
On Node State Re
onstru
tion for Fault Tolerant DistributedAlgorithmsMi
hael Okun and Amnon BarakComputer S
ien
e Institute,The Hebrew University of Jerusalem,Jerusalem 91904, Israel{mush,amnon}�
s.huji.a
.ilAbstra
tOne of the main methods for a
hieving fault toleran
e in distributed systems is re
overy of the state of failed
omponents. Though generi
 re
overy methods like 
he
kpointing and message logging exist, in many 
ases there
overy has to be appli
ation spe
i�
. In this paper we propose a general model for a node state re
onstru
tionafter 
rash failures. In our model the re
onstru
tion operation is de�ned only by the requirements it ful�lls,without referring to the spe
i�
 appli
ation dependent way it is performed. The model provides a frameworkfor formal treatment of algorithm-spe
i�
 and system-spe
i�
 re
overy pro
edures. It is used to spe
ify nodestate re
onstru
tion pro
edures for several widely used distributed algorithms and systems, as well as to provetheir 
orre
tness.Keywords: Distributed algorithms, fault toleran
e, state re
onstru
tion, re
overy.1 Introdu
tionThe 
ommon formal approa
h to fault toleran
e of distributed algorithms requires a de�nition of a set of propertiesthat should be ful�lled by the 
on�gurations of the distributed system [10℄. An algorithm is f -fault tolerant ifthese exe
ution spe
i�
ations are not violated, even if up to f failures of 
ertain types o

ur during the exe
ution.In this paper we 
onsider 
rash failures of a single node in a distributed system.For a large family of distributed systems fault toleran
e is a
hieved by re
overing the state of a node afterit 
rashes, as opposed to other methods for providing fault toleran
e, su
h as the state ma
hine approa
h [17℄and the primary-ba
kup approa
h [2℄, whi
h maintain multiple 
opies of the same logi
al 
omponent. Severalgeneral te
hniques for re
overing 
rashed nodes, su
h as 
he
kpointing and message logging methods are used.However, in many 
ases these methods are not appli
able, and the re
overy has to be spe
i�
ally designed forthe algorithm. For example, if the algorithm is implemented in hardware (e.g., in a network swit
h) or in a lowsoftware level (e.g., in a distributed operating system) these methods 
an not be applied for purely te
hni
alreasons. Furthermore, when system performan
e is important, spe
i�
ally designed re
overy has an advantageover general methods. In 
ertain 
ases this applies even to s
ienti�
 
omputations [15℄, whi
h are the traditionalarea for 
he
kpointing methods.A well understood theoreti
al model of 
he
kpointing and message logging exists, see for example [1, 7℄. Itis desirable, however, to have a formal approa
h whi
h deals with node re
overy in general, rather than withnode re
overy via spe
i�
 methods. The goal of this paper is to provide su
h a formal model by de�ning there
onstru
tion of a node through the requirements it should ful�ll (rather than the method by whi
h it is a
hieved).We use the proposed model to spe
ify re
onstru
tion pro
edures as well as to prove their 
orre
tness, for severalwidely used distributed algorithms, su
h as the leader ele
tion in a ring and the sequen
er algorithms. In addition,the 
lasses of stateless and memoryless algorithms are spe
ially 
onsidered. We also study re
onstru
tion at thesystem level, as opposed to �stand-alone� algorithms, by examining the re
overy from 
rash failure in distributedshared memory systems. 1



The paper is organized as follows: Se
tion 2 presents a simple model for re
onstru
tibility in syn
hronousdistributed algorithms. Se
tion 3 deals with re
onstru
tion in asyn
hronous distributed algorithms. In Se
tion4 we study node re
onstru
tion in release 
onsistent distributed shared memory systems. Our 
on
lusions andsome dire
tions for further resear
h are presented in Se
tion 5.2 Syn
hronous systemsThis se
tion presents a new model for a node state re
overy in syn
hronous distributed algorithms. After des
ribingthe system model, we de�ne node re
onstru
tibility and give an example. We then use the re
onstru
tibilityproperty to de�ne stateless and memoryless syn
hronous algorithms, and des
ribe a re
overy algorithm based onthe re
onstru
tion method.2.1 The modelUsing the 
ommonly a

