
On Node State Reonstrution for Fault Tolerant DistributedAlgorithmsMihael Okun and Amnon BarakComputer Siene Institute,The Hebrew University of Jerusalem,Jerusalem 91904, Israel{mush,amnon}�s.huji.a.ilAbstratOne of the main methods for ahieving fault tolerane in distributed systems is reovery of the state of failedomponents. Though generi reovery methods like hekpointing and message logging exist, in many ases thereovery has to be appliation spei�. In this paper we propose a general model for a node state reonstrutionafter rash failures. In our model the reonstrution operation is de�ned only by the requirements it ful�lls,without referring to the spei� appliation dependent way it is performed. The model provides a frameworkfor formal treatment of algorithm-spei� and system-spei� reovery proedures. It is used to speify nodestate reonstrution proedures for several widely used distributed algorithms and systems, as well as to provetheir orretness.Keywords: Distributed algorithms, fault tolerane, state reonstrution, reovery.1 IntrodutionThe ommon formal approah to fault tolerane of distributed algorithms requires a de�nition of a set of propertiesthat should be ful�lled by the on�gurations of the distributed system [10℄. An algorithm is f -fault tolerant ifthese exeution spei�ations are not violated, even if up to f failures of ertain types our during the exeution.In this paper we onsider rash failures of a single node in a distributed system.For a large family of distributed systems fault tolerane is ahieved by reovering the state of a node afterit rashes, as opposed to other methods for providing fault tolerane, suh as the state mahine approah [17℄and the primary-bakup approah [2℄, whih maintain multiple opies of the same logial omponent. Severalgeneral tehniques for reovering rashed nodes, suh as hekpointing and message logging methods are used.However, in many ases these methods are not appliable, and the reovery has to be spei�ally designed forthe algorithm. For example, if the algorithm is implemented in hardware (e.g., in a network swith) or in a lowsoftware level (e.g., in a distributed operating system) these methods an not be applied for purely tehnialreasons. Furthermore, when system performane is important, spei�ally designed reovery has an advantageover general methods. In ertain ases this applies even to sienti� omputations [15℄, whih are the traditionalarea for hekpointing methods.A well understood theoretial model of hekpointing and message logging exists, see for example [1, 7℄. Itis desirable, however, to have a formal approah whih deals with node reovery in general, rather than withnode reovery via spei� methods. The goal of this paper is to provide suh a formal model by de�ning thereonstrution of a node through the requirements it should ful�ll (rather than the method by whih it is ahieved).We use the proposed model to speify reonstrution proedures as well as to prove their orretness, for severalwidely used distributed algorithms, suh as the leader eletion in a ring and the sequener algorithms. In addition,the lasses of stateless and memoryless algorithms are speially onsidered. We also study reonstrution at thesystem level, as opposed to �stand-alone� algorithms, by examining the reovery from rash failure in distributedshared memory systems. 1



The paper is organized as follows: Setion 2 presents a simple model for reonstrutibility in synhronousdistributed algorithms. Setion 3 deals with reonstrution in asynhronous distributed algorithms. In Setion4 we study node reonstrution in release onsistent distributed shared memory systems. Our onlusions andsome diretions for further researh are presented in Setion 5.2 Synhronous systemsThis setion presents a new model for a node state reovery in synhronous distributed algorithms. After desribingthe system model, we de�ne node reonstrutibility and give an example. We then use the reonstrutibilityproperty to de�ne stateless and memoryless synhronous algorithms, and desribe a reovery algorithm based onthe reonstrution method.2.1 The modelUsing the ommonly aepted approah, we model eah proessor (node) Ni in a distributed system as a statemahine. A state mahine (automaton) has an initial state N initi , and an ation (transition funtion) that movesthe mahine from one state to another and sends messages to other nodes.Computations are performed in rounds. In eah round every node uses its urrent state, its ation and thereeived messages to ompute its new state and messages to send. Messages sent to other nodes in the urrentround are reeived in the next round. Let Nni denote the state of node Ni at the end of round n. Assume thatthe nodes are onneted by ommuniation links. Let Qi;j denote the link (message queue) from Ni to Nj , andQni;j denote the state of the link at the end of round n.A rash failure [16℄ during round n auses the failing node to perform no ations after the failure and mayause some of the messages sent by it in round n to be lost. Messages whih were sent to a failed node in roundn� 1 and were not proessed by it prior to the failure are also lost.2.2 State reonstrutionSuppose that node Ni fails in round n. Informally, node Ni has reonstrution if the state of the node andthe messages it should have sent an be reomputed using information available in states of other nodes. Moreformally:Definition 1: A reonstrution of node Ni (for round n) is a speial ation R, that transforms N initi intoNni , i.e., the state node Ni would have had at the end of round n if it had not failed. In addition, R must sendall the messages Ni would have sent during round n in a normal (non-failed) exeution. If termination is allowed,i.e., a node may �nish its exeution at some round n, reonstrution exists only for the rounds in whih the nodeis ative.Definition 2: Let � be some set of nodes so that i =2 �. Node Ni has reonstrution with respet to � ifprovided with fNnj gj2� andfQnj;igj2� there exists a reonstrution for the node for round n.2.2.1 Example: Leader eletionConsider the following leader eletion algorithm in a ring, where eah node has a unique identi�er. In the �rstround eah node sends its identi�er to its left neighbor. In the following rounds eah node ompares the identi�ersit reeives from its right neighbor to its own and forwards the reeived identi�er (to the left neighbor) only if itsvalue is higher. If a node reeives its own identi�er it delares itself as a leader and sends a halt message to itsleft neighbor. Eah node whih reeives a halt message forwards it and terminates at the end of the round. Anode whih reeives the halt message and is not a leader (yet) delares itself a non-leader.To support reonstrution with respet to its neighbors, a node should exeute the above algorithm and alsoremember the message it sent in the previous round. This algorithm is shown in Figure 1, where m2 and m1 arethe messages sent by the node in the previous and the urrent rounds, respetively.2



