
Optimizing Appli
ations with g

 & glib
Ulri
h Drepper�Cygnus SolutionsSunnyvale, CAAugust 9th, 1999

�drepper�
ygnus.
om 1

Contents1 What is this about? 32 Using Optimizations Performed at Compile-Time 32.1 Dead Code Elimination Works 32.2 Saving Fun
tion Calls . 52.3 Compiler Intrinsi
s . 82.4 builtin
onstant p . 92.5 Type-generi
 Ma
ros . 103 Helping the Compiler 123.1 Fun
tions of No Return . 123.2 Constant Value Fun
tions . 133.3 Di�erent Calling Conventions . 143.3.1 std
all . 153.3.2 regparm . 163.4 Sibling Calls . 173.5 Using goto . 174 Knowing the Libraries 174.1 str
py vs. mem
py . 184.2 str
at and strn
at . 194.3 Optimized memory allo
ation . 234.4 Some more Memory Issues . 264.5 Using the Best Types . 274.6 Non-Standard String Fun
tions 285 Writing Better Code 305.1 Writing and Using Library Fun
tions Corre
tly 315.2 Computed gotos . 326 Pro�ling 346.1 gprof Pro�ling . 356.2 sprof Pro�ling . 39

2

1 What is this about?Most programmers think that the programs they write are fairly well writtenand perform as good as possible. In most
ases this is not
orre
t. Many peoplethink they know how to do it right but they most probably miss something.Writing optimized programs is a learning pro
ess. One learns about a newte
hnique every time one looks sharply at the own
ode and thinks about theintera
tions with the underlying libraries or the pro
essor.In this paper we will dis
uss several optimization te
hniques whi
h the au-thor learned in the past years of programming. It is
ertainly not a
ompletelist nor is it a stru
tured approa
h. It is merely a list of di�erent te
hniquesdo
umented using illustrative examples. All examples are given in C but mostof the te
hniques
an be applied to C++ as well. Using templates as allowed instandard C++ is not at all
overed.This paper is not about optimizations performed in the optimizer of the
om-piler. This is a
ompletely di�erent �eld and a lot of literature exists des
ribingthe possibilities. What we will des
ribe are
hanges to the sour
e
ode and waysto �nd out where they are needed. The remainder of the paper is stru
tured in�ve parts:� Using optimizations performed at
ompile-time (starting at page 3).� Helping the
ompiler to generate better
ode (starting at page 12).� Knowing the libraries and understand the fun
tion implementation (start-ing at page 17).� Writing better
ode in the �rst pla
e (starting at page 30).� Pro�ling (starting at page 34).To read and understand the following text it is ne
essary that the readerknows how the prepro
essor works, has advan
ed knowledge about the C pro-gramming language itself, and preferably knows the fun
tions of the C language.The text also des
ribes a few ma
hine spe
i�
 optimizations but it is OK to ig-nore these points if one is not familiar with the des
ribed ar
hite
ture.2 Using Optimizations Performed at Compile-TimeIn this se
tion we will des
ribe optimizations whi
h
an always be performedwithout the fear of negative impa
ts. The optimizations are performed a
ompiletime by the
ompiler. The worst
ase is that the
ode behaves as if no optimiza-tion at all is performed. Therefore these kind of optimizations should alwaysbe performed sin
e they don't have a negative impa
t. But it should perhapshappen as the last step sin
e it might disable some of the other optimizations.2.1 Dead Code Elimination WorksUnexperien
ed users are often afraid of leaving dead
ode behind. Dead
odeis used to des
ribe
ode whi
h never gets exe
uted. In most
ases this fear is3

unfounded. The
ompiler will in most
ases re
ognize dead
ode and
ompletelydrop it from the program. When using g

 this is only true if optimization isenabled but this his hopefully always true. g

 generates truly horrible
odewhen no optimization is enabled.One not very serious example is this:long intadd (long int a, void *ptr, int type){ if (type == 0)return a + *(int *) ptr;elsereturn a + *(long int *) ptr;}Depending on the parameter type the obje
t pointed to by the parameterptr is either an int or a long int. On the �rst view the
ode makes perfe
tsense and seems to be optimal. But it is not sin
e in some environments intobje
ts and long int obje
ts are a
tually the same. In this
ase the if and theelse
lause of the fun
tion exe
ute exa
tly the same
ode. This
an be avoidedat no extra
ost and the solution will work if int and long int are not thesame.long intadd (long int a, void *ptr, int type){ if (sizeof (int) == sizeof (long int) || type == 0)return a + *(int *) ptr;elsereturn a + *(long int *) ptr;}The result of the sizeof operator is always known at runtime and thereforethe added
onditional expression always
an be
omputed by the
ompiler. Ifthe types have the same size the expression evaluates to true and therefore theif
ondition always is true. In this
ase the else
lause is never used and the
ompiler
an re
ognize this and
ompletely elide it. If the types have di�erentsizes the
ode is equivalent to the initial
ode of the example.When writing low-level programs whi
h are expe
ted to run on a variety ofplatforms one often
omes a
ross situations like the above. It is important toremember tri
ks like the one just des
ribed. In some situations it is not possibleor wanted to a
tually add something to the C
ode. To get the
orre
t result onemust the prepro
essor to hide
ertain
ode
omplete. In this
ase one
annotuse the sizeof operator. Instead one should use the ma
ros from limits.h:#in
lude <limits.h>long intadd (long int a, void *ptr, int type){#if LONG_MAX != INT_MAXif (type == 0)return a + *(int *) ptr; 4

else#endifreturn a + *(long int *) ptr;}Here the prepro
essor does the work. In this example it is not ne
essarybut it shows how it works. The prepro
essor is required to be able to performarithmeti
 operations and
omparisons using the widest available representation(at least with 64 bits). Whi
h version is the better
annot be answered
learly.1From the
ompiler perspe
tive both ways are nearly identi
al sin
e dead
odeelimination works.2.2 Saving Fun
tion CallsIf the body of a fun
tion is very small the overhead asso
iated with the fun
tion
all
an be really high
ompared to the time spend in the fun
tion. Typi
alexamples of this in the standard library are many of the string and math fun
-tions. There are two solutions to this problem: to use ma
ros or to use inlinefun
tions to implement the fun
tion in question.The GNU CC manual says that inline fun
tions are as fast as ma
ros andmu
h safer. This is true, in most
ases. There are examples where the equivalentma
ro is faster and ma
ros
an, using other g

 features, be made as safe asinline fun
tions. Generally the suggestion is to use inline fun
tions as long asnone of the optimizations depend on the use of a ma
ro. Two reasons are:� The use of allo
a (see page 23).� The use of builtin
onstant p, see page 9.In either
ase there are a few things whi
h the programmer has to take
areof. When using inline fun
tions it is not ne
essary to treat parameters spe
ially.The handling of parameters happens as in normal fun
tions, i.e., ea
h expressionused for the parameters is evaluated exa
tly on
e. If the header
ontaining theinline fun
tion is used outside the own proje
t (e.g., if the proje
t is a library)than it is important to make sure that used identi�ers to no
on
i
t with ma
rosde�ned by the user and the system. The C library implementation thereforeprepend to all identi�ers is situations like this. A user appli
ation
annotlegally do this. One reasonably safe way is to append .A last problem with inline fun
tions is that they are not always used if theyare de
lared extern. The GNU C
ompiler never expands inline fun
tions ifno optimization is enabled. It also allows to disable the inline fun
tion useexpli
itly even if it performs all other optimizations. This means for the use ofinline fun
tions that one has to take this
ase into a

ount and always providereal, non-inline implementations of these fun
tions as well. If the
ompilerexpands the inlines these fun
tions might never be used. If one puts the
odefor these fun
tions in an ar
hive and then links against this ar
hive insteadof the obje
t dire
tly, the linker will add these obje
ts to the �nal programonly if the fun
tions are really needed. Inline fun
tions de�ned as stati
 arealways expanded but this overrides the judgment of the
ompiler whether it1Some people are strongly opinionated. The guys at USL have not even implemented #ifin the Plan 9 C
ompiler making it impossible to write it in the latter form.5

is worthwhile to inline the fun
tion or not. Espe
ially with the use of optionslike -Os (optimize for spa
e) it is questionable whether stati
 inline fun
tionsshould be used.Writing
orre
t and safe ma
ros is mu
h harder. First of all, one has toprote
t the parameters. It is important to remember that the passed values forthe parameters are passed verbatim, without evaluation to the pla
es where thevariable appears. This requires�
orre
tly adding parenthesis. One must always be prepared for the
asewhere the parameter is not a simple value and variable.#define mult(a, b) (a * b){ int a = mult (1 + 2, 3 + 4)}The erroneous de�nition of mult above leads to the surprising result of 11for a. The
orre
t form is#define mult(a, b) ((a) * (b))� that bra
es to introdu
e new blo
ks are not used dire
tly. The followingexample shows a problem situation:#define s
ale(result, a, b,
) \{ \int
__ = (
); *(result) = (a) *
__ + (b) *
__; \}{ int r;if (s != 0)s
ale (&r, e1, e2, s);elser = 0;}The surprising result of the expression above is that result always getsthe value zero assigned. Corre
tly written the multma
ro would not
ausethis problem:#define s
ale(result, a, b,
) \do { \int
__ = (
); *(result) = (a) *
__ + (b) *
__; \} while (0)� The above example already shows the next important point: don't intro-du
e unwanted side e�e
ts by evaluating the expressions passed as parame-ters more than on
e. This is why the variable
 was introdu
ed. Without6

the variable the expression would have been evaluated twi
e. There is alsothe problem that a parameter value is not evaluated at all. If the ma
rois meant as a repla
ement for a fun
tion this is also a problem. Thereforethe s
ale ma
ro is not written like this:#define s
ale(result, a, b,
) \do { \int
__ = (
); *(result) =
__ == 0 ? 0 : (a) *
__ + (b) *
__; \} while (0)This
ould safe some time but would lead to strange results (
ompared toa real fun
tion) if the values passed for the se
ond and third parameterhave side e�e
ts.� Also visible in the s
ale example is the problem ma
ros have with non-trivial expressions. As soon as a variable is needed one
annot use simpleexpressions anymore. One has
reate a new blo
k whi
h of
ourse meansthe ma
ro
annot have a return value. One has to use awkward methodsas in the s
ale example where the variable, the result has to be storedin, is given as a parameter. It would be mu
h
leaner if the ma
ro wouldreturn the value and one
ould assign it. This is not possible in standardC, but it is possible in GNU C.#define s
ale2(a, b,
) \(__extension__({ \int
__ = (
); \(a) *
__ + (b) *
__; \})){ int r;if (s != 0)r = s
ale (e1, e2, s);elser = 0;}The GNU C feature used here is
alled \statement expression" and isdes
ribed in the GNU CC manual. It basi
ally is a normal blo
k with theex
eption that the value of the last statement is passed up as the resultof the expression. Please note that it is not ne
essary to use the do ...while (0) tri
k.There remains one new feature introdu
ed in the last example to be ex-plained. The extension keyword added tells the
ompiler that theauthor knows s/he uses a GNU C extension. Therefore the
ompiler doesnot issue a warning even if it is asked to point out all ISO C violations.Therefore extension should be used in all headers whi
h
an be usedoutside the proje
t. 7

