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Abstract 

 
In this paper, we give a survey on fault tolerant issue in 

distributed systems. More specially speaking, we talk about 
one important and basic component called failure detection, 
which is to detect the failure of the process quickly and 
accurately. Thus, a good failure detection method will 
avoid the further system lost due to process crash. This 
survey provides the related research results and also 
explored the future directions about failure detection, and 
it is a good reference for researcher on this topic.  

Keywords: Failure detector, Fault-tolerance, Network 
Systems, Quality-of-service 

 
 
1. Introduction 
 

Fault-tolerance is particularly prominent to distributed 
network systems in general, especially important in large-
scale environment. Normally, distributed system users want 
the system to remain operational in spite of technical 
failures, even if some of the participants of these network 
systems have crashed. With a large number of participants 
and long running time, the probability that the hosts crash 
during the execution is inevitable, regardless of the 
physical reliability of each individual host. Thus, an 
effective system must be designed and executed in such a 
way that the system can tolerate seamlessly a reasonable 
number of host failures, and the occurrence of a reasonable 
number of host failures is acceptable. 

Failure detection and process monitoring are the basic 
components of most techniques for fault-tolerance 
(tolerating failures) in distributed network systems, such as 
ISIS, Ensemble, Relacs, Transis, and Air Traffic Control 
Systems. Now how to design failure detectors over local 
networks is a rather well-known issue, but it is still far from 
being a solved problem with large-scale systems. Because a 

large-scale distributed system has lots of difficulties, which 
need to be addressed if we simulate them as a wired 
network environment: such as the potentially very large 
number of monitored processes, the higher probability of 
message loss, the ever-changing topology of the system, 
and the high unpredictability of message delays. All the 
above prominent factors fail to be addressed by the 
traditional solutions. To effective communication in large-
scale distributed network systems and because of its 
importance [15-20], it is highly desirable for failure 
detectors to be executed as a common generic service 
shared among distributed applications (similar to IP address 
lookup) (e.g., [15, 18-19]) rather than as redundant ad hoc 
implementations (e.g., [21]). If such generic service can be 
achieved, it is very easy to apply failure detectors in any 
kinds of applications to ensure the requirement of fault 
tolerance. In spite of many ground-breaking advances made 
on failure detection, such a service still remains at a distant 
horizon [22]. 

The design of dependable Failure Detectors (FDs) is a 
hard task, mainly because of the indefinable statistic 
behavior of communication delays. Furthermore, 
asynchronous (i.e., no bound on the process execution 
speed or message-passing delay) distributed network 
systems make it impossible to determine precisely whether 
a remote process has failed or has just been very slow [23]. 
Failure detectors can be seen as one oracle per process. An 
oracle provides a list of processes that it currently suspects 
to have crashed. The unreliable FD [23] can make mistakes 
by erroneously suspecting correct processes or trusting 
crashed processes. Many fault-tolerant algorithms have 
been proposed [23-26] based on unreliable FDs. It is 
utmost important to ensure acceptable quality-of-service 
(QoS) of FD to properly tune its parameters for the most 
desirable QoS to be provided, because the QoS of FD 
greatly influences the QoS that upper layers may provide. 

2009 International Conference on Computational Science and Engineering

978-0-7695-3823-5/09 $26.00 © 2009 IEEE
DOI 10.1109/CSE.2009.497

1065



However, there are few papers about comparing and 
implementing of these detectors [25]. 
 
2. Performance Metrics of Failure Detector 
 

To be useful, a failure detector has to be reasonably fast 
and accurate. However, there are two aspects to consider 
the performance metrics. As we know, the paper [23] is the 
first time to discuss the performance metrics of failure 
detector qualitatively, i.e., from completeness and accuracy. 
Roughly speaking, completeness requires that a failure 
detector eventually suspects every process that actually 
crashes, while accuracy restricts the mistakes that a failure 
detector can make. The authors defined two completeness 
and four accuracy properties, which gives rise to eight 
classes of failure detectors, and consider the problem of 
solving Consensus using failure detectors from each class.  

