
Dynamic Content Web Applications: Crash, Failover, and Recovery Analysis

Luiz E. Buzato∗

IC, Unicamp

Campinas, Brasil

buzato@ic.unicamp.br

Gustavo M. D. Vieira†

IC, Unicamp

Campinas, Brasil

gdvieira@ic.unicamp.br

Willy Zwaenepoel‡

SCCS, EPFL

Lausanne, Switzerland

willy.zwaenepoel@epfl.ch

Abstract

This work assesses how crashes and recoveries affect

the performance of a replicated dynamic content web ap-

plication. RobustStore is the result of retrofitting TPC-W’s

on-line bookstore with Treplica, a middleware for build-

ing dependable applications. Implementations of Paxos

and Fast Paxos are at the core of Treplica’s efficient and

programmer-friendly support for replication and recovery.

The TPC-W benchmark, augmented with faultloads and de-

pendability measures, is used to evaluate the behaviour of

RobustStore. Experiments apply faultloads that cause se-

quential and concurrent replica crashes. RobustStore’s per-

formance drops by less than 13% during the recovery from

two simultaneous replica crashes. When subject to an iden-

tical faultload and a shopping workload, a five-replicas

RobustStore maintains an accuracy of 99.999%. Our re-

sults display not only good performance, total autonomy

and uninterrupted availability, they also show that it is sim-

ple to develop efficient recovery-oriented applications using

Treplica.

1 Introduction

In this work, we evaluate how crashes, failovers, and

recoveries affect the performance and availability of Ro-

bustStore, a highly available dynamic content web appli-

cation. RobustStore has been implemented by retrofitting

the stand-alone on-line bookstore specified by TPC-W [6]

with Treplica, a middleware for building dependable appli-

cations [22]. Thus, the assessment of RobustStore is, in

fact, the assessment of the fitness of Treplica as a high-

availability support for dynamic content web applications.

∗Corresponding author. On a sabbatical leave at EPFL. Supported by

CNPq grant 201934/2007-8. Address: Caixa Postal 6176, 13083-970,

Campinas, São Paulo, Brasil. Phone: +55 19-3521-5876
†Supported by CNPq grant 142638/2005-6. Address: Caixa Postal

6176, 13083-970, Campinas, São Paulo, Brasil. Phone: +55 19-3521-0345
‡Address: Building BC 407, Station 14, CH-1015, Lausanne, Switzer-

land. Phone: +41 21 693 64 89

The TPC-W benchmark, augmented with faultloads and de-

pendability measures, is used to evaluate the behaviour of

RobustStore.

The process of recovering failed replicas is a main con-

cern for highly available applications because it has a neg-

ative impact on their availability and reliability. Recovery

time is primarily a function of application state size, so a

larger application state should have a larger negative impact

on the application, leading to performance loss. One could

expect even more pronounced performance oscillations in

scenarios with multiple overlapping crashes followed by

multiple recoveries. We show that this is not the case for

RobustStore. In fact, even in the worst case failure scenar-

ios performance stays close to the levels delivered before

the failures occurred.

Experiments apply faultloads that cause sequential and

concurrent replica crashes. For example, RobustStore’s per-

formance drops by less than 13% during the recovery from

two simultaneous replica crashes. When subject to an iden-

tical faultload and a shopping workload, a five-replicas Ro-

bustStore maintains an accuracy of 99.999%. The good

performance, total autonomy and uninterrupted availability

displayed by RobustStore in the experiments indicate that

Treplica offers an efficient support for the construction of

highly available distributed applications.

The remainder of the paper is structured as follows. Sec-

tion 2 describes Treplica, and its use of Paxos [15] and

Fast Paxos [16]. Treplica has been designed with perfor-

mance, modularity and ease-of-use as primary objectives.

The toolkit offers two very simple programming abstrac-

tions for programmers: state machine and asynchronous

persistent queue. Section 3 summarizes the features of

TPC-W, a web application benchmark widely accepted by

industry and academia. In Section 4 we show how we have

dealt with non-determinism, randomness, and database sub-

stitution during the development of RobustStore. Section 5

measures how the performance and availability of Robust-

Store is affected by crashes, failovers, and recoveries. Sec-

tion 6 brings a summary of research that is related to our

work. Section 7 summarizes our results and contributions.

978-1-4244-4421-2/09/$25.00 c©2009 IEEE 229

2 Treplica

This Section describes the features of Treplica that

are relevant to this work; additional information can be

found in [22]. Treplica supports the construction of highly

available applications through either the asynchronous per-

sistent queue or the state machine programming inter-

faces. The main programming abstraction is the persis-

tent queue, a totally ordered collection of objects with the

usual enqueue(Object) and Object dequeue()

methods. Enqueue(Object) is, for efficiency rea-

sons, implemented as an asynchronous primitive. Object

dequeue() has a synchronous (blocking) semantics, as

usually provided by queue implementations available in

programming libraries. Persistence means that a replica

bound to a queue can crash, recover and bind again to its

queue, certain that the queue has preserved its state and

that it has not missed any additional enqueues made by any

other active replicas. Thus, by relying on the total order

guaranteed by the queue and the fact that queues are persis-

tent, individual processes can become active replicas while

remaining stateless; the persistence of their state has been

delegated to the queue.

The asynchronous persistent queue is implemented us-

ing the Paxos [15] and Fast Paxos [16] algorithms. These

algorithms were chosen because they were designed to pro-

vide continuous operation of the application under the oc-

currence of partial failures, without requiring the program-

mer to use reconfiguration protocols. As a consequence of

our choice, Treplica transparently transfers to the applica-

tion the resiliency qualities of these algorithms. In par-

ticular, for N processes the configuration of Treplica used

in this work uses Fast Paxos as long as ⌈3N/4⌉ processes

are working. If fewer processes than ⌈3N/4⌉ but at least

⌊N/2⌋ + 1 are available, Treplica falls back on Paxos. If

fewer than ⌊N/2⌋ + 1 processes are operational, the algo-

rithm blocks until enough failed processes have recovered.

