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Abstract

One of the main methods for achieving fault tolerance in distributed systems is recovery of the state of failed
components. Though generic recovery methods like checkpointing and message logging exist, in many cases the
recovery has to be application specific. In this paper we propose a general model for a node state reconstruction
after crash failures. In our model the reconstruction operation is defined only by the requirements it fulfills,
without referring to the specific application dependent way it is performed. The model provides a framework
for formal treatment of algorithm-specific and system-specific recovery procedures. It is used to specify node
state reconstruction procedures for several widely used distributed algorithms and systems, as well as to prove
their correctness.
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1 Introduction

The common formal approach to fault tolerance of distributed algorithms requires a definition of a set of properties
that should be fulfilled by the configurations of the distributed system [10]. An algorithm is f-fault tolerant if
these execution specifications are not violated, even if up to f failures of certain types occur during the execution.
In this paper we consider crash failures of a single node in a distributed system.

For a large family of distributed systems fault tolerance is achieved by recovering the state of a node after
it crashes, as opposed to other methods for providing fault tolerance, such as the state machine approach [17]
and the primary-backup approach [2], which maintain multiple copies of the same logical component. Several
general techniques for recovering crashed nodes, such as checkpointing and message logging methods are used.
However, in many cases these methods are not applicable, and the recovery has to be specifically designed for
the algorithm. For example, if the algorithm is implemented in hardware (e.g., in a network switch) or in a low
software level (e.g., in a distributed operating system) these methods can not be applied for purely technical
reasons. Furthermore, when system performance is important, specifically designed recovery has an advantage
over general methods. In certain cases this applies even to scientific computations [15], which are the traditional
area for checkpointing methods.

A well understood theoretical model of checkpointing and message logging exists, see for example [1, 7]. It
is desirable, however, to have a formal approach which deals with node recovery in general, rather than with
node recovery via specific methods. The goal of this paper is to provide such a formal model by defining the
reconstruction of a node through the requirements it should fulfill (rather than the method by which it is achieved).
We use the proposed model to specify reconstruction procedures as well as to prove their correctness, for several
widely used distributed algorithms, such as the leader election in a ring and the sequencer algorithms. In addition,
the classes of stateless and memoryless algorithms are specially considered. We also study reconstruction at the
system level, as opposed to “stand-alone” algorithms, by examining the recovery from crash failure in distributed
shared memory systems.



The paper is organized as follows: Section 2 presents a simple model for reconstructibility in synchronous
distributed algorithms. Section 3 deals with reconstruction in asynchronous distributed algorithms. In Section
4 we study node reconstruction in release consistent distributed shared memory systems. Our conclusions and
some directions for further research are presented in Section 5.

2 Synchronous systems

This section presents a new model for a node state recovery in synchronous distributed algorithms. After describing
the system model, we define node reconstructibility and give an example. We then use the reconstructibility
property to define stateless and memoryless synchronous algorithms, and describe a recovery algorithm based on
the reconstruction method.

2.1 The model

Using the commonly accepted approach, we model each processor (node) N; in a distributed system as a state
machine. A state machine (automaton) has an initial state N/ and an action (transition function) that moves
the machine from one state to another and sends messages to other nodes.

Computations are performed in rounds. In each round every node uses its current state, its action and the
received messages to compute its new state and messages to send. Messages sent to other nodes in the current
round are received in the next round. Let N;* denote the state of node IV; at the end of round n. Assume that
the nodes are connected by communication links. Let (); ; denote the link (message queue) from N; to N;, and

i; denote the state of the link at the end of round n.

A crash failure [16] during round n causes the failing node to perform no actions after the failure and may
cause some of the messages sent by it in round n to be lost. Messages which were sent to a failed node in round
n — 1 and were not processed by it prior to the failure are also lost.

2.2 State reconstruction

Suppose that node N; fails in round n. Informally, node N; has reconstruction if the state of the node and
the messages it should have sent can be recomputed using information available in states of other nodes. More
formally:

DEFINITION 1: A reconstruction of node N; (for round n) is a special action R, that transforms N"% into
N}, i.e., the state node N; would have had at the end of round n if it had not failed. In addition, R must send
all the messages N; would have sent during round n in a normal (non-failed) execution. If termination is allowed,
i.e., a node may finish its execution at some round n, reconstruction exists only for the rounds in which the node
is active.

