
Diskless Checkpointing with Rollback-Dependency Trackability

Raphael Marcos Menderico and Islene Calciolari Garcia
Institute of Computing

State University of Campinas (UNICAMP)
Campinas, SP, Brazil

Email: {rmm, islene}@ic.unicamp.br

Abstract—One way to implement fault tolerant appli-
cations is storing its current state in stable memory and,
when a failure occurs, restart the application from the
last global consistent state. If the number of simultaneous
failures is expected to be small a diskless checkpointing
approach can be used, where a failed process’s state can be
determined only accessing non-faulty process’s memory.
In the literature diskless checkpointing is usually based

on synchronous protocols or properties of the application.
In this paper we present a quasi-synchronous diskless
checkpointing algorithm, called RDT-Diskless, based on
Rollback-Dependency Trackability. The proposed algo-
rithm includes a garbage collection approach that limits
the number of checkpoints that must be kept in memory.
A framework, called Cheops, was developed and exper-
imental results were obtained from a commercial cloud
environment.
Keywords-checkpointing; fault-tolerance; availability;

dependability; distributed algorithms

I. INTRODUCTION

In recent years people started using the power of
computers clusters with thousands of processors [1],
either on custom-made interconnected boards [2] or
on off-the-shelf computers connected by a high speed
network [3]. With a large number of components, it
is expected that the mean time between failures will
be some hours even if these components are created
to be extremely reliable and, independently, have a
small failure rate. Although these clusters are usually
designed to keep working with some failed components,
applications need to be reworked to deal with this
situation [4].
Fault tolerant applications can store its current state

in stable memory and, when a failure occurs, restart
the application from the last consistent global state [5].
These states can be stored on disk or on central stable
storage system, which allows any process to recover
a failed process’ state. However, this approach can
increase the execution time, particularly for those who
take checkpoints frequently [6]. It is also possible to
use a memory-based storage system, where a failed
process’ state can be determined accessing non-faulty

process’ memory. This technique, called diskless check-
pointing [7], does not support whole-system failures, but
it can be used if the number of simultaneous failures is
small.
In this paper we present a quasi-synchronous ap-

proach for diskless checkpointing. A quasi-synchronous
checkpoint algorithm allows the processes to take
checkpoints asynchronously, but some additional check-
points may be induced to guarantee the construction
of recovery lines. The proposed algorithm, called RDT-
Diskless, is based on Rollback-Dependency Trackability
(RDT) [8]. This property allows the use of a garbage
collection approach that limits the amount of check-
points that must be kept in memory [9].
A framework, called Cheops, was developed and

simulation results obtained using the Amazon Elastic
Compute Cloud (Amazon EC2) and the Amazon Simple
Storage Service (Amazon S3)1. In these experiments,
we have replicated processes’s full state. However, our
approach could be used with error recovery protocols,
such as parity [10], Reed-solomon [11], and Informa-
tion dispersal algorithms [12] in order to reduce the
amount of data to be transmitted.
The rest of the paper is divided as follow: Sec-

tion II presents related work, Section III describes the
computational model, Section IV discusses the number
of distint repositories and tolerated faults when using
diskless checkpointing, Section V explains the RDT-
Diskless algorithm, Section VI presents Cheops and
experimental results. Section VII concludes this article.

II. RELATED WORK

There are several studies about diskless checkpoint-
ing, most of them either rely on some characteristic of
the underlying application [13], [14] or, even though
they are designed to be used by any application, they are
based on synchronous checkpointing protocols [4], [10],
[15]–[19], therefore being more fitted for applications
which naturally have a synchronization barrier.

