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Abstract. This paper describes Treplica, a tool designed for ubiqusteepli-
cation. Most of the software tools created so far to aid in tbastruction of
distributed applications addressed solely how to maintailatile data consis-
tent in the presence of failures, but without offering anyefeior the problem
of managing persistence. Treplica simplifies the developwichigh-available
applications by making transparent the complexities ofidgawith replication
and persistence. These complexities are not negligible yvanbelieve we have
found a compelling way of factoring out these concerns in gk&ro under-
stand programming interface.

1. Introduction

Consider the problem of implementing a highly availablerthsted application. It is
a fact that one of the main development concerns is the mareageof persistent data,
maintaining consistency in the presence of failures andwwoancy. Thus, failures, con-
sistency and performance are a concern even before repfidas been considered as a
mean to satisfy the high availability requirement. Mostlué software tools created so
far to aid in the construction of distributed applicationsieessed solely how to maintain
volatile data consistent in the presence of failures, btitout offering any relief for the
problem of managing persistence [Birman and Joseph 198&ujally, when developers
opt for the use of such tools for replication, they have toeceith two problems: (i)
the handling of replication itself and (ii) the explicit me@ry of the state lost during a
component failure.

This paper describes Treplica, a tool designed for ubigsiteplication. Treplica
treats the solution of the two problems presented beforeuagy by offering to the pro-
grammer a simple way to deal not only with consistency bud agh persistence. In the
context of Treplica, ubiquitous means transparent, esgiland efficient. Transparency
guarantees that programmers can develop replicatedodittd applications without hav-
ing to be concerned about how replication is actually im@etad. In fact, application
programmers can program their statefull applications dsey were stateless applica-
tions. Resiliency means that Treplica implements at its eoreplication protocol that
gives applications the ability of tolerating crashes amveries of a subset of their repli-
cated components without having to worry about the consigtef the replicated data.
Treplica guarantees resiliency through the implemematiocPaxos [Lamport 1998] and
Fast Paxos [Lamport 2006]. The unified handling of consigtemd persistence means
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that applications developed atop Treplica are able to mpskational faults and support
online modular maintenance. These in their turn can cartilbo the lowering of the
operational costs of running the application for very lomgi@ds of time. This is, in our
opinion, a key factor for the adoption of any replicationltbg developers of modern
distributed applications. In terms of efficiency, our iaitexperimental results show that
Treplica can provide the necessary processing capacityai@gtee very good application
response times.

In summary, Treplica simplifies the development of highHabde applications by
making transparent the complexities of dealing with regilan and persistence. These
complexities are not negligible [Chandra et al. 2007], andbekeve we have found a
compelling way of factoring out these concerns in a simplartderstand programming
interface. The main contributions of this work are: we pregthe idea of handling and
presenting to the application programmer a unified progrengrbstraction for replica-
tion and persistence. We propose the use of consensus asdafaun for construction of
one such unified replication toolkit. We describe our curveork on Treplica, an efficient
and generic implementation of these ideas, with prelinyip@rformance data.

The rest of the paper is structured as follows. Section 2ribescTreplica, with
emphasis on the design and implementation of its progragaiistractions: asynchro-
nous persistent queues and replicated state machinesorS&argues that Treplica can
be used ubiquitously to support the development of a vaagétistributed applications,
ranging from distributed locking services to generic welvises. Section 4 analyzes
our experimental results and assesses the performancepich. Section 5 is dedicated
to reviewing and acknowledging research efforts relate@iréplica. Finally, Section |6
concludes the paper by briefly summarizing our contribion

2. Treplica

Treplica has been designed to provide a simple tool for timstcoction of replicated ap-
plications that reside in clustérsThese clusters of Unix boxes interconnected by a fast
LAN are the hardware platform of choice for most of high-penfiance, high-throughput
distributed applications. We assume nodes of the clusteavseaccordingly to the crash-
recovery failure model. Nodes can fail only by crashing, seesiced, and later reenter
normal operation; any data not stored in persistent mensdost during the crash. Com-
munication is accomplished by message passing and messaybs lost, duplicated or
arbitrarily delayed, but they cannot be corrupted.

