
MAGPIE: PRECISE GARBAGE

COLLECTION FOR C

by

Adam Wick

A dissertation submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

School of Computing

The University of Utah

June 2006

Copyright c© Adam Wick 2006

All Rights Reserved

THE UNIVERSITY OF UTAH GRADUATE SCHOOL

SUPERVISORY COMMITTEE APPROVAL

of a dissertation submitted by

Adam Wick

This dissertation has been read by each member of the following supervisory committee
and by majority vote has been found to be satisfactory.

Chair: Matthew Flatt

John Regehr

Gary Lindstrom

Wilson Hsieh

R. Kent Dybvig

THE UNIVERSITY OF UTAH GRADUATE SCHOOL

FINAL READING APPROVAL

To the Graduate Council of the University of Utah:

I have read the dissertation of Adam Wick in its final form
and have found that (1) its format, citations, and bibliographic style are consistent and
acceptable; (2) its illustrative materials including figures, tables, and charts are in place;
and (3) the final manuscript is satisfactory to the Supervisory Committee and is ready
for submission to The Graduate School.

Date Matthew Flatt
Chair, Supervisory Committee

Approved for the Major Department

Martin Berzins
Chair/Dean

Approved for the Graduate Council

David S. Chapman
Dean of The Graduate School

ABSTRACT

C and C++ provide fast, flexible substrata for programs requiring speed or

tight coupling with the operating system or hardware. Both languages have well

established user and code bases, including programs still in use after decades

of development. Unfortunately, with C and C++’s speed and flexibility come

increased complexity, including complication in managing memory. Programs must

create and destroy objects explicitly, and small mistakes in doing so can cause severe

complications.

In other languages, precise garbage collection solves these problems by having

the computer manage the program’s memory. However, until now, adding precise

garbage collection to standard C programs has been a considerable amount of

work. This dissertation describes Magpie, a system that uses several analyses and

conversion techniques to relieve much of the burden of this conversion. It also

describes the effects of the conversion on several sample programs.

Finally, debugging tools and language runtimes can perform additional inter-

esting tasks given an existing garbage collection infrastructure. This dissertation

outlines several such extensions, and discusses one — memory accounting — in

detail.

CONTENTS

ABSTRACT . iv

LIST OF FIGURES . viii

LIST OF TABLES . x

CHAPTERS

1. PRECISE COLLECTION AND C PROGRAMS 1

1.1 Memory Management Paradigms . 3
1.1.1 Static Allocation / No Deallocation . 3
1.1.2 Manual Memory Management . 3
1.1.3 Reference Counting . 6
1.1.4 Garbage Collection . 7

1.2 Contributions . 10
1.3 Compilers and Garbage Collection . 11
1.4 Roadmap . 12

2. THE HIGH LEVEL DESIGN OF MAGPIE 13

2.1 Goals . 13
2.2 The Mechanics of Garbage Collection . 14

2.2.1 The Design of Magpie . 15
2.2.2 Dealing with Libraries . 17
2.2.3 In-Source Flags . 19

2.3 Limitations of Magpie vs. Boehm . 19
2.3.1 Limitations of Magpie . 20
2.3.2 Comparisons to Boehm . 21

3. USING MAGPIE . 23

3.1 Generating the Input . 24
3.2 Allocation Analysis . 25
3.3 Structure Analysis . 30

3.3.1 Handling Unions . 34
3.4 Call Graph Analysis . 36
3.5 Garbage Collector Generation . 37
3.6 Conversion . 38
3.7 Compilation . 39

4. IMPLEMENTING MAGPIE . 40

4.1 Implementing the Allocation Analysis . 42
4.1.1 Gathering the Allocation Analysis Information 43
4.1.2 Converting the Allocation Points . 48

4.2 Implementing the Structure Analysis . 48
4.2.1 Coping with Too Many Structures . 48
4.2.2 Creating the Traversal Routines . 50

4.3 Implementing the Call Graph Analysis . 52
4.4 Implementing the Stack Conversion . 53

4.4.1 Overview of the Stack Conversion . 53
4.4.2 Internal Variable Shape Forms . 56
4.4.3 Caveats Regarding Optimizations . 58
4.4.4 Adding Stack Frames . 59

4.4.4.1 Simple Saves . 60
4.4.4.2 Array and Tagged Saves . 60
4.4.4.3 Complex Saves . 61

4.4.5 Removing Stack Frames . 62
4.5 Implementing Autotagging . 63
4.6 Dealing with Shared Libraries . 64
4.7 Implementing the Garbage Collector . 65

4.7.1 Implementing Autotagging . 66
4.7.2 Implementing Immobility . 67
4.7.3 Tuning the Garbage Collector . 67

4.8 Threads and Magpie . 68

5. THE COST OF CONVERSION . 70

5.1 An Overview of the Benchmarks . 70
5.2 Converting the Benchmarks . 72

5.2.1 Using Boehm with the Benchmarks . 72
5.2.2 Magpie . 73
5.2.3 Unions in the Benchmarks . 77
5.2.4 Executable Size . 78

5.3 The Cost in Time . 79
5.3.1 Comparing Base and NoGC . 81
5.3.2 Comparing NoGC and NoOpt . 82
5.3.3 Comparing NoOpt and Magpie . 82
5.3.4 The Cost of Autotagging . 83
5.3.5 Comparing Base, Boehm and Magpie 84
5.3.6 Examining 197.parser and 254.gap . 84
5.3.7 Possible Shadow Variable Optimization 85

5.4 Space Usage . 87
5.5 Final Discussions on Space and Time . 94

5.5.1 Object Deallocation Costs . 94
5.5.2 Faster Allocation . 95
5.5.3 Smaller Object Sizes . 96

vi

6. EXPLOITING PRECISE GC: MEMORY ACCOUNTING . . . 98

6.1 Motivating Applications . 100
6.1.1 DrScheme . 100
6.1.2 Assignment Hand-In Server . 101
6.1.3 SirMail . 102

6.2 Consumer-Based Accounting . 103
6.3 Accounting in the Examples . 105

6.3.1 DrScheme . 106
6.3.2 Hand-In Server . 107
6.3.3 SirMail . 107

6.4 Accounting Paradigms . 107
6.4.1 Noncommunicating Processes . 107
6.4.2 Vertically Communicating Processes . 108
6.4.3 Horizontally Communicating Processes 109
6.4.4 Libraries and Callbacks . 109
6.4.5 Producer-Based Accounting . 110

6.5 Implementation . 111
6.5.1 Incremental Collection . 113
6.5.2 Performance . 114

6.6 Comparisons to Existing Systems . 114

7. CONCLUSIONS . 116

7.1 Magpie for C/VM Interfaces . 117
7.2 Annotations vs. GUIs . 119
7.3 Future Work . 121

REFERENCES . 124

vii

LIST OF FIGURES

1.1 A screenshot of Apple’s Safari web browser using nearly 3 gigabytes
of memory after a couple of hours of normal usage. 2

2.1 The high-level design of the Magpie toolset. 16

3.1 The allocation analysis window for the top source file libtop.c. 27

3.2 An example of the allocation analysis window where the object in
question is a tagged object. 29

3.3 The structure analysis window for the top source file libtop.c. 31

3.4 The difference between (a) an array of struct foos and (b) an array
of pointers to struct foos. The latter case is considerably more
common in practice. 32

3.5 An example of entering in the information for the “an array of inline
objects, of size” case. Note that the field in question does not, in
fact, declare such a thing; this figure is merely an example of the
information needed in these cases. 33

3.6 An example of entering in a custom traversal function. Again, this is
a fictitious example; there is no reason to write a traverser for this field. 34

3.7 The structure analysis GUI for unions . 35

4.1 Exemplars of the four kinds of shadow stack frames in Magpie. 54

5.1 The memory behavior of the 164.gzip benchmark. 88

5.2 The memory behavior of the 175.vpr benchmark. 88

5.3 The memory behavior of the 176.gcc benchmark. 89

5.4 The memory behavior of the 179.art benchmark. 89

5.5 The memory behavior of the 181.mcf benchmark. 90

5.6 The memory behavior of the 183.equake benchmark. 90

5.7 The memory behavior of the 186.crafty benchmark. 91

5.8 The memory behavior of the 188.ammp benchmark. 91

5.9 The memory behavior of the 197.parser benchmark. 92

5.10 The memory behavior of the 254.gap benchmark. 92

5.11 The memory behavior of the 256.bzip2 benchmark. 93

5.12 The memory behavior of the 300.twolf benchmark. 93

6.1 The three interprocess communication patterns. The filled circle rep-
resents the parent process, with the hollow circles representing child
processes. The arrows represent directions of communication. 108

6.2 The four steps of the accounting procedure. 112

6.3 A potential heap layout, mid-collection. The grayed objects have been
marked by the collector. 113

ix

LIST OF TABLES

5.1 An overview of the size of the various benchmarks used. All prepro-
cessed files generated on Mac OS/X 10.4.6. 71

5.2 The cost of the allocation analysis for each of the benchmark pro-
grams. Parse time is the time spent in parsing and massaging the
source into the correct internal formats. User time is the amount of
time the programmer spends answering questions. All times approxi-
mate. 74

5.3 The cost of the structure analysis for each of the benchmark programs.
Parse time is the time spend in parsing and massaging the source in
the correct internal formats. User time is the amount of time the
programmer spends answering questions. All times approximate. 75

5.4 The cost of the automatic conversions. Conversion time is the time
spent by Magpie in the various analyses, transformations and addi-
tions required to take the original file and create the internal repre-
sentation of the converted file. Total convert time includes parsing,
unparsing and recompilation of the file. 76

5.5 The number of unions in each of the benchmark programs, and how
they are handled for the conversion. 77

5.6 The impact of the Magpie conversion on executable sizes. 78

5.7 The performance impact of garbage collection on the benchmarks. . . . 80

CHAPTER 1

PRECISE COLLECTION AND C

PROGRAMS

Memory management is one of the most tedious and error-prone tasks in soft-

ware development. Small, unnoticed memory-management mistakes can cause

crashes, security problems, slow degradation of program performance, and OS

crashes. While testing catches many of these errors, some remain even in released

software. See Figure 1.1 for an example of Apple’s Safari web browser afflicted with

a slow memory leak.

Reliance on legacy code exacerbates the memory-management problem. Many

companies and institutions rely on programs they have used for decades; programs

that have been modified by many different hands as managers add new requirements

and users find new bugs. Often, the original programmer(s) for the application have

moved to other companies, and program maintenance is left to people unfamiliar

with the program’s design. Worse, documentation on the program’s design and

implementation is usually either out of date or nonexistent, particularly with regard

to memory management conventions. A programmer new to the project may need

to spend weeks or months to find and correctly fix memory errors.

Rewriting legacy programs is often impractical or unwise; redeveloping a com-

plex system using modern languages, tools, and designs may take years. Further,

the redesign will introduce new bugs to be tracked and fixed. If the original program

is critical for the company or institution, spending years to correct one problem —

only to potentially introduce different problems — is an expensive risk with minimal

hope of reward.

The subject of this dissertation, Magpie, is one solution to this problem. Magpie

solves much of the problem of memory-management bugs by modifying a program

2

Figure 1.1. A screenshot of Apple’s Safari web browser using nearly 3 gigabytes
of memory after a couple of hours of normal usage.

to use garbage collection. Thus, the converted program automatically performs its

own memory management, rather than relying on the programmer to get everything

correct.

Thesis: Precise garbage collection offers advantages to programmers

over manual memory management, through ease of programming, a

lessening of memory errors, and increased tool support. Furthermore,

these advantages are available for typical C-implemented programs with

proper tool support. A tool can simplify the process of converting

existing code to use precise collection, bringing these advantages to

normal C programmers.

Magpie is a tool to demonstrate this thesis. Magpie contrasts with existing

tools to aid in detecting memory errors in existing programs. These tools run

3

the gamut from academic type systems, reworking of language runtimes, dynamic

checking tools and complicated software analyses. This chapter continues with a

survey of the subject of memory management, and the problems inherent with each

memory management strategy, with the conclusion that precise garbage collection

is often the best solution. It then outlines the contributions of this dissertation,

and concludes with a roadmap for the remainder of the dissertation.

1.1 Memory Management Paradigms

Most programs manage memory using one or more of four basic memory-

management strategies: static allocation, manual memory management, reference

counting and garbage collection. Each of the basic strategies has advantages and

disadvantages with regard to space utilization and performance. Most have tool

sets associated with them to aid in their adoption or in their use. This section

examines each of these four basic strategies.

1.1.1 Static Allocation / No Deallocation

In some basic programs, very little memory is used; either no memory is al-

located, or there is no need to deallocate any memory allocated. Simple student

exercises, some simple command-line utilities, and even some more complex utilities

(such as compression utilities) may fall under this category. Thus, the memory

management strategy is simple: that program declares or allocates what it needs,

and then leaves it allocated until program termination.

More generally, applications can use the program call stack as their memory-

management device. Although this solution does not scale well in the general case,

it is commonly used in practice. Kernel programmers and C++ programmers often

allocate as much data on the stack as possible; partly for potential speed gains, and

partly for the easy and automatic memory management.

1.1.2 Manual Memory Management

In C, manual memory management is probably the most commonly used mem-

ory management strategy. In this case, the programmer explicitly allocates objects

4

using malloc or some similar command, and explicitly deallocates them using free.

The advantages of manual memory management include predictability with regard

to program execution and a fine level of control over object lifetimes.

Unfortunately, this increased level of control leads to increased complexity in

nontrivial programs. For example, in a program with several different components

accessing a common data structures, it may be extraordinarily difficult for a pro-

grammer to determine when the program may safely deallocate an object. Because

manually managed memory systems do not export any information about a pointer

beyond its existence, programmers must create complicated protocols, add their

own metadata, or manually prove when an object can be deallocated.

C compounds this problem by classifying invalid frees as actions with undefined

effects. A free that occurs too early in a program causes no direct error. However,

it may cause the program to crash immediately, crash a few function calls later,

produce incorrect results, or run fine on most machines most of the time. Many

implementations of libc display warnings when the program attempts to free an

object two or more times, but even these warnings may not occur in some edge

cases. Finally, a C compiler obviously cannot produce warnings around suspected

memory leaks.

Although errors, warnings and incorrect behavior usually appear before software

releases, memory leaks may not. Simple regression tests discover memory leaks

only if a programmer thinks to add checks for leaks or the leaks are particularly

egregious. When even the simplest of applications may have a lifespan of days or

weeks, even a slow leak can cause anger and frustration in users if not caught before

deployment.

Identifying and fixing manual memory management bugs has been a focus

of research for decades. Work in this area is split between unsound tools that

detect possible memory errors, and dialects of C or C++ that greatly restrict the

probability of errors occurring.

The former includes mechanisms as simple as a protocol for logging allocations

and deallocations and finding mismatches [6], or writing specialized macros that

5

cause the program to run checks dynamically [40]. More complicated solutions

involve program transformations and/or additional compiler annotations to pass

more detailed information to dynamic tools [2, 16, 22, 37].

Dynamic tools provide obvious advantages for the programmer. They usually

require little work: the programmer recompiles the program, linking it to the tool,

and checks for errors. Unfortunately, dynamic tools do not give particularly strong

guarantees on their results. A successful run tells the programmer that, on one

particular execution, the program did not violate any invariants that the tool

happened to check. However, other executions may include memory errors, and

errors may have occurred that the tool did not notice. Thus, using these tools

reduces to the general problem of complete coverage and complete observation in

testing. Both add a considerable burden to the testing process.

Static analyses do not suffer from coverage problems, but have their own dis-

advantages. Many perform static error checking by attempting to convert existing

source code to some safe language. Dhurjati et al., for example, force the use of

strong types in C (amongst other restrictions), and then soundly check the code for

memory errors. Although their approach works — given their restrictions on the

language — it still does not test for some forms of memory errors. For example,

their system does not attempt to guarantee that the program will not reference a

deallocated object [15].

Another example in this line of research is CCured [36], which includes a tool for

automatically converting legacy code in some circumstances. Although compelling,

CCured may require programmers to rewrite large sections of their code, or learn

a new annotation scheme and determine how to insert it into their code. These

limitations are particularly harsh if the programmer is not familiar with the code

base being converted.

Finally, safe language tools restrict the kind of C the programmer can write by

their very nature, often in many different ways. In some cases, the added restraints

are too burdensome, since the programmers have used C because their programs

are considerably easier to implement in a low-level, unsafe language. Further, the

6

added safety checks (bounds checks, for example) may add performance overhead

beyond what the programmer thinks is acceptable.

As a last resort, several companies and research groups have encouraged pro-

grammers to switch to safe languages with C-like behavior and syntax. C-- and

C# [28, 32] are particularly good examples of this trend. These new languages

may entice programmers writing new programs, but leave the question of legacy

code unanswered. With programs now having large code bases and decades-long

lifespans, reimplementation in these languages is often impractical.

1.1.3 Reference Counting

Reference counting manages memory by annotating each object in the system

with a count. When some part of the program references the object or some data

structure holds the object, the count is incremented. When the object is no longer

referenced by the program or is removed from the data structure, the count is

decremented. When an object’s count equals zero, memory for the object is freed,

and objects referenced by that object have their counts decremented.

Reference counting generally requires the programmer to increment and decre-

ment counters programmatically. Some compilers or language constructs perform

the reference-count updates automatically, but such systems are rare in general-

purpose programming languages. Unfortunately, manually modifying reference

counts quickly becomes burdensome for both a programmer writing a program

or library and later readers.

Despite its drawbacks, reference counting is a mature technology with a long

history, and is used in many major systems. COM [11] uses reference counting, as

do Apple’s Cocoa and Carbon libraries [34, 44], among a wide variety of other ex-

amples. In addition, many varieties of reference counting exist, including standard

reference counting [25], single bit reference counting [45], and distributed reference

counting [30]. Several improvements over traditional reference count updating

strategies have also been created [39].

Programmers familiar with reference counting, however, still describe problems

similar to those of manual memory management and garbage collection. Many

7

libraries must create and guarantee conventions and protocols on their functions,

such as what the reference count of a new object is and how particular functions

modify reference counts. Even within the program, often it is unclear which

functions need to update a reference count and which functions do not. Updating

a reference count too often leads to performance degradation, but not updating

it often enough can cause memory errors or leaks. The latter problem becomes

particularly difficult in multithreaded and event-driven applications in which the

object may be referenced in several different concurrent contexts.

Further, unless the reference-counting machinery works in an analogous way

to incremental garbage collectors (with the analogous difficulties in implementa-

tion), reference counting may still lead to unbounded pause times. If the program

decrements an object’s reference count to zero, the reference-counting subsystem

will decrement the reference counts of any objects it references and then free the

object. If the object is the only reference keeping a large structure in memory, this

may trigger an unbounded cascade of reference-count decrements and frees.

Finally, reference counting fails when programs make use of cyclic data struc-

tures. Such programs must either take additional (and tedious) precautions to

ensure that no object is in a cyclic structure before the program loses all references

to it, or employ the use of a garbage collector. Hybrid systems are the most

common, using reference counting in the general case but occasionally running a

simple garbage collection routine to free unreferenced, cyclic structures.

1.1.4 Garbage Collection

Garbage collection shifts the burden of memory management to the language

runtime. Doing so eliminates most problems of programmer error in memory

management. This results in both fewer memory management errors and increased

programmer productivity, because the programmer need not spend time on memory

management concerns.

Garbage collection, in the general case, works as follows:

1. Find the roots of the system. These include local variables, stack frames and

8

global variables. They are necessarily still live.

2. Mark the roots as “still live,” and add them to a mark queue.

3. For each item in the queue, mark any objects that the item refers to, adding

these objects to the queue.

4. Repeat until the queue is empty.

5. Deallocate the space used by any unmarked objects.

The exact mechanisms used for garbage collection vary widely, as do the condi-

tions in which garbage collection is triggered. Some garbage collectors prioritize low

space usage [5, 46, 49]. Others work for the fastest wall clock program execution

speeds [9, 12, 24]. Still others focus on providing a high degree of program respon-

siveness [1]. Wilson provides a good survey of the design space [53]. Although a

particular program may perform better with one particular garbage collector, in

most cases there are a wide variety of collectors that will function with a program

without modifying the program source code.

The following terms are used extensively throughout this dissertation:

• Conservative garbage collection is a style of garbage collection that functions

without exact information about whether or not a given word in the heap or

on the stack is a pointer.

• Precise garbage collection is a style of garbage collection that requires exact

information about whether or not a given word in the heap is a pointer or not.

Precise garbage collection is sometimes referred to as nonconservative garbage

collection, type-accurate garbage collection or accurate garbage collection.

For simplicity, this dissertation uses only “precise” to describe such collectors.

• In-place garbage collectors perform garbage collection without moving objects

in the heap. In-place collection is required for conservative garbage collectors

except in the presence of specialized virtual memory systems [43].

9

• Moving garbage collectors may move objects in the heap during garbage

collection. Moving garbage collection is required for most real-time garbage

collectors and other collectors designed to lower garbage-collection latency.

Most compiled, garbage-collected languages — such as Java — use precise

collectors. Many of these collectors also move objects as necessary, making them

precise, moving collectors. On the other hand, the vast majority of garbage collected

C programs use conservative, in-place collection, via the Boehm collector [8, 27].

The Boehm collector’s advantages include a well-established and mature code base

that links somewhat easily into existing C programs.

The Boehm collector is conservative because C does not provide any information

about whether a word in the heap is a pointer or not. Although this flexibility is

occasionally useful in C programs, most programs do not reuse pointer storage for

numbers, or number storage for pointers. Many programmers consider doing so

bad style, as it makes the program more difficult to understand.

Although conservative collection links easily into C programs, it does have some

disadvantages. Specifically, the conservatism of the collector occasionally causes

numerical values to be interpreted as live pointers to otherwise dead objects, causing

memory leaks. More significantly, conservative collectors may mistake dead pointers

as roots, leaving objects in the heap indefinitely. The leaks caused by these two

problems can be anywhere from minor to severe, depending on the program [10].

Further, in-place collection can lead to fragmentation, because the live data in

memory cannot be compacted. Although moving, conservative collectors have been

described in the literature [43], they have not become popular, nor do they solve

the problem of incorrect root identification.

Unlike conservative collectors, precise collectors can move objects in the heap,

because there is no chance of the collector mistakenly identifying a number as a

pointer and updating it. Further, precise collectors have exact information as to

what words in the heap are roots, and thus will never mistakenly consider a nonroot

a root. Thus, they do not suffer from leaks caused by mistaken pointers or roots,

and they may compact objects to avoid fragmentation.

10

However, this precision is not without cost. As previously stated, most precise

collectors are used in association with a compiler and runtime for a safe language.

In these cases, the compiler can emit all the information the collector requires [38].

Even if the compiler emits C code, this information can be added with full knowl-

edge of the original, type safe program [23].

Until Magpie, generating the root and pointer / nonpointer information for

arbitrary C and C++ programs required either an extraordinary amount of hand

coding on the part of the programmer [26] or the additional design and maintenance

of an ad hoc transformer [20].

