
WASHINGTON UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

CS423 Computer Communications: More Error Recovery

Fall 1995

This is the fourth of probably 7 lectures on the Data Link Layer. In the last lecture we studied
the stop-and-wait protocol for error recovery. In this lecture, we will study more pipelined error
recovery protocols, that are called sliding window protocols. These typically o�er much larger
throughput than the alternating bit or stop-and-wait protocol. We will also look at some protocol
design lessons, especially the problem of initializing the sliding window protocol in the face of link
and node crashes.

1 Latency and Throughput

We start by introducing two important measures that we use to compare the performance of
protocols. Consider a system (like a network) where jobs (like messages) arrive, and after completion
leave the network. Throughput roughly measures the number of jobs completed per second. Latency
measures the time (worst-case or average, we will typically consider worst-case) to complete a job.

The owners of a system want to maximize throughput to maximize revenues, while users of a
system want low latencies so they don't waste their time. Consider a doctor's o�ce. Often they
keep you waiting for a long time so that you will be ready when the doctor is ready. They are
optimizing for throughput, not to minimize your latency. A busy tra�c signal should typically
maximize for throughput by having each signal direction stay on for a long time; this minimizes the
startup overhead every time the signal changes. However, that means that even if there is nobody
at the intersection, you may have to wait a long time till the signal light changes if you are unlucky
and arrive just as your light changes to red.

Another interesting point (exempli�ed by the tra�c light example) is throughput is more in-
teresting for busy systems and latency is more important for idle systems.

One might think that throughput is just the reciprocal of latency. That is not true when the
system is pipelined | i.e., the number of users that may being serviced at the same time inside
the system. For example, if the system consists of 8 service stations that take 1 unit of time each.
If each job must go through each station, the throughput can be 1 job per unit time, while the
latency is 8. On the other hand, suppose each job needs only 1 service station and any service
station will do. Then the throughput can be 8 jobs per unit time, and the latency is 1.

For networks, the jobs are messages and the system is a network. The service stations correspond
to a series of hops. However, in this lecture we will con�ne ourselves to a single hop.

Two other important de�nitions we need to make for a Data Link are transmission rate and
propagation delay. The transmission rate at the Data Link is the rate at which the physical
later sends bits. Thus a physical layer that sends 1000 bits a second, sends a bit every msec.
The propagation delay is the time it takes for a single bit that is sent to arrive at the receiver.
Propagation delay is limited by the speed of light to at least 3 usec/ per km. (Electrical signals travel

1

even slower) and depends on the distance of the link between the sender and receiver. Consider a
sender and receiver that are connected by a 50 km link. Assume speed of light propagation, that
amounts to a 0.15 msec propagation delay and 1000 bit/second transmission, a 10 bit frame will
take 1.15 msec to be received completely: 10 msec to transmit all the bits, and .15 msec for the
last bit to reach the receiver.

The throughput of a link can be made independent of its latency by pipelining. However, for
obvious reasons, the throughput can never exceed the transmission rate. Finally, the propagation
delay is always an unavoidable part of latency on a link.

For unfortunate reasons, many people use the word bandwidth to talk of the transmission rate
on a link. At the physical layer, bandwidth is the range of frequencies that are passed through. At
the data link layer, it is often used to mean the link transmission rate. Please try to understand
by context which meaning is being used. Another phrase that is used often is round-trip delay.
This is the delay to send a frame from a sender to a receiver and to receive a reply frame from the
receiver. It includes the time to transmit both frames, as well as two propagation delays.

2 Why Pipeline?

Consider a satellite link that transmits at a speed of 100 Kbit/sec using 1000 bit data frames. Using
a stop-and-wait protocol, and assuming a propagation delay of 250 msec (remember a satellite link
must go all the way up to the satellite, a large distance), we can send only 1000 useful bits every
500 msec. This leads to a throughput of 2000 bit/sec. Thus stop-and-wait limits us to using only
2000/100,000 of the link bandwidth (new sense of the term bandwidth!!) which means that the
link is being utilized at only 2 percent. If the satellite link costs several hundred thousand dollars
a month, the users of this system should be unhappy.