2.3 Compiler Intrinsi
sMost modern C
ompilers know intrinsi
 fun
tions. These are spe
ial inlinefun
tions, whi
h are provided by the
ompiler itself. Unlike inline fun
tions theyare always used, the
ompiler
annot opt for using an external implementation.Intrinsi
s known to g

 as of version 2.96 are:� builtin allo
adynami
ally allo
ate memory on the sta
k� builtin ffs�nd �rst bit set� builtin abs, builtin labsabsolute value of an integer� builtin fabs, builtin fabsf, builtin fabslabsolute value of
oating-point value� builtin mem
py
opy memory region� builtin mem
mp
ompare memory region� builtin memsetset memory region to given value� builtin str
mp
ompare two strings� builtin str
py
opy string� builtin strlen
ompute string length� builtin sqrt, builtin sqrtf, builtin sqrtlsquare root of
oating-point value� builtin sin, builtin sinf, builtin sinlsine of
oating-point value� builtin
os, builtin
osf, builtin
osl
osine of
oating-point value� builtin div, builtin ldivinteger division with rest� builtin fmod, builtin fremmodule and remainder of
oating-point division8

There are a few more intrinsi
s but they are very useful. It is not guar-anteed that all intrinsi
s are de�ned for all platforms. Therefore one must beprepared for the
ase that an intrinsi
 is not available and one has to use a realimplementation.One important and very useful feature of some intrinsi
 fun
tions is thatthey
an
ompute their results at
ompile-time if the parameters are
onstantat
ompile-time. E.g., it is possible thatstrlen ("foo bar")is dire
tly repla
ed with the value seven. This is something whi
h we will usein the remainder of this paper o� and on.2.4 builtin
onstant pThough the name builtin
onstant p looks very mu
h like the names of theintrinsi
 fun
tions mentioned in the last se
tion it is no intrinsi
. It is instead anoperator similar to sizeof. Sin
e it follows the good old LISP tradition to usethe ending p one
an see from the name that it is a predi
ate. It takes a singleparameter and the return value is nonzero if the parameter value is
onstant atruntime.This proofs to be a very useful thing to have. Many of the optimizations inthe remainder of this text as well as many of the optimization implemented inthe GNU C library headers depend on this feature. To show how it is used we
ontinue the example from page 4. When third parameter is
onstant the typeof the obje
t pointed to by the se
ond parameter
an be dedu
ed at
ompiletime. Therefore we add in addition to the improved implementation above inthe header with the prototype of this fun
tion the following ma
ro:#define add(a, ptr, type) \(__extension__ \(__builtin_
onstant_p (type) \? ((a) + ((type) == 0 \? *(int *) (ptr) : *(long int *) (ptr))) \: add (a, ptr, type)))This ma
ro
hanges the behavior of the add fun
tion only if the third pa-rameter is
onstant. If it is not
onstant the real implementation is
alled.2Otherwise, the expression (type) == 0
an be evaluated at
ompile time atthe whole expression evaluates to either(a) + *(int *) (ptr)or (a) + *(long int *) (ptr)In this small example it might not be visible but the builtin
onstant poperator allows to avoid
ode bloat in situation where a ma
ro de�nition onlyleads to favorable
ode if due to
ompile-time
omputations, value propagation,and dead
ode elimination the
ode size is redu
ed drasti
ally. The followingreal-world example shows this more
learly.2It is hopefully
lear why despite the
all to add in the last line this is no re
ursive
all tothe ma
ro. 9

#define strdup(s) \(__extension__ \(__builtin_
onstant_p (s) && __string2_1bptr_p (s) \? (((__
onst
har *) (s))[0℄ == '\0' \? (
har *)
allo
 (1, 1) \: ({ size_t __len = strlen (s) + 1; \
har *__ret = (
har *) mallo
 (__len); \if (__ret != NULL) __ret = (
har *) mem
py (__ret, s, __len); __ret; })) \: strdup (s)))The use of builtin
onstant p prevents the use of the whole bun
h oflines of this ma
ro if the parameter is not
onstant. For the sake of it, oneshould on
e look at the
ode to see how mu
h
ode would have to be generatedif one would always use the repla
ement. We simply
ould not write su
h a ma
rowithout builtin
onstant p guarding the expansion (the string2 1bptr pis not interesting here; interested parties should look at the <bits/string2.h>header of a glib
 2.1 installation).For a
onstant parameter s (whi
h must be a string
onstant) most of theexpression
an be
omputed at runtime. Sin
e the
omputer
an see the �rst
hara
ter of the string it knows whether the
allo

all has to be made orwhether the statement expression has to be exe
uted. In the statement expres-sion the result of the strlen
all
an be determined at
ompile-time. One
ansee that in either
ase the pie
e of
ode whi
h remains a very small. Due to theoptimizations performed by the
ompiler many of the operations of the
ode donot have be exe
uted at runtime. In the above
ase, for a non-empty string, onewould in the end have two fun
tion
alls and an if expression but it would notbe ne
essary to
ompute the string length whi
h might be a big advantage.2.5 Type-generi
 Ma
rosWhen writing a ma
ro to help speeding up
ertain operations it is sometimesthe
ase that one wants the same fun
tionality for di�erent type. For simpleoperations this is easy, one simply
an let the
ompiler �gure out how to use thearguments. It gets
ompli
ated as soon as one has to de�ne variables inside thema
ro and if di�erent fun
tions depending on the used type have to be used.Going ba
k to the s
ale example, we might want to write a type-generi
version of it. Instead of requiring the parameter
 to be of type int we makeit of whatever type the other parameters are. The
ompiler
an help to �gurethis out. Sin
e the result of operations on two numbers is of the larger type ofthe two operands the type we want to use for
 is the same type as the one fora + b +
. Using a feature in g

 it is possible to de�ne su
h a variable:#define tgs
ale(result, a, b,
) \do { __extension__ __typeof__ ((a) + (b) + (
))
__ = (
); *(result) = (a) *
__ + (b) *
__; \} while (0)This might be a bit
onfusing at �rst. But typeof (o) de�nes a typeand it is the same type o has. Therefore the
hanged line as before de�nes a10

variable
 and assigns a value to it. What we gained through this
hange isthat we now
an
all tgs
ale with arguments of type int, long long int andeven double and we always get
 to be de�ned the best way with respe
t tothe result.There is another situation where typeof helps writing
ode even if notmany variables are used and the
ommon type has to be dedu
ed. The ISO C9xstandard introdu
es a new header <tgmath.h> allows the user to write
odeusing the mathemati
al fun
tions without taking
are of the di�erent variantsfor the di�erent types. E.g., one
an
all sin and depending on the type ofthe parameter the
orre
t fun
tion from the six possibilities is pi
ked. A na��veapproa
h to this problem would be:#define sin(Val) \(sizeof (__real__ (Val)) > sizeof (double) \? (sizeof (__real__ (Val)) == sizeof (Val) \? sinl (Val) :
sinl (Val)) \: (sizeof (__real__ (Val)) == sizeof (double) \? (sizeof (__real__ (Val)) == sizeof (Val) \? sin (Val) :
sin (Val)) \: (sizeof (__real__ (Val)) == sizeof (Val) \? sinf (Val) :
sinf (Val))))But this is not
orre
t. Try to �nd out yourself before reading the footnoteand looking at the
orre
t
ode.3 To
orre
t the problem we have to introdu
ea variable and this is where typeof
omes into play again.#define sin(Val) \(__extension__ \({ __typeof__ (Val) __tgmres; \if (sizeof (__real__ (Val)) > sizeof (double)) \{ \if (sizeof (__real__ (Val)) == sizeof (Val)) __tgmres = sinl (Val); \else __tgmres =
sinl (Val); \} \else if (sizeof (__real__ (Val)) == sizeof (double)) \{ \if (sizeof (__real__ (Val)) == sizeof (Val)) __tgmres = sin (Val); \else __tgmres =
sin (Val); \} \else \{ \if (sizeof (__real__ (Val)) == sizeof (Val)) __tgmres = sinf (Val); \else __tgmres =
sinf (Val); \3The above is a single expression and it must have exa
tly one stati
ally determined type.This type must be the most general one to be able to represent values of all the other typeswithout loss. Therefore the returned value is always of type
omplex long double whi
h
ertainly is not what we want. 11