To ease the task of creating replicated applications out

of the objects (operations) held by the asynchronous persis-

tent queue, Treplica provides a higher level abstraction that

supports the construction of replicated state machines. The

state machine programming interface does not contain ex-

plicit support for the definition of states, events (transitions),

conditions, and actions. Instead, it considers an application

a black-box component whose public methods (interface)

implement the set of events, conditions, and actions of a de-

terministic state machine. The application programmer uses

the state machine programming interface of Treplica to treat

all events, conditions, and actions as generic actions—Java

objects—that can be managed by the asynchronous persis-

tent queue and delivered to the application for execution.

A newly (re-)activated state machine sets its state to a

consistent state. After that, the only way to change the state

of the replica is through the execution actions triggered at

the replica by the execute() method of Treplica’s state

machine. At any moment it is possible to obtain a snapshot

of the most recent consistent state of a state machine by

invoking its getState() method.

Actions invoked at one replica are guaranteed to be per-

formed by it only after they have been converted into a mes-

sage and enqueued into the asynchronous persistent queue

for delivery to the other replicas. The original invoker of the

action sees its execution as a call to a (synchronous) block-

ing method. A successful return of the call guarantees that

the action has been performed by the invoker’s replica and

that the effects of the execution are now visible in the local

state.

Recovery: Suppose a replica crashes and some time later

recovers. Initially, a stateless instance of the application is

created and its constructor, in turn, instantiates a state ma-

chine and invokes its getState() method. The method

getState() interacts with the replica’s asynchronous

persistent queue. It is the responsibility of the asynchronous

persistent queue to provide the recovering replica with the

state to which it must be reset, in the form of a locally ob-

tained checkpoint and an associated suffix of the queue’s

history. After resetting its state to that of the checkpoint,

the recovered replica rejoins the remaining replicas. The

queue’s suffix necessary to complete the re-synchronization

of the recovered replica is learned from the active replicas

using Paxos. As soon as the queue re-synchronization ends,

the recovered replica is ready to proceed as if it had not

crashed. From the point of view of the programmer, all that

needs to be done is to call getState(), the rest is trans-

parently handled by Treplica.

3 The TPC-W Benchmark

The TPC-W benchmark specifies all the functionality

of an on-line bookstore, defining the layout of access web

pages, application semantics and the database structure.

The bookstore application is based on a standard three-

tier software architecture. Enterprises [6] and Universi-

ties [10, 11, 19] have extensively used implementations of

TPC-W to assess the performance of machines, operating

systems, and databases as supports for web services. The

TPC-W implementation created at University ofWisconsin-

Madison [3] has been used as the basis for our experiments.

Performance is measured in web interactions per second

(WIPS), with web interactions response time (WIRT) as

a complementary metric. TPC-W defines three workload

profiles that differ from each other by varying the ratio of

book browsing interactions (read access) to book ordering

interactions (write access). The shopping workload profile

specifies that 80% of the accesses are read-only and that

978-1-4244-4421-2/09/$25.00 c©2009 IEEE 230

20% generate updates. The browsing profile specifies that

95% of the accesses are read-only and that only 5% generate

updates. Finally, the ordering profile defines a distribution

where 50% of the accesses are read-only and 50% updates.

TPC-W names each of these workload profiles differently

to make clear from the metric name which workload has

been used in every experiment. The unit name WIPS is as-

signed to the shopping workload profile, WIPSb is used for

the browsing profile and WIPSo for the ordering profile.

During an experiment, workloads are generated by re-

mote browser emulators (RBE). To emulate the behaviour

of human interactions, the RBE specification includes a

think time, defined by TPC-W as 7 seconds. Thus, the num-

ber of web interactions per second (WIPS) generated by a

set of emulated RBEs is given by #RBEs/think time. TPC-

W also has a very strict definition of database model (con-

ceptual and physical) and of the type and amount of data

generated to populate the database.

4 RobustStore

In this Section, we summarize the changes we made to

the implementation of the TPC-W online bookstore [3] to

implement RobustStore. The method described here is gen-

eral enough to guide the retrofitting of any application with

Treplica. The steps are the following: (I) determination of

the application state to be replicated; (II) review of the ap-

plication methods that change the state and their transfor-

mation into deterministic actions. In the case of Robust-

Store, we had to deal with the non-determinism generated

by calls to date and time system functions, and random

number generation. The retrofitted application is structured

as shown in Figure 1.

Figure 1. RobustStore components

Task (I) requires the design of an object model to rep-

resent the application objects that are going to be repli-

cated. In the case of the online bookstore, we devised an

object model composed by 9 classes that represent the en-

tities and relations of TPC-W’s online bookstore concep-

tual model. These classes and their instances represent the

critical state of the bookstore and as such have to be pro-

grammed using the state machine abstraction provided by

Treplica. The methods of these classes represent all the

database functionality required by the bookstore. The orig-

inal bookstore was structured as a set of web components

(servlets) that accessed the database through a facade class

(TPCW Database) that served as a higher-level abstrac-

tion for the actual database. RobustStore has kept this struc-

ture intact, but the facade class now uses Treplica’s state

machine to execute operations equivalent to the original

SQL transactions. The conversion of the facade class de-

manded 0.5 man-month. In total, about 2300 lines of code

were changed. The final program had 3145 lines of code,

147 less than the original implementation. We did not have

to change the code of the servlets, remote browser emulator

or any other support program.