Treplica considers an instance of the application compioselected for replica-
tion as its unit of replication. Units of replication are igs®ed to nodes of the cluster in
accordance with their availability requirements. The sioit replication can have com-
munication patterns that involve direct interaction wiliewts of the application or, alter-
natively, can have their communication restricted to congmts of the application that
do not interact directly with clients. For example, the reqatied components may be ded-
icated to wrapping around a legacy system, by convertingt@msfering data between
the legacy system and the distributed application.

!Replication across clusters, over the Internet, isn't yedracern of the project, it might be considered
in the future.



The main design decision that supports Treplica is the coatigin of persistence
and replication requirements of the application under glsiand simple programming
abstraction. A well-accepted way to handle replicatiorsisig Lamport’sactive replica-
tion [Lamport 1978], where an application is modelled as a ddtestic state machine,
the actions of the application are modelled as transitibtii®machine and the sequence
of transitions is broadcast, in the same order, to all raplidhe determinism of the state
machine guarantees that all replicas will be identical sB&¥nce in Treplica is built us-
ing the same principle: the application is a deterministitesmachine, the operations
are transitions of this machine and the sequence of transiis logged to stable stor-
age [Birrell et al. 1987]; this way it is possible to recovesrir failures by replaying the
log. Determinism ensures that after each recovery the @ will restart in the same
state it was before the failure. For efficiency and ease olampntation, we require
that the application fit in main-memory, as we do not providg means of selectively
unloading parts of the application state to secondary mgnWith the current size and
cost of main-memory, we don’t consider this limitation toderoblem for the class of
applications that can benefit from using Treplica.

A key part of active replication is the ordered broadcast essages, essential to
the consistency of the replicas. By design, Treplica alraadgsponsible for the per-
sistence of each replica and manages the stable state gbpheation. Thus, to avoid
explicit coordination of the application state and the ltat@er algorithm state in the
presence of failures [Efago et al. 2004] we have decided to use uniform total order a
the communication primitive. The combination of uniforntaticorder and log-based fault
tolerance is the key to avoid unnecessary duplication cfigtent memory logging. This
approach can be more efficient because it is possible to battkerialize access to stable
storage, using the disk in its more efficient mode. Treplies wesigned to accommo-
date any uniform total order algorithm, but we have decigdecbincentrate on consensus
based total order algorithms because they allow Treplidzate a simpler software ar-
chitecture and increases its potential for good responsa&in the presence of partial
failures [Mena et al. 2003].

Finally, the resulting software architecture should beygagprogram and useful
for a large number of applications, adhering to differemtgpamming styles. To accom-
modate this, we have decided to offer a state machine abstras a programming tool,
using the reflection facilities of modern languages to eecaad execute state and state
transitions. Using state machines as a programming toa@sgable because states and
transitions are easily implemented as objects. Trepliagm@emented in Java, and in
this language the application state is represented byligabée objects and transitions as
runnable, serializable objects. Treplica programmingdstean easily be implemented in
any other dynamic language and, with some more effort, inemi@ditional languages
such as C/C++. So, a developer who wants to implement a regdichstributed applica-
tion does not reason in terms of replicated and persistgatts) instead, it reasons about
the execution of the application operations, transitidrsreplicated state machin¢hat
are triggered by events that are made available throwagyachronous persistent queue
In the remaining of this section we describe these two attstres and how they are im-
plemented in Treplica.



