
Relaxed Atomic Broadcast: State-Machine Replication Using Bounded Memory

Omid Shahmirzadi, Sergio Mena, André Schiper

École Polytechnique Fédérale de Lausanne (EPFL)
CH-1015 Lausanne, Switzerland

Email: {first.last}@epfl.ch

Abstract—Atomic broadcast is a useful abstraction for
implementing fault-tolerant distributed applications such as
state-machine replication. Although a number of algorithms
solving atomic broadcast have been published, the problem
of bounding the memory used by these algorithms has not
been given the attention it deserves. It is indeed impossible
to solve repeated atomic broadcast with bounded memory in
a system (non-synchronous or not equipped with a perfect
failure detector) in which consensus is solvable with bounded
memory. The intuition behind this impossibility is the inabil-
ity to safely garbage-collect unacknowledged messages, since
a sender process cannot tell whether the destination process
has crashed or is just slow.

The usual technique to cope with this problem is to
introduce a membership service, allowing the exclusion of a
slow or silent process from the group and safely discarding
unacknowledged messages sent to this process. In this paper,
we present a novel solution that does not rely on a member-
ship service. We relax the specification of atomic broadcast
so that it can be implemented with bounded memory, while
being strong enough to still be useful for applications that
use atomic broadcast, e.g., state-machine replication.

I. INTRODUCTION AND RELATED WORK

Atomic broadcast has been proposed as the key abstrac-

tion to implement fault-tolerant distributed services [1] us-

ing the state-machine approach [2]. A number of different

implementations of atomic broadcast have been proposed

in the literature for a variety of system models [3]. How-

ever, they rarely tackle the problem of bounding the use

of memory. The fact that an algorithm needs a potentially

unbounded amount of buffers is often considered as a

minor (implementation) issue. Bounding memory might

not be a very exciting theoretical issue, it is nevertheless

important from a practical point of view, since inability to

bound (or garbage-collect) the memory used may lead to

serious instability of the application, with effects similar

to those of memory leaks. This is definitely not the

best feature for algorithms that are supposed to increase

availability. As Parnas argues in [4], a model should be

simple, but if it becomes too simple it risks being a lie,

i.e., not representing reality. No real system can assume it

has access to unbounded memory.

Implementing atomic broadcast with bounded memory

in a synchronous system is trivial [5]. However, if the

system model does not allow us to distinguish a slow

process from a crashed process, the ability of atomic

broadcast algorithms to bound their memory – without

Research funded by the Hasler Foundation under grant number 2070.

affecting correctness – becomes challenging. Ricciardi [6]

proved that a primitive as basic as (repeated) reliable

broadcast cannot be implemented in a system with mes-

sage losses in which slow processes are indistinguishable

from crashed processes. Trivially, Ricciardi’s impossibility

result also applies to (repeated) atomic broadcast, since it

is strictly stronger than (repeated) reliable broadcast. In

this paper, we address the problem of bounded memory in

the context of repeated atomic broadcast by weakening the

specification of atomic broadcast. Note that (one instance

of) consensus has been shown to be solvable with bounded

memory [7] in an asynchronous system with the �S
failure detector, and in [8] Delporte-Gallet et al. show

that solving (repeated) reliable broadcast requires indeed

a stronger failure detector than solving (one instance of)

consensus.

Group communication prototypes built in the last 20

years have addressed the problem of bounding memory

thanks to group membership [9]–[12]: slow or irresponsive

processes are excluded from the group so that messages

sent to them can be safely garbage-collected before buffers

at other processes overflow. However, this solution has its

own drawbacks. First, the dynamic group model is more

complex than the static one. Second, the dynamic model

requires the introduction of a group membership service,

which adds a performance overhead. Finally, excluding

a destination process just because the sender is unable

to garbage-collect its output buffers1 may not always be

desirable.

The paper presents relaxed atomic broadcast, a novel

broadcast primitive defined in the static group model (i.e.,

no membership service), whose repeated invocation can

be implemented using bounded memory. Relaxed atomic

broadcast is weak enough so that it can be implemented

with bounded memory, yet strong enough to be useful

for applications that typically use atomic broadcast, such

as state-machine replication. Note that repeated relaxed

atomic broadcast is implementable with bounded memory

in systems where repeated reliable broadcast is not. The

intuition behind relaxed atomic broadcast is the following.

As long as no process lags behind in the execution, relaxed

atomic broadcast ensures the same properties as (classic)

atomic broadcast. When some process p appears to be

slow, other processes, instead of keeping on buffering

messages for p, discard these messages. As a result, p will

not be able to deliver all the messages that were atomically

1This is called output triggered suspicions in [13].

2009 28th IEEE International Symposium on Reliable Distributed Systems

1060-9857/09 $26.00 © 2009 IEEE

DOI 10.1109/SRDS.2009.25

3

2009 28th IEEE International Symposium on Reliable Distributed Systems

1060-9857/09 $26.00 © 2009 IEEE

DOI 10.1109/SRDS.2009.25

3

broadcast. Missing messages are replaced at p with the

special ⊥ message (void), which signals that a message

could not be delivered.

At first sight it may seem complicated, when using

relaxed atomic broadcast for state-machine replication, to

recover from the delivery of ⊥. However, whenever some

process p delivers ⊥, the specification of relaxed atomic

broadcast ensures that there exists some correct process

that has delivered the missing message and applied it to

its state. Thus state transfer, as in the case of dynamic

groups, will allow p to recover from the delivery of ⊥.2

The paper is organized as follows. The system model is

presented in Section II. Section III discusses atomic broad-

cast and the problem of implementing repeated atomic

broadcast with bounded memory. Approaches to address

this are discussed in Section IV. Section V presents our

novel approach. In Section VI, we present the implemen-

tation of relaxed atomic broadcast and its memory bounds.