Task (II) has to do with non-determinism removal. The

use of random numbers, dates and time is not a problem for

a centralized system, but it is a problem for a replicated sys-

tem. For example, whenever a new book order is created

the order creation time is set to the current time. If each

replica read its local clock inside the create order method

to obtain the timestamp of the order, then each of the repli-

cas would very likely stamp its order with a different times-

tamp. To avoid this, the code in the facade responsible for

the creation of actions in the state machine reads its local

clock before the action is created, and passes the resulting

timestamp as an argument to the action’s constructor. This

simple procedure guarantees that every replica receives an

order with exactly the same timestamp. Calls to random

number generators are handled in the same way. For exam-

ple, to generate the value of the discount applied to orders

of a new customer, the random number generator is called

before the action that creates a customer is instantiated and

the value is passed as a parameter to the action.

It is important to note that the retrofit of TPC-W’s book-

store with Treplica—execution of tasks (I) and (II)—did not

require the programmer to think about replication, persis-

tence, or the replica recovery process.

5 Evaluation

In this Section, we seek answers to four questions. First,

how long can RobustStore be expected to run without in-

terruption? Second, how much service can RobustStore be

expected to deliver during failure-free and failure-prone op-

eration periods? Third, what accuracy can be expected of

RobustStore in the presence of crashes, failovers, and recov-

eries? Fourth, what level of human intervention is necessary

to maintain RobustStore operational? We devised four sets

of experiments to gather results associated with these ques-

tions. The first set contains speedup and scaleup experi-

ments that show how RobustStore behaves in deployments

978-1-4244-4421-2/09/$25.00 c©2009 IEEE 231

of different scales. The other sets assess the dependability

of RobustStore using the three TPC-W workloads and three

different faultloads.

5.1 Method

The experiments were carried out in a cluster with 18

nodes interconnected through the same 1Gbps Ethernet

switch. Each node has a single Xeon 2.4GHz processor,

1GB of RAM, and a 40GB disk (7200 rpm). The soft-

ware platform used is organized with Fedora Linux 9, Open-

JDK Java 1.6.0 virtual machine, Apache Tomcat 5.5.27 and

HAProxy 1.3.15.6.

Figure 2. Experimental setup

The cluster has been divided into three disjoint sets of

nodes as shown in Figure 2. The first set is composed by

5 client nodes that run the RBEs. Each client node holds

the same number of RBEs. Instantiation and finalization of

RBEs is done by a user initiated script, that computes and

starts the exact number of RBEs necessary to generate the

desired workload. Performance metrics are written by the

RBEs into log files stored in the local disk. The second set

contains from 4 to 12 server replicas that run the bookstore

application. Each node of this set runs a copy of Tomcat

that serves both static and dynamic web content. The appli-

cation itself uses Treplica, as described in Section 4 and is

configured to write only to the local disk. The final set con-

tains only one node and runs the reverse proxy HAProxy,

that has a load balancing module. The HAProxy is respon-

sible for the failover mechanism. First, it actively queries

the state of all of the server replicas using an HTTP probe.

If it senses a replica is down (after 4 unsuccessful tries), it

removes it from its servers list until it is probed active again.

Second, requests are balanced among the server replicas us-

ing a hash mechanism based on unique client identifiers that

are included in all interactions. If a server fails during the

execution of a client request, HAProxy will close the con-

nection and the client will observe an error.

RobustStore does not rely on a database, but the changes

we have made to the application do not affect the data stored

or the transactional semantics of the original application in-

teractions. As a consequence, our experiments maintain the

value of all experimental parameters as recommended by

TPC-W, with one minor exception. To reduce the num-

ber of RBEs effectively required to provide a given load

we changed the default 7s think time of the TPC-W spec-

ification to 1s. With a 7s think time the workloads gener-

ated by the RBEs of the 5 client nodes were not sufficient

to saturate RobustStore. It is important to note that shorter

think times do not change either the read to write ratios nor

the probabilistic characteristic of the workloads. Even with

the reduced think time, we still had to set aside 5 nodes

only to generate load. This left a maximum of 12 nodes to

hold replicas, but this number is sufficient to emulate most

commercial deployments of replicated application servers.

Thus, the real systems that TPC-W is expected to assess are

faithfully represented by our experimental setup.

The replicas were populated using the standard TPC-W

population procedure, with 10,000 items and 30, 50 and

70 emulated browsers, even tough we instantiated a larger

number of RBEs. The parameter number of browsers was

chosen to generate initial application state sizes of 300MB,

500MB, and 700MB, respectively. For the most write inten-

sive profile (ordering) the average state size at the end of the

measurement interval was approximately 550MB, 750MB,

and 950MB, respectively. This respects the experimental re-

quirement that all state must fit into main-memory. This is

important to guarantee as much as possible that the perfor-

mance variations observed are solely related with Treplica’s

activity on the network and on the disk. For all experiments

the ramp-up, measurement interval and ramp-down periods

follow TPC-W’s specification; they were set to 30 seconds,

9 minutes and 30 seconds, respectively.

The TPC-W benchmark consists of a system specifica-

tion, a workload and a metric. A dependability benchmark

consists of a system specification, a faultload, a workload

and a metric. Thus, to turn TPC-W into a dependability

benchmark we added to it a faultload and metric specifica-

tions [9]. The faultload consists of environment or opera-

tor generated faults injected at precise times; all machines

had their clock synchronized using NTP with clock skew

smaller than 100ms. The time of failure was chosen to guar-

antee that full recovery of all failed replicas was observed

within the experiment measurement interval. The abrupt

server shutdown (crash) has been emulated by killing the

application server at the operating system level. The abrupt

server reboot (initiates a recovery) has been emulated by

re-instantiating the application server. Re-instantiation of

application servers is carried out automatically by a simple

watchdog process that monitors the application server and

re-instantiates it as soon as it detects the crash.