Constants:myID 2 N
Variables:leader 2 ftrue; false; nullg, initially nullm;m1;m2 - messages, initially?

1: m2 := m1; m1 := null
2: if m = ? then /*1st round*/
3: m1 := myID
4: Letm be the message received from the right neigh-

bor, ornull if no message was received

5: if m = halt then
6: m1 := halt
7: if leader = null then
8: leader := false
9: terminate at the end of this round

10: else if m = myID then
11: m1 := halt; leader := true
12: else if m > myID then
13: m1 := m
14: if m1 6= null then
15: sendm1 to left neighborFigure 1: The leader eletion algorithm

1: /*Ni�1 is the right neighbor,Ni+1 is the left one*/
2: if Ni+1:m2 = ? then /*failure in 1st round*/
3: m1 := myID; m := null
4: else
5: m2 := Ni+1:m; m := Ni�1:m2
6: if Ni+1 terminated_ Ni+1:m = halt then
7: leader := true
8: if m = halt then
9: m1 := halt

10: if leader = null then
11: leader := false
12: terminate at the end of this round
13: else if m = myID then
14: m1 := halt; leader := true
15: else if m > myID then
16: m1 := m
17: if m1 6= null then
18: sendm1 to left neighborFigure 2: Leader eletion node reonstrution proedureFigure 2 presents the reonstrution proedure for a node Ni using the states of its neighbors. Assume thatthe failure is not in the �rst round (whih is dealt with in a speial way), then m2 is opied from m of the leftneighbor. Similarly, the message reeived in this round (m) is opied from m2 of the right neighbor. If the leftneighbor of the node terminated or terminates in the urrent round, the node is the leader beause non-leadernodes terminate before their left neighbor. Finally, it is neessary to proess the message m.2.3 Memoryless and stateless synhronous algorithmsThe above reonstrution of a leader eletion algorithm is an appliation of the sender-based message logging [7℄method. In the leader eletion algorithm (Figure 1) the message to be sent is independent of the urrent state ofthe node (the value of leader variable), and is determined solely by the message reeived (the �rst round is anexeption). Thus, the availability of the reeived message on the sender node redues the reonstrution problemto that of state reonstrution. More generally, the following an be de�ned:Definition 3: A node is k-round memoryless if the messages it reeived in rounds n; :::; n� (k � 1) and themessages it sent in rounds n� 1; :::; n� k, allow reonstrution of the messages to be sent in round n.Claim 1: If Ni is a k-round memoryless node and it has a reonstrution of its state only (without therequirement to resend any messages) respetive to the other nodes, then the algorithm an be transformed intoan algorithm in whih the node has reonstrution.Proof: We augment the original state of the nodes with: (i) the messages reeived in rounds n; :::; n�(k�1),i.e., the last k rounds; and (ii) messages sent in rounds n; :::; n � k. The reonstrution for Ni is as follows: (i)aording to the assumption, the �original� part of the state Nni an be reonstruted; (ii) messages reeived inrounds n; :::; n � (k � 1) are opied from the appropriate sender; (iii) messages sent to other nodes in roundsn � 1; :::; n � k are opied from their reeivers; (iv) sine the node is k-round memoryless the messages whihshould be sent in round n an be omputed using the message history, whih is now available. �Intuitively, a node is k-round memoryless if the messages sent and reeived in rounds n � 1; :::; n � (k � 1)allow to ompute the part of Nn�1i whih is required to respond to the messages reeived in round n. If the state3



