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Abstract. This paper describes Treplica, a tool designed for ubiquitous repli-
cation. Most of the software tools created so far to aid in the construction of
distributed applications addressed solely how to maintainvolatile data consis-
tent in the presence of failures, but without offering any relief for the problem
of managing persistence. Treplica simplifies the development of high-available
applications by making transparent the complexities of dealing with replication
and persistence. These complexities are not negligible, and we believe we have
found a compelling way of factoring out these concerns in a simple to under-
stand programming interface.

1. Introduction

Consider the problem of implementing a highly available distributed application. It is
a fact that one of the main development concerns is the management of persistent data,
maintaining consistency in the presence of failures and concurrency. Thus, failures, con-
sistency and performance are a concern even before replication has been considered as a
mean to satisfy the high availability requirement. Most of the software tools created so
far to aid in the construction of distributed applications addressed solely how to maintain
volatile data consistent in the presence of failures, but without offering any relief for the
problem of managing persistence [Birman and Joseph 1987b]. Usually, when developers
opt for the use of such tools for replication, they have to cope with two problems: (i)
the handling of replication itself and (ii) the explicit recovery of the state lost during a
component failure.

This paper describes Treplica, a tool designed for ubiquitous replication. Treplica
treats the solution of the two problems presented before as aunity, by offering to the pro-
grammer a simple way to deal not only with consistency but also with persistence. In the
context of Treplica, ubiquitous means transparent, resilient and efficient. Transparency
guarantees that programmers can develop replicated distributed applications without hav-
ing to be concerned about how replication is actually implemented. In fact, application
programmers can program their statefull applications as ifthey were stateless applica-
tions. Resiliency means that Treplica implements at its corea replication protocol that
gives applications the ability of tolerating crashes and recoveries of a subset of their repli-
cated components without having to worry about the consistency of the replicated data.
Treplica guarantees resiliency through the implementation of Paxos [Lamport 1998] and
Fast Paxos [Lamport 2006]. The unified handling of consistency and persistence means
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that applications developed atop Treplica are able to mask operational faults and support
online modular maintenance. These in their turn can contribute to the lowering of the
operational costs of running the application for very long periods of time. This is, in our
opinion, a key factor for the adoption of any replication tool by developers of modern
distributed applications. In terms of efficiency, our initial experimental results show that
Treplica can provide the necessary processing capacity to guarantee very good application
response times.

In summary, Treplica simplifies the development of high-available applications by
making transparent the complexities of dealing with replication and persistence. These
complexities are not negligible [Chandra et al. 2007], and webelieve we have found a
compelling way of factoring out these concerns in a simple tounderstand programming
interface. The main contributions of this work are: we propose the idea of handling and
presenting to the application programmer a unified programming abstraction for replica-
tion and persistence. We propose the use of consensus as a foundation for construction of
one such unified replication toolkit. We describe our current work on Treplica, an efficient
and generic implementation of these ideas, with preliminary performance data.

The rest of the paper is structured as follows. Section 2 describes Treplica, with
emphasis on the design and implementation of its programming abstractions: asynchro-
nous persistent queues and replicated state machines. Section 3 argues that Treplica can
be used ubiquitously to support the development of a varietyof distributed applications,
ranging from distributed locking services to generic web services. Section 4 analyzes
our experimental results and assesses the performance of Treplica. Section 5 is dedicated
to reviewing and acknowledging research efforts related toTreplica. Finally, Section 6
concludes the paper by briefly summarizing our contributions.

2. Treplica

Treplica has been designed to provide a simple tool for the construction of replicated ap-
plications that reside in clusters1. These clusters of Unix boxes interconnected by a fast
LAN are the hardware platform of choice for most of high-performance, high-throughput
distributed applications. We assume nodes of the cluster behave accordingly to the crash-
recovery failure model. Nodes can fail only by crashing, areserviced, and later reenter
normal operation; any data not stored in persistent memory is lost during the crash. Com-
munication is accomplished by message passing and messagescan be lost, duplicated or
arbitrarily delayed, but they cannot be corrupted.

