
IA32 1

IA32 Instruction Set
● General Purpose Register instruction set

architecture
– many general registers

– there are also some registers with specific uses

● Basic Instruction types:
– arithmetic/logical

● add, subtract, and, or, etc.

– control
● changing which instruction executes next

– data movement
● copying values from one location to another.

IA32 2

Operands

● There are three ways of specifying operands:
– register: operand value is contained in a register

– immediate: operand value is a constant that is
encoded as part of the instruction

– memory: operand value is in memory

● Integer operands can be 8, 16 or 32 bits.
● Floating point operands can be 32, 64 or 80

bits.

IA32 3

Integer Registers

● Goofy names:

%eax %ebx %ecx %edx

%esi %edi %ebp %esp

● These are all 32 bit registers.

● %ebp and %esp are special

– there are special uses for these, they are typically
not used as general purpose registers.

IA32 4

8, 16 and 32 bit registers

● Instead of providing different registers for
different operand sizes, there are names for
smaller parts of some of the 32 bit registers.
– this provides compatibility with x86 (16 bit)

instruction set.

– Keep in mind that whenever you change an 8 bit
register you are also changing the corresponding
32 bit register!

IA32 5

Registers %eax, %ax, %ah, %al

● %eax: 32 bit register

● %ax: 16 bit register, ls 16 bits of %eax

● %al: 8 bit register, ls byte of %eax, %ax

● %ah: 8 bit register, ms byte of %ax

 also second ls byte of %eax

%ah %al

%ax

%eax

IA32 6

%ebx, %ecx, %edx

● We also have names for parts of registers
%ebx, %ecx, %edx:

%bh %bl
%bx

%ebx

%ch %cl
%cx

%ecx

%dh %dl
%dx

%edx

IA32 7

First Instruction: addl

addl srcreg, dstreg

– treats the contents of both registers as 32 bit
integers.

– adds the contents of the two registers and stores
the result in dstreg.

– the original value in dstreg is overwritten!

– examples:

add %ebx, %eax

add %edx, %esi

IA32 8

add machine code

● There are 8 different possible registers
– it takes 3 bits to encode a choice from 8 different

things

● add uses two registers
– need at least 6 bits to specify the operands

● There must also be some bits to distinguish and
add instruction from other instructions...

We are not that concerned with machine code,
but it's good to keep track of what needs to be
encoded in an instruction.

IA32 9

Adding bytes (8 bit registers)

addb srcreg, dstreg

– treats the contents of both registers as 8 bit
integers.

– adds the contents of the two registers and stores
the result in dstreg.

– the original value in dstreg is overwritten!

– example:

add %bh, %al

this changes the ls byte of register %eax!

IA32 10

Assemblers

● An assembler is a program that converts from
assembly language to machine code.

● Some IA32 assemblers allow you to do this:

 add %eax,%ebx

 add %al, %al

● The assembler figures out the operand size
from the register names used.

Same as addl %eax, %ebx

Same as addb %al, %al

IA32 11

Another Instruction: and

and srcreg, dstreg

– bitwise logical and of the contents of the two
registers and stores the result in dstreg.

– the original value in dstreg is overwritten!

– examples:

and %ebx, %eax

and %edx, %esi

– corresponds to the C & operator.

IA32 12

Subtraction

sub srcreg, dstreg

– treats the registers as 32 bit integers, and subtracts
srcreg from dstreg, stores the result in dstreg.

dstreg = dstreg - srcreg

– the original value in dstreg is overwritten!

– examples:

sub %ebx, %eax

sub %edx, %esi

IA32 13

Other arithmetic/logic instructions

● Same format as add, sub:
op srcreg, dstreg

imull: integer multiplication

or: bitwise logical or

xor: bitwise logical exclusive or

IA32 14

Shift Instructions
sal srcreg, dstreg

shift arithmetic left

dstreg = dstreg << srcreg

sar srcreg, dstreg

shift arithmetic right : sign bit extended

dstreg = dstreg >> srcreg

shr srcreg, dstreg

shift logical right : shift in 0's

dstreg = dstreg >> srcreg

IA32 15

Exercise: IA32 Assembly program

● We can build a sequence of assembly
instructions to perform some compuatation.