epted approa
h, we model ea
h pro
essor (node) Ni in a distributed system as a statema
hine. A state ma
hine (automaton) has an initial state N initi , and an a
tion (transition fun
tion) that movesthe ma
hine from one state to another and sends messages to other nodes.Computations are performed in rounds. In ea
h round every node uses its 
urrent state, its a
tion and there
eived messages to 
ompute its new state and messages to send. Messages sent to other nodes in the 
urrentround are re
eived in the next round. Let Nni denote the state of node Ni at the end of round n. Assume thatthe nodes are 
onne
ted by 
ommuni
ation links. Let Qi;j denote the link (message queue) from Ni to Nj , andQni;j denote the state of the link at the end of round n.A 
rash failure [16℄ during round n 
auses the failing node to perform no a
tions after the failure and may
ause some of the messages sent by it in round n to be lost. Messages whi
h were sent to a failed node in roundn� 1 and were not pro
essed by it prior to the failure are also lost.2.2 State re
onstru
tionSuppose that node Ni fails in round n. Informally, node Ni has re
onstru
tion if the state of the node andthe messages it should have sent 
an be re
omputed using information available in states of other nodes. Moreformally:Definition 1: A re
onstru
tion of node Ni (for round n) is a spe
ial a
tion R, that transforms N initi intoNni , i.e., the state node Ni would have had at the end of round n if it had not failed. In addition, R must sendall the messages Ni would have sent during round n in a normal (non-failed) exe
ution. If termination is allowed,i.e., a node may �nish its exe
ution at some round n, re
onstru
tion exists only for the rounds in whi
h the nodeis a
tive.Definition 2: Let � be some set of nodes so that i =2 �. Node Ni has re
onstru
tion with respe
t to � ifprovided with fNnj gj2� andfQnj;igj2� there exists a re
onstru
tion for the node for round n.2.2.1 Example: Leader ele
tionConsider the following leader ele
tion algorithm in a ring, where ea
h node has a unique identi�er. In the �rstround ea
h node sends its identi�er to its left neighbor. In the following rounds ea
h node 
ompares the identi�ersit re
eives from its right neighbor to its own and forwards the re
eived identi�er (to the left neighbor) only if itsvalue is higher. If a node re
eives its own identi�er it de
lares itself as a leader and sends a halt message to itsleft neighbor. Ea
h node whi
h re
eives a halt message forwards it and terminates at the end of the round. Anode whi
h re
eives the halt message and is not a leader (yet) de
lares itself a non-leader.To support re
onstru
tion with respe
t to its neighbors, a node should exe
ute the above algorithm and alsoremember the message it sent in the previous round. This algorithm is shown in Figure 1, where m2 and m1 arethe messages sent by the node in the previous and the 
urrent rounds, respe
tively.2



Constants:myID 2 N
Variables:leader 2 ftrue; false; nullg, initially nullm;m1;m2 - messages, initially?

1: m2 := m1; m1 := null
2: if m = ? then /*1st round*/
3: m1 := myID
4: Letm be the message received from the right neigh-

bor, ornull if no message was received

5: if m = halt then
6: m1 := halt
7: if leader = null then
8: leader := false
9: terminate at the end of this round

10: else if m = myID then
11: m1 := halt; leader := true
12: else if m > myID then
13: m1 := m
14: if m1 6= null then
15: sendm1 to left neighborFigure 1: The leader ele
tion algorithm

1: /*Ni�1 is the right neighbor,Ni+1 is the left one*/
2: if Ni+1:m2 = ? then /*failure in 1st round*/
3: m1 := myID; m := null
4: else
5: m2 := Ni+1:m; m := Ni�1:m2
6: if Ni+1 terminated_ Ni+1:m = halt then
7: leader := true
8: if m = halt then
9: m1 := halt

10: if leader = null then
11: leader := false
12: terminate at the end of this round
13: else if m = myID then
14: m1 := halt; leader := true
15: else if m > myID then
16: m1 := m
17: if m1 6= null then
18: sendm1 to left neighborFigure 2: Leader ele
tion node re
onstru
tion pro
edureFigure 2 presents the re
onstru
tion pro
edure for a node Ni using the states of its neighbors. Assume thatthe failure is not in the �rst round (whi
h is dealt with in a spe
ial way), then m2 is 
opied from m of the leftneighbor. Similarly, the message re
eived in this round (m) is 
opied from m2 of the right neighbor. If the leftneighbor of the node terminated or terminates in the 
urrent round, the node is the leader be
ause non-leadernodes terminate before their left neighbor. Finally, it is ne
essary to pro
ess the message m.2.3 Memoryless and stateless syn
hronous algorithmsThe above re
onstru
tion of a leader ele
tion algorithm is an appli
ation of the sender-based message logging [7℄method. In the leader ele
tion algorithm (Figure 1) the message to be sent is independent of the 
urrent state ofthe node (the value of leader variable), and is determined solely by the message re
eived (the �rst round is anex
eption). Thus, the availability of the re
eived message on the sender node redu
es the re
onstru
tion problemto that of state re
onstru
tion. More generally, the following 
an be de�ned:Definition 3: A node is k-round memoryless if the messages it re
eived in rounds n; :::; n� (k � 1) and themessages it sent in rounds n� 1; :::; n� k, allow re
onstru
tion of the messages to be sent in round n.Claim 1: If Ni is a k-round memoryless node and it has a re
onstru
tion of its state only (without therequirement to resend any messages) respe
tive to the other nodes, then the algorithm 
an be transformed intoan algorithm in whi
h the node has re
onstru
tion.Proof: We augment the original state of the nodes with: (i) the messages re
eived in rounds n; :::; n�(k�1),i.e., the last k rounds; and (ii) messages sent in rounds n; :::; n � k. The re
onstru
tion for Ni is as follows: (i)a

ording to the assumption, the �original� part of the state Nni 
an be re
onstru
ted; (ii) messages re
eived inrounds n; :::; n � (k � 1) are 
opied from the appropriate sender; (iii) messages sent to other nodes in roundsn � 1; :::; n � k are 
opied from their re
eivers; (iv) sin
e the node is k-round memoryless the messages whi
hshould be sent in round n 
an be 
omputed using the message history, whi
h is now available. �Intuitively, a node is k-round memoryless if the messages sent and re
eived in rounds n � 1; :::; n � (k � 1)allow to 
ompute the part of Nn�1i whi
h is required to respond to the messages re
eived in round n. If the state3



