
A Survey on Fault-tolerance in Distributed Network Systems

Naixue Xiong1,2

1College of Computer Science,
Wuhan Univ. of Science and Engineering, China

Email: nxiong@cs.gsu.edu

Yan Yang
Center of Asian and Pacific Studies,

Seikei Univserity, Tokyo, Japan
 Email: yanyang818@gmail.com

Ming Cao

Surface Ship Development Dept.
China Ship Development and
Design Center,430064, China
Email:caomingwhu@yahoo.co

m.cn

Jing He2
2Dept. of Computer Science,

Georgia State University,
Atlanta, GA, 30303, USA

Email jhe9@student.gsu.edu

Lei Shu
Digital Enterprise Research

Institute, National University of
Ireland, Galway, Ireland
Email:lei.shu@deri.org

Abstract

In this paper, we give a survey on fault tolerant issue in

distributed systems. More specially speaking, we talk about
one important and basic component called failure detection,
which is to detect the failure of the process quickly and
accurately. Thus, a good failure detection method will
avoid the further system lost due to process crash. This
survey provides the related research results and also
explored the future directions about failure detection, and
it is a good reference for researcher on this topic.

Keywords: Failure detector, Fault-tolerance, Network
Systems, Quality-of-service

1. Introduction

Fault-tolerance is particularly prominent to distributed
network systems in general, especially important in large-
scale environment. Normally, distributed system users want
the system to remain operational in spite of technical
failures, even if some of the participants of these network
systems have crashed. With a large number of participants
and long running time, the probability that the hosts crash
during the execution is inevitable, regardless of the
physical reliability of each individual host. Thus, an
effective system must be designed and executed in such a
way that the system can tolerate seamlessly a reasonable
number of host failures, and the occurrence of a reasonable
number of host failures is acceptable.

Failure detection and process monitoring are the basic
components of most techniques for fault-tolerance
(tolerating failures) in distributed network systems, such as
ISIS, Ensemble, Relacs, Transis, and Air Traffic Control
Systems. Now how to design failure detectors over local
networks is a rather well-known issue, but it is still far from
being a solved problem with large-scale systems. Because a

large-scale distributed system has lots of difficulties, which
need to be addressed if we simulate them as a wired
network environment: such as the potentially very large
number of monitored processes, the higher probability of
message loss, the ever-changing topology of the system,
and the high unpredictability of message delays. All the
above prominent factors fail to be addressed by the
traditional solutions. To effective communication in large-
scale distributed network systems and because of its
importance [15-20], it is highly desirable for failure
detectors to be executed as a common generic service
shared among distributed applications (similar to IP address
lookup) (e.g., [15, 18-19]) rather than as redundant ad hoc
implementations (e.g., [21]). If such generic service can be
achieved, it is very easy to apply failure detectors in any
kinds of applications to ensure the requirement of fault
tolerance. In spite of many ground-breaking advances made
on failure detection, such a service still remains at a distant
horizon [22].

The design of dependable Failure Detectors (FDs) is a
hard task, mainly because of the indefinable statistic
behavior of communication delays. Furthermore,
asynchronous (i.e., no bound on the process execution
speed or message-passing delay) distributed network
systems make it impossible to determine precisely whether
a remote process has failed or has just been very slow [23].
Failure detectors can be seen as one oracle per process. An
oracle provides a list of processes that it currently suspects
to have crashed. The unreliable FD [23] can make mistakes
by erroneously suspecting correct processes or trusting
crashed processes. Many fault-tolerant algorithms have
been proposed [23-26] based on unreliable FDs. It is
utmost important to ensure acceptable quality-of-service
(QoS) of FD to properly tune its parameters for the most
desirable QoS to be provided, because the QoS of FD
greatly influences the QoS that upper layers may provide.

2009 International Conference on Computational Science and Engineering

978-0-7695-3823-5/09 $26.00 © 2009 IEEE
DOI 10.1109/CSE.2009.497

1065

However, there are few papers about comparing and
implementing of these detectors [25].

