Optimizing Applications with gcc & glibc

Ulrich Drepper*
Cygnus Solutions
Sunnyvale, CA

August 9th, 1999

*drepper@cygnus.com

Contents

1 What is this about?

2 Using Optimizations Performed at Compile-Time
2.1 Dead Code Elimination Works
2.2 Saving Function Calls
2.3 Compiler Intrinsics o0
24 _builtinconstantp e
2.5 Type-generic Macros

3 Helping the Compiler
3.1 Functionsof NoReturn
3.2 Constant Value Functions
3.3 Different Calling Conventions

3.3.1
3.3.2

_stdcall__
B o ¥~ o - T o

3.4 Sibling Calls
3.5 Using goto

4 Knowing the Libraries
4.1 Strcpy VS.MEMCPY .+ -« « v v v v v v e v e e e e e e
4.2 strcatand strncat o
4.3 Optimized memory allocation
4.4 Some more Memory Issues L.
4.5 Using the Best Types
4.6 Non-Standard String Functions

5 Writing Better Code
5.1 Writing and Using Library Functions Correctly
5.2 Computed gotos

6 Profiling

6.1 gprof Profiling
6.2 sprof Profiling

1 What is this about?

Most programmers think that the programs they write are fairly well written
and perform as good as possible. In most cases this is not correct. Many people
think they know how to do it right but they most probably miss something.
Writing optimized programs is a learning process. One learns about a new
technique every time one looks sharply at the own code and thinks about the
interactions with the underlying libraries or the processor.

In this paper we will discuss several optimization techniques which the au-
thor learned in the past years of programming. It is certainly not a complete
list nor is it a structured approach. It is merely a list of different techniques
documented using illustrative examples. All examples are given in C but most
of the techniques can be applied to C++ as well. Using templates as allowed in
standard C++ is not at all covered.

This paper is not about optimizations performed in the optimizer of the com-
piler. This is a completely different field and a lot of literature exists describing
the possibilities. What we will describe are changes to the source code and ways
to find out where they are needed. The remainder of the paper is structured in
five parts:

e Using optimizations performed at compile-time (starting at page 3).

Helping the compiler to generate better code (starting at page 12).

Knowing the libraries and understand the function implementation (start-
ing at page 17).

Writing better code in the first place (starting at page 30).

Profiling (starting at page 34).

To read and understand the following text it is necessary that the reader
knows how the preprocessor works, has advanced knowledge about the C pro-
gramming language itself, and preferably knows the functions of the C language.
The text also describes a few machine specific optimizations but it is OK to ig-
nore these points if one is not familiar with the described architecture.

2 Using Optimizations Performed at Compile-
Time

In this section we will describe optimizations which can always be performed
without the fear of negative impacts. The optimizations are performed a compile
time by the compiler. The worst case is that the code behaves as if no optimiza-
tion at all is performed. Therefore these kind of optimizations should always
be performed since they don’t have a negative impact. But it should perhaps
happen as the last step since it might disable some of the other optimizations.

2.1 Dead Code Elimination Works

Unexperienced users are often afraid of leaving dead code behind. Dead code
is used to describe code which never gets executed. In most cases this fear is

unfounded. The compiler will in most cases recognize dead code and completely
drop it from the program. When using gcc this is only true if optimization is
enabled but this his hopefully always true. gcc generates truly horrible code
when no optimization is enabled.

One not very serious example is this:

long int
add (long int a, void *ptr, int type)
{

if (type == 0)
return a + *(int *) ptr;
else
return a + *(long int *) ptr;

}

Depending on the parameter type the object pointed to by the parameter
ptr is either an int or a long int. On the first view the code makes perfect
sense and seems to be optimal. But it is not since in some environments int
objects and long int objects are actually the same. In this case the if and the
else clause of the function execute exactly the same code. This can be avoided
at no extra cost and the solution will work if int and long int are not the
same.

long int
add (long int a, void *ptr, int type)
{
if (sizeof (int) == sizeof (long int) || type == 0)
return a + *(int *) ptr;
else
return a + *(long int *) ptr;

}

The result of the sizeof operator is always known at runtime and therefore
the added conditional expression always can be computed by the compiler. If
the types have the same size the expression evaluates to true and therefore the
if condition always is true. In this case the else clause is never used and the
compiler can recognize this and completely elide it. If the types have different
sizes the code is equivalent to the initial code of the example.