2.1. Asynchronous Persistent Queues

The search for a simple programming abstraction for Traplked us to the notion of
asynchronous persistent queues, an abstraction for gdtstl persistent log of mes-
sages. Informally, asynchronous persistent queues areydowva group of processes
to exchange messages, with three important propertiesiggsages are delivered in the
same order to all processes, (ii) messages are deliverdidotoeesses, even if a process
crashes and later recovers, and (iii) messages are patsigieese properties are very
similar to the properties of total order broadcast in a groommunication toolkit using
view synchrony [Birman and Joseph 1987a], but delivery ofsagss is constrained by
the state of the application and not by a view. Asynchronarsigtent queues are also
very similar to the publish/subscribe groups implementedhessage oriented middle-
ware [Banavar et al. 1999], but here processes are tighttedup

Each persistent queue is uniquely identified lguaue identifie(queue id). Each
process that interacts with a queue does so througheaie endpointcreated using a
queue id and bound to a specific queue. A process may accegguaunes at the same
time, creating a separate endpoint for each one of them. fitmtipes of an asynchro-
nous persistent queue are very simple:

creat e(queuel d) : Creates a queue endpoint identified by the provided queue id.

get Processl d(): Returns the process id associated with this endpoint.

put (message): Sends amessage to all other processes trough this queuessagee
can be any serializable object.

get () : Receives the next message of this queue.

Individual processes don'’t have to worry about making thagues persistent, all
is taken care of by the endpoint. Each queue endpoint hasiatsb with it the mes-
sage delivery history. For instance, a new process joiniggeae, using a new queue
endpoint, will receive all messages ever sent to the quehas,Tby relying on the total
order guaranteed by the queue and in the fact that queue®sistpnt, individual pro-
cesses can become replicas of each other using activeatsmlicwhile remaining in their
perspective completely stateless.

The persistence of the queues cannot be implemented efffjcierniess careful
design and implementation steps are taken. Suppose a prfailssand returns after
having executed for a considerable time. It is the respditgibf the queue to provide it
with its recovery state in the form of a message log that, i ¢tase, can be very large.
There is no upper limit for the size of the recovery log and asrssequence stability of
state has to be designed to allow obsolete queue and appiiciate to be adequately
collected and discarded; this is the function of the quealelststate managers. The state
managers of the asynchronous persistent queue providewehaall queue controlled
persistencewhere periodically a snapshot of the queue and applicatiate is taken
and the log is garbage collected. The queue handles theinatamh of local snapshots
among all replicas and guarantees that each replica alvemgsassequence of messages
consistent with its state. This may require, if a replicdsfand falls behind the others,
that upon recovery the queue replaces its local state withpdated snapshot obtained
from the other replicas. To support this mode of persisteheeapplication should be
instrumented with a save state (take checkpoint) procetthates callable by the queue



state manager. An extra primitive is available to bind theuguwith the entity responsible
for storing the application state:

bi nd( st at eHol der): Binds a process, represented by its state holder, to a queue
endpoint. The state holder is any application componenaldapof implement-
ing thet akeCheckpoi nt () primitive. Returns a checkpoint if recovery was
necessary. The process must reset its state to the returaekipoint.

2.2. Replicated State Machine

Treplica can support the construction of replicated apgibmis in many ways. A straight-

forward approach would be to access the asynchronous feestieues API directly

and use the ordered sequence of messages to implement licagefhe direct use of

asynchronous persistent queues would require the apphgatogrammer to build some
type of state machine to use active replication, to build asage monitoring subsystem
to service the client requests synchronously, and to hahdleind and take checkpoint
operations of the queue. To make this task easier, Treplmades a higher level abstrac-
tion that implements this replicated state machine.

The replicated state machine component is an implementatia state machine
that has its state changed only by executopgrations Operations are implemented
as Java objects that contain methods built to act on the Iséddieby the state machine.
Locally, each replica stores all its state in the replicatiatie machine and only changes it
using operations passed to theecut e() method. The programming interface of the
replicated state machine is listed below:

create(initial State, queue): Createsanew state machine boundto a queue.
An initial state should be provided, because the process#tla this method can
be the first one to bind to this queue.

get St at e(): Returns the current state of the state machine. A processuean tis
state at will, but cannot change it.

execut e( operation): Executes an operation on the distributed state, performing
all necessary steps to coordinate this change with the ofpdicas. This is a
blocking method.