Section VII compares relaxed atomic broadcast over the

solution that uses dynamic groups. Section VIII concludes

the paper.

II. SYSTEM MODEL

We consider a system with a finite set of processes

Π = {p1, p2, . . . , pn} that communicate by message ex-

change. Set Π has cardinality of n. We assume a partially

synchronous system [14], where after some unknown time

GST (Global Stabilization Time) the system (both pro-

cesses and channels) becomes synchronous and channels

become reliable.3 Before GST the system is asynchronous

and channels are lossy. Processes can only fail by crashing.

A process that crashes stops its operation permanently and

never recovers. A process is faulty in a run if it crashes in

that run. A process is correct in a run if it is not faulty in

that run. We only consider runs where up to f processes

are faulty (f is a system parameter). Since processes do

not know whether they are before or after GST, a slow

process (or a process connected through a slow link) is

indistinguishable from a crashed process.

Every pair of processes is connected by a bidirectional

communication channel, which provides two communi-

cation primitives: send(m, q) and receive(m, q), where

m ∈ M (the set of messages) and q ∈ Π. Channels satisfy

the properties mentioned above. All messages in M are

unique: they are broadcast at most once in a given run.

III. REPEATED ATOMIC BROADCAST AND FINITE

MEMORY

We recall the definition of atomic broadcast. We say

that a process p atomically broadcasts (or simply abcasts)

2The size of the application state is controlled (and bounded) by the
application. This is different from the state required for the implementa-
tion of atomic broadcast, which cannot be controlled by the application.

3We could also consider a system that alternates between sufficiently
long good periods (system is synchronous and channels are reliable)
and bad periods (system is asynchronous and channels are lossy). The
algorithms would be the same.

message m if p executes abcast(m). Likewise, we say

that a process p atomically delivers (or simply adelivers)

message m if p executes adeliver(m). Atomic broadcast

is defined by the following properties:

Property 3.1: VALIDITY. If a correct process p abcasts

message m, then some correct process eventually adelivers

m.

Property 3.2: UNIFORM INTEGRITY. Every process

adelivers a message m at most once and only if m was

previously abcast by some process.

Property 3.3: UNIFORM AGREEMENT. If a process

adelivers a message m then every correct process also

adelivers m.

Property 3.4: UNIFORM TOTAL ORDER. For any two

processes p and q and any two messages m and m′, if

p adelivers m before m′, then q adelivers m′ only after

having adelivered m.

Repeated atomic broadcast is the case where at least

one process executes atomic broadcast infinitely often.

Reliable broadcast is defined by properties 3.1, 3.2, and

the non-uniform version of 3.3. As shown by Ricciardi,

repeated reliable broadcast cannot be implemented in a

system with message losses in which slow processes are

indistinguishable from crashed processes [6]. The intuition

behind this impossibility result is the following. Consider

a sender process p, and its output buffer to q that contains

unacknowledged messages sent to q. If p is unable to

distinguish whether q has crashed or is just slow (or

connected through a slow link), then p cannot safely

dispose of unacknowledged messages sent to q. However,

if q has actually crashed, the set of unacknowledged

messages will grow forever [13].

The impossibility of repeated reliable broadcast also ap-

plies to repeated atomic broadcast, since atomic broadcast

is strictly stronger than reliable broadcast.

IV. HOW TO DEAL WITH FINITE MEMORY

Consider atomic broadcast used to implement state-

machine replication [2] in a system with three processes

(n = 3). Process p1, which receives clients’ requests, is-

sues abcasts. Assume that the adelivery of these messages

requires the cooperation of p1 with only p2 or with only

p3. Consider the former case, and assume p3 is slow (or

connected to p1 and p2 through slow channels). Since p1

and p2 do not know whether p3 has crashed or not, they

cannot safely dispose of unacknowledged messages sent

to p3, and their buffer to p3 may grow infinitely.

We now present two approaches to deal with this

problem.

The dynamic model: The traditional solution to

bound memory consists in switching to the dynamic sys-

tem (or dynamic group) model [9]–[12], [15].4 In such a

model processes can be added/removed to/from the system

4Note that this argument is not always explicit in these papers.

44

(or group) on the fly. In a dynamic model, a view describes

the set of processes that are currently part of the system

(or group). Views are maintained by a membership service,

which adds and removes processes. Let us consider again

state-machine replication with three replicas p1, p2 and p3.

If the buffer from p1 to p3 is full, p1 may ask to remove

p3 from the view. Once this is done, all unacknowledged

messages to p3 can be discarded. However, the dynamic

model is not so straightforward as the static one: protocol

specifications and implementations have to be revised [16]

and are more complex. Besides, a membership service is

needed, and the application logic needs to become aware

of view changes and state transfers (which are needed

when an excluded process re-joins the group).

Relaxing the specification of atomic broadcast:
The paper proposes another – novel – way to deal with

bounded memory. Instead of switching to the dynamic

model, we propose to relax the specification of atomic

broadcast. This is done while keeping the specification

strong enough to be useful for practical systems, and

ensuring that repeated relaxed atomic broadcast is solvable

with bounded memory.

V. RELAXED ATOMIC BROADCAST

We start by defining relaxed atomic broadcast, and then

we show how state-machine replication can be imple-

mented using this new primitive.