DEFINITION 2: Let IT be some set of nodes so that ¢ ¢ II. Node N; has reconstruction with respect to II if
provided with {N'}jen and{Q7};}jen there exists a reconstruction for the node for round n.

2.2.1 Example: Leader election

Consider the following leader election algorithm in a ring, where each node has a unique identifier. In the first
round each node sends its identifier to its left neighbor. In the following rounds each node compares the identifiers
it receives from its right neighbor to its own and forwards the received identifier (to the left neighbor) only if its
value is higher. If a node receives its own identifier it declares itself as a leader and sends a halt message to its
left neighbor. Each node which receives a halt message forwards it and terminates at the end of the round. A
node which receives the halt message and is not a leader (yet) declares itself a non-leader.

To support reconstruction with respect to its neighbors, a node should execute the above algorithm and also
remember the message it sent in the previous round. This algorithm is shown in Figure 1, where my and m; are
the messages sent by the node in the previous and the current rounds, respectively.



Constants: 5: if m = halt then

mylID € N 6.  my := halt
Variables: 7. if leader = null then

leader € {true, false,null}, initially null 8: leader := false

m,m1, Mo - Messages, initially. 9: terminate at the end of this round
1 ms = my; my = null 10: elseif m = myID then
2: if m = L then /*1st round*/ 11:  my = halt; leader := true
3 my:=mylD 12: elseif m > mylID then
4: Letm be the message received from the right neigh- 13:  m1 :=m

bor, ornull if no message was received 14: if my # null then

15:  sendm, to left neighbor
Figure 1: The leader election algorithm

1: [* N;_, is the right neighbo#y;, ; is the left one*/ 10: if leader = null then
2. if Njy1.mo = L then [*failure in 1st round*/ 11: leader := false
3 my :=mylD;m = null 12:  terminate at the end of this round
4: else 13: elseif m = myID then
5 mg = Njp1.m;m:= N;_1.ms 14:  mq = halt; leader := true
6: if N;y; terminatedv N;,.m = halt then 15: elseif m > myID then
7:  leader := true 16: my:=m
8: if m = halt then 17: if my # null then
9:  my := halt 18:  sendm; to left neighbor

Figure 2: Leader election node reconstruction procedure

Figure 2 presents the reconstruction procedure for a node N; using the states of its neighbors. Assume that
the failure is not in the first round (which is dealt with in a special way), then m is copied from m of the left
neighbor. Similarly, the message received in this round (m) is copied from ms of the right neighbor. If the left
neighbor of the node terminated or terminates in the current round, the node is the leader because non-leader
nodes terminate before their left neighbor. Finally, it is necessary to process the message m.

2.3 Memoryless and stateless synchronous algorithms

The above reconstruction of a leader election algorithm is an application of the sender-based message logging [7]
method. In the leader election algorithm (Figure 1) the message to be sent is independent of the current state of
the node (the value of leader variable), and is determined solely by the message received (the first round is an
exception). Thus, the availability of the received message on the sender node reduces the reconstruction problem
to that of state reconstruction. More generally, the following can be defined:

DEFINITION 3: A node is k-round memoryless if the messages it received in rounds n,...,n — (k — 1) and the
messages it sent in rounds n — 1, ...,n — k, allow reconstruction of the messages to be sent in round n.

Cramv 1: If N; is a k-round memoryless node and it has a reconstruction of its state only (without the
requirement to resend any messages) respective to the other nodes, then the algorithm can be transformed into
an algorithm in which the node has reconstruction.

