Consensus in the Crash-Recover Model

Rui Oliveira Rachid Guerraoui ~ André Schiper
{oliveira,guerraoui,schiper }@lse.epfl.ch
Phone: +41 21 6934248 Fax: +41 21 6936770
Ecole Polytechnique Fédérale
Département d’Informatique

CH-1015 Lausanne, Switzerland

Summary

This paper presents a deterministic algorithm that solves consensus in
asynchronous distributed systems where processes may crash and recover,
messages may be lost, and failure detections may be inaccurate. Our al-
gorithm has an early delivery property: in runs where no process crashes
or is suspected to have crashed, consensus is reached only after two com-
munication steps.

The paper shows that to solve consensus with processes that may crash
and recover, more knowledge about failures is required than if we assume

that crashed processes never recover.

Key words: Distributed algorithms - Asynchronous system - Unreliable failure

detector - Crash-recovery model - Consensus

1 Introduction

Defining the conditions under which the consensus problem can be solved is a
fundamental issue in fault-tolerant distributed systems, as many typical prob-
lems underlying reliable distributed applications can be viewed as variations of
consensus. In particular, both the atomic broadcast [5] and the non-blocking
(weak) atomic commitment problems [9] are shown to be solvable under exactly
the same conditions as consensus.

In 1985, Fischer, Lynch and Paterson [8] proved an important impossibility
result, stating that, even if one single process can crash, no deterministic algo-
rithm can solve consensus in an asynchronous system, where no assumption is
made about message delays and process relative speeds. More recently, Chandra,
Hadzilacos and Toueg showed that the minimal conditions for solving consen-
sus can be expressed in terms of knowledge about process failures, expressed by
two properties: eventual weak accuracy, i.e., eventually some correct process (one
which never crashes) is never suspected (to have crashed), and weak completeness,
i.e., eventually every faulty process (that crashes) is suspected by every correct
process [4]. Chandra and Toueg presented an algorithm that solves consensus
assuming a majority of correct processes and a failure detector that guarantees
eventual weak accuracy and weak completeness properties [5].

The work on failure detectors is a fundamental step towards defining a rigorous
framework for fault-tolerant distributed computing. From a practical point of
view however, the assumptions made in [4, 5] about the underlying system model
may be viewed as too constraining, as the communication channels are considered
to be reliable (no omission failures), and processes are supposed to never recover
after a crash (what is called hereafter the crash-stop model). Transforming real-
world communication channels into reliable channels is indeed feasible by masking
omission failures, but very expensive because every message may need to be kept

and retransmitted until it is acknowledged [10].

In this paper, we present a consensus algorithm that tolerates general omission
failures and takes into account process recovery. As in [12], our algorithm has
a low latency degree, as processes reach consensus within two communication
steps, in runs where no process crashes or is suspected to have crashed (the
most frequent runs in practice). This early-delivery property, together with the
tolerance of process recovery and omission failures, makes our algorithm a good
candidate for solving consensus related problems in practice.

For presentation generality, we describe our algorithm in an abstract model,
called g/r-model (green/red), composed of green processes, red processes and fair
lossy communication channels. The intuition behind the green/red distinction
is that green processes are well behaved, whereas red processes are not (but do
not behave maliciously). We introduce the notion of stubborn channels which
abstract the minimal message loss fairness property of fair lossy communication
channels. Stubborn channels provide precise semantics which help and ease the
presentation and proof of our consensus algorithm. Our algorithm guarantees
consensus agreement and validity (safety), no matter how the system behaves,
and ensures consensus termination (liveness), with a majority of green processes,
stubborn channels, and a red detector of class ©S,. This class, which we prove is
the weakest for which consensus can be solved in the g/r-model abstract model, is
defined by the properties (1) eventual weak accuracy, i.e., eventually some green
process is never suspected, and (2) strong completeness, i.e., eventually every red
process is suspected by every green process.

We compare the knowledge about process failures that is needed to solve
consensus in the crash-recover model, with the knowledge about failures that is
needed to solve consensus in the crash-stop model. Interestingly, whereas in the
latter model, eventual weak accuracy and weak completeness are sufficient to solve
consensus, the crash-recover model requires eventual weak accuracy and strong
completeness. This highlights the difference between both models, and reflects

the intuition that it is harder to solve consensus in the crash-recover model than

in the crash-stop model.

The remainder of the paper is organized as follows. Section 2 formally de-
fines the abstract g/r-model. In Section 3, we define stubborn communication
channels. In Section 4, we describe our consensus algorithm and we prove its cor-
rectness. In Section 5, we evaluate the knowledge about failures that is needed
to solve consensus in the g/r-model. Section 6 mentions some related work. Fi-
nally, Section 7 concludes the paper by discussing the practical applicability of

our algorithm.

2 Green/Red process model

We consider an asynchronous distributed system composed of a set of processes
that communicate by message passing. Asynchrony means that there is no bound
on communication delays, nor on process relative speeds. Processes may crash,
and later recover. We do not consider Byzantine failures. In a model in which
processes do not recover after a crash, a correct process is defined as a process
that does not crash. In a crash/recovery model, “correct” processses have to
be defined differently. To avoid ambiguity, we introduce the notion of “green”
and “red” processes, instead of correct/incorrect: a green process is a “correct”
process in the crash /recovery model, while a “red” process is an incorrect process.
Green and red processes are defined below.

Similarly to [5], we assume the existence of a distributed oracle, called red
detector in our model, which provides information about the processes that are

suspected to be red.

2.1 Processes and communication channels

We consider a set of n processes ¥ = {pi,ps,...,Pn}, completely connected

through a set of unreliable communication channels. The channel connecting

process p; to process p; is denoted c;;. Process p;, in order to send a message m
to p;, hands over the message to the channel ¢;;. If channel ¢;; does not lose m,
then eventually the channel hands over m to process p;. At that point, either
message m is received by p;', or p; is subject to a receive-omission failure, in

which case m is lost.

2.1.1 Fair Lossy channels

We assume the channels connecting our processes to be fair lossy channels. A

fair lossy channel is defined by the following two properties:

Property 2.1 (No Creation) If a channel ¢;; hands over a message m to pro-

cess p;, then some process p; handed over m to the channel c;;.

Property 2.2 (Fair Loss) If a process p; hands over an infinite number of mes-
sages to a channel c;;, then the channel c;; eventually hands over an infinite subset

of these messages to process p;.

Property 2.1 states that no spurious or corrupt messages are created (which
would be a source of Byzantine failures which our model explicitly does not cover).
Property 2.2 is similar to the Weak Loss Limitation in [11] and the Fair Lossy
channel in [3]. This property reflects the usefulness of the channel. Without such
a property, any interesting distributed problem would be trivially impossible to

solve.

2.1.2 Green and Red processes

Computation proceeds in steps of an algorithm [4]. An algorithm is a collection
A of n deterministic automata A(p;) (one per process). In each (non null) step
of an algorithm A, a process p; performs the following actions: (1) p; receives a

message handed over by one of the channels ¢,; (z € {1..n}), or a “null” message

LA process receives a message only if it is handed over by a channel.

A; (2) pi queries and receives a value d from its red detector module D;; (3) p;
changes its state and sends a message (possibly null) to some process in ¥. Action
(3) is performed according to (a) the automaton A(p;), (b) the state of p; at the
beginning of the step, (c¢) the message received in action 1, and (d) the value d of
action 2. A process p; takes a non null step s, if p; completely executes the three
actions of s.

To model crashed processes, we introduce “null” steps. A null step is a step in
which a process p; suffers from receive-omission failures (no message is received
by a process taking a null step), does not change its state, and does not send any
message.

All processes execute an infinite number of steps (some of which can be null
steps). A process that crashes and later recovers, executes only a finite number
of null steps between its crash and its recovery. A process that crashes and never
recovers executes an infinite number of null steps. Based on this model, green

and red processes are defined as follows:

e green processes take only a finite number of null steps.

e red processes take an infinite number of null steps.

This definition implies that green processes crash only a finite number of times,
and always recover after a crash. Red processes either (1) crash and recover an

infinite number of times, or (2) never recover after a crash.