Nn�1i is 
ompletely determined by these messages the node is stateless. More formally:Definition 4: A node Ni is k-round stateless if the messages it sent and re
eived in rounds n� 1; :::; n� kallow re
onstru
tion of Nn�1i .Note that from the de�nition it immediately follows that k-round stateless node is (k+1)-round memoryless.Claim 2: If a node is k-round stateless then the algorithm 
an be transformed into an algorithm in whi
hthe node has re
onstru
tion.Proof: Similar to the proof of 
laim 1. �2.3.1 Example: Matrix multipli
ationFrom the previous dis
ussion it follows that stateless algorithms have simple and e�
ient re
onstru
tion pro
e-dures. It is interesting to note that some well known algorithms 
an be easily transformed into stateless ones,e.g., Cannon's parallel algorithm for matrix multipli
ation (see for example [5℄). In this algorithm it is 
onve-nient to give the nodes identi�ers of the form (i; j), where 0 � i; j < p. The two square matri
es A;B to bemultiplied and the result matrix C are similarly divided into blo
ks fA(i; j); B(i; j); C(i; j)g0�i;j<p. In round r(0 � r < p) node Ni;j 
omputes C(i; j) := C(i; j) + A(i; j + i+ r mod p) � B(j + i+ r mod p; j). In the end ofthe round ea
h node sends the blo
k of A and the blo
k of B that it held to the nodes whi
h need them in thenext round. Note that in the original algorithm the re
onstru
tion of Ni;j in round r involves the 
omputationof Prk=0 A(i; j + i+ k mod p) � B(j + i+ k mod p; j).To transform the algorithm into a 0-round stateless, one needs to send the C blo
ks (instead of the A or theB blo
ks). More spe
i�
ally, in round r, node Ni;j 
omputes C(i+ j + r mod p; j) := C(i+ j + r mod p; j) +A(i+ j + r mod p; i+ 2j mod p) � B(i+ 2j mod p; j). The modi�
ation preserves the message 
omplexity and the
ommuni
ation pattern of the original algorithm. Sin
e the modi�ed algorithm is 0-round stateless the sender-based message logging method redu
es the re
onstru
tion to repeating the 
omputation of the 
urrent round.2.4 Re
overyRe
onstru
tion is a method for re
overing a system from node 
rash failures. The following 
laim provides anexample of re
onstru
tion-based re
overy proto
ol in a totally 
onne
ted system.Claim 3: If in a syn
hronous distributed algorithm for a subset of nodes � there exists a re
onstru
tion withrespe
t to all other nodes, then at the expense of a slowdown by a 
onstant fa
tor a 
rashed node from � 
an betransparently re
overed.Proof: The original algorithm is exe
uted in every fourth round (the other three are used for transparentre
overy in 
ase of failure). Suppose that in round n the original algorithm is exe
uted. The nodes are requiredto store the messages sent (until the n+ 2 round). In round n+ 1 ea
h node in � sends a keep-alive message toall other nodes. These messages are re
eived in round n+ 2, they are ignored unless a message from some nodein � was not re
eived. In this 
ase ea
h node sends its state to the node whose keep-alive message is missing. Inaddition, the messages whi
h were sent to the node in round n are resent. In round n + 3 the failed node usesthe re
onstru
tion a
tion to 
ompute the state it would have had at the end of round n and to send the messagesit would have sent. A node may a

ept su
h a message (in round n+ 4) only if it re
eived no message from thefailing node in the n + 1 round. In the n + 4 round the next round of the original algorithm is performed withthe 
rashed node in the 
orre
t state and with all previous messages 
orre
tly delivered. �We note that the algorithm des
ribed above is suitable only for transient 
rash failures in whi
h the failurelasts for at most 3 rounds, i.e., a node whi
h fails in round n is ba
k online in round n + 3. If the 
rash ispermanent a ba
kup node should be used instead of the 
rashed one.3 Asyn
hronous systemsThis se
tion deals with node re
onstru
tion in asyn
hronous distributed algorithms. We present the model, thende�ne node re
onstru
tion and give an example of a Sequen
er algorithm.4



3.1 The modelAs in the syn
hronous 
ase, we use state ma
hines to model nodes (pro
essors) in asyn
hronous systems. Theautomaton used to represent a node 
an have multiple a
tions of two types: (i) internal a
tions; and (ii) a
tionstriggered by external events, e.g., re
eive events. Unlike the syn
hronous 
ase, there are no rounds. Instead,ea
h automaton (node) performs its a
tions (tasks) independently of the others nodes. The internal a
tions mayhave pre
onditions, i.e., they may be exe
uted only when the state of the automaton satis�es su
h 
onditions.Furthermore, we assume the exe
utions are fair, i.e., ea
h enabled task is eventually exe
uted.During ea
h state transition a message may be sent to any other node. It is possible to send a di�erent messageto any number of nodes in the same transition. Communi
ation is modeled by two links (one in ea
h dire
tion)that hold messages between any pair of 
ommuni
ating nodes. Let Qi;j denote the link (message queue) fromnode Ni to node Nj . In the model, messages 
an not be dupli
ated but may be lost. A messageLost(m;Nj)event is delivered by the Qi;j queue to the sending node (Ni) when it loses message m. The automaton musthave a re
eive a
tion for every in
oming link and messageLost a
tion for every outgoing link.The state of the whole system is des
ribed by the states of the nodes and by the 
ontents of the queuesbetween all 
ommuni
ating pairs of nodes. An exe
ution (a run) is a sequen
e �0�1�2: : : of a
tions performed bythe nodes. We use a dis
rete time, at a time t 2 N the �t a
tion is performed. Let N ti be the state of node Ni attime t, and Qti;j be the state of Qi;j at that time.3.2 State re
onstru
tionWe now de�ne the re
onstru
tion a
tion R for node Ni. Suppose that a node 
rashes at some time tfail, duringthe exe
ution. Following the syn
hronous 
ase, we would like to de�ne re
onstru
tion as an a
tion whi
h atsome later time (tre
 > tfail) 
omputes N tfaili and resends the messages sent by Ni, whi
h were lost after itfailed. However, if the last message to be a