A replicated state machine has only three simple methods programming in-
terface that implement a well-defined, well-known and easyse programming abstrac-
tion. Thus, the major task a programmer will have to perfaymde this abstraction is the
definition of the application state and of the operations thadify the state, regardless
of state persistence, state replication, checkpointimgracovery concerns. It is worth to
note that this step is usually carried out even for applicegithat do not have replicated
state, so it does not add complexity to the development peog@perations applied to the
state machine by the local client can only be actually peréat by the state machine af-
ter they have been converted into a message and submitteel &synchronous persistent
gueue. The local client of the state machine perceives theution of the operation as a
call to a blocking primitive. A successful return of the ogillarantees that the operation
submitted has been performed in the same order by all raplica



2.3. Software Architecture

The software architecture of an application built on top @glica is shown in Figure 1.
The main architectural components are the applicatiotf,iteplicated state machine and
asynchronous persistent queue, the total order servicthargiate manager.

HTTP
SOAP Application
RMI
Replicated State
Machine
Asynchronous Persistent Queue
Total Order State
(Fast Paxos) Manager
Transport (UDP/IP) File System

Figure 1. Software architecture of Treplica.

The client application can interact with its clients in angywpossible. For exam-
ple, it can serve remote clients using RMI, it can implemented wervice, it can serve
local clients through sockets, etc. The only architectaoalstraints imposed by Treplica
on the application are the ones described in Section 2; thiicapon replicated data fits
in main-memory and that the application that handles thikcagpd data is deterministic.
Section 3 lists some examples of applications that can lidrafi Treplica. If necessary,
the application can use multiple threads to service itsitdigbut Treplica guarantees that
only one thread at a time executes operations on the statemeac

2.4. Implementing Asynchronous Persistent Queues

Usually, the total order service provided by group commaindn toolkits isn’t uniform.
Thus, we decided to employ a total order algorithm based asawsus, as they provide
a complete solution and usually implement uniform totaleoridDéfago et al. 2004]. In
practice, Paxos [Lamport 1998] is one of the most sucessidllused consensus algo-
rithms [Chandra et al. 2007, Elnikety et al. 2006, MacCormickl£2004], and fits per-
fectly the Treplica design because of its adherence to tagherecovery failure model
and the way it structures its persistent memory. Specifictle adoption of Paxos has
allowed us to delegate to the consensus component the nmaaagef stable storage for
Treplica.

A full description of Paxos is beyond the scope of this papatrye offer a simple
description of the algorithms main components. Total otud#ng Paxos consists of a se-
guence of individual consensus instances, each one conéisig to a deterministically
ordered list of messages. The instances are totally ordsretkfinition and this order
drives the ordering of messages, as all processes musteeasbnsus and select a single
message list for each slot. Each consensus instance re@utiens from processes per-
forming the following roles: proposer, acceptor, coorttimand learner [Lamport 2006].
Each process can perform more than one role, but at leaspagen a coordinator and
a majority of acceptors must be present for the algorithmrogess. In Treplica all



process perform all roles, except the coordinator, that fesinique to ensure progress
of the algorithm. Our implementation shares a similar dedture with the proposal for
group communication over consensus of Mena et al. [Mena €08i3], but we do not
yet implement group membership functions or any other dgfigemantics besides total
order.

We have implemented the Fast Paxos [Lamport 2006] genatializ of Paxos,
but with support for the classic Paxos algorithm if desirdghst Paxos optimizes the
number of communications delays associated with a clagsto$instance from three to
two, but it requires a larger number of correct acceptorsguee progress. To support
both algorithms interchangeably, without reconfiguragiome shift the initial ordering of
a proposal from the leader to the proposers. Each propostsea locally consistent
position for its next message list and sends it directly ®dbceptors, if this is a Fast
Paxos instance, or to the leader, if this is a classic Paxsianne. Either way, it is the
responsibility of the proposer to check if the message less$ wrdered as requested, or
retry the request with a different Paxos instance if unsssfcé Due to this change, the
leader becomes unnecessary in Fast Paxos, except to aerdiilure recovery. This
IS very interesting as it removes the possible performantiéebeck represented by the
leader.