2.1.3 Green processes and fair lossy channels

The definition of green processes together with the fair loss property (Prop-
erty 2.2) of the fair lossy channels leads to the following proposition:

Proposition 2.3 Let p; and p; be two green processes. If p; sends an infinite
number of messages to p;, then p; eventually receives an infinite subset of these

messages.

PrROOF: By Property 2.2, if p; sends (hands over to the channel) an infinite
number of messages to p;, an infinite subset of these messages are eventually
handed over to p;. Since p; is a green process, p; takes an infinite number of
non null steps, i.e., p; can be subject to only a finite number of receive-omission

failures. Therefore p; receives an infinite subset of the messages sent by p;. O

Notice that, if one of the processes is red, nothing can be ensured. If p; is
red, p; might not be able to send an infinite number of messages to p;, and if
p; is red, p; might be subject to an infinite number of receive-omission failures.
Nevertheless, nothing precludes red processes from communicating: a message
sent by a red process might always be received by some (green or red) process,

as well as a red process might always receive a message sent by some process.

2.2 Red detectors

In [5], Chandra and Toueg have introduced the notion of failure detectors. We
call them here red detectors, as in the g/r-model their responsibility is to detect
red processes. From the failure detector classes defined by Chandra and Toueg,
we focus in this paper on the classes ¢S and OW, and we make “syntactic”
changes to define what we denote the ¢S, and the OGW, classes of red detectors.

Class ©8, is the set of red detectors that satisfy the following two properties:

Strong completeness. Eventually every red process is permanently suspected

by every green process.

Eventual weak accuracy. Eventually some green process is never suspected

by any green process.

Class OW, is the set of red detectors that satisfy eventual weak accuracy, and

the following property:

Weak completeness. Eventually every red process is permanently suspected

by some green process.

3 Stubborn communication channels

3.1 The abstraction of stubborn channels

We introduce the concept of stubborn channels as an abstraction that adequately
defines the communication semantics required by our consensus algorithm (Sec-
tion 4), and therefore also eases its presentation. Stubborn channels can be
obtained as a simple transformation (Section 3.2) of fair lossy channels in the
g/r-model.

Stubborn communication channels are defined by the two primitives stb-send
and stb-receive, and characterized by the no creation property (Property 2.1),

and the following additional properties:

Property 3.1 (No Duplication) Every message m that is stb-sent to a process

p; 1S stb-received by p; at most once.

Property 3.2 (k-Stubbornness) Let p; and p; be two green processes, and
k > 0 any constant. If p; stb-sends messages my, ..., myix—1 to pj, and p;
indefinitely delays stb-sending any further message to p;, then p; eventually stb-

receives messages My, - - ., My k—1-

Properties 2.1 and 3.1 define a communication channel similar to the non-
duplication channel of [1], which is a natural abstraction of the service provided
by a connectionless network layer.

Property 3.2 slightly constrains the unreliability of the communication chan-
nels. It basically says that, if a green process p; stb-sends a sequence [my, . . ., My 4x—1]
of messages to a green process p;, and p; afterwards is able to indefinitely delay

the stb-sending of any subsequent message to p;, then p; eventually stb-receives

8

My, - .., Myyk—1]. Property 3.2 does not mean that, in order to ensure the recep-
tion of [my, ..., Myik_1], Process p; is not allowed to stb-send any new message
Mytk to pj, after having stb-sent my,x 1. The property actually means that
there is no fixed delay after which my,; can be stb-sent without compromis-
ing the reception of my. This is abstractly expressed by the indefinite delay
requirement.

Note that stubborn channels may lose an infinite number of messages (as long
as the sender does not delay subsequent messages for enough long time) and may

also reorder messages.

3.2 Transforming fair lossy into stubborn channels
3.2.1 Overview of the transformation

Figure 1 depicts a possible (not optimized) implementation of stubborn channels
over fair lossy channels (defined by the send and receive primitives).

The transformation is given through two procedures stb-send and stb-receive
and two concurrent tasks labeled sender and receiver. We consider (Section 4)
that the state variables, the procedures and the concurrent tasks that form the
transformation are part of the algorithm that uses them.

Basically, satisfying the k-stubbornness property is achieved by buffering and
periodically retransmitting (using send) the & most recent messages stb-sent by
p to g. Any new message that is stb-sent by p to g overwrites the oldest of the
previous buffered £ messages, which stops being retransmitted. Satisfying the no
duplication property is achieved by pairing every message that is stb-sent with
a strictly increasing sequence number. The sequence number of every received
message is then compared with the smallest sequence number among the messages
currently buffered.

Notice that the transformation into k-stubborn channels is restricted to the

point-to-point retransmission of £ messages. Transforming fair lossy channels into

reliable channels would require broadcast communication, having each process
p buffering all messages p sends, and still having p buffering and relaying all

messages received by p but addressed to other processes [3].

3.2.2 Description of the transformation

Process p; manages two buffers for each process p;: InBuf;[j] and OutBuf;[j].
Buffer InBuf;[j] (resp. OutBuf;]j]) contains the k latest messages received from
(resp. stb-sent to) p; by p;. The value SN;[j] denotes the sequence number of
the latest message stb-sent by p; to p;. This sequence number is used to achieve
the no duplication property (Property 3.1).

When p; stb-sends a message m to p; (line 5), m is paired with a strictly
increasing sequence number SN;[j], and put in OutBuf;[j]. If OutBuf;[j] is
not full (i.e., does not yet contain k£ non-null messages) then m is added to
OutBuf;[j]. Otherwise m replaces the message with the smallest sequence num-
ber in QutBuf;[j]. Periodically (task at line 17), each message in OutBuf;[j] is
sent to p;.

Upon the reception of a message (cnt, m) from p; (line 23), p; checks whether
(1) (ent,m) is currently in InBuf;[j], or (2) there is a message (cnt’,m') in
InBuf;[j] such that cnt < ent’. In cases (1) or (2), (cnt, m) is discarded. Other-
wise, (cnt,m) is added to InBuf;[j] and marked as stb-unreceived (i.e., (ent,m)
has not been yet stb-received at line 12). If InBuf;[j] is full, (ent,m) replaces
the message in InBuf;[j] with the smallest sequence number.

When p; executes procedure stb-receive (m), some stb — unreceived message
in InBuf;[j] is assigned to m (the return parameter), and marked as stb-received

in InBuf;[j]. If no such message exists then m = A.

10

1 variables

2 OutBufi[n][k] < [[A .- Al [A - Al { outgoing messages }
8 InBufin]lk] < [[A,---, AL -, [\ - Al { incoming messages }
4 SN;k] < [0,...,0]; { sequence number counters for outgoing messages }
5 procedure stb-send(m) to p; { stubborn send primitive }

if |OutBuf;[j]| < k then

8 add (SN;[j],m) to OutBuf;[];

9 else
10 replace the message in OutBu f;[j] with the smallest sequence number by (SN;[j],m);
11 end send ;

<

12 procedure stb-receive(m) from p; { stubborn receive primitive }
13 (ent,m) < some sth-unreceived message in InBuf;[j];

14 mark (ent,m) in InBuf;[j] as stb-received,

15 end receive ;

16 cobegin

17| task sender { task executed by the sender }
18 periodically execute

19 foreach je X

20 foreach m € OutBu f;[j]

21 send(m) to pj;

22 || task receiver { task executed by the receiver }
23 upon receive(cnt, m) from p; :

24 smallestSN < smallest sequence number in InBuf;[j];

25 if (ent,m) & InBuf;[j] and ent > smallestSN then

26 if |[InBuf;[j]| < k then

27 add (ent,m) to InBuf;[j] and mark it stb-unreceived;

28 else

29 replace the message in InBuf;[j] with smallest sequence number, by (ent, m) mark it stb-unreceived;

30 coend

Figure 1: Transforming Fair Lossy into Stubborn channels (code for process p;)

11

3.2.3 Correctness of the transformation

Theorem 3.3 The algorithm of Figure 1 transforms a fair lossy channel into a

stubborn channel.

PROOF: The channels defined by the primitives stb-send and stb-receive of Fig-

ure 1 satisfy the no creation, no duplication and stubbornness properties.

