Yale University
Department of Computer Science

The Consensus Problem in Unredliable
Distributed Systems
(A Brief Survey)

Michael J. Fischer

YALEU/DCS/TR-273
June 1983
Reissued February 2000

To be presented at the International Conference on Fowmdatdf Computation Theory,
Borgholm, Sweden, August 21-27, 1983.

[This is a reissue of Research Report YALEU/DCS/RR-273eJ1@83, reformatted in LaTeX.
It also appeared in M. Karpinsky, editdfpundations of Computation Thegryolume 158 of
Lecture Notes in Computer Scienpages 127-140, Spring-Verlag, 1983.]

The Consensus Problem in Unreliable Distributed
Systems (A Brief Survey)

Michael J. Fischer
Yale University
New Haven, Connecticut

Abstract

Agreement problems involve a system of processes, someiohwinay
be faulty. A fundamental problem of fault-tolerant distribd computing is
for the reliable processes to reach a consensus. We surgeptisiderable
literature on this problem that has developed over the gasy€ars and give
an informal overview of the major theoretical results in #rea.

1 Agreement Problems

To achieve reliability in distributed systems, protocote aeeded which enable
the system as a whole to continue to function despite theréadf a limited num-
ber of components. These protocols, as well as many otheibdi®d computing
problems, requires cooperation among the processes. Fmamdal to such coop-
eration is the problem of agreeing on a piece of data uponiwthie computation
depends. For example, the data managers in a distributaakst system need to
agree on whether to commit or abort a given transaction [8], & a replicated
file system, the nodes might need to agree on where the filesapé supposed to
reside [19, 30]. In a flight control system for an airplane][36e engine control
module and the flight surface control module need to agreelwitver to continue
or abort a landing in progress. The key point here iswbat the processes are
agreeing on but the fact that they must all come tosdwmeconclusion.

An obvious approach to achieving agreement is for the psseto vote and
agree on the majority value. In the absence of faults, thigksvfine, but in a
close election, the vote of one faulty process can swing tibeomne. Since distinct

*This work was supported in part by the Office of Naval Researalter Contract NO0014—-82—
K—0154, and by the National Science Foundation under GrazBM116678.

1 AGREEMENT PROBLEMS 2

reliable processes might receive conflicting votes fromudtygrocess, they might
also reach conflicting conclusions about the outcome oflgation and hence fail
to reach agreement. Davies and Wakerly [2] realized thficdify and proposed a
multistage voting scheme to overcome the problem.

A simple form of the problem is to achieve consensus on asibigl Assume
a fixed number of processors, some of which are initiallytiaal may fail during
the execution of the protocol. Each processbas an initial bitz;. Theconsensus
problem is for the non-faulty processes to agree on a btalled theconsensus
value More precisely, we want a protocol such that each relialegss eventu-
ally terminates with a biy;, andy; = y for all 5.

y in general will depend in some way on the initial bits In the absence
of such a requirement, the problem becomes trivial, for gacicess can simply
choosey; = 0. Some dependency requirements that have been studiedianair
increasing strength, are:

1. (non-triviality): For eachy € {0,1}, there is some initial vectar; and
some admissible execution of the protocol in whidls the consensus value.
(The qualification “admissible” allows for additional réstions, such as
bounds on the number of faulty processes, on the kinds of atatipns we
are willing to consider.)

2. (weak unanimity): If; = = € {0,1} for all 7, theny = z, provided that no
failures actually occur during the execution of the protoco

3. (strong unanimity): If; = =z € {0, 1} for all 4, theny = z.

Two other closely related problems have been studied extdnsn the liter-
ature. Theinteractive consistencgroblem is like the consensus problem except
that the goal of the protocol is for the non-faulty procedsesgree on a vectgy,
called theconsensus vectoAgain, we add dependency requirements:

1. (weak): for eacly, y; = z; if j is non-faulty, provided that no failures
actually occur during the execution of the protocol.

2. (strong): for each, y; = z; if j is non-faulty.