1http://aws.amazon.com

2010 29th IEEE International Symposium on Reliable Distributed Systems

Unrecognized Copyright Information

DOI

72

2010 29th IEEE International Symposium on Reliable Distributed Systems

1060-9857/10 $26.00 © 2010 IEEE

DOI 10.1109/SRDS.2010.17

264

2010 29th IEEE International Symposium on Reliable Distributed Systems

1060-9857/10 $26.00 © 2010 IEEE

DOI 10.1109/SRDS.2010.17

264

2010 29th IEEE International Symposium on Reliable Distributed Systems

1060-9857/10 $26.00 © 2010 IEEE

DOI 10.1109/SRDS.2010.17

275

Plank and Li [10] described the first diskless check-
pointing protocol, which takes advantage of memory
paging to keep track of the differences among the
current and previous checkpoints of a process. A parity
mechanism implemented between the process and a
special node called checkpoint server assure you are
able to tolerate a failure of one single process. A backup
server, updated only during a synchronization phase, can
be used in case the main mechanism fails.
After that, some studies aim to compare different

replication techniques for diskless checkpointing, look-
ing at latency for recovery, overhead during application
execution, storage strategies in memory and disks [7],
error-correction algorithms and repository strategy [16],
[18], [19]. Generally, on synchronous-based diskless
checkpointing protocols, local error correction is better
than global error correction, the overhead is lower
but near disk-based checkpointing and there are huge
improvements in the recovery latency time.

III. COMPUTATIONAL MODEL AND DEFINITIONS
A distributed system is composed by n processes

(p1, p2, . . . , pn) that can only exchange information
through messages. The communication channels are
reliable and all messages are delivered in an arbitrary
but finite time frame, not necessarily in order. Nodes
are subject to crash failures (can fail leaving no data),
and processes are subject to crash-recovery failures (can
be recovered after a failure). All processes’ variables
must be stored, and it could be necessary to implement
additional recovery systems for non-deterministic data,
like user inputs.
Typically, a process is divided in two layers [20]. The

application layer is responsible for the distributed com-
putation and sends checkpoint requests to the check-
point layer. The checkpoint layer collects process’ vari-
ables and saves checkpoints according to some protocol.
Every process has a stable storage associated with it that
is not necessary a disk and can be placed in another
node. Its implementation depends on the fault tolerance
requirements imposed by the designer [20].
A process pa’s execution is treated as an ordered set

of events e0a, e1a, Every event has an state associated
with it composed by all process’ variables immediately
after the event occurred. A global state of a distributed
system is a set composed by one state of each process.
A checkpoint is a state chosen by the process as a

candidate to compose a consistent global state [5]. An
arbitrary checkpoint α of a process pa is denoted by
cαa . A stable checkpoint sαa is cαa when stored in a way
it can be loaded even in case of failures, according to
the fault tolerance parameters set on the system. Every

process has an initial checkpoint, called c0a and the last
stable checkpoint of a process is denoted by slasta .
We say that cαa → c

β
b if the event that created cαa

happened before the event that created cβb , according to
the causal precedence defined by Lamport [21]. If one
checkpoint causally precedes another, they cannot be
part of the same consistent global checkpoint. However,
two checkpoints can be concurrent, but cannot be part
of the consistent global checkpoint. The precedence
among checkpoints can be captured by the z-precedence
relation [22], [23].

Definition 1. Z-precedence between checkpoints:
cαa z-precedes c

β
b (c

α
a � c

β
b) iff

• cαa → c
β
b , or

• ∃cγc : (cαa � cγc) ∧ (cγ−1
c � c

β
b).

In the simplest precedence that is not a causal prece-
dence, two messages form a path that resembles the
letter Z in a space-time diagram (Figure 1 (a)).

pb

pc

pa

sγ−1
c

sαa

sγc

s
β
b

pa

pb

s
β−1
b

sαa

s
β
b

(a) (b)
Figure 1. Z-precedence.

A checkpoint that z-precedes itself (Figure 1 (b))
is useless and cannot be part of any consistent global
checkpoint [23] or recovery line.

Definition 2. The recovery line of a set F of fault
processes is equal to the consistent global checkpoint
which discards the lowest number of checkpoints.

A recovery line, defined as follows, is unique for
a single process or for a given set F of fault pro-
cesses [24].