The problem, of course, is that stop-and-wait limits us to sending one frame every round-trip
delay. This is a useful point: the performance of a network can be greatly inuenced by the choice
of protocol.

The stop-and-wait problem is not limited to satellite links. It really applies to all links such
that the link transmission rate multiplied by the propagation delay is large compared to the frame
size. This is sometimes called the bandwidth-delay product or pipe size (because it measures the
number of bits that can physically be stored on the physical link.) Since the speed of light has
been constant for centuries, but transmission rates keep improving, the bandwidth-delay product
keeps increasing. Consider a �bre optic link that links two locations on two coasts. Assuming a
coast-to-coast propagation delay of 20 msec, and a transmission speed of 100 Mbit/sec, and a frame
size of 1000 bits, we can store 2000 frames on the physical link! Thus stop-and-wait would restrict
us to using only 1/4000 of the link bandwidth.

For all these reasons, pipelined data link protocols are essential. Of course, most high-speed
data link protocols do not do error recovery, so this problem does not arise. However, transport
protocols have the same problems end-to-end, and thus it is crucial that they use pipelined error
recovery protocols. In the rest of the lecture we will study pipelined sliding window protocols.

2

3 Sliding Window Protocols

In a sliding window protocol, the sender can send a window of outstanding frames before getting
any acknowledgements. The window size limits the degree of pipelining. Consider a sliding window
protocol with a window size of w. As in the stop-and-wait protocol, lets start by using large sequence
numbers �rst. The sender maintains a single variable, a a lower window edge L (sometimes called
the lower window) which represents the lowest sequence number that the sender has not received
an ack for. The sender can also be thought of as maintaining an upper window edge, which is equal
to L+w� 1, which is the maximum sequence number it is allowed to send. The receiver maintains
a receive sequence number R that is the next number it expects to see (just as in stop-and-wait).
L and R are initially equal to 0.

In the stop-and-wait protocol, the sender keeps retransmitting the frame with sequence number
equal to the sender sequence number until it gets an ack. In sliding window protocols, the sender
keeps retransmitting all frames in its current window until it gets an ack. The receipt of an ack
numbered R implicitly acks all sequence numbers that are strictly less than R.

There are two important variants of sliding window protocols. In the �rst, called go-back-N , the
receiver only accepts frames in order. Suppose the receiver is expecting frame number 0, and the
sender sends frames 0 and 1. If frame 0 gets lost and frame 1 arrives at the receiver, a go-back-N
receiver will discard frame 1 because it arrived out-of-order. It is only when the sender retransmits
0 and 1 and they both arrive in order that the receiver will accept both frames. This version is
simple to implement but it implies that the loss of a single frame in a window can cause the sender
to have to retransmit the entire window (hence the name, with n representing the window size).

A fairly obvious �x is to have the receiver not discard frame 1 in the above example but to
bu�er it at the receiver until the sender resends frame 0. WHen frame 0 arrives, the receiver can
then release frames 0 and 1 to the client. This avoids the sender from having to unnecessarily
retransmit frame 1. It has a slightly more complicated implementation, however, and so is as not
used as often as one might like. The di�erence between the two is slight if the error rate is low
and the window size is small. However, for large pipe sizes (common in high speed networks) and
fairly large chances of losing frames, selective reject is important. In particular, for high-speed
transport protocols where most frames are lost due to congestion (which can be quite common)
and the window sizes are large, selective reject is very desirable.

4 Example

Figure 1 shows an example that contrasts the two variants of sliding window. On the left we show
go-back-n operation for a window size of 3. When we use a pair of numbers m;m + w � 1 next
to the sender, it means that the sender can send frames in the range. Notice that after the �rst
ack is received, the window slides to 1; 3. If acks keep coming back smoothly and the window is
su�ciently large, the pipeline can keep owing smoothly with the ack for the �rst frame in the
window being received just after the last frame in the window is transmitted. This would ensure
that the transmitter and the transmission line are never idle.

However, the example shows that frame number 1 is lost. In the go-back-3 version, the sender

3

uselessly transmits 2 and 3. Only when a timer expires, and the entire window is retransmitted
(for go-back-n, it su�ces to have a single timer that is refreshed whenever the window slides; if
it expires, the entire window is transmitted in order). In the selective reject scheme, on the other
hand, frames number 2 and 3 are bu�ered at the receiver until the retransmitted 1 arrives; at this
point the receiver number jumps to 4, and the receiver delivers frames 1, 2, and 3.