Finally, in thegeneralsproblem orreliable broadcasiproblem, one assumes
a distinguished processor (the “general” or “transmiftevhich is trying to send
its initial bit z to all the others. As before, all the reliable processes haveach
consensus on a bit, and we add dependency requirements:

1. (weak):y = z if no failures occur during the execution of the protocol.

2 MODELS OF COMPUTATION 3

2. (strong):y = « if the general is non-faulty.

Without further qualification, any reference to one of thpsablems will refer
to the version with the strong dependency requirement.

2 Modelsof Computation

The kinds of solutions that can be obtained to agreementgrabdepend heavily
on the assumptions made about the model of computation ankirtds of faults
to which it is prone. Throughout this paper, we will assumexadinumbem of
processes. A protocol is said to beesilientif it operates correctly as long as no
more thart processes fail before or during execution.

We consider two kinds of processor faults. cash occurs when a process
stops all activity. Up to the point of the crash, it operatesectly and after that it
is completely inactive. A protocol that can tolerate up tvashed processes is said
to bet-crash resilient We do not concern ourselves with the problem of repairing
a faulty process and reintegrating it into the system, aigfothat of course is a
crucial problem in the practical implementation of any afdh ideas [28].

A more disruptive kind of failure is the so-call@}/zantine failure* in which
no assumptions are made about the behavior of a faulty odesarticular, it
can send messages when it is not supposed to, make confixtsiimgs to other
processes, act dead for awhile and then revive itself, etprafocol that can tol-
erate up ta processes which exhibit Byzantine failures is said tg{8yzantine
resilientand is sometimes calledByzantineprotocol. The problem of finding a
t-Byzantine resilient protocol for the (weak) generals peobis called thgweak)
Byzantine generalgroblem.

To show that a protocol is Byzantine resilient, one has tcsimer all possi-
ble faulty behaviors, including those in which the failedqesses act maliciously
against the protocol. This doesn’t mean that Byzantineogas are only appro-
priate in adversary situations. The folklore is full of s&xin which systems failed
in bizarre and unexpected ways, and in the absence of gooslafaparacterizing
the kinds of failures that occur in practice, protectingiagbByzantine failures is
a conservative approach to reliable systems design.

We assume the message system to be completely reliable andrily pro-
cesses are subject to failure. We also assume that any proaegeliably deter-
mine the sender of any message it receives, and any messdgéveoed arrives
intact and without errors. Unless stated otherwise, werasstine network is a
completely connected graph.

The terminology comes from [25], in which a fable is recoantencerning a problem of mili-
tary communications in times of old.

2 MODELS OF COMPUTATION 4

Of course, in real systems, communication links as well asgssors are sub-
ject to failure. However, a link failure can be identified wihe failure of one of
the processors at its two ends, sprasilient protocol automatically tolerates up to
t process and link failures. Nevertheless, this may give amlpypessimistic view
of the reliability of the system. Reischuk [32] greatly refinthe fault assump-
tions, enabling him to obtain more informative results oa #ttual behaviors of
the systems.

A crucial assumption concerns whether or not the failure pfacess to send
an expected message can be detected. If so, then the expeceiaer gains the
valuable knowledge that the sender is faulty. In a model adturate clocks and
bounds on message transit times, such detection is pogbiiolegh the use of
timeouts. (Cf. [21].) Also, detection is automatic in a slyranous model in which
the processes run in lock step and messages sent at one stereived at the
next. However, detection is impossible in a fully asyncloasmmodel in which no
assumptions are made about relative step times or messkys,der there is no
way to tell whether the sender has failed or is just runninmy géowly. This turns
out to have a profound effect on the solvability of agreenpeablems.

We use the termsynchronousindasynchronouso distinguish between these
two extreme cases, while remaining fully cognizant of thet that synchronous
message behavior can be achieved in systems with weakenpsns than full
synchrony. For our purposes, we will assume that a synclusmgomputation
proceeds in a sequencerofinds In each round, every process first sends as many
messages as it wishes to other processes, and then it etiévmessages sent to
it by other processes. Thus, messages received during d mammot affect the
messages sent during the same round.

