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Abstract: This paper is on failure detectors to solve the consensus problem in asynchronous systems made up of anonymous
processes prone to crash and connected by asynchronous reliable channels. Anonymity means that any two processes cannot
be distinguished one from the other: they have no name and execute the same code.

The paper has several contributions. It first introduces two new classes of failures detectors, denoted AP and AΩ, and
presents an AP -based algorithm and an AΩ-based algorithm that solve the consensus problem despite the three computational
adversaries that are asynchrony, failures and anonymity. Then, the paper shows that, in crash-prone non-anonymous systems,
(a) AP and the class of perfect failure detectors (denoted P ) are equivalent, and (b) AΩ and the class of eventual leader
failure detectors (denoted Ω) are also equivalent. Finally, the paper addresses the question of the weakest failure detector
to solve consensus in an asynchronous crash-prone anonymous system. In non-anonymous systems, the class P of perfect
failure detectors is strictly stronger than the class Ω of eventual leader failure detectors that has been shown to be the
weakest failure detector class for consensus in asynchronous crash-prone system. Quite surprisingly, the paper shows that
their anonymous counterparts cannot be compared. Hence, while Ω is the weakest failure detector class to solve consensus
in non-anonymous systems, it is possible that there are several (hence incomparable) classes of weakest failure detectors for
this problem in anonymous systems.
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Résumé : Cet article s’intéresse au problème du consensus dans les systèmes distribués anonymes. Il propose deux
algorithmes résolvant ce problème en utilisant deux détecteurs de fautes différents. Ces deux derniers étant incomparables,
les auteurs soulèvent alors le problème de l’existence d’un plus faible détecteur de fautes pour le consensus dans ce modèle.
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2 F. Bonnet & M. Raynal

1 Introduction

Anonymous systems In a somewhat restrictive way, the aim of a real-time system is to master on time computing, and the
main aim of parallelism is to obtain efficient algorithms. Similarly we can say that the central issue of distributed computing
consists in mastering uncertainty. This uncertainty has first appeared under the form of asynchrony, failure occurrences, and
the multiplicity of loci of control (also referred as locality). More recently, new facets of uncertainty (such as dynamicity,
scalability and mobility) have appeared and made distributed computing even more challenging.

Among the many facets of uncertainty that distributed computing has to cope with, anonymity is particularly important.
It occurs when the computing entities (processes, agents, sensors, etc.) have no name, and consequently cannot distinguish
the ones from the others. It is worth noticing that, from a practical point of view, anonymity is a first class property as
soon as one is interested in guaranteeing privacy. As an example, some peer-to-peer file-sharing systems assume the peers
are anonymous [10]. In the same vein, not all the sensor networks assume that each sensor has a proper identity [3, 11].

One of the very first works (to our knowledge) that addressed anonymous systems is from D. Angluin [2]. In that paper,
considering message passing systems, she was mainly interested in computability issues, namely answering the question
“which functions can be computed in presence of asynchrony and anonymity?” The leader election problem is a simple
example of a problem that is unsolvable in such a setting (intuitively, this because symmetry cannot be broken in presence
of asynchrony and anonymity). Other works have then addressed anonymity in particular settings such as ring networks
[4], or networks with a regular structure [16]. Failure-free message passing anonymous systems have also been investigated
in [21, 22] where is given a characterization of problems solvable in this context according to which amount on information
about network attributes are initially known by the processes.

Consensus in non-anonymous message-passing systems Consensus is one of the most famous distributed computing
problem. It is a coordination problem defined as follows: each process proposes a value, and each non-faulty process has
to decide a value (termination), such that no two processes decide different values (agreement) and the decided value is a
proposed value (validity). While it has a very simple statement and can be easily solved in (anonymous or not) crash-prone
synchronous systems, the consensus problem has no solution in asynchronous message-passing non-anonymous failure-prone
systems, as soon as (even only) one process can be faulty [13]. Trivially, the problem cannot be solved either if anonymity
is added to asynchrony and failures.