2. Performance Metrics of Failure Detector

To be useful, a failure detector has to be reasonably fast
and accurate. However, there are two aspects to consider
the performance metrics. As we know, the paper [23] is the
first time to discuss the performance metrics of failure
detector qualitatively, i.e., from completeness and accuracy.
Roughly speaking, completeness requires that a failure
detector eventually suspects every process that actually
crashes, while accuracy restricts the mistakes that a failure
detector can make. The authors defined two completeness
and four accuracy properties, which gives rise to eight
classes of failure detectors, and consider the problem of
solving Consensus using failure detectors from each class.

Of special interest is the weakest class of failure
detectors considered in [23]. Informally, a failure detector
is in W if it satisfies the following two properties:

Completeness. There is a time after which every process
that crashes is permanently suspected by some correct
process.

Accuracy. There is a time after which some correct
process is never suspected by any correct process.

A set of metrics have been proposed by Chen et al. in
[35] to quantify the QoS of a FD: how fast it detects actual
failures and how well it avoids false detections. Note that
speed is with respect to processes that crash, while
accuracy is with respect to processes that do not crash.
There are three main metrics: Detection Time, Mistake
Rate, and Query Accuracy Probability.

Definition 1 (Detection time: TD). The detection time is
the time that elapses from the crash of q until p begins to
suspect q permanently.

Definition 2 (Mistake Rate: MR) This is a random
variable that represents the number of mistakes that failure
detector makes in a unit time, i.e., it represents how
frequent failure detector makes mistakes.

Definition 3 (Query Accuracy Probability: QAP) This is
a probability that, when queried at a random time, the FD at
q indicates correctly that process p is up [27, 35].

Except these three metrics, there are Mistake recurrence
time (TMR), Mistake duration (TM) and Good period
duration. The output of the failure detector at q at time t is
either S or T, which means that q suspects or trusts p at
time t, respectively. A transition occurs when the output of
the failure detector at q changes: An S-transition occurs
when the output at q changes from T to S; a T-transition
occurs when the output at q changes from S to T. We
assume that there are only a nite number of transitions
during any nite time interval.

Mistake recurrence time (TMR): this measures the
time between two consecutive mistakes. More precisely,
TMR is a random variable representing the time that
elapses from an S-transition to the next one.

Mistake duration (TM): this measures the time it takes
the failure detector to correct a mistake. More precisely,
TM is a random variable representing the time that elapses
from an S-transition to the next T-transition.

Good period duration (TG): this measures the length
of a good period. More precisely, TG is a random variable
representing the time that elapses from a T-transition to the
next S-transition.

With these performance metrics, we would like to
introduce the recent related work and their characteristics
in the following section.

3. Related Failure Detectors and System
Model

The long-term and final target of failure detectors is to
define and implement a generic failure detection service for
large scale network systems, and to provide failure
detection service as a generic network-service, like Domain
Name Service (DNS), Network Information System (NIS),
Network File System (NFS), Send mail, etc. The network
service consists of two parts: failure detection and
information propagation. The former monitors processes,
nodes, etc., and also detects their failures. This detection
corresponds closely to traditional failure detectors.

The traditional failure detectors are based on a simple
interaction system model. In this model, monitored
processes can only send heartbeat messages and failure
detections use constant timeout to either trust or suspect the
monitored processes. Several recent adaptive failure
detectors in [27, 36] could adjust a proper timeout based on
both application requirements and network conditions. One
of the major difficulties in building such a service is that
applications with completely different requirements and
running simultaneously have to be effectively adjusted by
the service to meet their requirements. Furthermore, many
distributed applications can greatly benefit from providing
different levels of failure detection to trigger different
reactions (see [31, 33]). For example, an application can
take a precautionary action when confidence in a suspicion
reaches a given level (a certain lower level); while take
more drastic action once the confidence raises up (much
higher level) [37].