Nn�1i is ompletely determined by these messages the node is stateless. More formally:Definition 4: A node Ni is k-round stateless if the messages it sent and reeived in rounds n� 1; :::; n� kallow reonstrution of Nn�1i .Note that from the de�nition it immediately follows that k-round stateless node is (k+1)-round memoryless.Claim 2: If a node is k-round stateless then the algorithm an be transformed into an algorithm in whihthe node has reonstrution.Proof: Similar to the proof of laim 1. �2.3.1 Example: Matrix multipliationFrom the previous disussion it follows that stateless algorithms have simple and e�ient reonstrution proe-dures. It is interesting to note that some well known algorithms an be easily transformed into stateless ones,e.g., Cannon's parallel algorithm for matrix multipliation (see for example [5℄). In this algorithm it is onve-nient to give the nodes identi�ers of the form (i; j), where 0 � i; j < p. The two square matries A;B to bemultiplied and the result matrix C are similarly divided into bloks fA(i; j); B(i; j); C(i; j)g0�i;j<p. In round r(0 � r < p) node Ni;j omputes C(i; j) := C(i; j) + A(i; j + i+ r mod p) � B(j + i+ r mod p; j). In the end ofthe round eah node sends the blok of A and the blok of B that it held to the nodes whih need them in thenext round. Note that in the original algorithm the reonstrution of Ni;j in round r involves the omputationof Prk=0 A(i; j + i+ k mod p) � B(j + i+ k mod p; j).To transform the algorithm into a 0-round stateless, one needs to send the C bloks (instead of the A or theB bloks). More spei�ally, in round r, node Ni;j omputes C(i+ j + r mod p; j) := C(i+ j + r mod p; j) +A(i+ j + r mod p; i+ 2j mod p) � B(i+ 2j mod p; j). The modi�ation preserves the message omplexity and theommuniation pattern of the original algorithm. Sine the modi�ed algorithm is 0-round stateless the sender-based message logging method redues the reonstrution to repeating the omputation of the urrent round.2.4 ReoveryReonstrution is a method for reovering a system from node rash failures. The following laim provides anexample of reonstrution-based reovery protool in a totally onneted system.Claim 3: If in a synhronous distributed algorithm for a subset of nodes � there exists a reonstrution withrespet to all other nodes, then at the expense of a slowdown by a onstant fator a rashed node from � an betransparently reovered.Proof: The original algorithm is exeuted in every fourth round (the other three are used for transparentreovery in ase of failure). Suppose that in round n the original algorithm is exeuted. The nodes are requiredto store the messages sent (until the n+ 2 round). In round n+ 1 eah node in � sends a keep-alive message toall other nodes. These messages are reeived in round n+ 2, they are ignored unless a message from some nodein � was not reeived. In this ase eah node sends its state to the node whose keep-alive message is missing. Inaddition, the messages whih were sent to the node in round n are resent. In round n + 3 the failed node usesthe reonstrution ation to ompute the state it would have had at the end of round n and to send the messagesit would have sent. A node may aept suh a message (in round n+ 4) only if it reeived no message from thefailing node in the n + 1 round. In the n + 4 round the next round of the original algorithm is performed withthe rashed node in the orret state and with all previous messages orretly delivered. �We note that the algorithm desribed above is suitable only for transient rash failures in whih the failurelasts for at most 3 rounds, i.e., a node whih fails in round n is bak online in round n + 3. If the rash ispermanent a bakup node should be used instead of the rashed one.3 Asynhronous systemsThis setion deals with node reonstrution in asynhronous distributed algorithms. We present the model, thende�ne node reonstrution and give an example of a Sequener algorithm.4