No Creation (Property 2.1): Follows directly from the algorithm (Figure 1) and

from the no creation property of the fair lossy channels.

No Duplication (Property 3.1): Assume by contradiction that some message m
stb-sent by a process p; is stb-received twice by a process p;. Message m can
only be stb-received twice if (¢, m) is received twice, and put twice in InBu f;[j]
at line 27 or 29 (and marked stb-unreceived). Consider the second time (¢, m) is
received, and let this time be denoted by ... If at time ¢, the message (¢, m) is
in InBuf;[j] (marked as stb-received or stb-unreceived), then (c,m) is discarded.
If at time ¢, the message (¢, m) is not in InBu f;[j] then there is a time t,¢y < tsec
at which (¢, m) has been replaced in InBuf;[j] by some message (¢, m') with a
sequence number ¢’ > ¢. Moreover, at time t,., all messages (¢, m") is InBu f;[j]
have a sequence number ¢’ > ¢. So, when (¢, m) is received at time tsee > trep,

the condition of line 25 evaluates to false and (¢, m) is discarded. A contradiction.

k-stubbornness (Property 3.2): Consider the n (n < k) most recent messages stb-
sent by p; to p;, and assume that p; stb-sends no further messages to p;. Since
these n messages have the n largest sequence numbers among all the messages sth-
sent by p; to p;, these n messages are kept in OutBu f;[i] and are infinitely often
sent to p; over the fair lossy channel (lines 20 and 21). By Proposition 2.3 of the
fair lossy channels, p; eventually receives these n messages. As these n messages

carry the n largest sequence numbers among all the messages stb-sent by p; to p;,

12

each of these messages is eventually put in InBuf;[j], marked as stb-unreceived

and never discarded. Thus these n messages are eventually stb-received by p;. O

4 Solving consensus in the g/r-model

This section describes our consensus algorithm. We first rephrase the consensus
problem in terms of green and red processes, then we describe our algorithm and

we prove its correctness.

4.1 The Consensus problem

We define the consensus problem in the g/r-model over a set II C 3 of processes.
Every process p € II starts with an initial value v,, and the processes of II have

to decide on a common value v, such that the following properties are satisfied 2:

Uniform Validity. A process decides v only if v is the initial value of some

process.
Uniform Agreement. No two processes decide differently.

Termination. Every green process eventually decides.

4.2 The consensus algorithm

The algorithm of Figure 2 guarantees the safety properties of consensus, (i.e.,
agreement and validity), no matter how many processes are red, and how the
communication channels and the red detector behave. The liveness property of
consensus (i.e., termination) is guaranteed if, every pair of processes is connected
through 2-stubborn communication channels, a majority of the processes are

green, and the red detector is of class ¢8,.

2More accurately, we consider here the uniform consensus problem [9].

13

1

SIS CHEEN S R S T VO)

LT T S S O e U S PO ' (Y
N QO © % QS v ™ RO

o A e b D
PSR SNC IR S NRE NG O X

G o Lo Lo Co Lo Co G
IS NG o RS

38
39
40
41
42
48
44
45
46

function consensus (v;)

{ algorithm for a process p; }

r; < 0; estimate; < (i, v;) { current round and estimate: (estimate.first =i, estimate.second = v;) }
phase;; coord;; { phase (1 or 2) and coordinator of round; }

current RoundT erminated;; coordSuspected;; msgCounter;; suspCounter;;
cobegin
|| upon reception of (p;,r;,v;,decide) from p;;

send (p;,r;,v;,decide) to all;

return v;;
|| loop

phase; < 1; currentRoundT erminated; < false; coordSuspected; < false;

coord; <+ (r; mod n) + 1;

if ¢ = coord; then send (p;,r;, 1, estimate;) to all; { p; is the coordinator for the current round }

while not currentRoundT erminated;
select { select one of the branches

upon reception of (p;,r;, 1, estimate;) from p; when phase; =1:
first reception : msgCounter; < 1;
if i # coord; then estimate; < estimate;;
send (p;,r;, 1, estimate;) to all;
other receptions : msgCounter; < msgCounter; + 1;

starting at lines 15,22,25,30,38 }

if msgCounter; = f@] then send (p;,7;, 1, estimate;.second, decide) to all;

return estimate;.second;

upon coord; € D,; when not coordSuspected; and phase; =1 :
send (p;, 14, 1, suspicion) to all;
coordSuspected; + true;
upon reception of (p;,r;,1, suspicion) from p; :
first reception : suspCounter; < 1;
other receptions : suspCounter; + suspCounter; + 1;
if suspCounter; = [(TLQLI)] then phase; + 2;
send (p;,r;, 2, estimate;) to all;
upon reception of (p;,r;,2, estimate;) from p; :
first reception : msgCounter; + 1;
if phase; = 1 then phase; + 2;
send (p;,r;, 2, estimate;) to all;
other receptions : msgCounter; < msgCounter; + 1;
if estimate;.first = coord; then estimate; < estimatej;
if msgCounter; = f@] then currentRoundI erminated; < true;
estimate;.first < i; r; +— r; + 1;

upon reception of (p;,r; > r;, phase;, estimate;) from p; :

phase; < 1; r; < r;j; coordSuspected; < false; coord; < (r; mod n) + 1;

estimate; < estimate;;
if phase; =1 then goto 16;
else goto 31;
end select
end while
end loop
coend

{ adopt the “caller’s” estimate }

{ phase =2}

Figure 2: Consensus with 2-stubborn channels and <S8, (code for process p;)

14

Our consensus algorithm is an extension of Schiper’s algorithm [12]. We will
discuss in Section 5 the reason why we have chosen to extend Schiper’s algorithm,
rather than the original algorithm of Chandra and Toueg [5].

The only change to Schiper’s algorithm is the addition of lines 38 to 42 to
overcome the omission failures of the communication channels. The reader fa-
miliar with [12] may directly proceed to Section 4.2.3 which discusses lines 38 to

42.

4.2.1 Overview of the algorithm

The consensus algorithm is based on the rotating coordinator paradigm and pro-
ceeds in asynchronous rounds. Every process p; manages a variable estimate;,
which is p;’s current estimation of the decision value, and a variable r; represent-
ing p;’s current round number. In every round, there is one process that plays the
role of the coordinator, and this process is known a priori to all processes, e.g.,
in round 0 the coordinator is p;, in round 1 the coordinator is py, etc. In every
round r, the coordinator p,. tries to impose its estimate. as the decision value,
by sending estimate, to all processes. When a process p; receives estimate,. from
the coordinator, p; forwards estimate. to all processes. A process decides on
estimate. as soon as it has received estimate, from a majority of processes.
The protocol terminates in the first round if the first coordinator, p;, is not
suspected. Otherwise (i.e., if p; is suspected), the processes proceed to the second
round, and so on. Before proceeding from a round to another, the estimates of

the processes are updated, so as to satisfy the following invariant:

If some process has decided on estimate, in round r, then any process
that proceeds to round r + 1, starts round r + 1 with estimate. as its

current estimate.

This invariant ensures the uniform agreement property of consensus: if some

process decides estimate, in round r, then in any round ' > r, no decision can

15

be different from estimate,.

4.2.2 Description of the algorithm

Every process p; invokes the function consensus() of Figure 2, with its initial
value v; as a parameter. The function terminates when p; executes the instruction
return (either at line 8, or at line 21): we say that p; decides on a value v
exactly when p; executes return v. Function consensus() uses the stubborn
communication primitives given in Figure 1, and runs concurrently with the two
sender and receiver tasks 3. The function consensus consists of two concurrent
tasks: the first task executes lines 6-8, while the second task executes lines 9-45.

The first task handles the reception of the decision message (p;, 7, v, decide)
(line 6), and reissues the message to all (line 7) before returning. The fact that this
decision message is the last message sent by p;, together with the 2-stubbornness
property* of the communication channels (Property 3.2), ensures that if a green
process decides, then every green process eventually decides.

