovered process and the number of
rounds is only increased if, for example, the recovered process
was the leader of the round before its recovery (for consensus
algorithms based on the rotating coordinator paradigm).

All messages are only altered by a constant number of bits in
order to distinguish messages from ACS and the new recovery
and decision messages, which in turn have a constant length.

IV. MODULAR CONSENSUS ALGORITHMS USING STABLE
STORAGE

Aguilera, Chen, and Toueg [1] proved that if stable storage
is available but the processes are only allowed to save the
proposals and the decision values there, consensus is still not
solvable if less always up than incorrect processes are present.
Thus, more information needs to be saved on stable storage in
order to guarantee uniform agreement of consensus. In order
to overcome this impossibility, our algorithms are allowed to
use stable storage to save important variables.

We now study consensus algorithms for the crash-recovery
algorithm in case stable storage is available. Again, we wish
to employ the emulation approach. In the emulation approach,
however, the information that may be stored on stable storage
is restricted to the proposal, the messages, and the decision
value. The simplest idea is to save all available information,
i.e., the proposal, all messages, and the decision value of each
process, on stable storage. But since access to stable storage is
expensive, this is not very elegant. In Sect. IV-B we provide a
solution that only stores a subset of messages on stable storage
and uses an eventually perfect failure detector. In contrast
to our algorithm without stable storage, we merely need a
majority of correct processes if stable storage is available,
not a majority of always up processes. This requirement is
minimal, as we show in Sect. IV-A.

Note that we do not investigate the case using a perfect
failure detector here, because in this case consensus is solvable
with at least one always up process even without stable storage
(see Sect. III-B). We prove that this is a minimal requirement
also for systems with stable storage in the following section.

A. Necessary Requirements

The new possibilities with stable storage only help to cope
with information loss due to recoveries. An eventually perfect
failure detector still requires a majority of correct processes in
order to cope with false suspicions. Consensus is not solvable
if ♦P and stable storage are accessible by the processes and
if only one always up process is assumed to be present in the
system, i.e., no majority of correct processes is present.

To see this, assume that such an algorithm is possible and
consider a run, in which a process p1 proposes a value v and
immediately after its proposal stops taking any steps until a
time t1. Another process p2 proposes a value w 6= v and
is unable to communicate with p1, because of the temporary
existence of a network problem. The eventually perfect failure
detector at p2 now suspects p1, and thus p2 is the only correct
process in the system—in its view—and decides w before time
t1. Then p2 stops taking steps. After time t1, p1 decides v in
an analogues way, because its failure detector suspects p2. But,
this second decision violates the uniform agreement property
of consensus.

Another problem occurs if stable storage and a perfect
failure detector are accessible by the processes, but only at
least one correct process is assumed to be present in the
system. Interestingly, consensus is not solvable under this
assumption, even if the processes can use stable storage for
their entire state information and a very perfect failure detector
is given, namely one which immediately outputs the exact
process state—up or down—at any time it changes.

To see this, assume that such an algorithm is possible and
consider a run, in which a process p1 proposes a value v and
immediately after its proposal crashes, i.e., the algorithm can
only save the proposal on stable storage. Another process p2
proposes a value w 6= v, and the very perfect failure detector
at p2 suspects p1. Now, p2 is the only correct process in the
system—in its view—and decides w. After its decision, p2
crashes. Process p1 recovers after all messages in transit are
lost, because they could not be delivered since no process
was up. The very perfect failure detector at p1 suspects p2,
and thus p1 can only decide v, since v is the only value p1
knows and—in its view—p1 is the only correct process in the
system. But, this contradicts the uniform agreement property
of consensus.

B. Semi-Modular Algorithm based on ♦P
Recall that it is not sufficient to store only proposal and

decision values on stable storage. We now propose an algo-
rithm that uses stable storage to save at every process the last
message received from any other process and the last message
that was sent. Roughly speaking, the emulation algorithm
extracts the state of the used crash-stop consensus algorithm
ACS from these last messages. The temporal term “last” refers
to a specific message order, as we now explain. Since the
idea of last message storage and the mentioned order strongly
depend on the used crash-stop consensus algorithm, we have
to use a concrete crash-stop consensus algorithm.

Imagine the following crash-stop consensus algorithm in-
spired by the well-known Chandra/Toueg rotating coordinator



6

consensus algorithm [4]: The processes pass through consec-
utive rounds as long as the problem is unsolved, and in each
round one process is the round leader. Because the round
number grows larger than the number of processes, the leader
is determined by the current round number modulo the number
of processes. In every round, the leader tries to impose its
current decision estimate among a majority of processes, and
since the algorithm runs in the crash-stop model, this majority
never crashes. Thereby, it always chooses the freshest estimate
from prior rounds as current estimate. Uniform agreement
is satisfied, because the first decision happens only after a
majority acknowledged the leader’s estimate. For more details
see Chandra and Toueg [4].

The idea for an emulation algorithm is the saving of the last
message that was sent and the last message that was received
on stable storage. If a process recovers, it first loads the last
messages and its proposal. Then it restarts the ACS algorithm,
but directly delivers the last received message and sends out
the last sent message.