One further significant assumption is whether or not the rhedgports signa-
tures. We assume that the author of a signed message caridiyrdetermined
by anyone holding the message, regardless of where the geesame from and
regardless of anything that the faulty processes might dawe. In other words,
signatures cannot be forged by faulty processes, bréceives a message from
B signed byA, thenC knows thatA really sent the message and that it was not
fabricated byB. Signatures, too, have a profound effect on the solvalmfiggree-
ment problems. We sometimes wéhenticatedo refer to a protocol using signed
messages.

Digital signatures can be implemented using cryptograpditiniques [3, 4,
27, 33], or if one is willing to assume that faulty processesmt malevolent, sim-
ple signature schemes which are not cryptographicallyreezan be used instead.
All that we require is that it be unlikely for a faulty process generate a valid
signature of some other process. Note that no special tggbsiare needed to im-
plement signatures if only crashes (and not Byzantinerislpare considered, for

3 RELATIONS AMONG AGREEMENT PROBLEMS 5

then no incorrect messages are ever sent.

The practicality of agreement protocols depends heaviljeir computational
complexity. Some factors that might be important are thewarhoftimeneeded to
complete the protocol, the amountmiessage traffigenerated, or the amount of
memoryneeded by the participants. All of these quantities are irega dependent
on which faults actually occur and when. A reasonable assomm many situa-
tions is that faults happen rarely, so it is acceptable todpensiderable resources
handling them, but one wants the normal case to be handléel fiiciently. Note
however that in a very large system, the probability of ast@ame fault is high, and
the expected number of faults grows linearly with the sizthefsystem.

We measure time in terms of the number of rounds of messadepge that
take place. Thus, we assume every process can potentiahaege messages
with every other in a single unit of time. Just how realisticstnotion of time is
depends highly on the structure of the message system artearasonableness
of the assumption that a process can really send or reesimessages in a single
time step. We measure message traffic variously as the tomaber of messages
sent, the total number of bits in those messages, or the nushbignatures (in the
case of an authenticated protocol).

3 Relations Among Agreement Problems

The three agreement problems are closely related. The glsm@pblem is a spe-
cial case of the interactive consistency problem in whicly one process’s initial
value is of interest, so a protocol achieving interactivasistency also solves the
generals problem. Conversetycopies of a protocol for the generals problem can
be run in parallel to solve the interactive consistency faob

The consensus problem appears to be slightly weaker thaotllee two. An
interactive consistency algorithm can be modified to saiedonsensus problem
by just having each process choose as its consensus valoajbety value in the
consensus vector. This works as long as fewer than 1/2 ofrteepses are faulty.

Using a consensus algorithm to solve either of the other twblpms, how-
ever, seems to require an additional round of informaticchexge. For example,
the general’s problem can be solved as follows:

Algorithm |

1. The general sends its value to each of the other processes.

2. All of the processes together run a consensus algoritimg as initial values
the bits received from the general at the first step. (Thegénécourse uses

4 SOLVABILITY OF AGREEMENT PROBLEMS 6

its own bit.)

This solves the generals problem since if the general iabldj then all of the
processes receive the same value in step 1. By the strongmityaoondition, this
value will be chosen as the caonsensus value. In any caszragnt is reached.
The extra cost is one additional round of 1-bit messagesem 5t Thus, we have
proved:

Theorem 1 Given at-resilient solution to the consensus problem, there is a
resilient solution to the generals problem which uses onerfround” of message
exchange and sends— 1 additional messages of 1-bit each.

Many solutions to the generals problem have the generattstel of Algo-
rithm | and thus appear to have embedded within them solsitiothe consensus
problem, seemingly obviating the need for Algorithm | and éxtra round of mes-
sages. However, the embedded consensus algorithm doesasssarily solve the
full consensus problem, for the case in which the generaliabile yet the;'s are
not all the same can never arise whentfie are obtained from the general on the
first step.

Similar remarks apply to the corresponding weak versionthe$e problems.
In fact, a weak Byzantine generals algorithm solves the weakistency problem
directly (without first using it to solve the interactive cstency problem), for if
all the initial values are the same and no process is faliléy it suffices to simply
agree on the general’s value. There is not, however, anylyegobarent way to
use a solution to any of the weak versions of the agreemehtegroto solve any of
the strong ones. In fact, for a slightly different “approxta” agreement problem,
Lamport [22] shows that the weak version has a solution wdsetee strong one
does not.