Treplica considers an instance of the application component selected for replica-
tion as its unit of replication. Units of replication are assigned to nodes of the cluster in
accordance with their availability requirements. The units of replication can have com-
munication patterns that involve direct interaction with clients of the application or, alter-
natively, can have their communication restricted to components of the application that
do not interact directly with clients. For example, the replicated components may be ded-
icated to wrapping around a legacy system, by converting andtransfering data between
the legacy system and the distributed application.

1Replication across clusters, over the Internet, isn’t yet aconcern of the project, it might be considered
in the future.



The main design decision that supports Treplica is the combination of persistence
and replication requirements of the application under a single and simple programming
abstraction. A well-accepted way to handle replication is using Lamport’sactive replica-
tion [Lamport 1978], where an application is modelled as a deterministic state machine,
the actions of the application are modelled as transitions of this machine and the sequence
of transitions is broadcast, in the same order, to all replicas. The determinism of the state
machine guarantees that all replicas will be identical. Persistence in Treplica is built us-
ing the same principle: the application is a deterministic state machine, the operations
are transitions of this machine and the sequence of transitions is logged to stable stor-
age [Birrell et al. 1987]; this way it is possible to recover from failures by replaying the
log. Determinism ensures that after each recovery the application will restart in the same
state it was before the failure. For efficiency and ease of implementation, we require
that the application fit in main-memory, as we do not provide any means of selectively
unloading parts of the application state to secondary memory. With the current size and
cost of main-memory, we don’t consider this limitation to bea problem for the class of
applications that can benefit from using Treplica.

A key part of active replication is the ordered broadcast of messages, essential to
the consistency of the replicas. By design, Treplica alreadyis responsible for the per-
sistence of each replica and manages the stable state of the application. Thus, to avoid
explicit coordination of the application state and the total order algorithm state in the
presence of failures [D́efago et al. 2004] we have decided to use uniform total order as
the communication primitive. The combination of uniform total order and log-based fault
tolerance is the key to avoid unnecessary duplication of persistent memory logging. This
approach can be more efficient because it is possible to batchand serialize access to stable
storage, using the disk in its more efficient mode. Treplica was designed to accommo-
date any uniform total order algorithm, but we have decided to concentrate on consensus
based total order algorithms because they allow Treplica tohave a simpler software ar-
chitecture and increases its potential for good responsiveness in the presence of partial
failures [Mena et al. 2003].

Finally, the resulting software architecture should be easy to program and useful
for a large number of applications, adhering to different programming styles. To accom-
modate this, we have decided to offer a state machine abstraction as a programming tool,
using the reflection facilities of modern languages to encode and execute state and state
transitions. Using state machines as a programming tool is desirable because states and
transitions are easily implemented as objects. Treplica isimplemented in Java, and in
this language the application state is represented by serializable objects and transitions as
runnable, serializable objects. Treplica programming tools can easily be implemented in
any other dynamic language and, with some more effort, in more traditional languages
such as C/C++. So, a developer who wants to implement a replicated distributed applica-
tion does not reason in terms of replicated and persistent objects, instead, it reasons about
the execution of the application operations, transitions of a replicated state machine, that
are triggered by events that are made available through aasynchronous persistent queue.
In the remaining of this section we describe these two abstractions and how they are im-
plemented in Treplica.



2.1. Asynchronous Persistent Queues

The search for a simple programming abstraction for Treplica led us to the notion of
asynchronous persistent queues, an abstraction for a distributed persistent log of mes-
sages. Informally, asynchronous persistent queues are a way for a group of processes
to exchange messages, with three important properties: (i)messages are delivered in the
same order to all processes, (ii) messages are delivered to all processes, even if a process
crashes and later recovers, and (iii) messages are persistent. These properties are very
similar to the properties of total order broadcast in a groupcommunication toolkit using
view synchrony [Birman and Joseph 1987a], but delivery of messages is constrained by
the state of the application and not by a view. Asynchronous persistent queues are also
very similar to the publish/subscribe groups implemented in message oriented middle-
ware [Banavar et al. 1999], but here processes are tight-coupled.