The delivery of the last received message after a recovery
of a previously crashed process should restore the state of the
process before it crashed, especially if this state information
is essential for the run of the crash-stop consensus algorithm.
In the case that the above mentioned algorithm is used as
ACS , the most essential state is the successful adoption of
a future decision value, i.e., when a process received an
adopt message from the current round leader and sends back
an acknowledgment message. This situation means that the
process agrees to the decision of a certain value. Thus, this
state information must be remembered as the most important
last sent/received message.

The algorithm of Sect. III-C can be extended to save the
last message information on stable storage. The important
difference is the new assumption that only a majority of correct
processes is needed and not a majority of always up processes
as in the case of the algorithm of Sect. III-C.

If the used crash-stop consensus algorithm of a process
sends or receives a message, the emulator compares this
message with the most important previously sent or received
message. If the new message is more important in the prede-
fined message order, it is saved on stable storage as the most
important message for future comparisons.

If a process recovers, the emulator tries to load the decision
value from stable storage first. If a decision already happened
before the crash of the process, it was saved and can now
be retrieved. Thus, the process can decide again. Otherwise,
the emulator loads the proposal, the last sent message, and
the last received message from stable storage. The crash-stop
consensus algorithm is started from scratch with the loaded
proposal, and the last received message is delivered again if
the corresponding process received one before it crashed. This
re-delivery restores the last decision estimate and its adoption
time as it was before the crash. Therefore, uniform agreement
can be guaranteed in the remaining consensus computation.

The last sent message is also sent again by the emulator. If
the process sent no message before it crashed, the emulator
broadcasts an empty message as last sent message. This is
important, because if the other processes decided during the

down period of the recovered process, they already stopped
sending any message in order to satisfy quiescence. But,
the recovered process needs to get to know the decision
value somehow and to inform the others of its recovery.
Thus, it sends this empty message, and if a process which
already decided receives it, it responds with the decision value.
Thereby, the empty message must be the lowest message in
the message order of the used crash-stop consensus algorithm.

C. Transformation Complexity

The additional number of messages and rounds is roughly
the same as in the analysis in Sect. III-D. One additional
advantage of stable storage is that if all recovering processes
already stored the decision on stable storage, no message at
all needs to be sent.

REFERENCES

[1] M. K. Aguilera, W. Chen, and S. Toueg. Failure detection and consensus
in the crash recovery model. Distributed Computing, 13(2):99–125,
2000.

[2] A. Basu, B. Charron-Bost, and S. Toueg. Simulating reliable links with
unreliable links in the presence of process crashes. In Proceedings in the
10th International Workshop on Distributed Algorithms, pages 105–122,
1996.

[3] R. A. Bazzi and G. Neiger. Simulating crash failures with many faulty
processors (extended abstract). In WDAG ’92: Proceedings of the
6th International Workshop on Distributed Algorithms, pages 166–184,
1992.

[4] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable
distributed systems. J. ACM, 43(2):225–267, 1996.

[5] C. Delporte-Gallet, H. Fauconnier, F. C. Freiling, L. D. Penso, and
A. Tielmann. From crash-stop to permanent omission: Automatic
transformation and weakest failure detectors. In Proc. DISC, 2007.

[6] C. Delporte-Gallet, H. Fauconnier, R. Guerraoui, and B. Pochon. The
perfectly-synchronised round-based model of distributed computing.
Information & Computation, 2007.

[7] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of
distributed consensus with one faulty process. J. ACM, 32(2):374–382,
1985.

[8] F. C. Freiling, C. Lambertz, and M. Majster-Cederbaum. Easy con-
sensus algorithms for the crash-recovery model. Technical Report TR-
2008-002, Department of Computer Science, University of Mannheim,
Germany, 2008.

[9] R. Guerraoui, R. C. Oliveira, and A. Schiper. Stubborn communication
channels. Technical report, Département d’Informatique, Ecole Poly-
technique Fédérale, Lausanne, Switzerland, December 1996.

[10] M. Hurfin, A. Mostéfaoui, and M. Raynal. Consensus in asynchronous
systems where processes can crash and recover. In Proc. of the 17th
IEEE Symposium on Reliable Distributed Systems, pages 280–286, 1998.

[11] L. Lamport. The part-time parliament. ACM Transactions on Computer
Systems, 16(2):133–169, 1998.

[12] N. Mittal, F. C. Freiling, S. Venkatesan, and L. D. Penso. Efficient
reduction for wait-free termination detection in a crash-prone distributed
system. In Proc. 19th Conference on Distributed Computing, pages 93–
107, 2005.

[13] G. Neiger and S. Toueg. Automatically increasing the fault-tolerance of
distributed algorithms. Journal of Algorithms, 11(3):374–419, 1990.

[14] R. C. Oliveira, R. Guerraoui, and A. Schiper. Consensus in the crash-
recover model. Technical Report 97-239, Département d’Informatique,
Ecole Polytechnique Fédérale, Lausanne, 1997.