The failure detector-based approach [8] is one of the most popular approaches to circumvent the consensus impossibility
in non-anonymous asynchronous systems. Roughly speaking, a failure detector is a device that provides each process with
failure-related information. According to the quality of this information, several failure detector classes have been defined.
It has been show that the failure detector class denoted Ω is the weakest failure detector class that allows consensus to be
solved [9]. This class includes the failure detectors that provides each process pi with a read-only local variable leaderi that
contains a process identity, and such that there is a finite (but unknown) time after which the non-crashed processes have
forever the same leader, this leader being a non-faulty process.

Previous result on consensus in anonymous message passing systems As far as we know, [6] is the only paper
we are aware of that has addressed the consensus problem in anonymous crash-prone message passing systems. In that
paper, we have introduced the class (denoted AP ) of anonymous perfect failure detectors and presented AP -based consensus
algorithms. Such a failure detector provides each process pi with an integer (denoted aa`i) whose current value is always an
upper bound of the number of alive processes, and eventually converges to the number of non-faulty processes. As we will
see in this paper, AP is actually the counterpart of the class P of perfect failure detectors.

Solving consensus in a synchronous system or an asynchronous system enriched with a perfect failure detector requires
t+1 communication rounds in the worst case, which is optimal (t, 0 < t < n, is the maximum number of processes that may
crash in a run) [1, 7, 12, 14]. One of the main results of [6] is the proof that solving consensus with an anonymous perfect
failure detector doubles the price, more precisely, there is no consensus algorithm that allows processes to always decide in
less than 2t + 1 rounds. This is a noteworthy feature of anonymity as it shows that, when one wants to deterministically
solve consensus despite anonymity, an additional price of t rounds has to be paid The lesson learned is that, from a time
complexity point of view, the combination of asynchrony and anonymity doubles the price.

Content of the paper and roadmap The paper is made up of 6 sections. Section 2 presents the base anonymous
asynchronous system model denoted AASn,t[∅]. Then, Section 3 enriches AASn,t[∅] with a failure detector of the class AP
and shows that AP and P are equivalent in crash-prone non-anonymous systems. Section 4 introduces the class AΩ of the
anonymous eventual leader failure detectors, and presents an AΩ-based consensus algorithm. It also shows that the classes
AΩ and Ω are equivalent in non-anonymous systems.

Section 5 compares the failure detector classes AP and AΩ, and shows that they are incomparable. This is surprising, as
their non-anonymous counterparts P and Ω are such that P is strictly stronger than Ω (i.e., P provides more information on
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failure than Ω: given P , one can always build Ω, while the converse is impossible). This discussion sets the question of the
existence of the weakest failure detector class for solving the consensus problem in an asynchronous crash-prone anonymous
system. We conjecture that such a class does not exist. Finally, 6 concludes the paper.

2 Base computation model: anonymous message passing system

Process model The system is made up of a fixed number n of processes, denoted p1, . . . , pn. A process pi does not know
its index i, which means that indexes are only used for a presentation purpose. Processes are anonymous in the sense that
they have no name and execute the same algorithm. They are asynchronous in the sense that there is no assumption on
their respective speeds.

Failure model Up to t processes can crash in a run, 0 < t < n. A process executes correctly its algorithm until it possibly
crashes. A crash is a premature stop; after it has crashed, a process executes no step. The value of the system parameter t
is known by the processes. A process that does not crash in a run is correct in that run. Otherwise, it is faulty in that run.
Until it crashes (if ever it does), a process is alive. Given a run, the parameter f , 0 ≤ f ≤ t, denotes the actual number of
processes that crash.

Communication The processes communicate by exchanging messages through reliable channels. These channels are
asynchronous, which means that there is no assumption on message transit delays, except that they are positive and finite
(every message eventually arrives).

The processes are provided with a brodcast() communication primitive that allows the invoking process to send the same
message to all the processes (including itself). The brodcast() primitive is not reliable in the sense that, if a process pi crashes
while broadcasting a message, that message can be received by an arbitrary subset of processes. When it receives a message,
a process cannot determine the sender of the message. Moreover, given any set of messages it has received, a process cannot
determine if these messages are from the same sender or from different senders.

Notation The previous computation model is denoted AASn,t[∅]. AAS is an acronym for Anonymous Asynchronous
System; ∅ means that there is no additional assumption.