Of special interest is the weakest class of failure 
detectors considered in [23]. Informally, a failure detector 
is in W if it satisfies the following two properties: 

Completeness. There is a time after which every process 
that crashes is permanently suspected by some correct 
process. 

Accuracy. There is a time after which some correct 
process is never suspected by any correct process. 

A set of metrics have been proposed by Chen et al. in 
[35] to quantify the QoS of a FD: how fast it detects actual 
failures and how well it avoids false detections. Note that 
speed is with respect to processes that crash, while 
accuracy is with respect to processes that do not crash. 
There are three main metrics: Detection Time, Mistake 
Rate, and Query Accuracy Probability. 

Definition 1 (Detection time: TD). The detection time is 
the time that elapses from the crash of q until p begins to 
suspect q permanently. 

Definition 2 (Mistake Rate: MR) This is a random 
variable that represents the number of mistakes that failure 
detector makes in a unit time, i.e., it represents how 
frequent failure detector makes mistakes. 

Definition 3 (Query Accuracy Probability: QAP) This is 
a probability that, when queried at a random time, the FD at 
q indicates correctly that process p is up [27, 35]. 

Except these three metrics, there are Mistake recurrence 
time (TMR), Mistake duration (TM) and Good period 
duration.  The output of the failure detector at q at time t is 
either S or T, which means that q suspects or trusts p at 
time t, respectively. A transition occurs when the output of 
the failure detector at q changes: An S-transition occurs 
when the output at q changes from T to S; a T-transition 
occurs when the output at q changes from S to T. We 
assume that there are only a nite number of transitions 
during any nite time interval. 

Mistake recurrence time (TMR): this measures the 
time between two consecutive mistakes. More precisely, 
TMR is a random variable representing the time that 
elapses from an S-transition to the next one. 

Mistake duration (TM): this measures the time it takes 
the failure detector to correct a mistake. More precisely, 
TM is a random variable representing the time that elapses 
from an S-transition to the next T-transition. 

Good period duration (TG): this measures the length 
of a good period. More precisely, TG is a random variable 
representing the time that elapses from a T-transition to the 
next S-transition. 

With these performance metrics, we would like to 
introduce the recent related work and their characteristics 
in the following section.  

 
3. Related Failure Detectors and System 
Model 
 

The long-term and final target of failure detectors is to 
define and implement a generic failure detection service for 
large scale network systems, and to provide failure 
detection service as a generic network-service, like Domain 
Name Service (DNS), Network Information System (NIS), 
Network File System (NFS), Send mail, etc. The network 
service consists of two parts: failure detection and 
information propagation. The former monitors processes, 
nodes, etc., and also detects their failures. This detection 
corresponds closely to traditional failure detectors. 

The traditional failure detectors are based on a simple 
interaction system model. In this model, monitored 
processes can only send heartbeat messages and failure 
detections use constant timeout to either trust or suspect the 
monitored processes. Several recent adaptive failure 
detectors in [27, 36] could adjust a proper timeout based on 
both application requirements and network conditions. One 
of the major difficulties in building such a service is that 
applications with completely different requirements and 
running simultaneously have to be effectively adjusted by 
the service to meet their requirements. Furthermore, many 
distributed applications can greatly benefit from providing 
different levels of failure detection to trigger different 
reactions (see [31, 33]). For example, an application can 
take a precautionary action when confidence in a suspicion 
reaches a given level (a certain lower level); while take 
more drastic action once the confidence raises up (much 
higher level) [37].  

Except for the above related works, there were some 
other failure detection mechanisms. For example, Falai and 
Bondavalli [38] introduced a lot of experiments performed 
on Wide Area Network to assess and fairly compare QoS, 
which is provided by a large family of FDs. They described 
choices for estimators and safety margins used to build 
several FDs. Compared with [38], Xiong et al. [35] 
considered comparing all kinds of adaptive FD schemes in 
different experimental environments. 

Nunes et al. [39] analyzed and evaluated the QoS of an 
FD based on timeout for the different combinations of 
safety margins and communication delay predictors. Based 
on the results, in order to revise the QoS, the authors 
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presented the advice that one must consider the relation 
between the pair predictor/margin, instead of each one 
separately. However, we think it is hard to find such proper 
pairs. 