A. Specification of relaxed atomic broadcast

We start by extending the set of messages that are

delivered with the special void message ⊥, which is not

in set M. Unlike any other message, this message is not

unique, i.e., there may be more than one occurrence of

this message in one run. A message m is called normal
if it is not the void message ⊥ (i.e., if m ∈ M). The

void message ⊥ is never broadcast by the application, but

might be delivered in substitution of a normal message in

certain scenarios. The delivery of ⊥ warns the application

that a message is missing in its delivery sequence.

We define relaxed atomic broadcast with the primi-

tives xbcast(m) and xdeliver(m′), where m ∈ M, and

m′ ∈ M∪ {⊥}. Relaxed atomic broadcast is also called

x-atomic broadcast. For k a positive integer, we say that a

process p xdelivers@k message m if m ∈ M∪ {⊥} and

m is the kth message xdelivered by p since system start-

up time. If k is irrelevant then the suffix @k is omitted,

i.e., xdeliver@k simply becomes xdeliver. Relaxed atomic

broadcast satisfies the following properties:

Property 5.1: VALIDITY. If a correct process p ∈ Π
xbcasts message m, then some correct process q ∈ Π
eventually xdelivers m.

This property does not change with respect to classic

atomic broadcast (see Sect. III).

Property 5.2: UNIFORM AGREEMENT. For all k ≥ 1,

if some process xdelivers@k a normal message or ⊥, then

every correct process xdelivers@k a normal message or ⊥.

The uniform agreement property is usually stated in terms

of a given message m. In contrast, this weaker form only

forces correct processes to xdeliver (at least) as many

messages (normal or ⊥) as any other process.

Property 5.3: UNIFORM TOTAL ORDER. For all

k, k′ ≥ 1, if process p xdelivers@k normal message m
and process q xdelivers@k′ normal message m′, then

k = k′ ⇔ m = m′.

The simplicity of the definition of uniform total order

benefits from the definition of xdelivery@k. Property 3.4

could also benefit from this definition, thus becoming

simpler.

Property 5.4: UNIFORM INTEGRITY. A process xdeliv-

ers a normal message m only if m was previously xbcast.

This property is simplified with respect to classic atomic

broadcast for two reasons: (1) to allow the void message

⊥ to be xdelivered more than once, and (2) because

Property 5.3 already forbids xdelivering a normal message

more than once.

Property 5.5: CONTINUITY. For all k ≥ 1, a process

xdelivers@k the void message ⊥ only if at least one

correct process xdelivers@k a normal message.

This safety property forbids runs where no correct pro-

cess xdelivers a normal message at some position in the

delivery sequence. Examples of such runs are (1) all

processes xdeliver@k message ⊥, or (2) correct processes

xdeliver@k message ⊥ and faulty processes xdeliver@k
a normal message (and crash immediately after). In both

cases, the application at surviving processes may not be

able to reconstruct a complete delivery sequence of normal

messages (i.e., without gaps).

The specification of relaxed atomic broadcast reduces

to that of classic atomic broadcast in runs where no void

message ⊥ is ever xdelivered. Relaxed atomic broadcast

is thus strictly weaker: any algorithm solving atomic

broadcast also solves relaxed atomic broadcast.

B. Is the new specification useful?

We illustrate now the usefulness of relaxed atomic

broadcast in the context of state-machine replication, see

Algorithm 1. Basically, the algorithm works as though it

was using classic atomic broadcast, but in addition it needs

to implement a state transfer in order to recover from gaps

in the sequence (when ⊥ is xdelivered).

The (simple) algorithm works as follows. Two counters

keep track of (1) the number of messages xdelivered,

n-xdelp; and (2) the number of (normal) messages that

have been applied to the application’s state, n-stp (i.e.,

n-stp messages, in sequence, have updated the application

state). Initially these two counters match, and when a nor-

mal message is xdelivered both are incremented (lines 10

and 15).

If the void message ⊥ is xdelivered, only n-xdelp is

incremented to reflect the xdelivery, and process p halts

its execution (line 13) until it receives a (more recent) state

55

Algorithm 1 State machine replication using relaxed
atomic broadcast. Code for process p.

1: Initialization:
2: n-xdelp ← 0 {Number of messages xdelivered}
3: n-stp ← 0 {Number of messages applied to current state}
4: statep ← initial state {Replicated state}

5: task Main Thread
6: repeat forever
7: wait until received request m from user
8: xbcast(m)

9: upon xdeliver(m) do
10: n-xdelp ← n-xdelp + 1
11: if n-xdelp = n-stp + 1 then {Any gaps so far?}
12: if m = ⊥ then
13: wait until n-xdelp ≤ n-stp

{Halt xdelivery of ⊥ until a useful state received}
14: else
15: n-stp ← n-stp + 1
16: statep ← apply m to statep

17: task Resend
18: repeat forever
19: if n-xdelp > n-stp then
20: send 〈STATE-REQ, n-xdelp〉 to all

21: upon receive 〈STATE-REQ, n〉 from q do
22: if n ≤ n-stp then
23: send 〈STATE-REP, n-stp, statep〉 to q

24: upon receive 〈STATE-REP, n, st〉 from q do
25: if n ≥ n-xdelp then
26: n-stp ← n
27: statep ← st

from another process q whose state has been updated by

applying the message missing at p. To do so, if process

p detects that the number of messages applied to its

state (n-stp) lags behind with respect to the number of

messages xdelivered (n-xdelp) due to the xdelivery of ⊥,

then p starts sending out state request messages repeatedly

(line 20). When another process q receives the state request

message (line 21), it checks whether its current state would

be useful to the requesting process (the state is useful if

it has been updated with at least as many messages as

specified in the state request). If so, q sends back a state

reply with its state and n-stp. Finally, when the sender

of the request receives a state reply (line 24) it checks

whether that state is recent enough to fill the gaps in its

xdelivery sequence. If it is the case, it replaces its state by

the one it has just received, and updates n-stp accordingly.