Proor: We augment the original state of the nodes with: (i) the messages received in rounds n, ...,n — (k—1),
i.e., the last k rounds; and (i) messages sent in rounds n,...,n — k. The reconstruction for N; is as follows: (i)
according to the assumption, the “original” part of the state N can be reconstructed; (i) messages received in
rounds n,...,n — (k — 1) are copied from the appropriate sender; (ii7) messages sent to other nodes in rounds
n —1,..,n — k are copied from their receivers; (iv) since the node is k-round memoryless the messages which
should be sent in round n can be computed using the message history, which is now available. O

Intuitively, a node is k-round memoryless if the messages sent and received in rounds n — 1,...,n — (k — 1)
allow to compute the part of NZF1 which is required to respond to the messages received in round n. If the state



N{“l is completely determined by these messages the node is stateless. More formally:
DEFINITION 4: A node N; is k-round stateless if the messages it sent and received in rounds n — 1,...,n — k
allow reconstruction of Ni"d.
Note that from the definition it immediately follows that k-round stateless node is (k 4 1)-round memoryless.
CramM 2: If a node is k-round stateless then the algorithm can be transformed into an algorithm in which
the node has reconstruction.

PROOF: Similar to the proof of claim 1. O

2.3.1 Example: Matrix multiplication

From the previous discussion it follows that stateless algorithms have simple and efficient reconstruction proce-
dures. It is interesting to note that some well known algorithms can be easily transformed into stateless ones,
e.g., Cannon’s parallel algorithm for matrix multiplication (see for example [5]). In this algorithm it is conve-
nient to give the nodes identifiers of the form (i,7), where 0 < 7,5 < p. The two square matrices A, B to be
multiplied and the result matrix C' are similarly divided into blocks {A(i, j), B(7,7),C(i, ) }o<i,j<p- In round r
(0 <r < p) node N;; computes C(i,5) := C(i,j) + A(i,j +i+rmodp) - B(j +i+rmodp,j). In the end of
the round each node sends the block of A and the block of B that it held to the nodes which need them in the
next round. Note that in the original algorithm the reconstruction of IV; ; in round r involves the computation
of 1o A(i,j + i+ kmodp) - B(j + i+ kmodp,j).

To transform the algorithm into a 0-round stateless, one needs to send the C' blocks (instead of the A or the
B blocks). More specifically, in round r, node Nj;; computes C(i + j+rmodp,j) := C(i + j+rmodp,j) +
A(i 4+ j + rmodp,i+ 2j modp) - B(i + 2j mod p, j). The modification preserves the message complexity and the
communication pattern of the original algorithm. Since the modified algorithm is O-round stateless the sender-
based message logging method reduces the reconstruction to repeating the computation of the current round.

2.4 Recovery

Reconstruction is a method for recovering a system from node crash failures. The following claim provides an
example of reconstruction-based recovery protocol in a totally connected system.

Craiv 3: If in a synchronous distributed algorithm for a subset of nodes ¥ there exists a reconstruction with
respect to all other nodes, then at the expense of a slowdown by a constant factor a crashed node from ¥ can be
transparently recovered.

Proor: The original algorithm is executed in every fourth round (the other three are used for transparent
recovery in case of failure). Suppose that in round n the original algorithm is executed. The nodes are required
to store the messages sent (until the n + 2 round). In round n + 1 each node in ¥ sends a keep-alive message to
all other nodes. These messages are received in round n + 2, they are ignored unless a message from some node
in ¥ was not received. In this case each node sends its state to the node whose keep-alive message is missing. In
addition, the messages which were sent to the node in round n are resent. In round n + 3 the failed node uses
the reconstruction action to compute the state it would have had at the end of round n and to send the messages
it would have sent. A node may accept such a message (in round n + 4) only if it received no message from the
failing node in the n 4+ 1 round. In the n + 4 round the next round of the original algorithm is performed with
the crashed node in the correct state and with all previous messages correctly delivered. [

We note that the algorithm described above is suitable only for transient crash failures in which the failure
lasts for at most 3 rounds, i.e., a node which fails in round n is back online in round n + 3. If the crash is
permanent a backup node should be used instead of the crashed one.

3 Asynchronous systems

This section deals with node reconstruction in asynchronous distributed algorithms. We present the model, then
define node reconstruction and give an example of a Sequencer algorithm.



3.1 The model

As in the synchronous case, we use state machines to model nodes (processors) in asynchronous systems. The
automaton used to represent a node can have multiple actions of two types: (i) internal actions; and (i) actions
triggered by external events, e.g., receive events. Unlike the synchronous case, there are no rounds. Instead,
each automaton (node) performs its actions (tasks) independently of the others nodes. The internal actions may
have preconditions, i.e., they may be executed only when the state of the automaton satisfies such conditions.
Furthermore, we assume the executions are fair, i.e., each enabled task is eventually executed.