ASn,t[∅] is used to denote the non-anonymous counterpart of AASn,t[∅] [5, 17].

3 Anonymous system enriched with an anonymous perfect failure detector

3.1 The failure detector class AP

This failure detector class is a variant of a class introduced in [18, 19]. As we will see below, the class AP is the equivalent
of the class of perfect failure detectors P , when we consider non-anonymous systems.

Definition Let fτ denote the number of processes that have crashed up to time τ . A failure detector of the class AP
provides each process pi with a read-only integer variable denoted aa`i (approximate number of a`ive processes) that satisfies
the following properties (aa`τ

i denotes the value of aa`i at time τ):

• Safety: ∀τ : aa`τ
i ≥ n− fτ .

• Liveness: ∃τ : ∀τ ′ ≥ τ : aa`τ ′

i = n− f .

The safety property states that aa`i is always an over-estimate of the number of processes that are still alive, while the
liveness property states that it eventually converges to its exact value.

Notation AASn,t[AP ] denotes the system model AASn,t[∅] enriched with a failure detector of the class AP . Similarly,
ASn,t[AP ] denotes the system model ASn,t[∅] enriched with a failure detector of the class AP .

3.2 The class AP and the class P are equivalent in a non-anonymous system

The class P of perfect failure detectors This class of failure detectors assumes that the processes have distinct identities,
and those are known by all processes. A failure detector of the class P provides each process pi with a read-only variable,
denoted suspectedi, that is a set that never contains the identity of an alive process (strong accuracy), and eventually
contains the identities of all the faulty processes (completeness).
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4 F. Bonnet & M. Raynal

Equivalence As already claimed, the classes AP and P are equivalent when we consider a non-anonymous system. To
show it, we consider a non-anonymous system, and present two transformations: a first one from P to AP , and a second one
from AP to P .

From P to AP in a non-anonymous system. The transformation in that direction is trivial. The reader can easily check
that taking the current value n−|suspectedi| to define the current value of aa`i, constructs a failure detector of the class AP .

From AP to P in a non-anonymous system. A transformation that builds a failure detector of the class P in ASn,t[AP ] is
described in Figure 1. Interestingly, this transformation is bounded (be the execution finite or infinite, the local memory of
each process requires only a bounded number of bits). Moreover, (1) the transformation is quiescent (i.e., there is a finite
time after which no more messages are exchanged), and (2) the algorithm terminates in the runs where t processes crash.

In order to compute the value of suspectedi (that is initialized to ∅), each process pi manages two local variables:

• An integer ki, initialized to 0, that represents its current knowledge on the number of processes that have crashed.

• An array ansi[1..n], initialized to [0, · · · , 0], such that ansi[j] = k means that k is the greatest inquiry number for
which pi has received the corresponding answer alive (k).

The behavior of pi is defined by two tasks. First, when pi discovers there are more than ki processes that have crashed, it
updates accordingly ki, and broadcasts an inquiry message inquiry (ki) to all the processes. Let us notice that this task can
stop when ki = t as, due to the model definition, no more crash can occur. Let us also observe that the messages inquiry(ki)
are sent by pi with increasing values, and due to the strong accuracy property of aa`i, pi knows that there are at most n−ki

alive processes.
When pi receives an inquiry (k) message from a process pj it sends back to pj an alive (k) message to indicate that it

is still alive. When it receives an answer alive (k) from a process pj , pi learns that pj has answered up to its k-th inquiry,
and consequently updates ansi[j].

Init: ki ← 0; ansi ← [0, · · · , 0];

T1: repeat wait until (n− aa`i > ki);
ki ← n− aa`i; brodcast inquiry(ki)

until (ki = t) end repeat.

when inquiry(k) is received from pj : send alive(k) to pj .
when alive(k) is received from pj : ansi[j]← max(ansi[j], k).

———————————————————————————

T2: repeat m← ki; % m is local to T2, while ki is not %
X ← {x such that ansi[x] ≥ m};
if (|X| = n−m) then suspectedi ← {1, . . . , n} \X end if

until (|suspectedi| = t) end repeat.