1.2 Contributions

The contributions of this dissertation are as follows:

• The design and implementation of a tool for converting arbitrary C code to

use precise garbage collection, without specifying the compiler or a particular

garbage collection style. Previous work focuses only on conservative collection

for C, or for performing precise garbage collection on the limited subset of C

generated by a specific compiler.

• The design, implementation and evaluation of a set of analyses designed

to limit the amount of programmer effort required for the transformation.

Previous work required the programmer to write their code in a very specific

style, to add in a considerable number of annotations or library calls, or to

perform all the transformations contained in Magpie manually.

• An experience report on using Magpie to convert existing programs to use pre-

cise garbage collection, including measuring the effects of this transformation

in time and space.

Secondarily, this dissertation reports on one example of using the infrastructure

of garbage collection for another, useful purpose: memory accounting.

I intend this work to be evaluated based on four metrics:

• Applicability : The range of correct C programs that Magpie handles. Syntac-

tically, Magpie handles most C. Further, while Magpie imposes restrictions

11

on some patterns used in C programs, it handles most C programs I have

tried it on.

• Ease of use: The amount of programmer effort required to convert a program

using Magpie. In most cases, Magpie requires little to no effort by the

programmer. In fact, it is frequently easier to use than the Boehm collector.

• Efficiency in time: In the common case, the impact of Magpie on perfor-

mance. Benchmarking results show that, in most cases, the performance of a

Magpie-converted program is within 20% (faster or slower) than the original.

• Efficiency in space: How well Magpie-converted programs track the space

usage of the original program. Benchmarking suggests that Magpie-converted

programs will use more space than the original (generally, less than 100%

overhead on the benchmarks tested), but track the usage of the original.

1.3 Compilers and Garbage Collection

There has been considerable previous work on using compiler analyses to in-

crease the performance of an existing garbage collector. In contrast, Magpie gathers

the information required to perform garbage collection. In the future, Magpie

could, in addition to the analyses and conversions described in this dissertation, also

implement these optimizations to generate faster or more space efficient programs.

For example, Magpie could be modified to inline allocations into the converted

code, rather than translating existing allocations to use the garbage collector’s in-

terface. Many compilers for garbage-collected languages perform this optimization,

particularly compilers for functional languages. While Magpie does not support

such an ability directly, the implementer of a garbage collector for Magpie could

implement some of this functionality. Magpie converts all allocations in the program

to a limited set of allocations functions in the garbage collector. A collector author

could thus define these symbols as macros, rather than functions, and the final C

compiler would inline them into the program.

However, such a solution would not be able to use any information gathered in

Magpie. Magpie could gather more information about variable and object types,

12

and use this information to allow faster garbage collection. The TIL [50] compiler

for ML, for example, uses type information to improve the performance of the

garbage collector. Again, the purpose of Magpie is to convert C to use precise

garbage collection; once this conversion exists, additional literature on compiling

garbage-collected languages may be applied.

1.4 Roadmap

This dissertation is divided into seven chapters. Chapter 2 describes the prob-

lems in adding support for precise garbage collection to C code, and Chapter 3 gives

an example of converting a standard utility program. The latter chapter serves as

a guide for the rest of the thesis, but may be useful on its own to Magpie users.

Chapter 4 provides technical information on the analyses, conversions and tech-

niques used in Magpie. Those interesting in learning about the internal structure

of Magpie or extending Magpie may find this chapter most useful.

Chapter 5 presents the benefits and costs of conversion, in terms of time spent

converting the program, the memory use of converted programs, and the efficiency

of converted programs.

Chapter 6 explores one way in which the infrastructure of precise garbage

collection can be used to provide other, useful functionality. Specifically, it describes

a memory accounting system that allows programs to query and limit the memory

use of their subthreads.

Finally, Chapter 7 concludes this dissertation. It reiterates the contributions

of this work, discusses additional situations in which Magpie could be used, and

discusses several areas of future work.

CHAPTER 2

THE HIGH LEVEL DESIGN OF MAGPIE

This chapter describes the high-level design of Magpie, including the goals of

Magpie, what is required for precise garbage collection, a basic idea of how Magpie

satisfies these requirements, and some cases Magpie does not yet handle.

2.1 Goals

Magpie serves as a bridge between C and C++ and precise garbage collection.

It works by gathering sufficient information for the collector via static analyses

and queries to the programmer. This information is transferred to the runtime by

translating the original source code.

Magpie primarily targets preexisting C applications, although with some ad-

ditional work, it could handle applications in development. As stated previously,

corporations and institutions rely on programs written many years ago by pro-

grammers who have moved on to other things. These programs may have existed

sufficiently long that they contain code to handle situations that no longer exist, and

have been written and modified by many different programmers. For a programmer

new to the project, finding and fixing memory problems is a daunting task.

Finally, the goal of Magpie is to handle the largest subset of C possible without

tying Magpie to a particular compiler or garbage collector. As of the writing of

this dissertation, Magpie handles most programs I have tried it on. The exceptions

include only those programs where the programmer played strange games with

pointers.

Because I strove to make Magpie compiler-independent, it functions by taking

C source as input and generating translated C source. Although translating C to

C increases the complexity of Magpie, linking Magpie to a particular compiler is a

14

considerable barrier to adoption. Further, linking Magpie to a particular compiler

increases Magpie’s maintenance burden, because even patch level updates to the

original compiler may change internal forms and data placement.

2.2 The Mechanics of Garbage Collection

Although the exact implementation of a garbage collector may vary greatly,

all garbage collectors require certain information about a program to function. In

particular, garbage collectors require information on the following three subjects:

• Which words in the heap are root references. Obviously, to perform the first

step of garbage collection, the garbage collector must know which objects

in the heap are roots. Typically, systems inform the garbage collector of

particular pointers in memory that should be used as root references.

• Where references exist in each kind of object. To propagate marks, the

garbage collector must know where the references are in every kind of object

extant in the heap. Typically, garbage collectors use traversal routines (also

known as traversers) rather than mappings on the memory an object uses.

Traversers allow more flexibility in the layout of objects while presenting a

simple interface to the collector.

• What kind of object each object in the heap is. Finally, to propagate marks,

the garbage collector must have a way to map an object to its kind. Typically,

garbage collectors create this mapping with a tag that is associated with the

object upon allocation. Some collectors associate the tag directly with the

object, whereas others sort objects into large blocks and then tag the blocks.

With this information, basic garbage collection is straightforward. The collector

iterates through the list of root references, marking the referenced objects as it goes.

For each object in the set of marked objects, propagation works by looking up what

kind of object that object is and then invoking the appropriate traversal function

on it. When a fixpoint is reached — no more objects have been added to the set of

marked objects — any unmarked objects are deallocated.

15

Specific garbage collectors implement this routine in different ways. Incremental

and real time collectors break this process up into discrete, time-limited chunks,

and allow the main program (also known as the mutator) to execute even as the

collector runs. Generational garbage collectors work by only running this routine

over subparts of the heap during most collections. Copying collectors mark an

object by copying it into new heap space, and then deallocate unmarked objects by

deallocating the entire previous heap space. Other garbage collectors modify the

routine in other ways.

2.2.1 The Design of Magpie

To add support for garbage collection to C, Magpie must satisfy the three

requirements described previously. Precise garbage collection requires that this

information not include any conservatism; a tag must state that the object is of

kind k, not that it may be of kind k. Equally importantly, a traversal function for

the mark-propagation phase must identify exactly those words in an object that

are references to other objects.

Figure 2.1 shows the high-level design of Magpie. Magpie uses a five-pass system

for inferring the necessary information, generating code, and optimizing the output.

Information is transferred from pass to pass through a persistent data store. The

five passes of Magpie are as follows:

• Allocation Analysis. The allocation analysis determines what kind of object

each allocation point creates. Magpie uses this information to tag allocated

objects as having a particular type.

• Structure Analysis. The structure analysis determines which words in an

object kind are pointers. Magpie uses this information to generate traversal

functions.

• Call Graph Analysis. The call graph analysis generates a conservative ap-

proximation of what functions each function calls. This analysis is only used

for an optimization on the final, translated source code, and may be skipped

if optimizations are disabled.

16

Input File

Fr
on

t E
nd

Driver

C C++

Source
Cleaning

Simplification

Persistent
Store

al
lo

ca
na

ly
si

s

Allocation
Analysis

Confirmation
GUI

st
ru

ct
an

al
ys

is

Structure
Analysis

Confirmation
GUI ca

lla
na

ly
si

s Overloading
Analysis

Potential
Target
Analysis

gc
ge

n

Garbage
Collector
Generation

Mark/Repair
Consolidation

co
m

pi
le

Callgraph
Finalization

Mark/Repair
Generation

Allocation
Annotation

Stack
Root
Saving

Collector Output File

Figure 2.1. The high-level design of the Magpie toolset.

17

• Garbage Collector Generation. Although Magpie currently exports only one

garbage collector, it does allow programmers to tune the collector in some

ways. This pass generates a tuned collector for use with the converted

program.

• Conversion. This final pass performs the final conversion, generating a new

C file for each C file in the program. It makes several modifications to

the program, including annotating roots, annotating the calls with tags,

generating traversal functions, and associating each traversal function with

the appropriate tag.

One goal for Magpie is support for moving collectors. Moving collectors require

the program to pass additional information to the collector so that the collector

can repair references to an object should that object move. For the most part, this

requires only an additional traversal function: the original traversal function marks

the objects an object references, whereas this additional traversal function updates

references in the object should the collector move any of the referenced objects.

However, moving collectors require Magpie to handle roots in a particular way.

Translating C to use nonmoving collectors might allow Magpie to annotate roots

by directly marking an object as a root, rather than by annotating the references.

More concretely, a nonmoving system may either pass information about roots by

passing the address of the root reference, or by passing the object itself. In a

moving system, the latter option is not available. Because an object may move,

the collector must know the actual word in memory of the root reference, because

it may need to repair the reference. Implementing this requirement is a significant

part of the final conversion phase.

2.2.2 Dealing with Libraries

Most libraries work with Magpie without any problems. However, some libraries

may cause problems for Magpie by saving references to garbage collected objects.

18

All other libraries — including libraries that save non-pointer data or use callbacks1

— should work without problems.

In situations in which libraries save pointers, the pointers may become corrupt if

a garbage collection occurs while the library holds them. Essentially, such libraries

hide roots from Magpie. This hiding does not allow the runtime to mark the objects

pointed to or repair the hidden root pointer.

If the program being converted links to libraries in this class, the programmer

has three options:

• Convert the library using Magpie.

• Use an annotation — saves pointers — in the library headers for those

functions that save pointers.

• Because the library headers may not be editable by the programmer, Magpie

allows the programmer to wrap a call with the force immobility con-

struct. This construct functions as an expression, which tells Magpie to force

immobility in any pointers found in the expression. This option likely requires

more typing than the previous option, because a library function is declared

once but may be called often, but is necessary if the library headers cannot

be modified.

Obviously, the first option is highly recommended, but may not be feasible.

Forcing immobility impairs the ability of the garbage collector, and may create

serious memory leaks. Because immobility is only used in cases where there is a

pointer outside the “view” of the collector, the collector must keep the object alive

forever, as it will be unable to prove that all references to it have been dropped.

Thus, if the program calls such functions frequently, a serious memory leak may

arise. Converting the library will solve this problem.

1Additional care must be taken in the case of callbacks. Many libraries that make use
of callbacks allow the programmer to attach arbitrary data to a callback, which is then
passed to the callback on execution. If this is the case with the library in question, and
the data passed is a pointer, that pointer should be considered an internally-held pointer.

19

2.2.3 In-Source Flags

In many cases, Magpie requires no modification of the program source. In some

cases, however, modifying the program is necessary or helpful. For example, if a

single-word union field should always be considered a nonpointer, whether or not

it has a pointer option, then adding an in-source hint to Magpie may reduce the

amount of time and effort spent in the allocation or structure analyses.

Magpie accepts four in-source hints. All the flags, except the last, should

be treated as “storage class specifiers” in the C/C++ grammar (e.g., static or

register), and may be placed before any field or variable declaration. The flags

are fairly self-explanatory:

• preempt 3mify noptr : Regardless of any other hints or information, Mag-

pie should treat this item as a nonpointer.

• preempt 3mify ptr : Regardless of any other hints or information, Magpie

should treat this item as a pointer.

• saves pointers : The given function saves pointers within the library.

• force immobility (exp): Forces immobility for any objects referenced by

pointer in the expression exp.

As an aside, “3mify” is due to a historical name for Magpie, and will likely be

changed to “magpie” in the future.

If the programmer wishes to compile both converted and unconverted versions

of their program, these items can be removed via standard C/C++ preprocessor

commands.

2.3 Limitations of Magpie vs. Boehm

Both Magpie and existing conservative collection technology operate on a subset

of correct C programs. However, these subsets are different. This section begins

with a discussion of the limitations of Magpie, and then compares the differences

between the two systems.

20

2.3.1 Limitations of Magpie

First, while Magpie can parse most syntactically correct C programs, it will fail

in certain, limited cases. As currently implemented, Magpie contains both a C and

C++ front end, both of which correctly parse a subset of their respective languages.

For C programs, in most cases, the existing C parser will work. Unfortunately, the

C parser will fail in some cases in which a lexical symbol is used as both a type

and an identifier. However, the C++ front end handles these cases, and Magpie

includes an option allowing users to parse C code using the C++ front end, while

still generating syntactically correct C in the back end. However, as previously

noted, the C++ front end also handles only a syntactic subset of the language.

Specifically, it will fail when programs use function type casts without a typedef.2

Thus, Magpie can handle all syntactic C programs except those that contain

examples of both cases within the same file. In the rare case that this does occur, the

second problem (function type casts) is easily solved with the use of an additional

typedef.

Semantically, Magpie contains neither support for C++ nor support for mul-

tithreaded programming. Internally, Magpie contains a parser, several data struc-

tures, and several analyses to handle C++, but support for C++ was dropped due

to time constraints. Completing the work would require considerable additional

technical work, but no additional research insights.

In contrast, simple extensions for multithreaded programs would be easy to

add, but would most likely have excessive locking costs. In general, the problem

of adding more efficient support for concurrent programs simplifies to the general

problem of adding minimal locking, which is an unsolved problem. See Section 4.8

for more information.

Finally, Magpie cannot handle programs with implicit types. Since Magpie bases

its analyses on the structure and union declarations within the program, it cannot

handle cases in which important structure and union declarations are left out of

the program source. For example, a program that allocates blocks of memory and

2For example, (void (*)(int))my var.

21

then interacts with these blocks using pointer arithmetic — as opposed to programs

that use structure declarations and field accessors — will fail with Magpie. More

commonly, C programs that use implicit unions will fail; if a program uses fields

or local variables to store both pointer and nonpointer values, but does not declare

the fields or variables as a union between these types, the Magpie conversion will

fail.

2.3.2 Comparisons to Boehm

The Boehm conservative garbage collector is designed as a completely separate

subsystem from the original program. In the ideal case, this separation of concerns

is quite clear: all the Boehm collector requires of the programmer is linking their

program with the Boehm collector. In some cases, additional work may be required

to identify global and static variables as garbage collection roots. This separation

allows Boehm to function in many cases where Magpie would not; the Boehm

collector will not fail based on the program source, and will not fail to implicit

types. Further, the Boehm collector has been extended to handle multithreaded

programs and C++.

However, this separation limits the applicability of the Boehm collector in

some circumstances. These include cases in which the program obfuscates roots

or references from the collector. For example, a program could write objects to

disk or mask pointers using some cryptographic key. Programmers concerned

with space efficiency may also perform a simple optimization on sparse arrays: a

function allocates the space needed for the important part of the array, but returns

a pointer to where the complete array would have begun. Since the design of the

Boehm collector segregates it from the original program, analyses and programmer

annotations cannot be used to transmit information about these obfuscated roots

or references to the collector.

In contrast, the design of Magpie tightly couples the conversion with the original

program and involves the programmer in the conversion process. This allows the

programmer to identify and intervene in cases in which pointers are obfuscated from

the collector. In the case of a program writing objects to disk, the programmer

22

could treat the subsystem that performs the write as a library that saves pointers.

The mechanism to handle this case is discussed in Section 4.6. As of the current

implementation, Magpie can also handle obfuscated references on the heap (e.g.,

encrypted pointers or pointers placed before or after their associated objects), by

having the programmer write code to translate these references for the garbage

collector. However, Magpie cannot handle obfuscated pointers on the C stack.

A system combining both the conservative approximations of the Boehm col-

lector and the interactive, program-specific conversions of Magpie would extend

the domain of both systems. Conservative garbage collection allows for implicit

structure and union declarations, while the interactivity of Magpie would allow for

more exact analysis of roots, additional information for the conservative collector,

and the handling of some types of obfuscated pointers and roots.

CHAPTER 3

USING MAGPIE

This chapter describes the use of Magpie on C and C++ programs. For clarity,

this chapter uses the UNIX utility top as a running example. The specific version

of top used is Apple’s top for Darwin 8.3 (OS/X 10.4.3), and can be found at the

Apple Developer Connection.1

The conversion of a C program to a precisely collected C program requires the

following steps:

1. Generating the input to the system

2. Allocation analysis

3. Structure analysis

4. Callgraph analysis

5. Garbage collector generation

6. File conversion

7. Compilation

This chapter discusses all these steps in more detail, including the requirements

for each step. Although some steps may be performed out of order, the given order

is strongly recommended. For completeness, steps #1 and #2 must be completed

for every file in the system before beginning step #3. Steps #3 and #4 or steps

#4 and #5 may be interleaved; Magpie requires only that step #3 be performed

1http://developer.apple.com

24

before step #5. Finally, steps #6 and #7 may be interleaved at the program level,

although, for any particular file, step #6 must be performed before #7.

3.1 Generating the Input

As previously stated, Magpie is designed to handle both C and parts of C++.

The C system is far more mature and has been used to handle a wide variety

of programs, including simple UNIX utilities, large applications and Linux kernel

drivers. The C++ extensions are far more limited and far less well tested, and are

included largely as a proof of concept.

For simplicity, Magpie only handles preprocessed source code. Although Magpie

accepts command line arguments that allow it to invoke the C/C++ preprocessor

itself, in most cases it is simpler to generate the preprocessed source once, and save

the result to disk. Generating preprocessed source is simple, and merely requires

minor changes in the Makefiles of the original source.

In the case of top, the generation of the preprocessed source code was simple,

requiring only the addition of a single command. The original, relevant lines of the

Makefile are as follows:

$(OBJROOT)/%.o : $(SRCROOT)/%.c ...

$(CC) -c $(CPPFLAGS) $(CFLAGS) $< -o $@

Generating preprocessed source during the build process requires only a change

to the following:

$(OBJROOT)/%.o : $(SRCROOT)/%.c ...

$(CC) -c $(CPPFLAGS) $(CFLAGS) $< -o $@

$(CC) -E $(ECPPFLAGS) $(ECFLAGS) $< > ../topsrc/$<

In this example, the additional line preprocesses the original source using the GCC

argument “-E”, and saves it to the directory topsrc using standard UNIX redirection.

The use of a single, separate directory for the preprocessed source is simply a

convenience. Others methodologies may be used if they work better for a particular

25

program. Further, Magpie does not require the preprocessed file to have the same

name as the original source file. Again, doing so is simply a convenience.

3.2 Allocation Analysis

The allocation analysis attempts to determine, for each allocation point in the

program, what kind of object is allocated at that point. The user converting the

program may choose to do this analysis one file at a time, or all at one time.

At this point in the process, the user must create or choose some directory in

which Magpie will store information for use by later passes. Although the user may

choose an existing directory, the top example uses a separate directory, topinfo.

At this point in the top example, we have a base directory (containing the original

top source), plus two additional directories: topsrc, containing the preprocessed

source, and topinfo, which contains any information generated by the individual

analyses.

Invoking the allocation analysis requires the following command:

magpie allocanalysis --info-dir topinfo topsrc/*.c

If the invocation of the allocation analysis occurs in a directory other than the

directory where the preprocessed files were created, the additional --base-dir flag

is required.

Further, if the program uses any allocators other than the standard C allocators

(malloc, calloc, etc.), the names of all the allocators used in the program must be

passed via the --allocators flag. This flag can be useful not only in cases where

different allocating functions are used, but also in situations where the program

places a facade over the system allocator for portability reasons. Most benchmarks

in the SPEC benchmark suite, for example, use internal allocator facades over

malloc and calloc.

The --allocators flag accepts both singular names and equivalences as argu-

ments, to correctly match an unknown allocator with its interface. The standard

allocators (malloc, calloc, realloc and kmalloc) may be given simply as their names,

26

and Magpie will correctly determine the interface. For example, the command line

argument --allocators malloc,calloc informs Magpie that the program uses

two allocators, malloc and calloc, which have their default implementations.

When another name is given without an equivalence, it is assumed that the

allocator has the same interface as malloc. For example, the command line argu-

ment --allocators malloc,xmalloc informs Magpie that the program uses two

allocators, malloc and xmalloc, both with the calling interface of malloc. In cases

where the new allocator has a calling convention of another built-in allocator, an

equivalence may be used. For example the following:

--allocators xmalloc,xcalloc=calloc,xrealloc=realloc

Defines three allocators: xmalloc, xcalloc and xrealloc. These allocators have

the calling interface of malloc, calloc and realloc, respectively

After parsing each file, the analysis engine attempts to determine whether a

file performs any allocations. If it does not (as is the case in several of the files

comprising top), the allocator simply notes this in its information database and

informs the user as follows:

No allocations found in this file (topsrc/ch.c).

If allocations are found, Magpie analyzes the code surrounding the allocation

site, to make its best guess as to what kind of object is allocated at that site. Then

it creates a window, requiring the user to make the final determination for each

particular allocation site. In most cases, the analysis correctly determines what

is allocated at each allocation site, but user intervention may be required in some

cases.

Figure 3.1 shows the window for the file libtop.c. The window shows the

number of allocations found in the file (and the user’s progress through them), the

file name, the line on which the allocation site was found, the name of the function

the allocation is in, and a syntax-highlighted display of the allocation site and the

code around it.

27

Figure 3.1. The allocation analysis window for the top source file libtop.c.

At this point, the user must decide if the analysis determined the correct kind

for the allocation or not. If it has, she may simply move on. Otherwise, she must

select a different options. The options are as follows:

• An object outside the collected heap: In this case, the object allocated at this

allocation site should be allocated outside the garbage collected heap. The

collector will never move nor collect these objects.

• An object with no pointers : In this case, the object allocated at this allocation

site has no pointers to any other object in the heap. For example, a heap-

allocated string satisfies this requirement, as does a heap-allocated array of

28

numbers. The allocation in Figure 3.1 allocates a string, so this is the correct

option for that allocation.

• A tagged object : A tagged object is a structure allocated to the heap. The

division between the previous option and this option depends on the user’s

preferences. Some users may wish all structures to be considered tagged

objects, even if they contain no pointers, or they may only wish to use the

tagged object form for structures that contain at least one pointer. The

disadvantage of the former approach is a possible increase in code size and

fragmentation, as it may cause Magpie to generate additional traversal func-

tions or unnecessarily segregate objects in the heap.