When writing low-level programs which are expected to run on a variety of
platforms one often comes across situations like the above. It is important to
remember tricks like the one just described. In some situations it is not possible
or wanted to actually add something to the C code. To get the correct result one
must the preprocessor to hide certain code complete. In this case one cannot
use the sizeof operator. Instead one should use the macros from limits.h:

#include <limits.h>

long int
add (long int a, void *ptr, int type)
{

#if LONG_MAX '= INT_MAX
if (type == 0)
return a + *(int *) ptr;

else
#endif
return a + *(long int *) ptr;

}

Here the preprocessor does the work. In this example it is not necessary
but it shows how it works. The preprocessor is required to be able to perform
arithmetic operations and comparisons using the widest available representation
(at least with 64 bits). Which version is the better cannot be answered clearly.
From the compiler perspective both ways are nearly identical since dead code
elimination works.

2.2 Saving Function Calls

If the body of a function is very small the overhead associated with the function
call can be really high compared to the time spend in the function. Typical
examples of this in the standard library are many of the string and math func-
tions. There are two solutions to this problem: to use macros or to use inline
functions to implement the function in question.

The GNU CC manual says that inline functions are as fast as macros and
much safer. This is true, in most cases. There are examples where the equivalent
macro is faster and macros can, using other gcc features, be made as safe as
inline functions. Generally the suggestion is to use inline functions as long as
none of the optimizations depend on the use of a macro. Two reasons are:

e The use of alloca (see page 23).

e The use of __builtin _constant_p, see page 9.

In either case there are a few things which the programmer has to take care
of. When using inline functions it is not necessary to treat parameters specially.
The handling of parameters happens as in normal functions, i.e., each expression
used for the parameters is evaluated exactly once. If the header containing the
inline function is used outside the own project (e.g., if the project is a library)
than it is important to make sure that used identifiers to no conflict with macros
defined by the user and the system. The C library implementation therefore
prepend __ to all identifiers is situations like this. A user application cannot
legally do this. One reasonably safe way is to append __.

A last problem with inline functions is that they are not always used if they
are declared extern. The GNU C compiler never expands inline functions if
no optimization is enabled. It also allows to disable the inline function use
explicitly even if it performs all other optimizations. This means for the use of
inline functions that one has to take this case into account and always provide
real, non-inline implementations of these functions as well. If the compiler
expands the inlines these functions might never be used. If one puts the code
for these functions in an archive and then links against this archive instead
of the object directly, the linker will add these objects to the final program
only if the functions are really needed. Inline functions defined as static are
always expanded but this overrides the judgment of the compiler whether it

ISome people are strongly opinionated. The guys at USL have not even implemented #if
in the Plan 9 C compiler making it impossible to write it in the latter form.

is worthwhile to inline the function or not. Especially with the use of options
like -0s (optimize for space) it is questionable whether static inline functions
should be used.

Writing correct and safe macros is much harder. First of all, one has to
protect the parameters. It is important to remember that the passed values for
the parameters are passed verbatim, without evaluation to the places where the
variable appears. This requires

e correctly adding parenthesis. One must always be prepared for the case
where the parameter is not a simple value and variable.

#define mult(a, b) (a * b)
{

int a = mult (1 + 2, 3 + 4)
}

The erroneous definition of mult above leads to the surprising result of 11
for a. The correct form is

#define mult(a, b) ((a) * (b))

e that braces to introduce new blocks are not used directly. The following
example shows a problem situation:

#define scale(result, a, b, c) \

{ \
int c__ = (c); \
*(result) = (a) * c__ + (b) * c__; \

}

{

int r;

if (s != 0)
scale (&r, el, e2, s);

else
r = 0;

}

The surprising result of the expression above is that result always gets
the value zero assigned. Correctly written the mult macro would not cause
this problem:

#define scale(result, a, b, c) \

do { \
int c__ = (c); \
*(result) = (a) * c__ + (b) * c__; \
} while (0)

e The above example already shows the next important point: don’t intro-
duce unwanted side effects by evaluating the expressions passed as parame-
ters more than once. This is why the variable c__ was introduced. Without

the variable the expression would have been evaluated twice. There is also
the problem that a parameter value is not evaluated at all. If the macro
is meant as a replacement for a function this is also a problem. Therefore
the scale macro is not written like this:

#define scale(result, a, b, c) \

do { \
int c__ = (c); \
*(result) =c__==070: (a) * c__ + (b) * c__; \
} while (0)

This could safe some time but would lead to strange results (compared to
a real function) if the values passed for the second and third parameter
have side effects.