} __tgmres; }))This example summarizes almost everything we dis
ussed so far. If youwould have been able to write this
ode yourself you have learned the lessons.Otherwise a few explanations. Be
ause the
ode now is not a single expressionthe
ompiler does not �nd the most general type. In fa
t, the assignment to thevariable tgmres might for
e a
onversion to a narrower type. But this neverhappens for any rea
hed
ode: only one if the six assignments is really exe
utedand here the assignment does not loose any pre
ision. All the other
ases aredead
ode and will be eliminated by the optimizer.3 Helping the CompilerThe GNU C
ompiler o�ers a few extensions whi
h allow the
ompiler to des
ribethe
ode more pre
isely and also features to in
uen
e the
ode generation. Inthis se
tion we will des
ribe some of the features in examples so that the reader
an apply this later her/his own
ode.3.1 Fun
tions of No ReturnEvery bigger proje
t
ontains at least one fun
tion whi
h is used for fatal errorsand whi
h gra
efully terminates the appli
ation. Su
h a fun
tion is often nottreated in an optimal way sin
e the
ompiler does not know that the fun
tiondoes not return. Take the following example fun
tion and the use in some
ode.void fatal (...) __attribute__ ((__noreturn__));voidfatal (...){ ... /* Print error message. */ ...exit (1);}{ ... /* read d */ ..if (d == 0)fatal (...);elsea = b / d;... /* and so on */ ...}The fun
tion fatal is guaranteed to never return sin
e the fun
tion exit hasthe same guarantees. Therefore we annotated the prototype of the fun
tion withattribute ((noreturn)). This g

 extension lets the author spe
ifyexa
tly what we just said: the fun
tion will never return.Without this assuran
e the
ompiler would have to translate the if
lausein the example to something whi
h
orresponds the following pseudo-
ode:12

1 Compare d with zero2 If not zero jump to 53 Call fatal4 Jump to 65 Compute b / d and assign it to a6 ...This is not far from the optimum but there is unneeded
ode. The line 4 isnever exe
uted sin
e the
all to fatal does not return. If the
ompiler knowsabout this it will avoid this line and e�e
tively transforms the sour
e
ode tothis:{ ... /* read d */ ..if (d == 0)fatal (...);a = b / d;... /* and so on */ ...}Please note that the else is gone. This transformation would have beenillegal without the knowledge about the behavior of fatal. Even if this isno big improvement and does not happen that frequently one should alwaysthink about marking fun
tion this way. The
ompiler will emit warnings aboutunrea
hable
ode if one forgets about the behavior of the not-returning fun
tionand adds some extra
ode after the fun
tion
all.3.2 Constant Value Fun
tionsSome fun
tions one writes only depend on the parameters passed into it andthey have no side e�e
ts. Let us
all them pure fun
tions. This property is forthe
ompiler not visible from the prototype and so it always has to assume theworst, namely, that the fun
tion has side e�e
ts. But this is something whi
hprevents
ertain optimizations.As an example take the htons fun
tion whi
h either returns its argument(if the ma
hine is big-endian) or swaps the byte order (if it is a little-endianma
hine). There are no side e�e
ts and only the parameter is used to determinethe result. htons
learly is a pure fun
tion.If we now would have the following
ode we would get a less than optimalresult:{ short int serv = ... /* Somehow find this out */ ...;while (1){ stru
t so
kaddr_in s_in;memset (&s_in, '\0', sizeof s_in);s_in.sin_port = htons (serv);... /* lots of
ode where serv is not used */ ...}} 13

This might be the outer loop of a network appli
ation whi
h opens a so
ket
onne
tion to various hosts one after the other. The port to
onne
t to is alwaysthe same sin
e the variable serv does not
hange. Sin
e we said that htons is apure fun
tion this means that in every iteration of the loop the result of
all tohtons is the same. What we would like to see is an automati
 transformationof the
ode to something like this:{ short int serv = ... /* Somehow find this out */ ...;serv = htons (serv); /* On
e and for all
ompute the port */while (1){ stru
t so
kaddr_in s_in;memset (&s_in, '\0', sizeof s_in);s_in.sin_port = serv;... /* lots of
ode where serv is not used */ ...}}It is possible to a
hieve this by marking the htons fun
tion appropriately.g

 allows to give a fun
tion the attribute
onst whi
h tells the
ompilerthat the fun
tion is pure. I.e., if we would have addedextern uint16_t htons (uint16_t __x) __attribute__ ((__
onst__));before the
ode of the initial example we would have given the
ompiler the op-portunity to generate the
ode we want. Marking pure fun
tions using
onst
an mean quite an improvement and will and no
ase lead to worse
ode. There-fore one should always think about this optimization.3.3 Di�erent Calling ConventionsEa
h platform has spe
i�

alling
onventions whi
h makes it possible thatprograms/libraries written by di�erent people with possibly di�erent
ompilers
an work together. These
alling
onventions were de�ned when the platformwas young and maybe even the ar
hite
ture/pro
essor behaved di�erently.Anyhow, there might be platforms and situations where one wants to use adi�erent
alling
onvention the
ompiler supports be
ause it is more eÆ
ient.This is not possible in general but nobody
an forbid using this internally in aproje
t. If only fun
tions whi
h are never
alled outside the proje
t are de�nedwith a di�erent
alling
onvention there is no problem with this.Espe
ially on the Intel ia32 platform there are a few
alling
onventionssupported by the
ompiler whi
h are di�erent from the standard Unix x86
alling
onventions and whi
h
an o

asionally sped up the program signi�
antly. Otherplatforms might allow similar
hanges. The GNU C
ompiler manual explainsthe details. For this se
tion we will restri
t the des
riptions to the x86 platform.Changes to the
alling
onventions
an be made in two ways: generally
hange the
onventions by a
ommand line option or individually
hange it viaa fun
tion attribute. We will dis
uss only the latter sin
e using a
ommand line14

option is unsafe be
ause exported fun
tions might be e�e
ted or the
ommandline option might be missing in another
ompiler run. One should always preferfun
tion attributes.3.3.1 std
allThe �rst attribute
hanges the way the memory used to pass parameters is freed.Parameters are normally passed on the sta
k and at some point the sta
k pointerhas to be adjusted to take this into a

ount. The standard
alling
onventionson ia32 Unix is to let the
aller
orre
t the sta
k. This allows delaying the sta
k
orre
tion so that the e�e
t of more than one fun
tion
all
an be
orre
ted aton
e. On the other hand, if the std
all attribute is de�ned for a fun
tionthis signals that the fun
tion itself
orre
ts the sta
k. This is not a bad ideaon ia32 platforms sin
e the ar
hite
ture has a single instru
tion whi
h allowsreturning from the fun
tion
all and
orre
ting the sta
k in one instru
tion. Thee�e
t
an be seen in the following example.int__attribute__ ((__std
all__))add (int a, int b){ return a + b;}intfoo (int a){ return add (a, 42);}intbar (void){ return foo (100);}If this
ode gets translated the assembler output looks like this:8 add:9 0000 8B442408 movl 8(%esp), %eax10 0004 03442404 addl 4(%esp), %eax11 0008 C20800 ret $8...17 foo:18 0010 6A2A pushl $4219 0012 FF742408 pushl 8(%esp)20 0016 E8E5FFFF
all add20 FF21 001b C3 ret...27 bar:28 0020 6A64 pushl $10029 0022 E8E9FFFF
all foo29 FF 15

30 0027 83C404 addl $4, %esp31 002a C3 retOnly the important lines are shown in the listing above. What has to bere
ognized is that the fun
tion foo does not have to do anything after the
allof fun
tion add. The ret instru
tion in line 11 takes
are of the memory needfor the two parameters passed on the sta
k. The situation in fun
tion bar isdi�erent. Sin
e foo is not marked with the std
all attribute it does notfree the memory and this has to be done in the
aller. Therefore we see a sta
kpointer manipulation in line 30.From this short example it seems that using std
all only has advan-tages. Even the
ode generated is smaller (the size of the ret instru
tion in-
reased by two bytes, but the addl instru
tion has three bytes). But this isnot so. Sin
e the
ompiler is
lever and
orre
ts the sta
k pointer for severalfun
tion
alls whi
h are done is a row only on
e the gain in
ode size is not thatbig anymore. In addition to this future
hanges in the
ompiler will make han-dling the parameter allo
ation mu
h faster and using std
all will be
ome
ounter-produ
tive. Therefore this attribute should be used with
are.3.3.2 regparmA more interesting fun
tion attribute is regparm . It is only available forthe ia32 platform sin
e most other platforms do not have a standard
alling
onvention whi
h would make this ne
essary.Using the regparm attribute it
an be spe
i�ed how many integer andpointer parameters (up to three) are passed in registers instead of on the sta
k.This
an make a signi�
ant di�eren
e espe
ially if the work performed in the
alled fun
tion is not mu
h and the parameters have to be used immediately.The following not very realisti
 example
ode shows this dramati
ally.int__attribute__ ((__regparm__ (3)))add (int a, int b){ return a + b;}Compiling this with optimizations leads to the following assembler output (onlythe important lines are shown).8 add:9 0000 01D0 addl %edx, %eax10 0002 C3 retThis is the optimal
ode whi
h
ould be generated for the fun
tions. Withoutthe attribute the
ode would look as in the last se
tion (see page 15). Using thisway to pass parameters almost always has advantages. In the worst
ase the
alled fun
tion will store the variables itself somewhere on the sta
k if it needsthe registers for some other
omputations. But in man
ases the values
an beused dire
tly from the registers. 16