Except for the above related works, there were some
other failure detection mechanisms. For example, Falai and
Bondavalli [38] introduced a lot of experiments performed
on Wide Area Network to assess and fairly compare QoS,
which is provided by a large family of FDs. They described
choices for estimators and safety margins used to build
several FDs. Compared with [38], Xiong et al. [35]
considered comparing all kinds of adaptive FD schemes in
different experimental environments.

Nunes et al. [39] analyzed and evaluated the QoS of an
FD based on timeout for the different combinations of
safety margins and communication delay predictors. Based
on the results, in order to revise the QoS, the authors

1066

presented the advice that one must consider the relation
between the pair predictor/margin, instead of each one
separately. However, we think it is hard to find such proper
pairs.

Fabio et al. [40] adapt FDs to load fluctuations of
communication network by artificial neural networks and
Simple Network Management Protocol (SNMP). The
training patterns, which were used to feed the neural
network, were obtained by using SNMP agents over
Management Information Base variables. The output of
such neural network is an estimated value of the arrival
time for the FD to receive the next heartbeat message from
a remote process. This scheme improves the QoS of the FD,
while the training of neural network is more complex on
achieving the same goal as in this paper.

Fetzer et al. presented an adaptive failure detection
protocol in [30]. This scheme enjoys the nice property of
relying as much as possible on application messages to
perform this monitoring. Differently from previous process
of crash detection protocols, this protocol uses control
messages only when no application messages are sent by
the monitoring process to the observed process. These
measurement results demonstrate that the number of wrong
suspicions can be reduced by requiring each process to
keep track of the maximum round trip delay between
executions.

Hayashibara et al. [34] presented that a generic failure
detection service outputted a value based on a continuous
normalized scale. Simple speaking, this value showed the
degree of confidence in the judgment if the corresponding
process had crashed. It was then left behind to each
application process to set a suspicion threshold in terms of
its own quality-of service requirements. Furthermore, even
within the scope of a single distributed application, it was
often desirable to trigger different reactions based on
different degrees of suspicion. The key advantage of this
approach [34] was that it decoupled the failure detection
service from running applications. This scheme allowed it
to scale well with respect to the number of simultaneously
running applications and/or triggered actions within each
application.

For improving the QoS of FD, lots of adaptive FDs have
been presented [17, 30, 39-40], such as Chen FD [27],
Bertier FD [28], and the FD [34]. In [27], Chen et al.
presented several implementations depending on clock
synchronization and a probabilistic behavior of the system.
The implementations used arrival times sampled in the
recent past to compute an estimation of the arrival time of
the next heartbeat. The timeout was set based on this
estimation and a constant safety margin, and it was
recomputed for every interval. This scheme provided a
good estimation for the next arrival time. Furthermore, this
paper assumed that the communication history was driven
by uncorrelated samples with an ergodic stationary action,
and message delays followed some probabilistic
distribution. However, this scheme used a constant safety

margin because the authors estimated that the model
presented a probabilistic behavior [28]. Therefore, Bertier
FD [28] presented an optimization of safety margin for
Chen FD. It used a different estimation function, which
combined Chen’s estimation and Jacobson’s estimation of
the round-trip time (RTT). Bertier FD performed as a very
aggressive FD [34], because this scheme was primarily
designed to be used over wired local area networks (LANs).
It means that in the environments messages were seldom
lost. Hayashibara et al. [34] proposed a method using a
probabilistic analysis of network traffic, it was similar as in
Chen FD, and it assumed that the inter-arrival time
followed a normal distribution. Furthermore, FD
computed a value with a scale that changed dynamically
to match recent network conditions. This FD, differently
from the other FDs, outputted a suspicion level on a
continuous scale, which was instead of binary nature
(suspect or trust). These above three FDs dynamically
predicted new timeout values in terms of observed
communication delays to revise the performance of the
protocols. The self-tuned FDs, presented in [41] and [36],
used the statistics of the previously obtained
communication delays to continuously adjust its timeout.
I.e., they assumed a weak past dependence on
communication history.