Each persistent queue is uniquely identified by aqueue identifier(queue id). Each
process that interacts with a queue does so through aqueue endpoint, created using a
queue id and bound to a specific queue. A process may access many queues at the same
time, creating a separate endpoint for each one of them. The primitives of an asynchro-
nous persistent queue are very simple:

create(queueId): Creates a queue endpoint identified by the provided queue id.
getProcessId(): Returns the process id associated with this endpoint.
put(message): Sends a message to all other processes trough this queue. A message

can be any serializable object.
get(): Receives the next message of this queue.

Individual processes don’t have to worry about making theirqueues persistent, all
is taken care of by the endpoint. Each queue endpoint has associated with it the mes-
sage delivery history. For instance, a new process joining aqueue, using a new queue
endpoint, will receive all messages ever sent to the queue. Thus, by relying on the total
order guaranteed by the queue and in the fact that queues are persistent, individual pro-
cesses can become replicas of each other using active replication, while remaining in their
perspective completely stateless.

The persistence of the queues cannot be implemented efficiently unless careful
design and implementation steps are taken. Suppose a process fails and returns after
having executed for a considerable time. It is the responsibility of the queue to provide it
with its recovery state in the form of a message log that, in this case, can be very large.
There is no upper limit for the size of the recovery log and as aconsequence stability of
state has to be designed to allow obsolete queue and application state to be adequately
collected and discarded; this is the function of the queue stable state managers. The state
managers of the asynchronous persistent queue provide whatwe call queue controlled
persistence, where periodically a snapshot of the queue and applicationstate is taken
and the log is garbage collected. The queue handles the coordination of local snapshots
among all replicas and guarantees that each replica always sees a sequence of messages
consistent with its state. This may require, if a replica fails and falls behind the others,
that upon recovery the queue replaces its local state with anupdated snapshot obtained
from the other replicas. To support this mode of persistencethe application should be
instrumented with a save state (take checkpoint) procedurethat is callable by the queue



state manager. An extra primitive is available to bind the queue with the entity responsible
for storing the application state:

bind(stateHolder): Binds a process, represented by its state holder, to a queue
endpoint. The state holder is any application component capable of implement-
ing thetakeCheckpoint() primitive. Returns a checkpoint if recovery was
necessary. The process must reset its state to the returned checkpoint.

2.2. Replicated State Machine

Treplica can support the construction of replicated applications in many ways. A straight-
forward approach would be to access the asynchronous persistent queues API directly
and use the ordered sequence of messages to implement the replicas. The direct use of
asynchronous persistent queues would require the application programmer to build some
type of state machine to use active replication, to build a message monitoring subsystem
to service the client requests synchronously, and to handlethe bind and take checkpoint
operations of the queue. To make this task easier, Treplica provides a higher level abstrac-
tion that implements this replicated state machine.

The replicated state machine component is an implementation of a state machine
that has its state changed only by executingoperations. Operations are implemented
as Java objects that contain methods built to act on the stateheld by the state machine.
Locally, each replica stores all its state in the replicatedstate machine and only changes it
using operations passed to theexecute() method. The programming interface of the
replicated state machine is listed below:

create(initialState, queue): Creates a new state machine bound to a queue.
An initial state should be provided, because the process that calls this method can
be the first one to bind to this queue.

getState(): Returns the current state of the state machine. A process can query this
state at will, but cannot change it.

execute(operation): Executes an operation on the distributed state, performing
all necessary steps to coordinate this change with the otherreplicas. This is a
blocking method.