During each state transition a message may be sent to any other node. It is possible to send a different message
to any number of nodes in the same transition. Communication is modeled by two links (one in each direction)
that hold messages between any pair of communicating nodes. Let (); ; denote the link (message queue) from
node N; to node N;. In the model, messages can not be duplicated but may be lost. A messageLost(m, N;)
event is delivered by the @; ; queue to the sending node (IV;) when it loses message m. The automaton must
have a receive action for every incoming link and messageLost action for every outgoing link.

The state of the whole system is described by the states of the nodes and by the contents of the queues
between all communicating pairs of nodes. An execution (a run) is a sequence momm2. . . of actions performed by
the nodes. We use a discrete time, at a time ¢ € N the 7 action is performed. Let N} be the state of node N; at
time ¢, and Qﬁj be the state of @; ; at that time.

3.2 State reconstruction

We now define the reconstruction action R for node N;. Suppose that a node crashes at some time ¢7,5, during
the execution. Following the synchronous case, we would like to define reconstruction as an action which at
some later time (tyec > tpqi) computes fo“” and resends the messages sent by N;, which were lost after it
failed. However, if the last message to be accepted was sent by N; at time .5, it is sufficient to require from
the reconstruction to compute a state which is reachable from Nf’““, because no other node has any knowledge
about the transitions of N; in the [tjqst, tpqu] time interval. We note that this last fact is exploited in message
logging algorithms for asynchronous systems [12].

The formal definition of reconstruction is as follows:

DEFINITION 5: A reconstruction for node IN; is a special action R such that if executed at t,cc > tyau,
R transforms N/™ into a state which could have been reached from N}™*** by a sequence of receive actions
for incoming messages which N; received during the [t;qs¢,tfqu] interval, messageLost actions for messages in
transition after ¢;,s¢, and internal actions. In addition, R is required to send the messages sent by the described
sequence of actions. If termination is allowed, i.e., a node may finish its execution at some time ¢, reconstruction
exists only for the time in which the node is active.

Next, we define reconstruction with respect to a set of nodes II (i ¢ II). After N;’s failure, for each j € II, at
some time t; > tyqy the queue @Q); ; is empty. Let t,.. be any time such that Vj € I ¢,.. > ¢;.

DEFINITION 6: Node N; has reconstruction with respect to II if provided with {N;’ }jem and {Q;fi}jen, there
exists a reconstruction for the node.

The ability to lose messages is a crucial part of the definition of reconstruction for the asynchronous model. It
allows the algorithms to specify what changes can be made to the messages in the message queues after they were
sent. Such changes allow the reconstruction to send messages different from those sent prior to failure. Below we
give an example to demonstrate the definition and clarify this last point.

3.2.1 Example: Sequencer

A Sequencer [18] is a server that allocates (natural) numbers to its clients so that: (i) each number is allocated
at most one time; (i7) each client gets the numbers in a strictly increasing order; and (ii7) all numbers are used,
i.e., (k was allocated) = (Vi < k, i will be eventually allocated).

Sequencers are required in many distributed applications, e.g., for timestamps, for transaction serial numbers
in databases and in broadcast algorithms. Formally, a distributed system consists of a Sequencer automaton, a
number of client automata and communication links between the Sequencer and each client.



Variables: 4: if length(lostMessages) = 1 then
counter € N, initially 0 5. sendm to N, where(m, N) € lostMessages
last[1..#clients] - array of integers, 6: lostMessages := null
initially all entries are—1 7. else
lostMessages - list of (message, nodelD) pairs, 8 let(my, N1),(mo, N2) be the first two messages
initially empty (null) in lostMessages
On receive(m, N) 9. if last[N1] < ma Alast[N2] < m; then
1: last[N] :==m 10: sendms to N;; sendm; to N»
2: counter + +; sendcounter to N 1 else
On messageLost(m, N) 12 sendm; to Ny; sendms to N,
3: appendm, N) tolostMessages 13 lostMessages :=