Figure 1: Building P in ASn,t[AP ]: a bounded transformation (code for pi)

The core of the transformation is the task T2 that gives its current value to suspectedi. It is made up of a repeat
statement that is executed until t processes are locally suspected. (When t processes have crashed, no more processes can
crash and the task can terminate. If less than t processes crash, the task becomes quiescent -no more messages are sent- but
does not terminate.)

The body of the repeat statement is as follows. First, pi sets a local variable m to ki (the number of processes that, to
the best of its knowledge, have crashed). Then, pi computes the set X made up of the processes that have answered its m-th
inquiry or a more recent one. If the predicate |X| = n−m is true, pi can safely conclude that the n−m processes that have
answered its m-th inquiry were alive when they answered, which means that the m processes that have not answered have
crashed and are exactly the ones in the set Π \X (let us recall that, while the tasks T1 and T2 proceed asynchronously, pi

broadcasts inquiry (m) only after it knows that m processes have crashed).

Theorem 1 The algorithm described in Figure 1 constructs a failure detector of the class P in ASn,t[AP ].

Proof Proof of the completeness property of P . Let us assume that pi is a non-faulty process. We have to show that if a
process pj crashes, after some finite time, j permanently belongs to suspectedi. Let f = |Faulty(F )|.

There is a finite time τ , after which the f faulty processes have crashed and we have permanently aa`i = n − f , which
means that, after some finite time, pi broadcasts a message inquiry(f). Due to the strong accuracy property of AP , this
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message is sent after the f processes have crashed. Consequently, no crashed process can answer this inquiry message. It
follows that, when task T2 executes with m = ki = f , the set X can only contain the n − f non-faulty processes, and we
have then |X| = n − f = n − m. Hence, suspectedi is set to {1, . . . , n} \ X, i.e., contains exactly the f faulty processes,
which concludes the proof of the completeness property.

Proof of the strong accuracy property of P . Let pi be any process. We have to show that no process is added to suspectedi

before crashing. Let i1, . . . , im be the m process identities that are placed in suspectedi during an iteration of task T2. It
follows from the query/response mechanism (implemented by the inquiry/alive messages) used when ki = m, and the
strong accuracy property of AP , that each of the n−m other processes has answered after these m processes have crashed.
Consequently, none of these n−m processes can be part of the m crashed processes. Hence, the set of processes that defines
the value of suspectedi contains only crashed processes. 2Theorem 1

3.3 Anonymous consensus in AASn,t[AP ]

Description of the algorithm A consensus algorithm for AASn,t[AP ] is described in Figure 2. This algorithm is a
simple adaptation of a flood set-based algorithm designed for synchronous system. A process pi invokes propose(vi) where
vi is the value it proposes to the consensus. It terminates when it executes the return(esti) statement (line 10) where esti is
the value it decides. The processes execute (2t + 1) asynchronous rounds (line 2). In each round, each process pi broadcasts
its current estimate (denoted esti and initialized to vi) of the decision value and updates it (by taking the minimum on the
values it has received and taken into account up to now, lines 5-6).

operation propose(vi):
(1) esti ← vi; ri ← 1;
(2) while (ri ≤ 2t + 1) do
(3) begin asynchronous round
(4) brodcast est(ri, esti);

(5) wait until
(

aa`i messages est(ri,−) have been received
)
;

(6) esti ← min(est values received at the previous line);
(7) ri ← ri + 1;
(8) end asynchronous round
(9) end while;
(10) return(esti).

Figure 2: Anonymous consensus in AASn,t[AP ]

Remark If n is known by the processes, the algorithm can be improved to reduce the number of rounds in the particular
case where t = n− 1 (wait-free case). Instead of 2t + 1 rounds, the processes can then execute only 2t rounds.

Theorem 2 [6] The algorithm described in Figure 2 solves the consensus problem in (2t + 1) rounds in the AASn,t[AP ]
model.

Remark On the one hand, the statement of the previous algorithm is pretty simple, and very close to the flood-set
consensus algorithm for non-anonymous synchronous systems. On the other hand, its proof is rather technical and very
different from its synchronous counterpart. This is due to the independence between communication that is asynchronous
and crash notifications supplied by the failure detector AP through integers (aa`i). This is captured in [6] with the notion
of misleading messages. A message m is misleading if it allows its receiver to terminate a round r, while the sender of m
has crashed after or during the broadcast of m during round r. Misleading messages create confusion, as they can direct a
receiver to miss messages from correct processes (if x of the aa`i messages that pi receives during a round r are misleading,
pi can miss x round r messages from alive processes).