Another interesting property of Fast Paxos that affectsitmglementation of
Treplica is the fact that different proposers can try andepmdistinct messages at the
same position at the same time in a fast instance. In this daisepossible that none
of the proposals will succeed, in what is called a collisibarhport 2006]. Lamport
describes several strategies to resolve this collisiomjh@rt 2006] and we have imple-
mented the simplest: whenever a collision is detected a nstance of classic Paxos is
initiated, with the participation of the leader to solve timnflict. We have decided not to
use any of the more elaborated collision recovery techsitpeeause of the low overhead
associated with running single classic Paxos instancetandetative rarity of collisions
in the target architecture [Pedone and Schiper 2003].

Treplica is built on top of UDP/IP and uses multicast IP addes as queue iden-
tifiers. Processes use their IP address and port number @seudientifiers and use the
multicast IP addresses as references to their peers. Bmeéram explicit group member-
ship procedure, not even a static hard-coded one. The Pabsmentation of Treplica
requires only a correct definition of a majority to work. Fasyestem withn acceptors, a
majority is defined agn /2| + 1 acceptors for Paxos arjdn /4| acceptors for Fast Paxos.
At any time, there can be no more thaactive acceptors, but the current implementation
does not enforce this limit. We plan to extend Treplica togupgroup reconfigurations,
bringing it closer to the architecture proposed in [Mena .€2@03]. However, the current
implementation allows for a considerable degree of fleitjbds it only requires that the
maximumumber of processes in the system to be fixed, not their igenti

To ensure liveness, Paxos requires a leader election campamhich includes
the failure detector module. We have implemented a very Isimlgorithm where a pro-
cess makes a bid for or announces its leadership by broaugatst process identifier;
the algorithm is similar in its design principles to the aijan proposed by Korach et
al. [Korach et al. 1984]. In practice, this simple leadecttn algorithm is rather limited
as it requires all links to be timely to function properly aibdsn’t stable. Stability is



a very desirable property of any leader election algorittsmduby Paxos [Malkhi et al.
2005] and we will improve the leader election algorithm asd¢bde matures.

The state manager takes care of the persistent storage Bfatttss component.
By handling the persistence of all votes cast by acceptorsalirelections started by
the coordinator, all state of the total order algorithm afhdhe application are stored
in a persistent log. This log is represented by lddger abstraction of the Paxos algo-
rithm [Lamport 1998]. Treplica state manager is a carefylementation of this ledger,
optimized for efficient access to disk. For example, writeess is sequential, minimizing
disk head movement and increasing throughput. Also, naic&irivrites are batched and
only flushed to disk when a synchronous write is necessarfprtimately, the state man-
ager is currently the less mature component of the systerhandot been implemented
in full yet.

3. Treplica Applications

This section lists examples of systems where Treplica cani@oyed. In some of these
domains it is already possible to find other implementatiggisg mechanisms similar to
the ones used by Treplica. We comment more on the similaatiel differences between
Treplica and these other systems in Section 5.

3.1. Lock Service

Some large distributed applications do not and cannot reqoat all data are replicated
in a consistent way. However, the data must be accessed intelbed way. A simple
way to coordinate the access of a shared resource by sevdegkndent agents is through
the use of locks and leases [Lamport 1998, Lampson 1996]rdpleated state machine
is the perfect abstraction to build a cluster of reliableklservers that can be accessed
through a RPC interface.

The Chubby lock service [Burrows 2006] is an example of a lockesemple-
mented using a very similar approach to Treplica. Inteyn@hubby uses a replicated and
persistent log of operations component implemented usin@$[Chandra et al. 2007].
This persistent log is very similar to the asynchronousipnst queues and the creators
of Chubby argue that this is a very helpful abstraction thaic¢de used in other dis-
tributed applications [Chandra et al. 2007].