On sendLost [*internal action*/
Reauire: lenath(lostMessaaes) > 0

lostMessages \ {(m1, N1), (m2, N2)}

Figure 3: The Sequencer algorithm

Suppose that a Sequencer has 3 clients Ny, Ny, N3. After it received a request from each client (in increasing
order), it sent 1 to Ny, 2 to N» and 3 to N3. Suppose that the Sequencer crashed and only N received its message,
i.e., Ny got 2, while Ny and N3 issued requests which were handled by the Sequencer but were lost (otherwise
they would still be in Q; sequencer (i = 1,3)). From the above scenario, it is impossible to know which number
was sent by the Sequencer to which client, any feasible reconstruction may as well send 3 to N; and 1 to N3. To
make such reconstruction valid the specification of a Sequencer must allow this reordering of assigned numbers.

Figure 3 shows one possible specification. The Sequencer holds array (last) of the last sequence number which
was already received by each client (this is achieved by the clients sending their last number in order to request
a new one). In addition to the receive and messageLost actions the Sequencer has an internal action sendLost
(lines 4 - 13) which retransmits lost messages. If more than one message is lost the sendLost action makes
reassignments of the sequence numbers in a way which does not violate condition (ii), above.

Variables:
first,last,prev € Z,initially —1
requested € {true, false}, initially false

3:
On receive(m)

sendm

4: prev = last; requested := false

On request 5. if m # last + 1 then /*new interval*/
1: if requested = false then 6:  first:=m
2. sendlast; requested := true 7: last :=m

On messageLost(m)

Figure 4: The Sequencer client algorithm

Consider now the clients of the Sequencer. Even in the case of a system with two clients if the only information
available in the states of the clients is the last allocated number, there exists no reconstructible algorithm for
which conditions (i)-(iii) hold (we omit the formal proof of this statement). A possible modification in this case
(the one with minimal cost from the complexity point of view) is to hold the bounds of the last interval of accepted
sequence numbers. In addition, the one before the last sequence number should be remembered, in order to enable
the correct reconstruction of the last array of the Sequencer. The algorithm for the client is presented in Figure
4, where [first,last] is the last interval of sequence numbers continuously assigned to the client and prev is the
sequence number assigned to the client before last. We note that request is an external action that is activated
by some upper application layer.

The reconstruction algorithm is presented in Figure 5. In the first stage, the last array is reconstructed.
Then the unused sequence numbers are reassigned in a way that does not violate condition (ii) for nodes whose
incoming message was lost.

CrAIM 4: The algorithm in Figure 5 is a correct reconstruction of the Sequencer with respect to its clients.

PrOOF: We need to show an execution continuing from t;,s; that produces the same state and messages



Variables: 9: C := {N|N.requested N QN Sequencer = {}}

N',m € Z,initially —1 /*set of clients whose incoming message was lost*/
C, M - sets of integers, initially) 10: while M # () do

1: for i := 1to #clients do 11: me=min(M); M := M\ {m}

2. if Nyrequested A Q; sequencer = {} then 12 Let N' € C be the client with

3: last[N;] := Nj.last last[N'] = minyeclast[N]

4  ese 13: C:=C\{N'}; sendnto N’

5: last[N;] :== Nj.prev 14: while C' # () do

6: M = Ming <i<petionts { Ni. first} 15.  Let N' € C be a client with minimal ID

7: counter :z?n?mcKK#cliems{N,-.last} 160 C:=C\{N'}

8: Let M be the set of missed sequence numbers 17: counter + +; sendcounter to N'

Figure 5: Sequencer reconstruction procedure

as the reconstruction algorithm. We construct this execution in three phases. The first phase is the execu-
tion in the [tiest,tfqu] interval, exactly as it was performed before the failure. The second phase consists of
[length(lostMessages) /2] sendLost actions, resulting in an empty lostMessages list. Note that the last array
after these two phases is equal to the one reconstructed in Figure 5, lines 1-5: for client IV, that has a message in
its incoming queue, last[N] is N.last, while for client that has no incoming message, last[N] is N.prev.