The dependability measures used in the experiments are

availability, performability, accuracy, and autonomy [9].

978-1-4244-4421-2/09/$25.00 c©2009 IEEE 232

The system under test is available when it is able to pro-

vide the service requested by the workload. Availability is

defined as the ratio between the time the application is op-

erational and the total duration of the run. Performability

gives an idea of the impact of failures on the performance of

the application. It is defined as as the ratio between the av-

erage performance (AWIPS) during the failure free period

of the measurement interval and the average performance

during the period of recovery. Accuracy is defined as the

ratio between the number of requests with error and the total

number of requests of the experiment. Autonomy is defined

as the ratio between the number of human interventions re-

quired to restart a failed replica and the number of faults

injected.

5.2 Speedup

Speedup experiments evaluate the maximum possible in-

crease in performance obtained when RobustStore’s scale

goes from 4 (baseline system) to 12 replicas. The rela-

tive speedup for a k-replicated RobustStore is defined by

Sk = πk/π4, where πk is the performance of a k-replicated

application. Figure 3 shows the speedup values obtained

for the three workloads and an initial state size of 500MB.

For example, for the browsing workload, S8 ≈ 1.59, S10 ≈
1.81, and S12 ≈ 1.97; the addition of four replicas to the

baseline system increases its performance by nearly 60%.

Treplica’s sublinear speedups are a function of the costs as-

sociated with Paxos and Fast Paxos: the message complex-

ity, latency complexity and the latency derived from writ-

ing data to stable storage. Thus, the different read/write

ratios defined by the workloads pose increasing demands

on Treplica’s efficiency in terms of network and stable stor-

age. Web interactions that only read values can be executed

without resorting to the total order broadcast. This is the

case of browsing workload that has only 5% of updates, so

95% of requests (reads) can be fulfilled locally. Also, the

small proportion of updates reduces access to disk. So, in

this case the good speedup observed (Figure 3 browsing)

can be explained by (i) the read-bound workload; (ii) the

main-memory residence of the state; and (iii) the light use

of the asynchronous persistent queue (total order).

The shopping workload generates 20% of updates,

meaning that total order is going to be invoked for at least

20% of operations. In this scenario, the speedup is prac-

tically identical to the speedup obtained with the brows-

ing workload. The maintenance of the good speedup for

shopping can be explained by the same factors used to ex-

plain it for the browsing workload, despite the fact that the

shopping load has four times the number of updates of the

browsing workload. Here, the replicas can no longer be

considered independent of each other due to their heavier

use of the asynchronous persistent queue (Paxos). Each

replica added produces a performance gain of ≈11.3%,

with an associated increase in response time of ≈4.29%.

The shopping workload is TPC-W’s reference workload.

So, Treplica continues to speed up well when subject to

TPC-W’s reference workload, but there must be a workload

threshold after which the cost of uniform total-ordering im-

pedes the maintenance of the good speedups observed so

far. Figure 3 shows that the ordering workload has by far

crossed the threshold. In this case, RobustStore’s S8 has

dropped to ≈1.29. The change can be explained by the

growth in the costs related to Treplica that now has to to-

tally order half of the requests. Each replica added yields

a performance gain of ≈5.35%, at the expense of a ≈37%

increase in the average response time.

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 4 5 6 7 8 9 10 11 12

W
IP

S

Number of replicas

browsing
shopping
ordering

 100

 200

 300

 400

 500

 600

 700

 800

 4 5 6 7 8 9 10 11 12

W
IR

T
 (

m
s
)

Number of replicas

browsing
shopping
ordering

Figure 3. Speedup

5.3 Scaleup

Figure 4 shows how the system scales for a fixed work-

load of 1000 WIPS and increasing number of replicas. This

measurements serve as a baseline to later assess the be-

haviour of Treplica in the presence of partial failures. An

initial replica size of 300MB is used; this size has been cho-

sen to minimize as much as possible interferences caused by

swapping. A perfectly scalable system should show an hori-

zontal scaleup line. The determination of the scaleup curves

shown by RobustStore for each workload is important as it

characterizes its behaviour when the scale is changed. To

determine the curves we used regression analysis. The best

fit for every set of points is given by a straight line, plotted

in gray (confidence coefficients omitted) along the scaleup

values (Figure 4). Additionally, we can ask ourselves how

performance (WIPS) is related to response time (WIRT).

Correlation analysis of the two variables for each workload

reveals that they are linearly correlated, with correlation co-

efficients: r2 = 0.8788 for browsing, r2 = 0.9976 for

shopping, and r2 = 0.9958 for ordering. The case r2 = 1.0

978-1-4244-4421-2/09/$25.00 c©2009 IEEE 233

corresponds to the maximum possible linear association be-

tween WIPS and WIRT, meaning that all data points will lie

exactly on a straight line. Thus, we have a system that has

performance linearly correlated to response time and that

scales up linearly. In Section 5.4 we use these observations

to explain the behaviour of RobustStore after a crash.

RobustStore shows an ideal scaleup for the browsing

workload, for the same reasons RobustStore shows a good

speedup for browsing. For the shopping profile, Robust-

Store’s scaleup is sublinear but with a gradual linear de-

crease in performance, approximately 0.85% per replica

added, with a correspondent average increase of WIRT of

≈27.3% (Figure 4). This is a good characteristic, showing

that the expected impact of Treplica on the performance is

constant as the system scales up. In fact, the actual cost

of Treplica is smaller than 0.85% for this workload, be-

cause the costs inherent to RobustStore and its execution

environment (JVM and Tomcat) were not subtracted from

the 0.85%. For the ordering profile, each replica added

to the configuration causes a constant performance drop of

≈2.1%, with an expected increase in WIRT of ≈25.9% per

replica added (Figure 4).