3.2. Distributed File System

Distributed file systems maintain large amounts of dataston stable storage, replicated
for fault tolerance and reliable access. Due to the amoudataf and to the performance
requirements, this involves only two or three replicas vétiprimary-backup scheme.
Nonetheless, the state of these replicas can be controll@dréplicated state machine,
such as the identity and status of the replicas are alwaysistently updated and made
available to both file system replicas and clients.

The Boxwood framework [MacCormick et al. 2004] construct®RitDev (Repli-
cated, Logical Device) abstraction using two replicas, ismgry and a backup, where
writes can only be performed in the primary and reads can Herpged on both. The
location of each replica, the identity of the primary andoresry information are kept
in a component of Boxwood called the Paxos service. This cemifers very similar
semantics to the replicated state machine and could be mepleed using Treplica.



3.3. Database Transaction Certifier

Tashkent [Elnikety et al. 2006] is a distributed database tises generalized snapshot
isolation to manage concurrency and consistency amongakgaeplicas. The system is
organized as a transaction certifier that coordinates a auofluatabase replicas that run
off-the-shelf database servers interfaced to clientauindocal proxies. Read operations
are executed locally, but write operations are first orddrgdhe certifier before being
applied.

The certifier component is more than a simple ordering mashmiit also handles
the durability of the write operations, increasing the allggerformance of the cluster as
it relieves local replicas from costly local 1/0. The cesdifruns in a cluster of replicated
machines independent from the cluster of database re@itdsises Paxos to guaran-
tee consistency among its members. Thus, not only Trepéoabe used to implement
the certifier replication for Tashkent, Treplica internbéckpoint handling is completely
compatible with the Tashkent handling of replica recové&ipikety et al. 2006].

3.4. Web Services

Supply chains are being deployed as a composition of welicesr{Alonso et al. 2004,
pp. 123-134]. Integration of services mean, on the one htdrad,companies gain the
capability of reacting faster to their clients needs, ptiédly raising revenue. On the
other hand, companies and clients become dependent onrthieumus provision of the
services. Thus, reliability is very important and Treplmavides a very simple infras-
tructure to implement replication. Using the abstractiofreplicated state machines and
asynchronous persistent queues it is very simple to impietual web services. The
way this abstraction works is completely compatible with tiay web service requests
are handled, including concurrent requests. As a proof n€ept, we have sucessfully
implemented two simple but representative web servicessess the ease of use and
test the replication properties of Treplica. One of the magilbns emulates an Internet
banking system, the other implements an auction service.

A software architecture for replication of web services tradiver satisfactory
dependability and performance, while maintaining conipiiyy with all web services
standards. Compatibility is an easy task, considering theutao software architecture
commonly found in web services middleware, however by usictiye replication per-
formance can become an issue as there is a relatively tight@sion among the replicas
and the provided consistency can be more than the minimumregby some applica-
tions. The ease of use provided by Treplica and the fact taat-memory capacities keep
growing and networks get faster may compensate this exsta e estimate Treplica
performance can be enough to accommodate an enterpriseapdieation or a small
scale Internet shop as shown in the next section, but thes#lisnuch work to do on
validating these claims.

4. Preliminary Performance

In this section we present some preliminary data on the pednce of Treplica. The
experiments performed were not designed to be a comprefeesisidy of Treplica, but
only to assess the feasibility of using it as the replicaBagine for the applications de-
scribed in Section 3. The current Treplica prototype is reitproperly optimized and



some functionality is missing, but the data presented hHevevs that it delivers satisfac-
tory performance, at least for the small subset of configumattested.

To validate the APl and have an actual platform for testing,have developed
a simple Internet auction application using Treplica. Thpligation is very simple and
allows a client to put items for sale, list all auctions, lise recent: auctions, consult
the status of any auction and place a bid on any item, but dmycteation of a new
auction and the placement of bids change the applicatide atad need to be processed
by Treplica. The unit of replication is an auction agent,essed through a facade that
exports a simple interface for the users. Remote clientssacttes interface through
SOAP, local clients can call the facade methods directly.