In the case of tagged objects, the user must specify the structure being

allocated. Figure 3.2 shows the second allocation site in libtop.c, which

allocates a structure of type libtop pinfo t.

• An array of pointers : In this case, the program allocates an array of pointers

to other objects. Magpie does not require information about the type of the

referenced objects.

• An array of tagged objects : In some cases, the program allocates an array

of structures, rather than an array of pointers to structures (the more com-

mon case). For example, in Figure 3.2, if calloc had taken some other

first argument than 1, the program would allocate that many contiguous

libtop pinfo t structures. In these cases, the analysis will ask for the type

of the object.

In most cases, the analysis chooses the correct values for the allocation. In some

cases, however, Magpie will guess incorrectly, and the programmer must choose the

correct item from the available options. Every time the user selects “Next”, Magpie

saves all the information it has to a per-project, persistent file. The location of this

and all other persistent information files is given by the --info-dir argument to

magpie.

Magpie uses information gathered from this analysis throughout the rest of

the system, so it is important that Magpie users take time to ensure that their

29

Figure 3.2. An example of the allocation analysis window where the object in
question is a tagged object.

analysis results are correct. For example, the structure analysis uses the gathered

information to determine which structures to analyze, because the structure analysis

need only deal with structures allocated onto the garbage collected heap. Magpie

does, however, include a command-line flag — --auto-run — for cases in which

the user knows the analysis is correct for all items.2 This flag causes Magpie to

run automatically at the command line, without querying the user or bringing up

2I have also used this flag as an initial, optimistic, attempt, often saving me the few
minutes spent examining the allocation sites.

30

a GUI.

As stated previously, the user must finish the allocation analysis for every file

in the system before moving to the next stage in the process.

3.3 Structure Analysis

The structure analysis attempts to determine the shape of all objects in the

garbage collected heap, so that the garbage collector can walk the structure cor-

rectly during collection. Thus, for every word within an object, the analysis must

determine if the word represents a pointer or some other datum. Again, the user

may decide to do this analysis one file at a time or all at once, and again, this step

is an interactive analysis unless the --auto-run flag is used.

To perform this analysis for a file, the user must first run the allocation anal-

ysis on the file. Magpie uses the allocation analysis information, which contains

information as to what structures are placed in the heap, to limit the information

required from the structure analysis and user.

Invoking the structure analysis requires the following command:

magpie structanalysis --info-dir topinfo topsrc/*.c

Note that the structure analysis must take the same info directory; in fact, this

info directory is used in all subsequent steps. Again, in most cases, the analysis

will correctly identify the structure components, but in some cases the developer

will need to override the selected option.

For some files, no structures need be analyzed by the system. In these cases,

Magpie informs the user that it does not need to do anything with the given file.

In cases where there is work to do for the file, the structure analysis creates a GUI.

Figure 3.3 shows the initial GUI for the file libtop.c.

The structure analysis has many more potential answers than the allocation

analysis. Although some answers are not available in some cases, the following are

all the potential options:

31

Figure 3.3. The structure analysis window for the top source file libtop.c.

• An object with no ptrs : This type or structure / union field contains a number,

set of bit fields, set of characters, or other datum that does not contain any

pointers. Figure 3.3 shows an example of this case.

• A pointer : This type or field is a simple pointer to some other object.

• An array of pointers : This option is only available for types (as defined with

typedef), not structure fields. In this case, the type is an array of pointers

to other objects. This option may also be used for multidimensional arrays

of pointers and arrays of structures that contain only pointers.

• An array of pointers, of size: This type or field is an array of pointers with a

fixed size. The GUI includes space for the developer to provide the size. The

32

size may be given as a simple number or as an arbitrary C expression that

produces the proper number.

• An array of pointers, lasting to the end of the object : This field, which must

be the last field of the structure, is an array of pointers that lasts to the end

of the object. This is useful in cases where the size of the last field is dynamic.

• An array of inline objects : This option is available only for types (as defined

with typedef), not structure fields. In this case, the type is an array of some

structure. This case is used when a type defines an array of some structure,

not when it defines an array of pointers to some structure type; Figure 3.4

shows the difference between the two cases. In this case, the user interface

will ask the user to choose which type is in the array.

• An array of inline objects, of size: As the previous item, but the field in

question has a fixed size. Note that the size is given in array elements; so an

object of eight elements, each of which is 50 bytes in size, should have eight

as its size. Although top does not contain any examples of this case, Figure

3.5 shows the user interface structure for this kind of object. First, the user

selects the “an array of inline objects, of size” option, and then she enters in

the size of the field and the element type.

• An array of inline objects, lasting until the end of the object : The analogous

option to “An array of pointers, lasting to the end of the object.” Again,

see Figure 3.4 for an example distinguishing arrays of objects from arrays of

pointers to objects.

• Something I need to write my own mark code for : In some cases, the standard

analyses and traversal generators will not work for an object. These cases

include situations in which a field’s type may depend on some outside state

(a) typedef struct foo array_of_foo[5]

(b) typedef struct foo *array_of_pointers[5]

Figure 3.4. The difference between (a) an array of struct foos and (b) an array of
pointers to struct foos. The latter case is considerably more common in practice.

33

Figure 3.5. An example of entering in the information for the “an array of inline
objects, of size” case. Note that the field in question does not, in fact, declare such
a thing; this figure is merely an example of the information needed in these cases.

in the program, or situations in which the programmer has obfuscated the

pointer. In these cases, the programmer must write her own mark routine for

the field or fields. After completing the analysis for all the other fields in the

object, the GUI requests the user fill in the information for the fields marked

with this option. Figure 3.6 shows an example of this case.

In the case of top, the structure analysis requires determinations on 111 fields

in 2 files. In all cases, the analyses correctly identifies the kind of the field, and the

total time spent in this phase (not counting parsing and loading) was less than five

minutes.

Magpie uses the information gathered in the structure analysis in the garbage

34

Figure 3.6. An example of entering in a custom traversal function. Again, this is
a fictitious example; there is no reason to write a traverser for this field.

collector generation phase (Section 3.5) and the conversion phase (Section 3.6).

3.3.1 Handling Unions

The top utility does not use any unions in its execution, but many programs

do. When the structure analysis discovers a union — either as an allocated type or

as part of one — it first gathers information from the user about each case of the

union. Sometimes Magpie can determine that all the cases have the same shape,

so the collector can handle the union by always using the first union case. Similar

shapes appear most frequently in unions of nonpointer types, where the collector

regards the entire union as atomic.

If Magpie cannot conclude that all the union cases have the same shape, it

35

must determine how to inform the collector which union case is in effect at every

collection point. Magpie can handle unions in one of two ways, and asks the user

to select one of them.

The first, and preferable, way is to have the user write code to select which

union case is in effect. Figure 3.7 shows an example of a user writing code for the

197.parser benchmark. Doing so is feasible if the structure contains some field that

determines which union case is in effect or if this information can be inferred from

global program state. Having the user write their own code generates faster code

than the alternatives, and is less subject to edge cases where the alternative will not

work. Unfortunately, not all programs make distinguishing information available

to the programmer. Further, when working with legacy code, the programmer may

Figure 3.7. The structure analysis GUI for unions

36

not be aware of this information even if it is available.

In these latter cases, Magpie can handle unions via autotagging. Magpie’s auto-

tagging automatically inserts code to inform the collector that an object currently

uses a particular union case. Essentially, this code functions as a software write

barrier that updates the collector whenever a particular union case is used in the

left hand side of an assignment. The generated traversal function then checks the

current value of the tag for the union, and traverses over the appropriate union

case.

As noted in the GUI, autotagging is a method of last resort. It imposes overhead

on the converted program, as it installs a software write barrier on the union and

requires the collector to track the gathered information at runtime. Further, it

may not work when the programmer plays games with the union, such as writing a

pointer into an integer field or writing data without accessing the union (via pointer

arithmetic). Perhaps worse, if the program passes the structure to an external

library for initialization or modification, Magpie cannot insert code to autotag the

union.

Nevertheless, autotagging provides a simple way for the programmer to handle

cases where distinguishing information is not immediately available or obvious. Fur-

ther, it handles the common case where distinguishing information is not available

without extensive modifications to the original program.

3.4 Call Graph Analysis

The call graph analysis attempts to determine the target of every call site. In

C, function pointers complicate this analysis, so the results are imprecise. Magpie

gathers this information and then stores it for use in a later optimization phase.

Thus, if optimizations are disabled, this pass may be skipped.

For completeness, Magpie uses this information to eliminate roots in the local

stack. If a program calls an unknown function, Magpie must assume that the

function may trigger a garbage collection. Thus, it must convert the source to

notify the collector of any live local pointer variables for the collector to use them

as roots. If, however, the call graph analysis has determined that the call will not

37

lead to a garbage collection, it does not need to transfer this information to the

collector.

The callgraph analysis requires only the input files used in the other passes, and

produces information only within the persistent store. Using the top example, the

command for running the callgraph analysis is performed as follows:

magpie callanalysis --info-dir topinfo topsrc/*.c

This command gathers all the call information for all the functions in the

program, and saves them to the persistent store. Unlike the previous two phases,

the call graph analysis is automatic, so no further user intervention is required.

3.5 Garbage Collector Generation

Although Magpie includes only a single, basic garbage collector, it exports some

flexibility to users. Currently, Magpie allows the user to specify constant value for

the following collector parameters: the page size, the initial size of the nursery,

and two constants used in computing the size of the new nursery after garbage

collection.

The default values for page size and initial nursery size are decent base lines,

and work well enough for most programs. However, if speed and/or memory use

is important, programmers can tune these values to improve performance. See

Section 4.7.3 for more information and suggestions for garbage collector tuning.

Collector generation creates several files to be compiled and linked to the converted

program. These include gc interface.h, gc implementation.c, gc tuning.h

(which contains the options passed to the generator and initialization code), and

several system-dependent files (prefixed with vm). By default, Magpie outputs

these files to the current directory. In general, however, it is more convenient to

place all the files generated by Magpie in a separate directory. For the top example,

we will add one final directory, topout.

Using the standard collector flags, the command for this phase of the top

conversion is as follows:

38

magpie gcgen --info-dir topinfo --output-directory topout

When the phase completes, the topout directory will contain all the files in-

volved in garbage collection.

3.6 Conversion

Finally, Magpie must convert the source files. Files may be converted all in

one pass, or in a group. I suggest that users convert each file individually, using a

Makefile or similar utility, so that small changes in the source code do not require a

full reconversion of the entire program. With optimizations enabled (the default),

this step requires the full, global call graph generated in the call graph analysis

phase.

This pass makes assumptions that should hold for standard C/C++ applica-

tions, but may require modifications for nonstandard cases:

• Entrance Function: To make sure the collector is initialized before the pro-

gram allocates its first object, Magpie requires the entrance function of the

program. The default value is main, which should suffice for most C/C++

applications. Libraries, plug-ins and similar code may require a different

entrance function or functions. As the collector ignores any initialization

calls after the first, listing multiple functions — or functions that may be

called more than once — is safe.

• Closed/Open World : When finalizing the call graph, the analysis by default

assumes a closed world. Specifically, it assumes that any functions not defined

in the program code observed by the call graph analysis phase (see Section 3.4)

will not explicitly or implicitly trigger a garbage collection before returning

to the main program. Because unconverted libraries do not allocate garbage-

collected objects, they will not trigger a garbage collection, so this assumption

is safe except in the presence of callbacks.

• Deallocators : Because garbage collection removes the need for deallocation,

the conversion phase removes any deallocations found in the program. Mag-

pie, by default, assumes that there is only one deallocation function, named

39

free. If this is not the case, the user must transmit the names of the

deallocators to the converter.

The only option used in the top example is the --output-directory flag, which

again places the generated files into the topout directory. The following converts

all the files in top, storing them in topout:

magpie gcgen --info-dir topinfo --output-directory topout topsrc/*.c

3.7 Compilation

The final step is not truly part of Magpie, but obviously important. Magpie

generates uncompiled C source, so the user must compile these files using the

available C compiler. For example, using the gcc compiler with no optimization,

top is compiled using the following sequence of commands:

gcc -c ch.c dch.c disp.c libtop.c log.c samp.c top.c

gcc -c gc_implementation.c

gcc -o topgc *.o

This series of commands compiles all the (converted) source files for top, then

compiles the garbage collector, and finally links the files into the topgc executable.

CHAPTER 4

IMPLEMENTING MAGPIE

This chapter explains the implementation of Magpie. Magpie is a 20,000 line

Scheme program, with many of the passes and phases sharing common libraries and

data structures. As previously noted, Magpie uses a simple, external persistent data

store to store information across phases. Figure 2.1 shows the high-level structure

of the program.

Magpie’s front-end parses the preprocessed C, finesses it into a set of inter-

nal structures, and then simplifies the resulting structures. These simplifications

include resolving references to their declarations, mapping names to types and

transforming the source to comply with various invariants required by Magpie.1

The Magpie internal language (il) is broadly separated into four kinds of objects:

declarations (decl), statements (stmt), types (type) and expressions (exp). In all

cases but types, the forms mirror the source language as much as possible. This

restricts the effect translations have on performance. For example, Magpie contains

forms for for loops, do...while loops and while loops. Although it could convert

all these to a single looping form, reports [42] suggest that this can have a noticeable

negative influence on the quality of the code gcc emits. Thus, they are left in their

original form.

In the case of types, the structures represent the semantic meaning of the types

in the program. This causes considerable complication in Magpie’s front and back

ends, but makes the internal passes much simpler.

1For example, Magpie does not allow calls in the arguments of a call, so it will rewrite
foo(bar()) as (temp = bar(), foo(temp)).

41

The following describe a subset of the Magpie il, and are included to simplify

further discussions:

il ≡ decl (declarations)
| stmt (statements)
| type (types)
| exp (expressions)

decl ≡ decl : fun(name, type, stmt) (function declarations)
| decl : var(name, type, exp) (variable declarations)
| decl : type(name, type) (type declarations)

exp ≡ exp : empty() (empty expressions)
| exp : const(type, str) (constants)
| exp : ref(name) (references)
| exp : array acc(exp, exp) (array accesses)
| exp : field acc(exp, name) (field accesses)
| exp : deref(exp) (pointer dereferneces)
| exp : addr of(exp) (address of operations)
| exp : call(exp, list(exp)) (calls)
| exp : builtin(name, list(exp)) (sizeof et al)
| exp : unop(name, exp) (unary operations)
| exp : binop(name, exp, exp) (binary operations)
| exp : cast(type, exp) (casts)
| exp : assign(exp, exp) (assignments)
| exp : seq(exp, exp) (expression sequences)

type ≡ type : basic(str) (builtin types)
| type : ref(name) (type references)
| type : struct(name, list(decl)) (struct refs/decls)
| type : union(name, list(decl)) (union refs/decls)
| type : fun(type, list(type)) (function types)
| type : array(type, exp) (array types)
| type : ptr(type) (pointer types)

42

stmt ≡ stmt : empty()
| stmt : if(exp, stmt, stmt) (if statements)
| stmt : switch(exp, stmt) (switch statements)
| stmt : exp(exp) (expressions as statements)
| stmt : while(bool, exp, stmt) (while loops)
| stmt : for(exp, exp, exp, stmt) (for loops)
| stmt : return(exp) (returns)
| stmt : goto(name) (gotos)
| stmt : break (breaks)
| stmt : continue (continues)
| stmt : target(name) (goto destinations)
| stmt : case(exp, stmt) (case statements)
| stmt : block(list(stmt)) (blocks)

This overview is intended to give the flavor of the internal forms. It is not,

however, complete; Magpie saves considerably more information and includes many

additional forms. For example, the type definition is missing a form for typeof

forms, and the exp definition is missing a form for conditional expressions. Further,

the implementation of Magpie includes considerable internal support for C++. This

includes several additional forms and a considerable amount of additional analysis

in the front end. However, for the purposes of describing the basic functioning of

Magpie, these forms present sufficient information and give a sufficient flavor for

the internals.

For the most part, the analyses and conversions described in later sections

have obvious cases for most of the internal forms. Therefore, in most cases, the

description gives a broad outline of how the analysis or conversion works, and then

describes the exceptional cases in more detail.

4.1 Implementing the Allocation Analysis

The allocation analysis attempts to determine, for each object in the heap,

what type of object it is and what its boundaries are. The allocation analysis does

this by annotating allocation points. The boundaries of the object are implicitly

discovered, based on the allocated pointer and its size. The type is more difficult.

To determine the type, Magpie analyzes the source, computes a best guess based

on these analyses, and asks the user to confirm the guess.

43

In some cases, Magpie can identify allocation points easily, because they use

standard libc calls such as malloc, calloc, and so forth. In many cases, how-

ever, applications use facades for these functions to increase portability. In those

situations, the facade function is considered the allocator for the purpose of the

allocation analysis.

Like the structure analysis phase that follows, the allocation analysis phase

gathers information and then asks the user to confirm what it has gathered. This

allows Magpie to function even in cases where more simplistic systems would

incorrectly analyze the source. Although it is true that Magpie seldom incorrectly

identifies an allocation, this check is necessary; see Chapter 5 for more information.

4.1.1 Gathering the Allocation Analysis Information

The allocation analysis gathers information using three mutually recursive sub-

routines over the structure of a function definition. The analyses function as mutu-

ally recursive routines to distinguish between expressions within the size argument

of an allocation, types and everything else. These cases are distinguished for several

implementation reasons, including the different ways they handle multiplicative

operations and the difference in any implicit pointers in the returned type.

At a high level, the allocation analyses are designed to watch for hints in the

source about the type of a particular allocation. These include types inside a

sizeof expression in the size argument of an allocation (consider malloc(size)

and calloc(num, size)), numerical operations found in the size argument, casts

on the return value of the allocation, the type of the object being reallocated in

realloc calls, and the inferred type of the allocation based on statements such as

x = malloc(4).

Although each of these items could be the subject of its own analysis, Magpie

combines them into a single recursive descent over every function in the program,

using the three subroutines mentioned previously. The result of each of these

subroutines is a list of a recursive data types describing all the possible types found

in that subexpression / substatement / subtype. The recursive data type is defined

as follows:

44

aa result ≡ basic
| user(str)
| pointer(aa result)
| array(aa result)

These four cases have exactly their expected meanings; basic items describe the

built-in C types, user items describe user-defined types, the recursive pointer items

describe a pointer to the subitem described, and the recursive array items describe

an array of the subitem described.

The allocation analyses recur over the file in the standard way for most internal

representation forms, combining the guesses for those items that have multiple re-

cursive subtrees (if statements, sequencing expressions, and so on) using a standard

union operator. When the recursion encounters a type, it generates the recursive

return value in exactly the expected way. For simplicity, I call the recursion over

types guess typetype, the recursion over allocator arguments guess argtype and the

recursion over anything else guess type. Note that guess type takes an additional

argument: the type analyzed for the left hand side of the parent. Passing this extra

information simplifies the analysis of assignments and casts.

For guess argtype, the exceptional cases involve only sizeof forms and binary

operations. In the former case, Magpie uses this only to forward to the appro-

priate subroutine. Binary operations require slightly more work. In these cases,

the analysis looks for cases such as malloc(4 * sizeof(struct foo)). In this

example, the analyses should guess that the allocation point is allocating an array

of structures, rather than a simple structure.

name = “sizeof ′′ is type(il) res = guess typetype(list(il))

guess argtype(exp : builtin(name, list(il))) = res
(4.1)

name = “sizeof ′′ is exp(il) res = guess type(list(il), ε)

guess argtype(exp : builtin(name, list(il))) = res
(4.2)

45

name ∈ {∗, <<}
res1 = guess argtype(arg1) res2 = guess argtype(arg2)

res1 ≡ ε res2 6≡ ε
res = {x | x = array(y) ∧ y ∈ res2}

guess argtype(exp : binop(name, exp1, exp2)) = res
(4.3)

The first two rules (4.1 and 4.2) merely dispatch the recursion to the correct function

based on the kind of the argument to sizeof. The last equation, 4.3, is more

interesting. For brevity, the rule assumes that the type information occurs in the

right hand side and the multiplier in the left, but simple if statements sort this out

in the implementation of the rule.

In the case of binary operations, the analysis is concerned only with multiplica-

tive operations: multiplication and left shifts. It first determines if the form is a

constant (or referenced value) multiplied by something informing the analysis of a

type. If these situations hold, then the result of the analysis is the types returned

from the recursion on the non-constant subexpression, wrapped in array forms.

Note that other operations either do not make much sense from the analysis’s

point of view (division, for example), or do not imply that the allocation is an array

of the type (addition, for example). Therefore, in these situations, the analysis

returns the union of the two recursive computations, as per normal.

The function guess type has more exceptional cases, primarily involved in gath-

ering information about the inferred type at a particular allocation point. The

following is an overview of the exceptional cases, with a some left out for brevity:2

is allocator(expf) restype = guess argtype(exp size)

rescall =


{x | x = array(y) ∧ y ∈ restype} if is calloc(expfun)

append(restype, guess type(expother, ε)) if is realloc(expfun)
restype otherwise

res = append(rescall, resleft)

guess type(exp : call(expf , exp1...expn), resleft) = res
(4.4)

2For example, a side condition involving calloc(1,type). Even though the allocation
is a calloc, which strongly indicates an array, the analysis will return type instead of
an array of type.

46

The case for calls is obviously the most important, because it is here that we

gather and save the information for a particular allocation site. Because call forms

differ, some case logic is required here. Magpie treats malloc without any post-

processing. However, for realloc calls, Magpie takes into account the type of the

pointer being reallocated, and for calloc, Magpie wraps all the return values as

arrays.

restype = guess typetype(type)
resexp = guess type(exp, restype)

res = restype ∪ resexp

guess type(exp : cast(type, exp), resleft) = res
(4.5)

reslval = guess type(explval, resleft)
resrval = guess type(exprval, reslval)

res = reslval ∪ resrval

guess type(exp : assign(explval, exprval), resleft) = res
(4.6)

The cases for casts and assignments are the primary reason for the additional

argument to guess type. Magpie takes the information gathered in either the type

of the cast or lvalue of the assignment, and transfers it to the expression or rvalue.

Doing so allows Magpie to catch several common cases in C programs, as in the

following examples:

{

char *my_str = malloc(128);

my_ptr = (int*)malloc(128);

}

In most cases, when Magpie cannot gather any information about an allocation,

guessing that the value is atomic is a good guess. However, the cast of malloc’s

return value — or the assignment of the allocation to something else — can give

stronger suggestions that the value is atomic. Further, in some cases the additional

47

information from a cast can help narrow down types more accurately, particularly

when calloc is the allocator in question.

resarray = guess type(exparray, ε)
res = {x | (array(x) ∈ resarray) ∨ (ptr(x) ∈ resarray)}

guess type(exp : array acc(exparray, expsize), resleft) = res
(4.7)

resexp = guess type(exp, ε)
res = {x | (array(x) ∈ resexp) ∨ (ptr(x) ∈ resexp)}

guess type(exp : deref(exp), resleft) = res
(4.8)

These additional rules are included as a sample of the other rules. These two

rules, for array accesses and dereferences, modify the types inferred from their

subexpressions — specifically by removing any pointer or array wrappings and

eliding any return values that would not be valid for a dereference or array access.