4 Anonymous system enriched with an anonymous eventual leader failure
detector

4.1 The class AΩ of anonymous eventual leader oracles

The class of eventual leader failure detectors Let us remember that any failure detector of the class of (non-
anonymous) eventual leader failure detectors Ω provide each process pi with a local variable leaderi that contains a process
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6 F. Bonnet & M. Raynal

identity and is such that, after an arbitrary but finite time, the variables leaderi of the non-faulty processes contain forever
the same identity, and this identity is the one of a non-faulty process.

The class of anonymous eventual leader failure detectors It is easy to define an anonymous counterpart of Ω. This
class of failure detectors, denoted AΩ, provides every process pi with a boolean variable leaderi such that, after an arbitrary
but finite time, there is one non-faulty process (say p`) whose boolean variable remains forever true, and the boolean variables
of the other non-faulty processes remain forever false. Let us notice that, during the arbitrary long anarchy period, the local
variables leaderi can take arbitrary values (e.g., it is possible that they all are equal to false).

Equivalence Ω and AΩ are equivalent in ASn,t[∅] (for any value of t). The two directions of the equivalence are explained
below. The proofs are straightforward and left to the reader.

From Ω to AΩ in a non-anonymous system. For any process pi, the variable leaderAΩ
i of AΩ is computed by the test

leaderΩ
i = i where leaderΩ

i is the output of Ω.

From AΩ to Ω in a non-anonymous system. The reduction consists in two tasks executed by all processes: (1) Each process
pi checks periodically its boolean leaderAΩ

i and if its value is true, it sends a message Leader(i) (note that this reduction is
done in the non-anonymous model, hence pi knows its identity). (2) When pi received a message Leader(k), it updates its
leaderΩ

i to k.

Notation The system model denoted AASn,t[t < n/2, AΩ] is AASn,t[∅] enriched with a failure detector of the class AΩ
and where there is always a majority of correct processes.

4.2 Anonymous consensus in AASn,t[t < n/2, AΩ]

Description of the algorithm A consensus algorithm for AASn,t[t < n/2, AΩ] is described in Figure 4. This algorithm
is a variant of a leader-based consensus algorithm designed for non-anonymous systems [20]. The processes proceed by
executing asynchronous rounds. Each round is made up of three communication steps (called phases and numbered 0, 1
and 2). The local variable ri is the current round number of pi; est1i and est2i are local variables that contain pi’s current
estimate of the decision value.

• During phase 0 of round r, a process pi first waits until either it discovers it is leader, or it receives a message
phase0(r, v). If it is currently leader (leaderi is then equal to true), pi broadcasts its current estimate value est1i

(message phase0(r, est1i)) in order the processes strive to decide it. Otherwise, pi adopts the estimate value v it has
received as the new value of its estimate est1i. In that case, pi also broadcasts the message phase0(r, est1i). This is
to circumvent the possible crash of the process that sends the message phase0(r, v) it has received.

px

p`

phase0 (r, v)

leaderx = true

leader` = trueleader` = false

py
leadery = false (forever)

Figure 3: Why to forward phase0 () messages

As an example, let us consider Figure 3. Process px sends phase0 (r, v) to p` only, and then crashes. When, it receives
this message, let us assume that p` proceeds to phase 1 of round r, without forwarding the message it has received.
Moreover, let us assume that p` becomes the eventual leader after proceeding to phase 1 of round r and all other
boolean leadery take the value false. It is easy to see that py remains blocked in round r waiting forever for a message
phase0 (r,−).