To separate load factors related to SOAP from the load gesteby Treplica, we
conducted our tests using only the local interface. Moreaw# generated load consists
only of auction creations. This way, we can be sure that laatbfs unrelated to the core
Treplica have been ruled out and we are able to analyse theadat Treplica were the
only possible bottleneck. The load was defined as a sequdrmeaie auction opera-
tions, generated with a fixed rate. This load is generatedlersame hosts running the
replicas, but care was taken to ensure that the load gemeraisn’t competing with the
application processing and that the specified load rate wiag lyenerated.

The tests were performed on a cluster of six machines, butnieavaluated a
system with three replicas. Each of the hosts has four IneslinX2.4GHz processors
and 1GB RAM, all interconnected by a switched 100Mbps ethdimie We tested two
different configurationssingleandmulti. In the singleconfiguration we have only a sin-
gle working thread generating load and a new state machieeabpn is dispatched only
after the previous one has been completed. This configuratieasures the response
time expected by a single synchronous client and also thenmugx throughput in terms
of Paxos instances per second. Due to the synchronicityiottnfiguration, all load is
generated by one of the replicas and the final load rate isttjirgerived from the average
response time. In theulti configuration, we have as many working threads as necessary
to guarantee a constant load of state machine operatioris.c®hfiguration shows the
throughput expected by a group of unrelated clients, andsurea the effect of bundling
many messages in a single Paxos instance. In this configayatiad is generated in-
dependently by all replicas, limited by the selected opematate and sustained during
the whole experiment duration. We increased the selectetatpns rate until request
gueues started to grow and the average response time egcaedebitrary threshold of
100 milliseconds. In both configurations, the responsedioteserved displayed an ex-
ponential distribution and we present the response timsidering a cut point of 85% of
the distribution, that is 85% of the requests were servinetdtime equal or inferior to the
figure provided.

Configuration| Throughput (op/s) Resp. Time (ms
single 90.7 4
multi 1685.1 34

Table 1. Treplica operation throughput and response times.



Table[ 1 shows the data collected for this simple experimélaking into ac-
count the consistency guarantees provided by Treplicapnsider its performance to be
satisfactory and in line with the performance of similarteyss [Abdellatif et al. 2004,
Chandra et al. 2007]. We expect this figures to improve as wien@ga Treplica. Also,
these results reflect only write operations, while read af@ns were intentionally left
out. Considering an application with 80% of read only opersj the data presented
suggest a potential limit of about 8000 operations per s&con

5. Related Work

The idea of main-memory storage, with a persistent operatiog used as a fault tol-
erance mechanism, is described by Birrell et al. [Birrell etl&87]. The current API
of Treplica was influenced by the Prevayler [Wuestefeld 2@@3sistence layer, specif-
ically in its use of features of modern dynamic languages llava and C# to simplify
implementation and provide a more straightforward API. Carefd to these centralized
systems, Treplica goes a step further as it uses this opetiatised persistence approach
as a basis for replication.

A common abstraction for replication is to use traditionafadbases as replicated
data stores and access the data through conventional qeehamsms, such as SQL. In
this case replication isn't offered as a service, but as annb@attain greater availabil-
ity or performance for the replicated database systems. fiReesearch systems in this
area are Postgres-R [Kemme and Alonso 2000], Sequoia/C-JOBC:het et al. 2004],
Tashkent [Elnikety et al. 2006] and Tashkent+ [Elniketyle2®07]. Differently from
Treplica, these systems offer a relatively heavy-weighitgm to the problem of replica-
tion, not very applicable as a building block to generalrihsted applications. Tashkent
and Tashkent+ are built using a light-weight replicationdue and shift the burden of
persistence (durability) from the database to this repboamodule, with a positive per-
formance impact. This approach is very similar to the ch&ngm a persistence-based
programming interface to a replication-based one propbgelieplica.