3.1 The modelAs in the synhronous ase, we use state mahines to model nodes (proessors) in asynhronous systems. Theautomaton used to represent a node an have multiple ations of two types: (i) internal ations; and (ii) ationstriggered by external events, e.g., reeive events. Unlike the synhronous ase, there are no rounds. Instead,eah automaton (node) performs its ations (tasks) independently of the others nodes. The internal ations mayhave preonditions, i.e., they may be exeuted only when the state of the automaton satis�es suh onditions.Furthermore, we assume the exeutions are fair, i.e., eah enabled task is eventually exeuted.During eah state transition a message may be sent to any other node. It is possible to send a di�erent messageto any number of nodes in the same transition. Communiation is modeled by two links (one in eah diretion)that hold messages between any pair of ommuniating nodes. Let Qi;j denote the link (message queue) fromnode Ni to node Nj . In the model, messages an not be dupliated but may be lost. A messageLost(m;Nj)event is delivered by the Qi;j queue to the sending node (Ni) when it loses message m. The automaton musthave a reeive ation for every inoming link and messageLost ation for every outgoing link.The state of the whole system is desribed by the states of the nodes and by the ontents of the queuesbetween all ommuniating pairs of nodes. An exeution (a run) is a sequene �0�1�2: : : of ations performed bythe nodes. We use a disrete time, at a time t 2 N the �t ation is performed. Let N ti be the state of node Ni attime t, and Qti;j be the state of Qi;j at that time.3.2 State reonstrutionWe now de�ne the reonstrution ation R for node Ni. Suppose that a node rashes at some time tfail, duringthe exeution. Following the synhronous ase, we would like to de�ne reonstrution as an ation whih atsome later time (tre > tfail) omputes N tfaili and resends the messages sent by Ni, whih were lost after itfailed. However, if the last message to be aepted was sent by Ni at time tlast, it is su�ient to require fromthe reonstrution to ompute a state whih is reahable from N tlasti , beause no other node has any knowledgeabout the transitions of Ni in the [tlast; tfail℄ time interval. We note that this last fat is exploited in messagelogging algorithms for asynhronous systems [12℄.The formal de�nition of reonstrution is as follows:Definition 5: A reonstrution for node Ni is a speial ation R suh that if exeuted at tre > tfail,R transforms N initi into a state whih ould have been reahed from N tlasti by a sequene of reeive ationsfor inoming messages whih Ni reeived during the [tlast; tfail℄ interval, messageLost ations for messages intransition after tlast, and internal ations. In addition, R is required to send the messages sent by the desribedsequene of ations. If termination is allowed, i.e., a node may �nish its exeution at some time t, reonstrutionexists only for the time in whih the node is ative.Next, we de�ne reonstrution with respet to a set of nodes � (i =2 �). After Ni's failure, for eah j 2 �, atsome time tj > tfail the queue Qi;j is empty. Let tre be any time suh that 8j 2 � tre > tj .Definition 6: Node Ni has reonstrution with respet to � if provided with fN tjj gj2� and fQtjj;igj2�, thereexists a reonstrution for the node.The ability to lose messages is a ruial part of the de�nition of reonstrution for the asynhronous model. Itallows the algorithms to speify what hanges an be made to the messages in the message queues after they weresent. Suh hanges allow the reonstrution to send messages di�erent from those sent prior to failure. Below wegive an example to demonstrate the de�nition and larify this last point.3.2.1 Example: SequenerA Sequener [18℄ is a server that alloates (natural) numbers to its lients so that: (i) eah number is alloatedat most one time; (ii) eah lient gets the numbers in a stritly inreasing order; and (iii) all numbers are used,i.e., (k was alloated) ) (8i < k, i will be eventually alloated).Sequeners are required in many distributed appliations, e.g., for timestamps, for transation serial numbersin databases and in broadast algorithms. Formally, a distributed system onsists of a Sequener automaton, anumber of lient automata and ommuniation links between the Sequener and eah lient.5



Variables:ounter 2 N, initially 0last[1::#lients℄ - array of integers,
initially all entries are�1lostMessages - list of (message, nodeID) pairs,
initially empty (null)

On reeive(m;N)
1: last[N ℄ := m
2: ounter ++; sendounter toN

On messageLost(m;N)
3: append(m;N) to lostMessages

On sendLost /*internal action*/
Require: length(lostMessages) > 0

4: if length(lostMessages) = 1 then
5: sendm toN , where(m;N) 2 lostMessages
6: lostMessages := null
7: else
8: let (m1; N1); (m2; N2) be the first two messages

in lostMessages
9: if last[N1℄ < m2 ^ last[N2℄ < m1 then

10: sendm2 toN1; sendm1 toN2
11: else
12: sendm1 toN1; sendm2 toN2
13: lostMessages :=lostMessages n f(m1; N1); (m2; N2)gFigure 3: The Sequener algorithmSuppose that a Sequener has 3 lients N1; N2; N3. After it reeived a request from eah lient (in inreasingorder), it sent 1 to N1, 2 to N2 and 3 to N3. Suppose that the Sequener rashed and only N2 reeived its message,i.e., N2 got 2, while N1 and N3 issued requests whih were handled by the Sequener but were lost (otherwisethey would still be in Qi;Sequener(i = 1; 3)). From the above senario, it is impossible to know whih numberwas sent by the Sequener to whih lient, any feasible reonstrution may as well send 3 to N1 and 1 to N3. Tomake suh reonstrution valid the spei�ation of a Sequener must allow this reordering of assigned numbers.Figure 3 shows one possible spei�ation. The Sequener holds array (last) of the last sequene number whihwas already reeived by eah lient (this is ahieved by the lients sending their last number in order to requesta new one). In addition to the reeive and messageLost ations the Sequener has an internal ation sendLost(lines 4 - 13) whih retransmits lost messages. If more than one message is lost the sendLost ation makesreassignments of the sequene numbers in a way whih does not violate ondition (ii), above.