epted was sent by Ni at time tlast, it is su�
ient to require fromthe re
onstru
tion to 
ompute a state whi
h is rea
hable from N tlasti , be
ause no other node has any knowledgeabout the transitions of Ni in the [tlast; tfail℄ time interval. We note that this last fa
t is exploited in messagelogging algorithms for asyn
hronous systems [12℄.The formal de�nition of re
onstru
tion is as follows:Definition 5: A re
onstru
tion for node Ni is a spe
ial a
tion R su
h that if exe
uted at tre
 > tfail,R transforms N initi into a state whi
h 
ould have been rea
hed from N tlasti by a sequen
e of re
eive a
tionsfor in
oming messages whi
h Ni re
eived during the [tlast; tfail℄ interval, messageLost a
tions for messages intransition after tlast, and internal a
tions. In addition, R is required to send the messages sent by the des
ribedsequen
e of a
tions. If termination is allowed, i.e., a node may �nish its exe
ution at some time t, re
onstru
tionexists only for the time in whi
h the node is a
tive.Next, we de�ne re
onstru
tion with respe
t to a set of nodes � (i =2 �). After Ni's failure, for ea
h j 2 �, atsome time tj > tfail the queue Qi;j is empty. Let tre
 be any time su
h that 8j 2 � tre
 > tj .Definition 6: Node Ni has re
onstru
tion with respe
t to � if provided with fN tjj gj2� and fQtjj;igj2�, thereexists a re
onstru
tion for the node.The ability to lose messages is a 
ru
ial part of the de�nition of re
onstru
tion for the asyn
hronous model. Itallows the algorithms to spe
ify what 
hanges 
an be made to the messages in the message queues after they weresent. Su
h 
hanges allow the re
onstru
tion to send messages di�erent from those sent prior to failure. Below wegive an example to demonstrate the de�nition and 
larify this last point.3.2.1 Example: Sequen
erA Sequen
er [18℄ is a server that allo
ates (natural) numbers to its 
lients so that: (i) ea
h number is allo
atedat most one time; (ii) ea
h 
lient gets the numbers in a stri
tly in
reasing order; and (iii) all numbers are used,i.e., (k was allo
ated) ) (8i < k, i will be eventually allo
ated).Sequen
ers are required in many distributed appli
ations, e.g., for timestamps, for transa
tion serial numbersin databases and in broad
ast algorithms. Formally, a distributed system 
onsists of a Sequen
er automaton, anumber of 
lient automata and 
ommuni
ation links between the Sequen
er and ea
h 
lient.5



Variables:
ounter 2 N, initially 0last[1::#
lients℄ - array of integers,
initially all entries are�1lostMessages - list of (message, nodeID) pairs,
initially empty (null)

On re
eive(m;N)
1: last[N ℄ := m
2: 
ounter ++; send
ounter toN

On messageLost(m;N)
3: append(m;N) to lostMessages

On sendLost /*internal action*/
Require: length(lostMessages) > 0

4: if length(lostMessages) = 1 then
5: sendm toN , where(m;N) 2 lostMessages
6: lostMessages := null
7: else
8: let (m1; N1); (m2; N2) be the first two messages

in lostMessages
9: if last[N1℄ < m2 ^ last[N2℄ < m1 then

10: sendm2 toN1; sendm1 toN2
11: else
12: sendm1 toN1; sendm2 toN2
13: lostMessages :=lostMessages n f(m1; N1); (m2; N2)gFigure 3: The Sequen
er algorithmSuppose that a Sequen
er has 3 
lients N1; N2; N3. After it re
eived a request from ea
h 
lient (in in
reasingorder), it sent 1 to N1, 2 to N2 and 3 to N3. Suppose that the Sequen
er 
rashed and only N2 re
eived its message,i.e., N2 got 2, while N1 and N3 issued requests whi
h were handled by the Sequen
er but were lost (otherwisethey would still be in Qi;Sequen
er(i = 1; 3)). From the above s
enario, it is impossible to know whi
h numberwas sent by the Sequen
er to whi
h 
lient, any feasible re
onstru
tion may as well send 3 to N1 and 1 to N3. Tomake su
h re
onstru
tion valid the spe
i�
ation of a Sequen
er must allow this reordering of assigned numbers.Figure 3 shows one possible spe
i�
ation. The Sequen
er holds array (last) of the last sequen
e number whi
hwas already re
eived by ea
h 
lient (this is a
hieved by the 
lients sending their last number in order to requesta new one). In addition to the re
eive and messageLost a
tions the Sequen
er has an internal a
tion sendLost(lines 4 - 13) whi
h retransmits lost messages. If more than one message is lost the sendLost a
tion makesreassignments of the sequen
e numbers in a way whi
h does not violate 
ondition (ii), above.