Also visible in the scale example is the problem macros have with non-
trivial expressions. As soon as a variable is needed one cannot use simple
expressions anymore. One has create a new block which of course means
the macro cannot have a return value. One has to use awkward methods
as in the scale example where the variable, the result has to be stored
in, is given as a parameter. It would be much cleaner if the macro would
return the value and one could assign it. This is not possible in standard
C, but it is possible in GNU C.

#define scale2(a, b, c) \
(__extension__

(€ \
int c__ = (c); \
(@) * c__ + (b) * c__; \
»)
{
int r;
if (s '= 0)
r = scale (el, e2, s);
else
r = 0;
}

The GNU C feature used here is called “statement expression” and is
described in the GNU CC manual. It basically is a normal block with the
exception that the value of the last statement is passed up as the result
of the expression. Please note that it is not necessary to use the do ...
while (0) trick.

There remains one new feature introduced in the last example to be ex-
plained. The __extension__ keyword added tells the compiler that the
author knows s/he uses a GNU C extension. Therefore the compiler does
not issue a warning even if it is asked to point out all ISO C violations.
Therefore __extension_ should be used in all headers which can be used
outside the project.

2.3

Compiler Intrinsics

Most modern C compilers know intrinsic functions. These are special inline
functions, which are provided by the compiler itself. Unlike inline functions they
are always used, the compiler cannot opt for using an external implementation.
Intrinsics known to gcc as of version 2.96 are:

__builtin_alloca

dynamically allocate memory on the stack
_-builtin ffs

find first bit set

_builtin_abs, __builtin_labs

absolute value of an integer

_builtin fabs, __builtin fabsf, __builtin fabsl
absolute value of floating-point value

__builtin memcpy

Copy memory region

__builtin memcmp

compare memory region

__builtin memset

set memory region to given value

__builtin strcmp

compare two strings

__builtin strcpy

copy string

_-builtin strlen

compute string length

_-builtin sqrt, __builtin_sqrtf, __builtin_sqrtl
square root of floating-point value
_builtin_sin, _builtin_sinf, _builtin sinl
sine of floating-point value

_builtin_cos, __builtin_cosf, __builtin _cosl
cosine of floating-point value

_builtin div, __builtin_ldiv

integer division with rest

_builtin_fmod, __builtin frem

module and remainder of floating-point division

There are a few more intrinsics but they are very useful. It is not guar-
anteed that all intrinsics are defined for all platforms. Therefore one must be
prepared for the case that an intrinsic is not available and one has to use a real
implementation.

One important and very useful feature of some intrinsic functions is that
they can compute their results at compile-time if the parameters are constant
at compile-time. E.g., it is possible that

strlen ("foo bar")

is directly replaced with the value seven. This is something which we will use
in the remainder of this paper off and on.

2.4 _builtin_constant_p

Though the name __builtin_constant_p looks very much like the names of the
intrinsic functions mentioned in the last section it is no intrinsic. It is instead an
operator similar to sizeof. Since it follows the good old LISP tradition to use
the ending _p one can see from the name that it is a predicate. It takes a single
parameter and the return value is nonzero if the parameter value is constant at
runtime.

This proofs to be a very useful thing to have. Many of the optimizations in
the remainder of this text as well as many of the optimization implemented in
the GNU C library headers depend on this feature. To show how it is used we
continue the example from page 4. When third parameter is constant the type
of the object pointed to by the second parameter can be deduced at compile
time. Therefore we add in addition to the improved implementation above in
the header with the prototype of this function the following macro:

#define add(a, ptr, type) \
(__extension__
(__builtin_constant_p (type)
7 ((a) + ((type) ==
? x(int *) (ptr) : *(long int *) (ptr)))
: add (a, ptr, type)))

\
\
\
\

This macro changes the behavior of the add function only if the third pa-
rameter is constant. If it is not constant the real implementation is called.?
Otherwise, the expression (type) == 0 can be evaluated at compile time at
the whole expression evaluates to either

(a) + *(int *) (ptr)
or
(a) + *(long int *) (ptr)

In this small example it might not be visible but the __builtin _constant._p
operator allows to avoid code bloat in situation where a macro definition only
leads to favorable code if due to compile-time computations, value propagation,
and dead code elimination the code size is reduced drastically. The following
real-world example shows this more clearly.

2Tt is hopefully clear why despite the call to add in the last line this is no recursive call to
the macro.