For the former failure detection schemes, all of them can
not actively adapt their parameters by themselves to satisfy
the requirement of users. To the question, Xiong et al. [35]
presented a self-tuning failure detection based on [27]. In
this paper, lots of experimental results demonstrate that the
scheme is effective. It is sure that this idea also can apply
into other failure detection to achieve self-tuning
requirement. Firstly, this paper presented an optimization to
improve the adaptation of [27], which significantly
enhanced QoS, especially in the aggressive range and when
the network was unstable. Secondly, they addressed the
problem of most adaptive schemes, namely their
requirement for a large window of samples. They studied a
scheme that was designed to use a fixed and very limited
amount of memory for each monitored–monitoring link.
The experimental results over several kinds of networks
(Cluster, WiFi, wired LAN, WAN) demonstrated the
properties of the existing adaptive FDs and that the
optimization is acceptable and reasonable. Furthermore, the
extensive experimental results demonstrated what was the
effect of memory size on the overall QoS of every adaptive
FD.

Xiong et al. [42] observed from lots of experimental
statistical results, and found it was not a good assumption
that the failure detection [34] uses the normal distribution
to estimate the arrival time of the coming heartbeat,
especially in large scale distributed networks or unstable
networks. Thus, here this paper developed an optimization
over failure detection based on exponential distribution,
called exponential distribution failure detection. This
significantly improved the QoS, especially in the design of

1067

real systems. Lots of experiments have been carried out
based on several kinds of networks (Cluster, WiFi, Wired
local area network, and Wide area network). The
experimental results had demonstrated the properties of the
existing adaptive FDs, and demonstrated that the presented
exponential distribution FD outperforms the existing FDs
in the aggressive range.

Hayashibara in [22] proposed a basic concept of FD,
which had the formal properties of accrual FD. This
scheme allowed for gradual settings between a conservative
behavior and an aggressive one. Here, they developed this
idea and especially further discussed service performance
of failure detector in a variety of network environments.

 Failure detections have been provided in many papers
as an independent service (e.g., [15, 18-19, 23]). While,
there are several important issues, which should be
addressed before an effective generic service can be really
executed.

(1) A failure detection service must adapt to dynamic
network conditions and application requirements. Several
solutions were proposed recently to address this issue
specifically [17, 27, 28, 30].

(2) A failure detection service must adapt to diverse
application requirements. A few schemes (e.g., [27]) have
been made to adapt the parameters of a failure detector
service to match the requirements, while they are designed
to support a single class of requirements. Cosquer et al. [29]
identified the problem. Their scheme is wonderful, while it
remains inflexible because they do not express the Boolean
nature of failure detection.

Hayashibara et al. [34] have pointed this out recently.
They proposed a failure detector to deal with this point.
However, the QoS of failure detector is not enough for an
effective generic service.

(3) A failure detection service must propose a good QoS
for users. However, so far as I know, many schemes try to
express this point. While none of the solutions resolved it
perfectly.

As mentioned above, lots of problems remain in
implementing a generic failure detection service. Also, to
the best of our knowledge, there is no work about self-
tuning the parameters of failure detector to satisfy
requirement of users. As we know, it is still an open
problem in fault tolerant research area. Therefore, it is very
necessary to address this question, i.e., it can adjust the
parameters of failure detector to satisfy requirement of
users by itself.

4. Scalability and Reliability for Fault-tolerant
network system

For the information delivery applications in network
environment, scalability and reliability are two of the most
important issues.

Network reliability has two aspects: one is the
availability of end to end functionality for customers, the

other is the ability to experience failures or systematic
attacks, without impacting customers or operations.
Network reliability is not cheap or free, and is not only
about component reliability, reliable piece or part, fault
tolerance hardware or fast recovery.

Network scalability is about the ability to handle
growing amount of work, and the capability of a system to
increase total throughput under an increased load when
resources are added.