0

1D(0)

A(1)
D(1)

D(2)

D(3)

D(1)

D(2)

D(3)

A(4)

WINDOW
SLIDES

TIMER
EXPIRES

REJECT

REJECT

GO BACK 3 SELECTIVE
REJECT

0

1D(0)

A(1)
D(1)

D(2)

D(3)

D(1)

A(4)

WINDOW
SLIDES

TIMER
EXPIRES

BUFFER

BUFFER

0,2

1,3

4,6

4,6

1,3

0,2

Figure 1: An example of Go-Back n and Selective Reject Operation. Note that selective reject can recover faster from

errors as sender has only to retransmit lost frames.

5 Sliding Window Code

The code for Go-back-n sliding window protocols is given below. To make the code more general,
we allow the receiver to send acks whenever it wants to, not just when it gets a data frame, though
that is typical.

Assume that the sender has a long sequence of data packets given to it by its client, that it wants

4

to send. The data packets are stored at the sender. Number the data packets from 0 onwards. We
will send the s-th data packet with sequence number s attached.

Sender code for Go-back N:

Assume all counters are large integers that never wrap.

The sender keeps a lower window L, initially 0.

Send (s,m) (* sender sends or resends s-th data packet *)

The sender can send this frame if and only if:

m corresponds to data packet number s given to sender by client AND

L <= s <= L + w - 1 (* only transmit within current window *)

Receive(r, Ack) (* sender absorbs acknowledgement *)

On receipt, sender changes state as follows:

L := R

The receiver keeps an integer R which represents the next sequence number

it expects, initially 0.

Receive(s,m) (* receiver gets a data frame *)

On receipt, receiver changes state as follows:

If s = R then (* next frame in sequence *)

R := s + 1

deliver data m to receiver client.

Send(r, Ack) (* we an allow receiver to send an ack any time *)

r must be equal to receiver number R at point ack is sent

most implementations send an ack only when a data frame is received

We assume that any unacknowledged frame in current window is periodically

resent. In particular, the lowest frame in the current window must be

periodically sent to avoid deadlock.

The code for selective reject is given below. This time we assume that the sender keeps a table
that records which numbers greater than L have been acked (while we assume a large array in the
code, it su�ces to keep a bitmap representing numbers from L to L + w - 1.) Similarly, we assume
the receiver has a similar table that stores both a bit (indicating receipt) and a pointer to the data
if the frame has been received.

In the last example, we saw that the sender only need retransmit the frames that are actually
lost. In order to prevent the sender from doing useless retransmissions, the receiver needs to send

5

an ack containing its current number R as well as a list of numbers greater than R that have been
received out of sequence at the receiver.

Sender code for selective-reject:

Assume all counters are large integers that never wrap.

The sender keeps a lower window L, initially 0 and a table that

indicates which numbers have been acked (this can be optimized to store

only a windows worth of such state).

Send (s,m) (* sender sends or resends s-th data packet

The sender can send this frame if and only if:

m corresponds to data packet number s given to sender by client AND

L <= s <= L + w - 1 (* only transmit within current window *) AND

s has not been acked.

Receive(R, List, Ack) (* sender absorbs acknowledgement *)

On receipt, sender changes state as follows:

L = R

Mark every number in List as being acked in table.

The receiver keeps an integer R which represents the next sequence number

it expects, initially 0. The receiver also keeps a table that, for

each sequence number, stores a bit indicating whether it has been received

and a pointer to the data, if any, being buffered. Once again, this table

can be optimized to reduce the amount of storage to be proportional to

a window size.

Receive(s,m) (* receiver gets a data frame *)

On receipt, receiver changes state as follows:

If s >= R then

Store m in table at position s and set bit in position s

While the bit at position R is not set do

Deliver data at position R

R = R + 1

Send(R, List, Ack) (* we an allow receiver to send an ack any time *)

R must be equal to receiver number R at point ack is sent

List consists of numbers greater than L that have been received.

most implementations send an ack only when a data frame is received

We assume that any unacknowledged frame in current window is periodically

resent. In particular, the lowest frame in the current window must be

6

periodically sent to avoid deadlock.