#define strdup(s) \
(__extension__
(__builtin_constant_p (s) && __string2_ 1bptr_p (s)
? (((__const char *) (s))[0] == ’\0O’
? (char *) calloc (1, 1)

P

({ size_t __len = strlen (s) + 1;
char *__ret = (char *) malloc (__len);
if (__ret != NULL)
__ret = (char *) memcpy (__ret, s, __len);
_-ret; 1))

: strdup (s)))

The use of __builtin constant_p prevents the use of the whole bunch of
lines of this macro if the parameter is not constant. For the sake of it, one
should once look at the code to see how much code would have to be generated
if one would always use the replacement. We simply could not write such a macro
without __builtin constant_p guarding the expansion (the __string2_1bptr_p
is not interesting here; interested parties should look at the <bits/string2.h>
header of a glibc 2.1 installation).

For a constant parameter s (which must be a string constant) most of the
expression can be computed at runtime. Since the computer can see the first
character of the string it knows whether the calloc call has to be made or
whether the statement expression has to be executed. In the statement expres-
sion the result of the strlen call can be determined at compile-time. One can
see that in either case the piece of code which remains a very small. Due to the
optimizations performed by the compiler many of the operations of the code do
not have be executed at runtime. In the above case, for a non-empty string, one
would in the end have two function calls and an if expression but it would not
be necessary to compute the string length which might be a big advantage.

2.5 Type-generic Macros

When writing a macro to help speeding up certain operations it is sometimes
the case that one wants the same functionality for different type. For simple
operations this is easy, one simply can let the compiler figure out how to use the
arguments. It gets complicated as soon as one has to define variables inside the
macro and if different functions depending on the used type have to be used.

Going back to the scale example, we might want to write a type-generic
version of it. Instead of requiring the parameter c to be of type int we make
it of whatever type the other parameters are. The compiler can help to figure
this out. Since the result of operations on two numbers is of the larger type of
the two operands the type we want to use for c¢ is the same type as the one for
a + b + c. Using a feature in gcc it is possible to define such a variable:

#define tgscale(result, a, b, c) \

do { \
__extension__ __typeof__ ((a) + (b) + (c)) c__ = (c); \
*(result) = (a) * c__ + (b) * c__; \
} while (0)

This might be a bit confusing at first. But __typeof__ (0) defines a type
and it is the same type o has. Therefore the changed line as before defines a

10

variable c__ and assigns a value to it. What we gained through this change is
that we now can call tgscale with arguments of type int, long long int and
even double and we always get __c to be defined the best way with respect to
the result.

There is another situation where __typeof__ helps writing code even if not
many variables are used and the common type has to be deduced. The ISO C9x
standard introduces a new header <tgmath.h> allows the user to write code
using the mathematical functions without taking care of the different variants
for the different types. E.g., one can call sin and depending on the type of
the parameter the correct function from the six possibilities is picked. A nalve
approach to this problem would be:

#define sin(Val) \
(sizeof (__real__ (Val)) > sizeof (double)
? (sizeof (__real__ (Val)) == sizeof (Val)
? sinl (Val) : csinl (Val))
(sizeof (__real__ (Val)) == sizeof (double)
? (sizeof (__real__ (Val)) == sizeof (Val)
? sin (Val) : csin (Val))
(sizeof (__real__ (Val)) == sizeof (Val)
? sinf (Val) : csinf (Val))))

PP

But this is not correct. Try to find out yourself before reading the footnote
and looking at the correct code.? To correct the problem we have to introduce
a variable and this is where __typeof__ comes into play again.

#define sin(Val) \
(__extension__
({ __typeof__ (Val) __tgmres;
if (sizeof (__real__ (Val)) > sizeof (double))
{
if (sizeof (__real__ (Val)) == sizeof (Val))
__tgmres = sinl (Val);

else
__tgmres = csinl (Val);
}
else if (sizeof (__real__ (Val)) == sizeof (double))
{

if (sizeof (__real__ (Val)) == sizeof (Val))
__tgmres = sin (Val);

else
__tgmres = csin (Val);
else
{
if (sizeof (__real__ (Val)) == sizeof (Val))
__tgmres = sinf (Val);
else

PP i G O P D A A e

__tgmres = csinf (Val);

3The above is a single expression and it must have exactly one statically determined type.
This type must be the most general one to be able to represent values of all the other types
without loss. Therefore the returned value is always of type complex long double which
certainly is not what we want.