Variables:first; last; prev 2 Z, initially �1requested 2 ftrue; falseg, initially false
On request

1: if requested = false then
2: sendlast; requested := true

On messageLost(m)
3: sendm

On re
eive(m)
4: prev := last; requested := false
5: if m 6= last+ 1 then /*new interval*/
6: first := m
7: last := mFigure 4: The Sequen
er 
lient algorithmConsider now the 
lients of the Sequen
er. Even in the 
ase of a system with two 
lients if the only informationavailable in the states of the 
lients is the last allo
ated number, there exists no re
onstru
tible algorithm forwhi
h 
onditions (i)-(iii) hold (we omit the formal proof of this statement). A possible modi�
ation in this 
ase(the one with minimal 
ost from the 
omplexity point of view) is to hold the bounds of the last interval of a

eptedsequen
e numbers. In addition, the one before the last sequen
e number should be remembered, in order to enablethe 
orre
t re
onstru
tion of the last array of the Sequen
er. The algorithm for the 
lient is presented in Figure4, where [first; last℄ is the last interval of sequen
e numbers 
ontinuously assigned to the 
lient and prev is thesequen
e number assigned to the 
lient before last. We note that request is an external a
tion that is a
tivatedby some upper appli
ation layer.The re
onstru
tion algorithm is presented in Figure 5. In the �rst stage, the last array is re
onstru
ted.Then the unused sequen
e numbers are reassigned in a way that does not violate 
ondition (ii) for nodes whosein
oming message was lost.Claim 4: The algorithm in Figure 5 is a 
orre
t re
onstru
tion of the Sequen
er with respe
t to its 
lients.Proof: We need to show an exe
ution 
ontinuing from tlast that produ
es the same state and messages6



Variables:N 0;m 2 Z, initially �1C;M - sets of integers, initially;
1: for i := 1 to#
lients do
2: if Ni:requested ^Qi;Sequen
er = fg then
3: last[Ni℄ := Ni:last
4: else
5: last[Ni℄ := Ni:prev
6: m := min1�i�#
lientsfNi:firstg
7: 
ounter := max1�i�#
lientsfNi:lastg
8: LetM be the set of missed sequence numbers

9: C := fN jN:requested ^QN;Sequen
er = fgg
/*set of clients whose incoming message was lost*/

10: while M 6= ; do
11: m := min(M); M := M n fmg
12: LetN 0 2 C be the client withlast[N 0℄ = minN2Clast[N ℄
13: C := C n fN 0g; sendm toN 0
14: while C 6= ; do
15: LetN 0 2 C be a client with minimal ID
16: C := C n fN 0g
17: 
ounter ++; send
ounter to N 0Figure 5: Sequen
er re
onstru
tion pro
edureas the re
onstru
tion algorithm. We 
onstru
t this exe
ution in three phases. The �rst phase is the exe
u-tion in the [tlast; tfail℄ interval, exa
tly as it was performed before the failure. The se
ond phase 
onsists ofdlength(lostMessages)=2e sendLost a
tions, resulting in an empty lostMessages list. Note that the last arrayafter these two phases is equal to the one re
onstru
ted in Figure 5, lines 1-5: for 
lient N , that has a message inits in
oming queue, last[N ℄ is N:last, while for 
lient that has no in
oming message, last[N ℄ is N:prev.Consider the set M of sequen
e numbers (line 8). At the end of the se
ond phase these numbers are intransmission, however not ne
essarily to the same 
lients as in the re
onstru
tion. The third phase of theexe
ution 
onsists of a sequen
e of messageLost and sendLost a
tions that result in an assignment equal tothe one produ
ed by the re
onstru
tion pro
edure. The sequen
e is 
onstru
ted in the following way: supposethat the re
onstru
tion sends m := min(M) to N1, while at the end of the se
ond phase m is sent to N2, andm0 to N1. Sin
e m < m0 and last[N1℄ < last[N2℄, the loss of m and m0 followed by sendLost results in mbeing sent to N1 (as in the re
onstru
tion) and m0 to N2. For any new number m generated (on line 17), them > last[Ni℄ (1 � i � #
lients) inequalities hold, thus any di�eren
e between the 
urrent assignment and thatof the re
onstru
tion a
tion 
an be eliminated in a similar way. �We note that the Sequen
er algorithm in Figure 3 should be regarded as a spe
i�
ation, the a
tual implemen-tation 
an be di�erent. For example, a sequen
er that simply resends a lost message is a 
orre
t implementation,sin
e it produ
es only exe
utions allowed by the spe
i�
ation. Furthermore, the re
onstru
tion pro
edure inFigure 5 is suitable for the implementation des
ribed above. This implementation, however, 
ompletely obs
uresthe fa
t that even after m was sent to Ni, it is still possible for another number to be assigned instead of m.Thus, for purposes of formal reasoning about the system we should use the spe
i�
ation for whi
h the existen
eof re
onstru
tion was shown.3.3 Re
overyIn a distributed asyn
hronous system there is no way to dete
t a 
rash failure of a node be
ause a �slow� node 
annot be distinguished from a 
rashed one. Several models whi
h allow to 
ir
umvent this di�
ulty were proposed,e.g., failure dete
tors [4℄ and models that in
orporate time [3, 13℄. In these strengthened models 
rashes aredete
table, thus re
overy algorithms similar to the one presented for the syn
hronous systems 
an be designed.Below, we give a brief des
ription of re
overy by re
onstru
tion in su
h strengthened asyn
hronous model. Asin the syn
hronous 
ase, we 
onsider a distributed algorithm with a subset of nodes � for whi
h there exists are
onstru
tion with respe
t to all the other nodes, and a transparent re
overy after a failure of single node from� should be performed.When a node Ni dete
ts that some node N
 2 � 
rashed, Ni sends its state to N
 (and resends it if themessage 
ontaining the state is lost). Besides that the exe
ution of the original algorithm 
ontinues as if nofailure happened, the only ex
eption is that any messages whi
h were sent by N
 prior to failure are ignored, asif Q
;i lost them after N
's 
rash.When N
 re
eives the state messages from all other nodes it performs the re
onstru
tion. The re
onstru
tion7