Fabio et al. [40] adapt FDs to load fluctuations of 
communication network by artificial neural networks and 
Simple Network Management Protocol (SNMP). The 
training patterns, which were used to feed the neural 
network, were obtained by using SNMP agents over 
Management Information Base variables. The output of 
such neural network is an estimated value of the arrival 
time for the FD to receive the next heartbeat message from 
a remote process. This scheme improves the QoS of the FD, 
while the training of neural network is more complex on 
achieving the same goal as in this paper. 

Fetzer et al. presented an adaptive failure detection 
protocol in [30]. This scheme enjoys the nice property of 
relying as much as possible on application messages to 
perform this monitoring. Differently from previous process 
of crash detection protocols, this protocol uses control 
messages only when no application messages are sent by 
the monitoring process to the observed process. These 
measurement results demonstrate that the number of wrong 
suspicions can be reduced by requiring each process to 
keep track of the maximum round trip delay between 
executions. 

Hayashibara et al. [34] presented that a generic failure 
detection service outputted a value based on a continuous 
normalized scale. Simple speaking, this value showed the 
degree of confidence in the judgment if the corresponding 
process had crashed. It was then left behind to each 
application process to set a suspicion threshold in terms of 
its own quality-of service requirements. Furthermore, even 
within the scope of a single distributed application, it was 
often desirable to trigger different reactions based on 
different degrees of suspicion. The key advantage of this 
approach [34] was that it decoupled the failure detection 
service from running applications. This scheme allowed it 
to scale well with respect to the number of simultaneously 
running applications and/or triggered actions within each 
application. 

For improving the QoS of FD, lots of adaptive FDs have 
been presented [17, 30, 39-40], such as Chen FD [27], 
Bertier FD [28], and the  FD [34]. In [27], Chen et al. 
presented several implementations depending on clock 
synchronization and a probabilistic behavior of the system. 
The implementations used arrival times sampled in the 
recent past to compute an estimation of the arrival time of 
the next heartbeat. The timeout was set based on this 
estimation and a constant safety margin, and it was 
recomputed for every interval. This scheme provided a 
good estimation for the next arrival time. Furthermore, this 
paper assumed that the communication history was driven 
by uncorrelated samples with an ergodic stationary action, 
and message delays followed some probabilistic 
distribution. However, this scheme used a constant safety 

margin because the authors estimated that the model 
presented a probabilistic behavior [28]. Therefore, Bertier 
FD [28] presented an optimization of safety margin for 
Chen FD. It used a different estimation function, which 
combined Chen’s estimation and Jacobson’s estimation of 
the round-trip time (RTT). Bertier FD performed as a very 
aggressive FD [34], because this scheme was primarily 
designed to be used over wired local area networks (LANs). 
It means that in the environments messages were seldom 
lost. Hayashibara et al. [34] proposed a method using a 
probabilistic analysis of network traffic, it was similar as in 
Chen FD, and it assumed that the inter-arrival time 
followed a normal distribution. Furthermore,  FD 
computed a value  with a scale that changed dynamically 
to match recent network conditions. This FD, differently 
from the other FDs, outputted a suspicion level on a 
continuous scale, which was instead of binary nature 
(suspect or trust). These above three FDs dynamically 
predicted new timeout values in terms of observed 
communication delays to revise the performance of the 
protocols. The self-tuned FDs, presented in [41] and [36], 
used the statistics of the previously obtained 
communication delays to continuously adjust its timeout. 
I.e., they assumed a weak past dependence on 
communication history. 