To tackle the above two issues at the same time, many
schemes are proposed in wired/ wireless network
environment.

For wired network environment,
(1) Tree-based hierarchies of subgroups: In different

schemes, the special nodes in the subgroups can be group
members or not and they can be either individual hosts or
routers. Different names of the special nodes are used in
different schemes, e.g. the proxies in [1] and the Reliable
Multicast proxies (RMXs) in [2].

(2) Client-Server scheme [3]: Group membership
services are provided by dedicated membership servers.
Different levels of membership servers function as
multicast routers to route messages to particular groups
according to the membership information maintained in
these membership servers.

For wireless network environment:
(1) Mobile IP Bidirectional Tunneling (MIP-BT): A

bidirectional tunnel is built between the mobile host (MH)
and its Home Agent (HA).

(2) Mobile IP Remote Subscription (MIP-RS): each MH
always r-subscribes to its desired multicast group when it
enters a foreign network.

(3) Mobile Multicast (MoM) scheme [4]: It uses the
Designated Multicast Service Provider (DMSP) to avoid
duplicated messages being tunneled to the same Foreign
Agent (FA).

(4) The Multicast Agent (MA) scheme [5]: An MA is a
multicast router that provides multicast services to mobile
group members in multiple foreign networks.

(5) The MobiCast scheme [6]: It adopts a hierarchical
mobility management approach to isolate the mobility of
the MHs from the main multicast delivery tree. Each
foreign domain has a Domain Foreign Agent (DFA).

(6) The multicast by Multicast Agent (MMA) [7]: In this
scheme, the Multicast Agent (MA) and the Multicast
Forwarder (MF) are introduced.

(7) The Host-View Membership Protocol (HVMP) [8]: a
two-tier framework for reliably delivering multicast
messages to MHs is presented.

(8) The Reliable Multicast (RelM) scheme [9]: a three-
tier framework is proposed to deal with the problems in the
HVMP scheme.

(9) The Reliable Multicast Protocol (RMP) [10]: the
three-tier framework of MHs, Mobile Support Stations
(MSSs) and Coordinators is proposed.

1068

(10) RingNet hierarchy of proxies [12-14]: The RingNet
hierarchy is more general than the ring-based hierarchy in
[11] in the sense that each proxy within this hierarchy may
have multiple children nodes, while each proxy within the
ring-based hierarchy has at most one child node. A
Membership-Propagation algorithm proposed to propagate
membership information from non-leader to leader and
from leader to parent. Moreover a Topology-Maintenance
algorithm proposed to maintain the hierarchy due to
Member-Join/Leave/Failure/Handoff and Proxy-Failure
events.

One commonality of the above mobile multicast
protocols is that they employ the tree-based hierarchy for
group communication, and they consider only message loss
problem due to un-reliable communication links. We also
need to consider node failures within the tree-based
hierarchy to improve the reliability of the network.

5. Conclusion and future work

In this paper, we first explore the relative failure
detection, which is an important issue for supporting
dependability in distributed systems, and often is an
important performance bottleneck in the event of node
failure. In this field, we analyze the existing failure
detections, including the four different schemes (Bertier FD,
Exponential distribution FD, Kappa FD, Self-tuning FD) to
ensure acceptable QoS in unpredictable and dynamic
network environments.

In future work, the QoS scalability is researched, which
is as interference from heavier network traffic (e.g., a
scenario where most of the nodes in the networked system
have active FDs), to see whether that will affect detection
time, detection accuracy, etc. Furthermore, we would like
to research their properties and relation in software
engineering applications, and then to find or propose a
reasonable FD in fault-tolerant distributed system. To apply
the proposed FD into an actual fault-tolerant distributed
system, we should design a self-tuning failure detector
(SFD) in actual fault-tolerant distributed system. For all the
existing FDs so far, the common point is that they all can
detect the directly connected processes. However, for some
processes that are not directly connected, i.e., they only can
communicate each other by some middle processes, all the
existing FDs are not applicable. Therefore, an open
question arises: how to design an indirect failure detector to
make sure any two processes, even they are not connected
directly, can detect each other effectively. Furthermore, we
could explore the following three aspects.