a
tion should assume that the fQi;
gi 6=
 message queues are in an empty state, if at some later stage Qi;
 deliversa message whi
h was sent before the message with Ni's state it should be ignored. In order to allow N
 distinguishbetween messages whi
h Ni sent before it learned about N
's failure and messages sent after that, Ni must markthe later messages as su
h. Similarly, N
 must have spe
ial mark on the messages it sends after re
overy, so thatother nodes 
an distinguish them from messages sent by N
 before the failure. Additional point whi
h should benoti
ed is that N
 may re
eive regular messages, i.e., messages of the original algorithm, 
on
urrently with thestate messages. Sin
e messages may be lost it is even possible that a regular message from a node is re
eivedbefore its state message. These regular messages should be stored till the 
ompletion of the re
onstru
tion andthen pro
essed as usual.Finally we note that the above algorithm may be applied if the failure of N
 is transient, i.e., at some timeafter the 
rash the node will be ba
k online. If the 
rash is permanent a ba
kup node 
an be used.4 System level fault toleran
eDistributed data management systems, su
h as Distributed Shared Memory (DSM) or distributed �le systemshave a management layer responsible to guarantee syn
hronized a

ess to shared data from di�erent nodes as wellas 
orre
t management of data dire
tories. Fault toleran
e of the 
orresponding layers is 
ru
ial for the 
orre
toperation and the integrity of the whole system.In this se
tion we use our formal model to investigate re
onstru
tibility of various DSM systems. We beginby presenting re
onstru
tion of the star mutual ex
lusion algorithm, whi
h serves as a representative of thealgorithms used by system management layer. Then we show how the re
onstru
tibility of the memory on afailed node depends on the 
onsisten
y model and the data propagation algorithms used by the DSM system.4.1 Star mutual ex
lusionStar mutual ex
lusion [14℄ is an example of asyn
hronous distributed algorithm for mutual ex
lusion in totally
onne
ted network. Its performan
e is ranked among the best [9℄ in the 
lass of token based algorithms.In the star mutual ex
lusion algorithm the waiting queue is distributed among the nodes, where ea
h nodehas a variable (next), pointing to the next node in the queue. A spe
ial root node holds a variable (last) pointingto the last node in the distributed queue of the nodes waiting for the token. To add itself to the queue a nodesends a request message to the root. The root node forwards the request to the last node in the queue, then therequesting node be
omes the new tail node.
Variables:last - nodeID, initially ID of the node with the tokennodeOrder - linked list of nodeIDs,

initially holds lastlostMessages - list of (message, nodeID) pairs,
initially empty (null)

On re
eive(req;N)
1: sendreq(N) to last; last := N
2: removeN and nodes in front of it fromnodeOrder
3: appendN to the tail ofnodeOrder

On messageLost(req(N2); N1)
4: append(req(N2); N1) to lostMessages

On sendLost /*internal action*/
Require: length(lostMessages) > 0

5: if length(lostMessages) = 1 then
6: sendreq(N2) toN1,

where(req(N2); N1) 2 lostMessages
7: lostMessages := null
8: else
9: let (req(N2); N1) and(req(N4); N3) be the first

two messages inlostMessages, s.t.N1 precedesN4 in nodeOrder
10: sendreq(N4) toN1; sendreq(N2) to last
11: last := N3
12: lostMessages := lostMessagesnf(req(N2); N1); (req(N4); N3)g
13: modifynodeOrder s.t.N4 follows right afterN1

andN2 follows after the tail node, makingN3 the
new tail ofnodeOrderFigure 6: The Star mutual ex
lusion algorithm for the root nodeA spe
i�
ation of the algorithm exe
uted by the root node is presented in Figure 6. Note that a loss of8



outgoing messages by the root node may 
ause a 
hange of order in the waiting queue (lines 9-13). Su
h behavioris required in order to allow re
onstru
tion (a similar spe
i�
ation method was used for the Sequen
er in Se
tion3). To re
onstru
t the root node, the order of the waiting nodes in the distributed linked list is restored usingtheir next pointers. If a message sent by the root to some requesting 
lient was lost after a 
rash, the next pointerof the 
lient remains null. Hen
e, messages lost after the root node 
rashed leave the distributed queue dividedinto several fragments. To 
omplete the re
onstru
tion, messages whi
h reestablish an order among the fragments(link them together) are sent, and the fragment that 
ontains the node with the token is pla
ed at the end of thelist. In order to 
orre
tly re
onstru
t the nodeOrder linked list ea
h node must remember the node from whi
hit re
eived the token for the last time. A formal proof of the 
orre
tness of the above pro
edure is similar to thatof the Sequen
er (
laim 4).4.2 Re
onstru
tibility of Release Consistent Distributed Shared MemoryIn release 
onsistent DSM systems [6℄, lo
al memory updates are propagated only at syn
hronization points.Syn
hronization is performed by distributed mutual ex
lusion algorithm, e.g., the star mutual ex
lusion. Thereare two 
lasses of proto
ols for transferring the modi�
ations to other nodes. The update proto
ols send themodi�
ations to other nodes, while the invalidation proto
ols send only a short invalidation message of modi�edpages, and invalidated pages are retrieved only when a