Definition 3. Let slastf be the last stable checkpoint of
pf . The recovery line of pf is:

R(pf) =
⋃n

i=1{c
max(k)
i |slastf �� cki }

Definition 4. The recovery line of a set F of failed
processes is:

R(F) =
⋂

pf∈F
{R(pf)}

In this paper we are also going to consider recovery
lines based on any stable checkpoint of a process:

Definition 5. The recovery line of a checkpoint cαa is:
R(cαa) =

⋃n
i=1{c

max(k)
i |cαa �� cki }

73265265276

IV. DISTINCT REPOSITORIES AND MAXIMUM
NUMBER OF FAILURES

In order to isolate the checkpointing management
from the actual recovery algorithm we will introduce
a classification for information dispersal algorithms
according to the number of binary packages produced
(ρ) and how many can be discarded without losing the
ability to recover the original information (φ).

Definition 6. A (ρ,φ)-algorithm must define the follow-
ing operations:
• disperse(c: checkpoint): returns ρ data packages;
• rebuild(v: packages[ρ− φ]): returns checkpoint c.

An algorithm based on replication can be expressed
as (ρ,ρ-1)-replication:
• disperse(c: checkpoint) returns ρ copies of c;
• rebuild(v: packages[1]): returns v[0].
An algorithm based on parity using bitwise XOR can

be expressed as (ρ,1)-parity:
• disperse(c: checkpoint) split c into ρ−1 packages,
labeled ρ0, ρ1, . . . , ρρ−1. Returns {ρ0, ρ1, . . . ,
ρρ−1, ρ0 XOR ρ1 XOR . . . XOR ρρ−1 }.

• rebuild(v: packages[ρ-1]): returns the concatena-
tion of all original packages in the same order they
were split (using parity to recovery one package if
necessary).

A. ρ-stable checkpoint
Diskless checkpointing is usually based on syn-

chronous protocols and on the global state of the appli-
cation [25]. Quasi-synchronous checkpointing protocols
work with single checkpoints and determine the global
state at recovery time. To extend diskless checkpointing
to quasi-synchronous protocols, we will define a ρ-
distributed checkpoint:

Definition 7. Checkpoint cαa is ρ-distributed if all the
packages produced by the function disperse(cαa) are
stored on distinct repositories.

A ρ-distributed checkpoint preceded by a non ρ-
distributed one (Figure 2).

p3

p2

p1

ρ-distributed non ρ-distributed current state

Figure 2. ρ-distributed and non ρ-distributed checkpoints

Definition 8. A ρ-stable history of a process pa
(hρ(pa)) in a consistent cut C is the set of checkpoints
of pa such that cαa ∈ hρ(pa) if cαa is ρ-distributed in any
cut C ′ ⊆ C and ∀β < α, cβa ∈ hρ(a).

Definition 9. Every cαa ∈ Cρ = hρ(p1)∪hρ(p2)∪ · · · ∪
hρ(pn) is called a ρ-stable checkpoint.

B. ρ-stable recovery lines
Figure 3 presents a scenario with three processes in

which only one of them has not failed. The recovery
line of the system is R(p2)

⋂
R(p3) that is equivalent

to R(p2). However, even if φ = 2, it is not possible to
recover from this failure since the checkpoint for p3 on
R(p2) is not ρ-distributed. This way, we must focus on
ρ-stable checkpoints, that are not only ρ-distributed but
also only preceded by other ρ-distributed checkpoints
from the same process.

p3

p2

p1
Cρ

R(p2) R(p3)

Figure 3. Non-recoverable failure scenario

We must define a new recovery line that includes ρ-
stable checkpoints from failed processes. Let sρlastf

be
the last ρ-stable checkpoint of a process pf .

Definition 10. The ρ-stable recovery line of pf is
Rρ(pf) = R(sρ

last
f

) =
⋃n

i=1{c
max(k)
i |sρ

last
f

�� cki }

Definition 11. The ρ-stable recovery line of a set F of
processes in a consistent cut C is

Rρ(F) =
⋂

pf∈F
{Rρ(pf)}

The following theorem will show that this recovery
line is suitable for diskless checkpointing protocols.

Theorem 1. Given a set F of failed processes, such that
|F | ≤ φ, it is always possible to rollback the distributed
application to Rρ(F).