• Then pi enters phase 1 of round r. During that phase, the processes exchange their current estimates est1i. If pi

received the same estimate value v from a majority of processes it adopts v as the current value of est2i. Otherwise, it
sets est2i to the default value ⊥. As any two majorities do intersect, it is easy to see that for any two processes that
terminate phase 1 of round r we have (est2i 6= ⊥) ∧ (est2j 6= ⊥) ⇒ (est2i = est2j = v) (quasi-agreement property).
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• Finally, pi enters the phase 2 of round r. During that phase, the processes exchange the values of their estimates
est2i (which are equal to the same non-⊥ value or ⊥, hence we have reci = {v}, or reci = {v,⊥}, or reci = {⊥}.
Moreover, due to the assumption t < n/2 and the quasi-agreement property on the estimates est2i, it is impossible to
have reci = {v} and recj = {⊥} for two processes pi and pj that terminate round r. The behavior of pi then depends
on the content of reci.

– If reci = {v}, pi decides v. As a process that decides stops executing the consensus algorithm, and processes wait
for n − t messages in phase 1 and 2 of a round, the stop of pi can entail other processes to wait forever during
rounds r′ > r. To prevent such a possible deadlock, a process pi is required to broadcast a message decide (v)
before deciding.

– If reci = {v,⊥}, pi adopts v as its new estimate value est1i and proceeds to the next round.
– If reci = {⊥}, pi proceeds to the next round without modifying est1i.

operation propose (vi):
est1i ← vi; ri ← 0;
while true do

begin asynchronous round
ri ← ri + 1;

% Phase 0 : select a value with the help of the oracle AΩ %

wait until
(
(leaderi) ∨ (phase0(ri, v) received)

)
;

if (phase0(ri, v) received) then est1i ← v end if;
broadcast phase0 (ri, est1i);

% Phase 1 : from all to all %

broadcast phase1 (ri, est1i);
wait until (phase1 (ri,−) received from n− t processes);
if (the same estimate v has been received from > n/2 processes)

then est2i ← v else est2i ← ⊥ end if;

% Phase 2 : try to decide a value from the est2 values %

broadcast phase2 (ri, est2i);
wait until (phase2 (ri,−) received from n− t processes);
let reci = {est2 | phase2 (ri, est2) has been received};
case (reci = {v}) then broadcast decide(v); return(v)

(reci = {v,⊥}) then est1i ← v
(reci = {⊥}) then skip

end case
end asynchronous round

end while.

when decide(v) is received: broadcast decide(v); return(v).

Figure 4: A Consensus algorithm for AASn,t[t < n/2, AΩ] (code for pi)

Theorem 3 The algorithm described in Figure 4 solves the consensus problem in AASn,t[t < n/2,Ω].

Proof The proof of the validity property (a decided value is a proposed value) is trivial and left to the reader.

Proof of the agreement property. Let r be the first round during which a process decides (say v). It follows from the quasi-
agreement property that, if another process pj decides during the very same round, we have recj = {v}, and consequently
pj decides the same value v.

Let us now consider a process pj that proceeds to round r + 1. As indicated previously, we have then recj = {v,⊥} and
pi sets est1j to the value v before proceeding to the next round. It follows that all the processes pj that proceed to round
r + 1 have v as estimate value est1j . Consequently, v is the only value present in the system from the end of round r. It
follows that no other value can be decided.

Proof of the termination property. Let us first observe that, if a process decides, due to the decide() messages, every non-
faulty process receives such a message and consequently decides. So, let us assume that no process ever decides.
Claim C. No non-faulty process blocks forever in a round.
Proof of claim C. The proof is by contradiction. let r be the first round during which a non-faulty process (say pi) blocks
forever. Let us first consider phase 0 of round r. If pi is the eventual leader it cannot be blocked forever in phase 0 of r.
Hence, assuming that pi is not the eventual leader, this means that pi never receives a message phase0 (ri, v). We consider
several cases.
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8 F. Bonnet & M. Raynal

1. A non-faulty process px is (momentarily or permanently) designated as leader, and that process broadcasts phase0 (ri, est1x)
that is received by pi. In that case, process pi cannot block forever in the wait statement of phase 0.

2. A faulty process px (momentarily designated as leader) sends phase0 (ri, est1x) to pi (or to another process py that
forwards the message phase0 (ri, est1x) to pi). In that case, process pi cannot be blocked in the wait statement of
phase 0.