4 Solvability of Agreement Problems

Perhaps the most basic question to ask of a proposed agregmblem is whether
or not it has a solution at all. By the previous discussion @hedorem 1 the con-
sensus problem and the interactive consistency problemfsilient solutions
iff the generals problem does, so we will restrict attentiorthe latter problem in
this section.

Consider first the synchronous case. With signatures, P8hsstak, and Lam-
port [25, 29] give &-resilient solution for any.

Theorem 2 There is a-resilient authenticated synchronous protocol which eslv
the strong (weak) Byzantine generals problem.

4 SOLVABILITY OF AGREEMENT PROBLEMS 7

Briefly, the protocol consists @f-1 rounds. Inthe first round, the general sends
a signed message with its value to each other process. Atreanl thereafter,
each process adds its signature to each valid messageagdgim the previous
round and sends it to all processes whose signature doefeadwaappear on the
message. A message received during rokimslvalid if it bears exactlyk distinct
signatures, the first of which is the general’s. Lebe the set of values contained
in all the valid messages received byhrough the end of round+ 1. If V; is
a singleton, then that value is chosen as the consensus v@therwise, a fixed
constant NIL is chosen.

To prove agreement, we argue that &nd; are both reliable, thew; = V;.
There are two cases to consider. If the general is reliabkn bothV; andV;
consist solely of the general’s value, since no other valgs appears in a valid
message. Otherwise, consider the mesddgieom whichi first learned ofv. M

consists ob followed by a list of distinct signatures, . .., my, the first of which
is the general’'s,and < ¢t 4+ 1. If £ < t + 1 and procesg does not already know
aboutv, thenj learns ofv from i on the nextround. Ik = ¢t + 1, thenmq,...,my

are all faulty or elsé would have learned af earlier. But thenn,; is reliable, so
j learns ofv at the same round @s Correctness of the protocol easily follows.

Without signatures, there is a solution if and only if thectran of faulty pro-
cesses is not too large.

Theorem 3 There is at-resilient synchronous protocol without authentication
which solves the strong (weak) Byzantine generals prolffemnvi < 1/3.

The impossibility argument for/n > 1/3 appears in [25, 29] for the strong
case and in [22] for the weak case of the problem. Protocaisodstrating the
solvability of both problems fot/n < 1/3 appear in [25, 29]. Various protocols
have since appeared with additional desirable propersi@sie of which will be
discussed later in this paper.

In the fully asynchronous case, there is no solution. In feischer, Lynch, and
Paterson [18] show that the problem remains unsolvable a¥nmuch weaker
requirements:

Theorem 4 In a fully asynchronous environment, there is no 1-crasHiiezd so-
lution to the consensus problem, even when only the noiadttyv condition is
required.

The proof is by contradiction. In general outline, one asssithe existence
of such a protocol. The protocol sommittedto the eventual consensus value at
a certain point in time if thereafter only the one value is agible outcome, no
matter how processes are scheduled or how messages areretklivOne shows

5 COMPLEXITY RESULTS 8

that at least for some initial configuration, the outcomedsaiready committed.
Starting from there, one constructs an infinite computatiooh that the system
forever stays uncommitted, contradicting the assumedectress of the protocol.
The details get somewhat involved since it is necessarysarnthat the infinite
computation results from a “fair” schedule. The intereststler is referred to [18].
Returning to the Byzantine generals problem in a synchreremvironment,

we consider weaker connectivity assumptions on the netwinikh nonetheless
permit a solution. With signatures, Lamport et al. [25] shibat the Byzantine
Generals problem can be solved in any network in which thiabikd processes
are connected. Without signatures, they show that a soligipossible in &t¢-
“regular” graph. Dolev [5, 6] extends this latter result wnpletely characterize
the networks in which the problem is solvable:

Theorem 5 Consider a synchronous network with connectikityavingn proces-
sors,t of which may be faulty. Then the Byzantine generals probéesolvable
without authentication iff/n < 1/3 andt/k < 1/2.