Proof: Let’s assume that checkpoints from non-
faulty processes are always available, either because
they are already ρ-stable or because its own process is
keeping a copy of it while waiting for its stability. From
Definition 11, Rρ(F) is an intersection of recovery lines
and must contain only ρ-stable checkpoints from faulty
processes. Since |F | ≤ φ, it is possible to rebuild these
checkpoints and combine them with checkpoints from
non-faulty processes in order to rollback to Rρ(F).

74266266277

C. ρ-needless checkpoints
A needless checkpoint does not belong to any current

or future recovery line and should be discarded [9], [24].
We need to define ρ-needless checkpoints:

Definition 12. Checkpoint sραa is ρ-needless in a con-
sistent cut C if it does not belong to any recovery line
Rρ(pj) for 1 ≤ j ≤ n in C .

We must prove that ρ-needless checkpoints do not
belong to any recovery line in the future of C and these
checkpoints remains ρ-needless in case of a rollback.

Lemma 1. Let sαa be a ρ-needless checkpoint in a cut
〈si11 , si22 , . . . , sinn 〉. It should remain ρ-needless in any
future cut 〈si1+ε1

1 , si2+ε2
2 , . . . , sin+εn

n 〉, ∀j : εj ≥ 0 and
∃j : εj > 0 for 1 ≤ j ≤ n.

Proof: We know that sαa �∈ R(s
ij
j) and must prove

that sαa �∈ R(s
ij+εj
j). Let’s consider the following cases,

assuming that sαa is not useless (otherwise it would be
trivially ρ-needless).
1) ∀j, sijj � sαa —Since sαa ∈ 〈s

i1
1 , si22 , . . . , sinn 〉 and

sαa �∈ R(siaa), α < ia and sαa � siaa . However,
this means siaa � sαa � siaa ⇒ siaa � siaa ,
contradicting that siaa is not useless.

2) ∃pb such that sibb �� sαa — Since sαa �∈ R(sibb),
there is sγa ∈ R(sibb) such that s

ib
b �� sγa and

γ > α, otherwise sαa would have been choosen to
be part of R(sibb).
Let’s assume that sαa ∈ R(sib+εb

b). There must be
sα+1
a , α + 1 ≤ γ, sib+εb

b � sα+1
a . It leads to

sibb → sib+εb
b � sα+1

a → sγa contradicting sibb ��
sγa (Figure 4).

pa

pb

sαa

sibb

sγasα+1
a

sıb+εb
b

Figure 4. Second case of Lemma 1

Lemma 2. If sραa is ρ-needless in a consistent cut C

then sραa is erased or remains ρ-needless after a rollback
in C .

Proof: Let Rρ(F) be the recovery line of a set of
processes in C . If Rρ(F) contains sγa , γ < α, sραa will
be erased and trivially needless.
Let’s consider γ > α and let’s assume by con-

tradiciton that it exists pj such that after the rollback
sρ

α
a
∈ Rρ(pj) in Rρ(F). Let sρlastj

be the last stable

checkpoint of pj in C and sρ
lastj
j �= sρ

last
j

be the last
stable checkpoint of pj in Rρ(F), lastj < last.
Since sρ

γ
a
�∈ Rρ(sρ

lastj
j), sργa � sρ

lastj
j . However,

sρ
γ
a
�∈ Rρ(sρ

lastj
j) � sρ

last
j

contradicts that sργa ∈

Rρ(sρ
last
j

).

Theorem 2. sραa is ρ-needless in a consistent cut C if,
and only if it does not belong to to any ρ-stable recovery
line of C or any other C ′ after C .

Proof: (⇒) If sραa is not ρ-needless, it belongs to
at least one recovery line Rρ(pf) on C .
(⇐) If sραa is ρ-needless in C , it does not belong to

any recovery line in C . Lemma 1 shows it will remain
ρ-needless on any cut C ′, C ⊆ C ′. In case of a rollback
on any consistent cut C ′ after C , Lemma 2 states that
sρ

α
a
is either erased or remains ρ-needless, again, not

taking part of any recovery line.