3.4 Sibling CallsOne optimization performed automati
ally by the
ompiler for many platformsis sibling
all optimization. If a fun
tion
all is the last thing happening in afun
tion the
ode whi
h usually gets generated looks like this:This is inside fun
tion F1n
all fun
tion F2n + 1 exe
ute
ode of F2n + 2 get return address from
all in F1n + 3 jump ba
k into fun
tion F1n + 4 optionally adjust sta
k pointer from
all to F2n + 5 get return address from
all to F1n + 6 jump ba
k to
aller of F1This is not surprising but often not optimal. If no work has to be done instep n + 4 or if this work
an be moved before the
all to F2 the return fromF2 stops in F1 only to jump again. It would be mu
h better if the return fromF2 would immediately end up at the
aller of F1.To do this the subroutine
all performed in F1 must be
hanged into ajump whi
h does not store a new return address. This way the return addressnormally used in F1 would be used in F2 and the result would be exa
tly as wewant.The
ompiler already performs this optimization o

asionally and in futurewill do it more often. The
onsequen
e for the programmer is that s/he shouldtry to arrange the
ode so that fun
tion
alls happen as the last thing in afun
tion.3.5 Using gotoDespite what Dijkstra says, using the goto
ommand sometimes has advan-tages. One should, though, not use it without knowing the e�e
t. Using gotosde�nitely disturbs the
ompiler to some extend sin
e the various
ow analysisme
hanisms don't work so well anymore.Before using goto one should look at the generated assembler
ode. Itwill also be ne
essary to understand the bran
h predi
tion me
hanism of thepro
essor. Equipped with this knowledge one
an insert in strategi
 pla
esgotos where normally the translation of a loop or
onditional statement wouldlead to di�erent
ode. gotos also might enable writing loops di�erently. Withgoto it is possible to leave a loop at an arbitrary point.It is not possible to give a general advi
e when to use goto. But if onede
ides to use it one should make sure to take measurements of the runtime.Normally the
ompilers do a quite good job and adding gotos might even hurt.For a
on
rete example how to use goto see page 32.4 Knowing the LibrariesPrograms are normally not written stand-alone. Instead they take advantageof libraries whi
h already exist on the system. The most important library isthe C library whose minimal
ontent is de�ned in the ISO C standard. Other17

standards and system-dependent extension broaden the range of available fun
-tions.A good programmer knows at least most of the available fun
tionality in thesystem libraries. But to truly master the programming it is also ne
essary toat least have a grasp of how the fun
tions are implemented. This allows theprogrammer to avoid using those fun
tions whi
h are slower in favor of thosewhi
h do a
omparable job but perform faster.In the remainder of this se
tion we will see several examples of fun
tions withsimilar fun
tionality but di�erent runtime
hara
teristi
s. The reader should beable to apply the knowledge easily to own programs.4.1 str
py vs. mem
pyHandling strings is in C programs a frequent task. There is no string data typeand so the operations have to performed by hand. This has the advantage thatthe programmer
an take into a

ount the overall use of the string and is notlimited to implement the immediate need only. E.g., If three strings have to be
on
atenated it is not ne
essary to �rst allo
ate memory for the
on
atenatingof the �rst two strings,
opy over the two strings and then perform the
on-
atenation with the third string. Instead it is possible to allo
ate immediatelyenough memory for the total result and then
opy the strings.This degree of freedom leads to very di�erent approa
hes people take andmost of them are all but optimal. The least people
an do is to take the
orre
tfun
tions for the task.At this point we only want to point out a few general points. Later se
tionswill give
on
rete examples. Here we will dis
uss the di�eren
es between themem* and the str* fun
tions so that this knowledge
an be used later.For using the mem* fun
tions one has to know the size of the region to
opy.This is the
ase most of the time sin
e a
orre
tly written program does notsimply
opy a string of unknown length (this
ould lead to
rashes and
an opense
urity holes). The main di�eren
e between the two fun
tion families is thatthe str* fun
tions normally don't need a separate length
ounter but on theother hand the mem* fun
tions know about the length of the region and therefore
an perform the work word-wise. We will des
ribe here the
hara
teristi
s ofthe most important fun
tions.str
py mem
pytwo values needed: sour
e and des-tination pointer three values needed: sour
e and des-tination pointer as well as length
ountworks bytewise
an work word-wisestrn
py mem
pythree values needed: sour
e and des-tination pointer as well as length
ount Likewisetwo abort
riteria: length rea
hedand NUL byte found one abort
riteria: length rea
hedworks byte-wise
an work word-wiseno g

 intrinsi
 g

 intrinsi
�lls rest of target bu�er with NUL just stops
opying18

What is here exempli�ed with mem
py and the string fun
tions str
py andstrn
py is also true for several other fun
tion
ombinations (e.g., mem
hr andstr
hr). It is therefore important to study the available mem* and str* fun
-tions are try to �nd out where their fun
tionality overlaps.The number of values needed is not an issue when the a
tual library fun
tionis
alled sin
e then the
ompiler
an use the registers marked as
all-
lobbered.But it is a problem if the fun
tions are inlined. In this
ase more used valuesmeans in
reased register pressure in the
urrent fun
tion. For ma
hines withsmall register sets it might mean spilling. But also from the algorithm's point ofview more values
an mean more
ompli
ated
ode. But this is not ne
essarilythe
ase. In general is true that fewer used values are better then more.Of importan
e as soon as the fun
tions are used on strings whi
h are not onlya few
hara
ters long is whether the pro
essing
an happen word- or byte-wise.The str* fun
tions all work byte-wise be
ause the lengths of the strings are notknown.4 On the other hand the lengths of the memory regions handed over tothe mem* fun
tions are always known sin
e they are given as an argument to thefun
tion
all. A last important di�erentiator is the number of abort
riteria.The more
riteria there are, the more
omplex the loops are, the slower the
odeis. The table above mentions this for themem
py and strn
py fun
tions: mem
py stops when all bytes are
opied. Thestrn
py fun
tion has to
he
k for the NUL byte and
he
k the length parameterto not ex
eed the maximal number of
hara
ters to
opy. The latter is
learlyslower.The re
ommendation for the use of the three fun
tions above is therefore:� Never use strn
py unless it �ts exa
tly in the
urrent situation. Normallythe string size is known.� If the strings to
opy are known to be short use str
py.� If it is possible that the handled strings might be longer use mem
py. Theuse of mem
py will not hurt for short strings either sin
e the performan
edi�eren
e for short strings is not big.We will see in the remainder of this paper a few more examples of the use ofmem* and str* fun
tions. In many
ases one
an possibly gain a lot by
arefulanalysis of the situation. But the rule of thumb, to use the mem* fun
tions whenpossible, should lead to overall good results.4.2 str
at and strn
atA golden rule of optimal string handling
ode is:Never ever use str
at and strn
at!It is always wrong to use these two fun
tions. Before
on
atenating a stringto another, one has to know whether there is enough room. For this it isne
essary to know the
urrent end of the existing string and the length of thestring to be
opied. But then it is
ompletely unne
essary to use str
at. Thefollowing is similar to often seen
ode:4This must be
lari�ed a bit. \Working byte-wise" here means that every single byte mustbe examined. It is possible that str* fun
tions read memory word-wise (whi
h is possiblewith aligned a

esses). But still every single byte must be tested for a NUL byte.19

{
har *buf = ...;size_t bufmax = ...;/* Add `s' to the string in buffer `buf'. */if (strlen (buf) + strlen (s) + 1 > bufmax)buf = (
har *) reallo
 (buf, (bufmax *= 2));str
at (buf, s);}This looks quite ni
e from the programmers point of view but the str
atfun
tions is expensive. What the fun
tion has to do �rst is to sear
h for theend of the existing string. This is equivalent to the strlen
all, it thereforedupli
ates work already done. Next the string s must be
opied. But though itis known from the strlen
all how long the string is the str
at fun
tion hasto perform a normal string
opy operation (see the last se
tion for why this isnot good). It is mu
h better to write the
ode like this:{
har *buf = ...;size_t bufmax = ...;size_t slen;size_t buflen;/* Add `s' to the string in buffer `buf'. */slen = strlen (s) + 1;buflen = strlen (buf);if (buflen + slen > bufmax)buf = (
har *) reallo
 (buf, (bufmax *= 2));mem
py (buf + buflen, s, slen);}This version
ounters both disadvantages of str
at: when
opying we arenot looking through the existing string again sin
e we know how long it is andsimply
an add at the end. Also the
opying happens using mem
py be
ausewe know how long the string s is. We will give two more examples on how toimplement string
on
atenation by implementing two often needed fun
tions,this time with error
he
king:
har *
on
at2 (
onst
har *s1,
onst
har *s2){ size_t s1len = strlen (s1);size_t s2len = strlen (s2) + 1;
har *buf = (
har *) mallo
 (s1len + s1len);if (buf != NULL)(void) mem
py (memp
py (buf, s1, s1len), s2, s2len);return buf;} 20

This
ode uses a fun
tion whi
h is not de�ned by the ISO C or Unix standardand didn't appear so far. memp
py, available in the GNU lib
, works like mem
py.It
opies the given number of bytes from the sour
e to the target bu�er. Butinstead of returning a pointer to the beginning of the bu�er it returns a pointerjust after the last
opied byte.In the
ode above it
an be seen how this di�erent behavior
an be used.The returned value
an be used immediately in the next fun
tion
all sin
e it isexa
tly the position where the next
opy operation must be started. In addition,by returning the pointer whi
h just was used for
opying the memp
py fun
tion
an be implemented a bit faster than the mem
py fun
tion. The latter mustreturn the beginning of the bu�er whi
h might not be in a register anymore.What why is then the fun
tion mem
py used to perform the se
ond
opyingin the example above if memp
py is possibly faster? The �rst observation isthat we don't need the return value and it therefore does not matter from the
orre
tness standpoint whi
h fun
tion is used. The answer to the question is:g

 knows about mem
py and has an intrinsi
 fun
tion but it does not (in themoment) know about memp
py. Therefore the use of mem
py in some situationsis faster.Now for a bit more
ompli
ated example whi
h does not allow su
h an easyargumentation as the fun
tion above. We implement a fun
tion whi
h
on
ate-nates arbitrary many strings. The problem here is that we
annot easily savethe lengths of the parti
ipating strings in a pair of variable. Or
an we?
har *
on
at (
onst
har *s, ...){ size_t nlens = 127; /* Minimal maximal number of parameters. */size_t *lens = (size_t *) allo
a (nlens * sizeof (size_t));size_t
nt = 0;va_list ap;va_list ap_save;
onst
har *
p;size_t total;
har *retval;if (s == NULL)return (
har *)
allo
 (1, 1);total = lens[
nt++℄ = strlen (s);va_start (ap, s);__va_
opy (ap_save, ap);while ((
p = (
onst
har *) va_arg (ap,
onst
har *)) != NULL){ if (
nt == nlens){ size_t *newp = (size_t *) allo
a ((nlens *= 2)* sizeof (size_t));lens = (size_t *) mem
py (newp, lens,
nt * sizeof (size_t));}total += lens[
nt++℄ = strlen (
p);} 21