11

} \
_-tgmres; }))

This example summarizes almost everything we discussed so far. If you
would have been able to write this code yourself you have learned the lessons.
Otherwise a few explanations. Because the code now is not a single expression
the compiler does not find the most general type. In fact, the assignment to the
variable __tgmres might force a conversion to a narrower type. But this never
happens for any reached code: only one if the six assignments is really executed
and here the assignment does not loose any precision. All the other cases are
dead code and will be eliminated by the optimizer.

3 Helping the Compiler

The GNU C compiler offers a few extensions which allow the compiler to describe
the code more precisely and also features to influence the code generation. In
this section we will describe some of the features in examples so that the reader
can apply this later her/his own code.

3.1 Functions of No Return

Every bigger project contains at least one function which is used for fatal errors
and which gracefully terminates the application. Such a function is often not
treated in an optimal way since the compiler does not know that the function
does not return. Take the following example function and the use in some code.

void fatal (...) __attribute__ ((__noreturn__));

void
fatal (...)
{

... /* Print error message. */ ...
exit (1);
}

{
... /*x read d */ ..
if (d == 0)
fatal (...);
else
a=>b/d;
... /* and so on */ ...

}

The function fatal is guaranteed to never return since the function exit has
the same guarantees. Therefore we annotated the prototype of the function with
attribute ((_moreturn_)). This gcc extension lets the author specify
exactly what we just said: the function will never return.

Without this assurance the compiler would have to translate the if clause
in the example to something which corresponds the following pseudo-code:

12

1 Compare d with zero

2 If not zero jump to 5

3 Call fatal

4 Jump to 6

5 Compute b / d and assign it to a
6

This is not far from the optimum but there is unneeded code. The line 4 is
never executed since the call to fatal does not return. If the compiler knows
about this it will avoid this line and effectively transforms the source code to
this:

{
... /*x read d */ ..
if (d == 0)
fatal (...);
a=>b/ d;
... /* and so on */ ...
}

Please note that the else is gone. This transformation would have been
illegal without the knowledge about the behavior of fatal. Even if this is
no big improvement and does not happen that frequently one should always
think about marking function this way. The compiler will emit warnings about
unreachable code if one forgets about the behavior of the not-returning function
and adds some extra code after the function call.

3.2 Constant Value Functions

Some functions one writes only depend on the parameters passed into it and
they have no side effects. Let us call them pure functions. This property is for
the compiler not visible from the prototype and so it always has to assume the
worst, namely, that the function has side effects. But this is something which
prevents certain optimizations.

As an example take the htons function which either returns its argument
(if the machine is big-endian) or swaps the byte order (if it is a little-endian
machine). There are no side effects and only the parameter is used to determine
the result. htons clearly is a pure function.

If we now would have the following code we would get a less than optimal
result:

{
short int serv = ... /* Somehow find this out */ ...;
while (1)
{
struct sockaddr_in s_in;
memset (&s_in, ’\0’, sizeof s_in);
s_in.sin_port = htons (serv);
... /* lots of code where serv is not used */ ...
}
}

13

This might be the outer loop of a network application which opens a socket
connection to various hosts one after the other. The port to connect to is always
the same since the variable serv does not change. Since we said that htons is a
pure function this means that in every iteration of the loop the result of call to
htons is the same. What we would like to see is an automatic transformation
of the code to something like this:

{
short int serv = ... /* Somehow find this out */ ...;
serv = htons (serv); /* Once and for all compute the port */

while (1)
{

struct sockaddr_in s_in;

memset (&s_in, ’\0’, sizeof s_in);
s_in.sin_port = serv;

. /* lots of code where serv is not used */ ...

It is possible to achieve this by marking the htons function appropriately.
gec allows to give a function the attribute __const__ which tells the compiler
that the function is pure. IL.e., if we would have added

extern uint16_t htons (uintl6_t __x) __attribute__ ((__const__));

before the code of the initial example we would have given the compiler the op-
portunity to generate the code we want. Marking pure functions using __const__
can mean quite an improvement and will and no case lead to worse code. There-
fore one should always think about this optimization.

3.3 Different Calling Conventions

Each platform has specific calling conventions which makes it possible that
programs/libraries written by different people with possibly different compilers
can work together. These calling conventions were defined when the platform
was young and maybe even the architecture/processor behaved differently.

Anyhow, there might be platforms and situations where one wants to use a
different calling convention the compiler supports because it is more efficient.
This is not possible in general but nobody can forbid using this internally in a
project. If only functions which are never called outside the project are defined
with a different calling convention there is no problem with this.