V. DISKLESS CHECKPOINTING FOR RDT
CHECKPOINTING PROTOCOLS

A. Online garbage collection for diskless checkpointing
We can detect ρ-needless checkpoints during the

distributed execution and erase them from the processes’
memory with no need to use a synchronization barrier.

Definition 13. A ρ-stable cut of a consistent cut C (or
Cρ) is defined as Cρ = hρ(p1) ∪ hρ(p2) ∪ . . . hρ(pn).

Theorem 3. If sαa is needless in a consistent cut C ,
then sαa is ρ-needless in any consistent cut C ′ where
Cρ
′ ⊇ C .

Proof: Consider LR = {R(slast1), . . . , R(slastn)}
on C . Since sαa is stable and needless, it does not belong
to any recovery line on LR and belongs to the cut
〈slast1 , . . . , slastn 〉. Therefore, by Lemma 1, there is no
cut 〈slast+ε1

1 , . . . , slast+εn
n 〉, ε1, . . . , εn ≥ 0 such that sαa

is part of a recovery line.
We need to show that sαa is ρ-stable and does

not belong to any ρ-stable recovery line at C ′.
Given slasta the last stable checkpoint at cut C

and slast ρ
a the last ρ-stable checkpoint at cut C ′,

last ≤ last ρ. Therefore, 〈sρlast ρ
1 , . . . , sρ

last ρ
n

〉 =
〈slast+ε1

1 , . . . , slast+εn
n 〉, ε1, . . . , εn ≥ 0, and sαa is

not part of any recovery line of this cut. Since
〈sρ

last ρ
1 , . . . , sρ

last ρ
n

〉 is used to define the ρ-stable
recovery lines of C ′, we can conclude that sαa is ρ-
needless on C ′.
Theorem 3 can be rewritten using some properties of

RDT checkpointing protocols. On them, given a causal
dependency vectorDV of a checkpoint , the global state
〈c

DV (cαa)[1]
1 , . . . , c

DV (cαa)[n]
n 〉 is consistent. [8].

75267267278

Corollary 4. Consider, for any process pa, last ρ(pa)
the most recent ρ-stable checkpoint and DVρ(s

α
a) the

dependency vector at the cut C where sαa became
needless. Given checkpoint sαa a needless checkpoint
at a consistent cut C where DVρ(s

α
a) = DV (va),

then sαa is ρ-needless in any consistent cut C ′ where
∀i, last ρ(i) ≥ DVρ(s

α
a) [i].

Proof: From Theorem 3 and from
〈s

DVρ(s
α
a)[1]

1 , . . . , s
DVρ(s

α
a)[n]

n 〉 being a consistent
global checkpoint [8].
However, we must determine: (i) the most recent ρ-

stable checkpoint of every process and (ii) the exact
cut where sαa became needless. We will assume each
process knows its most recent ρ-stable checkpoint (for
example, by receiving a reply message from the pro-
cesses responsible for storing packages from a particular
checkpoint). So, each process has a vector DVρ which
will be updated the following way:
• During initialization: ∀i,DVρ[i] ← 0
• After updating last_ρ: DVρ[pid] ← last ρ
• After receiving a message m.DVρ[i]: ∀i,DVρ[i]←

max{DVρ[i],m.DVρ[i]}

Therefore, vector DVρ of pa contains the last ρ-stable
checkpoint of each process known by this process.
Corollary 4 shows that if ∀i,DVρ[i] ≥ DVρ(s

α
a) [i] in a

consistent cut C , then sαa is ρ-needless.
The last step is to determine the exact consistent

cut when a checkpoint became needless. In [9] an
online checkpoint garbage collection algorithm based
on an RDT protocol tracks needless checkpoints during
protocol execution, and can be used to get the depen-
dency vector of the current state where a checkpoint
became needless. Using this as DVρ we now have all
the necessary information to characterize a ρ-needless
checkpoint during the distributed execution, and it will
be the base of our diskless checkpoint protocol.