essed. In both 
lasses the multiple-writer method isused, i.e., ea
h node propagates only the part of the page whi
h it a
tually 
hanged (di� ), thus allowing multiplenodes to perform 
on
urrent writes to the same page. To 
ompute the di�s, ea
h node keeps the original 
ontentof the pages it modi�ed after the last syn
hronization point. The availability of the original pages is importantfor re
onstru
tion of the memory of a failed node.If an invalidation proto
ol is used, re
onstru
tion is obviously impossible. For example, a node that 
rashesright after the syn
hronization point, was observed by other nodes in a state that 
an not be re
onstru
ted,sin
e the updates are present only on the failed node. Thus, a proto
ol whi
h guarantees that the updatesare propagated to additional nodes must be used, see for example [8℄ for a 
lass of su
h update proto
ols forsequentially 
onsistent DSM. In what follows, we assume that an update proto
ol is used and dis
uss how the
onsisten
y model a�e
ts the re
onstru
tibility of the nodes in DSM system.4.2.1 DSM with Eager Release Consisten
y (ERC)In the ERC proto
ol a node is required to deliver its page modi�
ations to all the other nodes holding the pageprior to any lo
k release operation. Thus, to guarantee that any modi�
ation is propagated to additional nodes,ea
h page should be held by at least two nodes. In this 
ase, re
onstru
tion respe
tive to all other nodes ispossible be
ause at any stage after a 
rash ea
h page 
an be retrieved in a 
onsistent state from any node holdinga 
opy of that page. Observe that su
h a retrieval is possible be
ause lo
al modi�
ations produ
ed after the lastsyn
hronization point are kept separately. After all the pages held by the node prior to its 
rash are 
opied, itsstate is the same as the state the node would have had if it did not fail but rather produ
ed no lo
al updatesduring the [tlast; tre
℄ interval, where tlast is the time of the last syn
hronization just before failing, and tre
 isthe re
overy time.4.2.2 DSM with Lazy Release Consisten
y (LRC)In the LRC proto
ol a node whi
h a
quires a lo
k must re
eive all required page modi�
ations prior to the a
quireoperation. The modi�
ations that the a
quirer has to obtain are determined a

ording to the timestamp ve
tors(used to represent the happened-before-1 partial order) of the releaser and the a
quirer. Thus, to guarantee thatany modi�
ation is propagated to additional nodes, ea
h modi�ed page of the releaser should also be held by thea
quirer.We show that the above spe
i�
ation of LRC is not re
onstru
tible. Consider a three node system in whi
hnode N1 updates page p and sends the update to node N2. Later N2 updates p and sends it to N3, then N1
rashes. The de�nition of re
onstru
tion requires to re
over N1 to a state it 
ould have rea
hed from the state it9



had after sending the update to N2 (the last message sent by N1). Sin
e in the des
ribed s
enario no messagesare sent to N1 (unlike ERC), the state N1 had after sending its update to N2 should be re
onstru
ted. However,this is impossible be
ause the 
ontent of p is no longer available: the page available on nodes N2 and N3 alreadyin
ludes the updates of N2.From the last example it follows that in order to allow re
onstru
tion it should be possible (though notobligatory) for a releaser to propagate its modi�
ations to nodes other than the a
quirer. This behavior 
anbe represented in our formal model if, in addition to regular messages, it is allowed to send messages for whi
hmessageLost event is not delivered, even if the message is lost. The releaser uses su
h messages to send itsmodi�
ations to nodes other than the a
quirer. Note that sin
e these additional messages are not a
knowledged,they may be obsolete at the time of their arrival. This spe
i�
ation 
hange allows to re
onstru
t the node byretrieving pages and di�s from other nodes.4.2.3 DSM with S
ope Consisten
y (S
C)S
C [11℄ is a further relaxation of the released memory 
onsisten
y model. In this model ea
h lo
k is asso
iatedwith a s
ope. A lo
k a
quire opens the s
ope asso
iated with the lo
k and lo
k release 
loses its s
ope. An updateis performed in the 
ontext of all the s
opes that are open at the updated time. In the S
C proto
ol, prior to thea
quire operation, a node whi
h a
quires the lo
k must re
eive only the modi�
ations performed in the s
ope ofthe lo
k.Nodes of a DSM system whi
h uses S
C proto
ol are not re
onstru
tible. Moreover, there are no spe
i�
ation
hanges (similar to the one presented for LRC) whi
h enable re
onstru
tion. The reason is the inherent abilityof nodes to �inform� others only about some parts of the modi�
ations. Consider for example the 
ase in whi
hnode N1 updates page p1 in s
ope S1, and page p2 in s
ope S2. If afterwards S2 is opened on another node, thepage p2 is sent to this node, but p1 is not. Now suppose that N1 fails. It is impossible to re
onstru
t N1 be
ausethe state of page p1 was not propagated (yet) to any other node.5 Con
lusion and future workThis paper presents a general formal approa
h to state re
onstru
tion of a 
rashed node in both syn
hronous andasyn
hronous environments. The model is used to present formal re
onstru
tion pro
edures for the leader ele
tion,matrix multipli
ation, sequen
er and the star mutual ex
lusion algorithms, and to analyze re
onstru
tibilityin release 
onsistent distributed shared memory systems. In addition, we de�ned the 
lasses of stateless andmemoryless algorithms and des
ribed 
orresponding message logging s
hemes. For pra
ti
al purposes, the main
ontribution of this paper is the asyn
hronous model 
onsidered in Se
tion 3.The work des
ribed in this paper 
an be extended in several dire
tions. First, we note that while our de�nitionof re
onstru
tion is for �pure� asyn
hronous algorithms, a similar de�nition 
an be given for algorithms whi
h use(perfe
t) failure dete
tors, e.g., a modi�
ation of the star mutual ex
lusion, in whi
h the 
lient nodes are allowedto 
rash and the root node uses a failure dete
tor to remove the faulty 
lients from the waiting queue. In orderto de�ne re
onstru
tion in this model, the failure dete
tor should be regarded as a sour
e of nondeterministi
inputs, similarly to the in
oming messages.The de�nitions of re
onstru
tion 
onsidered in this paper required to re
over the state and the messages of asingle node without interfering with the state of any other node, whi
h is the approa
h used by the pessimisti
message logging te
hniques. In some algorithms it 
an be reasonable for the re
overy pro
edure of node Nito modify states of other nodes in the system, e.g., as in a 
he
kpoint-based re
overy. A related issue is the
on
urrent failure of several nodes and their subsequent re
overy. It is desirable to investigate the re
onstru
tionin these new settings.Finally, we note that although all the algorithms 
onsidered in this paper required no stable storage forre
overy purposes, this is not the general 
ase. An algorithm whi
h uses a stable storage 
an use our model byrepresenting the storage devi
es as additional nodes that do not 
rash, or as a part of a node state whi
h survives
rash failures, similarly to the node identi�er. 10