6 Implementation Details

The code we have shown does not show timers that are used in any real implementation. As we
said earlier, in go-back-N implementations, it su�ces to have one outstanding timer. The timer
is set to some multiple of the average round-trip delay. (The round-trip delay can be calculated
by seeing how long it takes for acks to arrive; we"ll examine this in more detail when we look at
transport protocols.) Notice, that as usual the protocol will work correctly if the timer values are
set wrong; it will only cost in performance. In selective reject, we have to set a timer for every
outstanding frame in order to retransmit any outstanding frame in the window.

The ack list can be represented as a bit map to save bits. In order to further reduce the ack
bandwidth, some implementations often piggyback acks on data owing in the reverse direction. In
order to allow this, the data frames must have �elds in their header that can be used to put in
reverse ack information. While the saving in bits can be small (you only save the rest of the header
and framing information), it does reduce the number of frames that the sender has to process. It
turns out that there is a large �xed cost (e.g., interrupt processing) for processing frames, and it
pays to reduce the number of frames.

7 Sequence Number Space for Sliding Window Protocols

For the stop-and-wait protocol, we showed that a sequence number space of two was su�cient.
In other words, if we did all arithmetic mod n, where n is the size of the space, it all works out
OK. Similar arguments hold for sliding window protocols, but the arguments di�er for the di�erent
variants.

7.1 Go-back-n Modulus

Consider �rst go-back-n. First, notice that it is a strict generalization of stop-and-wait if we set
the window size to 1. Thus if we can get away with a sequence number space of 2 (1 + 1) in stop-
and-wait, perhaps we can get away with a space of w + 1. This is indeed true but the argument is
more tricky. This is because in sliding window protocols we can show that there can be 2w distinct
numbers simultaneously in the system (i.e., including both links) in some executions (try to �nd
this example). For w = 1, this gives us 2, which is also equal to w + 1. However, that seems to
indicate you may need a space of 2w.

Figure 2 shows why a space of w + 1 is su�cient for go-back-n. Notice that in the code, the
only comparison between sequence numbers is when the receiver checks whether an incoming frame
with number s has number s 6= R. Suppose we can show that both s and R are always within w
of each other. Then a space of w + 1 will su�ce.

The proof is a little tricky. We will not use a proof that uses invariants through such a proof can

7

be constructed. Consider the receipt of frame number s when the receiver number is R. Consider
the state of the sender when s was sent; clearly s must be in the range L to L+w� 1, where L is
the lower window at the time frame s was sent. Now if the sender number is L at this earlier point
in time, it must be because it received an ack from the receiver with number L. This means that
the receiver number was L some time in the past. But since the receiver number only increases or
stays the same, it means that the receiver number when frame s is received is at least L, where L
is the lower window at the point s is sent.

Similarly, it is easy to see that the sender has never sent frames with numbers larger than
L+w�1 before frame s was sent (because of the window size restriction). Since the links are FIFO
(this is the only place we use the FIFO property of the physical link), no data frame with number
greater than L+w�1 can have arrived before frame s arrives. Thus the receiver number cannot be
greater than L+w (recall that the receiver goes to one higher number than the last frame number
received in sequence), where L is the lower window at the point where frame s was sent.

Thus we know that L � R � L+w. But we know (because only frames within current window
are sent) that L � s � L+ w � 1. Thus the absolute value of R � s is no greater than w. Hence
we can get away with a modulus of size w + 1, because any two distinct integers that di�er by at
most w will be assigned distinct numbers in the modulus space.

If we use a smaller space, we can easily cause problems. For instance, if we use a space of 0 to
7 and a window size of 8. Then after the receiver receives 0 to 7 and then gets a 0, the receiver
cannot tell whether the 0 is a retransmission from the previous window or a new frame from the
next window. Accepting a retransmission will cause a duplicate to be delivered.