B. RDT-Diskless

Algorithm 1 describes RDT-Diskless, a quasi-
synchronous diskless checkpointing protocol with
garbage collection. Although it is not possible to get a
upper limit on the number of checkpoints, this protocol
achieve checkpoint replication and garbage collection
with no need of synchronization.
Type cinfo contains information about whether a

checkpoint is currently distributed among repositories
or not. Besides dv and dvrho, described previously,
a process contains a vector cm with information about
non-needless checkpoints and a set nl, with information
about needless but not ρ-needless checkpoints.

Four auxiliary functions were created to help keeping
track of the current state of each protocol:
• new: Records information about a new checkpoint.
• link: Tracks a new dependency for a non-needless
checkpoints.

• free: Moves information about a needless check-
point from cm to nl and stores its dvrho data.

• garbage: Checks if there is any needless check-
point which became ρ-needless.

Each process is responsible for keeping track of its
own packages, checking whether they are ρ-stable or
not (using, for example, a confirmation protocol). Each
process starts taking an initial checkpoint and send-
ing packages, waiting for confirmation before execute
the application itself. Every time a new checkpoint is
stored a new cinfo register is created and tracks all
dependencies related to it, allowing RDT-Diskless to
determine the cut where it becomes needless.
Vectors dv and dvrho are piggbacked on every mes-

sage. When a process receives a message, it updates its
own vectors, then checks if any checkpoint had became
needless and the dependency vector where it ocurred.
All information about recently needless checkpoint is
then removed from cm and moved to nl, waiting for the
progress of Cρ measured by dvrho. Every time dvrho
is updated function garbage is called and checks if
a checkpoint became ρ-needless and, if that happened,
sends an order to the repositores to erase it.

VI. Cheops: A TESTING FRAMEWORK FOR DISKLESS
AND DISK-BASED CHECKPOINTING PROTOCOLS
Cheops2 provides a flexible environment necessary

to compare several different implementations of both
diskless and disk-based checkpointing protocols. It was
implemented entirely on Python using only basic re-
sources provided by the language, with no other auxil-
iary communication framework.
All communication channels are TCP channels be-

tween each pair of processes. After the creation
of the communication channels (coordinated by a
dispatcher process), the processes can only com-
municate by exchanging messages. Checkpoints can be
stored on a filesystem, in memory or using Amazon
Simple Storage Service (S3). For these tests we used
a token ring application with a large CPU payload
after. Figure 5 shows the measured times 16 nodes
representing the mean and standard errors obtained. All
tests were executed at Amazon Elastic Cloud Comput-
ing (EC2) using standard Ubuntu 9.10 servers with all
packages provided by Ubuntu standard repositories.

2http://cheops.googlecode.com, available under Apache License

76268268279

Algorithm 1 RDT-REP
Type cinfo:
ind: int
rc: int
dvrho: array [1..N] of int

Process’ variables:
dv: array [1..N] of int
dvrho: array [1..N] of int
cm: array [1..N] of *cinfo
nl: set of *cinfo

Process’ initialization:
∀i: dv[i] ← 0
∀i: dvrho[i] ← 0
∀i: cm[i] ← null
nl ← ∅
Take ρ-stable checkpoint sρ0i

Send m to ps:
∀i: m.dv[i] ← dv[i]
∀i: m.dvrho[i] ← dvrho[i]
Transmit m to ps

Receive m from ps:
∀i: last dv[i] ← dv[i]
∀i: dv[i] ← max{dv[i], m.dv[i]}
∀i: dvrho[i] ← max{dvrho[i],

m.dvrho[i]}
∀i: if (dv[i] > last dv[i]):
free(i)
link (i, pid)

garbage()
deliver m to application

Take new checkpoint:
Send a package to every

repository of ppid
free(pid)
new(pid, dv[pid])
garbage()
dv[pid] ← dv[pid] + 1

When cαpid is ρ-stable:
dvrho[pid] ← max{dvrho[pid],α}
garbage()

new(i, idx: int):
cm[i] ← new cinfo
*cm[i].ind ← ind
*cm[i].rc ← 1

link(i,j: int):
cm[i] ← cm[j]
*cm[i].rc ← *cm[i].rc + 1

free(i: int):
if (cm[i] �= null)
*cm[i].rc ← *cm[i].rc - 1
if (*cm[i].rc = 0)
∀j: *cm[i].dvrho[j] = dvr[j]
nl ← nl ∪ {cm[i]}

cm[i] ← null

garbage():
∀k ∈ nl:
if (∀i: dvrho[i] ≥ *k.dvrho[i])
nl ← nl −{k}
remove *k.ind from repositories