The address-of operator works in the reverse way.

Magpie also includes several additional rules to deal with a case not found in the

internal language described previously: a GCC extension that allows programmers

to place blocks in expression position. This requires some additional logic to deal

with statement forms and the “return value” of such blocks.

Once the allocation analysis has gathered the information for each allocation

point, it must select a best guess. The process for doing is straightforward. First,

Magpie removes guesses it considers invalid, such as basic types. Then, it checks to

see if one item appears in the list of possibilities more than any of the others. Note

that Magpie can get duplicates at a call site due to resleft values and values from

the recursion over reallocated objects in realloc. If it finds one type that appears

more than all others, it uses that value.

Otherwise, Magpie takes the values that have the highest number of appearances

in the list, and treats certain possibilities preferentially. Magpie will select a tagged

array if one appears. If not, it chooses a tagged item. If neither of those appear,

it looks for an array of pointers. If none of those appear, it gives up and chooses

whatever happens to be first in the list it was given.

48

In the case where Magpie has no information about a particular allocation site,

it guesses that the allocation point allocates an atomic object.

4.1.2 Converting the Allocation Points

Converting the program to transfer the gathered information to the collector is

straightforward. The conversion pass walks over the program until it finds allocation

points notated in the persistent store. When it finds one, it converts the call

to use the appropriate allocator in the collector, adding an additional argument

transferring the tag information.

Magpie generates tag names in a standard, repeatable fashion, based on the

unique name assigned to the type by the front end. The creation of the tags in

the C code is done by the structure analysis conversion, but extern declarations

guarantee that the values are available to the allocation points, even if the tag is

defined in another file.

4.2 Implementing the Structure Analysis

A simple analysis suffices for gathering structure information. Experience shows

that, while C programmers may obfuscate their allocations from an analysis’s point

of view, they do not obfuscate their structure definitions. Thus, a simple recursion

over the type provides high accuracy.

4.2.1 Coping with Too Many Structures

The most difficult part of the structure analysis is limiting the number of

questions asked of the programmer. Asking a question for every structure in the file

is an extreme burden, particularly in systems with large system headers, such as

Mac OS X. The structure analysis thus attempts to limit the number of questions

by only inquiring about allocated structures, by generating questions to ask on

demand, and by inquiring about a structure only once per program.

By generating questions for structures on demand, Magpie avoids asking ques-

tions in the case where the allocated structure foo appears to have an inlined

instance of structure bar, but in fact does not. Thus, a mistaken analysis result

49

does not penalize the user with multiple questions. Of course, as previously noted,

this does not happen often, as the structure analysis is seldom incorrect.

The final policy — attempting to only inquire about a structure once per

program — adds considerably more benefit. To do this, every time Magpie discovers

a new structure that requires analysis, it first looks up that item in the persistent

store. If it is found, the structure is ignored. If it is not, the structure is assigned

to the current file. Afterwards, other files will not ask about it. At this point,

Magpie does not handle the case where a program defines two different structure

forms with the same name.

Unfortunately, the current implementation of Magpie includes a small design

flaw, the result of prematurely identifying and attempting to handle an optimization

problem. This optimization problem has to do with trade-offs involving inlined

substructures. Consider the following example:

struct foo {

int ident;

void *ref;

};

struct bar {

void *key;

struct foo *my_foo;

};

struct baz {

int num;

struct foo *my_foo;

};

struct goo {

struct bar *bar1;

50

struct baz *baz1;

}

Now, consider the possibility that the program itself allocates only instances of

struct goo and struct bar. One solution involves generating two sets of traversal

functions: one for struct goo and one for struct bar. This solution duplicates

the code required to traverse struct foo. If struct foo were a large, complex

structure, this duplication could create considerable problems with regard to code

size, increasing pressure on all caching levels of the memory hierarchy (including

the operating system’s paging routines). If the traverser for struct foo includes

branches at the instruction level, duplicating also creates increased pressure in the

processor’s branch prediction mechanism.

On the other hand, if Magpie generates a traverser for every structure in the

example, then Magpie creates slower code for simple traversal functions like the one

generated for struct foo. The question, then, reduces to the general problem of

inlining functions. At this point in its development, Magpie makes the optimization

choice in the structure analysis, rather than during the conversion process. For the

most part, it chooses to use the first option, generating only traversers for struct

goo and struct bar.

For most tested programs, this choice works well. Unfortunately, in some

cases, Magpie inquires about the fields of a structure multiple times within a

single file, if that structure is inlined into other structures. For the most part,

this redundancy is not a problem. However, in some cases, a repeatedly-inlined

large structure generates a large increase in the number of questions. For example,

OpenGL programs — such as the SPEC2000 benchmark Mesa — repeatedly inline

a structure containing several hundred fields. See Section 5.2.2 for more detailed

information.

4.2.2 Creating the Traversal Routines

Magpie generates the traversal routines as a straightforward recursion over the

shape determined by the structure analysis. The conversion also notes the allocation

51

analysis case where an allocation generates an array of tagged objects, and generates

traversers for these cases if they do not already exist. The collector currently

requires only routines to mark and repair the object, so the conversion generates

routines only for those things. However, additional traversal routines could be

generated to add other useful functionality.

The function in Magpie that generates the traversal functions is abstracted over

the specific garbage collector routine to call. For completeness, here is an overview

of the routine:

• If the current item is atomic, return an empty statement.

• If the current item is a pointer, use the supplied garbage collection routine

on the field.

• If the current item is an array of pointers, iterate over the array and use

the supplied garbage collection routine on every element in the array. The

array bounds are determined from the structure analysis and/or user, or by

querying the collector to determine where the end of the object is.

• If the current item is an array of tagged objects, iterate over the array in a

similar manner as the previous. However, instead of simply using a collector

routine in the body of the loop, recur on the type of the array elements.

• If the current item is an inlined structure, create a block with the results of

recurring over the fields in the structure.

• If the current item is an autotagged union, generate a switch statement

querying the current case from the collector, and then generate each case

in the switch statement by recurring over the union cases.

• If the current item is a union with user-defined distinguishing code, then insert

that code directly. Then replace the stubs remaining in that code for handling

each union case with the results of recurring over that union case. Specifically,

when asked to write distinguishing code, the user performs the required

conditionals and then leaves stubs of the form GC UNION CASE(field).

Magpie then looks up the fields involved and recurs over them.

• If the current item is something the user wrote their own code for, insert the

52

code directly.

This overview elides a few unimportant side conditions and a considerable

amount of machinery, but hopefully gives a flavor of the traversal function gen-

eration process. After generating all the functions necessary for the given file,

the conversion also adds declarations for all the tags required and an initialization

function for the file. When called, the initialization function assign new tag values

to each tag, and registers the traversal functions with the collector. Each file’s

initialization function is called via a global initialization function called as the first

line of main or whichever entrance function the programmer selected.

4.3 Implementing the Call Graph Analysis

Magpie includes a call graph analysis to allow the optimization of the generated

source code. Otherwise, no call graph information is necessary. For the purposes

of this dissertation, the call graph analysis is simple. However, it was designed

and implemented to handle C++, and thus contains considerable complications to

deal with operator overloading and inheritance. It does not attempt to resolve calls

through function pointers.

The call graph analysis works in two phases, to lessen the penalty of a global

analysis as much as possible. The first phase simply infers the call targets for

each function or method within a particular file. No attempt is made to include

information about transitivity. Additional passes add information about possible

invocations of subclasses in the case of dynamic method calls.

Upon demand in the final conversion, the analysis then collapses this information

to determine whether a given function calls setjmp, an allocator, or both. A

command-line flag determines whether or not Magpie will consider external func-

tions (functions that were not available Magpie) as calling neither or both. In most

cases, it is safe to assume a closed world and thus assume that external functions call

neither setjmp nor an allocator. Exceptions include user-level threading libraries

(for setjmp) and libraries using callbacks into converted code where the callback

functions allocate.

53

The collapsing loop is a simple fixpoint operation. The result is cached in the

persistent store, and needs to be recomputed only when a file changes. Further,

because the intermediate results are also saved in the persistent store, not every

file need be reparsed and reanalyzed when individual files in the program change.

However, if the new call graph differs significantly from the original call graph,

some files may need to be recompiled.

4.4 Implementing the Stack Conversion

The stack conversion determines which words in the C stack are pointers, and

communicates this information to the garbage collector. This pass is, by far, the

most complicated pass, and it is the pass that has the largest effect on performance.

The pass is implemented as a series of ten subpasses, each of which modifies the

source code to add or remove important information. For brevity, this dissertation

gives only a high-level overview of some of the passes, and it elides one or two

completely.

This section begins with an overview of the stack conversion process, and then

describes the subpasses at a high level. It then discusses the implementation and

important edge cases involved in some of those subpasses.

4.4.1 Overview of the Stack Conversion

As stated previously, the goal of the stack analysis pass is to identify pointers

on the stack and communicate this information to the garbage collector. The

conversion performs this communication by generating code to create shadow stack

frames on the C stack, which the collector can then traverse to find the pointers

in the normal C stack. Unfortunately, given that C programs may place arbitrary

data structures on the stack, several kinds of stack frames are necessary to cope

with all the possible cases in as little space as possible.

The converted code generates four possible kinds of stack frames. All these

frames have their first two words in common. The first word is a pointer to the

previous stack frame. A global variable tracks the current top of the stack. The

second word is separated into two bitfields. The least two significant bits determine

54

the frame type, and the rest of the bits are used as a length field. The interpretation

of the length field varies between the different kinds of frames. Figure 4.1 shows

the basic format of all four kinds of stack frames.

In simple frames, the length field gives the total size of the frame. For array

and tagged frames, the length refers to the number of arrays or tagged items in the

frame. For complex frames, the length refers to the number of informational words

appended to the end of the frame. In all cases but complex frames, the frames are

capable of storing information about more than one stack-bound variable at a time.

This merging avoids as much space overhead as possible.

The ten subpasses are as follows:

1. Potential Save Inference: This pass recurs over the function definitions and

determines which stack-bound variables contain pointers. It then saves infor-

mation about these variables at each call site. An overview of the information

gathered is described in Section 4.4.2.

Simple Frames: Array Frames:

prev. frame
length + bits 00
var/field address
var/field address
var/field address

...

prev. frame
length + bits 01

start address
length

start address
length

...

Tagged Frames: Complex Frames:
prev. frame

length + bits 10
start address

tag
start address

tag
...

prev. frame
length + bits 11

start address
traverser address

info
info
...

Figure 4.1. Exemplars of the four kinds of shadow stack frames in Magpie.

55

2. Call Optimization: This pass recurs over the function definitions and exam-

ines each call site. If the target of the call does not reach an allocation point,

it removes the variable information from the call. If the call does not cause

an allocation, then the collector will not run, so there is no need to save any

information about the variables.

3. Initialization Optimization: In this pass, Magpie removes variable information

from call sites where the variable is not initialized before reaching the call site.

See Section 4.4.3 for more information about the analyses used for this pass

and the following, and caveats about their behavior.

4. Liveness Optimization: In this pass, Magpie removes variable information

from call sites if the variable is either not referenced after the call or is written

to before being read from. Again, see 4.4.3 for more information.

5. Switch To Save Statements: This pass takes information about the call sites

and lifts it to the nearest preceding statement position. This essentially

creates a stub statement where Magpie will add the generated code.

6. Remove Dominated Saves: This pass removes variable information from the

save statements generated in the case where a previously-occurring save state-

ment is already saving that variable.

7. Simplification: At this point, Magpie runs a simplification pass to clean up

code left by the previous analyses and conversions.

8. Insert Stack Pushes: This pass creates the code to save all the information

denoted in each save statement. This pass, thus, does most of the work of

the stack conversion, and is described in more detail in Section 4.4.4.

9. Insert Stack Ejects: This pass creates the code to pop shadow stacks when

their scope ends. There are a few odd cases here, described in Section 4.4.5.

56

10. Final Clean-Up: This pass simplifies the generated code; it removes unnec-

essary blocks, breaks expression sequences into separate statements when

possible, and so forth.

The goal of the optimizations is to reduce — ideally to zero — the number of

variables Magpie needs to save within a given function. Magpie allocates frames

within the C stack, which allows for fast frame creation and deletion. Thus, the

actual allocation of the space is essentially free, and the only performance loss from

frame generation comes as a result of the additional cache pressure caused by the

increased space consumption. Further, frame initialization is most likely also cheap,

as the relevant portions of the stack are likely in the L1 or L2 caches (or would

have been shortly, regardless).

Instead, the slowdown created by the stack frames has to do with the restrictions

imposed on the final C compiler by taking the address of a local variable. Taking

the address is necessary, since Magpie must be compiler-agnostic while conveying

information about relevant local variables in the stack. By taking the address of

the local variable, Magpie essentially forbids the final C compiler from placing that

local variable in a register. This restriction not only affects the performance of

the program a priori, it may also inhibit further optimizations of the generated

assembly code.

As noted, Magpie performs three optimizations: a call graph-based optimiza-

tion, and two liveness-based optimizations. The latter are applications of typical

compiler-based liveness analyses and optimizations to the domain of Magpie [35].

Thus, the considerable research into more effective liveness analyses and optimiza-

tions in compilers could be used instead of the simplistic approaches used in Magpie,

with potential gains in their effectiveness.

4.4.2 Internal Variable Shape Forms

The initial analysis gathers information about all variables that may need to

be saved in the conversion process. This information includes the unique, internal

name of the variable, the tag names (if applicable) for the type, an expression (in

57

internal format) for accessing the item, and information about the item’s shape.

The shape itself is described in a recursive data type with the following five cases:

1. Simple: These items are simple pointers, and can be a pointer variable, a

pointer field within a structure, or a list of pointer fields within a structure.

2. Array : These items are simple arrays of pointers.

3. Tagged : These items are stack-bound data structures, the type of which was

found in the results of the structure analysis. The conversion will prefer this

pseudo-shape over compound simple shapes, complex shapes or union shapes,

because the programmer was involved in creating the traversal function for

the object.

4. Union: These items are unions. This shape saves additional information

mapping the original definition of each union case with the shape information

generated by recurring over it.

5. Complex : Complex shapes are shapes not described by any of the previous

item, and each complex shape contains a list describing its subparts.

Although simplistic, the standard usage of each of these is as follows. Simple

items are simple local pointer variables. Array items are stack-bound arrays of

pointers, including multidimensional arrays of pointers and arrays of structures

in which every word within the structure is a pointer. Union items are obvious.

Complex items are only needed with stack-bound arrays of structures, where the

structures contain a mix of pointer and non-pointer items.

When performing the conversion between save information and frame genera-

tion, Magpie puts union shapes in complex frames and all other shapes in the frame

kind with the same name.

58

4.4.3 Caveats Regarding Optimizations

Both the initialization and liveness optimizations use straightforward, near-

linear time,3 flow-insensitive analyses. Both analyses use pessimistic assumptions

on a function if it can, at any transitive point, call setjmp, because returning to a

particular point may invalidate the liveness information gathered at that point.

Neither analysis pass has particularly interesting exceptional cases. Most of the

implementation work is in assuring that the recursion operates in the correct order

for the pass. The initialization optimization walks the function definition in the

order the statements would be executed. The liveness optimization walks the tree

in the reverse order.

For the rest of this section, I discuss some of the limitations of the analyses in

detail. For simplicity, I discuss only the initialization analysis, but the limitations

apply to both analyses.

The initialization analysis attempts to discover variables that, although noted as

potentially needing to be saved, have not been initialized. It also detects variables

that have been obviously initialized to NULL. However, the analysis’s notion

of an obvious initialization to NULL may seem restrictive to programmers. The

analysis does not perform any constant folding, and variables with compound data

types are considered initialized once they are referenced on the left hand side of

an assignment. Thus, all elements of a 20 pointer array are assumed initialized as

soon as one of the elements is initialized. Because Magpie ensures that all stack

and root variables are initialized before they are used, this assumption is safe.

Further, once a variable is considered initialized, it is considered initialized

throughout the entirety of the function. Thus, in the following case, the variable

foo is considered initialized in after code even though it has been set to NULL:

{

void *foo = something;

3The analyses are linear except in the case of loop structures, where the loop test (and
modification in the case of for loops) is analyzed twice. This is necessary because these
positions may contain arbitrary C code.

59

... before code ...

foo = NULL;

... after code ...

}

Because the analysis is flow insensitive, it will also consider foo to be initialized

in after code in the following case:

{

void *foo;

if(...) {

...

foo = something;

...

} else {

...

}

... after code ...

}

Both analyses share similar limitations due to their simplicity. More thorough

analyses would generate better information and thus potentially uncover more

optimization opportunities. However one goal in the design of Magpie was to make

every analysis and conversion pass as close as possible to linear in the size of the

program to avoid excessive compilation time.

4.4.4 Adding Stack Frames

Magpie converts the save-information stubs into the final code by replacing the

stubs with all the declarations and statements required to save every variable listed

in the stub. For convenience, this transformation places variable declarations in

60

arbitrary positions within a block, which violates the C standard. A later pass

either moves these declarations to the head of the block or adds blocks to produce

valid C. The conversion attempts to place the saves as late as possible in the

execution stream, in the hopes that early returns and conditionals will avoid the

need to run the code. However, in the case of looping forms, Magpie attempts to

pull any stack frame additions outside the loop, for performance reasons.

4.4.4.1 Simple Saves

Because simple saves are the most frequent form of saves, Magpie attempts

to minimize the number of simple frames generated. Thus, at any point where a

simple-shaped variable needs to be saved, that variable is saved in a pre-existing

simple frame if one exists, even if that frame was generated at a much higher-level

block. Whenever possible, the conversion will reuse slots in the simple frame for

new simple saves when they are no longer used by other variables.

However, simple frames are still generated at the latest possible point, so a

function may have multiple simple frames, or a single simple save frame in one

branch of a conditional. The former case occurs wherever one simple frame does

not flow-insensitively dominate the others.

The mechanics behind implementing this functionality are somewhat heinous,

involving a considerable number of additional function arguments and the use

of lazy evaluation. However, from a research perspective, the implementation is

uninteresting.

4.4.4.2 Array and Tagged Saves

Because array and tagged saves are not nearly as common, every save stub that

includes array and/or tagged saves adds fresh stack frames. This potentially wastes

space (for the additional frame headers) and time (to generate the frames) at the

benefit of greatly increased simplicity in implementation.

The code to generate these frames is straightforward. Each case generates

the appropriate frame type with a sufficient number of slots, and then adds the

necessary information. In both cases, this includes the address of the variable. It

61

also includes the size of the array for array frames (found by examining its type

and involving multiplication in the case of multidimensional arrays), or the tag

appropriate to the variable for tagged frames.

4.4.4.3 Complex Saves

Unlike simple, array, and tagged saves, complex frames hold information about

only one variable per frame. This strategy is due to the lack of copy propagation

and constant folding in Magpie, meaning that Magpie may not be able to determine

a numerical size for an array statically. Consider the following code snippet:

void function()

{

int foo = 5;

struct { int num; void *ptr; } my_info[foo * 4];

...

}

This code will compile under GCC, because GCC can determine that my info

is a stack-bound array of 20 structures. Magpie, lacking the necessary analyses

and optimizations, cannot. Therefore, in this case, Magpie will transfer the size

information in one of the info fields of a complex frame (see Figure 4.1).

More generally, Magpie handles situations like the previous — a complex shape

involving either a union or an array of a nonhomogeneous structure — by creating

a traversal function and passing the address of the function to the collector, along

with any array size information the traversal function requires. The generation of

these structures is directly comparable to the generation of traversers for the struc-

ture analysis. The differences involve the arguments to the generated procedure.

Traversers generated by the structure analysis take only a single argument — the

object — whereas traversers generated by the stack conversion take the object, the

address of the garbage collection function (mark or repair) to use for the traversal,

62

and a pointer to the info block.

Unions are handled exactly as autotagged unions in the structure analysis.

The appropriate items are marked as needing to be autotagged, and the traversal

generation simply generates a switch statement querying the current tag value

from the garbage collector.

4.4.5 Removing Stack Frames

The removal of a stack frame at the end of its scope is fairly straightforward.

A first subpass runs through the function definition and saves information about

the block level of call targets. The second pass adds the code to pop to the correct

stack level by recurring over the function and observing stack frames as they are

pushed, the ends of blocks, and nonlocal jumps.

At the end of a block, the global stack variable is reset to its value on entering

the block. At a nonlocal jump, the stack is reset to the stack frame that should

exist at that particular target. Nonlocal jumps include the following cases:

• break: The stack is reset to the stack frame that was in effect before the loop

or switch statement started.

• continue: The stack is reset to the stack frame that should be in effect at

the start of the loop. This is rarely different from the previous case.

• goto: The stack is reset to the stack frame that should be in effect at the

goto target’s block level.

• return: The stack is reset to its original value when execution entered the

function.

Note that some simplification is performed to get rid of dead code created by

these general rules. For example, the previous items insert stack ejections both at

return statements and at the end of blocks, which leads to dead code after return

statements. Further, considerable care is taken to handle GCC’s extension allowing

blocks in expression position, because the last statement in the block is the block’s

value.

63

4.5 Implementing Autotagging

Magpie automatically tags some unions to distinguish between union cases when

traversing the appropriate object. It implements this feature by adding a simple

software “write” barrier. I place the word “write” in quotation marks because

Magpie also includes barrier code when the program takes the address of a union.

The barrier is added to the code using a basic type inference schema, which

attempts to determine if a given field access (foo.field) references a particular

case in a union. It then checks to see if the item occurs in certain situations in the

code, and if so, generates a call to the collector giving the address of the union and

the union case chosen.

The implementation of the autotagging conversion is a linear, combined analysis

and conversion pass with a three-value return. The three values are the new internal

form post-conversion, a list of inferred types for the form, and any calls to the

collector’s autotagging functions necessary within the sub form. The calls in this

final value are placed at the nearest appropriate point, by saving the result of

assignment or address-of operation in a temporary variable, calling the autotagging

routine, and then returning the saved result.

The following are some of the exceptional cases, added for specificity. The

arguments to the function (autotag) are, in order: the form being converted,

information about the types being autotagged, and a boolean determining whether

or not the form is in an lvalue.

< exp′
arraytypesarraycalls >= autotag(exparray, types, lval?)

< exp′
size >= autotag(expsize, types, FALSE)

rettypes = {x | (array(x) ∈ typesarray) ∨ (ptr(x) ∈ typesarray)}
exp′ = exp : array acc(exp′

array, exp′
size)

autotag(exp : array acc(exparray, expsize), types, lval?) =< exp′rettypescalls
(4.9)

The interesting part of this conversion rule is that it essentially ignores any

autotagging information found in expsize. This is because the size subexpression

in an array access is manifestly not an lvalue, so there is no need to be concerned

64

about any union field accesses found within it, even if the array access itself appears

in an lvalue.