Variables:first; last; prev 2 Z, initially �1requested 2 ftrue; falseg, initially false
On request

1: if requested = false then
2: sendlast; requested := true

On messageLost(m)
3: sendm

On reeive(m)
4: prev := last; requested := false
5: if m 6= last+ 1 then /*new interval*/
6: first := m
7: last := mFigure 4: The Sequener lient algorithmConsider now the lients of the Sequener. Even in the ase of a system with two lients if the only informationavailable in the states of the lients is the last alloated number, there exists no reonstrutible algorithm forwhih onditions (i)-(iii) hold (we omit the formal proof of this statement). A possible modi�ation in this ase(the one with minimal ost from the omplexity point of view) is to hold the bounds of the last interval of aeptedsequene numbers. In addition, the one before the last sequene number should be remembered, in order to enablethe orret reonstrution of the last array of the Sequener. The algorithm for the lient is presented in Figure4, where [first; last℄ is the last interval of sequene numbers ontinuously assigned to the lient and prev is thesequene number assigned to the lient before last. We note that request is an external ation that is ativatedby some upper appliation layer.The reonstrution algorithm is presented in Figure 5. In the �rst stage, the last array is reonstruted.Then the unused sequene numbers are reassigned in a way that does not violate ondition (ii) for nodes whoseinoming message was lost.Claim 4: The algorithm in Figure 5 is a orret reonstrution of the Sequener with respet to its lients.Proof: We need to show an exeution ontinuing from tlast that produes the same state and messages6



Variables:N 0;m 2 Z, initially �1C;M - sets of integers, initially;
1: for i := 1 to#lients do
2: if Ni:requested ^Qi;Sequener = fg then
3: last[Ni℄ := Ni:last
4: else
5: last[Ni℄ := Ni:prev
6: m := min1�i�#lientsfNi:firstg
7: ounter := max1�i�#lientsfNi:lastg
8: LetM be the set of missed sequence numbers

9: C := fN jN:requested ^QN;Sequener = fgg
/*set of clients whose incoming message was lost*/

10: while M 6= ; do
11: m := min(M); M := M n fmg
12: LetN 0 2 C be the client withlast[N 0℄ = minN2Clast[N ℄
13: C := C n fN 0g; sendm toN 0
14: while C 6= ; do
15: LetN 0 2 C be a client with minimal ID
16: C := C n fN 0g
17: ounter ++; sendounter to N 0Figure 5: Sequener reonstrution proedureas the reonstrution algorithm. We onstrut this exeution in three phases. The �rst phase is the exeu-tion in the [tlast; tfail℄ interval, exatly as it was performed before the failure. The seond phase onsists ofdlength(lostMessages)=2e sendLost ations, resulting in an empty lostMessages list. Note that the last arrayafter these two phases is equal to the one reonstruted in Figure 5, lines 1-5: for lient N , that has a message inits inoming queue, last[N ℄ is N:last, while for lient that has no inoming message, last[N ℄ is N:prev.Consider the set M of sequene numbers (line 8). At the end of the seond phase these numbers are intransmission, however not neessarily to the same lients as in the reonstrution. The third phase of theexeution onsists of a sequene of messageLost and sendLost ations that result in an assignment equal tothe one produed by the reonstrution proedure. The sequene is onstruted in the following way: supposethat the reonstrution sends m := min(M) to N1, while at the end of the seond phase m is sent to N2, andm0 to N1. Sine m < m0 and last[N1℄ < last[N2℄, the loss of m and m0 followed by sendLost results in mbeing sent to N1 (as in the reonstrution) and m0 to N2. For any new number m generated (on line 17), them > last[Ni℄ (1 � i � #lients) inequalities hold, thus any di�erene between the urrent assignment and thatof the reonstrution ation an be eliminated in a similar way. �We note that the Sequener algorithm in Figure 3 should be regarded as a spei�ation, the atual implemen-tation an be di�erent. For example, a sequener that simply resends a lost message is a orret implementation,sine it produes only exeutions allowed by the spei�ation. Furthermore, the reonstrution proedure inFigure 5 is suitable for the implementation desribed above. This implementation, however, ompletely obsuresthe fat that even after m was sent to Ni, it is still possible for another number to be assigned instead of m.Thus, for purposes of formal reasoning about the system we should use the spei�ation for whih the existeneof reonstrution was shown.3.3 ReoveryIn a distributed asynhronous system there is no way to detet a rash failure of a node beause a �slow� node annot be distinguished from a rashed one. Several models whih allow to irumvent this di�ulty were proposed,e.g., failure detetors [4℄ and models that inorporate time [3, 13℄. In these strengthened models rashes aredetetable, thus reovery algorithms similar to the one presented for the synhronous systems an be designed.Below, we give a brief desription of reovery by reonstrution in suh strengthened asynhronous model. Asin the synhronous ase, we onsider a distributed algorithm with a subset of nodes � for whih there exists areonstrution with respet to all the other nodes, and a transparent reovery after a failure of single node from� should be performed.When a node Ni detets that some node N 2 � rashed, Ni sends its state to N (and resends it if themessage ontaining the state is lost). Besides that the exeution of the original algorithm ontinues as if nofailure happened, the only exeption is that any messages whih were sent by N prior to failure are ignored, asif Q;i lost them after N's rash.When N reeives the state messages from all other nodes it performs the reonstrution. The reonstrution7