Three recent unpublished results deserve brief mentibaf ahich extend the
asynchronous model slightly in order to avoid the assumtaf Theorem 4. Ben-
Or [1] allows randomized algorithms and shows that crasliliemt consensus is
achievable with probability 1 whetyn < 1/2, and Byzantine-resilient consensus
is achievable with probability 1 whetyn < 1/5. Rabin [31] uses randomized
algorithms with an initial random “deal” and signatures thigve certain agree-
ment with an expected number of rounds that is only 4, indégenofn andt, so
long ast/n < 1/4. Finally, Dolev, Dwork, and Stockmeyer [7] distinguish amgo
the different kinds of asynchrony in the model of [18] to gghter conditions on
when consensus protocols are and are not possible.

5 Complexity Results

5.1 Upper Bounds

Thet-resilient Byzantine generals algorithms of [25, 29] takeett + 1 and send
a number of message bits that is exponential iithe first algorithm to use only
a polynomial number of message bits was found by Dolev anoh§tf12] and
subsequently improved by Fischer, Fowler, and Lynch [18 $till stronger result
below is from [8].

Theorem 6 Lett/n < 1/3. There is at-resilient solution without authentica-
tion to the Byzantine generals problem which uges- 3 rounds of information
exchange and(nt + t3 log t) message bits.

5 COMPLEXITY RESULTS 9

It remains an open problem if there is any unauthenticatgarhm which simul-
taneously achieves fewer th@n + 3 rounds and uses only polynomially many
message bits.

With authentication, and counting number of messagesadsiemessage bits,
we get:

Theorem 7

(a) There is a-resilient authenticated solution to the Byzantine getsepaob-
lem which uses + 1 rounds and send® (nt) messages;

(b) There is a-resilient authenticated solution to the Byzantine getsepaob-
lem which use€)(t) rounds and sends on{y(n + t?) messages.

Part (a) was shown by Dolev and Strong [15], and part (b) wasvelby Dolev
and Reischuk [10].

For practical applications, these bounds are not very aaging, especially
thet + 1 bound on the number of rounds. As we shall see, this boundotdren
improved in the worst case thafaults actually occur. However, Dolev, Reischuk
and Strong [11, 14] have looked at the question of whetheaBljue generals
solutions exist which stop early when fewer faults occure Bnswer depends on
whether synchronization upon termination is also required

For definiteness, we say that a prockafts withinr rounds if it is non-faulty
and it chooses its consensus value and enters a stoppiegostare sending or
receiving any rouna + 1 messages. halts inroundr if it halts within r rounds
but does not halt withim — 1 rounds. An agreement protoctdrminateswhen
all reliable processes have halted. If it terminates, weisagachesmmediate
agreement if all reliable processes halt in the same roumdijtaeachegventual
agreement otherwise. Thus, immediate agreement servesdhrenize the pro-
cesses as well as enabling them to agree on a value. Notdltohthe protocols
discussed previously achieve immediate agreement sihpmaksses choose their
consensus value in the last round.

The following theorem is from [11]:

Theorem 8 Lett/n < 1/3. There is at-resilient protocol without authentica-
tion which solves the Byzantine generals problem and reaetientual agreement
within min(2¢ + 3,2f + 5) rounds, wheref < ¢ is the actual number of faults.

The same paper also contains a more refined protocol whigs seen earlier
whent is only about,/n.

If one assumes processes can fail only by crashing, then ddrapd Fischer
show that these bounds can be improved [23].

5 COMPLEXITY RESULTS 10

Theorem 9 There is at-crash resilient protocol (without authentication) which
solves the generals problem and reaches eventual agredayehe end of round
f + 2, wheref < tisthe actual number of crashes.

We give the protocol and sketch its proof. There are only foossible mes-
sages — 0, 1, NIL, ang. 0, 1 are the two possible initial values of the genegal,
means “I don’t know”, and NIL is a default consensus valuechhis chosen when
crashes prevent the reliable processes from discoverangeheral’s value.
Algorithm [l

A.Round 1: Process 1 (the general) sends its value to every process.