(1) Design new schemes based on different architectures
of failure detection;

(2) Build a pragmatic platform on failure detection;
(3) Carry out the applications of FDs in Ad hoc, Mobile

network, or other environment;

9. Acknowledgements

This research has been supported by the US National

Science Foundation CAREER Award under Grant No.
CCF-0545667. Mr. Lei Shu's work in this paper was
supported by the Lion project supported by Science
Foundation Ireland under grant No. SFI/08/CE/I1380
(Lion-2), and by the European project CONET
(Cooperating Objects NETwork of excellence) under grant
No. 224053.

12. References
[1] A.P. Markopoulou and F.A. Tobagi, “Hierarchical Reliable

Multicast: Performance Analysis and Placement of Proxies,”
Proc. Int’l Conf. Parallel Processing (ICPP ‘00), pp. 271-278,
Aug. 2000.

[2] Y. Chawathe, S. McCanne, and E.A. Brewer, “RMX: Reliable
Multicast for Heterogeneous Networks,” Proc. IEEE
INFOCOM ’00, vol. 2, pp. 795-804, Mar. 2000

[3] T. Anker, G. V. Chockler, D. Dolev, and I. Keidar, “Scalable
Group Membership Services for Novel Applications,” Proc.
DIMACS 1998, vol. 45, pp. 23-42, 1998

[4] T.G. Harrison, C.L. Williamson, W.L. Mackrell, and R.B.
Bunt, “Mobile Multicast (MoM) Protocol: Multicast Support
for Mobile Hosts,” Proc. ACM MobiCom 1997, pp. 151-160.
Sept. 1997

[5] Y. Wang and W. Chen, “Supporting IP Multicast for Mobile
Hosts,” ACM Mobile Networks and Applications, vol. 6, no.
1, pp. 57-66, 2001

[6] C.L. Tan and S. Pink, “MobiCast: A Multicast Scheme for
wireless Networks,” ACM Mobile Networks and
Applications, vol. 5, no. 4, pp. 259-271, Dec. 2000

[7] H.S. Shin, Y.J. Suh, and D.H. Kwon, “Multicast Routing
Protocol by Multicast Agent in Mobile Networks,” Proc.
IEEE Int’l Conf. Parallel Processing (ICPP ‘00), pp. 271-278,
Aug. 2000

[8] A. Acharya and B.R. Badrinath, “A Framework for Delivering
Multicast Messages in Networks with Mobile Hosts,”
ACM/Kluwer Mobile Networks and Applications, vol. 1, no.
2, pp. 199-219, Oct. 1996

[9] K. Brown and S. Singh, “RelM: Reliable Multicast for Mobile
Networks,” Computer Comm., vol. 21, no. 16, pp. 1379-1400,
Oct. 1998

[10] G. Anastasi, A. Bartoli, and F. Spadoni, “A Reliable
Multicast Protocol for Distributed Mobile Systems: Design
and Evaluation,” IEEE Trans. Parallel and Distributed
Systems, vol. 12, no. 10, pp. 1009-1022, Oct. 2001

[11] G. Wang, J. Cao, and K.C.C. Chan, “RGB: A Scalable and
Reliable Group Membership Protocol in Mobile Internet,”
Proc. IEEE Int’l Conf. Parallel Processing (ICPP ’04), pp.
326-333, Aug. 2004

[12] G. Wang, J. Cao, and K.C.C. Chan, “A Reliable Totally-
Ordered Group Multicast Protocol for Mobile Internet,” Proc.
IEEE Int’l Conf. Parallel Processing (ICPP ‘04), pp. 108-115,
Aug. 2004