The second task is the central part of the algorithm. Every message sent by
a process p; includes the current round number r; of p; (e.g., line 12), and every
message received by p; at round r; carries a round number equal or larger than 7r;
(e.g., lines 15 and 38). Each round of the consensus algorithm is divided in two

phases, numbered 1 and 2:

e in phase 1 of every round r, the consensus algorithm tries to decide on the

estimate value of the coordinator p. of round r.

e if the coordinator of round r is suspected to be red, then phase 2 of round

3Note that in the algorithm we use the primitives send and receive instead of the defined
stubborn primitives stb — send and stb — receive. Since hereafter we will only use stubborn
channels, this substitution does not arise any ambiguity and helps both the algorithmic and
textual presentations.

4k =1 would be sufficient here.

16

r is used to define a new consensus try, to be performed in round r + 1.
The initial value of process p; for the consensus try of round r + 1 is the

estimate of p; at the end of phase 2 of round r.

Phase 1 (lines 10-21). At line 12, the coordinator sends its current esti-
mate to all processes (message (p;,ri,1,estimate;)). The estimate is a pair
(process number, initial value) (see line 2) where process number indicates the
identity of the process proposing that estimate. The third field in the message
(ps, 74, 1, estimate;) indicates that the message is sent during phase 1. The mes-
sage (pi,Ti, 1, estimate;) is received by a process p;°> at line 15: p; adopts (at
line 17) the estimate received from p;, and p; forwards (at line 18) this estimate
to all. Note that lines 17 and 18 are not performed by the coordinator, because
it does not need to adopt its own estimate, and it has already sent its estimate
to all.

Process p; decides at line 21 on estimate;.second, as soon as p; has received
(pj, 74, 1, estimate;) from a majority of processes. At line 20, process p; sends its
decision to all and does not send any further message. This ensures, along with
the 2-stubbornness property of the communication channels (Property 3.2) that,

if p; is a green process, then every green process eventually also decides.

From phase 1 to phase 2 (lines 22-29). If no process suspects the coordinator
in phase 1, then the decision value is the estimate of the coordinator. If a process
p; suspects the coordinator at line 22 (notation: coord; € D,,), then p; sends
(ps, 74, 1, suspicion) to all (line 23), indicating that p; suspects the coordinator
of round r;. Once a process p; knows that the coordinator is suspected by a
majority of processes, then p; proceeds to phase 2 (line 28). Moreover, upon
proceeding to phase 2, p; sends (p;, 4, 2, estimate;) to all (line 29). The reception

of this message at line 30 forces a process to move to phase 2 (line 32). Upon

5 A message sent by p; to all is also received by p;.

17

proceeding to phase 2, every process p; similarly sends (p;, 73,2, estimate;) to
all (line 33). The condition “phase; = 17, at line 34, prevents a process that
has already sent (p;, 7, 2, estimate;) to all, at line 29, from sending this message

again.

Phase 2 (lines 30-37). In phase 2, process p; receives messages (p;, i, 2, estimate;)
(line 30). Upon each reception of such a message, p; adopts the estimate; value,
if and only if estimate;. first = coord; (line 35), i.e., if and only if the estimate
is that of the coordinator of the current round. Once p; has received the message
(pj, 74, 2, estimate;) from a majority of processes, p; can switch to phase 1 of the

next round (lines 36 and 37).

4.2.3 Handling messages from larger rounds

The relevant additions to the algorithm of Schiper [12] are at lines 38 to 42, where
the reception of messages from larger rounds is handled. If p;, at any phase of
round r;, receives a message (pj,;, phase;, estimate;) from a process p; in a
round r; > 7; (line 38), p; adopts estimate; as its own estimate and directly joins
p; in round r; (lines 39 to 42). In round r;, process p; carries on its execution
where p; would have received the (p;,r;, phase;, estimate;) message in round 7,

(i.e., at lines 16 or 31).

4.3 The proofs

We prove the correctness of the algorithm of Figure 2 under the assumption of a
majority of green processes and a red detector of class ¢8,.

In this section, we say that a process p; reaches round p, when the current
round r; of p; is such that r; > p, and we say that p; reaches phase 2 of round p

if either (1) r; = p and phase; = 2, or (2) r; > p.

18

4.3.1 Preliminary lemmas

Our proof structure follows that of [12]. We first introduce five lemmas that are
related to the termination property of consensus, then we introduce three other

lemmas that are related to the validity and agreement properties®.

Lemma 4.1 (Termination-1) If one green process decides, then every green

process eventually decides.

ProOF: Let p; be a green process that decides. Process p; can do so either
at line 8 or at line 21. In both cases, p; sends the decision to all (message
(pi,j,v;, decide) sent at line 7, message (p;, 7, estimate;.second, decide) sent at
line 20) as p;’s last message before returning. By the 2-stubbornness property
(Property 3.2) of the communication channels, each green process that has not

yet decided, eventually receives (p;,r;,v;, decide) (line 6), and also decides. O

Lemma 4.2 (Termination-2) Let r be any round such that r > 0. The first

process to reach round r leaves round r — 1 at line 37.

PROOF: Assume that p; is the first process to reach round r. To reach round
r, either (1) p; executes line 37 of round r — 1, or (2) in a round smaller than r
process p; receives some estimate message at line 38 from some process at round
r. Case (2) is in contradiction with the assumption that p; is the first process to

reach round r. O

Lemma 4.3 (Termination-3) There is a round p* such that no process reaches

any round r > p*.

6The reader familiar with [12] may notice that Lemmas 4.1, 4.5, 4.6, 4.7, and 4.8 match
respectively Lemmas 4.1, 4.2, 4.3, 4.4, and 4.5 in [12].

19

PROOF: By the eventual weak accuracy property of &S, there is a time ¢ after
which some green process p. is no longer suspected by any green process. Let
r be the largest round that some process has reached at time ¢, and p* > r the
smallest round in which p, is the coordinator. The proof is by induction on the

round number 7.

Base step: No process reaches round p* + 1.

The proof is by contradiction. Let p; be the first process to reach round p* + 1.
By Lemma 4.2, process p; can only proceed to round p* + 1 if p; executes line 37
at round p*. To do so, p; must have received a majority of (p;, p*, 2, estimate,)
at line 30. These (p;, p*, 2, estimate;) messages can only be sent if some process
has received a majority of (p;, p*, 1, suspicion) messages at line 25, which in turn
implies that a majority of processes suspected p. at line 22 in round p*. However
round p* happens after ¢t and, by assumption, a majority of processes are green

and no green process suspects p. after time t: a contradiction.

Induction step: If no process reaches some round r > p*, then no process reaches
round 7 + 1.

By Lemma 4.2, the first process to reach round r + 1 leaves round r at line 37.
By the induction hypothesis, no process reaches round r, and thus no process
reaches round r + 1.

O

Lemma 4.4 (Termination-4) For any to consecutive messages m and m' that

a process p sends to q, m and m' cannot both be suspicion messages.

PROOF: A process p; can only send a suspicion message once per round (line 23)
because once p; sends the suspicion message, coordSuspected; becomes true
(line 24) and can only be assigned false if p; enters another round (lines 10 or

39).

20

Consider that process p; sends (p;, p, 1, suspicion) at line 23 of round p. Pro-
cess p; can only send another suspicion message if p; reaches some round p’' > p.
We prove that before sending another suspicion message, p; needs firstly to send
some estimate message. Process p; can reach round p' either 1) at line 37 (in
which case p' = p + 1), or 2) at line 39.

In case 1, p; reached phase 2 of round p either at line 28, or at line 32. In
both cases, p; sends a (p;, p, 2, estimate;) message (line 29 or 33).

In case 2, p; receives a (pj, p', phase;, estimate;) message at line 38. If phase; =
1 then p; moves to line 16 and round p', and sends a (p;, p', 1, estimate;) at line 18
since p; cannot be the coordinator of round p'. If phase; = 2 then p, moves
to line 31 of round p', and sends a (p;, o', 2, estimate;) at line 33 since p; has

phase; = 1. O

Lemma 4.5 (Termination-5) For any round p, if no green process decides in

a round r < p, then every green process eventually reaches round p + 1.