retval = (
har *) mallo
 (total + 1);if (retval != NULL){
har *endp = (
har *) memp
py (retval, s, lens[0℄);
nt = 1;while ((
p = (
onst
har *) va_arg (ap_save,
onst
har *))!= NULL)endp = (
har *) memp
py (endp,
p, lens[
nt++℄);*endp = '\0';}return retval;}This
ode might need a little bit of explanation. First, the dots in theparameter list this time really mean a variable length parameter list and not,as in earlier examples, that something is left out. We allow the fun
tion totake arbitrary many parameters (within the limits of the
ompiler, of
ourse).All parameters must be strings ex
ept for the last one whi
h must be a NULLpointer. Even only a NULL pointer is allowed.Se
ond, we are using the same method as in the
on
at2 fun
tion: we �rstdetermine how mu
h memory is needed, allo
ate it and then
opy the strings.An alternative approa
h would be to enlarge the destination bu�er on demand,possibly several times during the fun
tion run. While this is possible we don'timplement the fun
tion this way sin
e the resizing with the asso
iated
opyingof existing
ontent is very
ostly. Please note in the
ode above the user of thereturn value of mem
pyThe problem the
hosen implementation fa
es is that with the arbitrarynumber of parameters it is not so easy to remember all the string lengths whi
hmust be determined �rst to determine how mu
h memory is needed. In additionwe don't want to add any limitations. Therefore the fun
tion allo
ates memoryfor the string lengths on the
y. Sin
e this information is not needed outside thefun
tion the memory
an be allo
ated using allo
a (for a detailed dis
ussionof allo
a see the next se
tion). Even though this also involves
opying it is notas bad as
opying the string sin
e a) all obje
ts are of �xed width (while strings
an be arbitrarily long) and b) be
ause this probably never has to happen sin
e
on
atenations of more than 127 strings at on
e are not often needed.5Interesting, sin
e not often used, is also the use of va
opy. This allowsportably to walk over a parameter list twi
e. It is not generally possible tosimply assign two obje
ts of type va list to one another.The rest of the fun
tion is easy. The spe
ial
ase of only a NULL pointerargument is handled early. The
allo

all allo
ates a memory region of 1byte length and initializes it to zero, whi
h makes it a zero-length string. The
ode to
opy the strings is without surprising. We are now using memp
py forall the
opy operations to always get a pointer to the following byte. Sin
e wenever
opy the NUL byte terminating the string we must in the end expli
itlyterminate the string in the bu�er whi
h will be returned.5Those who noti
ed that the handling of the array lens is not perfe
t sin
e it wastes sta
kspa
e are
orre
t. But this is an example only.22

Just for
omparison, here is how the
opying loop of an implementationwhi
h uses str
at
ould look like:
har *
on
at (
onst
har *s, ...){ size_t
nt = 0;va_list ap;va_list ap_save;
onst
har *
p;size_t total;
har *retval;if (s == NULL)return (
har *)
allo
 (1, 1);total = strlen (s);va_start (ap, s);__va_
opy (ap_save, ap);while ((
p = (
onst
har *) va_arg (ap,
onst
har *)) != NULL)total += strlen (
p);retval = (
har *) mallo
 (total + 1);if (retval != NULL){ str
at (retval, s);while ((
p = (
onst
har *) va_arg (ap_save,
onst
har *))!= NULL)str
at (retval,
p);}return retval;}This looks mu
h simpler. But this implementation is horrible. The
om-plexity is O(n � m), where n is the average lengths of the strings and m thenumber of strings. The problem is that str
at has to s
an over the existingtext over and over again. The optimized implementation above has the expe
ted
omplexity of O(n). Even if the non-linear nature of the str
at based imple-mentation does not ki
k in for few and small strings it is nevertheless noti
eableeven then. Hopefully this is enough eviden
e to proof the statement from thebeginning of this se
tion.4.3 Optimized memory allo
ationThe example in the previous se
tion already used two di�erent kinds of memoryallo
ation:
onventional allo
ation (mallo
,
allo
) and sta
k-based allo
ationwith allo
a. The use of allo
a isn't ne
essary and
an easily be repla
ed bya mallo

all. The question now is why should optimized programs use allo
awherever possible. 23

To answer the question it is ne
essary to understand how the two groupsof fun
tions work. The mallo
 group requests the memory it needs from thekernel for permanent use (until it is freed). Traditionally this allo
ation was onthe so
alled head, an area designated by a break pointer whi
h
an be modi�edby the sbrk system
all. Modern mallo
 implementations use on some systemsfor large memory areas a di�erent method. They allo
ate the memory usingmmap. This has on some systems the advantage that resizing is very
heap. Inany
ase the new pie
es of memory must be somehow noted in the internal datastru
tures whi
h the mallo
 implementation keeps to handle frequent freeingand re-allo
ating eÆ
iently. At the minimum the size of the blo
k must beremembered somewhere. A
all to mallo
 is therefore not
heap. On a modernsystem one would have to allow at least 100
y
les. If the memory a
tually hasto be retrieved from the kernel the number instantly rises to several thousand(one or two orders of magnitude more).On the other hand the implementation of the allo
a fun
tion is trivial.At least if the
ompiler dire
tly supports it as an inline. This is what weassume throughout the whole paper. In this
ase the allo
a
all is a simplemanipulation of the sta
k pointer. The sta
k pointer is
orre
ted to leave thespe
i�ed number of bytes, given in the arguments, between the last used obje
ton the sta
k and the
urrent sta
k pointer. The starting address of the blo
kis the result of the fun
tion
all. I.e., we are talking about a single assemblerinstru
tion. The allo
a implementation therefore is two orders of magnitudefaster than the optimal
ase of
alling the mallo
 fun
tion.If this is not reason enough, there is another big advantage. While theprogram must
all free on the returned pointer, the memory allo
ated withallo
a gets automati
ally re
y
led as soon as the fun
tion is left. The free
all must not be underestimated. It is often more expensive than the mallo

all sin
e it has to enqueue the new blo
k in the internal data stru
tures and ithas to see whether it has to return memory to the system. This
an make the
all very expensive.This brings up the question why is there a mallo

all if allo
a has all theadvantages. The question was already partly answered in the last paragraph.allo
a
an only be used if the memory blo
k is only used in the
urrent fun
tionof in fun
tions
alled by it. The memory blo
k is invalid as soon as the fun
tionreturns from the
urrent fun
tion. Therefore mallo
 must be used if the liverange of the obje
t must extend over the use of the
urrent fun
tions. Anotherlimitation of allo
a is that most systems install a not too generous limit of thesta
k size. This is done for safety reasons to
at
h unlimited re
ursion early. Forallo
a this means that large memory allo
ations must happen using mallo
sin
e the heap has mu
h less restri
tions. In addition the mallo
 implementationand the kernel
an handle large allo
ations must better this way (at least onsystems using mmap).Now it's time for an example. allo
a is extremely useful for making temporary
opied. This is how it should not be done:inttemp
opy (
onst int *a, int n){ int *temp = (int *) mallo
 (n * sizeof (int));int_fast32_t
nt; 24

int result;if (temp == NULL)return -1;for (
nt = 0;
nt < n; ++
nt)temp[
nt℄ = a[
nt℄ ^ 0xffffffff;result = foo (temp, n);free (temp);return result;}As dis
ussed above the mallo

all is mu
h more expensive and we also needa free
all. The following is better:inttemp
opy (
onst int *a, int n){ int *temp = (int *) allo
a (n * sizeof (int));int_fast32_t
nt;for (
nt = 0;
nt < n; ++
nt)temp[
nt℄ = a[
nt℄ ^ 0xffffffff;return foo (temp, n);}This fun
tion is not only faster, it is also smaller due to the two droppedfun
tion
alls. And it
ould allows more optimization due to the sibling fun
tion
all at the end. And there is one more point: it is not ne
essary to test for thesu

ess of the allo
a
all. It always su

eeds sin
e it is only a simple pointermanipulation. If the maximal sta
k size is rea
hed the problem will not be
omevisible in the allo
a
all but instead in the �rst a

ess of this memory. This isquite dangerous but if the sta
k is reasonably sized and one does not put toobig obje
ts on the sta
k it should never give any problems. And if there areproblems whey do not result in silent errors but instead
ause the appli
ationto
rash whi
h then
an be analyzed easily.One kind of obje
t whi
h frequently has to be dupli
ated temporarily arestrings. This is why the GNU lib
 provides two spe
ial features to ease this:strdupa and strndupa. The behavior is
omparable to the fun
tions strdupand strndup with the one di�eren
e that the returned strings are allo
atedusing allo
a instead of mallo
. But this automati
ally means that strdupaand strndupa must be ma
ros and no fun
tions!One
ould think strdupa
ould be implemented like this:/* Please note this is WRONG!!! */#define strdupa(s) \(__extension__ \({ __
onst
har *__old = (s); \25

size_t __len = strlen (__old) + 1; \(
har *) mem
py (__builtin_allo
a (__len), __old, __len); \}))But the mem
py is very wrong! Everybody who uses allo
a must be awareof this problem. We already explained that allo
a works by manipulating thesta
k pointer. But on some systems parameters for fun
tion
alls are also put onthe sta
k. If this happens for the above mem
py
all we
ould get the followingsequen
e of operations:1 push len on the sta
k,
hange sta
k pointer2 push old in the sta
k,
hange sta
k pointer3 modify sta
k pointer for newly allo
ated obje
t4 push
urrent sta
k pointer on sta
k,
hange sta
k pointer5
all mem
py6 ...We
an now see why this is wrong. The memory allo
ated for the allo
a
all is in the middle of the parameter list. This
an never work. Thereforeeverybody using allo
a must remember never to
all allo
a in the parameterlist of a fun
tion
all. This in
ludes of
ourse hidden allo
a
alls as in strdupa.4.4 Some more Memory IssuesBeside the existen
e and possibilities of allo
a there are some more issues oneshould know about memory allo
ation to write optimal
ode.The nonzero
osts of a
all to any of the memory allo
ation fun
tions wasalready mentioned in the last se
tion. Espe
ially the reallo
 fun
tion is pos-sibly slow sin
e in the worst
ase it has to do the work of an mallo
, mem
py,and free
all all at on
e.The mallo
 implementation will try to keep the amount of used memory aslow as possible. I.e., memory whi
h is freed
ould be reused in a later mallo