● We have not yet established how registers
initially get a value, for now we assume that
they have some value.

● Compute

y = 2y – x + z
● Assume:

%eax holds y, %ebx holds x, %ecx holds z

IA32 16

One Solution

add %eax, %eax # eax = 2y

sub %ebx, %eax # eax = 2y - x

add %ecx, %eax # eax = 2y – x + z

y = 2y – x + z
y: %eax
x: %ebx
z: %ecx

comments

IA32 17

Possibly Wrong
Solution

add %eax, %ecx # ecx = y + z

add %ecx, %eax # eax = 2y + z

sub %ebx, %eax # eax = 2y + z - x

y = 2y – x + z
y: %eax
x: %ebx
z: %ecx

The problem is that %ecx no longer holds the
value of z!

IA32 18

Quiz: What does this do?

xor %eax, %eax

IA32 19

IA32 integer Arithmetic

Do add and sub instructions deal with signed or
unsigned integers?

YES!

Recall that the actual bit manipulations necessary
for signed/unsigned addition are identical !

Subtraction is really just addition:

x -y = x + (-y)

IA32 20

Immediate Operands

● An immediate operand is a constant (a number)
– the actual bit representation is part of the machine

code for the instruction.

● In IA32 assembly language, immediate
operands are prefixed with '$'

● Default is decimal, you can also use hex using
the same syntax as with C.

$100 $0x80 $-35

IA32 21

Immediate operand usage

op srcreg, dstreg

● You can use an immediate operand in the place
of srcreg, but not dstreg

– it doesn't make sense to say something like:
add %eax, $24 since this is saying: 24 = 24 + eax

● Some examples:

add $1, %eax # %eax = %eax + 1

sub $5, %bh # %bh = %bh – 5

IA32 22

Another quiz: what does this do?

xor %eax, %eax
add $13, %eax

IA32 23

Machine code issues

● For instructions that include an immediate
operand, the machine code must include the
immediate value.
– depending on the value, it may require 8, 16 or 32

bits in the actual machine code for the instruction.

– just saying...

IA32 24

Another quiz? Already?

 xor %ebx, %ebx

 or %eax, %ebx

 and $0x80, %ebx

IA32 25

Moving data: mov instruction

mov src, dstreg

● moves data specified by src to the destination
register dstreg.

– really copies the data.

– If src is a register it is not modified or emptied
● there is no such thing as emptied, every register always

has some value!

IA32 26

mov examples

mov %eax, %ebx # %ebx = %eax

mov $22, %eax # %eax = 22

mov $22, %ah # %ah = 22

mov $65535, %al # ? no idea!

%al won't hold a 16 bit value

IA32 27

Quiz-mania

y = y - (x2 + 3)

IA32 28

Solution-mania

mov %ebx,%ecx # %ecx = x (a copy)

imull %ecx,%ecx # %ecx = x2

add $3, %ecx # %ecx = x2+3

sub %ecx, %eax # %eax = y -(x2+3)

Note that using %ecx to hold the intermediate value
means that %ebx is still x. Sometimes this is important
(sometimes it isn't – perhaps we don't need x for
anything else).

y = y - (x2 + 3)
y: %eax
x: %ebx

IA32 29

Memory Operands
● Many instructions support using operands that

are located in memory.
– we always need to specify the address of the

operand.

● There are a number of ways to specify
addresses:
– as an absolute address (a number, like 204)

– using a register as a pointer – the register holds the
address.

– using some simple arithmetic to compute the
address (add two registers, add a number to a
register, etc.)

IA32 30

Addressing modes

● An addressing mode is a mechanism for
specifying an address.
– absolute: the address is provided directly

– register: the address is provided indirectly, but
specifying where (what register) the address can be
found.

– displacement: the address is computed by adding
a displacement to the contents of a register

– indexed: the address is computed by adding a
displacement to the contents of a register, and then
adding in the contents of another register times
some constant.