Note that the state received by p might have been updated

with messages that have not (yet) been xdelivered at p. In

this case, the algorithm ignores those messages when they

are finally xdelivered (line 11).

If the application state is large, state transfer may be

costly. However, this cost is the same as with the dynamic

group solution.
Concurrency control: The state updates when an

upon clause is executed should be atomic to avoid in-

consistencies. A simple approach is to assume that the

algorithm behaves like a monitor: upon clauses and tasks

are executed in mutual exclusion, except when a wait until
statement is reached, where another task or upon clause

can take over the execution. Task Resend is an exception: it

executes in mutual exclusion only within its loop: mutual

exclusion is not preserved across consecutive executions

of lines 19-20.
Memory bounds: The memory required by Algo-

rithm 1 is bounded if we can bound the memory usage

of relaxed atomic broadcast. Indeed, Algorithm 1 uses

(1) two integers (Mint bits for each, see discussion in

Section VI-B), (2) needs to store the application state that

we assume to be bounded by Mstate and a client request

m that we assume to be bounded by Mreq , and (3) needs

memory space for the interaction between Algorithm 1 and

the communication channels, and between Algorithm 1

and the relaxed atomic broadcast implementation (see

Figure 1).

The interaction between Algorithm 1 and the commu-

nication channels is modeled by input and output buffers.

Only one of each is represented in Figure 1, although

we assume one pair for each channel (total of n pairs).

Sending a message m is modeled by writing m into the

output buffer. Receiving a message is modeled by an

up-call that reads the input buffer and hands it over to

Algorithm 1 (lines 21 and 24). These two buffers are

bounded by the size of the longest message, the one

with tag STATE-REP. The bound is 1 + Mint + Mstate

bits. The interaction between Algorithm 1 and the relaxed

atomic broadcast implementation is modeled by function

calls (xbcast is a down-call, xdeliver is an up-call). This

interaction model does not add anything to the memory

requirements of both components.

VI. IMPLEMENTING REPEATED RELAXED ATOMIC

BROADCAST WITH BOUNDED MEMORY

In this section, we present an algorithm that implements

repeated relaxed atomic broadcast with bounded memory.

For the sake of simplicity, from now on whenever we

use the term relaxed atomic broadcast, we mean repeated
relaxed atomic broadcast.

We first introduce the building blocks that our appli-

cation (state machine replication) uses along with their

interaction model, then we present the implementation of

each building block followed by an analysis of the amount

of memory needed. We will also have a short discussion

regarding integers.

A. Building blocks and interaction model

Figure 1 depicts the building blocks of our imple-

mentation, as well as their interactions. Relaxed atomic

broadcast uses consensus, and consensus is expressed in

a round-based model implemented by the corresponding

building block. The round-based model block interacts

66

Relaxed Atomic Broadcast

Consensus

Round-Based Model

State Machine Replication

Communication Channels

Output
Buffer

se
nd

se
nd

re
ce
iv
e

re
ce
iv
e

xdeliverxbcast

decidepropose

TS

send receive

Input
Buffer

Input
Buffer

Output
Buffer

Input
Buffer

Output
Buffer

Figure 1. Building blocks. Small arrows represent function calls;
large arrows represent spawning/killing (propose), and decision delivery
(decide) of consensus instances.

with consensus by calling functions S and T. Likewise,

state machine replication and relaxed atomic broadcast

interact by calling functions xbcast and xdeliver, which

are called in opposite direction. The interaction between

relaxed atomic broadcast and consensus is different: when

relaxed atomic broadcast calls propose a new instance

of the consensus and round-based blocks (as well as

their input/output buffers) is spawned, and any previous

instance of these created blocks is immediately killed and

garbage-collected. When consensus calls decide, a task

within relaxed atomic broadcast is already waiting for it,

so the call simply unblocks the task (and passes decide’s

parameters) as we will see later. As explained above for

state machine replication, the interaction with the channels

is represented by input buffers and output buffers, one pair

of buffers for the “relaxed atomic broadcast” block (i.e.,

one pair per channel), and one pair for the implementation

of the round model (one pair per channel).

B. The issue of integers

Integer variables are used by all layers of our imple-

mentation. Some of these integers, such as message ids

or round numbers are constantly increasing during system

lifetime. This means that, at least theoretically, the number

of bits needed by these variables cannot be bounded.

However, this is not a problem from a practical point of

view. Indeed, if we use 64 bits to represent some integer

variable i, and we assume that i is increased by 1 every

micro-second, then the largest integer is reached only after

584’000 years. This is long enough from a practical point

of view (see also related discussion in [7]).

C. Relaxed atomic broadcast

1) Algorithm: Algorithm 2 solves relaxed atomic

broadcast, for f < n/2, by reduction to a sequence of

consensus [17]. However, contrary to [17], each consensus

decides only on one single message (in order to bound

memory) rather than on a batch of messages. Although a

number of optimizations can be performed, we have kept

the algorithm as simple as possible, while preserving its

correctness (see [18] for the proofs).

The algorithm is structured in two tasks, Sequencer
and Gossip, and works as follows. When p’s application

xbcasts a message m, a new identifier is attached to m.

Then, m is stored in Rcvp[p] (line 9). Vector Rcvp con-

tains messages that p knows of but has not yet xdelivered.