For the former failure detection schemes, all of them can 
not actively adapt their parameters by themselves to satisfy 
the requirement of users. To the question, Xiong et al. [35] 
presented a self-tuning failure detection based on [27]. In 
this paper, lots of experimental results demonstrate that the 
scheme is effective. It is sure that this idea also can apply 
into other failure detection to achieve self-tuning 
requirement. Firstly, this paper presented an optimization to 
improve the adaptation of [27], which significantly 
enhanced QoS, especially in the aggressive range and when 
the network was unstable. Secondly, they addressed the 
problem of most adaptive schemes, namely their 
requirement for a large window of samples. They studied a 
scheme that was designed to use a fixed and very limited 
amount of memory for each monitored–monitoring link. 
The experimental results over several kinds of networks 
(Cluster, WiFi, wired LAN, WAN) demonstrated the 
properties of the existing adaptive FDs and that the 
optimization is acceptable and reasonable. Furthermore, the 
extensive experimental results demonstrated what was the 
effect of memory size on the overall QoS of every adaptive 
FD. 

Xiong et al. [42] observed from lots of experimental 
statistical results, and found it was not a good assumption 
that the  failure detection [34] uses the normal distribution 
to estimate the arrival time of the coming heartbeat, 
especially in large scale distributed networks or unstable 
networks. Thus, here this paper developed an optimization 
over  failure detection based on exponential distribution, 
called exponential distribution failure detection. This 
significantly improved the QoS, especially in the design of 
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real systems. Lots of experiments have been carried out 
based on several kinds of networks (Cluster, WiFi, Wired 
local area network, and Wide area network). The 
experimental results had demonstrated the properties of the 
existing adaptive FDs, and demonstrated that the presented 
exponential distribution FD outperforms the existing FDs 
in the aggressive range. 

Hayashibara in [22] proposed a basic concept of  FD, 
which had the formal properties of accrual FD. This 
scheme allowed for gradual settings between a conservative 
behavior and an aggressive one. Here, they developed this 
idea and especially further discussed service performance 
of  failure detector in a variety of network environments. 

    Failure detections have been provided in many papers 
as an independent service (e.g., [15, 18-19, 23]). While, 
there are several important issues, which should be 
addressed before an effective generic service can be really 
executed. 

(1) A failure detection service must adapt to dynamic 
network conditions and application requirements. Several 
solutions were proposed recently to address this issue 
specifically [17, 27, 28, 30]. 

(2) A failure detection service must adapt to diverse 
application requirements. A few schemes (e.g., [27]) have 
been made to adapt the parameters of a failure detector 
service to match the requirements, while they are designed 
to support a single class of requirements. Cosquer et al. [29] 
identified the problem. Their scheme is wonderful, while it 
remains inflexible because they do not express the Boolean 
nature of failure detection.  

Hayashibara et al. [34] have pointed this out recently. 
They proposed a  failure detector to deal with this point. 
However, the QoS of failure detector is not enough for an 
effective generic service. 

(3) A failure detection service must propose a good QoS 
for users. However, so far as I know, many schemes try to 
express this point. While none of the solutions resolved it 
perfectly. 

As mentioned above, lots of problems remain in 
implementing a generic failure detection service. Also, to 
the best of our knowledge, there is no work about self-
tuning the parameters of failure detector to satisfy 
requirement of users. As we know, it is still an open 
problem in fault tolerant research area. Therefore, it is very 
necessary to address this question, i.e., it can adjust the 
parameters of failure detector to satisfy requirement of 
users by itself. 

  
4. Scalability and Reliability for Fault-tolerant 
network system 
 

For the information delivery applications in network 
environment, scalability and reliability are two of the most 
important issues.  

Network reliability has two aspects: one is the 
availability of end to end functionality for customers, the 

other is the ability to experience failures or systematic 
attacks, without impacting customers or operations. 
Network reliability is not cheap or free, and is not only 
about component reliability, reliable piece or part, fault 
tolerance hardware or fast recovery. 

Network scalability is about the ability to handle 
growing amount of work, and the capability of a system to 
increase total throughput under an increased load when 
resources are added. 

To tackle the above two issues at the same time, many 
schemes are proposed in wired/ wireless network 
environment.  

For wired network environment,  
(1) Tree-based hierarchies of subgroups: In different 

schemes, the special nodes in the subgroups can be group 
members or not and they can be either individual hosts or 
routers. Different names of the special nodes are used in 
different schemes, e.g. the proxies in [1] and the Reliable 
Multicast proxies (RMXs) in [2]. 