< exp′
lvalue, infoslvalue, expslvalue >= autotag(explvalue, types, TRUE)

< exp′
rvalue, infosrvalue, expsrvalue >= autotag(exprvalue, types, lval?)

myexps = SHOULD AUTOTAG(exp′
lvalue, exp′

rvalue, infoslvalue, infosrvalue)
exps = append(expslvalue, expsrvalue, myexps)
NOT (NULL?(exps))
resexp = MAKE SEQUENCE(exp : assign(temp, exprvalue), exps, temp)
resinfos = infoslvalue ∪ infosrvalue

autotag(exp : assign(explvalue, exprvalue), types, lval?) =< resexp, resinfo, ε >
(4.10)

I include this case as an example of how the autotagging calls, once gener-

ated, are included into the final source. In this case, the assignment detects that

autotagging calls are necessary around the assignment by observing the result of

SHOULD AUTOTAG. It adds these calls by creating an expression sequence; the

sequence starts with a save of the original expression’s value to a temporary, then

executes the autotagging calls required, and then returns the saved value. The

implementation of autotagging requires additional infrastructure (not shown in this

rule) that creates the temporary value with the correct type.

As stated before, because this is a software write barrier, it will not catch

writes to unions that use pointer arithmetic or occur outside the purview of the

conversion process. Unfortunately, although a reentrant hardware write barrier —

a write barrier that allows the exception-handling code to reset the write barrier

after execution — would identify these writes correctly, it would have no information

about the union case being selected, and thus would be of no benefit. Finally, the

autotagging conversion will not catch cases where the program lies about what it

is writing to the union case — writing a pointer to an integer case, for example.

4.6 Dealing with Shared Libraries

Shared libraries present no problem to Magpie, except in the case that a library

function saves a reference internally (past the life of the call) or invokes a call that

may allocate. The latter case effects the call analysis and call optimization, and

65

is discussed in Section 4.3. The former case is the subject of the immobility flags

discussed in Section 2.2.2 and this section.

Cases where a library saves a reference into the garbage-collected heap cause

problems for two separate reasons. The first is that the object might be incorrectly

collected if the collector is not aware of this saved reference and there are no other

reference paths from the observable roots. The second problem is that, if the

collector moves the object during collection, the saved reference becomes invalid.

The ideal solution involves converting the library using Magpie, but conversion

is not feasible in all cases. For example, converting the entire Gnome GUI library

suite for a small application is prohibitively costly. In these cases, Magpie allows the

use of annotations around either the function specifications in the library headers

or the arguments to the function invocation in the program source.

In either case, the conversion adds a call into the garbage collector noting any

pointers found within the annotation’s scope. The collector then guarantees that

the objects referenced by these pointers are never collected and never moved. The

former case is overconservative if the library is guaranteed to throw away the stored

value at some predictable point. The libc function strtok is an example of such

a function. However, it is unclear how such invariants could be expressed easily

in the general case, so the collector never resets immobile objects. Improving this

behavior is an interesting avenue of future investigation.

The translation to add this code is trivial, simply checking for pointers within

annotated calls and creating C expression sequences that tell the collector that a

pointer in the given argument should be marked as an immobile root and then

returning the original expression.

4.7 Implementing the Garbage Collector

I have attempted to make the garbage collection interface for Magpie as general

as possible, in the hopes of allowing other collectors to function with Magpie-

converted code. Some programs may require the responsiveness guarantees of an

incremental collector, or perform much better with an older-object first collector.

66

Should Magpie be extended to handle multiple system threads, a parallel collector

may be necessary.

In its current form, the garbage collector included with Magpie is a standard,

two-generational, stop-the-world collector. The nursery is allocated as a single

block, and objects allocated into the nursery are prepended with their tag. Objects

surviving the nursery are copied into the older generation, which is collected using

a mark-and-compact algorithm. The nursery is dynamically sized based on the

amount of memory used by the system after garbage collection, and the collector

attempts to interact will with other applications by giving memory pages back to

the underlying operation system as soon as possible. This system is very similar to

Dybvig, Eby and Bruggeman’s BiBOP collector [19].

As implemented, the collector is portable over several operating systems, and

support is being added to handle using the collector inside Linux kernel modules.

The interface to the underlying system simply requires primitives to allocate, free

and write-protect large blocks of memory. At the moment, Magpie supports Linux,

FreeBSD, Solaris, Windows and Mac OS X.

Because C does not guarantee that pointer variables (or pointer fields) reference

the start of an object, the collector uses an out-of-band bitmap alongside each

garbage collector page. This bitmap includes information about where objects

start and whether or not they are marked. In C programs where references always

reference the head of an object, a per-object header field might be preferable for

performance reasons. However, because this assumption cannot be made in the

general case, the choice was forced. Currently, the bitmap adds an overhead of two

bits per word. Information on whether or not an object has been moved is implicit

and based on what page the object occurs on.

4.7.1 Implementing Autotagging

The collector tracks autotagging data using a derivative of a trie data structure.

The basis of this structure is a 16-ary tree, with each subtree holding the key, the

value associated with the key, and (potentially) pointers to child nodes. The lookup

function checks to see if the current node’s key is equal to the sought after key, and

67

returns the value if so. If not, the lookup function examines the least significant

four bits of the sought after key, and uses that as the index for recurring to the

child. The key value is shifted four bits to the right upon recursion.

The set and remove functions of this data structure are obvious. The only

additional interesting note on the structure, as implemented by the collector, is

that the array of pointers to subtrees is allocated on demand and removed when

no longer necessary. This seems to have a positive effect on space efficiency in test

cases.

The collector also notes words in memory as being autotagged using the off-line

bitmap. This allows the mapped references to be easily updated during collection.

After collection is complete, the structure is walked, and any mappings referencing

collected objects are removed.

4.7.2 Implementing Immobility

The current implementation of object immobility in the collector is heavyweight.

Essentially, a space is created to hold the object, the object is copied and marked

as moved, and then the collector forces a garbage collection so that any objects

referencing the object are updated. This means that every call to the immobi-

lization procedure invokes a garbage collection, which has obvious performance

consequences.

Improvements on this system are obvious, but have not been investigated due

to time constraints.

4.7.3 Tuning the Garbage Collector

Although the basic functioning of the included garbage collector is fixed, several

values can be tuned during the gcgen phase of the conversion process. These

constants have to do with the sizes of various structures within the collector, but

they can have noticeable effects on performance if tuned well (or poorly).

The first constant sets the size of collector page in the older generation. How

to tune this size depends on several factors in the application, and the choice is

probably best simply described as black magic, but general rules do hold. A smaller

68

page size increases overhead in both time and space for large heaps, because the

collector tracks some amount of metadata for every page and must occasionally walk

the list of active pages. Larger page sizes decrease this overhead, but increase the

possibility of excessive fragmentation if there exists a type that is used infrequently.

For example, if the collector is tuned to use 16kb pages and the application allocates

and retains a single object of type foo, that retention will cause the collector to

maintain an entire page just for that object.

The second constant tunes the initial nursery size for the application. This

constant is simpler to generalize about: large applications should use large values,

small applications should use small values. The trade-offs here involve the cost of

allocating a large chunk of memory as one of the application’s first instructions,

versus potentially triggering several collections during program start up. In general,

the goal of tuning this value is to attempt to set it so the fewest number of collections

occur during the initialization of the program.

The final constants tune what size the collector sets aside for the new nursery

after every garbage collection. This size is computed via the following function:

new size = (grow factor ∗ current heap size) + grow addition

The two tunable constants are grow factor and grow addition. Tuning these

two constants is similar to tuning the initial nursery size; tuning them so the

function generates too small a size causes too many garbage collections, but tuning

them so the function generates to large a size may cause excessive page allocation

slowdowns. These values, however, are considerably harder to tune, as they are

based on the dynamic behavior of the program. In general, the built-in constants

should be left alone, but those working to get every possible microsecond of perfor-

mance out of the program may find these constants helpful.

4.8 Threads and Magpie

As described and currently implemented, Magpie functions only over single-

threaded code. Extending Magpie to handle multithreaded code ranges in difficulty

69

from moderately difficult to extremely difficult depending on the level of parallelism

desired.

As it stands, Magpie uses a single, global shadow frame stack. To handle

multiple threads, each thread would need its own stack, and the code would have to

be able to quickly and easily update the stack for each particular thread. Because

OS thread libraries are not easily changed, this would involve the creation of an

additional data structure mapping thread identities to their appropriate stack.

Instead of simply referencing or setting a single global variable, the stack conversion

would have to reference or set the current value in this table. Further, Magpie would

need some way to identify instances of any thread-local data as roots for garbage

collection.

Secondly, for the collector to function, it must reach safe points in every running

thread before starting a garbage collection. On the bright side, it is easy to find

a simple safe point: the point after new shadow stacks have been added. The

conversion could then add barrier notification code at each of these points, and the

collector could simply block until all garbage collected threads have reached such a

point.

The disadvantages of this simplistic conversion are twofold. First, barriers are

not a cheap mutual exclusion tool, and the cost of using them may be unacceptable

a priori. Second, there is no way of guaranteeing that these safe points appear at

any regular interval, particularly with the optimizations turned on. So it would

be possible — in edge cases — for a thread that does allocations only during

initialization to cause a system deadlock by never reaching a safe point after the

initialization.

CHAPTER 5

THE COST OF CONVERSION

This chapter reports on the costs of using Magpie. The costs of Magpie come

in two areas: costs in time for converting the program using Magpie, and costs

created by modifying the program. I assert that the more important cost is the

former. The goal of Magpie is to save the programmer time and effort in dealing

with memory management in their large, old applications. Therefore, the ease with

which she can convert a program with Magpie is of primary importance.

The latter costs — the costs in program execution created by the conversion

process — are of lesser importance. Magpie strives not to have too major an

influence on the time and space behavior of the converted program. However, it is

my belief that minor changes in the space requirements or time efficiency matter

little in comparison to increased programmer efficiency and a decreased chance of

bugs.

The chapter begins with an overview of the benchmarks used to evaluate the

performance of Magpie. It continues with a comparison between converting the

program to use garbage collection with the conservative, non-moving, Boehm col-

lector versus using Magpie. It then reports on the space and performance impact

of using Magpie, and concludes with some observations on the causes of the space

and performance changes.

5.1 An Overview of the Benchmarks

Table 5.1 outlines the benchmarks used in evaluating Magpie. These bench-

marks include integer and floating point benchmarks from SPEC2000, and represent

an interesting variety of programs.

71

Table 5.1. An overview of the size of the various benchmarks used. All prepro-
cessed files generated on Mac OS/X 10.4.6.

Program # Files LOC Preprocessed Size Decrufted Size

164.gzip 20 8,605 640KB 144KB
175.vpr 41 17,729 1.3MB 524KB
176.gcc 127 229,693 7.7MB 5.5MB
177.mesa 122 61,754 7.9MB 4.0MB
179.art 1 1,270 60KB 28KB
181.mcf 25 2,412 624KB 64KB
183.equake 1 1,513 68KB 36KB
186.crafty 43 21,150 2.1MB 616KB
188.ammp 31 13,483 1.3MB 380KB
197.parser 18 11,391 804KB 348KB
254.gap 63 71,363 2.8MB 1.6MB
256.bzip2 3 4,649 140KB 76KB
300.twolf 85 20,459 2.3MB 804KB

The largest, GCC, is representative of many common C programs in its memory

use, performing allocations and deallocations throughout its lifetime. Internally,

GCC serves as a useful benchmark of Magpie’s tolerance for edge cases in C

programs; GCC uses most GCC extensions and rarely-used C forms, as well as

many questionable programming practices. For example, GCC frequently invokes

functions without declaring the function in any way. The 300.twolf benchmark

has a similar allocation/deallocation profile.

Benchmarks such as 186.crafty and 254.gap behave in the opposite way. They

quickly allocate a large block of memory during an initialization phase, and then

allocate little memory during program execution. These programs serve as examples

of the cost of the code transformations performed by Magpie.

The 197.parser benchmark is particularly interesting, because it defines its

own implementation of malloc and free. The conversion process uses the call

into this subsystem as its allocator and removes calls to the custom deallocator,

effectively making the custom allocation/deallocation system dead code. Thus,

although the original benchmark allocates a large fixed block and uses it for the

72

lifetime of the program, the Magpie converted program varies its heap size.

The rest of the programs fill the space between these examples. Most allocate a

large part of their memory in an initialization phase, and then allocate and deallo-

cate smaller amounts during the main execution phase. The 177.mesa benchmark

exists only in a PPC version, because I could not get any version of the benchmark

to compile under FreeBSD.

Finally, preprocessing the original files adds considerable cruft, in the way of

unused variable, function and type declarations. Magpie’s front end removes much

of this cruft before the input is fed to any of the other analyses or conversions.

The size of each benchmark after this decrufting is reported in the last column

of Table 5.1. Thus, the execution time of Magpie’s front end is a function of the

column PreprocessedSize, but the execution time of the remainder of the system

is a function of the column DecruftedSize.

5.2 Converting the Benchmarks

Theoretically, using the Boehm collector should be strictly easier than using

Magpie. After all, theoretically all that is required to use the Boehm collector with

an existing program is relinking the program. In my experience converting the

benchmark programs, however, the opposite was true: converting programs using

Magpie was strictly easier than using the Boehm collector.

5.2.1 Using Boehm with the Benchmarks

In the ideal case, converting a program to use the Boehm collector requires

relinking the program and/or a mechanical search and replace over the program

source. All calls to malloc are replaced with GC malloc, and so on. The Boehm

collector even provides a mechanism to perform the conversion by relinking the file;

the linker relinks the malloc calls to GC malloc.

In practice, this was not true for all of the benchmarks on either FreeBSD or

Mac OS X. On FreeBSD, most of the benchmarks required only a mechanical search

and replace, changing malloc to GC malloc and removing free. Under Mac OS/X,

73

the opposite was true. I had to intervene with most benchmarks under OS X to

get them to work with the Boehm collector.

A large part of this additional work involves identifying global variables used as

program roots and informing the Boehm collector of them; this may be a bug in

the Boehm collector on the PPC platform. Having Magpie made this considerably

easier for me than it would be for someone without Magpie. Magpie identified

all the global roots for its own conversion, and I simply copied what it found.

Still, since the conventions to inform the collector of roots were different, this took

some amount of time. How long this would take for someone without Magpie is

unknown, particularly given the questionable programming practices of some of the

SPEC benchmarks.

The conversion to Boehm for 197.parser required even more work. Since the

benchmark uses its own custom allocator and deallocator, converting the program

to the Boehm collector required changing all the custom calls to use Boehm.

Finally, after several days, I gave up trying to figure out how to convert 176.gcc

to use Boehm.

These failures may be indicative a bug in the Boehm collector, as it is supposed

to find roots within the program. However, that the Boehm collector – a mature,

well-tested piece of software – fails to find these roots may also be indicative that

finding these roots is extremely difficult in the general case.

5.2.2 Magpie

The most difficult part of converting the benchmarks with Magpie is finding

what functions to pass with the allocators argument. Most SPEC benchmarks use

facade functions or macros in place of direct calls to malloc, calloc and realloc.

However, a simple search for the string “alloc” found all the facade functions

quickly; I believe I spent less than two hours finding all the facade functions in

all of the benchmarks.

After that, using Magpie was easier than using the Boehm collector in every

case. Optimistically, I tried running all the analyses with the --auto-run flag.

74

Since there were no errors using the defaults found by the analyses, I never required

the GUI. The most difficult part of the conversion process was writing the Makefile.

Table 5.2 shows the cost to the programmer for performing the allocation

analysis. The majority of the time spent in the allocation analysis is in parsing

the program. Unfortunately, because this is the first pass of the conversion process,

the only way to speed this phase up would be to improve the performance of the

parser. Times in this figure are approximate; they were generated using only a

single run on a 1.5GHz G4 PowerPC processor running Apple’s Mac OS X 10.4.6.

Table 5.3 shows the cost of the structure analysis. Again, the structure analysis

was correct on all items, and could be run automatically. In the case of 177.mesa,

the OpenGL structures trigger an unfortunate case in the structure analysis, so

questions for one or two large structures are asked multiple times. This, in turn,

slows down the execution of the analysis, as the structure analysis must dynamically

check to see if the user’s answers require it to ask questions about additional

Table 5.2. The cost of the allocation analysis for each of the benchmark programs.
Parse time is the time spent in parsing and massaging the source into the correct
internal formats. User time is the amount of time the programmer spends answering
questions. All times approximate.

Program Questions # Wrong Total Time Parse Time

164.gzip 5 0 0m18s 0m17s
175.vpr 104 0 0m48s 0m47s
176.gcc 64 0 3m44s 3m43s
177.mesa 67 0 3m24s 3m23s
179.art 11 0 0m04s 0m04s
181.mcf 4 0 0m15s 0m15s
183.equake 29 0 0m05s 0m05s
186.crafty 12 0 0m52s 0m52s
188.ammp 37 0 0m37s 0m37s
197.parser 110 0 0m25s 0m24s
254.gap 2 0 1m26s 1m26s
256.bzip2 10 0 0m07s 0m7s
300.twolf 188 0 1m03s 1m01s

75

Table 5.3. The cost of the structure analysis for each of the benchmark programs.
Parse time is the time spend in parsing and massaging the source in the correct
internal formats. User time is the amount of time the programmer spends answering
questions. All times approximate.

Program Questions # Wrong Total Time Parse Time

164.gzip 5 0 0m09s 0m08s
175.vpr 87 0 0m28s 0m26s
176.gcc 218 0 4m08s 3m38s
177.mesa 1557 0 8m22s 1m36s
179.art 10 0 0m05s 0m04s
181.mcf 23 0 0m05s 0m04s
183.equake 0 0 0m02s <0m01s
186.crafty 17 0 0m26s 0m25s
188.ammp 140 0 0m39s 0m36s
197.parser 93 0 0m25s 0m21s
254.gap 0 0 0m03s <0m01s
256.bzip2 0 0 0m02s <0m01s
300.twolf 181 0 1m14s 1m09s

structures. This behavior is the cause of the greatly increased time spent in the

structure analysis phase, considering the behavior in the other cases and the size

of the benchmark.

Again, the times given in the figure are approximate, based on a single run.

Note that the analysis can cut down on parse times considerably compared to the

allocation analysis. Because the structure analysis needs information on only a

limited number of structures — those structures noted by the allocation analysis

— it can avoid parsing files once it has all the information it needs. This can result

in greatly reduced times in the structure analysis. For some of the benchmarks,

reordering the list of files given to the structure analysis can lower the parse times

even further than reported.

Finally, Table 5.4 reports the time spent in the other phases of the conversion.

The “Call Analysis” column reports the time spent in the call analysis phase. As

noted previously, this step can be skipped if optimizations are turned off in the

76

Table 5.4. The cost of the automatic conversions. Conversion time is the time
spent by Magpie in the various analyses, transformations and additions required
to take the original file and create the internal representation of the converted file.
Total convert time includes parsing, unparsing and recompilation of the file.

Program Call Analysis Time Conversion Time Total Convert Time

164.gzip 0m18s 0m06s (0m05s) 1m05s
175.vpr 0m37s 0m20s (0m18s) 2m05s
176.gcc 3m44s 5m04s (4m21s) 16m16s
177.mesa 3m20s 3m37s (3m21s) 11m01s
179.art 0m04s 0m01s (0m01s) 0m10s
181.mcf 0m15s 0m03s (0m02s) 0m49s
183.equake 0m05s 0m01s (0m01s) 0m12s
186.crafty 0m52s 0m19s (0m16s) 3m25s
188.ammp 0m36s 0m21s (0m17s) 2m24s
197.parser 0m25s 0m17s (0m16s) 1m40s
254.gap 1m31s 1m01s (0m53s) 5m20s
256.bzip2 0m07s 0m03s (0m02s) 0m19s
300.twolf 1m2s 0m40s (0m37s) 5m22s

conversion phase. The “Conversion Time” column reports on how long Magpie

spends analyzing and rewriting the original source, and does not include time

spent parsing or unparsing the source. The number in parenthesis is the time

spent if optimizations are disabled. Finally, the “Total Convert Time” reports

the amount of time spent doing the final conversion. This includes generating the

garbage collector, parsing the source, converting the source, unparsing the source

and compiling the converted source. Again, all times are approximate, using a

single run on an Apple G4.

These times are significantly higher than compiling the original source. This

slowdown is largely due to the cost of parsing the source. Again, a faster parser

would have the largest benefit in speeding up the entire Magpie system. The

unparser is similarly slow, although not as dramatically as the parser. However, the

time spent in this process is computer time, not programmer time: the programmer

is free to do other things while the conversion is running.

77

5.2.3 Unions in the Benchmarks

Several of the benchmarks use unions. Table 5.5 shows the unions found in the

benchmarks, and how they are treated. The costs for these unions shows up in three

places. First, the conversion engine must spend extra time adding in code to do the

automatic tagging required for autotagged unions. Second, this autotagging has

a cost in performance, because the autotagging code essentially creates a software

write barrier on any instances of the union. This write barrier calls into the collector

and performs an insert/update operation on a tree.

Finally, the data structure in the garbage collector adds both time and space

overhead to garbage collection outside of the traversal function’s lookup cost. The

time component is spent checking whether moved items have autotagged words

inside them, and transferring the autotagging data to the new location. The space

is spent keeping track of the autotagging data. I put some effort into minimizing the

space utilization and maximizing the performance of the relevant data structure,

but considerable space is still required if many objects are autotagged.

Table 5.5. The number of unions in each of the benchmark programs, and how
they are handled for the conversion.

Program Unions # Autotagged # Not Autotagged

164.gzip 1 1 0
175.vpr 1 1 0
176.gcc 1 1 0
177.mesa 1 1 0
179.art 0 0 0
181.mcf 0 0 0
183.equake 0 0 0
186.crafty 0 0 0
188.ammp 1 1 0
197.parser 1 1 0
197.parser* 1 0 1
254.gap 0 0 0
256.bzip2 0 0 0
300.twolf 0 0 0

78

The union in the 197.parser benchmark is a simple union of pointer types.

Magpie does not notice this, however, and the automatic analysis configures the

union to use autotagging. To show the costs of autotagging, I created a second

version, 197.parser* in which I wrote my own case distinguishing code for the

union, which simply always chooses the first union case. I cannot provide principled

results on how long this took, since I did this second conversion after I did the

original conversion. Thus, I knew that all the results generated by the allocation

and structure analyses were correct, and the second conversion involved me clicking

“Next” unreasonably quickly.

5.2.4 Executable Size

Table 5.6 reports on Magpie’s impact on executable size. Since Magpie adds

additional statements and expressions to the source code, as well as the additional

traversal procedures and a garbage collector, it is not surprising that the size of

the Magpie-converted executables are uniformly larger than in the base or Boehm

versions. Both the Magpie and Boehm collectors are statically linked to the exe-

cutable.

Table 5.6. The impact of the Magpie conversion on executable sizes.