A replicated state machine has only three simple methods in its programming in-
terface that implement a well-defined, well-known and easy to use programming abstrac-
tion. Thus, the major task a programmer will have to perform to use this abstraction is the
definition of the application state and of the operations that modify the state, regardless
of state persistence, state replication, checkpointing and recovery concerns. It is worth to
note that this step is usually carried out even for applications that do not have replicated
state, so it does not add complexity to the development process. Operations applied to the
state machine by the local client can only be actually performed by the state machine af-
ter they have been converted into a message and submitted to the asynchronous persistent
queue. The local client of the state machine perceives the execution of the operation as a
call to a blocking primitive. A successful return of the callguarantees that the operation
submitted has been performed in the same order by all replicas.



2.3. Software Architecture

The software architecture of an application built on top of Treplica is shown in Figure 1.
The main architectural components are the application itself, replicated state machine and
asynchronous persistent queue, the total order service andthe state manager.

Figure 1. Software architecture of Treplica.

The client application can interact with its clients in any way possible. For exam-
ple, it can serve remote clients using RMI, it can implement a web service, it can serve
local clients through sockets, etc. The only architecturalconstraints imposed by Treplica
on the application are the ones described in Section 2; the application replicated data fits
in main-memory and that the application that handles the replicated data is deterministic.
Section 3 lists some examples of applications that can benefit from Treplica. If necessary,
the application can use multiple threads to service its clients, but Treplica guarantees that
only one thread at a time executes operations on the state machine.

2.4. Implementing Asynchronous Persistent Queues

Usually, the total order service provided by group communication toolkits isn’t uniform.
Thus, we decided to employ a total order algorithm based on consensus, as they provide
a complete solution and usually implement uniform total order [Défago et al. 2004]. In
practice, Paxos [Lamport 1998] is one of the most sucessful and used consensus algo-
rithms [Chandra et al. 2007, Elnikety et al. 2006, MacCormick et al. 2004], and fits per-
fectly the Treplica design because of its adherence to the crash-recovery failure model
and the way it structures its persistent memory. Specifically, the adoption of Paxos has
allowed us to delegate to the consensus component the management of stable storage for
Treplica.

A full description of Paxos is beyond the scope of this paper,but we offer a simple
description of the algorithms main components. Total orderusing Paxos consists of a se-
quence of individual consensus instances, each one corresponding to a deterministically
ordered list of messages. The instances are totally orderedby definition and this order
drives the ordering of messages, as all processes must reachconsensus and select a single
message list for each slot. Each consensus instance requires actions from processes per-
forming the following roles: proposer, acceptor, coordinator and learner [Lamport 2006].
Each process can perform more than one role, but at least a proposer, a coordinator and
a majority of acceptors must be present for the algorithm to progress. In Treplica all



process perform all roles, except the coordinator, that must be unique to ensure progress
of the algorithm. Our implementation shares a similar architecture with the proposal for
group communication over consensus of Mena et al. [Mena et al. 2003], but we do not
yet implement group membership functions or any other delivery semantics besides total
order.

We have implemented the Fast Paxos [Lamport 2006] generalization of Paxos,
but with support for the classic Paxos algorithm if desired.Fast Paxos optimizes the
number of communications delays associated with a classic Paxos instance from three to
two, but it requires a larger number of correct acceptors to ensure progress. To support
both algorithms interchangeably, without reconfigurations, we shift the initial ordering of
a proposal from the leader to the proposers. Each proposer selects a locally consistent
position for its next message list and sends it directly to the acceptors, if this is a Fast
Paxos instance, or to the leader, if this is a classic Paxos instance. Either way, it is the
responsibility of the proposer to check if the message list was ordered as requested, or
retry the request with a different Paxos instance if unsuccessful. Due to this change, the
leader becomes unnecessary in Fast Paxos, except to coordinate failure recovery. This
is very interesting as it removes the possible performance bottleneck represented by the
leader.