IA32 31

Absolute addressing mode

● Actual address is a constant embedded in the
program:

add 824, %ebx

– adds the contents of memory location 824 to
register %ebx and stores the result in %ebx

 %ebx = %ebx + Mem[824]

● Recall that if we want to add 824 to %ebx, we
have to say: add $824, %ebx

This is not assembly, just a way of
describing what is happening

IA32 32

Register Addressing Mode

● Address is found in a register:
add (%eax), %ebx

– adds the contents of memory location whose
address is in register %eax to register %ebx and
stores the result in %ebx

%ebx = %ebx + Mem[%eax]

● The parens around the register tell the
assembler to use the register as a pointer.

 IA32

Displacement Addressing Mode

● Address is computed as sum of the contents of
a register and some constant displacement:

add 45(%eax), %ebx

– adds the contents of memory location whose
address is computed as %eax+45 to register %ebx
and stores the result in %ebx

%ebx = %ebx + Mem[%eax+45]

● The register is a pointer, the displacement
specified how far from the pointer.

 IA32

mov 2(%ebx),%eax

36

37

38

39

40

41

42

43

43

Memorybyte
address

38%ebx

2(%ebx)

?%eax

 IA32

Displacement in action

int i=3;

int x[4];

x[0]=i;

x[1]=i+3;

mov $x,%ebx # %ebx is x

 # (address of array)

mov $3,%eax # %eax is i

mov %eax,(%ebx) # put i in mem[%ebx]

add $3,%eax # %eax is i+3

mov %eax, 4(%ebx) # put i in mem[%ebx+4]

Notes:
$x is the address of the array (the name of an array is it's address)

displacement is 4 since each array element is 4 bytes (each is an int)

 IA32

Not a quiz, an exercise

int a[3];

a[0]=0;

a[1]=1;

a[2]=2;

Start with this (puts the address of a in register %eax):

mov $a, %eax

 IA32

Exercise Solution

mov $a, %eax

mov $0,(%eax)

mov $1, 4(%eax)

mov $2, 8(%eax)

int a[3];
a[0]=0;
a[1]=1;
a[2]=2;

mov $a, %eax

mov $0,(%eax)

add $4,%eax

mov $1,(%eax)

add $4, %eax

mov $2, (%eax)

This would also work

 IA32

Dealing with bytes

● All addresses are byte addresses (each byte in
memory has a unique address).

● There is nothing different about addressing a
byte operand – same syntax.

mov 122(%ebx), %al

mov %al, 85(%esi)

add %bh, 5(%edx)

You may need to be explicit:
movb $32, 85(%esi)
addb $1, 5(%edx)

 IA32

Some Rules

● mov and arithmetic/logical instructions cannot
have two memory operands (at most one).

● You can't do this:
– mov (%eax), 14(%eax)

– add 100, (%esi)

 IA32

Indexed Addressing Mode

disp(reg1, reg2, scale)

● Address is computed as sum of:
– constant displacement disp

– contents of register reg1

– contents of register reg2 times the scale factor

● scale can be 1,2,4 or 8 only.

– size of data types.

 IA32

movb 1(%ebx,%esi,2),%ah

36

37

38

39

40

41

42

43

43

Memorybyte
address

38%ebx

1(%ebx,%esi,2)

mem[1+38+2*2]

%eax

2%esi

%ah

 IA32

Why Indexed?

● Indexed addressing mode seems overly
complex
– very CISCish

● There are actually times when it makes sense
to use it:
– structure field is an array.

● The real reason for it is:
– it is really the only addressing mode, the others are

all special cases!

 IA32

Exercisemania

int a[10];

int i;

/* i gets some value */

a[i]=12;

a[i+2]=a[i+1];

 IA32

Solution

assume $a is in %edi and i is in %esi

movl $12,(%edi,%esi,4) # Mem[%edi+%esi*4]=12

movl 4(%edi,%esi,4),%eax # %eax= Mem[4+%edi+%esi*4]

movl %eax,8(%edi,%esi,4) # Mem[8+%edi+%esi*4]=%eax

a[i]=12;
a[i+2]=a[i+1];

 IA32

Addressing Modes

● Indexed: dist(reg1, reg2, scale)

● Absolute: dist

● Register: (reg1)

● Displacement: dist(reg1)

● You can also do this:
movl (,%eax,2),%ebx # %ebx = Mem[%eax*2]

movl (%ebx,%eax),%esi # %esi=Mem[%ebx+%eax]