Program Base Boehm Magpie

164.gzip 128KB 128KB (1.00) 192KB (1.51)
175.vpr 432KB 704KB (1.63) 656KB (1.52)
176.gcc 3.3MB 3.6MB (1.08) 6.6MB (1.99)
177.mesa 3.5MB 3.5MB (1.00) 4.0MB (1.32)
179.art 52KB 328KB (6.56) 108KB (2.11)
181.mcf 64KB 340KB (5.28) 120KB (1.84)
183.equake 60KB 340KB (5.73) 116KB (1.92)
186.crafty 488KB 764KB (1.56) 596KB (1.27)
188.ammp 364KB 640KB (1.76) 552KB (1.52)
197.parser 300KB 580KB (1.93) 504KB (1.68)
254.gap 1.1MB 1.1MB (1.00) 2.0MB (1.82)
256.bzip2 92KB 92KB (1.00) 148KB (1.60)
300.twolf 628KB 908KB (1.45) 808KB (1.29)

79

5.3 The Cost in Time

Table 5.7 shows the cost of adding garbage collection to the benchmarks. The

table provides information for a register-poor machine (FreeBSD x86) and a com-

paratively register-rich machine (OS X PPC). Because the stack conversion code

saves roots on the stack by taking the addresses of local variables, it may have a

major impact on register allocation. Thus, it is informative to look at the difference

in results between a register-poor machine and a register-rich machine.

The table reports results on comparing five different versions of each benchmark.

The Base version is the original version of the program. The column “Base Time”

reports on the average execution time of this program. All the following columns

contain values normalized to this number.

The Boehm column reports the change in execution time created by linking

the original program to the Boehm collector. As noted earlier, the mechanism for

converting the program to use the Boehm collector varied between the programs.

Some of the programs required only relinking or a mechanical search and replace,

others required extensive patching. In all cases, an effort was made to maintain

the basic allocation patterns of the original program. There are no results for the

Boehm collector in the case of 176.gcc, because I could not get a Boehm-collected

version to work.

The NoGC column reports on the difference in performance found when per-

forming the conversion, but not using a garbage collector. These files are generated

by performing the normal Magpie conversion, with two modifications. The first

replaces the garbage collector with a simple facade to malloc. Thus, a call to

GC malloc simply calls malloc, ignoring any tagging information. Similarly, calls to

the autotagging operations do nothing. Second, in the conversion phase, I generate

the converted program using a random string for the --deallocators argument.

Thus, deallocations in the program are not removed, but all other calls into the

collector are maintained. Doing this gives a rough approximation of the cost of the

conversion, not including any garbage collection costs.

One benchmark, 197.parser, defines its own allocation and deallocation sub-

80

Table 5.7. The performance impact of garbage collection on the benchmarks.

Program Invoc. Base Time Base Boehm NoGC NoOpt Magpie

Apple OS X PPC

164.gzip 5 3m59.5s 1.00 0.99 1.00 1.09 1.07
175.vpr 1 3m33.9s 1.00 1.00 1.05 1.07 1.04
176.gcc 5 3m13.8s 1.00 N/A 1.22 1.24 1.14
177.mesa 1 4m16.3s 1.00 0.98 0.99 1.30 1.11
179.art 2 15m38.7s 1.00 0.96 1.00 1.01 1.00
181.mcf 1 12m03.7s 1.00 0.99 1.02 1.02 1.02
183.equake 1 7m17.4s 1.00 0.98 1.00 0.90 0.90
186.crafty 1 3m08.9s 1.00 1.00 1.02 1.03 1.00
188.ammp 1 17m00.0s 1.00 1.07 1.15 1.11 1.08
197.parser 1 0m12.6s 1.00 1.49 N/A 5.09 4.80
197.parser* 1 0m12.6s 1.00 1.49 N/A 3.68 3.39
254.gap 1 3m56.1s 1.00 1.00 1.57 1.59 1.47
256.bzip2 3 6m49.5s 1.00 1.01 1.00 1.00 0.99
300.twolf 1 11m56.8s 1.00 0.95 1.02 0.83 0.83

FreeBSD x86

164.gzip 5 4m34.5s 1.00 1.03 1.24 1.31 1.09
175.vpr 1 4m04.3s 1.00 0.98 1.04 1.02 0.96
176.gcc 5 3m03.1s 1.00 N/A 1.60 1.61 1.34
179.art 2 8m28.5s 1.00 1.00 0.99 0.94 0.94
181.mcf 1 6m24.5s 1.00 1.00 1.15 1.15 1.00
183.equake 1 2m58.5s 1.00 1.00 0.99 1.02 0.99
186.crafty 1 3m27.2s 1.00 0.99 1.10 1.09 1.02
188.ammp 1 14m31.8s 1.00 0.90 1.16 0.96 0.96
197.parser 1 0m10.1s 1.00 1.44 N/A 6.89 5.35
197.parser* 1 0m10.1s 1.00 1.44 N/A 5.22 3.52
254.gap 1 3m08.7s 1.00 1.01 2.48 2.46 2.39
256.bzip2 3 5m54.9s 1.00 1.00 0.99 0.99 0.99
300.twolf 1 13m02.9s 1.00 0.99 1.08 0.89 0.88

81

system. Unfortunately, that means the NoGC conversion uses malloc for its allo-

cations but uses the custom deallocation routine for deallocations. This causes the

NoGC version to fail unpredictably for 197.parser, so that data is not available.

The NoOpt column reports on the performance of the Magpie conversion with

optimizations turned off. Otherwise, the program is converted normally, and in-

cludes the default collector. The final column, Magpie, reports on the performance

of the normal Magpie conversion, using optimizations and the default collector.

Both NoOpt and Magpie make use of an untuned collector; all the options to

the gcgen phase are left with their default values. It is possible that tuning these

values further would improve performance. For completeness, the default collector

uses 16KB pages and a 2MB initial nursery size.

Every version of every benchmark is run six times on each platform, comprising

of a priming run and five timed runs. Some benchmarks are defined in terms

of multiple program executions; these cases are noted in the “Invoc.” column of

Table 5.7. The numbers reflect the average of these five runs. Standard deviations

were trivial for all programs, generally 1% or less of the total execution time. The

machine for x86 runs is a 1.8GHz Pentium IV CPU running FreeBSD 4.11-STABLE

with 256MB of memory. The machine for PPC runs is a 1.5Ghz PowerPC G4

running OS X 10.4.6 with 1.25GB of memory.

5.3.1 Comparing Base and NoGC

The difference between Base and NoGC is entirely due to the conversion of the

source code. In most cases, the converted versions run at the same speed or slower

than the original program. In many cases, this slowdown is less than 25%. In a few

cases, however, the slowdown is drastic: 254.gap runs significantly slower, and is

discussed in Section 5.3.6. In four cases the conversion speeds up the program very

slightly (1%).

The conversion performs several changes on the original source code. Obviously,

the conversion adds code to create and remove shadow stack frames. However,

the Magpie front-end changes the code in many other ways, essentially by forcing

evaluation order on some expression types. For example, calls contained within the

82

arguments of other calls are lifted and converted to a sequence of calls. Magpie also

changes many assignments to use a temporary variable.1

These modifications affect the ability of GCC to analyze the source code. In

most cases, the modifications create small differences in the performance of the

final executable. However, in some cases it appears that the modifications have a

considerably larger effect on the final performance of the executable.

5.3.2 Comparing NoGC and NoOpt

The NoGC benchmark is generated exactly as the NoOpt benchmark, with

two modifications. First, the “collector” used is just a simple facade over malloc.

Second, no calls to free are removed. Thus, NoGC shows the cost of the Mag-

pie conversion, without including the cost difference in using a different memory

management style.

Whether garbage collection or manual memory management is faster depends

strongly on the program and underlying platform. On the PPC, three benchmarks

have better performance with NoOpt than with NoGC: 183.equake, 188.ammp and

300.twolf. On the x86, considerably more benchmarks are faster using garbage

collection: 175.vpr, 179.art, 188.ammp, 254.gap and 300.twolf.

5.3.3 Comparing NoOpt and Magpie

As expected, using optimizations never slows the converted code down. This is

unsurprising, since the goal of the optimizations is simply to remove cases where

variables need to be saved. Since these optimizations do not involve transforming

the code to lower the performance of the generated program, there is little chance

that the optimizations will accidentally convert the code so that the program is

slowed down.

1This is necessary due to GCC producing unpredictable code for assignments. For
example, in the expression array[i][j] = foo(bar), GCC will sometimes produce code
that partially or fully computes the address of the array accesses before invoking the call.
This creates problems when the call triggers a garbage collection, as the collection may
have moved the array.

83

On the OS X PPC platform, the optimizations had no impact on performance

in some cases. 181.mcf, 183.equake, 256.bzip2, and 300.twolf gain no perfor-

mance improvement with the optimizations turned on. In most cases, the advantage

of using the optimizations was minimal: 3% or less. In a few cases, however, using

the optimizations created notable performance benefits.

On the FreeBSD x86 platform, the advantage of using the optimizations were

considerably more noticeable. This is surprising. I would have expected the effects

on a comparatively register-poor machine to be much less significant. There are

several possible reasons for this. First, the OS X benchmarks use a version of GCC

version 4, while the FreeBSD benchmarks use version 2.59.4. So it is possible that

the earlier version is more strongly affected by the stack frame code.

Another possible reason is that the internals of the Pentium IV CPU are less

forgiving of the converted code than the internals of the PowerPC. Modern x86

architectures translate the input x86 binary code into an internal instruction set;

generally, a RISC-based instruction set with many more registers. It is possible that

the modifications made by Magpie inhibit the efficiency of either the translation or

the execution of the translated instructions. Since the details of both the translation

and internal implementation are trade secrets, it is difficult to discover if either is

the case.

5.3.4 The Cost of Autotagging

The only difference between the two versions of 197.parser is autotagging.

197.parser uses autotagging, whereas I wrote my own code to distinguish the union

cases in the 197.parser* case. Viewing these two benchmarks alone, autotagging

seems to have a significantly negative effect on program performance. On the

PowerPC platform, the autotagged version performs 480% worse than the Base

version, as compared to the nonautotagged version’s slowdown of 339%. On the x86

platform, the autotagged version performs 352% worse whereas the nonautotagged

version performs 239$ worse.

However, in the other five programs that use autotagging — 164.gzip, 175.vpr,

176.gcc, 177.mesa and 188.ammp — the performance effect of Magpie is consid-

84

erably less noticeable, and it is unclear how much of a factor autotagging is in

these numbers. On one benchmark — 188.ammp on FreeBSD — the converted,

autotagged Magpie version even runs faster than Base.

5.3.5 Comparing Base, Boehm and Magpie

Ignoring the 197.parser and 254.gap benchmarks, Magpie performs reason-

ably well compared to both Base and Boehm. On the PowerPC, in all cases

but the two 197.parser versions and the 254.gap benchmark, the performance of

Magpie-converted code with optimizations is within 15% of the original program

and Boehm. Interestingly, the results for the Boehm collector are not strongly

predictive of the results for Magpie. In the ten cases in which the Boehm version

is faster than the Base version, Magpie is also faster than the Base version in only

five. On the other hand, in the eight cases in which the Boehm version is slower

than the Base version, Magpie is also slower in seven of them.

On the PowerPC, Magpie is largely slower than the base version, usually by less

than 15%. On two benchmarks, 183.equake and 300.twolf, Magpie is clearly

faster than the Base version. On another, 256.bzip2, Magpie is only slightly

faster (a total difference of only a few seconds).

The results are considerably more varied on the x86. Six of the thirteen pro-

grams show slight to moderate performance improvements using Magpie. The

300.twolf benchmark shows a considerable performance improvement of 12%. On

the other hand, 176.gcc performs 34% worse and 254.gap performs 146% worse,

as compared to 14% and 47% on the PowerPC.

5.3.6 Examining 197.parser and 254.gap

197.parser and 254.gap perform badly compared to the other benchmarks.

197.parser behaves particularly badly, slowing down by a factor of 3.3 times (the

non-autotagged version under OS X) to 5.4 times (the autotagged version under

FreeBSD).

Most of the slowdown in the 197.parser benchmark comes from not using

the custom allocator used in the base version. As noted in Section 5.1, the base

85

version of the benchmark eschews the system’s malloc and free for its own version,

which makes an automatic translation to the NoGC version impossible. However,

I modified the output of the automatic translation by hand, and discovered that

this hand-generated version of NoGC slowed down by a factor of 1.44 on OS X.

This number is slightly better than the Boehm results on the same platform.

For 254.gap, some of the slowdown comes from the program’s extensive use of

function pointers. As noted in Section 4.3, the call graph analysis used in Magpie

makes no attempt to resolve call targets through function pointers. This inability

inhibits Magpie from making use of many optimization opportunities.

Further examination with a profiler does not lead to a strong indication of one

single factor causing the remaining slowdown. However, profiling data does suggest

that taking the address of variables in tight loops may be causing some of the

slowdown.

5.3.7 Possible Shadow Variable Optimization

One possible way to avoid taking the address of important variables is to use

temporary variables to shield the them from Magpie taking their addresses. Thus,

instead of saving the variable foo directly, Magpie might convert the code to use

a temporary variable, bar, surrounding the call. For example, such a conversion

might change the following:

{

...

x = allocating_call(foo);

...

}

into

{

...

bar = foo;

86

x = allocating_call(bar);

foo = bar;

...

}

In performing this conversion, Magpie would not need to transmit information

about foo to the collector. Instead, bar would be transmitted to the collector (and

its address taken), and foo would be left alone. The disadvantage of this method is

that it may increase the stack use of the program if the compiler cannot optimize

the potential additional space, and the extra assignment costs may negate any

performance gained by not taking the address of the primary variable.

I have implemented a prototype version of this optimization, to see if this

optimization might be of use in future versions of Magpie. This optimization is

placed after the other three optimizations, but before any other modifications have

been made to the program, and inserts the assignments and variable declarations

required. It only functions for simple stack frame types; see Section 4.4.2 for more

information on simple forms. I tested the results of the benchmark under OS X.

For the modified 197.parser benchmark, this optimization had a negative

effect, slowing the benchmark down to 1.64 times the speed of the base version

— a difference of 0.20. The optimization had only a small negative effect on

254.gap: the Magpie version with the optimization ran 1.49 times slower than

the base version, a difference of 0.02.

I tested the optimization two other benchmarks, 177.mesa and 186.crafty,

and achieved similar results. 177.mesa slowed down to 1.33 times the speed of

the original, or an additional 22%. 186.crafty showed a minimal improvement,

running at 0.99 times the speed of the original, or a 1% improvement.

It is possible that more selective use of this optimization would result in better

performance improvements. However, this would require either user intervention or

a complicated analysis to determine which variables to use with the optimization.

87

5.4 Space Usage

To compute the space use of the original and modified programs, I modified

the base versions of each benchmark. The modifications entailed the addition of a

call into a space-tracking library function, inserted as the first and last action of

main as well as after every allocation. This function computed the total space used

by the program via a system, and saved the data to a file.2 Figures 5.1 through

5.12 show the memory behavior for the Base, Boehm and Magpie versions of each

benchmark.

The choice to use a system call to fetch the entire size of the program is an

important one. First, it includes the size of the code segment. Magpie-converted

versions will have larger code sizes due to the conversion process adding infor-

mation for the collector. Second, the standard implementations of malloc hides

information about the metadata used in their memory management systems.

In most cases, the Magpie-converted program requires more space than the

original or Boehm versions. However, much of this space comes from pre-allocated

(2MB) nursery space. Neither the original nor Boehm versions pre-allocate space for

new allocations, but the collector included with Magpie does. In many cases, tuning

the collector more carefully would shrink these differences to nearly zero; essentially,

the programmer would rely on the fact that the programs allocate large blocks of

memory during initialization, and tune the constants so that post-collection nursery

sizes were near zero.

164.gzip, 175.vpr, 176.gcc, 188.ammp and both versions of 300.twolf use

autotagging (Figures 5.1, 5.2, 5.3, 5.8 and 5.12, respectively). In these benchmarks,

the gradual increases in total program size — the ones not reflected in the other

versions — are mostly likely the increased space cost of autotagging. As the

converted program autotags objects, more data are dynamically added to the total

space cost of the execution.

164.gzip is a particularly good example of this effect. The benchmark uses

unions in the definition of its Huffman encoding trees. Thus, the compression

2Many thanks to Jed Davis, who told me how to do this.

88

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 550000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

M
em

or
y U

se
d

(K
B)

Allocations

Base
Boehm
Magpie

Figure 5.1. The memory behavior of the 164.gzip benchmark.

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 1000 2000 3000 4000 5000 6000 7000

M
em

or
y U

se
d

(K
B)

Allocations

Base
Boehm
Magpie

Figure 5.2. The memory behavior of the 175.vpr benchmark.

89

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 0 100000 200000 300000 400000 500000 600000 700000

M
em

or
y U

se
d

(K
B)

Allocations

Base
Magpie

Figure 5.3. The memory behavior of the 176.gcc benchmark.

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 0 100 200 300 400 500 600 700

M
em

or
y U

se
d

(K
B)

Allocations

Base
Boehm
Magpie

Figure 5.4. The memory behavior of the 179.art benchmark.

90

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 1 2 3 4 5 6

M
em

or
y U

se
d

(K
B)

Allocations

Base
Boehm
Magpie

Figure 5.5. The memory behavior of the 181.mcf benchmark.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06

M
em

or
y U

se
d

(K
B)

Allocations

Base
Boehm
Magpie

Figure 5.6. The memory behavior of the 183.equake benchmark.

91

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 6500

 0 5 10 15 20 25 30 35 40

M
em

or
y U

se
d

(K
B)

Allocations

Base
Boehm
Magpie

Figure 5.7. The memory behavior of the 186.crafty benchmark.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 0 500 1000 1500 2000 2500 3000 3500 4000

M
em

or
y U

se
d

(K
B)

Allocations

Base
Boehm
Magpie

Figure 5.8. The memory behavior of the 188.ammp benchmark.

92

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 50000 100000 150000 200000 250000 300000

M
em

or
y U

se
d

(K
B)

Allocations

Base
Boehm
Magpie

Figure 5.9. The memory behavior of the 197.parser benchmark.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 220000

 0 0.5 1 1.5 2

M
em

or
y U

se
d

(K
B)

Allocations

Base
Boehm
Magpie

Figure 5.10. The memory behavior of the 254.gap benchmark.

93

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 0.5 1 1.5 2

M
em

or
y U

se
d

(K
B)

Allocations

Base
Boehm
Magpie

Figure 5.11. The memory behavior of the 256.bzip2 benchmark.

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 1000 2000 3000 4000 5000 6000

M
em

or
y U

se
d

(K
B)

Allocations

Base
Boehm
Magpie

Figure 5.12. The memory behavior of the 300.twolf benchmark.

94

and decompression phases show sharper increases in space use than the other two

versions, as the converted program adds much of the encoding tree to the collector’s

autotag data structure.

5.5 Final Discussions on Space and Time

Garbage collection can be a win in space and time due to three factors:

• A different model for object deallocation costs.

• Faster allocation.

• Smaller object sizes and tighter object placement.

5.5.1 Object Deallocation Costs

The first is most noticeable in pure copying collectors. In such collectors,

garbage collection time is strictly a function of reachable memory; the collector

never iterates over deallocated objects. This is in contrast to manually managed

programs, which must call a deallocation function on each deallocated object. In

most cases, this deallocation function performs other operations beyond deallocat-

ing the block of memory. For example, if it discovers two adjacent deallocated

blocks, it may combine them into a single unused block.

If the program mostly allocates short-lived objects, the garbage collector will

have less heap space to traverse during garbage collection without having to call a

deallocation function on each dead object. This can be a significant win in program

performance.

However, most collectors are not pure copying collectors, and may need to

perform some operations on dead objects in the heap. Whether this cost is higher or

lower than the deallocation function for the manually managed version depends on

the collector. Further, if the original program allocates mostly long-lived objects,

then the original will spend little time in deallocation functions and the converted

program will spend more time traversing live heap space.

95

5.5.2 Faster Allocation

Both BSD-based systems (such as Apple’s OS/X) and GNU libc-based systems

use variants of the Doug Lea allocator [29]. The basic structure behind this

algorithm is a set of bins. Each bin holds a list of free memory blocks of a particular

size; what sizes are used depends on the specific implementation. To perform

allocation, the Lea allocator takes the requested object size, adds two words (see

Section 5.5.3), and rounds to the nearest bin size.

If there exists a free block in the selected bin, the allocator removes the free

block from the bin and uses it as the return value. If there is not, the allocator

looks for a free block in bins with larger sizes. When it finds one, it splits the block

into two free blocks; one of the correct size, and one of the original size minus the

correct size. The left-over section of the block is added to the bin of that size.

In contrast, a garbage collector using a pre-allocated, fixed size nursery (such as

the default Magpie collector) performs considerably less work. Since the allocator

can rely on the garbage collector to deal with deallocation and fragmentation

concerns, allocators in such systems simply return successive blocks of memory

for each allocation. Thus, in the ideal case, an allocator for a garbage collected

system uses only a few global variables (the start, end and first unallocated address

in the nursery), a few mathematical operations, and a single conditional (to check

if there is sufficient space left in the nursery) to perform an allocation.

Magpie’s allocator does not reach this ideal speed. First, it allocates large

objects outside the pre-allocated nursery, in order to lower copying costs during

garbage collection. This requires an additional check. It also performs a two

additional checks based on object size: one to check for zero-sized allocations,

and one to enforce a minimum allocation size. Finally, the Magpie collector keeps

metadata on the start and end of every block, and performs several loads and

stores to track this information. This metadata is only required to deal with

programs that create pointers into the interior of heap-allocated objects. Ideally,

the garbage collector could be extended to remove this information — and the

associated function calls — if the program uses only pointers to the first word of

96

every object.

Testing with a microbenchmark that allocates fifty million eight-byte objects in

a tight loop suggests that the allocator with the default garbage collector is actually

slower than libc’s malloc, by a factor of roughly two (14.18 seconds, compared to

libc’s 7.04 seconds). Removing the operations noting the beginning and end of

the object improves the performance of the collector considerably; 3.66 seconds for

the allocator without these operations, again compared to libc’s 7.04 seconds.

5.5.3 Smaller Object Sizes

As noted in Section 5.5.2, derivatives of the Doug Lea allocator add two words

(placed before and after the object) to the size of the object before selecting a

bin. In contrast, the Magpie allocator adds a single additional word to the size

of the object and does not use bins. The single word is used to associate the tag

information with the object. If the object survives its first garbage collection and

moves to the older generation, this word is removed. As noted previously, the

older generation segregates objects by tag, so the tag information is associated

with an object’s page rather than the object itself. Finally, all implementations

of malloc that I have encountered have a minimum allocation size of 16 bytes.

Magpie enforces a minimum object size of eight bytes in the older generation and

twelve bytes in the nursery.

The removal of the extra word(s) and avoidance of object allocation bins results

in tighter placement of objects in the heap. This, in turn, can result in better cache

behavior, since it is more likely that a cache access to one object will also cache all

or part of the previous or succeeding object.

However, while Magpie’s garbage collector places objects nearer to each other,

it does so with a considerably increased metadata cost. Some of these costs are

fixed; for example, Magpie uses a fixed-size hash table mapping pointers to their

associated page information structures. Other costs are functions of the heap size.

Magpie uses a structure holding metadata for each page in the heap, as well as

using a bitmap to store information about each word in the heap. Currently, the

former requires 32 bytes per page in the heap, while the latter uses two bits per

97

word in the heap.