ation should assume that the fQi;gi 6= message queues are in an empty state, if at some later stage Qi; deliversa message whih was sent before the message with Ni's state it should be ignored. In order to allow N distinguishbetween messages whih Ni sent before it learned about N's failure and messages sent after that, Ni must markthe later messages as suh. Similarly, N must have speial mark on the messages it sends after reovery, so thatother nodes an distinguish them from messages sent by N before the failure. Additional point whih should benotied is that N may reeive regular messages, i.e., messages of the original algorithm, onurrently with thestate messages. Sine messages may be lost it is even possible that a regular message from a node is reeivedbefore its state message. These regular messages should be stored till the ompletion of the reonstrution andthen proessed as usual.Finally we note that the above algorithm may be applied if the failure of N is transient, i.e., at some timeafter the rash the node will be bak online. If the rash is permanent a bakup node an be used.4 System level fault toleraneDistributed data management systems, suh as Distributed Shared Memory (DSM) or distributed �le systemshave a management layer responsible to guarantee synhronized aess to shared data from di�erent nodes as wellas orret management of data diretories. Fault tolerane of the orresponding layers is ruial for the orretoperation and the integrity of the whole system.In this setion we use our formal model to investigate reonstrutibility of various DSM systems. We beginby presenting reonstrution of the star mutual exlusion algorithm, whih serves as a representative of thealgorithms used by system management layer. Then we show how the reonstrutibility of the memory on afailed node depends on the onsisteny model and the data propagation algorithms used by the DSM system.4.1 Star mutual exlusionStar mutual exlusion [14℄ is an example of asynhronous distributed algorithm for mutual exlusion in totallyonneted network. Its performane is ranked among the best [9℄ in the lass of token based algorithms.In the star mutual exlusion algorithm the waiting queue is distributed among the nodes, where eah nodehas a variable (next), pointing to the next node in the queue. A speial root node holds a variable (last) pointingto the last node in the distributed queue of the nodes waiting for the token. To add itself to the queue a nodesends a request message to the root. The root node forwards the request to the last node in the queue, then therequesting node beomes the new tail node.
Variables:last - nodeID, initially ID of the node with the tokennodeOrder - linked list of nodeIDs,

initially holds lastlostMessages - list of (message, nodeID) pairs,
initially empty (null)

On reeive(req;N)
1: sendreq(N) to last; last := N
2: removeN and nodes in front of it fromnodeOrder
3: appendN to the tail ofnodeOrder

On messageLost(req(N2); N1)
4: append(req(N2); N1) to lostMessages

On sendLost /*internal action*/
Require: length(lostMessages) > 0

5: if length(lostMessages) = 1 then
6: sendreq(N2) toN1,

where(req(N2); N1) 2 lostMessages
7: lostMessages := null
8: else
9: let (req(N2); N1) and(req(N4); N3) be the first

two messages inlostMessages, s.t.N1 precedesN4 in nodeOrder
10: sendreq(N4) toN1; sendreq(N2) to last
11: last := N3
12: lostMessages := lostMessagesnf(req(N2); N1); (req(N4); N3)g
13: modifynodeOrder s.t.N4 follows right afterN1

andN2 follows after the tail node, makingN3 the
new tail ofnodeOrderFigure 6: The Star mutual exlusion algorithm for the root nodeA spei�ation of the algorithm exeuted by the root node is presented in Figure 6. Note that a loss of8