7.2 Selective Reject Modulus

The same inequalities hold for selective reject. However, recall from the code that selective reject
involves a comparison of the form s > R as opposed to s = R. Now from the previous inequalities,
we know that s and R lie within a range w of each other. A slightly more careful analysis shows
that R � w � s � R + w � 1. To �nd if s > R, the receiver needs to distinguish the previous w
frames from the next w frames, which leads to a space of 2w numbers at least.

If we use a smaller space, we can easily cause problems. For instance, if we use a space of 0 to
7 and a window size of 5. Then after the receiver receives 0 to 5 and then gets a 0, the receiver
cannot tell whether the 0 is a retransmission from the previous window or a new frame from the
next window. Accepting a retransmission will cause a duplicate to be accepted. The text gives a
more detailed example on Page 231.

8 Flow Control

Another problem that is often solved by transport protocols and some data link protocols is the
problem of avoiding the sender from sending at too high a rate so that the receiver will run out
of bu�er space. This is typically solved in sliding window protocols by having the receiver have
at least w bu�ers. If the receiver wants to dynamically adjust the window, the receiver can add
a �eld to its acks, indicating that its willing to receive so many frames beyond R. This is most

8

D(s) L

L

Sender Receiver

L

 s

the same answers. See text for a

L+w−1

L+w

L+w

can be done mod m, m > w and still get

GO BACK N MODULUS

R

|R−s|<=w

R

Thus comparisons between s and R

counterexample when m=w

Figure 2: Argument for go-back-n modulus looks back in time to the point that the frame s was sent and the lower

window L at that point.

useful when the receiver is sharing bu�ers among multiple senders; we will study this technique of
dynamic window sizes when we study transport protocols.

For protocols that do not do reliable error recovery (for example, ATM data links), a simple
method is to have the sender never send more than x bytes in every T seconds. If the receiver can
keep up with this rate, this works well. Once again, there are variants in which the rate can be
adjusted dynamically.

9 Initializing Sliding Window Protocols

So far we have assumed that the receiver magically starts with sequence number 0 and the sender
with number 0. What if the sender crashes while the receiver is at number 55. If the sender starts
with number 0 again, the receiver will reject all frames sent, and the protocol will deadlock. What
is needed is a way for the sender to reset the protocol after the sender crash (and vice versa, if the
receiver crashes).

9

D(s)

Sender Receiver

SELECTIVE REJECT MODULUS

Since receiver must buffer n packets
ahead, simple equality testing is no
longer enough. Must be able to tell

R−w<=s<=R+w−1

R

apart the last w frames from next w
frames. Needs modulus m >=2w
See text for counterexample if m < 2w

Figure 3: Selective Reject Modulus satis�es same inequalities as Go-back-n. However, the required modulus size is

greater because slective reject needs to know if the received sequence number is greater than the receiver number.

Assume that the sender is the leader of the protocol. The sender can initialize whenever it wants
to; if the receiver crashes, it must send a request for a reset to the sender. If the sender's reset
message arrives before the receiver sends a request, the receiver does not send a request because
it assumes the sender is already resetting. The normal procedure one might think of for a reset is
shown on the left in Figure 4. The sender sends a Reset message and waits for an ack (RA); when
the receiver gets a Reset message it resets its sequence number. When the sender gets the RA, the
sender resets its sequence number and starts sending data items.

This procedure can fail as shown on the right. Essentially an alternating series of crashes at the
sender and receiver force each node to respond to messages sent by previous incarnations. Finally,
the sender sends a data frame that is lost, but an ack from an earlier incarnation arrives and fools
the sender into thinking that it has arrived.

We can show that sending more restart messages cannot help. Essentially the alternating crashes
force a node to receive the �rst i messages from a previous incarnation and send the �rst i + 1
messages before crashing again. By continuing inductively, we force the receiver to emit an ack for
the �rst data frame and this \old" ack can fool the sender. Thus dallying further can only delay
your doom.

10

A B

R(reset)

RA

A B

A(1)

R

RAR

RA
R

NODE CRASH

D(0)

A(1)

D(0)

D(0)

Figure 4: Naive Procedure to restart a protocol and why it can fail after crashes

9.1 Impossibility Result

The problem in Figure 4 arises because nodes are \fooled" by older responses to their restart
messages. An easy way to �x this is by numbering all restart messages. However, that does not
help if the sender does not keep memory after a crash (i.e., a diskless workstation). In that case, the
sender cannot reliably number its restart messages to be di�erent from previous restart messages.