 700

 750

 800

 850

 900

 950

 1000

 4 5 6 7 8 9 10 11 12

W
IP

S

Number of replicas

browsing
shopping
ordering

 0

 50

 100

 150

 200

 250

 300

 350

 400

 4 5 6 7 8 9 10 11 12

W
IR

T
 (

m
s
)

Number of replicas

browsing
shopping
ordering

Figure 4. Scaleup for 1000 WIPS

The speedup and scaleup results characterize the be-

haviour of RobustStore in the absence of failures, but our

main focus is not on raw performance but on what happens

to performance and other important dependability indica-

tors when RobustStore is subject to crashes.

5.4 One crash, one autonomous recovery

For the first experiment, one crash was injected at t =

270s, followed by the automatic triggering of recovery by

the local replica watchdog. Figure 5 shows the behaviour of

a five-replicas RobustStore for the three workload profiles.

As expected, all curves show a performance drop. Let us

start with the curve for the ordering workload. There is a

short (≈14s) and sharp (≈700 WIPS) drop in performance.

This load surge is caused by the HTTP proxy redistribu-

tion of the excess load among the active replicas. What is

interesting to note is that after this short period, the recov-

ery is still going to last for another 113s, but the average

performance is already close to the performance before the

failure. RobustStore’s linear correlation between WIPS and

WIRT (Section 5.3) can be used to analyse what happens in

this scenario. Due to the correlation, a good estimate of the

worst case WIRT can be obtained by simply considering

WIPS as inversely proportional to WIRT. For example, in

Figure 5, to estimate the latency at t=275s (the bottom of

the deepest valley for the ordering workload) we can sub-

tract ≈140WIPS from 841.4 average WIPS (Table 1, line

5/o, column failure-free AWIPS) to obtain the magnitude

of the performance drop: ≈700WIPS. Thus, in the worst

case, the latency at t=275s is estimated as ≈700ms. Before

the crash it was ≈50ms, as estimated by the regression line

in the scaleup WIRT (Figure 4) for 5 replicas. The value

sampled by the RBE for the interval of 5s that includes the

valley shows a latency of≈613ms. In Figure 5 it is possible

to observe that the browsing and shopping workloads have

much lower variability, so do, in the same proportion, the

response times associated with them.

Table 1 contains the performability measurements for

this experiment. Column R/P shows the replication degree

and workload profile. For example, 5/b means five replicas,

browsing workload. The variability of the load is charac-

terized by the coefficient of variation (CV): the ratio of the

standard deviation of the workload to its mean. The col-

umn PV shows the Performance Variation as a percentage

of the failure-free AWIPS. Line 5/b shows that RobustStore

delivers an average 977.4 WIPSb with a CV of 0.01, almost

no variation, during a failure-free run. It also shows that

during the recovery period the performance drops to 898.28

WIPSb (-8.1%); a small drop. For the shopping profile PV

is smaller than 4% during recovery; performance remains

practically stable during recovery. The CV values show that

the browsing and shopping workloads have low variability,

meaning that the PVs can be trusted to have been caused by

the recovery. This is not the case for the ordering workload,

with a CV of ≈0.20 for 5/o, and ≈0.33 for 8/o, they render

the average WIPS useless as indicators of performance vari-

ation. The only resource available in this case is the WIPS

histogram (Figure 5). There, it is possible to confirm that

there was a performance drop during recovery, and that per-

formance went back to its pre-crash level after the end of

the recovery, but the estimated magnitude of performance

drop during recovery, ≈13%, cannot be trusted due to the

high CVs (Table 1, line 5/o, column PV).

As expected, the recovery times grow as the replica size

grows. Figure 6 shows the recovery times for all one-failure

experiments for three initial sizes of replica state (300MB,

978-1-4244-4421-2/09/$25.00 c©2009 IEEE 234

 0
 200
 400
 600
 800

 1000

 0 100 200 300 400 500 600

W
IP

S

time (s)

rbrowsing c

 0
 200
 400
 600
 800

 1000

 0 100 200 300 400 500 600

W
IP

S

time (s)

shopping c r

 0
 200
 400
 600
 800

 1000

 0 100 200 300 400 500 600

W
IP

S

time (s)

ordering c r

Figure 5. One failure: 5 replicas

failure free recovery

R/P AWIPS CV AWIPS CV PV (%)

5/b 977.4 0.01 898.28 0.01 -8.1

5/s 928.1 0.06 884.46 0.07 -4.7

5/o 841.4 0.20 732.33 0.24 -12.9

8/b 985.3 0.01 980.4 0.01 -0.5

8/s 916.8 0.01 903.88 0.09 -1.4

8/o 790.8 0.33 761.74 0.34 -3.7

Table 1. One failure: performability

500MB, and 700MB). For any replication degree, it is clear

that recovery times grow faster for the browsing and shop-

ping profiles, than they do for the ordering profile. This can

be explained by the way recovery is handled by Treplica.

Once a replica is rebooted, the application rebinds to its

asynchronous persistent queue and requests the loading of

the most recent checkpoint from stable memory. In paral-

lel, the asynchronous persistent queue starts the recovery

of the operations that have been enqueued by the remain-

ing replicas since its failure, its backlog. For the browsing

and shopping profiles the cost of queue resynchronization

is relatively smaller than the cost of loading the most recent

checkpoint from disk, so parallelization helps but still the

time to recover is dominated by the loading of the check-

point from disk. For the ordering profile, both state trans-

fers become larger. In this case, the parallelization of the

tasks contributes to a noticeable reduction of the total time

of recovery, leveling the recovery times as we move across

different state sizes, and reducing the impact of Treplica on

RobustStore’s performance during recovery. For the next

experiments we have omitted the recovery times to save

space, but the same recovery pattern was observed.