3. No message phase0 (ri, est1x) broadcast by a faulty process is received by pi. In that case, the faulty processes either
crash during round r or are never designated as leader during round r. It then follows from the eventual leadership
property of AΩ, that there is a correct process that (momentarily or permanently) is designated as leader, and we are
then in the scenario of Item 1.

If follows from the previous case analysis that no non-faulty process pi can block forever during phase 0 of round r. Due to
the “majority of correct processes” assumption, it follows that pi can be blocked forever neither in the wait statement of
phase 1 nor in the wait statement of phase 2. End of proof of claim C.

As (1) no process decides (assumption), (2) the non-faulty processes are never blocked in a round (Claim C), and (3),
from their very definition, the faulty processes eventually crash, it follows that there is a round from which there are only
non-faulty processes and one of them (say p`) is forever designated as the single leader. Let r be such a round.

During r, the leader p` is the only process such that leader` is equal to true, and it consequently the first process that
broadcasts phase0 (r, v). Moreover, as any other process pj is such that ¬leaderj from round r, such a process can only
receive (and then forwards) phase0 (r, v). It follows that at the end of phase 0, the local estimates est1j are all equal to
v = est1`. Hence, the local estimates est2j are all equal to v at the end of phase 1. Then, during phase 2, every non-faulty
process is such that recj = {v}, and consequently decides, which contradicts the initial assumption and completes the proof
of the termination property. 2Theorem 3

Number of communication steps The previous algorithm assumes a majority of correct processes. Any of its execution
requires a finite number of rounds (each round being made up of three communication steps). This number, which is
independent of t, cannot be bounded (as it depends on the quality of the failure detector).

Let a failure detector of the class AΩ be perfect if a single non-faulty leader is elected from the very beginning. It is easy
to see that, if the failure detector is perfect, a process decides at the end of the first round.

This is in contrast with the algorithm described in Figure 2 designed for the AASn,t[AP ] model, that requires (2t + 1)
rounds. This algorithm works for any value of t (0 < t < n). Its constant number of rounds is independent of the behavior
of the failure detector1.

An open problem The two previous algorithms set the following question: Is it possible to design a consensus algorithm
in AASn,t[AP, t < n/2, AΩ] that combines the advantages of both previous algorithms, namely, (a) always at most 2t + 1
rounds, (b) a single round in the runs where AΩ is perfect?

5 Is there a weakest failure detector for consensus in anonymous systems?

AP and AΩ are incomparable It is known that the class P is strictly stronger than the class Ω. This means that, given
any failure detector of the class P , it is possible to build a failure detector of the class Ω (e.g., elect as current leader the
process with the smallest identity among the processes that are not suspected), while the converse is not true (namely, Ω
eventually elects a correct process, but gives no information on which processes have crashed).

A little bit surprisingly, it appears that, in anonymous systems, AP and AΩ are incomparable. None of them is stronger
than the other.

Theorem 4 It is impossible to construct a failure detector of the class AP in AASn,t[AΩ], and it is impossible to construct
a failure detector of the class AΩ in AASn,t[AP ].

Proof From AP to AΩ : impossibility. Let us remember that all the processes execute the same code. Whatever the code
they execute, there is a run in which all the processes proceed at the same speed and read exactly the same value from their
failure detector variable aa`i.

1It is possible to design an early-deciding consensus algorithm for the model AASn,t[AP ], in which a process decides in at most min(2t+1, 2f+2)
rounds (let us remember that f is the number of actual crashes) [6]. It is easy to see that, with this early-deciding algorithm, the number of rounds
is no longer constant (as it depends on the run) but remains upper bounded by 2t + 1.
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In such a run, there is no way to break the symmetry in order to distinguish a process from the other processes. It follows
that a failure detector of the class AΩ cannot be built.

From AΩ to AP : impossibility. The proof is by contradiction. let us suppose that there is an algorithm T that builds a
failure detector of the class AP in AASn,t[AΩ]. By construction T does not rely on the process identities. Moreover, in a
non-anonymous system, it is possible to transform Ω into AΩ (algorithm T ′), it is possible to transform AP into P (algorithm
T ′′). It is then possible to build a failure detector of the class P in ASn,t[Ω] as follows. (All algorithms are executed in
ASn,t[Ω].)