all. To do this the implementation uses sophisti
ated data stru
tures to makethis possible. Things
an work pretty smoothly if memory needs would neverbe able to grow. But o

asionally a program
alls reallo
 to resize the bu�er.Shrinking is not a problem, but growing the bu�er is. Sin
e memory usage hasto be kept minimal allo
ated bu�er lie ba
k to ba
k in memory. But this meansthat there is often no room to grow a bu�er.Therefore a reallo

all might have to allo
ate a
ompletely new bu�er. Inthis
ase the
ontent of the old bu�er must be
opied over and the internal datastru
tures must be updates to
ontain the old bu�er as free.Programs using dynami
 memory allo
ation therefore should try to deter-mine the amount of needed memory �rst. As long as the amount is not un-derestimated and not heavily overestimated, the numbers need not be 100%a

urate. Shrinking the bu�er by a few bytes is not a problem. Getting at leasta usable guess for the amount of memory needed often is not easy, espe
ially ifit involves a lot of
omputation whi
h would have to be repeated when
opyingin the new bu�er. That it is possible to handle even these situations eÆ
ientlyshows the implementation of
on
at above. To preserve the results of
ostly
omputations in the �rst phase one uses memory allo
ated on the sta
k.A �nal point about memory allo
ation is to mention
allo
. Most peopleonly know mallo
, really, and free. But ISO C de�nes another fun
tion.26

allo
, as mallo
, returns a newly allo
ated blo
k of memory. The size isnot given as a single integer value but instead as two values, whi
h must bemultiplied to get the total size. The big di�eren
e to mallo
 is that before theallo
ated memory is returned to the
aller it is initialized with NUL bytes./* Allo
ate NMEMB elements of SIZE bytes ea
h, all initialized to 0. */void *
allo
 (size_t __nmemb, size_t __size);Now the reader
an of
ourse ask why this is important. It is easily possibleto
all memset after an su

essful mallo

all and initialize the memory. Thisis true, but in some situations
allo
 does not have to
all memset be
ausethe memory is already zeroed. This happens if the mallo
 implementation getsthe memory from the kernel via a mmap
all. The memory returned by mmap isguaranteed to be �lled with NUL bytes (unlike the memory made available bya sbrk
all). A good mallo
 implementation, e.g. the one in the GNU lib
,keeps tra
k of this fa
t and avoids the memset
all whenever possible.For this reason it is always, espe
ially for large allo
ation requests, better to
all
allo
 instead of
alling mallo
 and
learing the memory afterwards witha memset/bzero
all.4.5 Using the Best TypesThe following is not really part of the library but instead part of the libraryheaders. We are talking about available types and
hoosing the best one.The ISO C9x standard will feature an important new header: <stdint.h>.This header will
ontain de�nitions for now types whi
h will be portably usableover all ISO C9x
ompliant platforms.The �rst problem these new types are solving is a longstanding one. Toreliably ex
hange data from one system to another one
an either en
ode thedata in textual form (though this leaves to problem of di�erent
hara
ter setsopen) or one uses the same binary en
oding. The latter requires the very sameinterpretation of ea
h byte. This is not a problem for single-byte obje
t (likestrings). But if a obje
t
onsists of more than one byte we get problems withendianess. The main problem, though, is that types like long int have no�xed representation over di�erent platforms. There is no way to write a ISO C
ompliant program whi
h does not have this problem. ISO C9x will solve thisproblem with types like int32 t whi
h has a �xed length but we won't dis
ussthis here.We want to dis
uss two other
ategories of types introdu
ed in ISO C9x. The�rst group
onsists of int least8 t, uint least8 t, int least16 t, et
, forvarious sizes up to at least 64. The di�eren
e between int8 t and int least8 tand all the other pairs is that the former has a guaranteed size for the obje
tswhile the latter only guarantees that values whi
h use up to the given numberof bits,
an be stored without loss. An obje
t of type int least* t type is atleast as big as one of the �xed with type but might possibly be larger.The question now is where
an this be useful. The answer is: wherever val-ues are stored with a minimal known range and the exa
t representation is notimportant and some waste of memory is a

eptable. This happens quite fre-quently. E.g., a not too large array
ontaining 16 bit values whi
h are frequentlyused
an be stored, e.g., in an array of int or an array of int least16 t. The27

di�eren
e might be dramati
. The int least16 t type
an be adapted for thepro
essor ar
hite
ture in use and might be mu
h bigger, e.g., 64 bits. Thiswould allow a

essing the array values mu
h faster if the ar
hite
ture does notallow dire
tly to a

ess sub-word-size memory values. This is the
ase for manymodern ar
hite
tures. Whenever one
reates data stru
tures where the a

essmight be performan
e
riti
al, one should think about using the types above toallow the pro
essor to work best.While the int least* t types are mainly used for data obje
ts anothergroup of types is mainly used for the use in program
ode. Very often programs
ode must have variables whi
h are used as
ounters.{ short int n;...for (n = 0; n < 500; ++n)
[n℄ = a[n℄ + b[n℄;...}While this seems logi
al (a short int on interesting ma
hines has at least16 bits) sin
e it makes the variable n smaller than as if we would use int, the
ode is not really good. The variable n is kept in a register and therefore thesize of the variable does matter as long as it does not ex
eed the size of theregister. Sometimes
ompilers re
ognize situations like the above and simplyperform the operations whi
h are fastest even if they are not
orre
t for thegiven type (short int in the above
ase). But it is nevertheless better to helpthe
ompiler doing this. ISO C9x introdu
es appropriate types for this. The
hanged example looks like this:{ int_fast16_t n;...for (n = 0; n < 500; ++n)
[n℄ = a[n℄ + b[n℄;...}In this version the author expresses everything the
ompiler has to know.The
ounter variable must have at least 16 bits to hold the values from 0 to 500.How big the variable is a
tually is uninteresting, the program must only runfast. This allows the
ompiler/library to pi
k the best size for this de�nitionwhi
h in most
ases is a type with the same size as the registers.4.6 Non-Standard String Fun
tionsThe designers of the standard library added several useful fun
tions whi
h to-gether
over most of the needed fun
tionality. This does not mean that theprovided set of fun
tions allow optimal programs. In this se
tion some fun
tionsfrom the repertoire of the GNU lib
 will be introdu
ed whi
h add additionalfun
tionality whi
h allows writing more optional programs.A repeating task in programs whi
h handle strings is to �nd the end of thestring for further pro
essing. This is often implemented like this:28

{
har *s = ... /* whatever needed */...;s += strlen (s);... /* add something at the end of the string */ ...}This is not terribly eÆ
ient. The strlen fun
tion already had a pointer tothe terminating NUL byte of the string. The addition simply re
omputes thisresult. It is more appropriate to write something like the following:{
har *s = ... /* whatever needed */...;s = str
hr (s, '\0');... /* add something at the end of the string */ ...}Here we get immediately the result from the fun
tion
all sin
e the resultof the str
hr
all is a pointer to the byte
ontaining the sear
hed value. Sin
ewe are sear
hing for the NUL byte this is the end of the string. But this isworse than the original version. The problem is that the str
hr fun
tion hastwo termination
riteria: the given
hara
ter mat
hes of the end of the stringis rea
hed. That both test are the same in the above
ase is not seen (at leastit is not guaranteed). The GNU lib

ontains a fun
tion whi
h
an be used inthis situation and whi
h does not have this problem.{
har *s = ... /* whatever needed */...;s = rawmem
hr (s, '\0');... /* add something at the end of the string */ ...}The rawmem
hr fun
tion is mu
h like the mem
hr fun
tion but it does nottake a length parameter and therefore performs only one termination test. Itterminates only if the given
hara
ter is found. This makes rawmem
hr (s,'\0') the exa
t equivalent to s + strlen (s). The implementation of therawmem
hr fun
tion is very simple and fast. It is espe
ially fast on the Intel x86ar
hite
ture where it
an e�e
tively implemented with a single instru
tion.To see the fun
tion in a
tion we take a look at a pie
e of
ode whi
h
an befound in this form or another in many programs. It handles values given in thePATH-like style where a string
ontains individual values separated by a spe
i�

hara
ter, a
olon in many
ases. Code to iterate over all the individual valuesand produ
e NUL terminated strings from them
ould be done like this:{
onst
har *s = ... /* whatever needed */...;while (*s != '\0') 29

{
har *
opy;
onst
har *endp = str
hr (s, ':');if (endp == NULL)endp = rawmem
hr (s, '\0');
opy = strndupa (s, endp - s);... /* use
opy */ ...if (*s != '\0')++s;}}We are using the rawmem
hr fun
tion to �nd the end of the string if thereis no
olon anymore. The
opy on whi
h the rest of the fun
tion is workingon is
reated using strndupa. This introdu
es no arbitrary limits (as a stati
bu�er) and is fast (unlike a mallo

all). The above
onstru
t of �nding aspe
i�

hara
ter and, failing that, returning the end of the string appears sooften, that the GNU lib

ontains a spe
i�
 fun
tion for this. This fun
tion isa slightly modi�ed version of str
hr. The original
ode would s
an the lastpart of the input string twi
e although already the str
hr
all almost had theresult. This de�
ien
y is �xed by the new fun
tion.{
onst
har *s = ... /* whatever needed */...;while (*s != '\0'){
onst
har *endp = str
hrnul (s, ':');
har *
opy = strndupa (s, endp - s);... /* use
opy */ ...if (*s != '\0')++s;}}This is the ultimate solution for this problem. The str
hrnul fun
tionalways returns the value we are interested in and it does not
ost anythingextra; the str
hrnul fun
tion is even a big faster than str
hr sin
e no spe
ialreturn value has to be prepared for the
ase that a NUL byte is found.The lesson from this se
tion should be: library fun
tions are useful and oftenhighly optimized for the spe
i�
 purpose. But there is no guarantee that theyare the best solution in every situation they are used in. There might be betterand generally interesting fun
tions and maybe the GNU lib
 already providesthem.5 Writing Better CodeUsing the
orre
t fun
tions and types and helping the
ompiler to generatebetter
ode
an only help that mu
h if the general algorithm and use of the30