Closer in essence to Treplica is the Boxwood framework for thestruction of
distributed storage applications [MacCormick et al. 200Bhxwood creators advocate
the use of generic data structures as a foundation whereltbrbore complex distributed
systems. However, Boxwood is focused in one domain of agmicdfile systems and
databases) and provides a more low level interface to itgces;, while Treplica offers a
higher level programming API. Another similar system is@tabby locking service that
is used to power a myriad of distributed applications at Gafurrows 2006]. Although
a locking system is a different type of abstraction, Chublayetimany architectural fea-
tures with Treplica, including a “persistent log”, very g$ian to a persistent queue, used
as basic unit of replication. Chubby is a special purposeiegtmn used to provide lock
services and doesn’t export its internal replicated settése. In comparison Treplica ex-
ports only the replicated state service, a base where Iggkmitives can be build upon.
Both Boxwood and Chubby use the Classic Paxos algorithm to ingsiemeplication,
while Treplica uses both the Classic and Fast Paxos variants.

The asynchronous persistent queues abstraction is vetigisiothe publish/sub-
scribe pattern of communication for process groups impidgatein message oriented
middleware (MOM) [Banavar et al. 1999]. The message exchaniy¥OM is asynchro-



nous and even a failed or inoperative processes can expbetdelivered all messages
sent, in the same order seen by all the other processes. Besasage diffusion, MOM
allows the construction of elaborate message flow graphsraydperform message for-
mat conversion as messages are transported through tpis. ggxamples of such sys-
tems are the IBM WebSphere I@(and Apache ActiveM@products. These systems are
heavy-weight compared to Treplica and are usually implgetean top of a centralized
relational database, inheriting the failure behavior esthsystems. Also, Treplica is de-
signed for more tightly coupled processes and do not progdicit message flow and
message format conversions.

Group communication toolkits provide a service of messatffesibn to a group
of processes according to diverse ordering guaranteesy bfahese systems exist, from
the original Isis [Birman 1993], to JGroups [Ban 1998], Sprfachir et al. 2000] and
Appia [Miranda et al. 2001], to list a few. The central idehipel these toolkits is the vir-
tual synchrony [Birman and Joseph 1987a,b] application pamagning model. Treplica
shares some similarity to these systems but does not impletine virtual synchrony
model, nor does it support many message ordering guarardebsa totally ordered
message sequence. In virtual synchrony, processes amnsdse for their own persis-
tence, and their local stable state can be inconsistentthétimessages being delivered
for the group, even when using total ordering of messagesedéssary, the only way
to synchronize a local process persistent state and the gtate is by means of a state
transfer from a process in the group, unless the applictdkes additional steps to create
some other mechanism of recovery, such as a message logate a@slta. Another limi-
tation of view synchrony based systems is the fact that ibagss is suspected of having
failed, even if it is wrongly so, it must restart its operatiand discard all its state, resort-
ing again to a costly state transfer. Treplica is designenffey a simpler programming
abstraction with built in support for persistence, thusdpplication programmer is free
from the difficult task of guaranteeing state consistenty Way, Treplica can be seen as
a higher-level abstraction than group communication, aede toolkits could be used to
create an implementation of the Treplica API.

6. Conclusion

We have presented Treplica, a tool designed for ubiquitepication. The design of
Treplica was motivated by the limited support for handlihg teplication of nonvolatile

data found in the tools currently used for the constructidmlistributed applications.

Treplica handles this limitation by making transparent ¢cbenplexities of dealing with

replication and persistence. Treplica is built on the Patgsrithm for consensus, and
have much in common with the architecture for consensusebgsoup communication
proposed in [Mena et al. 2003].

We have described our current work implementing Treplical, &hy we believe
the proposed programming abstraction of asynchronousspeErsqueues and replicated
state machines is an easier way of handling replicationstriduted applications. Ease
of programming is a difficult point to argue, but our expederso far and some research
reports [Burrows 2006, MacCormick et al. 2004] indicate thia useful abstraction. We

2http: // www 306. i bm con sof t war e/ i nt egr at i on/ wny/
Shttp://activeny. apache. or g/


http://www-306.ibm.com/software/integration/wmq/
http://activemq.apache.org/

have also presented some preliminary data that showsagatisf performance, even be-
fore Treplica is functionally complete and fully optimized
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