Table 2 shows the accuracy of RobustStore in the pres-

ence of one crash. Clearly, RobustStore produces very few

erroneous outputs when subject to one crash-recover failure.

300
500

700 b

s

o

 40
 60
 80

 100
 120
 140 recovery time (s)

5R
8R

size (MB)

profile

recovery time (s)

Figure 6. One failure: recovery times

replicas browsing shopping ordering

5 99.999 99.999 99.985

8 99.999 99.999 99.986

Table 2. One failure: accuracy

5.5 Two crashes, autonomous recoveries

In this set of experiments RobustStore is subject to two

concurrent crashes, followed by autonomous recoveries of

the crashed replicas. The replicas to be crashed were chosen

at random and crashed at t=240s and t=270s. TheWIPS his-

togram (Figure 7) shows small performance losses during

recovery for all three workloads. For the browsing profile,

the first replica crashed becomes operational at t = 303s,

approximately 63s after the crash. The second replica re-

joins RobustStore at t=336.8s, 66.8s after it crashed. In a

little more than a minute the two replicas, with state sizes

greater than 500MB, had already rejoined RobustStore. The

shopping and ordering profiles also show that RobustStore

recovers gracefully from the concurrent crashes even when

exposed to increasingly write-intensive workloads. Table 3

shows that the largest PV is inferior to 5%, a drop that can

be considered small given the adverse crash scenario gener-

ated by the faultload. The CVs for the ordering profile are

high and similar to the ones observed before for one crash.

Table 4 shows that RobustStore has maintained a high accu-

racy when submitted to concurrent crashes. From the point

of view of maintainability and autonomy, RobustStore has

so far shown that it can recover fully automatically, to a

good extent due to its reliance on the simple recovery mech-

anism offered by Treplica (Section 2).

5.6 Two crashes, one autonomous, one de-
layed recovery

The last experiment has been designed to show how

Treplica influences the performance of RobustStore in a

978-1-4244-4421-2/09/$25.00 c©2009 IEEE 235

 0
 200
 400
 600
 800

 1000

 0 100 200 300 400 500 600

W
IP

S

time (s)

r1 r2

5R 500MB browsing

c1 c2

 0
 200
 400
 600
 800

 1000

 0 100 200 300 400 500 600

W
IP

S

time (s)

5R 500MB shopping

c1 c2 r1 r2

 0
 200
 400
 600
 800

 1000

 0 100 200 300 400 500 600

W
IP

S

time (s)

5R 500MB ordering

c1 c2 r1 r2

Figure 7. Two overlapped crashes

failure free recovery

R/P AWIPS CV AWIPS CV PV (%)

5/b 971.5 0.02 942.24 0.02 -3.0

5/s 910.4 0.09 876.58 0.09 -3.7

5/o 841.5 0.21 801.96 0.22 -4.7

8/b 982.8 0.01 962.6 0.01 -2.0

8/s 907.9 0.01 891.32 0.01 -1.8

8/o 787.1 0.33 763.96 0.34 -2.9

Table 3. Two overl. crashes: performability

scenario where a replica recovers long after it crashed. This

is an important issue for Treplica because of how Paxos

and Fast Paxos work. During the downtime of the crashed

replica, the active replicas have delivered a large number of

operations to the application. This means that the recov-

ering replica is going to have to load the checkpoint from

stable memory and spend a larger period learning (state

transfer) from the other replicas, before it re-synchronizes

itself and can resume normal operation. In this scenario

(Figure 8), both replicas are crashed at t=240s. The recov-

ery of one of the crashed replicas is triggered automatically.

The recovery of the second replica is triggered manually at

t=390s. Consider the shopping profile. At this moment, the

first failed replica has already ended its recovery process,

that took≈70s. The throughput curve shows that the recov-

ery process implemented by Treplica has a small impact on

performance of RobustStore for all workloads. Table 5 does

not contain the CV values because they are very similar to

the CV values obtained for the other two faultloads. Con-

sider, for example, the shopping workload and five replicas.

The impact on performance for the first failure is similar

to the one verified in the case of two concurrent crashes.

During a period of time RobustStore operates with 3 repli-

cas, then the first failed replica recovers, taking RobustStore

to 4 replicas. In the scaleup experiments using failure-free

replicas browsing shopping ordering

5 99.998 99.993 99.978

8 99.999 99.998 99.978

Table 4. Two overlapped crashes: accuracy

runs, we have observed that the addition of a replica causes

an average performance drop of ≈8%. So a four-replicas

RobustStore should perform an average 8% better. Recall

that this reasoning is only valid because of the very low

CVs shown by the shopping workload. The AWIPS dur-

ing the period from r1 to u2 is 902.78 WIPS. The four-

replicas RobustStore does not perform better because it is

still processing the backlog of operations created by the two

simultaneous failures, but it has recovered to a performance

level that is only 1.4% below the performance before the

crashes; the shopping workload has a CV = 0.09. The sec-

ond recovery affects even less the performance of Robust-

Store, because the extra broadcasts demanded by the recov-

ering replica to re-synchronize itself with the active replicas

are processed concurrently by Treplica (Paxos). The conse-

quence of this characteristic of Treplica is a reduced impact

on performance stability, at the expense of a longer recovery

time. (Figure 8). The same reasoning is valid for the other

workloads, but, as stated before, the values of PV for the

ordering profile are not valid because of the high variability

of this workload. During these experiments, RobustStore’s

accuracy (Table 6) remained high and consistent with the

accuracies found in the previous experiments.