outgoing messages by the root node may ause a hange of order in the waiting queue (lines 9-13). Suh behavioris required in order to allow reonstrution (a similar spei�ation method was used for the Sequener in Setion3). To reonstrut the root node, the order of the waiting nodes in the distributed linked list is restored usingtheir next pointers. If a message sent by the root to some requesting lient was lost after a rash, the next pointerof the lient remains null. Hene, messages lost after the root node rashed leave the distributed queue dividedinto several fragments. To omplete the reonstrution, messages whih reestablish an order among the fragments(link them together) are sent, and the fragment that ontains the node with the token is plaed at the end of thelist. In order to orretly reonstrut the nodeOrder linked list eah node must remember the node from whihit reeived the token for the last time. A formal proof of the orretness of the above proedure is similar to thatof the Sequener (laim 4).4.2 Reonstrutibility of Release Consistent Distributed Shared MemoryIn release onsistent DSM systems [6℄, loal memory updates are propagated only at synhronization points.Synhronization is performed by distributed mutual exlusion algorithm, e.g., the star mutual exlusion. Thereare two lasses of protools for transferring the modi�ations to other nodes. The update protools send themodi�ations to other nodes, while the invalidation protools send only a short invalidation message of modi�edpages, and invalidated pages are retrieved only when aessed. In both lasses the multiple-writer method isused, i.e., eah node propagates only the part of the page whih it atually hanged (di� ), thus allowing multiplenodes to perform onurrent writes to the same page. To ompute the di�s, eah node keeps the original ontentof the pages it modi�ed after the last synhronization point. The availability of the original pages is importantfor reonstrution of the memory of a failed node.If an invalidation protool is used, reonstrution is obviously impossible. For example, a node that rashesright after the synhronization point, was observed by other nodes in a state that an not be reonstruted,sine the updates are present only on the failed node. Thus, a protool whih guarantees that the updatesare propagated to additional nodes must be used, see for example [8℄ for a lass of suh update protools forsequentially onsistent DSM. In what follows, we assume that an update protool is used and disuss how theonsisteny model a�ets the reonstrutibility of the nodes in DSM system.4.2.1 DSM with Eager Release Consisteny (ERC)In the ERC protool a node is required to deliver its page modi�ations to all the other nodes holding the pageprior to any lok release operation. Thus, to guarantee that any modi�ation is propagated to additional nodes,eah page should be held by at least two nodes. In this ase, reonstrution respetive to all other nodes ispossible beause at any stage after a rash eah page an be retrieved in a onsistent state from any node holdinga opy of that page. Observe that suh a retrieval is possible beause loal modi�ations produed after the lastsynhronization point are kept separately. After all the pages held by the node prior to its rash are opied, itsstate is the same as the state the node would have had if it did not fail but rather produed no loal updatesduring the [tlast; tre℄ interval, where tlast is the time of the last synhronization just before failing, and tre isthe reovery time.4.2.2 DSM with Lazy Release Consisteny (LRC)In the LRC protool a node whih aquires a lok must reeive all required page modi�ations prior to the aquireoperation. The modi�ations that the aquirer has to obtain are determined aording to the timestamp vetors(used to represent the happened-before-1 partial order) of the releaser and the aquirer. Thus, to guarantee thatany modi�ation is propagated to additional nodes, eah modi�ed page of the releaser should also be held by theaquirer.We show that the above spei�ation of LRC is not reonstrutible. Consider a three node system in whihnode N1 updates page p and sends the update to node N2. Later N2 updates p and sends it to N3, then N1rashes. The de�nition of reonstrution requires to reover N1 to a state it ould have reahed from the state it9



had after sending the update to N2 (the last message sent by N1). Sine in the desribed senario no messagesare sent to N1 (unlike ERC), the state N1 had after sending its update to N2 should be reonstruted. However,this is impossible beause the ontent of p is no longer available: the page available on nodes N2 and N3 alreadyinludes the updates of N2.From the last example it follows that in order to allow reonstrution it should be possible (though notobligatory) for a releaser to propagate its modi�ations to nodes other than the aquirer. This behavior anbe represented in our formal model if, in addition to regular messages, it is allowed to send messages for whihmessageLost event is not delivered, even if the message is lost. The releaser uses suh messages to send itsmodi�ations to nodes other than the aquirer. Note that sine these additional messages are not aknowledged,they may be obsolete at the time of their arrival. This spei�ation hange allows to reonstrut the node byretrieving pages and di�s from other nodes.4.2.3 DSM with Sope Consisteny (SC)SC [11℄ is a further relaxation of the released memory onsisteny model. In this model eah lok is assoiatedwith a sope. A lok aquire opens the sope assoiated with the lok and lok release loses its sope. An updateis performed in the ontext of all the sopes that are open at the updated time. In the SC protool, prior to theaquire operation, a node whih aquires the lok must reeive only the modi�ations performed in the sope ofthe lok.Nodes of a DSM system whih uses SC protool are not reonstrutible. Moreover, there are no spei�ationhanges (similar to the one presented for LRC) whih enable reonstrution. The reason is the inherent abilityof nodes to �inform� others only about some parts of the modi�ations. Consider for example the ase in whihnode N1 updates page p1 in sope S1, and page p2 in sope S2. If afterwards S2 is opened on another node, thepage p2 is sent to this node, but p1 is not. Now suppose that N1 fails. It is impossible to reonstrut N1 beausethe state of page p1 was not propagated (yet) to any other node.5 Conlusion and future workThis paper presents a general formal approah to state reonstrution of a rashed node in both synhronous andasynhronous environments. The model is used to present formal reonstrution proedures for the leader eletion,matrix multipliation, sequener and the star mutual exlusion algorithms, and to analyze reonstrutibilityin release onsistent distributed shared memory systems. In addition, we de�ned the lasses of stateless andmemoryless algorithms and desribed orresponding message logging shemes. For pratial purposes, the mainontribution of this paper is the asynhronous model onsidered in Setion 3.The work desribed in this paper an be extended in several diretions. First, we note that while our de�nitionof reonstrution is for �pure� asynhronous algorithms, a similar de�nition an be given for algorithms whih use(perfet) failure detetors, e.g., a modi�ation of the star mutual exlusion, in whih the lient nodes are allowedto rash and the root node uses a failure detetor to remove the faulty lients from the waiting queue. In orderto de�ne reonstrution in this model, the failure detetor should be regarded as a soure of nondeterministiinputs, similarly to the inoming messages.The de�nitions of reonstrution onsidered in this paper required to reover the state and the messages of asingle node without interfering with the state of any other node, whih is the approah used by the pessimistimessage logging tehniques. In some algorithms it an be reasonable for the reovery proedure of node Nito modify states of other nodes in the system, e.g., as in a hekpoint-based reovery. A related issue is theonurrent failure of several nodes and their subsequent reovery. It is desirable to investigate the reonstrutionin these new settings.Finally, we note that although all the algorithms onsidered in this paper required no stable storage forreovery purposes, this is not the general ase. An algorithm whih uses a stable storage an use our model byrepresenting the storage devies as additional nodes that do not rash, or as a part of a node state whih survivesrash failures, similarly to the node identi�er. 10