• First, use T ′ to transform the failure detector ω ∈ Ω into a failure detector aω ∈ AΩ.

• Then, use T to transform aω into a failure detector ap ∈ AP .

• Finally, use T ′′ to transform ap into a failure detector p ∈ P .

This construction contradicts the fact that it is impossible to build a failure detector of the class P in ASn,t[Ω]. It follows
that T cannot exist. 2Theorem 4

The question and a conjecture Given two failure detector classes D1 and D2, let us remember that D1 is strictly weaker
than D2 in the system model ASn,t[∅] (denoted D1 ≺ D2) if there is an algorithm that constructs a failure detector of the
class D1 in ASn,t[D2] (such an algorithm is called an extraction algorithm), while there is no algorithm that constructs a
failure detector of the class D2 in ASn,t[D1]. Moreover, two failure detector classes D1 and D2 are equivalent (denoted
D1 ' D2) in the system model ASn,t[∅] if (1) there is an algorithm that constructs a failure detector of the class D1 in
ASn,t[D2], and there is an algorithm that constructs a failure detector of the class D2 in ASn,t[D1]. Finally, the notation
D1 � D2 is a shortcut for (D1 ≺ D2) ∨ (D1 ' D2).

Given a problem P and a failure detector class D, D is the weakest failure detector class for P in ASn,t[∅] if (a) there is
an algorithm that solves P in ASn,t[D], and (b) for any failure detector class D′, such that P can be solved in ASn,t[D′],
we have D � D′. It is shown in [15] that any problem has a weakest failure detector in ASn,t[∅].

Theorem 4 sets the question of the weakest failure detector class to solve consensus despite the three adversaries that are
anonymity, crashes and asynchrony. We conjecture that there are several weakest failure detector classes for consensus in
AASn,t[∅]. If follows that these classes are incomparable.

The traditional definition (of weakest failure detector class for a problem P, stated above) does not allow several weakest
failure detectors classes for P to exist. So, a new definition that allows several weakest failure detector class to co-exist is
needed. Hence, we redefine the notion of weakest failure detector class for a problem P as follows. D is a weakest failure
detector class for P in a system model XXn,t[∅] (where XX stands for either AS or AAS) if:

• There is an algorithm that solves P in XXn,t[D], and

• ∀ D′, D′ ≺ D, P cannot be solved in XXn,t[D′].

Let us notice that, as any problem has a weakest failure detector class when we consider the system model ASn,t[∅] [15],
it follows that both definitions are equivalent in this system model. When we consider the system model AASn,t[∅], the
proposed definition is more general (in the sense that it extends the traditional definition while allowing several classes to
be the weakest ones for a given problem we want to solve in AASn,t[∅]).

The example described on Figure 5 presents a situation where two weakest failure detectors exist for a problem P . Failure
detectors Dk, WFD1 , and WFD2 allow P to be solved whereas failure detectors D′

k do not. An arrow from A to B means
that failure detector class B is weaker than failure detector class A. In that case and according to the definition, each of
WFD1 and WFD2 is a weakest failure detector class for the problem P since both allow P to be solved, and no strictly
weaker failure detector class does so.

6 Conclusion

This paper was focused on the quest for discovering the weakest failure detector to solve the consensus problem in asyn-
chronous anonymous crash-prone message passing systems. To that end, the paper has presented two classes of anonymous
failure detectors. It bas been shown that these classes are the anonymous counterparts of the class of perfect failure detectors
and eventual leader failure detectors encountered in non-anonymous systems. Consensus algorithms based on these failure
detector classes have been presented and proved correct.
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D1 D2 D3 D4

D′1 D′2 D′3 D′4

Failure detectors that solve the problem P

Failure detectors that do not solve the problem P

WFD1 WFD2

Figure 5: Hierarchy of failure detector classes

The paper has shown that anonymity collapses the hierarchy of failure detectors for non-anonymous systems. More
precisely, while a perfect failure detector is strictly stronger than an eventual leader failure detector, the paper has shown
that their anonymous counterparts are incomparable. Hence, the conjecture that maybe there is no weakest failure detector
class for consensus in asynchronous crash-prone anonymous systems.
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