fun
tions isn't good. In this se
tion we will des
ribe in various examples forwhat to look for and how to improve algorithms.5.1 Writing and Using Library Fun
tions Corre
tlyThis paper showed in the earlier se
tion that
hoosing the
orre
t fun
tions isimportant as is writing sometimes new fun
tions whi
h ful�ll the job better.But writing new fun
tions and using other ones to do this also
ontains a lotof situations where one
an introdu
e problems. By a simple example we showsome of the things one has to take
are of.The ISO C library does not
ontain any fun
tion to dupli
ate a string. Weignore for a moment that the GNU lib
 already
ontains an implementation ofthe strdup fun
tion and assume we want to write it now. A �rst attempt
ouldlook like this:
har *dupli
ate (
onst
har *s){
har *res = xmallo
 (strlen (s) + 1);str
py (res, s);return res;}We use the xmallo
 fun
tion whi
h is often used in GNU pa
kages to providea failsafe mallo
 implementation. After reading the previous se
tions of thispaper it be
lear that we
an do better by not using str
py and reusing theresult of the strlen
all. Se
ond try:
har *dupli
ate (
onst
har *s){ size_t len = strlen (s) + 1;
har *res = xmallo
 (len);mem
py (res, s, len);return res;}This is better but we missed one very often missed optimization: most fun
-tions are fun
tions in the mathemati
al sense and have a return value. One
annot be reminded often enough on that. After �xing this we end up with thefollowing form:
har *dupli
ate (
onst
har *s){ size_t len = strlen (s) + 1;return (
har *) mem
py (xmallo
 (len), s, len);}That's mu
h ni
er and even looks shorter than the original implementation.To stress it on
e more: the return values of fun
tions
an be used dire
tly! Thisis not UCSD Pas
al. Espe
ially the mem
py fun
tion has a return value whi
hmany people simply forget. In this situation the
ode
hange
an safe a load31

from the memory where the bu�er pointer is kept sin
e the return value of themem
py
all
an be used dire
tly. Additionally the
ompiler now
ould performa sibling
all optimization.But there is one more optimization whi
h
ould be performed at
ompiletime. If the argument to dupli
ate is a
onstant string we
ould
ompute thelength of the string at
ompile-time. But with a simple fun
tion
all this is notpossible. Therefore we add a wrapper ma
ro whi
h re
ognizes this
ase. Thefollowing
ode only works with g

.#define dupli
ate(s) \(__builtin_
onstant_p (s) \? dupli
ate_
 (s, strlen (s) + 1) \: dupli
ate (s))We introdu
ed the builtin
onstant p operator already on page 9. Itshould therefore be
lear what the ma
ro does. The missing dupli
ate
 fun
-tion is easily written:
har *dupli
ate_
 (
onst
har *s, size_t len){ return (
har *) mem
py (xmallo
 (len), s, len);}Finally we ended up with a highly optimized version whi
h takes advantage ofall
ompile time optimization, whi
h enables the
ompiler to generate optimal
ode and whi
h uses the existing fun
tions in an optimal way. Ideally everyfun
tion one writes should be optimized that
arefully. It is not hard if one onlytakes
are of these three steps:1. Are the
orre
t fun
tions used or are there better ones available?2. Do I use the fun
tions I use in the optimal way? Are the return valuesused?3. Are all
omputations whi
h
an be
arried out at
ompile time done andused?5.2 Computed gotosSometimes fun
tions
annot be broken up in smaller pie
es for design or per-forman
e reasons. Then one
ould end up with a large fun
tion with many
onditionals whi
h slow down the exe
ution. A solution would be a kind ofstate ma
hine. The traditional and simple way to implement a state ma
hine isto have one big swit
h statement with a single state variable
ontrolling whi
h
ase is used.This general form is very often not ne
essary sin
e in most
ases it is notne
essary to be able to go over from ea
h state into another jump. What isa
tually a better implementation is a jump table whi
h
an be adopted for ea
hsituation. In standard C it is not possible to write jump tables but it is withg

's
omputed gotos. As an example we use the following
ode.32

{ ...swit
h (*
p){
ase 'l':islong = 1;++
p;break;
ase 'h':isshort = 1;++
p;break;default:}swit
h (*
p){
ase 'd':... /* handle this */ ...break;
ase 'g':... /* and
ode for this */ ...break;}}This is with lots of
ode left out from a pie
e of
ode in the GNU lib
 wherenow jump tables are used: the printf implementation. The problem is thepro
essing of the format string. Many optional
hara
ter
an pre
ede the a
tualformat. So we have to test for them (e.g., the modi�ers 'l' and 'h') eventhough we might �nd out in the �rst swit
h statement that we already found aformat
hara
ter, e.g., 'd'. What we rather would like to do is to jump dire
tlyto the format handling instead of the default
ase where we start performingthe test again. Using jump tables this is possible.{ stati

onst void *jumps1[℄ ={ ['l'℄ = &&do_l,['h'℄ = &&do_h,['d'℄ = &&do_d,['g'℄ = &&do_g};stati

onst void *jumps2[℄ ={ ['d'℄ = &&do_d,['g'℄ = &&do_g};goto *jumps1[*
p℄;do_l:islong = 1;++
p; 33

goto *jumps2[*
p℄;do_h:isshort = 1;++
p;goto *jumps2[*
p℄;do_d:... /* handle this */ ...goto out;do_g:... /* and
ode for this */ ...goto out;out:}This might look frightening and
omplex but it is not. The jump tablesyntax has to be learned but it is noting but an array of pointers. The elementsof these arrays
an then be used by a goto instru
tion. By �nding the arrayelements using the
urrent format string
hara
ter we are emulating the swit
hstatements above. But it should be noted that if the �rst
hara
ter is dire
tly aformat
hara
ter, we jump dire
tly to the
ode performing the handling of theformatted output. Only if we a
tually see a modi�er
hara
ter we add someextra steps. Sin
e (in this simpli�ed situation) it is not valid to have repeatedmodi�ers we have for the jumps out of the modi�er handling
ode a di�erentjump table. It is possible to have arbitrary many of them.The
ode above is not
omplete. E.g., the handling of invalid
hara
ters isnot
orre
t as the gotos would use NULL pointers in the uninitialized arrayspots or even a

ess memory outside the array boundaries. Also, a

essing thearray using the
hara
ter as an index wastes a lot of array spa
e. One should
ome up with a tighter pa
king method.To see how this
an be done and for a real world,
omplex example take alook at the vfprintf.
 �le in the GNU lib
 sour
es. The �le is far too big tobe printed here.6 Pro�lingWhen one has performed all the obvious optimizations there remains the meanof pro�ling to �nd out where the time in the program is spend and work on thosefun
tions. Pro�ling is supported on most systems, more or less a

urately. Ingeneral there are two kinds of pro�ling:� Timer-based. This allows to �nd out where the most time is spend.� Call-ar
 based. This allows to �nd out what fun
tions are
alled how oftenand from where.The peak values for in both
ounts must not always fall together. Manysimple fun
tions are
alled very often and still do not
ontribute prominently34

to the overall runtime. Nevertheless this peaks in the
all
ount
hart indi
atea possible pla
e where inlining might help.On most Unix system one
an
ompile programs using the gprof method.Systems using GNU lib
 and Solaris
an perform another kind of pro�ling whi
his implemented using the dynami
 linker.6.1 gprof Pro�lingTraditional pro�ling is implemented by
ompiling all sour
es whi
h should par-ti
ipate in the pro�ling with a spe
ial option. This
auses the
ompiler togenerate some extra
ode whi
h re
ords the exe
ution at runtime. The
ompilerwould have to be
alled like this:g

 -
 foo.
 -o foo.o -pgThe -pg option instru
t the
ompiler to add the extra
ode. When linkingthe program another de
ision
an be made. If the user also wants to know aboutthe time spend in fun
tion and the
alls made to fun
tions in the C library s/he
an link against a spe
ial version of the C library be adding the -profile option:g

 -o foo foo.o -profileOtherwise the normal library is used only only the fun
tion of the programare instrumented. To get results the program must be exe
uted. On
e the pro-gram terminated the user
an �nd a �le named gmon.out in the initial workingdire
tory. This �le, together with the exe
utable, serves as the input for a pro-gram named gprof. We will show the various outputs of this program in a smallexample. The following, horrible
ode is used.#in
lude <stdio.h>#in
lude <stdlib.h>intmain (int arg
,
har *argv[℄){
har *buf = NULL;size_t buflen = 0;size_t bufmax = 0;
har *line = NULL;size_t linelen = 0;size_t
nt;while (!feof (stdin)){ size_t len;if (getline (&line, &linelen, stdin) == EOF)break;len = strlen (line);if (len == 0)break;if (buflen + len + 1 > bufmax){buf = reallo
 (buf, bufmax = (2 * bufmax + len + 1));buf[buflen℄ = '\0';} 35

str
at (buf, line);buflen += len;}for (
nt = 0;
nt < buflen - strlen (argv[1℄); ++
nt){ size_t inner;for (inner = 0; inner < strlen (argv[1℄); ++inner)if (argv[1℄[inner℄ != buf[
nt + inner℄)break;if (inner == strlen (argv[1℄))printf ("Found at offset %lu\n", (unsigned long int)
nt);}return 0;}This problem probably violates all of the rules de�ned in the previous se
-tions. And it indeed runs very slowly. Using the gprof output we
an see why.To do this we run the program and we get in the end a �le gmon.out. Nowwe start the gprof program to analyze it. Without options the programs theoutput
onsists of two parts. We will explain them here.The �rst part is the
at pro�le. Here every fun
tion is listed with the numberof times the fun
tion is
alled and the time spent exe
uting it. The beginningof the output is this:Flat profile:Ea
h sample
ounts as 0.01 se
onds.%
umulative self self totaltime se
onds se
onds
alls ms/
all ms/
all name95.27 8.66 8.66 10445 0.83 0.83 str
at2.86 8.92 0.26 __m
ount_internal0.55 8.97 0.05 1327730 0.00 0.00 strlen0.44 9.01 0.04 108 0.37 0.37 read0.44 9.05 0.04 m
ount0.22 9.07 0.02 1 20.00 8790.00 main0.11 9.08 0.01 10551 0.00 0.00 mem
py0.11 9.09 0.01 58 0.17 0.17 write0.00 9.09 0.00 20950 0.00 0.00 flo
kfile0.00 9.09 0.00 20950 0.00 0.00 funlo
kfile0.00 9.09 0.00 10548 0.00 0.00 mem
hr0.00 9.09 0.00 10446 0.00 0.00 feof0.00 9.09 0.00 10446 0.00 0.00 getdelim0.00 9.09 0.00 10446 0.00 0.00 getlineWhat we
an see is that of the total runtime of 8.79 se
onds the programspent 95% in the str
at fun
tion. This again shows how evil str
at is. The
hart also shows how
alls to strlen are made. The fun
tion is exe
utable veryqui
kly so we have no hit by the pro�ling interrupt, but 1.3 million
alls topro
ess 10445 lines of input is too mu
h.More detailed information about the
ontexts in whi
h the fun
tions are
alled
an be found in the se
ond part, the
all graph. Here every fun
tion is36