Another interesting property of Fast Paxos that affects theimplementation of
Treplica is the fact that different proposers can try and order distinct messages at the
same position at the same time in a fast instance. In this case, it is possible that none
of the proposals will succeed, in what is called a collision [Lamport 2006]. Lamport
describes several strategies to resolve this collision [Lamport 2006] and we have imple-
mented the simplest: whenever a collision is detected a new instance of classic Paxos is
initiated, with the participation of the leader to solve theconflict. We have decided not to
use any of the more elaborated collision recovery techniques because of the low overhead
associated with running single classic Paxos instance and the relative rarity of collisions
in the target architecture [Pedone and Schiper 2003].

Treplica is built on top of UDP/IP and uses multicast IP addresses as queue iden-
tifiers. Processes use their IP address and port number as unique identifiers and use the
multicast IP addresses as references to their peers. There isn’t an explicit group member-
ship procedure, not even a static hard-coded one. The Paxos implementation of Treplica
requires only a correct definition of a majority to work. For asystem withn acceptors, a
majority is defined as⌊n/2⌋+1 acceptors for Paxos and⌈3n/4⌉ acceptors for Fast Paxos.
At any time, there can be no more thann active acceptors, but the current implementation
does not enforce this limit. We plan to extend Treplica to support group reconfigurations,
bringing it closer to the architecture proposed in [Mena et al. 2003]. However, the current
implementation allows for a considerable degree of flexibility as it only requires that the
maximumnumber of processes in the system to be fixed, not their identity.

To ensure liveness, Paxos requires a leader election component, which includes
the failure detector module. We have implemented a very simple algorithm where a pro-
cess makes a bid for or announces its leadership by broadcasting its process identifier;
the algorithm is similar in its design principles to the algorithm proposed by Korach et
al. [Korach et al. 1984]. In practice, this simple leader election algorithm is rather limited
as it requires all links to be timely to function properly andit isn’t stable. Stability is



a very desirable property of any leader election algorithm used by Paxos [Malkhi et al.
2005] and we will improve the leader election algorithm as the code matures.

The state manager takes care of the persistent storage of thePaxos component.
By handling the persistence of all votes cast by acceptors andall elections started by
the coordinator, all state of the total order algorithm and of the application are stored
in a persistent log. This log is represented by theledgerabstraction of the Paxos algo-
rithm [Lamport 1998]. Treplica state manager is a careful implementation of this ledger,
optimized for efficient access to disk. For example, write access is sequential, minimizing
disk head movement and increasing throughput. Also, non critical writes are batched and
only flushed to disk when a synchronous write is necessary. Unfortunately, the state man-
ager is currently the less mature component of the system andhas not been implemented
in full yet.

3. Treplica Applications
This section lists examples of systems where Treplica can beemployed. In some of these
domains it is already possible to find other implementationsusing mechanisms similar to
the ones used by Treplica. We comment more on the similarities and differences between
Treplica and these other systems in Section 5.

3.1. Lock Service

Some large distributed applications do not and cannot require that all data are replicated
in a consistent way. However, the data must be accessed in a controlled way. A simple
way to coordinate the access of a shared resource by several independent agents is through
the use of locks and leases [Lamport 1998, Lampson 1996]. Thereplicated state machine
is the perfect abstraction to build a cluster of reliable lock servers that can be accessed
through a RPC interface.

The Chubby lock service [Burrows 2006] is an example of a lock server imple-
mented using a very similar approach to Treplica. Internally, Chubby uses a replicated and
persistent log of operations component implemented using Paxos [Chandra et al. 2007].
This persistent log is very similar to the asynchronous persistent queues and the creators
of Chubby argue that this is a very helpful abstraction that could be used in other dis-
tributed applications [Chandra et al. 2007].

3.2. Distributed File System

Distributed file systems maintain large amounts of data stored on stable storage, replicated
for fault tolerance and reliable access. Due to the amount ofdata and to the performance
requirements, this involves only two or three replicas witha primary-backup scheme.
Nonetheless, the state of these replicas can be controlled by a replicated state machine,
such as the identity and status of the replicas are always consistently updated and made
available to both file system replicas and clients.