CHAPTER 6

EXPLOITING PRECISE GC: MEMORY

ACCOUNTING

As applications grow increasingly complex, they are increasingly organized into

smaller subprograms. For example, web browsers invoke external programs to

display images and movies, and spreadsheets frequently execute user-defined scripts.

The more subtasks that an application invokes the more things can go wrong, and

the more it becomes useful to control the subtasks. In this section, I concentrate

on the problem of constraining memory use.

Applications currently restrict memory use by partitioning data and then lim-

iting the memory use of the partitions. Traditional operating systems partition

memory into completely separate heaps for each process, disallowing references

between them. This strict partitioning makes interprocess communication difficult,

requiring the marshaling and demarshaling of data through pipes, sockets, channels

or similar structures. In some cases, marshaling important data proves infeasible,

leading to the use of complicated protocol programming.

More recent work provides hard resource boundaries within a single virtual ma-

chine. Systems in this class, such as the KaffeOS virtual machine [3], JSR-121 [47]

or .NET application domains [32], still partition data, but without the separate

address space. Generally, the programmer explicitly creates a shared partition

and may freely allocate and reference objects in it. However, these systems place

restrictions on inter-partition references. For example, KaffeOS disallows references

from its shared heap to private heap space. This less strict form of partitioning only

partially alleviates the burden on the programmer. Although the program may now

pass shared values via simple references, the programmer must explicitly manage

99

the shared region. In the case where one process wants to transfer data completely

to another process, the transfer may require two deep copies: one to transfer the

data into shared space, and the other to transfer it out. In short, the programmer

must manually manage accounting in much the same way a C programmer manages

memory with malloc() and free().

My system of partition-free memory accounting provides the accounting ability

of partitions without unnecessary work by programmers. Further, as a consumer-

based system, programmers simply allocate and pass objects around as they please,

and the current holder of the object is charged, rather than the allocator. Thus, data

migration and sharing require no additional work on the part of the programmer: no

marshaling, no complex communications, and no explicit management of partitions.

By leveraging an existing garbage collector and the thread hierarchy, the system

is flexible enough to handle most memory accounting demands, and is fast enough

to be used in production quality software. Finally, the system exports simple but

reliable guarantees, which are easy for the programmer to reason about.

Although Price et al. [41] address memory accounting in a way similar to my

system, they do not build on a process hierarchy, which is a cornerstone of my

work. I believe that a consumer-based accounting mechanism must be tied to a

process hierarchy to provide useful guarantees to the programmer. My practical

applications—as well as my comparison to other accounting mechanisms—both

depend crucially on parent–child relationships among processes.

I begin the discussion of this work in Section 6.1 with example applications where

partition-free, consumer-based memory accounting saves valuable programmer time

and energy, and present the details of the accounting system in Section 6.2. Section

6.3 describes how I use this system in the examples in section 6.1. Section 6.4

outlines how the system works over large, general classes of applications. I conclude

with the implementation and performance effects of the system in Section 6.5 and

a comparison of this system with other work in Section 6.6.

100

6.1 Motivating Applications

Conventional partitioning or producer-based accounting techniques can be used

to solve most accounting problems. However, these techniques often make pro-

gramming difficult for no reason. I present three applications in this section where

using consumer-based, partition-free memory accounting greatly simplifies our im-

plementation task.

6.1.1 DrScheme

The DrScheme programming environment consists of one or more windows, each

split into a top and bottom half. The top half provides standard program editing

tools to the user, while the bottom half presents an interactive Scheme interpreter.

Normally, users edit a program in the top half and then test in the bottom half.

As a development environment, DrScheme frequently executes incorrect user

code, which must not make DrScheme crash. Language safety protects DrScheme

from many classes of errors, but a user program can also consume all available

memory. Thus, DrScheme must account for memory used by the user program,

and DrScheme must terminate the program if it uses too much.

As previously noted, the usual way to account for memory use and enforce

memory limits is to run the interpreter in a completely separate heap space. How-

ever, this separation requires significant programmer effort. DrScheme would have

to communicate with its child processes through pseudovalues rather than actual

values and function calls, much like a UNIX kernel communicates with processes

through file descriptors rather than actual file handles. This approach becomes

particularly difficult when writing DrScheme tools that interact with both the

program in the editor and the state of the interpreter loop, such as debuggers

and profilers.

DrScheme could partition values without resorting to separate heaps, but par-

titioning only solves some problems. The programmer can either keep the entire

system within one partition, or split the system into many partitions. Neither

approach works well in practice:

101

• Allocating all objects into a single, shared partition makes communication

simple, as references may be passed freely. However, DrScheme frequently

invokes two or more interpreter loops. Because every object resides in the

same partition, the accounting system could give no information about which

interpreter DrScheme should kill if too many objects are allocated.

• Separating DrScheme into several partitions leaves no natural place for shared

libraries. Shared libraries would either need to be duplicated for every parti-

tion, or must be told into which partition to allocate at any given time. The

first — duplication — has obvious problems. The second amounts to manual

memory management, requiring unnecessary time and effort on the part of

the programmer.

A producer-based accounting scheme suffers from similar problems. To write

simple APIs, the program in test often invokes parts of DrScheme to perform

complex operations. Some of these operations allocate data, and then return this

data to the child process. In this case, a producer-based system would either not

honor the data hand-off or would require the parent process to communicate to the

accounting system that it is allocating the data on behalf of another process. In

the latter case, security becomes an additional problem.

Instead of developing complex protocols to deal with separate address spaces or

partitions, the system allows a direct style of programming, where a small addition

to DrScheme provides safety from overallocating programs.

6.1.2 Assignment Hand-In Server

Students in CS2010 at the University of Utah submit homework via a handin

server. The server then tests the student’s program against a series of teacher-

defined tests.

This server clearly requires memory constraints. First, an incorrect program

that allocates too much memory on a test input may kill the entire handin server.

Second, and unlike DrScheme itself, a malicious student might attempt to bring

down the server by intentionally writing a program that allocates too much memory.

102

Running the student program interpreter in the same process as the server

saves a great deal of programming work, and saves the course instructor time

by not requiring test case input and results to be marshaled. Further, we avoid

problems duplicating and reloading libraries. Duplication, for example, creates a

problem for test cases that use library data types, because the types in a student

program would not match test cases generated by the testing process. Reloading

becomes a further problem for advanced student projects, which typically require

large support libraries. Reloading these libraries for every test may stress the CPU

beyond acceptable levels, particularly near assignment due dates.

Partitioned accounting schemes solve some of these problems, but not all of

them. As in DrScheme, shared libraries are problematic, requiring either a great loss

of information or a form of manual memory management. Again, as in DrScheme,

producer-based accounting schemes fail when shared libraries allocate memory on

behalf of a student program.

Instead of managing such details, the server uses partition-free, consumer-based

accounting and works with no special protocols. The server requires neither copying

code nor protocol code, and shared libraries are loaded once for the entire system.

6.1.3 SirMail

SirMail began as a modest mail client, and was gradually extended with a few

additional features, including HTML rendering and attachment processing. These

two extensions, however, introduce a memory security problem.

The HTML engine renders HTML email in the normal way. In doing so,

however, it may download images from unknown, untrusted servers. By creating

a small email that requires the display of an arbitrarily large graphic, an attacker

(or spammer) could easily bring the whole system to a grinding halt. Attachment

processing also presents a problem, as a huge attachment may arbitrarily pause the

whole mail client for the duration of processing.

Partitioned accounting systems solve both these problems but create new ones.

To function the HTML rendering engine must draw to the main SirMail window.

Similarly, SirMail must pass the data to be processed to the attachment proces-

103

sor, and then receive the result. Partitioning schemes cause problems for both

interactions. Because shared memory regions may not contain pointers to private

memory regions, for the HTML engine to draw to the screen either SirMail must

place the entire GUI (and all callbacks and other references) into a shared region or

the engine must communicate to SirMail using some drawing protocol. In the case

of the attachment processor, SirMail would have to copy the entire attachment into

and then out of the subprocess’s heap for accounting to make sense.

Using partition-free accounting solves both these problems. SirMail simply

passes a direct reference to the GUI to the rendering engine, which can then

interact with it in the usual ways. Similarly, SirMail may simply call the attachment

processor with a reference to the data, and have a reference to the result returned

to it, requiring no copying.

6.2 Consumer-Based Accounting

Without sharing, accounting is a simple extension of garbage collection. Sharing

complicates matters, Because the system must provide guarantees as to which

process or processes the shared objects will be accounted. In other words, if thread

A and thread B both share a reference to x, the accounting system must provide

some guarantee as to how the charge for x will be assigned.

Certain policy decisions would provide useful guarantees, but drastically reduce

performance. One such policy is to charge the use of x to both A and B, and

another might split the charge equally between A and B. Although these policies

provide reliable, intuitive guarantees, they both suffer from a performance problem:

a worst-case execution time of C ∗ R, where C is the number of threads and R is

the number of reachable objects. Experience suggests that this extra factor of C

scales poorly in real systems, and provides a new opportunity for denial of service

attacks (i.e., by creating many threads).

My approach makes one simple guarantee to the programmer that nevertheless

provides useful information. I guarantee the charge of x to A, and not B, if

A descends (hierarchically) from B. Due to the hierarchical nature of threads,

104

these charges bubble up to the parents, regardless, so assigning the charge to the

child provides more useful accounting information. In other words, because B is

responsible for the behavior of A, B eventually becomes charged for A’s usage. In

the case of unrelated sharing threads, the charge is assigned arbitrarily. For reasons

that we discuss at length in the following section, I have not found the arbitrary

assignment a problem. In fact, I find that this simple approach applies well to a

large class of potential applications.

Finally, the policy must describe what it means for a thread to reference an

object. The system considers an object reachable by a thread if it is reachable

from any thread that thread manages, with a few exceptions. First, because weak

references do not cause an object to be retained past garbage collection, a thread

holding an object only through a weak reference is not charged for it. Second, many

threads hold references to other threads. However, these references are opaque,

so the original thread cannot then reference anything in the referenced thread.

Therefore, if an object x is reachable by thread C only through a reference to some

other thread, then C is not charged for x.

Given these guarantees and policies, we export the accounting API as follows:

• thread-limit-memory(thread1, limit-k, thread2) installs a limit on the

memory charged to the thread thread1. If ever thread1 uses more than

limit-k bytes, then thread2 is shut down.

Typically, thread1 and thread2 are the same thread, and the parent thread

uses the child thread in question for both arguments. Distinguishing the

accounting center from the cost center, however, can be useful when thread1

is the parent of thread2 or vice-versa.

Although thread-limit-memory is useful in simple settings, it does not compose

well. For example, if a parent process has 100 MB to work with and its child

processes typically use 1 MB but sometimes 20 MB, should the parent limit itself

to the worst case by running at most 5 children? And how does the parent know

that it has 100 MB to work with in the case of parent-siblings with varying memory

consumption?

105

To address the needs of a parent more directly and in a more easily composed

form, we introduce a second interface:

• thread-require-memory(thread1,need-k,thread2) installs a request for

need-k bytes to be available for thread thread1. If it is ever the case that

thread1 cannot allocate need-k bytes, then thread2 is shut down.

Using thread-require-memory, a parent process can declare a safety cushion for

its own operation but otherwise allow each child process to consume as much

memory as is available. A parent can also combine thread-require-memory and

thread-limit-memory to declare its own cushion and also prevent children from

using more than 20 MB without limiting the total number of children to 5.

All these procedures register constraints with the accounting system separately.

Thus, a child processes cannot raise a limit on itself by simply reinvoking thread-

limit-memory as both limits remain in effect. Furthermore, note that killing a

thread simply closes all its ports, stops all its threads, and so on, but does not

necessarily explicitly deallocate memory. Because of this, memory shared between

a thread being shutdown a surviving thread will not be deallocated by the shutdown

process.

In addition to the two memory-monitoring procedures, I also export a function

that reports a given thread’s current charges:

• current-memory-use(thread) returns the number of allocated bytes cur-

rently charged to thread thread.

These procedures, in combination, provide simple mechanisms for constraining

the memory use of subprocesses. In most cases, extending an existing application

to use memory constraints requires only a few additional lines of code.

6.3 Accounting in the Examples

Using the new accounting mechanisms, I easily solved the accounting problems

described in Section 6.1. In this section, I report briefly on our experience.

106

6.3.1 DrScheme

To support a stop (break) button, DrScheme runs every interpreter window in a

separate thread. These threads descend from a single, parent thread for the system.

Because the accounting mechanism charges shared memory to the child, rather than

the parent, none of the existing interfaces required updating. DrScheme simply

allocates complex objects and transfers them directly to the child. Additionally,

the DrScheme process has direct access to the closures, environment, and other

interpreter state of a user program.

The initial pass to add accounting to DrScheme required only four lines of code.

Specifically, the four lines locally bind the new thread, set the memory limit, and

proceeded as normal.

However, a problem quickly became evident. The system, as originally con-

structed, contained reference links from the child thread to the parent (through

ports, GUI objects and so forth passed down through the API), but also links from

the parent down to each of the children. The accounting pass, then, picked one of

the children to account to first, and that child was charged for most of the objects

allocated in the entire system. Because the child can reach up to the parent’s object

space and then back down to all its siblings’ object spaces, it can reach (and thus

is charged for) all these objects.

Initially, we attempted to break all the links from the child to the parent.

However, doing so creates many of the same problems as the old operating system

process solution. For example, instead of handing out I/O ports directly, a file

handle system must be used.

Rather than rewriting a huge chunk of DrScheme, we investigated breaking the

links from the parent to the child. This modification turned out to be quite simple,

involving only a few hours of programmer time to find the links from parent to

child, plus another half hour to remove these links. In all, the task required the

changing of five references: two were changed to weak links, one was pushed down

into the child space and the final two were extraneous and simply removed.

107

6.3.2 Hand-In Server

To make the hand-in server shut down overconsuming test threads, a single

line was needed. Another programmer then added an additional feature to report

to students when the test was terminated. Even this extra feature proved fairly

simple, with the entire change comprising roughly 25 lines.

6.3.3 SirMail

Modifying the existing code to limit the memory use of the HTML rendering

engine required about 45 minutes of time from a programmer unfamiliar with the

SirMail code base, and about 20 lines of code. Most of this additional code detects

and reports when the accounting system shuts down the rendering thread.

The MIME processing modifications turned out to be easier, requiring approx-

imately 10 minutes of time and an additional 5 lines of code. These five lines

implement a pattern for libraries and callbacks that is described in 6.4.4.

6.4 Accounting Paradigms

In this section, I describe several common paradigms for multiprocess programs,

and show how my system easily handles most of them. Despite the apparently

weak guarantee for shared-object accounting, in many cases the accounting system

improves on existing mechanisms. Figure 6.1 shows a graphical depiction of three

different communication paradigms.

6.4.1 Noncommunicating Processes

In some cases, a program must offload some work and does not care about the

results. In such examples, the parent spawns the child with some initial data set,

and then largely ignores the child unless it raises an error. Examples include print

spoolers, nonquerying database transactions (inserts, updates, etc.), and logging

utilities. This protocol roughly matches traditional operating system processes.

Conventional process accounting suffices in such tasks, due to the small amount

of one-way communication between the two processes, but my system works equally

108

HorizontalNoncommunicating Vertical

Figure 6.1. The three interprocess communication patterns. The filled circle
represents the parent process, with the hollow circles representing child processes.
The arrows represent directions of communication.

well. Because the data in the subprocess never escapes that subprocess, any data

that the subprocess uses is charged to it.

6.4.2 Vertically Communicating Processes

Another common paradigm involves two-way communication between a parent

process and a child process, but not between child processes. Examples include web

browsers, programming language IDEs, file processors, database queries and so on.

In these cases, the parent process may create an arbitrary number of children, but

these children communicate only with the parent and not each other.

Such purely vertical communication paths represent a large subset of concurrent,

communicating programs involving untrusted processes. Generally, the parent

program runs the untrusted process and communicates with it directly. Communi-

cation between other subprocesses and the untrusted process usually pass through

the parent program. Meanwhile, the parent and each child must cooperate closely,

and this cooperation is most easily implemented by sharing closures and objects.

My algorithm for accounting memory clearly covers this case. As my accounting

mechanism always accounts shared objects to the child, information on the memory

usage of the child remains exact. Thus, by leveraging the thread hierarchy, I create

a framework providing exactly what the programmer wants and needs. In general,

I find the system allows applications in this class to restrict the memory use of their

subprocesses with few to no changes in the way they allocate and share data.

109

6.4.3 Horizontally Communicating Processes

Sometimes, a parent spawns multiple children that communicate directly. Ex-

amples include AI blackboard systems and parallel sorting algorithms. In such

cases, the children work collaboratively to solve some problem.

When two sibling processes share data, my algorithm guarantees only that one

will be charged, but does not guarantee which. Therefore, on one garbage collection,

assignment of the charge may go to one process and on some other during the next.

This uncertainty in charging reflects that, typically, individual charges make little

sense and that killing one process will not allow others to continue. In that case,

children can be grouped under a grouping thread, which lies between the parent

thread and the child threads in the hierarchy. The parent then sets limits on the set

of children, and shuts them down as a group if they violate any memory constraints.

Another possibility is that the children may be working on disjoint sets of data,

so charges make sense for each process and, presumably, individual children can

proceed even if others die. In these cases, a limit on the children as a group makes

little sense. However, the parent may set a memory requirement, to guarantee that

a certain amount of memory is held in reserve for itself. When a violation of this

requirement occurs, the program simply kills off the subprocesses in some static or

heuristic order.

6.4.4 Libraries and Callbacks

The previous sections concentrate on concurrent subprocesses, where consumer-

based accounting makes sense. In some cases, this assumption does not apply.

The first case that I consider involves untrusted libraries or callbacks installed by

untrusted code. The second case involves situations (concurrent or not), where the

application requires producer-based accounting.

Some applications link (statically or dynamically) to untrusted libraries. Fur-

ther, some concurrent applications install callbacks from child processes into the

parent process. In these cases, the desired granularity for accounting more closely

resembles a function call than a thread or process. These cases require wrappers

to the API described previously.

110

In most cases, an additional function call or the introduction of a macro suffices.

These convert the original function call into a series of steps. First, the new code

creates a new thread to execute the call and sets the appropriate limit upon it.

In short, a function call is converted into a short-lived subthread with appropriate

constraints.

A disadvantage of this approach involves the creation of the temporary thread,

which involves an obvious performance penalty. However, it seems unlikely that

converted calls will appear in tight loops. (Calls in tight loops typically execute

quickly, and thus are unlikely to have behavior requiring memory constraints.)

Even if speed is not an issue, functions requiring thread identity will not work

using this method. For example, security mechanisms might grant privileges only to

one particular thread, but not subthreads of that thread. By running the function

in a new thread, the system loses any important information stored implicitly in

the original thread.

6.4.5 Producer-Based Accounting

The only situation in which our system does not clearly subsume existing

technologies is when producer-based accounting is required. In other words, process

A provides data to process B, and charges for the data should always go to A,

regardless of the relationship between the two.

I have not encountered in practice an example where producer-based accounting

makes sense, and I conjecture that they are rare. Even so, this problem might often

reduce to a rate-limiting problem rather than a memory usage problem. In other

words, B does not so much wish to constrain the memory use of A as much as it

wants to constrain the amount of data that it receives at one time. Suitable rate-

limiting protocols should suffice for this case. Further, using a weak reference allows

a program to hold data without being charged for it. Because weak references do

not cause the data contained in them to be retained by the collector, the accounting

system does not charge their holders with their data.

Another possible scenario involves the use of untrusted libraries for creating

and maintaining data structures. I can imagine using an off-the-shelf library to

111

hold complex program data, rather than writing the data structures from scratch.

In using such a library, I can imagine wanting to ensure that its structures do not

grow unreasonably. Again, this situation seems unlikely. Programs typically do not

trust important data to untrusted data structure libraries. Further, it is unclear

how the program would continue to run after a constraint violation kills its own

data structures.

6.5 Implementation

Implementing consumer-based accounting requires only straightforward mod-

ifications to a typical garbage collector. My approach requires the same mark

functions, root sets and traversal procedures that exist in the collector. The primary

change is in the organization and ordering of roots. A second involves the method

of marking roots, and the final involves a slight change in the mark procedure.

First and foremost, accounting requires a particular organization of roots. Be-

fore accounting, the roots must be ordered so that root A appears before root B if

the thread responsible for A descends from the thread responsible for B. Second, the

accounting system marks and fully propagates each individual root before moving

on to the next one. Figure 6.2 outlines these steps.

By placing this partial order on the roots and forcing full propagation before

moving on to the next root, the system provides the full guarantee described

previously. If object x is reachable by roots from threads A and B, where B is

a descendent of A, then the mark propagation will select B’s root first due to the

partial order. When the root or roots associated with A come around, x has already

been marked and no further accounting information is gathered for it.

Minor modifications to the mark procedure alleviate one further potential prob-

lem. These stop mark propagation when threads and weak boxes are reached to

match the behavior outlined in Section 6.2.

Doing this process alongside the collector allows one pass to perform both

accounting and collection, and works in many cases. My first implementation

of memory accounting used this methodology. However, in cases where the set

of collectable objects include threads, creating appropriate orderings becomes dif-

112

Step #1: Sort the roots according to the Step #2: Mark the first root
partial order.

Roots:

Object

ObjectObject

Custodian A Custodian B

Roots:

Object

ObjectObject

Custodian A Custodian B

Step #3: Propagate the root completely Step #4: Mark the next root

Roots:

Object

ObjectObject

Custodian A Custodian B

Roots:

Object

ObjectObject

Custodian A Custodian B

Figure 6.2. The four steps of the accounting procedure.

ficult. Because the accounting mechanisms requires the marking of threads and

the collector does not know which threads are live, determining how to proceed

becomes tricky.

In such cases, a second pass implementing memory accounting suggests itself.

This second pass occurs after garbage collection but before control returns to the

mutator. My implementation of such a system suggests that the additional effort

required above that of the all-in-one solution remained minimal. Again, using much

of the existing collector scaffolding saves considerable amounts of work and time.

This two-pass style may increase slowdowns noticeably in some cases, however.

113

6.5.1 Incremental Collection

My implementation of memory accounting builds on an existing precise, stop-

the-world garbage collector. To see the problem in combining incremental and

accounting collectors, consider the example in Figure 6.3. In this case, we have two

threads (A and B) and four objects (w, x, y and z), and two of the objects — w

and x — have been marked by the collector. If the collector now turns control over

to the mutator, the mutator may then modify the heap so that the link from y to

z is destroyed and a new link from x to z is created. At this point, an unmodified

incremental collector will account z to B, which violates the guarantee in Section

6.2.

In incremental collectors, the collector uses either read barriers or write barriers

to prevent the mutator from putting references from unscanned (white) objects

to scanned (gray or black) objects [1, 54]. Using a write-barrier technique, the

collector must either gray the referring object (scheduling it for repropagation once

the collector resumes) or gray the referred-to object (forcing it into scanned space).

In both cases, any references by the newly-grayed object will be placed in the

collector’s mark queue. To support accounting, the garbage collector requires two

modifications. First, the trap routine must place these objects at the head of the

mark queue, causing them to be marked immediately once the collector resumes.