 IA32

What does this do?

 mov $1, %eax

 add $3, %eax

 add $5, %eax

 add $7, %eax

 IA32

How about this?

 mov %edx, %eax

 add %ecx, %edx

 add %eax, %ecx

 IA32

OK Smartypants – try this

 subb 'a',%al

 addb 'A',%al

 IA32

No way you figure this one out.

 xor %ebx,%eax

 xor %eax,%ebx

 xor %ebx,%eax

 IA32

Fun with addressing modes:
What is each address?

 xor %eax,%eax

 add $0x22,%eax

 movl %esi,(%eax)

 addl 22,%edi

 movl 0xffffffff(%eax,%eax,2),%ebx

 IA32

Subroutines

● In C, all code is in a function.
● In Assembly, all code is in a subroutine.
● In general, the compiler will generate on

subroutine per C function
– exceptions: inline functions, some optimizations

● We will study the details of subroutines a little
later, for now we just need to recognize a few
things.

 IA32

int increment(int x) {

 x = x + 1;

 return(x);

}
increment:

 pushl %ebp

 movl %esp, %ebp

 incl 8(%ebp)

 movl 8(%ebp), %eax

 popl %ebp

 ret

Example Subroutine

subroutine setup

body

return value

finish

 IA32

Subroutine Parameters

● Parameters are passed on the stack
– we have not yet discussed the stack

● For now, just remember:
– first parameter is located in memory at 8(%ebp)

– second parameter value is at 12(%ebp)

– third parameter value is at 16(%ebp)

– and so on...

 IA32

int add(int x, int y) {

 return(x+y);

}

add:

 pushl %ebp

 movl %esp, %ebp

 movl 12(%ebp),%eax

 addl 8(%ebp),%eax

 popl %ebp

 ret

Example Subroutine

subroutine setup

body

return value

finish

 IA32

void incr(int *x) {

 *x++;

}

incr:

 pushl %ebp

 movl %esp, %ebp

 movl 8(%ebp),%eax

 incr (%eax)

 popl %ebp

 ret

Another Subroutine

subroutine setup

body

finish

 IA32

foo:

 pushl %ebp

 movl %esp, %ebp

 mov 8(%ebp),%eax

 mov 12(%ebp),%edx

 add %edx,(%eax)

 popl %ebp

 ret

SubQuiz – what does this do?

subroutine setup

body

finish

 IA32

foo:

 pushl %ebp

 movl %esp, %ebp

 mov 8(%ebp),%eax

 mov 12(%ebp),%edx

 add %edx,(%eax)

 popl %ebp

 ret

Two possible functions

/* could be either of these */

void foo(int *x, int i) {

 *x = *x + i;

}

void foo(int x[], int i) {

 x[0]+=i;

}

 IA32

Calling a subroutine

● Parameters go on the stack
● Use push to put each on the stack

– push in reverse order: last param pushed first.

● Everything is passed by value!
– you put a value on the stack

– an address is a value!

 IA32

calling int add(int x,int y)

● Assume x is in %ecx, y is in %edx

 push %edx # put y on stack

 push %ecx # put x on stack

 call add # call add()

 # return value is always in %eax

 IA32

printf(“num is %d\n”,x);

● Assume x is in %eax

st1:

 .string “num is %d\n”

 push %eax

 push $st1

 call printf

 IA32

All together now...

st1: .string “%d + %d =”

st2: .string “%d\n”

 push %edx # put y on stack

 push %ecx # put x on stack

 push $st1 # put “%d + %d =” on stack

 call printf

 call add # call add()

 push %eax # put add(x,y) on stack

 push $st2 # put “%d\n” on stack

 call printf

 IA32

C to Assembly

gcc can generate assembly for you:

gcc -S foo.c

produces the file foo.s

You can assemble foo.s:

gcc -o foo foo.s

 IA32

Compiler generated assembly code

● There are no comments!
● Lots of other things besides code:

– directives – lines that look like this:

.globl foo

.section .rodata

.text

.type foo, @function

.size foo, .-foo

foo is a global symbol

define some read-only data

define some code

foo came from a C function

establishes the size of foo