The Boxwood framework [MacCormick et al. 2004] constructs itsRLDev (Repli-
cated, Logical Device) abstraction using two replicas, a primary and a backup, where
writes can only be performed in the primary and reads can be performed on both. The
location of each replica, the identity of the primary and recovery information are kept
in a component of Boxwood called the Paxos service. This service offers very similar
semantics to the replicated state machine and could be implemented using Treplica.



3.3. Database Transaction Certifier

Tashkent [Elnikety et al. 2006] is a distributed database that uses generalized snapshot
isolation to manage concurrency and consistency among database replicas. The system is
organized as a transaction certifier that coordinates a number of database replicas that run
off-the-shelf database servers interfaced to clients through local proxies. Read operations
are executed locally, but write operations are first orderedby the certifier before being
applied.

The certifier component is more than a simple ordering mechanism, it also handles
the durability of the write operations, increasing the overall performance of the cluster as
it relieves local replicas from costly local I/O. The certifier runs in a cluster of replicated
machines independent from the cluster of database replicasand uses Paxos to guaran-
tee consistency among its members. Thus, not only Treplica can be used to implement
the certifier replication for Tashkent, Treplica internal checkpoint handling is completely
compatible with the Tashkent handling of replica recovery [Elnikety et al. 2006].

3.4. Web Services

Supply chains are being deployed as a composition of web services [Alonso et al. 2004,
pp. 123-134]. Integration of services mean, on the one hand,that companies gain the
capability of reacting faster to their clients needs, potentially raising revenue. On the
other hand, companies and clients become dependent on the continuous provision of the
services. Thus, reliability is very important and Treplicaprovides a very simple infras-
tructure to implement replication. Using the abstractionsof replicated state machines and
asynchronous persistent queues it is very simple to implement actual web services. The
way this abstraction works is completely compatible with the way web service requests
are handled, including concurrent requests. As a proof of concept, we have sucessfully
implemented two simple but representative web services to assess the ease of use and
test the replication properties of Treplica. One of the applications emulates an Internet
banking system, the other implements an auction service.

A software architecture for replication of web services must deliver satisfactory
dependability and performance, while maintaining compatibility with all web services
standards. Compatibility is an easy task, considering the modular software architecture
commonly found in web services middleware, however by usingactive replication per-
formance can become an issue as there is a relatively tight association among the replicas
and the provided consistency can be more than the minimum required by some applica-
tions. The ease of use provided by Treplica and the fact that main-memory capacities keep
growing and networks get faster may compensate this extra cost. We estimate Treplica
performance can be enough to accommodate an enterprise wideapplication or a small
scale Internet shop as shown in the next section, but there isstill much work to do on
validating these claims.

4. Preliminary Performance

In this section we present some preliminary data on the performance of Treplica. The
experiments performed were not designed to be a comprehensive study of Treplica, but
only to assess the feasibility of using it as the replicationengine for the applications de-
scribed in Section 3. The current Treplica prototype is not yet properly optimized and



some functionality is missing, but the data presented here shows that it delivers satisfac-
tory performance, at least for the small subset of configurations tested.

To validate the API and have an actual platform for testing, we have developed
a simple Internet auction application using Treplica. The application is very simple and
allows a client to put items for sale, list all auctions, listthe recentk auctions, consult
the status of any auction and place a bid on any item, but only the creation of a new
auction and the placement of bids change the application state and need to be processed
by Treplica. The unit of replication is an auction agent, accessed through a façade that
exports a simple interface for the users. Remote clients access this interface through
SOAP, local clients can call the façade methods directly.