 0
 200
 400
 600
 800

 1000

 0 100 200 300 400 500 600

W
IP

S

time (s)

r1 r2browsing c1||c2 u2

 0
 200
 400
 600
 800

 1000

 0 100 200 300 400 500 600

W
IP

S

time (s)

shopping c1||c2 r1 r2u2

 0
 200
 400
 600
 800

 1000

 0 100 200 300 400 500 600

W
IP

S

time (s)

ordering

c1||c2

r1 r2u2

Figure 8. Delayed recovery

5.7 Discussion

Four questions were posed at the beginning of this Sec-

tion. 1. How long can RobustStore be expected to run with-

out interruption? In the presence of only benign crashes,

978-1-4244-4421-2/09/$25.00 c©2009 IEEE 236

no failures recovery R1 recovery R2

R/P AWIPS AWIPS PV (%) AWIPS PV (%)

5/b 966.6 858.49 -11.1 919.58 -4.8

5/s 915.3 813.09 -11.2 905.89 -1.0

5/o 821.2 603.31 -26.5 852.12 +3.8

8/b 985.1 949.3 -3.63 948.65 -3.7

8/s 915.0 864.94 -5.5 906.01 -1.0

8/o 785.6 686.67 -12.6 802.08 +2.1

Table 5. Delayed recovery: performability

replicas browsing shopping ordering

5 99.990 99.988 99.957

8 99.998 99.995 99.974

Table 6. Delayed recovery: accuracy

as assumed, RobustStore will remain operational forever.

2. How much service can RobustStore be expected to de-

liver during failure-free and failure-prone operation peri-

ods? RobustStore’s throughput can be characterized as very

resilient, and stable in the presence of the crashes, failover,

and recoveries used in the experiments. We have carried

out 18 dependability experiments, 6 for each faultload spec-

ified. For each replication factor (5 or 8) three initial sizes

of RobustStore replicas were instantiated (300, 500, and

700MB). All these experiments have shown that Robust-

Store loses less than 13% of its average performance during

recovery in the worst case, which occurs with the faultload

that injects two concurrent crashes, later followed by au-

tonomous recoveries. The longest recovery occurred in the

experiment with two crashes and delayed recovery of one

replica. It took the second recovering replica about 180s

to become operational in a setting with 8 replicas, ordering

profile, and a 700MB state size. During the 180s recov-

ery the average throughput practically remained at the same

level displayed during the failure-free period. For the shop-

ping profile, the profile considered by TPC-W as the one

that best approximates the behaviour of a dynamic content

web service, RobustStore worst average performance loss

is inferior to ≈4.0%. 3. What accuracy can be expected of

RobustStore in failure-prone executions? Very high, three

9s, in the worst case. 4. What level of human intervention

is necessary to maintain RobustStore operational? None,

when subject to the faultloads presented here, RobustStore

has shown total autonomy. The combined effect of high

accuracy, throughput resilience, and full autonomy allows

the conclusion that RobustStore is indeed a highly available

dynamic content web application.

6 Related Work

Paxos and recovery. Here we comment on work whose

applications were built upon middleware that uses uniform

repeated consensus (total order broadcast) [8]. Specifically,

we are interested in toolkits that implement Paxos [15]. Ex-

amples of applications that satisfy this criteria include a

lock service [2], data center management [12], data stor-

age systems [18, 21], database replication [11], a distributed

hash table system [13], and dynamic content web ser-

vices [7, 20]. The projects listed in Table 7 have success-

fully employed the state machine approach [14] and uni-

form total order broadcast based on Paxos to replicate crit-

ical application state, with systems often combining differ-

ent replication mechanisms to obtain the required degree

of reliability and performance. A key aspect of all papers

listed in Table 7 is that their experiments were primarily de-

signed to assess performance, not dependability, with the

exception of FAB that shows fault-tolerance results for disk

arrays. Most of the systems opted for the traditional mes-

sage passing interface to expose Paxos, with the exception

of Chubby. By contrast, we have opted to present uniform

total order using a queue abstraction; queues are simple and

widely-used objects.

There is much research on mechanisms to make dynamic

content web applications highly available with emphasis on

their performance improvement. Various reliable data man-

agement solutions have already been used, from file-based

implementations (e.g., [5]) to database-based implementa-

tions (e.g. [4, 11, 1]). Tashkent’s experiments (Table 7)

were carried out using a dynamic web content application.

Sprint, FAB, and Chubby (Table 7) can be used as supports

to build highly available dynamic content web applications.

Institution Project Name Paxos 1st Publ.

Classic Fast Date

HP FAB [21] • 2004

Microsoft Boxwood [18] • 2004

EPFL/USI Tashkent [10] • 2006

Microsoft Autopilot [12] • 2007

Google Chubby [2] • 2007

USI Sprint [4] • 2007

UNICAMP Treplica [22] • • 2008

Table 7. Paxos and Application Availability.

Replicated databases and recovery. Liang and

Kemme [17] compare two recovery strategies: (i) to-

tal versus (ii) partial copy of the database. They assess the

trade-offs of (i) and (ii) in runs where a single failure oc-

curs. Manassiev [19] reports, using TPC-W and a faultload

978-1-4244-4421-2/09/$25.00 c©2009 IEEE 237

with a single crash, on the availability of a multiversion

master-slave in-memory database that tolerates a single

failure. They show that it is possible to reduce the impact

of recoveries on the availability of the replicated database.