Custodian B

y

z

Custodian A

x

w

Figure 6.3. A potential heap layout, mid-collection. The grayed objects have been
marked by the collector.

114

Second, the trap routine must annotate these objects with the thread to which the

referring object was accounted. By combining these, the collector accounts these

objects to the appropriate thread immediately after it resumes execution.

Because these objects are put at the head of the queue, there is no chance of a

parent reaching these objects before its child, thus insuring the guarantee described

in Section 6.2. Because the modification simply modifies the order of objects added

to the queue in the trap function, a modified version of an incremental algorithm

will halt if the unmodified version halts.

6.5.2 Performance

An implementation of this memory accounting system was created for Mz-

Scheme [20], an interpreter for the programming language Scheme. Performance

tests on microbenchmarks resulted in a worst-case execution hit of 13%, with most

programs slowing down by a factor of 4% to 8%. Experience with larger programs

suggests similar slowdowns. [51]

6.6 Comparisons to Existing Systems

I previously reported preliminary results for our accounting system [52] and

followed that with final results in a later report [51]. This section of the document

is a detailed overview of the latter.

Other recent research focuses on providing hard resource boundaries between

applications to prevent denial of service attacks. The KaffeOS [3] for Java pro-

vides the ability to precisely account for memory consumption by applications.

MVM [13], Alta [4], and J-SEAL2 [7] all provide similar solutions, as do JSR-121 [47]

and .NET application domains [32], but in all cases these boundaries constrain

interprocess communication. In highly cooperative applications, or in situations

requiring some amount of dynamic flexibility in sharing patterns, these systems

may present significant barriers to simple development.

Generally, the existing work on resource controls — including JREs [14] and

research on accounting principals in operating systems address only resource appli-

115

cation, which does not adequately provide the full range of tools we believe modern

programmers require.

Price et al. [41] present the only other consumer-based, partition-free accounting

system, which was developed in parallel with my system. They present no results

for practical applications. Moreover, their policy for shared objects is to rotate

the mark order for roots, which would not provide a sufficient guarantee for any of

our motivating applications. Price et al. also present a concept of “unaccountable

references.” These references effectively block the marking phase of the accounting

mechanism. The rationale for these objects is to block a malicious process A from

passing an inordinately large object to process B in an attempt to get it killed. It

is unclear, however, what advantages unaccountable references have over normal

weak references.

CHAPTER 7

CONCLUSIONS

The principle contribution of this work is the design and implementation of

an easy-to-use, highly applicable tool for transforming C to use precise garbage

collection that does not impose extraordinary penalties in programmer time, exe-

cution time or space utilization. In most cases, Magpie performs within 20% (faster

or slower) than the original C code and requires no more effort than the existing

Boehm collector. The memory use of Magpie-converted code similarly tracks the

Boehm collector, and in some cases removes memory spikes created by Boehm.

Magpie reaches fast post-parsing compilation speeds by using only a series of

linear analyses and conversions. Except for the call graph analysis, none of the

analyses or conversions are global, which allows for the use of Magpie on programs

during development.

Magpie achieves reasonable execution times due to several factors. First, Magpie

transforms the original source only to do garbage collection; it does not intro-

duce bounds checks, cast safety checks, or similar tests traditionally performed

in type-safe languages. Second, Magpie’s garbage collector streamlines object

allocation, and attempts to layout objects as compactly as possible. This allows

for better cache utilization than the default manual memory management system

in C language runtimes. Finally, Magpie performs several optimizations in order to

minimize the effects of the transformation.

Magpie inhibits space leaks by transferring the responsibility for memory man-

agement to the computer. Thus, incorrect deallocations and many memory leaks

will not occur due to programmer error in the creation or utilization of memory

management protocols. Further, since Magpie transforms the C to use precise

117

garbage collection, Magpie-converted code will not introduce space leaks due to

conservative approximations of what is or is not a pointer or root.

7.1 Magpie for C/VM Interfaces

The primary focus of this dissertation is on the use of Magpie for application

programs. However, Magpie presents a major opportunity for virtual machine

authors. Many virtual machines — Microsoft’s CLR [32], the Java Virtual Ma-

chine [31], the PLT [20] and Chez [18] Scheme implementations, the Python [17]

virtual machine, and many more — allow programmers to create arbitrary virtual

machine extensions using C. While these native interfaces vary widely, all of them

allow programmers to use a high-level language for most of the program, but still

use C if their program requires tight coupling with a low-level library, or complete

control over program execution or the layout of some data structure.

However, the ability to write such extensions creates problems if the virtual ma-

chine uses garbage collection. As with Magpie when dealing with foreign libraries,

these virtual machines must be careful when allowing references to objects to pass

between the virtual machine and the C extension. When an extension passes an

object back to the virtual machine, the virtual machine must ensure that it can

identify the type of that object and discover exactly which words in the object are

references. Perhaps the more difficult problem occurs when the virtual machine

passes an object to the extension. In this case, the garbage collector must be aware

of any references saved within the extension, so that it can ensure that the object

is not collected and update references should the object move.

Existing implementations of interfaces to unsafe code either provide no pro-

tection against garbage-collector corruption by the C extensions, or use one of

several heavyweight techniques to ensure that the collector behaves correctly. In

the latter case, the techniques used can create an excessive amount of work for

the programmer, create significant efficiency and implementation requirements for

garbage collectors, or both.

For example, the native interface for Java (JNI) uses a layer of indirection

118

between C extensions and objects in the garbage-collected heap. C code wishing

to access fields and methods within an object must use accessor functions, rather

than referencing the fields and methods directly. In the case of method calls this

can be particularly obnoxious, as it requires the use of a primitive to obtain the

method signature and then the use of a second primitive to invoke the function. For

example, if the C code wishes to invoke method f on object o, which takes a string

as input and produces a double, the C code cannot simply invoke the function as

follows:

result = o->f(str);

Instead, the C must perform two, sequential statements [48], where cls is the

class of the object o.:

jmethodID mi = env->GetMethodID(cls, "f", "(ILjava/lang/String;)D");

result = env->CallDoubleMethod(o, mi, 10, str);

In some cases, the JNI requires object pinning. Like the object immobility in

Magpie (see Section 4.6), object pinning inhibits the collector from moving an object

in the heap. This creates additional complications in implementing the collector,

and may inhibit the use of certain garbage collection styles that require object

mobility. Microsoft’s Common Language Runtime, which allows the mingling of

safe and unsafe code within the same virtual machine, uses a similar technique.

In C#, when programmers wish to access garbage-collected objects from unsafe

code, they must first pin the objects using the fixed construct. In all other cases,

C# forbids the use of pointer variables referencing managed (garbage collected)

objects [33].

Magpie could simplify these interfaces by providing a simple mechanism to

inform the virtual machine’s garbage collector of references within the unsafe code.

In its conversion, Magpie generates all the information required to identify objects

referenced within the unsafe extension, as well as identifying all the references

within an object created within the extension. Thus, programmers could more

119

naturally reference garbage-collected objects or create new objects for use within

the virtual machine.

The only facility not provided by Magpie is type safety. In such a system,

programmers could write pointers to integer fields within an object, or, in general,

use object fields in ways disallowed by their stated types. To what degree this

functionality is desirable depends on the virtual machine’s security model. However,

some virtual machines disallow the use of unsafe extensions a priori when security is

of paramount importance. Further, it may be possible to extend Magpie to restrict

some unsafe behavior should the security model demand it.

7.2 Annotations vs. GUIs

For the most part, Magpie uses GUIs to gather information about the program

from the user. It then saves the information gathered into a separate persistent

store, outside of the program source. This is a choice of interface, rather than an

issue at the core of the Magpie process. Magpie could have used an annotation sys-

tem, instead, with no changes to the core Magpie algorithms described in Chapters

2, 3 and 4.

Using a GUI and an offline store solves four problems: parsing annotations

placed in the original C source, learning the syntax of the annotations, dealing

with system libraries, and discovering where in the code to place the annotations.

In Magpie, annotations in the source would be required at variable declarations,

field declarations and allocation points. In the first two cases, parsing the annota-

tions would be simple. The annotations could simply placed in the same place as

additional flags on a type (such as “unsigned”), without extensive modifications to

an existing parser. The last case, however, may be difficult. Programs typically use

facades over the underlying malloc function to perform additional error handling.

If these facades are functions, then it may be possible to use an extended cast form

to annotate the function calls. However, if the facades are macros, then they may

expand to statement forms rather than expression forms. Parsing these cases may

require extensive modifications to an existing C parser.

120

Secondly, Magpie would require a robust annotation syntax. While, in some

cases a simple flag would suffice (is pointer or is array of pointers , for

example), in many cases Magpie requires significantly more information: array sizes

and type information, for example. In more involved cases, Magpie may require

arbitrary user code. Learning such a robust syntax may be daunting to users.

However, since Magpie uses a GUI to interact with the user, these details are

hidden from the user.

Thirdly, in some cases, Magpie requires information about structures defined in

system header files. Typically, users cannot edit these files. In Magpie, information

about structures in these files is kept offline, in a separate file, and thus Magpie

has no problem converting read-only files. An annotation-based system, would

either require that system administrators allow users to edit these files, or require

the programmer to copy the files, edit them in user-writable space, and modify all

references to the files.

Finally, annotation-based systems typically generate warnings or errors when

the system determines that it requires an annotation that is not present. In the

case of Magpie’s allocation analysis (see Section 4.1), this would not present a

problem. Each allocation point is independent of all other allocation points, so a

single analysis pass can determine every point requiring annotations.

For Magpie’s structure analysis (see Section 4.2), however, whether or not an

annotation is required may depend on the existence of other annotations. For

example, if field foo is annotated as a structure of type bar, then annotations are

required for all the fields of bar. If, however, foo is annotated as a simple pointer,

then annotations may not be required for the fields of bar. In an annotation-

based system, this would require repeated invocations of the analysis to ensure that

exactly the required annotations exist, with the associated reparsing and reanalysis

costs. Since Magpie’s GUI interface is interactive, however, this information can

be gathered by need without reparsing or reanalyzing the entire file.

Unfortunately, using an offline data store complicates the handling of incremen-

tal changes in the program source. Annotations will survive this process easily, and

121

interact well with existing source repository tools. An offline data store, however,

is difficult to manage with source repository tools, as well as requiring additional

code to reassociate gathered information with the source should the programmer

modify the program.

A combination of the two approaches may be ideal. In such a system, an

interactive GUI would find where annotations were required, ask the user for

information about those annotations, generate the annotations, and then place the

annotations in the original source. This solves the problems of finding places that

require annotations, learning the annotation syntax, and dealing with incremental

updates. If human readability is not required, it may also solve the problem of

parsing. It does not, however, solve the problem of read-only files.

7.3 Future Work

Magpie is a work in progress. The current version is a functional prototype,

meant to function on sufficient programs to provide an understanding of its be-

havior and to provide a platform for adding future enhancements. However, this

dissertation includes most of the interesting research questions surrounding Magpie.

In the future, I would like to add the following to Magpie:

• Support for C++. Internally, Magpie contains most of the infrastructure

required for C++. The parser requires some work to handle namespace dec-

larations, but the internal libraries already support namespaces. Exceptions

require only simple additions to the parser and stack conversion pass. The

front-end of Magpie already includes an overloading analysis, so no additional

work is required for overloading. From an implementation point of view,

templates require the most work, as parsing and expanding templates is a

considerable amount of work. From a research perspective, the new expression

has properties that Magpie would have to handle. A new expression causes

an allocation, but also may invoke arbitrary code. Magpie would have to split

these steps up, so that the shadow stack was updated properly at each point.

• Better Instrumentation: Currently, tuning or measuring the performance of

122

Magpie-converted programs is extremely difficult. As Magpie not only mod-

ifies the cost of allocation and deallocation, but also restructures memory in

ways that can affect caching, virtual memory systems, and the hardware TLB,

it can be difficult to separate out exactly what is causing a program to slow

down or speed up. It would be extremely helpful to have better measurement

tools for tuning the garbage collector and/or the traversal procedures.

• Miscellaneous Internal Improvements : Currently, the parser for Magpie is a

major performance bottleneck. This could be fixed in one of two ways: by

improving the parser’s performance or by decreasing the amount of work the

parser performs. The latter could be done by parsing the original C source

rather than preprocessed source; this allows the use of precompiled headers

and memoization. Magpie’s parser also uses a LALR(1) parser generator im-

plemented in Scheme. Additional performance improvements could be found

either by increasing the efficiency of the generated parser, by using C and the

highly efficient bison parser, or by using a different parsing technology so that

the parse tree more accurately reflects the semantics of the source. Finally,

several of the analyses — the structure analysis in particular — use naive

subroutines and data structures, and their performance could be dramatically

improved with a little work.

• Handling Incremental Updates : Although I still think that using off-line

persistent storage to hold information about the program is a better idea than

annotations, annotations do make incremental updates considerably easier.

At the moment, contextual information is stored for structures and allocation

sites. Handling incremental updates would require the implementation of

a semantic patching pass, which would be complicated. Another approach

might involve the analyses writing the results back to the original files as

annotations, allowing easier patching and revision control. However, as noted

previously, macros complicate the implementation of such a system.

• Concurrency : The complications surrounding concurrency are described in

the previous section. However, there is already strong interest in using Magpie

123

as a final phase of a compiler for a parallel language, so this may happen quite

soon [21].

REFERENCES

[1] A. W. Appel, J. R. Ellis, and K. Li. Real-time concurrent collection on stock
multiprocessors. In Proceedings of the ACM SIGPLAN 1988 Conference on
Programming Language Design and Implementation, pages 11–20. ACM Press,
1988.

[2] T. M. Austin, S. E. Breach, and G. S. Sohi. Efficient detection of all pointer
and array access errors. Technical report, University of Wisconsin-Madison,
December 1993.

[3] G. Back, W. C. Hsieh, and J. Lepreau. Processes in KaffeOS: Isolation, re-
source management, and sharing in Java. In Proceedings of the 4th Symposium
on Operating Systems Design and Implementation, San Diego, CA, Oct. 2000.
USENIX.

[4] G. Back, P. Tullmann, L. Stoller, W. C. Hsieh, and J. Lepreau. Java operating
systems: Design and implementation. In Proceedings of the USENIX 2000
Technical Conference, pages 197–210, San Diego, CA, June 2000.

[5] D. F. Bacon, P. Cheng, and V. T. Rajan. A real-time garbage collector with
low overhead and consistent utilization. In Proceedings of the 30th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 285–298. ACM Press, 2003.

[6] S. J. Beaty. A technique for tracing memory leaks in C++. SIGPLAN OOPS
Mess., 5(3):17–26, June 1994.

[7] W. Binder, J. G. Hulaas, and A. Villazón. Portable resource control in
java: The J-SEAL2 approach. In Proc. ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pages 139–155, 2001.

[8] H.-J. Boehm. Space efficient conservative garbage collection. In Proceedings of
the ACM SIGPLAN 1993 Conference on Programming Language Design and
Implementation, pages 197–206. ACM Press, 1993.

[9] H.-J. Boehm. Reducing garbage collector cache misses. In Proceedings of the
Second International Symposium on Memory Management, pages 59–64. ACM
Press, 2000.

[10] H.-J. Boehm. Bounding space usage of conservative garbage collectors. In
Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 93–100. ACM Press, 2002.

125

[11] D. Box. Essential COM. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1997. Foreword By-Grady Booch and Foreword By-Charlie
Kindel.

[12] T. M. Chilimbi and J. R. Larus. Using generational garbage collection
to implement cache-conscious data placement. In Proceedings of the First
International Symposium on Memory Management, pages 37–48. ACM Press,
1998.

[13] G. Czajkowski and L. Daynès. Multitasking without compromise: a virtual
machine evolution. In Proc. ACM Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, pages 125–138, 2001.

[14] G. Czajkowski and T. von Eicken. JRes: A resource accounting interface for
Java. In Proc. ACM Conference on Object-Oriented Programming, Systems,
Languages, and Applications, pages 21–35, 1998.

[15] D. Dhurjati, S. Kowshik, V. Adve, and C. Lattner. Memory safety without
runtime checks or garbage collection. In Proceedings of the 2003 ACM SIG-
PLAN Conference on Languages, Compilers, and Tools for Embedded Systems,
pages 69–80. ACM Press, 2003.

[16] C. Ding and Y. Zhong. Compiler-directed run-time monitoring of program
data access. In Proceedings of the Workshop on Memory System Performance,
pages 1–12. ACM Press, 2002.

[17] F. L. Drake, Jr., editor. Python Reference Manual. Python Software Founda-
tion, 2.4.3 edition, March 2006.

[18] R. K. Dybvig. Chez Scheme Version 7 User’s Guide. Cadence Research
Systems, Bloomington, IN, 2005.

[19] R. K. Dybvig, D. Eby, and C. Bruggeman. Don’t stop the BiBOP: Flexible
and efficient storage management for dynamically-typed languages. Technical
Report 400, Indiana Computer Science Department, March 1994.

[20] M. Flatt. PLT MzScheme: Language manual. Technical Report PLT-TR05-1-
v300, PLT Scheme Inc., 2005. http://www.plt-scheme.org/techreports/.

[21] C. Grothoff. Personal conversation, 2006.

[22] R. Hastings and B. Joyce. Purify: Fast detection of memory leaks and access
errors. In Proceedings of the USENIX 2002 Technical Conference, pages 125–
138, San Francisco, CA, Winter 1992.

[23] F. Henderson. Accurate garbage collection in an uncooperative environment.
In Proceedings of the Third International Symposium on Memory Management,
pages 150–156. ACM Press, 2002.

126

[24] A. L. Hosking, J. E. B. Moss, and D. Stefanovic. A comparative performance
evaluation of write barrier implementation. In Proceedings of the 7th ACM
SIGPLAN Conference on Object-Oriented Programming Systems, Languages,
and Applications, pages 92–109. ACM Press, 1992.

[25] P. Hudak. A semantic model of reference counting and its abstraction (detailed
summary). In LFP ’86: Proceedings of the 1986 ACM conference on LISP
and functional programming, pages 351–363, New York, NY, USA, 1986. ACM
Press.

[26] R. L. Hudson, J. E. B. Moss, A. Diwan, and C. F. Weight. A language-
independent garbage collector toolkit. Technical Report 91-47, University of
Massachusetts, Object Oriented Systems Laboratory, Department of Comp.
and Info. Science, Amherst, MA, 01003, 1991.

[27] G. Insolvibile. Garbage collection in C programs. Linux Journal, 2003(113):7,
2003.

[28] S. P. Jones, N. Ramsey, and F. Reig. C--: A portable assembly language that
supports garbage collection. In International Conference on Principles and
Practice of Declarative Programming, 1999.

[29] D. Lea. A memory allocator, April 2000. http://g.oswego.edu/dl/html/
malloc.html.

[30] C.-W. Lermen and D. Maurer. A protocol for distributed reference counting.
In LFP ’86: Proceedings of the 1986 ACM conference on LISP and functional
programming, pages 343–350, New York, NY, USA, 1986. ACM Press.

[31] T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison-
Wesley Professional, Reading, MA, 2nd edition, 1999.

[32] E. Meijer and J. Gough. Technical overview of the common language runtime.
http://citeseer.nj.nec.com/meijer00technical.html.

[33] Microsoft Corporation. C# Language Specification, page 320. Microsoft
Corporation, Redmond, WA, 2003.

[34] T. Mott. Learning Carbon. O’Reilly & Associates, Inc., Sebastopol, CA, USA,
2001.

[35] S. S. Muchnick. Advanced Compiler Design & Implementation, pages 443–446.
Morgan Kaufmann Publishers, Inc., San Francisco, CA, 1997.

[36] G. C. Necula, S. McPeak, and W. Weimer. Ccured: type-safe retrofitting of
legacy code. In Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 128–139. ACM Press, 2002.

[37] N. Nethercote and J. Seward. Valgrind: A program supervision framework.
Electronic Notes in Theoretical Computer Science, 89 No. 2, 2003.

127

[38] S. Owicki. Making the world safe for garbage collection. In Proceedings of
the 8th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 77–86. ACM Press, 1981.

[39] Y. G. Park and B. Goldberg. Reference escape analysis: optimizing reference
counting based on the lifetime of references. In PEPM ’91: Proceedings of the
1991 ACM SIGPLAN symposium on Partial evaluation and semantics-based
program manipulation, pages 178–189, New York, NY, USA, 1991. ACM Press.

[40] S. M. Pike, B. W. Weide, and J. E. Hollingsworth. Checkmate: cornering C++
dynamic memory errors with checked pointers. In Proceedings of the thirty-first
SIGCSE technical Symposium on Computer science education, pages 352–356.
ACM Press, 2000.

[41] D. W. Price, A. Rudys, and D. S. Wallach. Garbage collector memory
accounting in language-based systems. In IEEE Symposium on Security and
Privacy, Oakland, California, May 2003.

[42] J. Regehr. Personal conversation, 2004.

[43] G. Rodriguez-Rivera, M. Spertus, and C. Fiterman. A non-fragmenting non-
moving, garbage collector. In Proceedings of the First International Symposium
on Memory Management, pages 79–85. ACM Press, 1998.

[44] M. P. Rogers. How sweet it is! A course in Cocoa. J. Comput. Small Coll.,
18(4):295–307, 2003.

[45] D. J. Roth and D. S. Wise. One-bit counts between unique and sticky.
In ISMM ’98: Proceedings of the 1st international symposium on Memory
management, pages 49–56, New York, NY, USA, 1998. ACM Press.

[46] R. Shaham, E. K. Kolodner, and M. Sagiv. Heap profiling for space-efficient
java. In Proceedings of the ACM SIGPLAN 2001 Conference on Programming
Language Design and Implementation, pages 104–113. ACM Press, 2001.

[47] Soper, P., specification lead. JSR 121: Application isolation API specification,
2003. http://www.jcp.org/.

[48] Sun Microsystems. Java Native Interface Specification, chapter 2.
2003. http://java.sun.com/j2se/1.5.0/docs/guide/jni/spec/design.
html#wp17074.

[49] D. Tarditi. Compact garbage collection tables. In Proceedings of the Second
International Symposium on Memory Management, pages 50–58. ACM Press,
2000.

[50] D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper, and P. Lee. Til:
a type-directed optimizing compiler for ml. In PLDI ’96: Proceedings of
the ACM SIGPLAN 1996 conference on Programming language design and
implementation, pages 181–192, New York, NY, USA, 1996. ACM Press.

128

[51] A. Wick and M. Flatt. Memory accounting without partitions. In Interna-
tional Symposium on Memory Management, 2004.

[52] A. Wick, M. Flatt, and W. Hsieh. Reachability-based memory accounting. In
Proceedings of the 2002 Scheme Workshop, Pittsburgh, Pennsylvania, October
2002.

[53] P. R. Wilson. Uniprocessor garbage collection techniques. In Proceedings of
the International Workshop on Memory Management, pages 1–42. Springer-
Verlag, 1992.

[54] T. Yuasa. Realtime garbage collection on general-purpose machines. Journal
Of Systems And Software, 11:181–198, 1990.