[13] G. Wang, L. Liao, J. Cao, and K.C.C. Chan, “Key
Management for Secure Multicast Using the RingNet
Hierarchy,” Proc. Int’l Conf. Computational and Information
Sciences (CIS ‘04), pp. 77-84, Dec. 2004

[14] J. Cao, G. Wang, and K. C.C. Chan, "A Fault Tolerant Group
Communication Protocol in Large Scale and Highly
Dynamic Mobile Next-Generation Networks", IEEE

1069

Transactions on Computers, vol. 56, no. 1, pp. 80 – 94, Jan.
2007

[15] P. Felber, X. Defago, R. Guerraoui, and P. Oser. Failure
detectors as first class objects. In Proc. IEEE Intl. Symp. On
Distributed Objects and Applications (DOA1999), pages
132-141, Edinburgh, Scotland, Sep. 1999.

[16] J. Dunagan, N. J. A. Harvey, M. B. Jones, D. Kostic, M.
Theimer, and A. Wolman. FUSE: Lightweight guaranteed
distributed failure notification. In Proc. 6th Symp. on
Operating Systems Design and Implementation (OSDI 2004),
San Francisco, CA, USA, December 2004.

[17] I. Sotoma and E. R. M. Madeira. ADAPTATION-algorithms
to adaptive fault monitoring and their implementation on
CORBA. In Proc. 3rd Intl. Symp. on Distributed-Objects and
Applications (DOA 2001), pages 219-228, Rome, Italy,
September 2001. IEEE Computer Society Press.

[18] P. Stelling, I. Foster, C. Kesselman, C. Lee, and G. von
Laszewski. A fault detection service for wide area distributed
computations. In Proc. 7th IEEE Symp. on High
Performance Distributed Computing, pages 268-278, July
1998.

[19] R. van Renesse, Y. Minsky, and M. Hayden. A gossip-style
failure detection service. In N. Davies, K. Raymond, and J.
Seitz, editors, Middleware 1998, pages 55-70, The Lake
District, UK, 1998.

[20] M. Wiesmann, P. Urban, and X. Defago. An SNMP based
failure detection service. In Proc. 25th IEEE Intl. Symp. on
Reliable Distributed Systems (SRDS 2006), pages 365-374,
Leeds, UK, October 2006.

[21] N. Sergent, X. Defago, and A. Schiper. Impact of a failure
detection mechanism on the performance of consensus. In
Proc. 8th IEEE Pacific Rim Symp. on Dependable
Computing(PRDC-8), pages 137C145, Seoul, Korea,
December 2001.

[22] N. Hayashibara. Accrual failure detectors. Doctoral thesis,
Japan Advanced Institute of Science and Technology, June,
2004.

[23] T. D. Chandra and S. Toueg. Unreliable failure detectors for
reliable distributed systems. Journal of the ACM, 43(2): 225-
267, Mar. 1996.

[24] M. K. Aguilera, W. Chen, and S. Toueg. Using the heartbeat
failure detector for quiescent reliable communication and
consensus in partition-able networks. Theoretical Computer
Science, 220(1): 3-30, Jun. 1999.

[25] M. Larrea, A. Fernandez, and S. Arevalo. Optimal
implementation of the weakest failure detector for solving
consensus. In Proceedings of the 19th Annual ACM
Symposium on Principles of Distributed Computing, pages
334-334, NY, Jul. 2000.

[26] R. Guerraoui, M. Larrea, and A. Schiper. Non-blocking
atomic commitment with an unreliable failure detector.
Symposium on Reliable Distributed Systems, pages 41–50,
1995.

[27] W. Chen, S. Toueg, and M. K. Aguilera. On the quality of
service of failure detectors. IEEE Transaction on Computers,
51(5):561–580, May 2002.

[28] M. Bertier, O. Marin, P. Sens. Implementation and
performance evaluation of an adaptable failure detector. In
Proc. Intl. Conf. on Dependable Systems and Networks
(DSN2002), pages 354-363, Washington DC, USA, Jun.
2002.