If p has previously xbcast another message m′ not yet

xdelivered, then p’s application is blocked (i.e., p cannot

xbcast any further message), since Rcvp[p] can only store

one message at a time. This is a simple flow-control tech-

nique that can be optimized. The elements of vector Rcvp

will later become proposed values for consensus. This is

the mission of task Sequencer (line 37), which executes

a sequence of consensus instances. The Sequencer task

waits until there are undelivered messages in vector Rcvp

(lines 39-40). Then, it starts a new consensus instance. For

each instance #kp a sender cp is designated in a round-

robin manner, with the goal to propose Rcvp[cp] as the

initial value for consensus (line 42). This initial value

could be optimized to be the whole Rcvp vector [17], but

the rotating sender approach makes it easier to present both

our algorithm and its memory bounds. When consensus

#kp decides, p waits for evidence that at least f + 1
other processes have also decided for consensus #kp

(line 45). This mechanism enforces the continuity property

of relaxed atomic broadcast, since it ensures that at least

one correct process (that can be queried later) has decided.

Then, p xdelivers the message in decisionp only if its

identifier matches the value of NextIdp[cp], otherwise the

decision is discarded (lines 46 and 29-32). This simple

method demonstrates how to avoid xdelivering duplicates

using bounded memory. Its side effect is that it enforces

FIFO order amongst messages xbcast by process cp.

This may affect performance, but the algorithm can be

optimized to relax this condition. Finally, variable kp is

incremented (line 33) and the loop starts over with a new

iteration.

The Gossip task (line 34) sends periodically GOSSIP

messages to all processes in order to disseminate (1) re-

cently xbcast messages (vector Rcvp), and (2) the status of

the sender’s current consensus instance (kp and decidedp).

When process p receives a GOSSIP message from process

q (line 10), it checks whether q is either ahead or lagging

behind. If q is ahead (or at the same consensus instance as

p but has already decided), p adds q to its set Finishedp

(line 12), which contains processes that already finished

p’s current consensus. When the size of this set reaches

f + 1, p can infer that at least one correct process has

decided; so p can proceed to consensus kp+1 as soon as it

is done with consensus kp (line 45 is no longer blocking).

If q is lagging behind (line 13), then p simply sends

q a SLOW message containing part of its current state.

Additionally, if both p and q are at the same consensus

instance (line 14), then p copies to its Rcvp vector all

messages received from q that p has not yet xdelivered.

A SLOW message conveys the part of the sender’s state

that a slow process needs in order to catch up. Upon

77

Algorithm 2 Solving relaxed atomic broadcast. Code for

process p.

1: Initialization:

2: idp ← 0; cp ∈ Π; decisionp ∈ M
3: kp ← 0; Finishedp ← ∅; decidedp ← false
4: for all r ∈ Π do Rcvp[r] ← ⊥; NextIdp[r] ← 0
5: fork task(Gossip, Sequencer)

6: upon xbcast(m) do
7: m.id ← idp; idp ← idp + 1
8: wait until NextIdp[p] = m.id
9: Rcvp[p] ← m

10: upon receive(GOSSIP, kq, dq, Rcvq) from q do
11: if kq > kp or kq = kp and dq then
12: Finishedp ← Finishedp ∪ {q}
13: if kq < kp then send(SLOW, kp, NextIdp) to q
14: if kq = kp then {Message dispersal}
15: for all r ∈ Π do
16: if Rcvq[r] �= ⊥
17: and Rcvq[r].id = NextIdp[r] then
18: Rcvp[r] ← Rcvq[r]

19: upon receive(SLOW, kq, Nq) from q do
20: if kq > kp then {p is late}
21: kill task(Sequencer)

22: if decidedp then deliver()

23: msgs skipped ← ∑
r∈Π(Nq[r]−NextIdp[r])

24: repeat msgs skipped do xdeliver(⊥)

25: NextIdp ← Nq; kp ← kq

26: Finishedp ← ∅; decidedp ← false
27: fork task(Sequencer)

28: procedure deliver()

29: if decisionp �= ⊥
30: and decisionp.id = NextIdp[cp] then
31: xdeliver(decisionp)

32: NextIdp[cp] ← NextIdp[cp] + 1
33: kp ← kp + 1

34: task Gossip

35: repeat forever
36: send(GOSSIP, kp, decidedp, Rcvp) to all

37: task Sequencer

38: repeat forever
39: wait until ∃r : (Rcvp[r] �= ⊥
40: and Rcvp[r].id = NextIdp[r])
41: cp ← kp mod |Π| {cp is a rotating sender}
42: propose(kp, Rcvp[cp]) {Delete previous instance}
43: wait until decide(kp, decisionp)

44: decidedp ← true
45: wait until |Finishedp| > f
46: deliver()

47: Finishedp ← ∅; decidedp ← false

reception of such a message (line 19), process p checks

whether the sender is ahead. If that is the case, p has been

lagging behind, so termination of its current consensus

instance is not guaranteed because other processes have

already moved on to a later instance and disposed of p’s

current consensus (see Sect. VI-D). Therefore, p stops

task Sequencer (line 21) and checks whether its current

consensus had already finished. If so, the decision is

xdelivered (line 22) and p advances to the next consensus.

At this point, if p is still lagging behind with respect to

q, the following catch-up mechanism is used. Process p
calculates the number of messages it is going to skip when

catching up: for each process r, p’s next message id for

process r is subtracted from q’s (possibly greater) value

(line 23). The result of this subtraction is the number of

messages sent by r that were xdelivered between the con-

sensus instances in which p and q are. The sum of all these

subtractions yields the total amount of messages p will

skip, so it xdelivers as many ⊥ messages (line 24). Finally,

p updates kp and NextIdp with the values received from

q and spawns task Sequencer again. Note that additional

garbage collection can be performed on Rcvp, but does

not affect correctness.