PRrOOF: Let p be the smallest round for which the lemma does not hold: no
green process decides in round p, and some green process never reaches round
p+ 1. As p is the smallest of such rounds, each green process eventually reaches
round p. We will contradict the hypothesis by proving the following successive

results:

i) At least one green process eventually reaches phase 2 of round p.
ii) Each green process eventually reaches phase 2 of round p.

iii) Each green process eventually reaches round p + 1.

Proof of (i): Assume that no green process decides in round p, and no green
process reaches phase 2 of round p. We consider two cases: the coordinator of

round p, process p., 1) is a green process, or 2) is a red process.

21

In case 1, process p, is a green process and sends (pe, p, 1, estimate,) to all at
line 12. As by hypothesis, p. does not reach phase 2 (and does no suspect itself),
this message is the last message p. ever sends. By the 2-stubbornness property
of the communications channels all green processes eventually receive p.’s mes-
sage at line 15. All green processes (except p.) send then a (p;, p, 1, estimate;)
message to all at line 18. Since no green process leaves phase 1 of round p, each
green process can only send one further message (possibly a (p;, p, 1, suspicion)
message at line 23) after sending the (p;, p, 1, estimate;) message. By the 2-
stubbornness property of the communication channels all green processes even-
tually receive a majority of (pj, p, 1, estimate;) messages at line 15. Thus the
condition msgCounter = [@] of line 20 eventually becomes true for every
green process, i.e., every green process eventually decides in round p: a contra-
diction with the fact that no green process decides.

In case 2, process p. is a red process. By the eventual strong completeness
property of ©S,, p. is eventually suspected by every green process. Every green
process that suspects p. sends a (p;, p, 1, suspicion) message to all at line 23. As
by hypothesis, no green process reaches phase 2, all green processes eventually

receive a majority of (pj, p, 1, suspicion) messages at line 25 and reach phase 2:

a contradiction with the fact that no process reaches phase 2 of round p.

Proof of (ii): By (i), at least one green process, say p, eventually reaches phase
2 of round p. Process py sends (pg, p, 2, estimatey) to all at line 29. This is the
last message py may send in round p.

Assume that there is some green process p; that does not leave phase 1 of
round p. We consider two cases: 1) (pg, p, 2, estimatey) is the last message py
ever sends, or 2) p sends some further estimate message in a round p’ > p.

In case 1, by the stubbornness property of the communication channels, pro-
cess p; eventually receives the (pg, p, 2, estimatey,) message at line 30, and reaches

phase 2 at line 32.

22

In case 2, by Lemma 4.3, no process reaches any round larger than p*,and
hence p;’s last message must be sent in a round p < p’ < p*. As a process only
sends suspicion messages or estimate messages, by Lemma 4.4, one of the two
last messages of py is an estimate message, i.e., a (pg, o', —, estimatey) message.
By the 2-stubbornness property of the communication channels, p; eventually
receives this message at line 38 and moves to round p', thus leaving phase 2 of
round p.

Both cases contradict the fact that there is some green process that does not

leave phase 1 of round p.

Proof of (#i): By (ii) all green processes reach phase 2 of round p. In case 2 of
(ii), all green processes eventually reach some round p < p' < p* and so reach
round p+ 1. Therefore we need only to prove that all green processes leave round
p when (p;, p, 2, estimate;) is the last estimate message any green process ever
sends.

As all green processes reach phase 2 of round p and send a (p;, p, 2, estimate;)
message either at line 29 or at line 33, as their last message. By the 2-stubbornness
property of the communication channels, all green processes eventually receive a
majority of such messages at line 30. Then, condition msgCounter = [(nZﬂ} of

line 36 becomes true and each green process proceeds to round p + 1. O

Lemma 4.6 (Validity) All messages (p;, p, 1, estimate;) sent during phase 1 of

round p carry the estimate. value of the coordinator p. of round p.

Proo¥r: The proof is by induction on the length of the send-receive chain of
messages (p;, p, 1, estimate;). The messages (p;, p, 1, estimate;) are numbered as

follows:

e the message (p;, p, 1, estimate;) sent by the coordinator at line 12 is num-

bered 0;

23

e if the message (pj, p, 1, estimate;) received by p; at line 15 is numbered £,

then the message (p;, p, 1, estimate;) sent by p; at line 18 is numbered &+ 1.

Base step. Trivially, for the message (p;, p, 1, estimate;) number 0, estimate; is

the estimate of the coordinator of round p.

Induction step. Consider a message (p;, p, 1, estimate;) number k + 1. This
message is sent by some process p; at line 18, after having received, at line 15,
the message (pj, p, 1, estimate;) number k. By induction hypothesis, this message
carries the estimate, value of the coordinator of round p. Therefore, because of
line 17, the message (p;, p, 1, estimate;) also carries the estimate. value of the

coordinator of round p. O

Lemma 4.7 (Agreement-1) If a process (green or red) decides v in round p,

then v is the “estimate..second” value of the coordinator p. of round p.

PROOF: A process p; can decide in round p either at line 8, or at line 21. However,
process p; can decide at line 8 of round p if and only if there is a process p; that
has decided at line 23, as it is not possible for all processes that decide in round
p to do so at line 8. Consider thus the decision of p; at line 21. If p; is the
coordinator of round p, then estimate;.second is trivially the estimate..second
value of the coordinator of round p. Otherwise, by line 17, the decision is on the
first estimate value received by p; at line 15. By Lemma 4.6, the value received

is the estimate of the coordinator of round p. O

Lemma 4.8 (Agreement-2) If a process (green or red) decides v in round p,

then every process p; in any round r > p has estimate;.second = v.

PROOF: If every process p; that leaves round p does so with estimate;.second = v
then the result holds for any r > p.
We prove by contradiction that every process p; that leaves round p does so

with estimate;.second = v. Let p; be the first process to leave round p such that

24

estimate;.second # v. Process p; cannot have left round p upon the reception
of a message at line 38, because in this case p; would have received a message
from some process p; in a round larger than p such that estimate; # v, which
would imply that some process had already left round p with estimate # v, a
contradiction with the fact that p; is the first of such processes. So p; must have
left round p at line 37.

A process p; can decide in round p either at line 8, or at line 21. However,
process p; can decide at line 8 of round p if there is a process p; that has decided
at line 21, as it is not possible for all processes that decide in round p to do so
at line 8. Consider thus the decision at line 21.

Let p; be a process that decides v in round p at line 21. By Lemma 4.7, v is
the estimate..second value of the coordinator p. of round p. Moreover, because
of line 20, when p; decides at line 21, a majority of processes in phase 1 have
sent (pj, p, 1, estimate;) to all. By Lemma 4.6, every estimate sent in phase 1 is
the estimate of the coordinator p. of round p. Thus when p; decides at line 21, a
majority of processes (including p; itself) have their estimate equal to the estimate
of p.. Let us call this set CoordEstimateSet,: we have |CoordEstimateSet,| > n/2.

Consider now a process p; that leaves round p at line 37. This is only possible
after pj, has received the message (pj, p, 2, estimate;) from a majority of processes,
including from itself (line 36). Let us call this set AuthorizationSet;: we have
|AuthorizationSety| > n/2. Altogether we have |AuthorizationSety| > n/2 and
|CoordEstimateSet,| > n/2, therefore AuthorizationSet, N CoordEstimateSet, # ().
This means that py receives the message (pj, p, 2, estimate;) at line 30 from at
least one process in CoordEstimateSet,, and at line 35, process py, sets estimate.second
to v. Thus, when p, proceeds to round p + 1, we have estimatey.second = v. A

contradiction. O

25

4.3.2 Correctness proof of the consensus algorithm

We now prove, based on the previous lemmas, that the consensus algorithm of

Figure 2 satisfies the Termination, Validity and Uniform Agreement properties.

Proposition 4.9 (Termination) The consensus algorithm of Figure 2 satisfies

the Termination property.