Consider the set M of sequence numbers (line 8). At the end of the second phase these numbers are in
transmission, however not necessarily to the same clients as in the reconstruction. The third phase of the
execution consists of a sequence of messageLost and sendLost actions that result in an assignment equal to
the one produced by the reconstruction procedure. The sequence is constructed in the following way: suppose
that the reconstruction sends m := min(M) to Ny, while at the end of the second phase m is sent to N, and
m’ to Ni. Since m < m' and last[N1] < last[Nz], the loss of m and m' followed by sendLost results in m
being sent to N; (as in the reconstruction) and m' to No. For any new number m generated (on line 17), the
m > last[N;] (1 < i < #clients) inequalities hold, thus any difference between the current assignment and that
of the reconstruction action can be eliminated in a similar way. O

We note that the Sequencer algorithm in Figure 3 should be regarded as a specification, the actual implemen-
tation can be different. For example, a sequencer that simply resends a lost message is a correct implementation,
since it produces only executions allowed by the specification. Furthermore, the reconstruction procedure in
Figure 5 is suitable for the implementation described above. This implementation, however, completely obscures
the fact that even after m was sent to Nj, it is still possible for another number to be assigned instead of m.
Thus, for purposes of formal reasoning about the system we should use the specification for which the existence
of reconstruction was shown.

3.3 Recovery

In a distributed asynchronous system there is no way to detect a crash failure of a node because a “slow” node can
not be distinguished from a crashed one. Several models which allow to circumvent this difficulty were proposed,
e.g., failure detectors [4] and models that incorporate time [3, 13]. In these strengthened models crashes are
detectable, thus recovery algorithms similar to the one presented for the synchronous systems can be designed.
Below, we give a brief description of recovery by reconstruction in such strengthened asynchronous model. As
in the synchronous case, we consider a distributed algorithm with a subset of nodes ¥ for which there exists a
reconstruction with respect to all the other nodes, and a transparent recovery after a failure of single node from
Y should be performed.

When a node N; detects that some node N, € ¥ crashed, N; sends its state to N, (and resends it if the
message containing the state is lost). Besides that the execution of the original algorithm continues as if no
failure happened, the only exception is that any messages which were sent by N, prior to failure are ignored, as
if Q. ; lost them after IV.’s crash.

When N, receives the state messages from all other nodes it performs the reconstruction. The reconstruction



action should assume that the {Q); .}, message queues are in an empty state, if at some later stage @; . delivers
a message which was sent before the message with V;’s state it should be ignored. In order to allow N, distinguish
between messages which N; sent before it learned about N.’s failure and messages sent after that, N; must mark
the later messages as such. Similarly, N, must have special mark on the messages it sends after recovery, so that
other nodes can distinguish them from messages sent by N, before the failure. Additional point which should be
noticed is that N. may receive regular messages, i.e., messages of the original algorithm, concurrently with the
state messages. Since messages may be lost it is even possible that a regular message from a node is received
before its state message. These regular messages should be stored till the completion of the reconstruction and
then processed as usual.

Finally we note that the above algorithm may be applied if the failure of IV, is transient, i.e., at some time
after the crash the node will be back online. If the crash is permanent a backup node can be used.

4 System level fault tolerance

Distributed data management systems, such as Distributed Shared Memory (DSM) or distributed file systems
have a management layer responsible to guarantee synchronized access to shared data from different nodes as well
as correct management of data directories. Fault tolerance of the corresponding layers is crucial for the correct
operation and the integrity of the whole system.

In this section we use our formal model to investigate reconstructibility of various DSM systems. We begin
by presenting reconstruction of the star mutual exclusion algorithm, which serves as a representative of the
algorithms used by system management layer. Then we show how the reconstructibility of the memory on a
failed node depends on the consistency model and the data propagation algorithms used by the DSM system.

4.1 Star mutual exclusion

Star mutual exclusion [14] is an example of asynchronous distributed algorithm for mutual exclusion in totally
connected network. Its performance is ranked among the best [9] in the class of token based algorithms.

In the star mutual exclusion algorithm the waiting queue is distributed among the nodes, where each node
has a variable (nezt), pointing to the next node in the queue. A special root node holds a variable (last) pointing
to the last node in the distributed queue of the nodes waiting for the token. To add itself to the queue a node
sends a request message to the root. The root node forwards the request to the last node in the queue, then the
requesting node becomes the new tail node.