A
knowledgmentsWe would like to thank Robbert van Renesse for his valuable 
omments in the early stages of this resear
h.This resear
h was supported in part by the Ministry of S
ien
e, the Ministry of Defense and by a grant fromDr. and Mrs. Silverston, Cambridge, UK.Referen
es[1℄ L. Alvisi and K. Marzullo. Message Logging: Pessimisti
, Optimisti
, Causal and Optimal. IEEE Trans. onSoftware Engineering (TSE), 24(2), pp. 149-159, February 1998.[2℄ N. Budhiraja, K. Marzullo, F. B. S
hneider, and S. Toueg. The Primary-Ba
kup Approa
h. Ch. 8 in DistributedSystems edited by S. Mullender, Addison-Wesley, 1993.[3℄ F. Cristian and C. Fetzer. The Timed Asyn
hronous Distributed System Model. IEEE Trans. on Parallel andDistributed Systems (TPDS), 10(6), pp. 642-657, June 1999.[4℄ T. D. Chandra and S. Toueg. Unreliable Failure Dete
tors for Reliable Distributed Systems. Journal of theACM (JACM), 43(2), pp. 225-267, Mar
h 1996.[5℄ J. Demmel, M. Heath, and H. van der Vorst. Parallel Numeri
al Linear Algebra. A
ta Numeri
a 2, pp. 111-198,1993.[6℄ S. Dwarkadas, P. J. Keleher, A. L. Cox, and W. Zwaenepoel. Evaluation of Release Consistent SoftwareDistributed Shared Memory on Emerging Network Te
hnology. Pro
. 20th Annual Int. Symposium on ComputerAr
hite
ture (ISCA), pp. 144-155, San Diego, CA, May 1993.[7℄ E. N. Elnozahy, L. Alvisi, Y.M. Wang, and D. B. Johnson. A Survey of Rollba
k-Re
overy Proto
ols inMessage-Passing Systems. To appear in ACM Computing Surveys.[8℄ B. D. Fleish, H. Mi
hel, S. K. Shah, and O. E. Theel. Fault Toleran
e and Con�gurability in DSM Coheren
eProto
ols, IEEE Con
urren
y, 8(2), pp. 10-21, June 2000.[9℄ S. S. Fu, N. Tzeng, and J. Chang. Empiri
al Evaluation of Mutual Ex
lusion Algorithms for DistributedSystems. Journal of Parallel and Distributed Computing (JPDC), 60(7), pp. 785-806, July 2000.[10℄ F. C. Gartner. Fundamentals of Fault-Tolerant Distributed Computing in Asyn
hronous Environments. ACMComputing Surveys, 31(1), pp. 1-26, Mar
h 1999.[11℄ L. Iftode, J. P. Singh, and K. Li. S
ope Consisten
y: A Bridge between Release Consisten
y and EntryConsisten
y. Theory of Computing Systems, 31(4), pp. 451-473, August 1998.[12℄ P. Jalote. Fault tolerant pro
esses. Distributed Computing, 3(4), pp. 187-195, 1989.[13℄ N.A. Lyn
h. Distributed Algorithms. Morgan Kaufmann, 1996.[14℄ M. L. Neilsen and M. Mizuno. A dag-based algorithm for distributed mutual ex
lusion. Pro
. 11th Int. Conf.Distributed Computing Systems (ICDCS), pp. 354-360, Arlington, TX, May 1991.[15℄ J. S. Plank, Y. Kim, and J. Dongarra. Fault-Tolerant Matrix Operations for Networks of Workstations UsingDiskless Che
kpointing. Journal of Parallel and Distributed Computing (JPDC), 43(2), pp. 125-138, June 1997.[16℄ F.B. S
hneider. What Good are Models and What Models are Good? Ch. 2 in Distributed Systems editedby S. Mullender, Addison-Wesley, 1993.[17℄ F.B. S
hneider. Implementing Fault-tolerant Servi
es using the State Ma
hine Approa
h: A Tutorial. ACMComputing Surveys, 22(4), pp. 299-319, De
ember 1990.[18℄ A. S. Tanenbaum and M. van Steen. Distributed Systems Prin
iples and Paradigms. Prenti
e Hall, 2002.11