PrROOF: By the eventual weak accuracy property of ©S,, there is a time ¢ after
which some green process py is not suspected by any green process. Let p be
a round such that (i) py is the coordinator of p, and (ii) every green process
enters round p after ¢ (if such a round does not exist, then by Lemma 4.5 one
green process has decided in a round p' < p, and so, by Lemma 4.1, every
green process decides, and the Termination property holds). As a majority of
processes are green and no green process suspects px in round p, the condition
suspCounter; = [@1 at line 28 remains false forever for every p; in round
p. In round p, process py sends (pg, p, 1, estimatey) to all (line 12). As py is a
green process and py either decides or (py, p, 1, estimatey) is the last message py
sends to all processes, by the 2-stubbornness property of communication channels,
each green process eventually receives (pg, p, 1, estimate) (line 15). Moreover,
at line 18, each green process sends (p;, p, 1, estimate;) to all. As a majority of
processes are green, and each green process p; either decides or (p;, p, 1, estimate;)
is its last messages, by the 2-stubbornness property of communication channels,

any green process that does not decide by receiving a “decide” message (line 6),

will receive enough estimates to decide at line 21. O

Proposition 4.10 (Validity) The consensus algorithm of Figure 2 satisfies the
Validity property.

PROOF: Assume by contradiction that Validity does not hold. Then some process
p; sets estimate;.second to a value that is not the proposal of any process. Let p

be the smallest round in which this happens.

26

Case 1. Assume that this happens in phase 1 of round p, i.e., at line 17.
By Lemma 4.6 every estimate sent in phase 1 of round p is the estimate of the
coordinator p, of round p. If p = 0, estimate..second is the proposal of p.. A
contradiction. If p > 0, then estimate..second is the estimate of p. at the end
of round 7 < p. As by hypothesis p is the earliest round in which some process
p; sets estimate;.second to a value that is not the proposal of some process, the
value estimate..second is the proposal of some process. A contradiction.

Case 2. Assume that this happens in phase 2 of round p: some process sets
for the first time estimate;.second to a value that is not the proposal of some
process in phase 2 of round p. This can only occur at line 35, where estimate; is
the estimate received at line 30. Any estimate received at line 30 is sent by some
process either at line 29, or at line 33. In both cases, the estimate sent is the
estimate of some process in phase 1 of round p. Thus some process must have
set, in phase 1, its estimate to a value that is not the proposal of some process,
in contradiction with the result established by Case 1.

Case 3. Assume that this happens at line 38 (either in phases 1 or 2): some
process p; sets for the first time estimate;.second to a value that is not the
proposal of some process. Process p; must receive a (pj, o', phase;, estimate;)
with p’ > p and such that estimate;.second is not the proposal of some process.
Since p is the smallest round in which some process adopts such an estimate,
some process must have adopted estimate;.second in round p either in case 1 or

case 2 (above), which have been proven to be impossible. A contradiction. O

Proposition 4.11 (Uniform Agreement) The consensus algorithm of Figure

2 satisfies the Uniform Agreement property.

PROOF: Assume that a process p; (green or red) decides v in round p. We prove
that no other process p; can decide on a different value.
Assume that p; decides in round p'. If p' = p, by Lemma 4.7, p; and p; both

decide on the estimate..second value of the coordinator p. of round p, i.e., on

27

the same value.
Consider the case p' > p (if p' < p, rename p; to p;, and p; to p;). By Lemma
4.8, every process p; that begins round p’ > p, does so with estimate;.second = v.

By Lemma 4.7, the value decided by p; in round p' is also v. O

Propositions 4.9, 4.10, and 4.11 prove that the algorithm of Figure 2 solves

consensus in the g/r-model.

5 The weakest red detector for solving consensus

We prove in this section that, as in the crash-stop model &S is the weakest class
of failure detectors for solving consensus [4], in the crash-recover model ¢S, is
the weakest class of red detectors for solving consensus. We show however that,
unlike in the crash-stop model, the class OW, is strictly weaker than the class 8,
(in the crash-stop model, the classes &S and OW are equivalent). Hence, OW,
does not solve consensus (i.e., GW, is too weak to solve consensus). Informally,
the proof of equivalence between ¢S and OW in the crash-stop model uses the
fact that eventually all faulty processes crash, and therefore stop sending and
receiving messages. In the g/r-model, this is no longer true: at any time, red

processes might send and receive messages.

5.1 Definitions

We first introduce some definitions that are patterned after the model of [4], and

that are required in the following sections.

Failure patterns Processes can fail by crashing. After a crash processes may
or may not recover. We assume a discrete global clock to which processes

do not have access’, and ®, the range of the clock ticks, is the set of natural

"This global clock is a fictional device helping the presentation of our model.

28

numbers. A failure pattern is a function F' : ® — 2* where F(t) denotes
the set of crashed processes at time t. We say that a process p is green in F
if 3, Vt' > t:p & F(t'), and that a process p is red in F' if p is not green in

F. We assume that in any failure pattern, there is at least a green process.

Red detector histories and classes. A red detector history is a function
R : Y x ® — 2% where R(p,t) denotes the set of processes suspected
to be red by process p at time t. A red detector is a function D that maps
each failure pattern F' to a set of red detector histories. A red detector
class is a set of red detectors. We say that a red detector class D, solves a
problem P, if there is an algorithm that solves P with any red detector of
class D,. Given two red detector classes D, and D], D, is said to be weaker
than D;, if there is an algorithm that transforms any red detector of class
D, into some red detector of class D.; D, and D, are said to be equivalent
if D, is weaker than D! and D, is weaker than D.; D, is said to be strictly

weaker than D], if D, is weaker than D;, but D, and D, are not equivalent.

Configurations, schedules and runs. A configuration of the system is a pair
(I, M) where I is a function mapping each process p to its local state, and
M is the set of messages sent by every process. A configuration (I, M) is
an initial configuration if M = (). A non null step is a tuple s = (p, m, d, A)
uniquely defined by the identity of the process p that takes the step, the
message m received by p, the red detector value d during the step, and the
algorithm A. A non null step s = (p, m, d, A) is applicable to a configuration
(I, M) if and only if m € M U{A}. The unique configuration that results
from applying s = (p,m,d, A) to C = (I, M) is noted s(C). A null step
s = A is applicable to any configuration C = (I, M), and s(C) = C.

A schedule of an algorithm A is a (possibly finite) sequence of steps of A
and null steps, noted S = S[1]; S[2];...S[k];.... A schedule S is applicable
to a configuration C if (1) S is the empty schedule, or (2) S[1] is applicable

29

to C, S[2] is applicable to S[1](C), etc.

A partial run of A using a red detector D,., is a tuple Y =< F, R,C,S,T >
where, F' is a failure pattern, R is a red detector history such that R €
D, (F), C is an initial configuration of A, T is a finite sequence of increasing
time values, and S is a finite schedule of A, such that: (1) |S| = |T, (2)
S is applicable to C, (3) for all ¢ < |S| where S[i] = (p,m,d, A), we have
p & F(T[i]) and d = R(p,T[i]), and (4) for all + < [S| where S[i] = A, we
have p € F(Ti)).

A run of an algorithm A using a red detector D, isatuple Y =< F, R, C,S,T >
where F' is a failure pattern, R is a red detector history such that R €
D.(F), C is an initial configuration of A, S is an infinite schedule of A,
T is an infinite sequence of increasing time values, and in addition to the
conditions of a partial run ((1), (2) and (3) above), the following condition
is satisfied: (4) messages that are sent are received according to the fairness

proposition (Proposition 2.3) of the communication channels.

Let T =< F,R,C,S,T > be a partial run of some algorithm A. We say
that Y =< F', R',C", S, T" > is an extension of T, if Y’ is either a run or
a partial run of A, and F' = F, R' =R, C' = C, Vi, T[1] < i < T[T :
S'[i] = S[i) AT'[i] = Ti].

5.2 O8, is the weakest class for solving consensus

This result follows that of Chandra, Hadzilacos and Toueg [4], which states that,

in the crash-stop model, &S is the weakest class for solving consensus.

Proposition 5.1 S, is the weakest class for solving consensus in the g/r-model,

with a magjority of green processes and fair lossy channels.

Proo¥F: The proof is by contradiction. Assume that there is a red detector

class, D, strictly weaker than ©8,., which allows for solving consensus in the g/r-

30

model. The crash-stop model satisfies the definitions of the g/r-model, and thus
D, allows for solving consensus in the crash-stop model which is in contradiction
with the result of [4] (i.e., OS is weakest class that allows for solving consensus).