AknowledgmentsWe would like to thank Robbert van Renesse for his valuable omments in the early stages of this researh.This researh was supported in part by the Ministry of Siene, the Ministry of Defense and by a grant fromDr. and Mrs. Silverston, Cambridge, UK.Referenes[1℄ L. Alvisi and K. Marzullo. Message Logging: Pessimisti, Optimisti, Causal and Optimal. IEEE Trans. onSoftware Engineering (TSE), 24(2), pp. 149-159, February 1998.[2℄ N. Budhiraja, K. Marzullo, F. B. Shneider, and S. Toueg. The Primary-Bakup Approah. Ch. 8 in DistributedSystems edited by S. Mullender, Addison-Wesley, 1993.[3℄ F. Cristian and C. Fetzer. The Timed Asynhronous Distributed System Model. IEEE Trans. on Parallel andDistributed Systems (TPDS), 10(6), pp. 642-657, June 1999.[4℄ T. D. Chandra and S. Toueg. Unreliable Failure Detetors for Reliable Distributed Systems. Journal of theACM (JACM), 43(2), pp. 225-267, Marh 1996.[5℄ J. Demmel, M. Heath, and H. van der Vorst. Parallel Numerial Linear Algebra. Ata Numeria 2, pp. 111-198,1993.[6℄ S. Dwarkadas, P. J. Keleher, A. L. Cox, and W. Zwaenepoel. Evaluation of Release Consistent SoftwareDistributed Shared Memory on Emerging Network Tehnology. Pro. 20th Annual Int. Symposium on ComputerArhiteture (ISCA), pp. 144-155, San Diego, CA, May 1993.[7℄ E. N. Elnozahy, L. Alvisi, Y.M. Wang, and D. B. Johnson. A Survey of Rollbak-Reovery Protools inMessage-Passing Systems. To appear in ACM Computing Surveys.[8℄ B. D. Fleish, H. Mihel, S. K. Shah, and O. E. Theel. Fault Tolerane and Con�gurability in DSM CohereneProtools, IEEE Conurreny, 8(2), pp. 10-21, June 2000.[9℄ S. S. Fu, N. Tzeng, and J. Chang. Empirial Evaluation of Mutual Exlusion Algorithms for DistributedSystems. Journal of Parallel and Distributed Computing (JPDC), 60(7), pp. 785-806, July 2000.[10℄ F. C. Gartner. Fundamentals of Fault-Tolerant Distributed Computing in Asynhronous Environments. ACMComputing Surveys, 31(1), pp. 1-26, Marh 1999.[11℄ L. Iftode, J. P. Singh, and K. Li. Sope Consisteny: A Bridge between Release Consisteny and EntryConsisteny. Theory of Computing Systems, 31(4), pp. 451-473, August 1998.[12℄ P. Jalote. Fault tolerant proesses. Distributed Computing, 3(4), pp. 187-195, 1989.[13℄ N.A. Lynh. Distributed Algorithms. Morgan Kaufmann, 1996.[14℄ M. L. Neilsen and M. Mizuno. A dag-based algorithm for distributed mutual exlusion. Pro. 11th Int. Conf.Distributed Computing Systems (ICDCS), pp. 354-360, Arlington, TX, May 1991.[15℄ J. S. Plank, Y. Kim, and J. Dongarra. Fault-Tolerant Matrix Operations for Networks of Workstations UsingDiskless Chekpointing. Journal of Parallel and Distributed Computing (JPDC), 43(2), pp. 125-138, June 1997.[16℄ F.B. Shneider. What Good are Models and What Models are Good? Ch. 2 in Distributed Systems editedby S. Mullender, Addison-Wesley, 1993.[17℄ F.B. Shneider. Implementing Fault-tolerant Servies using the State Mahine Approah: A Tutorial. ACMComputing Surveys, 22(4), pp. 299-319, Deember 1990.[18℄ A. S. Tanenbaum and M. van Steen. Distributed Systems Priniples and Paradigms. Prentie Hall, 2002.11