B.Roundr,1 < r <t + 1: Each process does the following:

1. Ifit received a value € {0,1,NIL} from any process in round— 1, then
it:

e takesv as its consensus value;
e sends to every process;
e halts.

2. Otherwise, if it receive@ during roundr — 1 from every process not known
to have crashed before the beginning of that round, then it:

e takes NIL as its consensus value;
e sends NIL to every process;
e halts.

(It knows a process has crashed if it failed to receive an eegemessage
from it during the previous round.)

3. Otherwise, it sends to every process.

C. End of Round t + 1: Each process that has not halted does the following:

1. If it received a value € {0, 1, NIL} from any process during round+ 1,
then it takes as its consensus value and halts.

2. Otherwise, it chooses NIL as its consensus value and halts

Correctness of the algorithm follows readily from the faliag facts. Recall
that a crashed process is not considered to be halted.

5 COMPLEXITY RESULTS 11

1. If some process halts at step B1 or B2 during rodraehd chooses valug
then every other process which halts at step B1 or B2 duringde also
chooses.

2. If some process halts at step B1 or B2 during rouraehd chooses valueg
then every reliable process which has not already halteldciwilosev and
halt at step B1 in round + 1 (if » < ¢ + 1) or at step C1 in round+ 1 (if
r=t-+1).

3. If no process crashes or halts during round 1, theng is the only message
sent during that round.

4. If any process terminates at step C2 in rousd , then all reliable processes
do.

Moreover, if fewer thark processes crash in the filstrounds, then the protocol
terminates withink + 1 rounds; hence if there are at magstcrashes, then the
protocol terminates withirf + 2 rounds.

A more elaborate protocol with similar abstract properties which is quite
possibly more efficient in practice appears in [34].

5.2 Lower Bounds

All of the protocols above uset1 rounds in the worst case. Fischer and Lynch [17]
present a proof that+ 1 rounds are necessary for achieving interactive consigtenc
without signatures and hence also for solving the unauiteget Byzantine gen-
erals problem. Several people have extended this resulbénvway or another.
DeMillo, Lynch, and Merritt [3, 27] and independently Dolaxad Strong [12, 15]
show that the t+1 lower bound holds for authenticated smhstito the Byzantine
generals problem. Lamport and Fischer [23], by a similarofrghow that the
same bound holds assuming that the protocol is only cragferesand solves the
weak consensus problem, but they did not consider the atithted case. We
summarize these results below.

Theorem 10 Assumé < n — 2.

(a) Everyt-resilient protocol without signatures for the weak cormenproblem
uses at least + 1 rounds of message exchange in the worst case.

(b) Everyt-resilient authenticated protocol for the Byzantine geteproblem
uses at least + 1 rounds of message exchange in the worst case.

5 COMPLEXITY RESULTS 12

We note that the weak consensus problem has not been dypsititlied with
signed messages, but we conjecture that the same boundiliibid.

We sketch the basic structure underlying these proofspadth much more is
involved in really making them go through. For two distinongputationsS and
T, defineS ~ T if S andT “look” the same to some reliable processhat is,p
receives the same messages and behaves exactly the sartteSreloal’7T”. Hence,
p chooses the same consensus value in each, which must benensas value
for both S andT'. Now, the proof proceeds by assuming at mastunds and then
constructing a sequence Bfound computationsy, Sy, ..., S, such thatS, has
consensus value @ has consensus value 1, afid; ~ S; for1 <7 < k. This
results in a contradiction. The constructions need oneyfqarbcess per round;
hence, they cannot be used to find computations of moretttamds.

Dolev and Strong [14] show tha#- 1a rounds are needed irt-aesilientimme-
diate Byzantine generals protocol even when the actual puoftfailures is less.
These theorems also appear without proofs in [11].

Theorem 11 Lett < n — 2, and letP be at-resilient (authenticated) protocol
solving the Byzantine generals problem which always readimenediate agree-
ment. Then it is possible fd? to run for at least + 1 rounds even when there are
no faults.

In the case of eventual agreement, they prove the following:

Theorem 12 Let P be at-resilient (authenticated) protocol solving the Byzaatin
generals problem which reaches eventual agreement, anfl lett. Then it is
possible forP to run for at leastf 4+ 2 rounds with onlyf faults.