O

5.3 <OW, is not sufficient for solving consensus

In the following, we show that in a system with at least three processes, ¢S, is
strictly stronger than OW, 8. As ©S, is the weakest class that solves consensus
(Proposition 5.1), then, in the g/r-model, GW, does not solve consensus.

As OW, is obviously weaker than ©S8,., showing that OGW, is strictly weaker
than ©S8, comes down to show that there is a red detector of class GW,., that
no algorithm can transform into a red detector of class ¢&,. In the following,
we define a specific red detector, that we note D,(p;,p;), of class OW,, and
we prove that if an algorithm Ap, . ;) transforms D, (ps, p;) into some red
detector A that satisfies strong completeness, then A does not satisfy eventual
weak accuracy (i.e., A cannot be of class ¢S,). We note output(A) the variable

used by Apr(pi,pj)_,A to simulate the behavior of A.

Red detector D, (p;,p;). The red detector D, (p;, p;) we use in our proof is de-
fined using two processes p; and p; of ¥, and the notion of (7, j)-pattern:
we say that a failure pattern F is a (4, j)-pattern, if either p; or p; is red in
F (only one of them can be red). The red detector D, (p;,p;) is specified
as follows: (a) In any (i, j)-pattern, (a.1) p; and p; permanently suspect
every process, and (a.2) Vpg,px # pi A Pk # Pj, Pk permanently suspects
every other process except p; and pj; (b) In every run in which F' is not
a (1, 7)-pattern, every red process is permanently suspected by every green

process, and no green process is ever suspected by any green process.

8Tn a system with two processes, strong and weak completeness properties are similar, hence

the two classes are obviously equivalent.

31

Lemma 5.2 D, (p;,p;) is of class OW;.

PRrOOF: The red detector D, (p;,p;) satisfies weak completeness: as (1.1) in any
(¢, j)-pattern, either p; or p; is green and permanently suspects every red process
(since it permanently suspects every process), and (1.2) in any other pattern,
every red process is permanently suspected by every green process. The failure
detector D, (p;,p;) also satisfies eventual weak accuracy as (2.1) in any (3, j)-
pattern, either p; or p; is green and is not suspected by any green process, and
(2.1) in any other pattern, no green process is suspected by any green process.

Hence D, (p;, p;) is of class OW,. O

Lemma 5.3 Consider a system with at least three processes among which, one
may be red. Let Ap,p,pa be any algorithm that transforms Dy (pi,p;) into
some red detector A. Let T =< F,Rp,(p,p.,),C, S, T > be any partial run of
Ap, (pip;)»a where F is a (1, 7)-pattern in which all processes of ¥, except either
pi or pj, are green. If A satisfies strong completeness, then there is an extension
Ty =< F, Rp,(p, p;), C, S, Tx. > of T, where for every green process p € ¥, there
is a time t, T[|T|] < t < Tx[|Tx|], such that for every green process q € X,
p € output(A,t), in Y.

PRroOOF: Consider the partial run T =< F, Rp,(p, p,), C, S, T > of Ap,(p, p)-a
where F is a (4, j)-pattern in which all processes, except either p; or p;, are green.
Let p be any process in .. Let Y/ =< F', Rp_(, .1, C, S, T > be a partial run of
Ap,(pip;)—a such that F' is a (4, j)-pattern similar to F, except that in F', p is
red and behaves like in F' until at least time T[|T|]). As D,(p;,p;) provides the
same values both for F" and F”, Y is a partial run of Ap,(p, »;)»a. By the strong
completeness property of A, there is an extension T}, =< F', Rp,(; 5.1, C, Sp, Tp, >
of Y', such that p € output(A,T,[|T,|])q for every green process ¢ € X. Let Sgysp(p)
be the schedule of Ap,(p,; p;)»a such that S,(C) = Ssuspp)(S(C)). The schedule
Ssusp(p) can be viewed as the schedule needed to put p into the output(A), of

every green process ¢.

32

Consider now the partial run T =< F, Rp,(p, ,),C, S, T >. As D,(p;,p;)
provides the same values both for F' and F', and S, is applicable to C, then
T, =< F, Rp,(p; p;)» Cs Sp, T, > is an extension of T, and for every green process
q, p € output(A,T,[|T,|])4- By iteratively applying the construction of the partial
run T, to every process p € X, the partial run T can be extended to a partial
run Yy =< F, Rp,(p,; p;), C, Sz, Tx > where every process p is put in output(A),

for every green process q. O

Lemma 5.4 Consider a system with at least three processes among which one
may be red. Let Ap,pp—»a be any algorithm that transforms Dy (pi,p;) into
some red detector A. If A satisfies strong completeness, then there is a run of

Ap, (pip;)—»a, where A does not satisfy eventual weak accuracy.

PRrOOF: Consider the partial run Y =< F, Rp,(p,,), C, S, T > where F'is a (i, j)-
pattern in which all processes, except either p; or p;, are green. By Lemma 5.3,
there is an extension Ty =< F), Rp,(p, p;), C, S, Tz > of T, where for every green

process p € 3, there is a time ¢, T[|T

| <t < T%[|Tx|], such that for every green
process ¢ € X, p € output(A,t), in Ty.

Let (I, M) be the configuration Sy (C). Consider now a schedule Sy, defined
by: the reception, according to Proposition 2.3, of all messages in M not received
in Sy , then the reception by every green process of the null message A. The
schedule Sy, is by construction applicable to S(C), and we write Sq(C) =
Smsg(Sx(C)). There is a sequence of increasing time values T, such that To =<
F, Rp,(:.p;), C5Sa, Ta > is an extension of T. In Tg, all messages sent to every
green process before time T'[|T’|] are received by p according to Proposition 2.3
before Tq[|Tq|], and every green process takes at least one step between T'[|T]
and To[|Tql]-

Therefore, given any partial run T of Ap, (p, p,)»>a, Where F'is a (i, j)-pattern
in which all processes, except either p; or p;, are green, we can extend T to a

partial run Yy where every process is suspected at some green process by A.

33

We note Y3 = Yy, T an extension of T obtained by applying the construction
above to T, TL an extension of T obtained by applying the construction above
to Y5, etc., and T = lim;_0o k. T does exist since red processes may take
an infinite number of non null steps (even if red processes also take an infinite
number of null steps in F).

In TS, the properties of a partial run are satisfied, and as every message sent
to a process is eventually received, Proposition 2.3 holds, hence T is a run of

Ap, (p;p;)—a- Furthermore, for any time ¢ and any process p, there is a time t' > ¢,

Di,Pj
such that p € output(A,t'), of every green process g. Hence A does not satisfy

eventual weak accuracy in Y. a

Proposition 5.5 In a system with at least three processes among which, one
may be red, the red detector class OW, 1is strictly weaker than the red detector

class OS,.

Proor: By Lemma 5.2 and Lemma 5.4, no algorithm can transform any red
detector of OGW,, into some red detector of ©S,. In other words, ¢S, is not
weaker than OW,. As OW, is weaker than OS,, then OW, is strictly weaker
than ©S,. O

6 Related work

In this section we compare our work with the following references [5, 12, 7, 6, 2,
10]. We start by a comparison of the system models. While our system model
is an extension of that considered in [5, 12] and it is clearly more general, the
differences to the models considered in [7, 6] are less obvious but fundamental.

We compare then our consensus algorithm with those presented in [5, 12, 7, 10].

34

6.1 Model

In the model considered in [5, 12], processes that fail do so by crashing and,
afterwards do not take any further step (crash-stop semantics). With respect to
process failure semantics, our abstract g/r-model is more general as processes can
crash-stop, and still crash-recover.

To our knowledge, only [7, 6] address the problem of solving consensus in an
asynchronous system, tolerating processes crash-recovery failures and omission
failures. In [7], the authors consider a crash-recover model with network parti-
tions, where eventually (1) there is a connected majority of processes that never
crash, and (2) this majority is disconnected from the rest of the processes. In [6],
these two conditions appear in the majority-stable predicate formulated according
to the timed asynchronous model’s timeliness criterium.