200 300 400 500 600 700 800 900 1000 1100

State size (Kb)

400

450

500

550

600

650

700

750

800

850

T
im

e
(s
)

RDT-LGC-FDAS

RDT-DISKLESS-FDAS

Figure 5. Measured times for 16 nodes

During these tests we compared the performance
of two different quasi-synchronous RDT protocols: an
FDAS coupled with RDT-LGC garbage collection [9],
using S3 as a centralized repository, and FDAS coupled
with RDT-Diskless diskless online garbage collection,
storing checkpoints in memory and using replication (2
packages) as (ρ, φ)-algorithm. Every experiment was
executed several times (between 6 and 10) for each
checkpoint size and each process had its time recorded
individually, obtaining an average of 100 measured
times for each point on chart.

VII. CONCLUSION AND FUTURE WORK

This article presented a new approach for diskless
checkpointing, based on quasi-synchronous protocols
and distributed in-memory storage instead of either
having a synchronization barrier or a unique checkpoint
repository. Moreover, an open framework was devel-
oped to compare performance of some protocols. The
results obtained showed the proposed protocol has a
performance improvement over a centralized approach.
Using Amazon Web Services (namely EC2 and S3)

allowed us to have a customized set of machines on a
high performance network on a surprisingly low cost.
Cheops was designed to be simple and open source,
letting people reproduce our results on the same plat-
form or on its own cluster. With larger clusters available
with a relatively low cost, testing on these platforms
will become more and more relevant, and even with
a small set of machines and protocols we obtained a
better performance using a distributed storage approach.
We expect that over time centralized approachs would
become really inpractical due to excessive network
infrastructure required to exchange all control messages
and data, favoring in-memory storage.
After that we intend to analyze others partition al-

gorithms and different checkpoint protocols, combining
them properly and, using Cheops, profiling the appli-
cation and measuring its performance. This way, we
expect to create a thorough study on diskless and disk-
based checkpoints, including our novel approach.

77269269280

REFERENCES

[1] H. Meuer, E. Strohmaier, J. Dongarra, and H. Simon,
“The TOP 500 supercomputing sites,” 2009. [Online].
Available: http://www.top500.org

[2] N. Adiga, G. Almasi, G. Almasi, Y. Aridor, R. Barik,
D. Beece, R. Bellofatto, G. Bhanot, R. Bickford,
M. Blumrich et al., “An overview of the BlueGene/L
supercomputer,” in Supercomputing, ACM/IEEE 2002
Conference, 2002, pp. 60–60.

[3] L. Barroso, J. Dean, and U. Holzle, “Web search for
a planet: The Google cluster architecture,” IEEE micro,
vol. 23, no. 2, pp. 22–28, 2003.

[4] Z. Chen and J. Dongarra, “A Scalable Checkpoint En-
coding Algorithm for Diskless Checkpointing,” in 11th
IEEE High Assurance Systems Engineering Symposium,
2008. HASE 2008, 2008, pp. 71–79.

[5] M. Chandy and L. Lamport, “Distributed snapshots:
Determining global states of distributed systems,” ACM
Transactions on Computing Systems (TCOS), vol. 3,
no. 1, pp. 63–75, 1985.

[6] N. Kofahi, S. Al-Bokhitan, and A. Al-Nazer, “On Disk-
based and Diskless Checkpointing for Parallel and Dis-
tributed Systems: An Empirical Analysis,” Information
Technology Journal, vol. 4, no. 4, pp. 367–376, 2005.

[7] J. S. Plank, K. Li, and M. A. Puening, “Diskless
checkpointing,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 9, no. 10, p. 972, 1998.