We conjecture that this can be extended:tcrash resiliant generals protocols,
which would then show the optimality of 9.

Finally, we look at lower bounds on the humber of messagessagrhtures
needed. Dolev and Reischuk [10] show:

Theorem 13 The total number of messages and signatures intaegilient (au-
thenticated) Byzantine generals solutiorfligt).

Theorem 6 shows that this bound is tight wheis large relative ta. If one counts
only messages, then they show

Theorem 14 The total number of messages in atwesilient (authenticated)
Byzantine generals solutions@¥n + t2).

Theorem 7, part (b) shows this bound “best possible” for anticated algorithms.

6 APPLICATIONS OF AGREEMENT PROTOCOLS 13

6 Applications of Agreement Protocols

The abstract versions of agreement problems consideraikiadrvey are not gen-
eral enough to be directly applicable to many practicakgitins. We mention here
some extensions and applications of these problems.

First of all, one often wants to reach agreement on a valua fidarger do-
main than just{0,1}. If the domain has elements, then one can encode the
elements in binary and ruflog, v copies of the agreement protocol, one for each
bit, but more efficient algorithms might be possible. In a&mtions such as clock
synchronization, the domain of values can be taken to bedhenumbers, and
only approximate agreement is needed. Lamport and Memaith [24] studies
the clock synchronization problem, and Dolev, Lynch, andaté®i[9] look at the
abstract approximate agreement problem.

A difficult part of implementing these algorithms is buildimessage systems
which actually have the reliability and synchronizatiooperties that were as-
sumed in the models. Real distributed systems are quaschsynous, and to
avoid the difficulties of Theorem 4 one must make reasonabiadg assumptions
and make effective use of clocks and timeouts. Lamport [2idsgsome insights
as to how this can be done.

Finally, we should mention the papers by Dolev and Strong 8l Mohan,
Strong, and Finkelstein [28] that describe serious attergpapply agreement pro-
tocols to real problems of distributed databases.

7 Acknowledgement

The author is grateful for Ming Kao for help in assembling ltlildiography and to
Paul Hudak for many helpful comments on an early draft of plaiger.

References

[1] M. Ben-Or. Another advantage of free choice: Completabynchronous
agreement protocols. IRroc. 2nd ACM Symposium on Principles of Dis-
tributed Computing1983. To appear.

[2] D. Davies and J. F. Wakerly. Synchronization and matghimredundant
systemsIEEE Transactions on Computeis-27(6):531-539, June 1978.

[3] R. A. DeMillo, N. A. Lynch, and M. J. Merritt. Cryptograptprotocols. In
Proc. 14th ACM Symposium on Theory of Compytpagpes 383—400, 1982.

REFERENCES 14

[4] W. Diffie and M. Hellman. New directions in cryptograpif=EE Trans. on
Information TheorylT-22:644—654, 1976.

[5] D. Dolev. Unanimity in an unknown and unreliable envineent. InProc.
22nd IEEE Symposium on Foundations of Computer Scig@ages 159168,
1981.

[6] D. Dolev. The Byzantine generals strike agaih. Algorithms 3(1):14-30,
1982.

[7] D. Dolev, C. Dwork, and L. Stockmeyer. On the minimal sliramism needed
for distributed consensus. Manuscript, 1983.

[8] D. Dolev, M. J. Fischer, R. Fower, N. A. Lynch, and H. R.@tg. An efficient
Byzantine agreement without authenticatiolnformation and Contrgl to
appear. See also IBM Research Report RJ3428 (1982).

[9] D. Dolev, N. A. Lynch, and S. Pinter. Reaching approxiemagreement in
the presence of faults. Manuscript, 1982.

[10] D. Dolev and R. Reischuk. Bounds on information excleafay Byzantine
agreement. IProc. ACM SIGACT-SIGOPS Symposium on Principles of Dis-
tributed Computingpages 132-140, 1982.

[11] D. Dolev, R. Reischuk, and H. R. Strong. ‘Eventual’ islieat than ‘immedi-
ate’. In23rd IEEE Symposium on Foundations of Computer Scigrages
196-203, 1982.