To separate load factors related to SOAP from the load generated by Treplica, we
conducted our tests using only the local interface. Moreover, our generated load consists
only of auction creations. This way, we can be sure that load factors unrelated to the core
Treplica have been ruled out and we are able to analyse the data as if Treplica were the
only possible bottleneck. The load was defined as a sequence of create auction opera-
tions, generated with a fixed rate. This load is generated in the same hosts running the
replicas, but care was taken to ensure that the load generation wasn’t competing with the
application processing and that the specified load rate was being generated.

The tests were performed on a cluster of six machines, but we only evaluated a
system with three replicas. Each of the hosts has four Intel Xeon 2.4GHz processors
and 1GB RAM, all interconnected by a switched 100Mbps ethernet link. We tested two
different configurations:singleandmulti. In thesingleconfiguration we have only a sin-
gle working thread generating load and a new state machine operation is dispatched only
after the previous one has been completed. This configuration measures the response
time expected by a single synchronous client and also the maximum throughput in terms
of Paxos instances per second. Due to the synchronicity of this configuration, all load is
generated by one of the replicas and the final load rate is directly derived from the average
response time. In themulti configuration, we have as many working threads as necessary
to guarantee a constant load of state machine operations. This configuration shows the
throughput expected by a group of unrelated clients, and measures the effect of bundling
many messages in a single Paxos instance. In this configuration, load is generated in-
dependently by all replicas, limited by the selected operation rate and sustained during
the whole experiment duration. We increased the selected operations rate until request
queues started to grow and the average response time exceeded an arbitrary threshold of
100 milliseconds. In both configurations, the response times observed displayed an ex-
ponential distribution and we present the response time considering a cut point of 85% of
the distribution, that is 85% of the requests were serviced in a time equal or inferior to the
figure provided.

Configuration Throughput (op/s) Resp. Time (ms)
single 90.7 4
multi 1685.1 34

Table 1. Treplica operation throughput and response times.



Table 1 shows the data collected for this simple experiment.Taking into ac-
count the consistency guarantees provided by Treplica, we consider its performance to be
satisfactory and in line with the performance of similar systems [Abdellatif et al. 2004,
Chandra et al. 2007]. We expect this figures to improve as we optimize Treplica. Also,
these results reflect only write operations, while read operations were intentionally left
out. Considering an application with 80% of read only operations, the data presented
suggest a potential limit of about 8000 operations per second.

5. Related Work

The idea of main-memory storage, with a persistent operations log used as a fault tol-
erance mechanism, is described by Birrell et al. [Birrell et al. 1987]. The current API
of Treplica was influenced by the Prevayler [Wuestefeld 2003] persistence layer, specif-
ically in its use of features of modern dynamic languages like Java and C# to simplify
implementation and provide a more straightforward API. Compared to these centralized
systems, Treplica goes a step further as it uses this operation-based persistence approach
as a basis for replication.

A common abstraction for replication is to use traditional databases as replicated
data stores and access the data through conventional query mechanisms, such as SQL. In
this case replication isn’t offered as a service, but as a mean to attain greater availabil-
ity or performance for the replicated database systems. Recent research systems in this
area are Postgres-R [Kemme and Alonso 2000], Sequoia/C-JDBC [Cecchet et al. 2004],
Tashkent [Elnikety et al. 2006] and Tashkent+ [Elnikety et al. 2007]. Differently from
Treplica, these systems offer a relatively heavy-weight solution to the problem of replica-
tion, not very applicable as a building block to general distributed applications. Tashkent
and Tashkent+ are built using a light-weight replication module and shift the burden of
persistence (durability) from the database to this replication module, with a positive per-
formance impact. This approach is very similar to the changefrom a persistence-based
programming interface to a replication-based one proposedby Treplica.