[8] Y. M. Wang, “Consistent global checkpoints that contain
a given set of local checkpoints,” IEEE Transactions on
Computers, vol. 46, no. 4, pp. 456–468, 1997.

[9] R. Schmidt, I. C. Garcia, F. Pedone, and L. E. Buzato,
“Optimal asynchronous garbage collection for rdt check-
pointing protocols,” in ICDCS ’05: Proceedings of
the 25th IEEE International Conference on Distributed
Computing Systems (ICDCS’05), 2005.

[10] J. S. Plank and K. Li, “Faster checkpointing with n + 1
parity,” University of Tennessee, Knoxville, TN, USA,
Tech. Rep., 1993.

[11] S. Wicker and V. Bhargava, Reed-Solomon codes and
their applications. Wiley-IEEE Press, 1999.

[12] M. Rabin, “Efficient dispersal of information for secu-
rity, load balancing, and fault tolerance,” Journal of the
ACM (JACM), vol. 36, no. 2, pp. 335–348, 1989.

[13] C. Engelmann and A. Geist, “A diskless checkpointing
algorithm for super-scale architectures applied to the fast
fourier transform,” in Challenges of Large Applications
in Distributed Environments, 2003. Proceedings of the
International Workshop on, 2003, pp. 47–52.

[14] J. Plank, Y. Kim, and J. Dongarra, “Algorithm-based
diskless checkpointing for fault tolerant matrix oper-
ations,” in Fault-Tolerant Computing, 1995. FTCS-25.
Digest of Papers., Twenty-Fifth International Symposium
on, 1995, pp. 351–360.

[15] C. Lu, “Scalable diskless checkpointing for large parallel
systems,” Ph.D. dissertation, University of Illinois, 2005.

[16] Z. Chen, G. E. Fagg, E. Gabriel, J. Langou, T. Angskun,
G. Bosilca, and J. Dongarra, “Fault tolerant high perfor-
mance computing by a coding approach,” in PPoPP ’05:
Proceedings of the tenth ACM SIGPLAN symposium on
Principles and practice of parallel programming. New
York, NY, USA: ACM Press, 2005, pp. 213–223.

[17] J. Chiu and W. Hao, “Mutual-Aid: Diskless Checkpoint-
ing Scheme for Tolerating Double Faults,” in 10th IEEE
International Conference on High Performance Comput-
ing and Communications, 2008. HPCC’08, 2008, pp.
540–547.

[18] L. Silva and J. Silva, “Using two-level stable storage for
efficient checkpointing,” Software, IEE Proceedings, vol.
145, pp. 198–201, 1998.

[19] P. Sobe, “Stable checkpointing in distributed systems
without shared disks,” in Proceedings of the Interna-
tional Parallel and Distributed Processing Symposium
(IPDPS), 2003, pp. 8 pp.–.

[20] E. N. Elnozahy, D. Johnson, and Y.M.Yang, “A survey
of rollback-recovery protocols in message-passing sys-
tems,” ACM Comput. Surv., vol. 34, no. 3, pp. 375–408,
2002.

[21] L. Lamport, “Time, clocks, and the ordering of events
in a distributed system,” Communications of the ACM,
vol. 21, no. 7, pp. 558–565, 1978.

[22] I. C. Garcia and L. E. Buzato, “Progressive construction
of consistent global checkpoints,” in 19th IEEE Inter-
national Conference on Distributed Computing Systems
(ICDCS), 1999.

[23] R. H. B. Netzer and J. Xu, “Necessary and sufficient
conditions for consistent global snapshots,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. 6, no. 2,
pp. 165–169, 1995.

[24] Y.-M. Wang, P.-Y. Chung, I.-J. Lin, and W. Fuchs,
“Checkpoint space reclamation for uncoordinated check-
pointing in message-passing systems,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 6, no. 5,
pp. 546–554, 1995.

[25] J. S. Plank, M. Beck, G. Kingsley, and K. Li, “Libckpt:
transparent checkpointing under unix,” in USENIX 1995
Technical Conference Proceedings. USENIX Associa-
tion, 1995.

78270270281