[12] D. Dolev and H. R. Strong. Polynomial algorithms for tipie processor
agremment. IProc. 14th ACM Symposium on Theory of Compuytpages
401-407, 1982.

[13] D. Dolev and H. R. Strong. Distributed commit with boadwaiting. In
Proc. Second Symposium on Reliability in Distributed Sarévand Database
SystemPittsburgh, July 1982.

[14] D. Dolev and H. R. Strong. Requirements for agreemerd ihistributed
system. IrProc. Second International Symposium on Distributed Datse3
Berlin, September 1982.

[15] D. Dolev and H. R. Strong. Authenticated algorithms Byzantine agree-
ment. SIAM J. Compuj.to appear. See also IBM Research Report RJ3416
(1982).

REFERENCES 15

[16] M. J. Fischer, R. J. Fowler, and N. A. Lynch. A simple affiiceent Byzan-
tine generals algorithm. IRroc. Second IEEE Symposium on Reliability in
Distributed Software and Database Systepsyes 46-52, Pittsburgh, 1982.

[17] M. J. Fischer and N. A. Lynch. A lower bound for the timea®sure interac-
tive consistencylnformation Processing Letteré4(4):183—-186, 1982.

[18] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Imposjbof distributed
consensus with one faulty process. Pmoc. Second ACM Symposium on
Principles of Database SystepMarch 1983.

[19] D. K. Gifford. Weighted voting for replicated data. Tedcal Report CSL-
79-14, XEROX Palo Alto Reserach Center, September 1979.

[20] J. Gray. A discussion of distributed systems. ReseReghort RJ2699, IBM,
September 1979.

[21] L. Lamport. Using time instead of timeout for fault-tsant distributed sys-
tems.ACM Transactions on Programming Languages and Systemppear.
See also technical report, Computer Science Laboratory,li@Brnational
(June 1981).

[22] L. Lamport. The weak Byzantine generals probledaurnal of the ACM
30(3), July 1983. To appear.

[23] L. Lamport and M. J. Fischer. Byzantine generals andgaation commit
protocols. Manuscript, 1982.

[24] L. Lamport and P.M. Melliar-Smith. Synchronizing clkain the presence
of faults. Technical report, Computer Science LaboratSR| International,
March 1982.

[25] L. Lamport, R.. Shostak, and M. Pease. The Byzantinegés problem.
ACM Transactions on Programming Languages and Systé(B8%382-401,
July 1982.

[26] B. G. Lindsay et al. Notes on distributed databasese&e$ Report RJ2571,
IBM, July 1979.

[27] M. J. Merritt. Cryptographic protocols. Technical RepGIT-ICS-83/06,
School of Inf. & Comp. Sci., Georgia Institute of Techonojpgrebruary
1983.

REFERENCES 16

[28] C. Mohan, H. R. Strong, and S. Finkelstein. Method fastidbuted trans-
action commit and recovery using Byzantine agreement withisters of
processors. Research Report RJ3882, IBM, 1983.

[29] M. Pease, R. Shostak, and L. Lamport. Reaching agreeiméime presence
of faults. Journal of the ACM27(2):228-234, 1980.

[30] G. Popek et al. LOCUS: A network transparent, high tality distributed
system. InProc. 8th ACM Symposium on Operating Systems Pringiples
pages 169-177, December 1981.

[31] M. Rabin. Randomized Byzantine generals. Manusctip83.

[32] R. Reischuk. A new solution for the Byzantine generatsbpem. Research
Report RJ3673, IBM, November 1982.

[33] R. Rivest, A. Shamir, and L. Adleman. A method for obta digital
signatures and public-key cryptosystem&ommunications of the ACM
21(2):120-126, February 1978.

[34] F. B. Schneider, D. Gries, and R. D. Schlichting. Fatibbte broadcasts.
Computer Science Technical Report TR 82-519, Cornell Uity Septem-
ber 1982.

[35] J. H. Wensley et al. SIFT: Design and analysis of a fealrant computer
for aircraft control.Proc IEEE 66(10):1240-1255, October 1978.