listed with the pla
es from whi
h it is
alled and the fun
tion whi
h are
alledfrom it. This is an ex
erpt from the same run as the
at pro�le output:index % time self
hildren
alled name0.02 8.77 1/1 __lib
_start_main [2℄[1℄ 100.0 0.02 8.77 1 main [1℄8.66 0.00 10445/10445 str
at [3℄0.05 0.00 1327730/1327730 strlen [4℄0.00 0.05 10446/10446 getline [6℄0.00 0.01 58/58 printf [13℄0.00 0.00 15/15 reallo
 [23℄0.00 0.00 10446/10446 feof [28℄--- <spontaneous>[2℄ 100.0 0.00 8.79 __lib
_start_main [2℄0.02 8.77 1/1 main [1℄0.00 0.00 1/1 exit [39℄---8.66 0.00 10445/10445 main [1℄[3℄ 98.5 8.66 0.00 10445 str
at [3℄---0.05 0.00 1327730/1327730 main [1℄[4℄ 0.6 0.05 0.00 1327730 strlen [4℄---This output shows all the fun
tions
alled from main. For this simple pro-gram there are no surprises and we
ould have predi
ated the output easily.But if the program is more
ompli
ated a fun
tion might be
alled from di�er-ent pla
es and then it is useful to know from whi
h pla
es how many
alls aremade. The
ontent of the
olumn titled \
alled"
onsists of two parts (ex
eptfor the line with the fun
tion this is all about). The left part is the number of
alls made to this fun
tion from this pla
e. The right
olumn spe
i�es the totalnumber of
alls. For all fun
tions all
alls
ome from main.Now we try to improve the program a bit and use the following modi�ed version:#in
lude <stdio.h>#in
lude <stdlib.h>intmain (int arg
,
har *argv[℄){
har *buf = NULL;size_t buflen = 0;size_t bufmax = 0;
har *line = NULL;size_t linelen = 0;size_t
nt;size_t argv1_len = strlen (argv[1℄);while (!feof_unlo
ked (stdin)){ size_t len;if (getline (&line, &linelen, stdin) == EOF)break; 37

len = strlen (line);if (len == 0)break;if (buflen + len + 1 > bufmax){buf = reallo
 (buf, bufmax = (2 * bufmax + len + 1));buf[buflen℄ = '\0';}mem
py (buf + buflen, line, len);buflen += len;}for (
nt = 0;
nt < buflen - argv1_len; ++
nt){ size_t inner;for (inner = 0; inner < argv1_len; ++inner)if (argv[1℄[inner℄ != buf[
nt + inner℄)break;if (inner == argv1_len)printf ("Found at offset %lu\n", (unsigned long int)
nt);}return 0;}All we
hanged is to use mem
py instead of str
at, to use feof unlo
kedinstead of feof and to pre
ompute strlen (argv[1℄) and reuse the value. Theresults are dramati
:Flat profile:Ea
h sample
ounts as 0.01 se
onds.%
umulative self self totaltime se
onds se
onds
alls us/
all us/
all name40.00 0.02 0.02 1 20000.00 40000.00 main20.00 0.03 0.01 20996 0.48 0.48 mem
py20.00 0.04 0.01 10548 0.95 0.95 mem
hr20.00 0.05 0.01 __m
ount_internal0.00 0.05 0.00 10504 0.00 0.00 flo
kfile0.00 0.05 0.00 10504 0.00 0.00 funlo
kfile0.00 0.05 0.00 10446 0.00 0.00 feof_unlo
ked0.00 0.05 0.00 10446 0.00 1.44 getdelim0.00 0.05 0.00 10446 0.00 1.44 getline0.00 0.05 0.00 10446 0.00 0.00 strlenThe total program runtime went down to 40 millise
onds. Most of the timenow is spend in the appli
ation itself. The
alls to mem
py, whi
h repla
ed thestr
at
alls, do not play any signi�
ant role. Also, the number of
alls tostrlen went down dramati
ally.This exampled showed how the pro�ling possibilities
an be used to pin-point the most time
onsuming part of the program. With the di�erent outputmodes it is then easy to lo
ate the pla
es where
alls are made and possiblyrewrite the
ode. The results, as
an be seen above,
an be dramati
.38

6.2 sprof Pro�lingIn the last se
tion we have mentioned that pro�ling is possible with and withouttaking the library fun
tion into a

ount. For the latter
ase one has to providethe -profile option and gets the result of the last se
tion where timing and
all
ounts are given for all the library fun
tions. What wasn't said is that theresulting binary is stati
ally linked. The spe
ial library version ne
essary tosupport -profile is only available as an ar
hive.The reason for this is the way pro�ling is implemented. The algorithms needa single text se
tion for the whole program. This is not the
ase if shared obje
tsare used and therefore they
annot be used. At least not before the pro�ling
ode is
ompletely rewritten.But this means that programs are not really pro�led in the same form theywould later be used. Normally every appli
ation is linked dynami
ally. There-fore realisti
 pro�ling should allow pro�ling shared obje
ts.In GNU lib
 2.1 (and also on Solaris) this possibility is implemented. Itallows to pro�le single shared obje
ts, for one exe
utable or systemwide. I.e.,it does not allow pro�ling all shared obje
ts of an appli
ation but exa
tly one.And it also does not allow pro�ling the appli
ation
ode itself with an sharedobje
t.These all are signi�
ant restri
tions but you
an solve these problems partlyusing the stati
 pro�ling using gprof. The pro�ling of a single shared obje
t asimplemented provides something whi
h is not available from stati
 pro�ling: it ispossible to pro�le the use of a shared obje
t by several appli
ations at the sametime and
ontributing to the same output �le. Pro�ling a single appli
ation willallow optimizing only the use of a library. But to optimize the library itself itis ne
essary to see the data from uses of di�erent programs. And having all thedata (optionally)
ombined in one single �le is even better.And there is one more good thing about the sprof approa
h: there is no needto re
ompile any
ode. The normal
ode whi
h is used for everyday operationsis the one whi
h gets debugged. This means we need absolutely no preparationto start pro�ling.LD_PROFILE=lib
.so.6 LD_PROFILE_OUTPUT=. /bin/ls -alF ~Exe
uting this
ommand on a Linux/x86 system (where the SONAME ofthe C library is lib
.so.6) normally exe
utes the program. But during theexe
ution the �le lib
.so.6.profile in the
urrent working dire
tory (spe
-i�ed by the LD PROFILE OUTPUT environment variable) is �lled with pro�linginformation. We
an exe
ute the program or a
ompletely di�erent programarbitrary many times, even in parallel, and they all
an
ontribute to the pro-�ling data. On
e enough data is
olle
ted one
an look at the
ontent using thesprof program (on Solaris systems the gprof program must be used).Flat profile:Ea
h sample
ounts as 0.01 se
onds.%
umulative self self totaltime se
onds se
onds
alls us/
all us/
all name50.00 0.02 0.02 341 58.65 __lxstat6425.00 0.03 0.01 1362 7.34 _IO_str_init_stati
25.00 0.04 0.01 72 138.89 str
ase
mp39

0.00 0.04 0.00 4836 0.00 str
mp0.00 0.04 0.00 2872 0.00 memp
py0.00 0.04 0.00 2568 0.00 flo
kfile0.00 0.04 0.00 2568 0.00 funlo
kfile0.00 0.04 0.00 2420 0.00 mem
pyThe output looks like the output of gprof and this is of
ourse intended.We see the fun
tions whi
h were used most, see how often they were
alled andthe time the
ontribute to the total runtime.[85℄ 0.0 0.00 0.00 0 _nl_make_l10nflist [85℄0.00 0.00 3/3 argz_
ount [658℄0.00 0.00 1/19
free [543℄0.00 0.00 4/12 stp
py [636℄0.00 0.00 2/2 argz_stringify [665℄0.00 0.00 2/2420 mem
py [643℄0.00 0.00 3/425 mallo
 [541℄---0.00 0.00 1/1 _nl_expand_alias [79℄[175℄ 0.0 0.00 0.00 1 bsear
h [175℄---[177℄ 0.0 0.00 0.00 0 msort_with_tmp [177℄0.00 0.00 506/2420 mem
py [643℄0.00 0.00 2466/2872 memp
py [631℄---0.00 0.00 1/3 read_alias_file [80℄0.00 0.00 2/3 <UNKNOWN>[178℄ 0.0 0.00 0.00 3 qsort [178℄0.00 0.00 1/19
free [543℄0.00 0.00 1/425 mallo
 [541℄0.00 0.00 2/1391 __errno_lo
ation [12℄The output also
ontains the
all graph. We
an exa
tly analyze from whereea
h fun
tion was
alled how often. If the name is <UNKNOWN> it is a
all fromthe main program or another library.Pro�ling shared obje
ts is a very powerful mean to optimized them. It isnot meant to optimize appli
ations but to optimize the system-wide use of thelibrary. It is very well possible that libraries should be optimized di�erently ondi�erent systems. In future there will be tools whi
h interpret the sprof outputappropriately. For now one
an use sprof for the library as if it is the programone wants to optimize.

40