Closer in essence to Treplica is the Boxwood framework for the construction of
distributed storage applications [MacCormick et al. 2004].Boxwood creators advocate
the use of generic data structures as a foundation where to build more complex distributed
systems. However, Boxwood is focused in one domain of application (file systems and
databases) and provides a more low level interface to its services, while Treplica offers a
higher level programming API. Another similar system is theChubby locking service that
is used to power a myriad of distributed applications at Google [Burrows 2006]. Although
a locking system is a different type of abstraction, Chubby shares many architectural fea-
tures with Treplica, including a “persistent log”, very similar to a persistent queue, used
as basic unit of replication. Chubby is a special purpose application used to provide lock
services and doesn’t export its internal replicated state service. In comparison Treplica ex-
ports only the replicated state service, a base where locking primitives can be build upon.
Both Boxwood and Chubby use the Classic Paxos algorithm to implement replication,
while Treplica uses both the Classic and Fast Paxos variants.

The asynchronous persistent queues abstraction is very similar to the publish/sub-
scribe pattern of communication for process groups implemented in message oriented
middleware (MOM) [Banavar et al. 1999]. The message exchangein MOM is asynchro-



nous and even a failed or inoperative processes can expect tobe delivered all messages
sent, in the same order seen by all the other processes. Besides message diffusion, MOM
allows the construction of elaborate message flow graphs andmay perform message for-
mat conversion as messages are transported through this graph. Examples of such sys-
tems are the IBM WebSphere MQ2 and Apache ActiveMQ3 products. These systems are
heavy-weight compared to Treplica and are usually implemented on top of a centralized
relational database, inheriting the failure behavior of these systems. Also, Treplica is de-
signed for more tightly coupled processes and do not provideexplicit message flow and
message format conversions.

Group communication toolkits provide a service of message diffusion to a group
of processes according to diverse ordering guarantees. Many of these systems exist, from
the original Isis [Birman 1993], to JGroups [Ban 1998], Spread[Amir et al. 2000] and
Appia [Miranda et al. 2001], to list a few. The central idea behind these toolkits is the vir-
tual synchrony [Birman and Joseph 1987a,b] application programming model. Treplica
shares some similarity to these systems but does not implement the virtual synchrony
model, nor does it support many message ordering guarantees, only a totally ordered
message sequence. In virtual synchrony, processes are responsible for their own persis-
tence, and their local stable state can be inconsistent withthe messages being delivered
for the group, even when using total ordering of messages. Ifnecessary, the only way
to synchronize a local process persistent state and the group state is by means of a state
transfer from a process in the group, unless the applicationtakes additional steps to create
some other mechanism of recovery, such as a message log or a state delta. Another limi-
tation of view synchrony based systems is the fact that if a process is suspected of having
failed, even if it is wrongly so, it must restart its operation and discard all its state, resort-
ing again to a costly state transfer. Treplica is designed tooffer a simpler programming
abstraction with built in support for persistence, thus theapplication programmer is free
from the difficult task of guaranteeing state consistency. In a way, Treplica can be seen as
a higher-level abstraction than group communication, and these toolkits could be used to
create an implementation of the Treplica API.

6. Conclusion

We have presented Treplica, a tool designed for ubiquitous replication. The design of
Treplica was motivated by the limited support for handling the replication of nonvolatile
data found in the tools currently used for the construction of distributed applications.
Treplica handles this limitation by making transparent thecomplexities of dealing with
replication and persistence. Treplica is built on the Paxosalgorithm for consensus, and
have much in common with the architecture for consensus-based group communication
proposed in [Mena et al. 2003].

We have described our current work implementing Treplica, and why we believe
the proposed programming abstraction of asynchronous persistent queues and replicated
state machines is an easier way of handling replication in distributed applications. Ease
of programming is a difficult point to argue, but our experience so far and some research
reports [Burrows 2006, MacCormick et al. 2004] indicate this is a useful abstraction. We

2http://www-306.ibm.com/software/integration/wmq/
3http://activemq.apache.org/

http://www-306.ibm.com/software/integration/wmq/
http://activemq.apache.org/


have also presented some preliminary data that shows satisfactory performance, even be-
fore Treplica is functionally complete and fully optimized.
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