2) Concurrency control: The state of the protocol,

in particular variables kp, NextIdp, Finishedp, and

decidedp, should all be updated atomically every time a

new consensus instance starts. As in Sect. V-B, a simple

approach is to assume that the algorithm behaves like a

monitor: upon clauses and tasks are executed in mutual

exclusion, except when a wait until statement is reached.

Finally, task Gossip executes in mutual exclusion only

within its loop (i.e., mutual exclusion is not preserved

across consecutive executions of line 36).

3) Memory bounds: We show now that our algorithm

requires only bounded memory as long as the size of

the application payload is bounded to constant Mreq (see

Section V-B) and consensus requires a maximum of Mcons

bits (see Section VI-D).

State size: To avoid a boring enumeration, let us

assume that the space required for all variables except

decisionp and the vector Rcvp amounts to some con-

stant c(n) (that depends on n). Moreover, decisionp

may contain an application message with an attached

message id and vector Rcvp is a vector of at most n
application messages with added ids. Together this leads

to (n+1)·(Mreq+Mint) bits. Since at most one consensus

instance is running at each process, summing everything

up, the state space needed by relaxed atomic broadcast is

bounded by

Mxbcast = Mcons + (n + 1) · (Mreq + Mint) + c(n).

Buffer size: The algorithm sends/receives two types

of messages: GOSSIP and SLOW, with respectively four

and three parameters. The former conveys the GOSSIP tag,

one integer kq, boolean dq, and set Rcvq of messages

with attached ids. The latter contains the SLOW tag, one

integer kq, and set Nq of message ids. One bit is enough

to represent the message tags. If we use again c(n) to

88

represent a constant depending on n, we get the following

bounds:

Mgossip = n · Mreq + c(n),

Mslow = c(n).

D. Consensus

The relaxed atomic broadcast algorithm relies on a

consensus algorithm, which ensures the following usual

properties:

• Validity: If process p decides v, then v has been

proposed by some process.

• Uniform agreement: No two processes decide differ-

ently.

• Termination: All correct processes eventually decide.

An unbounded number of consensus instances may be

spawned in every run. Every instance of consensus uses its

own memory resources. However, each process maintains

only one single instance of consensus at a given time.

When a process executes propose, its current consen-

sus instance (if any) is immediately killed and garbage-

collected. Therefore, the termination property of consensus

is not guaranteed for all correct processes; rather, only

f +1 processes (whether correct of not) are guaranteed to

terminate a consensus instance. Nevertheless, once f + 1
processes have decided for consensus #k (i.e., at least one

correct process), Algorithm 2 guarantees that all correct

processes will eventually stop consensus #k and move on

to #k + 1.
1) Algorithm:

Round-based model: We consider a consensus algo-

rithm for a partially synchronous system (see Section II).

As in [14], we consider an abstraction on top of the system

model, namely a round model. Using this abstraction,

rather than the raw system model, improves the clarity

of the algorithms and simplifies the proofs. In the round

model, processing is divided into rounds of message

exchange. Each round r consists of a sending step denoted

by Sr
p (sending step of p for round r), and of a state

transition step denoted by T r
p . In a sending step, each

process sends a message to all. A subset of the messages

sent is received at the beginning of the state transition

step: messages can get lost, and a message sent in round

r can only be received in round r. We denote by σr
p the

message sent by p in round r, and by �μr
p the messages

received by process p in round r (�μr
p is a vector of size

n, where �μr
p[q] is the message received from q or null if

the message was lost). Based on �μr
p, process p updates its

state in the state transition step.

In all rounds executed before GST messages can be lost.

However, after GST, there exists a round GSR (Global
Stabilization Round) such that the message sent in round

r ≥ GSR by a correct process q to a correct process p is

received by p in round r. This is formally expressed by

the following predicate (where C denotes the set of correct

processes):

∀r ≥ GSR : Pgood(r),

where

Pgood(r) ≡ ∀p, q ∈ C : �μr
p[q] = σr

q .

An algorithm that ensures this predicate in a partially

synchronous system is given in Section VI-E.

Algorithm 3 The OneThirdRule (OTR) algorithm [19]

(f < n/3). Code for process p.

1: Initialization:

2: xp ← vp

3: Round r:

4: Sr
p :

5: send 〈xp〉 to all processes

6: T r
p :

7: if (number of messages sent in round r and

received by p in round r)> 2n/3 then
8: if the values received, except at most �n

3 �, are

equal to x̄ then
9: xp ← x̄

10: else
11: xp ← smallest x received

12: if more than 2n/3 values received are equal to

x̄ then
13: DECIDE(x̄)

The OTR consensus algorithm: Algorithm 3 is the

consensus algorithm we consider [19]. The algorithm

requires f < n/3. We have chosen this algorithm because

of its simplicity. The analysis of Paxos/LastVoting [19],

[20], which requires only f < n/2 could be used instead,

but would require more space.

Algorithm 3 works as follows. As soon as more than

2n/3 processes have xp = v, then decision v is locked,

i.e., in any future update, variable xp, is updated to

v. Termination is ensured by the following observation.

Let r0 be the smallest round after GSR such that all

faulty processes have crashed before round r0. In round

r0 the condition of line 7 is true. Moreover, Pgood(r0)
ensures that all processes that execute round r0 receive the

same set of messages. Therefore, in round r0, either all

processes execute line 9, or all processes execute line 11.

It follows that at the end of round r0 all processes have xp

equal to some common value v, and all processes decide

in round r0 + 1.

2) Memory bounds: As we explain in Section VI-E,

the memory required by Algorithm 3 is managed by the

implementation of the round-based model. Thus we refer

to the next section for the consensus memory bounds.