[29] F. J. N. Cosquer, L. E. T. Rodrigues, and P. Verissimo. Using
tailored failure suspectors to support distributed cooperative

applications. In Proc. 7th IASTED Intl. Conf. on Parallel and
Distributed Computing and Systems (PDCS 2005), pages
352-356, Washington, DC, USA, October 1995.

[30] C. Fetzer, M. Raynal, and F. Tronel. An adaptive failure
detection protocol. In Proc. IEEE the 8th Pacific Rim
Symposium on Dependable Computing, pages 146- 153,
Seoul, Korea, Dec. 2001.

[31] B. Charron-Bost, X. Defago, and A. Schiper. Broadcasting
messages in fault-tolerant distributed systems: the benefit of
handling input-triggered and output-triggered suspicions
differently. In Proc. 21st IEEE Intl. Symp. on Reliable
Distributed Systems (SRDS2002), pages 244–249, Osaka,
Japan, Oct. 2002.

[32] X. Defago, A. Schiper, and N. Sergent. Semi-passive
replication. In Proc. 17th IEEE Intl. Symp. Reliable
Distributed Systems (SRDS1998), pages 43–50, West
Lafayette, IN, USA, Oct. 1998.

[33] P. Urban, I. Shnayderman, and A. Schiper. Comparison of
failure detectors and group membership: Performance study
of two atomic broadcast algorithms. In Proc. IEEE Intl. Conf.
on Dependable Systems and Networks (DSN2003), pages
645–654, San Francisco, CA, USA, June 2003.

[34] N. Hayashibara, X. Defago, R. Yared, and T. Katayama. The
phi accrual failure detector. In Proc. 23rd IEEE Intl. Symp.
on Reliable Distributed Systems (SRDS2004), pages 66-78,
Florianpolis, Brazil, Oct. 2004.

[35] N. Xiong, Athanasios V. Vasilakos, Laurence T. Yang, and
Lingyang Song, Pan Yi, Rajgopal Kannan, Y. Li,
“Comparative Analysis of Quality of Service and Memory
Usage for Adaptive Failure Detectors in Healthcare
Systems,” IEEE Journal on Selected Areas in
Communications (JSAC), vol. 27, no. 4, pp. 495-509, May
2009.

[36] P. Felber. The CORBA object group service - a service
approach to object groups in CORBA. PhD thesis,
D′epartment D’informatique, Lausanne, EPFL, Swizerland,
1998.

[37] M. M¨uller. Performance evaluation of a failure detector
using SNMP. Semester project report, Ecole Poly-technique
Federale de Lausanne, Lausanne, Switzerland, Feb. 2004.

[38] L. Falai and A. Bondavalli. Experimental evaluation of the
QoS of failure detectors on wide area network. In Proc. of
the Int. Conf. on Dependable Systems and Networks
(DSN’05), Yokohama, Japan, pages 624-633, Jun. 2005.

[39] R. C. Nunes, I. Jansch-Porto. QoS timeout-based self-tuned
failure detectors: the effects of the communication delay
predictor and the safety margin. In Proc. 2004 International
Conference on Dependable Systems and Networks (DSN
2004), pages 753-761, Florence, Italy, June 2004.

[40] L. Fabio, R. Macedo. Adapting failure detectors to
communication network load fluctuations using SNMP and
artificial neural networks. In Proc. Second Latin-American
Symposium on Dependable Computing (LADC 2005), pages
191-205, Salvador, Brazil, Oct. 2005.

 [41] R. Macedo. Implementing failure detection through the use
of a self-tuned time connectivity indicator. TR, RT008/98,
Laboratrio de Sistemas Distribudos - LaSiD, Salvador-Brazil,
Aug. 1998.

[42] N. Xiong. Design and Analysis of Quality of Service on
Distributed Fault-tolerant Communication Networks.
Doctoral thesis, Japan Advanced Institute of Science and
Technology, March, 2008.

1070