In general, we can show that there is no deterministic (i.e., that works always with zero proba-
bility of failure) protocol to initialize a Data Link assuming that the physical links take unbounded
and varying delays, and that the sender has no memory after a crash. This result is due to Lynch,
Mansour, Fekete, and Spinelli. Amazingly, it was discovered only recently. Older protocols like
HDLC are indeed susceptible to this problem. However, the error scenarios are extremely unlikely
and so no damage has probably been done. But there is a way to �x the problem!

9.2 Reliable Restarts: �xing the problem

The problem can be �xed by changing any of the assumptions in the impossibility result:

� Non-volatile memory: If we have non-volatile memory after a crash, the sender can keep a
crash-count on disk that is incremented after every crash. RESTART messages are labeled
with this counter, and RESTART-ACKS are accepted only if they match the current crash
counter.

� Probabilistic Protocol: Instead of using a crash counter, use a random number to label
RESTART messages. This should succeed with high probability if the number of possible
random numbers is much larger than the number of frames that can be stored in the links.

� Assume a time bound: Most real protocols can assume that all frames on the link will either
be lost or delivered in some maximum time delay, say 2 minutes. This delay can be set

11

conservatively. Then after a crash the sender must wait for this time before sending RESTART
messages.

These techniques and problems also apply to transport protocols as we will see later.

10 What makes Protocols so Hard

Suppose you want to meet your friend at the student center in �ve minutes. Just as you tell
your friend \Let's meet in 5 minutes", the phone goes dead. You can't tell whether your friend
heard your last statement. If he did, he might go to meet you; if he didn't you might go alone.
It turns out that there is no way to avoid the problem, if communication can fail at the crucial
juncture. Since one side must change state before the other, and communication can fail at that
point, there is no way to prevent this possibility. It is sometimes called the Coordinated Attack or
Two Generals problem in which 2 generals need to attack a distant fort at the same time, and they
can communicate only by unreliable messengers. It is always possible for disaster to occur, wherein
one general attacks alone (unless both general always don't attack, which is not very useful).

For network protocols, it means that since links can lose messages, it is impossible for two nodes
in a protocol to change state at the same time. One node must change state before the other. So if
we have two banks and we want to transfer 1000 dollars from one bank to another, we have to be
prepared for an intermediate state in which one bank has withdrawn money and the other has not
received the deposit. More practically, if a router changes over to a di�erent route, there will be a
period in which the other routers may be using the old route. One has to be prepared for periods of
inconsistency and prevent damage during such periods. For instance, during periods of inconsistent
routes, packets can loop, and we need hop-counts to prevent packets from looping forever.

Another way to state this limitation, is that it is impossible for nodes (in a non-trivial protocol
that works over links that can lose messages) to reliably know the state of other nodes at all times.
This happens in the Data Link protocols. There is always one node that does not know the state of
the other node. For instance, in Stop-and-Wait, when the sender gets an ack, it knows the receiver
number; however, at that instant, the receiver does not know the sender number (because it may
or may not have received the ack as far as the receiver is concerned.)

11 Protocol Design Lessons

We enumerate the following protocol design lessons:

� If you can, design protocols whose correctness does not depend on timer settings; if you have
to, make sure that the timer values are set conservatively to handle di�erent installations.

� Don't add complexity until its justi�ed. We went to sliding windows and selective reject only
after we �gured out the performance degradation of using stop-and-wait.

12

� Design Simple Protocols �rst and then optimize later. Separate out implementation details
from the essential features. We did this when designing the selective reject and go-back-n
protocols.

� It is insu�cient to understand protocols when they are operating correctly. You need to
understand how they recover after faults, including node crashes. Consider using the restart
methodology we described to completely restart the states of the nodes after a crash, especially
if its a 2-node protocol.

� Impossibility Results should teach us what we have to change to do our jobs, and not what
we cannot do. Thus the crash impossibility result motivated three solutions, each of which
was a consequence of changing some assumption in the impossibility result.

13