E. Implementation of the round-based model

We describe now the implementation of the round-based

model (see Algorithm 4), which is almost identical to

the one appearing in [21] (we made small extensions to

prevent msgsRcvp from growing forever). The interaction

between Algorithm 4 and Algorithm 3 is by function call:

in other words, the execution thread is within Algorithm 4,

99

and this thread calls functions Sr
p and T r

p defined by

Algorithm 3:

• Sr
p is called at line 9 of Algorithm 4 and returns xp,

see line 5 of Algorithm 3. 5

• T r
p is called at line 22 of Algorithm 4 and returns

the new state of process p, see lines 7 to 13 of

Algorithm 3. 6

The state of Algorithm 3 is represented as sp in Algo-

rithm 4 (line 3). Moreover, in Algorithm 4, φ represents

the bound on process relative speed after GSR, and δ
represents the bound on message transmission delay after

GSR. After GSR one send step (line 10) and one receive

step (line 16) take each 1 time unit on the fastest process

(i.e., at most φ time units on the slowest process). If no

message is available for reception, then an empty message

is received. In one send step a process can send messages

to multiple processes, while n receive steps are needed to

receive messages from n processes.

1) Algorithm: Algorithm 4 consists of an infinite loop

(see line 8), which includes an inner loop (lines 12 to 21).

Each iteration of the outer loop corresponds to one round.

The message to send is obtained in line 9, and sent to all in

line 10. Each iteration of the inner loop is for the reception

of one message for the current round rp. The inner loop

ends when (i) at least 2δ+(n+2)φ time units have elapsed,

see lines 14-15 (time is measured by the execution of

receive steps: 1 receive step = 1 time unit), or (ii) whenever

a message of a round larger than rp is received, see

lines 20-21. The reader is referred to [21] for a proof that

this ensures Pgood after GST. When the inner loop ends,

the function T r
p is called with the set of messages received

in the current round rp (line 22). Finally, messages for the

current round are garbage collected (line 24).

2) Memory bounds: We compute now Mcons – the

memory bound for consensus including the implementa-

tion of the round-based model – that was referenced in

Section VI-C3.

State size: Algorithm 4 needs to store three integers

(rp, next rp, ip), which require 3Mint, and variables

sp and msgp, which require 2Mreq bits. In addition the

algorithm needs memory for msgsRcvp and tempp, which

amounts to (n+1) ·(Mreq +2Mint) bits, since msgsRcvp

stores at most n messages.

Buffer size: All messages sent/received are of the

same type and require at most Mreq + Mint bits each.

The algorithm needs only one single output buffer (the

same message sent to all) and n input buffers (one per

process). This amounts to (n + 1) · (Mreq + Mint) bits.

F. Summary

Putting everything together, we have shown that all

components that appear in Figure 1, including state-

machine replication, require only bounded memory. There-

5To be consistent, line 4 of Algorithm 3 should be expressed as a
function. However, we decided to keep the usual round-based expression
for Algorithm 3.

6Same comment as for Sr
p , see footnote 5.

Algorithm 4 Ensuring Pgood after GST.

1: rp ← 1 {round number}
2: next rp ← 1 {next round number}
3: sp ← initp {state of the consensus algorithm}
4: ip ← 0 {counts send/receive steps}
5: msgp {message to send in the current round}
6: msgsRcvp ← ∅ {set of msgs received for the current round}
7: tempp ← ∅ {contains at most one message received for a

round > rp}
8: while true do
9: msgp ← S

rp
p (sp)

10: send 〈msgp, rp 〉 to all

11: ip ← 0

12: while next rp = rp do
13: ip ← ip + 1
14: if ip ≥ 2δ + (n + 2)φ then
15: next rp ← rp + 1
16: receive a message with highest round number

17: if received 〈msg, r′ 〉 from q then
18: if r′ = rp then
19: msgsRcvp ← msgsRcvp∪{〈msg, r′, q 〉}

{Messages from old rounds are discarded}
20: if r′ > rp then
21: next rp ← r′; tempp ← {〈msg, r′, q 〉}
22: sp ← T

rp
p (msgsRcvp, sp)

23: rp ← next rp

24: msgRcvp ← tempp {Garbage collection}
25: tempp ← ∅

fore, relaxed atomic broadcast has allowed us to imple-

ment state-machine replication using bounded memory.

VII. COMPARISON OF APPROACHES

In Section IV, we have presented two different ap-

proaches for implementing state machine replication with

bounded memory. Namely, (1) our novel relaxed atomic

broadcast algorithm, which was described in detail in

Sections V and VI, and (2) atomic broadcast in the

dynamic model, i.e., relying on membership [15]. Both

approaches rely on state transfer: approach (2) requires

a state transfer whenever a new process is added to the

dynamic group; approach (1) performs a state transfer

whenever a slow process catches up.

Solution (2) is more complex than solution (1). First,

solution (2) needs to define a policy for process exclusion

[22]. This is simply not needed in (1). Second, static group

communication is simpler and easier to understand than

dynamic group communication, from a specification as

well as from an implementation point of view. Moreover,

the complexity added by relaxed atomic broadcast (i.e., the

need for state transfer) is also needed in dynamic group

communication, as stated above.

If an application is happy with the static group model,

and dynamism is introduced only to bound the memory

usage, then the solution using relaxed atomic broadcast is a

1010

better choice. If an application requires the dynamic group

model, the solution using relaxed atomic broadcast may

still be used: it makes sense to combine both approaches,

where changes in membership are decoupled from the

bounded memory issue.