Variables; 5: if length(lostMessages) = 1 then
last - nodelD, initially ID of the node with the token 6: sendreq(N>)to Ny,
nodeOrder - linked list of nodelDs, where(req(N), N1) € lostMessages
initially holdslast 7. lostMessages := null
lostMessages - list of (message, nodelD) pairs, 8: else
initially empty (null) 9:  let(req(N3), N1) and(req(Ny4), N3) be the first
On receive(req, N) two messages itvst M essages, S.t. N, precedes
1: sendreq(N) tolast; last := N Ny in nodeOrder
2: removeN and nodes in front of it frornodeOrder 10:  sendreq(Ns) to Ny; sendreq(N>) to last
3: appendV to the tail ofnodeOrder 11 last:= N3
On messageLost(req(Ns), Ny) 12:  lostMessages := lostMessages
4: appendreq(N2), Ny) to lost M essages \{(req(N2), N1), (req(Na), N3)}
On sendLost [*internal action*/ 13:  modify nodeOrder s.t. N4 follows right afterNVy
Require: length(lostMessages) > 0 andN- follows after the tail node, makingy; the

new tail ofnodeOrder

Figure 6: The Star mutual exclusion algorithm for the root node

A specification of the algorithm executed by the root node is presented in Figure 6. Note that a loss of



outgoing messages by the root node may cause a change of order in the waiting queue (lines 9-13). Such behavior
is required in order to allow reconstruction (a similar specification method was used for the Sequencer in Section
3).

To reconstruct the root node, the order of the waiting nodes in the distributed linked list is restored using
their next pointers. If a message sent by the root to some requesting client was lost after a crash, the next pointer
of the client remains null. Hence, messages lost after the root node crashed leave the distributed queue divided
into several fragments. To complete the reconstruction, messages which reestablish an order among the fragments
(link them together) are sent, and the fragment that contains the node with the token is placed at the end of the
list. In order to correctly reconstruct the nodeOrder linked list each node must remember the node from which
it received the token for the last time. A formal proof of the correctness of the above procedure is similar to that
of the Sequencer (claim 4).

4.2 Reconstructibility of Release Consistent Distributed Shared Memory

In release consistent DSM systems [6], local memory updates are propagated only at synchronization points.
Synchronization is performed by distributed mutual exclusion algorithm, e.g., the star mutual exclusion. There
are two classes of protocols for transferring the modifications to other nodes. The wupdate protocols send the
modifications to other nodes, while the invalidation protocols send only a short invalidation message of modified
pages, and invalidated pages are retrieved only when accessed. In both classes the multiple-writer method is
used, i.e., each node propagates only the part of the page which it actually changed (diff ), thus allowing multiple
nodes to perform concurrent writes to the same page. To compute the diffs, each node keeps the original content
of the pages it modified after the last synchronization point. The availability of the original pages is important
for reconstruction of the memory of a failed node.

If an invalidation protocol is used, reconstruction is obviously impossible. For example, a node that crashes
right after the synchronization point, was observed by other nodes in a state that can not be reconstructed,
since the updates are present only on the failed node. Thus, a protocol which guarantees that the updates
are propagated to additional nodes must be used, see for example [8] for a class of such update protocols for
sequentially consistent DSM. In what follows, we assume that an update protocol is used and discuss how the
consistency model affects the reconstructibility of the nodes in DSM system.

4.2.1 DSM with Eager Release Consistency (ERC)

In the ERC protocol a node is required to deliver its page modifications to all the other nodes holding the page
prior to any lock release operation. Thus, to guarantee that any modification is propagated to additional nodes,
each page should be held by at least two nodes. In this case, reconstruction respective to all other nodes is
possible because at any stage after a crash each page can be retrieved in a consistent state from any node holding
a copy of that page. Observe that such a retrieval is possible because local modifications produced after the last
synchronization point are kept separately. After all the pages held by the node prior to its crash are copied, its
state is the same as the state the node would have had if it did not fail but rather produced no local updates
during the [tigst,trec] interval, where ¢;,5 is the time of the last synchronization just before failing, and ¢,.. is
the recovery time.