While in our model assumption (1) exists as the requirement of a majority
of green processes, we make no assumption (2) on the red processes inability
to communicate (eg. with green processes). That is in the g/r-model, at any
time, messages sent by green processes may be received by red processes, and
messages sent by red processes may be received by green processes. As discussed
in Section 5, it turns out that in the model of [7], OW is the weakest failure
detector for solving consensus while in the g/r-model GW, is too weak.

Our definition of the red detector class &8, generalizes the definition of failure
detector class &S [5]. While in ©S suspicions are specified in terms of crashed
processes, in S, suspicions are specified in terms of red processes. This gener-
alization is similar to that found in [2], where the crashed processes is replaced
by faulty process in order to encompass crashed and unreachable processes. Our

generalization is a mere syntactic transformation, however.

35

6.2 Algorithm

As we mentioned in Section 4, our algorithm is an extension of Schiper’s algo-
rithm [12], which like the original algorithm of Chandra and Toueg [5], considers
reliable channels and process crash-stop semantics. Beside the fact that Schiper’s
algorithm has an early delivery property, an important reason why we have cho-
sen to extend that algorithm (instead of Chandra-Toueg’s one), is that it has
the property that a process p does not leave a round r for round r + 1, unless p
knows that a majority of processes suspect the coordinator in round r. This is
an important property as red processes may always suspect the coordinator and
keep sending their suspicions to all. The requirement of collecting a majority of
suspicions in each round before leaving it, actually precludes red processes from
indefinitely carrying all processes from one round to another. We could have
added this property to the original Chandra-Toueg’s algorithm, but this would
have ended in a very complex algorithm.

Beside this difference, our consensus algorithm tolerates omission failures,
and has the important practical advantage of having a memory requirement that
increases logarithmically with the round number instead of linearly. Assuming
reliable channels over a fair lossy channels requires each message to be buffered for
retransmission until the message is acknowledge, which implies buffering £ mes-
sages per round r. Using 2-stubborn channels instead, allows to reduce buffering
to two messages at every time. In both cases, every message carries the round
number in which it has been sent, and thus its storage requirement is O(logar).
With the algorithms of [5, 12|, the storage requirements are O(k - r - loger) while
in ours (similarly to [10, 7]) it is O(2 - logar).

36

7 Concluding remarks

By stating the conditions under which the consensus problem can be solved in
terms of failure detector properties, Chandra, Hadzilacos and Toueg, defined
a rigorous framework for reliable distributed computing [4, 5|. However, the as-
sumptions made on the reliability of the communication channels and the process
crash-stop semantics, make the framework of limited use in practical distributed
systems, where messages may indeed be lost and processes may recover after a
crash. The motivation of this paper was to precisely extend that framework, by
alleviating the need for those assumptions.

We considered a system model where a process is said to be green, when it
eventually is never crashed, and said to be red otherwise. We presented an algo-
rithm that solves consensus in a system where, (1) there is a majority of green
processes, (2) communication channels preserve a minimal fairness property re-
garding message loss, and (3) the failure detector ensures eventual weak accuracy
(i.e., eventually, there is a green process that is never suspected by any green pro-
cess), and (strong completeness) (i.e., eventually, every red process is suspected
by every green process). In runs where assumptions (1), (2) or (3) do not hold,
our algorithm still ensures consensus safety (e.g., no two processes will ever reach
different decisions).

Although assumption (1) above formally means that eventually a majority of
processes never crash, in fact, the assumption is required to hold only enough
time to allow some green process to decide (at most the time for n rounds of
the consensus algorithm). Assumption (2) intuitively states that a message sent
by a green process to a green process must have a non null probability of being
received. Without such a property, any interesting distributed problem would
be trivially impossible to solve. Finally, assumption (3) is for example satisfied
whenever the processes in the green majority communicate in a timely manner

(given a failure detector implemented with time-outs for instance).

37

We have shown that assumption (3) above is actually required for any algo-
rithm that solves consensus in the crash-recover model. Interestingly, in contrast
to the crash-stop model, eventual weak accuracy and weak completeness (i.e.,
eventually, every red process is suspected by some green process) are not suf-
ficient to solve consensus. This shows that the crash-recover model is strictly
weaker than the crash-stop model, as more knowledge about failures is required
to solve consensus.

Our algorithm has the nice property that, in runs where no process crashes
or is suspected to have crashed (the most frequent runs in practice), consensus is
reached after (only) two communication steps. This early delivery property [12],
together with the relatively weak assumptions we make on the underlying system,
make our algorithm adequate for solving consensus in practice. Furthermore, our
algorithm can easily be extended to solve consensus related problems, such as

atomic broadcast [5] and non-blocking (weak) atomic commitment [9].

References

[1] Y. Afek, H. Attiya, A. Fekete, M. Fischer, N. Lynch, Y. Mansour, and L. Zuck.
Reliable communication over unreliable channels. Journal of the ACM, 41(6), July
1994.

2] 0. Babaoglu, R. Davoli, and A. Montresor. Failure detectors, group member-
ship and view-synchronous communication in partitionable asynchronous systems.
Technical Report UBLCS-95-18, University of Bologna, November 1995.

[3] A. Basu, B. Charron-Bost, and S. Toueg. Simulating reliable links with unreliable
links in the presence of process crashes. In 10th Intl. Workshop on Distributed
Algorithms (WDAG’96). Springer Verlag, LNCS 1151, October 1996.

[4] T. Chandra, V. Hadzilacos, and S. Toueg. The weakest failure detector for solving
Consensus. Journal of the ACM, 43(4), July 1996.

[6] T. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed
systems. Journal of the ACM, 43(1), March 1996.

[6] F. Cristian and C. Fetzer. The Timed Asynchronous system model. Technical
Report CSE97-519, Department of Computer Science, University of California
San Diego, 1997.

38

[7] D. Dolev, R. Friedman, I. Keidar, and D. Malkhi. Failure detectors in omission
failure environments. Technical Report TR96-1608, Cornell University, 1996.

[8] M. Fischer, N. Lynch, and M. Paterson. Impossibility of distributed Consensus
with one faulty process. Journal of the ACM, 32(2), April 1985.

[9] R. Guerraoui. Revisiting the relationship between non-blocking atomic com-
mitment and Consensus. In 9th Intl. Workshop on Distributed Algorithms
(WDAG’95). Springer Verlag, LNCS 972, September 1995.

[10] R. Guerraoui, R. Oliveira, and A. Schiper. Stubborn communication channels.
Technical report, LSE, Département d’Informatique, Ecole Polytechnique Fédérale
de Lausanne, Switzerland, December 1996.

[11] N. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[12] A. Schiper. Early consensus in an asynchronous system with a weak failure detec-
tor. Distributed Computing, 10(3), April 1997.

Author’s brief biography

Rui Oliveira is a PhD student at the EPFL (Federal Institute of Technology in
Lausanne) on leave from Universidade do Minho. Rui Oliveira received a MS in
computer science from the Universidade do Minho in 1994. His current research
interests are fault-tolerant distributed algorithms and systems. Rui Oliveira is a

member of the Association for Computing Machinery.

Rachid Guerraoui is a lecturer and research associate at the EPFL (Federal
Institute of Technology in Lausanne). Rachid Guerraoui received a PhD in com-
puter science from University of Orsay in 1992. His current research interests
are fault-tolerant distributed algorithms and systems, as well as object-oriented

computing.

André Schiper has been a professor of Computer Science at the EPFL (Federal
Institute of Technology in Lausanne) since 1985, leading the Operating Systems
laboratory. During the academic year 1992-93 he was on sabbatical leave at Cor-

nell University, Ithaca (NY). He was the program chair of the 1993 International

39

Workshop on Distributed Algorithm (WDAG-7), and co-organizer of the Interna-
tional Workshop ” Unifying Theory and Practice in Distributed Systems” (Schloss
Dagstuhl, Germany, September 1994). He is member of the ESPRIT Basic Re-
search Network of Excellence in Distributed Computing Systems Architectures
(CaberNet). His current research interests are in the areas of fault-tolerant dis-
tributed systems and group communication, which has led to the development of

the Phoeniz group communication middleware.

40