Treplica offers a simpler recovery and failover solution that

does not require the maintenance of hot backups for fast

failover. Wu and Kemme [23] consider different recovery

strategies depending on the failure scenario: (i) a single

failed replica must be recovered or (ii) all replicas have to

be recovered.

7 Conclusion

We have presented a dependability analysis of Robust-

Store, a highly available dynamic content web applica-

tion built upon Treplica. Treplica’s programming inter-

face, based on only 8 methods, simplifies the programming

tasks associated with the construction of highly available

applications, relieving the programmer of important con-

cerns related to the recovery. We like to consider Treplica

as Paxos made simple in practice, a great benefit for de-

velopers of highly available applications. The experimen-

tal results show that RobustStore/Treplica performs well in

the presence of crashes and recoveries, showing very good

performance stability, continuous availability and high ac-

curacy. They also contribute to a better understanding of

the impact of Paxos and Fast Paxos when used as building

blocks of a replication middleware.

From the point of view of dependability benchmark-

ing, we have shown that not all workloads of TPC-W can

be used as off-the-shelf indicators in dependability exper-

iments. The coefficient of variation of the browsing and

shopping workloads warrant them as good workloads for

dependability assessment. Unfortunately, the same cannot

be said about the ordering workload because of its high vari-

ability. This shortcoming of TPC-W can motivate further

research on the development of dependability benchmarks

for dynamic content web applications.

References

[1] C. Amza, A. L. Cox, and W. Zwaenepoel. Distributed

versioning: Consistent replication for scaling back-end

databases of dynamic content web sites. In Middleware,

2003.
[2] M. Burrows. The Chubby lock service for loosely-coupled

distributed systems. In 7th USENIX Symp. on Operating Sys-

tems Design and Implementation, 2006.
[3] H. W. Cain, R. Rajwar, M. Marden, and M. H. Lipasti. An

architectural evaluation of Java TPC-W. In Proc. of 7th Int.

Symp. on High-Performance Computer Architecture, 2001.
[4] L. Camargos, F. Pedone, and M. Weiloch. Sprint: a middle-

ware for high-performance transaction processing. In Proc.

of 2nd European Conf. on Computer Systems, 2007.

[5] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wal-

lach, M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber.

Bigtable: A distributed storage system for structured data.

ACM Trans. Comput. Syst., 26(2):1–26, 2008.
[6] T. P. Council. TPC-W Specification, Feb. 2002.
[7] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,

A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,

and W. Vogels. Dynamo: Amazon’s highly available key-

value store. In Proc. of 21st ACM SIGOPS Symp. on Oper-

ating Systems Principles, pages 205–220, 2007.
[8] X. Défago, A. Schiper, and P. Urbán. Total order broadcast

and multicast algorithms: Taxonomy and survey. ACM Com-

put. Surv., 36(4):372–421, 2004.
[9] J. Durães, M. Vieira, and H. Madeira. Dependability bench-

marking of web-servers. In Proc. of 23rd Computer Safety,

Reliability, and Security Int. Conf., pages 297–310, 2004.
[10] S. Elnikety, S. Dropsho, and F. Pedone. Tashkent: uniting

durability with transaction ordering for high-performance

scalable database replication. In Proc. of 1st European Con-

ference on Computer Systems (EuroSys), 2006.
[11] S. Elnikety, S. Dropsho, and W. Zwaenepoel. Tashkent+:

memory-aware load balancing and update filtering in repli-

cated databases. In Proc. of the 2nd European Conference

on Computer Systems (EuroSys), 2007.
[12] M. Isard. Autopilot: automatic data center management.

Oper. Syst. Rev., 41:60–67, 2007.
[13] Y. Jiang, G. Xue, and J. You. Toward fault-tolerant atomic

data access in mutable distributed hash tables. In Proc. of

First Int. Multi-Symp. on Computer and Computational Sci-

ences, 2006.
[14] L. Lamport. Time, Clocks, and the Ordering of Events in a

Distributed System. CACM, 21(7):558–565, 1978.
[15] L. Lamport. The part-time parliament. ACM Trans. Comput.

Syst., 16(2):133–169, 1998.
[16] L. Lamport. Fast Paxos. Distrib. Comput., 19(2):79–103,

Oct. 2006.
[17] W. Liang and B. Kemme. Online recovery in cluster

databases. In EDBT ’08: Proceedings of the 11th interna-

tional conference on Extending database technology, pages

121–132, New York, NY, USA, 2008. ACM.
[18] J. MacCormick, N. Murphy, M. Najork, C. A. Thekkath, and

L. Zhou. Boxwood: Abstractions as the foundation for stor-

age infrastructure. In Proc. of 6th USENIX Symp. on Oper-

ating Systems Design and Implementation, 2004.
[19] K. Manassiev and C. Amza. Scaling and continuous avail-

ability in database server clusters through multiversion repli-

cation. In Int. Conf. on Dependable Systems and Networks,

2007.
[20] J. Ostell. Databases of discovery. Queue, 3(3):40–48, 2005.
[21] Y. Saito, S. Frolund, A. Veitch, A. Merchant, and S. Spence.

Fab: building distributed enterprise disk arrays from com-

modity components. SIGPLAN Not., 39(11):48–58, 2004.
[22] G. M. D. Vieira and L. E. Buzato. Treplica: Ubiquitous repli-

cation. In Proc. of 26th Brazilian Symp. on Computer Net-

works and Distributed Systems, 2008.
[23] S. Wu and B. Kemme. Postgres-R (SI): Combining Replica

Control with Concurrency Control Based on Snapshot Isola-

tion. In Data Engineering, 2005. ICDE 2005. Proceedings.

21st International Conference on, pages 422–433, 2005.

978-1-4244-4421-2/09/$25.00 c©2009 IEEE 238