4.2.2 DSM with Lazy Release Consistency (LRC)

In the LRC protocol a node which acquires a lock must receive all required page modifications prior to the acquire
operation. The modifications that the acquirer has to obtain are determined according to the timestamp vectors
(used to represent the happened-before-1 partial order) of the releaser and the acquirer. Thus, to guarantee that
any modification is propagated to additional nodes, each modified page of the releaser should also be held by the
acquirer.

We show that the above specification of LRC is not reconstructible. Consider a three node system in which
node N; updates page p and sends the update to node N». Later N, updates p and sends it to N3, then Ny
crashes. The definition of reconstruction requires to recover N; to a state it could have reached from the state it



had after sending the update to Na (the last message sent by Nj). Since in the described scenario no messages
are sent to Ny (unlike ERC), the state N7 had after sending its update to No should be reconstructed. However,
this is impossible because the content of p is no longer available: the page available on nodes N, and N3 already
includes the updates of N.

From the last example it follows that in order to allow reconstruction it should be possible (though not
obligatory) for a releaser to propagate its modifications to nodes other than the acquirer. This behavior can
be represented in our formal model if, in addition to regular messages, it is allowed to send messages for which
messageLost event is not delivered, even if the message is lost. The releaser uses such messages to send its
modifications to nodes other than the acquirer. Note that since these additional messages are not acknowledged,
they may be obsolete at the time of their arrival. This specification change allows to reconstruct the node by
retrieving pages and diffs from other nodes.

4.2.3 DSM with Scope Counsistency (ScC)

ScC [11] is a further relaxation of the released memory consistency model. In this model each lock is associated
with a scope. A lock acquire opens the scope associated with the lock and lock release closes its scope. An update
is performed in the context of all the scopes that are open at the updated time. In the ScC protocol, prior to the
acquire operation, a node which acquires the lock must receive only the modifications performed in the scope of
the lock.

Nodes of a DSM system which uses ScC protocol are not reconstructible. Moreover, there are no specification
changes (similar to the one presented for LRC) which enable reconstruction. The reason is the inherent ability
of nodes to “inform” others only about some parts of the modifications. Consider for example the case in which
node N7 updates page p; in scope Sp, and page p> in scope S». If afterwards S» is opened on another node, the
page ps is sent to this node, but p; is not. Now suppose that N; fails. It is impossible to reconstruct N; because
the state of page p; was not propagated (yet) to any other node.

5 Conclusion and future work

This paper presents a general formal approach to state reconstruction of a crashed node in both synchronous and
asynchronous environments. The model is used to present formal reconstruction procedures for the leader election,
matrix multiplication, sequencer and the star mutual exclusion algorithms, and to analyze reconstructibility
in release consistent distributed shared memory systems. In addition, we defined the classes of stateless and
memoryless algorithms and described corresponding message logging schemes. For practical purposes, the main
contribution of this paper is the asynchronous model considered in Section 3.

The work described in this paper can be extended in several directions. First, we note that while our definition
of reconstruction is for “pure” asynchronous algorithms, a similar definition can be given for algorithms which use
(perfect) failure detectors, e.g., a modification of the star mutual exclusion, in which the client nodes are allowed
to crash and the root node uses a failure detector to remove the faulty clients from the waiting queue. In order
to define reconstruction in this model, the failure detector should be regarded as a source of nondeterministic
inputs, similarly to the incoming messages.

The definitions of reconstruction considered in this paper required to recover the state and the messages of a
single node without interfering with the state of any other node, which is the approach used by the pessimistic
message logging techniques. In some algorithms it can be reasonable for the recovery procedure of node IV;
to modify states of other nodes in the system, e.g., as in a checkpoint-based recovery. A related issue is the
concurrent failure of several nodes and their subsequent recovery. It is desirable to investigate the reconstruction
in these new settings.

Finally, we note that although all the algorithms considered in this paper required no stable storage for
recovery purposes, this is not the general case. An algorithm which uses a stable storage can use our model by
representing the storage devices as additional nodes that do not crash, or as a part of a node state which survives
crash failures, similarly to the node identifier.
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