(2) Client-Server scheme [3]: Group membership 
services are provided by dedicated membership servers. 
Different levels of membership servers function as 
multicast routers to route messages to particular groups 
according to the membership information maintained in 
these membership servers.   

For wireless network environment: 
(1) Mobile IP Bidirectional Tunneling (MIP-BT): A 

bidirectional tunnel is built between the mobile host (MH) 
and its Home Agent (HA). 

(2) Mobile IP Remote Subscription (MIP-RS): each MH 
always r-subscribes to its desired multicast group when it 
enters a foreign network.  

(3) Mobile Multicast (MoM) scheme [4]: It uses the 
Designated Multicast Service Provider (DMSP) to avoid 
duplicated messages being tunneled to the same Foreign 
Agent (FA). 

(4) The Multicast Agent (MA) scheme [5]: An MA is a 
multicast router that provides multicast services to mobile 
group members in multiple foreign networks. 

(5) The MobiCast scheme [6]: It adopts a hierarchical 
mobility management approach to isolate the mobility of 
the MHs from the main multicast delivery tree. Each 
foreign domain has a Domain Foreign Agent (DFA). 

(6) The multicast by Multicast Agent (MMA) [7]: In this 
scheme, the Multicast Agent (MA) and the Multicast 
Forwarder (MF) are introduced. 

(7) The Host-View Membership Protocol (HVMP) [8]: a 
two-tier framework for reliably delivering multicast 
messages to MHs is presented. 

(8) The Reliable Multicast (RelM) scheme [9]: a three-
tier framework is proposed to deal with the problems in the 
HVMP scheme. 

(9) The Reliable Multicast Protocol (RMP) [10]: the 
three-tier framework of MHs, Mobile Support Stations 
(MSSs) and Coordinators is proposed. 
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(10) RingNet hierarchy of proxies [12-14]: The RingNet 
hierarchy is more general than the ring-based hierarchy in 
[11] in the sense that each proxy within this hierarchy may 
have multiple children nodes, while each proxy within the 
ring-based hierarchy has at most one child node. A 
Membership-Propagation algorithm proposed to propagate 
membership information from non-leader to leader and 
from leader to parent. Moreover a Topology-Maintenance 
algorithm proposed to maintain the hierarchy due to 
Member-Join/Leave/Failure/Handoff and Proxy-Failure 
events. 

One commonality of the above mobile multicast 
protocols is that they employ the tree-based hierarchy for 
group communication, and they consider only message loss 
problem due to un-reliable communication links. We also 
need to consider node failures within the tree-based 
hierarchy to improve the reliability of the network.  
 
5. Conclusion and future work 
 

In this paper, we first explore the relative failure 
detection, which is an important issue for supporting 
dependability in distributed systems, and often is an 
important performance bottleneck in the event of node 
failure. In this field, we analyze the existing failure 
detections, including the four different schemes (Bertier FD, 
Exponential distribution FD, Kappa FD, Self-tuning FD) to 
ensure acceptable QoS in unpredictable and dynamic 
network environments. 

In future work, the QoS scalability is researched, which 
is as interference from heavier network traffic (e.g., a 
scenario where most of the nodes in the networked system 
have active FDs), to see whether that will affect detection 
time, detection accuracy, etc. Furthermore, we would like 
to research their properties and relation in software 
engineering applications, and then to find or propose a 
reasonable FD in fault-tolerant distributed system. To apply 
the proposed FD into an actual fault-tolerant distributed 
system, we should design a self-tuning failure detector 
(SFD) in actual fault-tolerant distributed system. For all the 
existing FDs so far, the common point is that they all can 
detect the directly connected processes. However, for some 
processes that are not directly connected, i.e., they only can 
communicate each other by some middle processes, all the 
existing FDs are not applicable. Therefore, an open 
question arises: how to design an indirect failure detector to 
make sure any two processes, even they are not connected 
directly, can detect each other effectively. Furthermore, we 
could explore the following three aspects. 

(1) Design new schemes based on different architectures 
of failure detection; 

(2) Build a pragmatic platform on failure detection; 
(3) Carry out the applications of FDs in Ad hoc, Mobile 

network, or other environment; 
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