VIII. CONCLUSION

We have presented relaxed atomic broadcast, a variant

of atomic broadcast that it is weak enough to be solved

with bounded memory, yet strong enough to be useful for

typical applications like state machine replication. Note

that the analysis of the memory requirements forced us

to consider the complete protocol stack (i.e., nothing has

been swept under the carpet). We have also discussed the

advantages of our approach as compared to the solution

with group membership.

The solution presented shows an interesting trade-off

between the memory allocated and the number of ⊥
messages delivered: if a process becomes slow, the more

memory we allocate, the longer it will take to run out of

buffers. We plan to experimentally analyze this trade-off

in the future.

Finally, we recall that the goal when presenting our

solution was simplicity. The algorithm can be optimized

in a number of ways in order to improve its performance.

REFERENCES

[1] K. P. Birman, “Replication and fault-tolerance in the Isis
system,” in Proceedings of the 10th ACM Symp. on Oper-
ating Systems Principles (SoSP-10), vol. 19, no. 5. Orcas
Island, WA, USA: ACM, Dec. 1985, pp. 79–86.

[2] F. B. Schneider, “Implementing fault-tolerant services using
the state machine approach: A tutorial,” ACM Computing
Surveys, vol. 22, no. 4, pp. 299–319, Dec. 1990.

[3] X. Défago, A. Schiper, and P. Urbán, “Total order broadcast
and multicast algorithms: Taxonomy and survey,” ACM
Computing Surveys, vol. 36, no. 4, pp. 372–421, 2005.

[4] D. L. Parnas, “Use the simplest model, but not too simple,”
Forum, Commun. ACM, vol. 50, no. 6, p. 7, 2007.

[5] N. A. Lynch, Distributed Algorithms. Morgan Kaufmann,
1996.

[6] A. Ricciardi, “Impossibility of (repeated) reliable broad-
cast,” Univ of Texas, Austin, Tech. Rep. TR-PDS-1996-
003, April 1996.

[7] R. Guerraoui, R. Oliveira, and A. Schiper, “Stubborn
communication channels,” École Polytechnique Fédérale de
Lausanne, Switzerland, Tech. Rep. 98/272, Mar. 1998.

[8] C. Delporte-Gallet, S. Devismes, H. Fauconnier, F. Petit,
and S. Toueg, “With finite memory consensus is easier than
reliable broadcast,” in OPODIS ’08: Proceedings of the
12th International Conference on Principles of Distributed
Systems. Berlin, Heidelberg: Springer-Verlag, 2008, pp.
41–57.

[9] Y. Amir, D. Dolev, S. Kramer, and D. Malki, “Transis: a
communication sub-system for high availability,” in Pro-
ceedings of the 22nd International Symposium on Fault-
Tolerant Computing (FTCS-22), Boston, MA, USA, Jul.
1992, pp. 76–84.

[10] R. Macêdo, P. D. Ezhilchelvan, and S. K. Shrivastava,
“Flow control schemes for a fault-tolerant multicast pro-
tocol,” ESPRIT Basic Research Project BROADCAST,
Technical Report BROADCAST-TR95-91, Jun. 1995.

[11] S. Mishra and L. Wu, “An evaluation of flow control in
group communication,” IEEE/ACM Trans. Netw., vol. 6,
no. 5, pp. 571–587, 1998.

[12] M. Hayden, “The Ensemble system,” Ph.D. dissertation,
Cornell University, Ithaca, NY, 1998.

[13] B. Charron-Bost, X. Défago, and A. Schiper, “Broadcasting
messages in fault-tolerant distributed systems: the benefit
of handling input-triggered and output-triggered suspicions
differently,” in Proceedings of the 20th IEEE Symposium
on Reliable Distributed Systems (SRDS), Osaka, Japan, Oct.
2002, pp. 244–249.

[14] C. Dwork, N. A. Lynch, and L. Stockmeyer, “Consensus in
the presence of partial synchrony,” Journal of ACM, vol. 35,
no. 2, pp. 288–323, Apr. 1988.

[15] K. Birman, A. Schiper, and P. Stephenson, “Lightweight
causal and atomic group multicast,” ACM Transactions on
Computer Systems, vol. 9, no. 3, pp. 272–314, Aug. 1991.

[16] A. Schiper, “Dynamic group communication,” Distributed
Computing, vol. 18, no. 5, pp. 359–374, 2006.

[17] T. D. Chandra and S. Toueg, “Unreliable failure detectors
for reliable distributed systems,” Journal of ACM, vol. 43,
no. 2, pp. 225–267, Mar. 1996.

[18] O. Shahmirzadi, S. Mena, and A. Schiper, “Relaxed atomic
broadcast: State-machine replication using bounded mem-
ory,” École Polytechnique Fédérale de Lausanne, Switzer-
land, Tech. Rep. LSR/2009/02, Jun. 2009.

[19] B. Charron-Bost and A. Schiper, “The Heard-Of Model:
Computing in Distributed Systems with Benign Failures,”
École Polytechnique Fédérale de Lausanne, Switzerland,
Tech. Rep. LSR/2007/01, Jul. 2007, to appear in Distributed
Computing.

[20] L. Lamport, “The part-time parliament,” ACM Transactions
on Computer Systems, vol. 16, no. 2, pp. 133–169, 1998.

[21] M. Hutle and A. Schiper, “Communication predicates:
A high-level abstraction for coping with transient and
dynamic faults,” Proc. of Int. Conference on Dependable
Systems and Networks (DSN’07), vol. 00, pp. 92–101, Jun.
2007.

[22] A. Schiper and S. Toueg, “From Set Membership to Group
Membership: A Separation of Concerns,” IEEE Transac-
tions on Dependable and Secure Computing, vol. 3, no. 2,
pp. 2–12, 2006.

1111