Especially on the Intel ia32 platform there are a few calling conventions
supported by the compiler which are different from the standard Unix x86 calling
conventions and which can occasionally sped up the program significantly. Other
platforms might allow similar changes. The GNU C compiler manual explains
the details. For this section we will restrict the descriptions to the x86 platform.

Changes to the calling conventions can be made in two ways: generally
change the conventions by a command line option or individually change it via
a function attribute. We will discuss only the latter since using a command line

14

option is unsafe because exported functions might be effected or the command
line option might be missing in another compiler run. One should always prefer
function attributes.

3.3.1 __stdcall__

The first attribute changes the way the memory used to pass parameters is freed.
Parameters are normally passed on the stack and at some point the stack pointer
has to be adjusted to take this into account. The standard calling conventions
on ia3d32 Unix is to let the caller correct the stack. This allows delaying the stack
correction so that the effect of more than one function call can be corrected at
once. On the other hand, if the __stdcall__ attribute is defined for a function
this signals that the function itself corrects the stack. This is not a bad idea
on ia32 platforms since the architecture has a single instruction which allows
returning from the function call and correcting the stack in one instruction. The
effect can be seen in the following example.

int

__attribute__ ((__stdcall__))
add (int a, int b)

{

return a + b;

}

int
foo (int a)
{
return add (a, 42);
}

int
bar (void)
{
return foo (100);

}

If this code gets translated the assembler output looks like this:

8 add:

9 0000 8B442408 movl 8(hesp), lheax
10 0004 03442404 addl 4(%esp) , ‘heax
11 0008 C20800 ret $8
17 foo:

18 0010 6A2A pushl $42

19 0012 FF742408 pushl 8(%esp)
20 0016 ESESFFFF call add

20 FF

21 001b C3 ret

27 bar:

28 0020 6A64 pushl $100
29 0022 ES8E9FFFF call foo

29 FF

15

30 0027 83C404 addl $4, Y%esp
31 002a C3 ret

Only the important lines are shown in the listing above. What has to be
recognized is that the function foo does not have to do anything after the call
of function add. The ret instruction in line 11 takes care of the memory need
for the two parameters passed on the stack. The situation in function bar is
different. Since foo is not marked with the _stdcall__ attribute it does not
free the memory and this has to be done in the caller. Therefore we see a stack
pointer manipulation in line 30.

From this short example it seems that using __stdcall__ only has advan-
tages. Even the code generated is smaller (the size of the ret instruction in-
creased by two bytes, but the addl instruction has three bytes). But this is
not so. Since the compiler is clever and corrects the stack pointer for several
function calls which are done is a row only once the gain in code size is not that
big anymore. In addition to this future changes in the compiler will make han-
dling the parameter allocation much faster and using __stdcall_ will become
counter-productive. Therefore this attribute should be used with care.

3.3.2 __regparm__

A more interesting function attribute is __regparm__. It is only available for
the 1a32 platform since most other platforms do not have a standard calling
convention which would make this necessary.

Using the __regparm__ attribute it can be specified how many integer and
pointer parameters (up to three) are passed in registers instead of on the stack.
This can make a significant difference especially if the work performed in the
called function is not much and the parameters have to be used immediately.
The following not very realistic example code shows this dramatically.

int

__attribute__ ((__regparm__ (3)))
add (int a, int b)

{

return a + b;

}

Compiling this with optimizations leads to the following assembler output (only
the important lines are shown).

8 add:
9 0000 01DO addl hedx, heax
10 0002 C3 ret

This is the optimal code which could be generated for the functions. Without
the attribute the code would look as in the last section (see page 15). Using this
way to pass parameters almost always has advantages. In the worst case the
called function will store the variables itself somewhere on the stack if it needs
the registers for some other computations. But in man cases the values can be
used directly from the registers.

16

3.4 Sibling Calls

One optimization performed automatically by the compiler for many platforms
is sibling call optimization. If a function call is the last thing happening in a
function the code which usually gets generated looks like this:
This is inside function F'1

n call function F2

n+1 execute code of F2

n+2 get return address from call in F1

n+3 jump back into function F1

n+4 optionally adjust stack pointer from call to F2

n+5 get return address from call to F1

n+6 jump back to caller of F1

This is not surprising but often not optimal. If no work has to be done in
step n + 4 or if this work can be moved before the call to F2 the return from
F2 stops in F1 only to jump again. It would be much better if the return from
F2 would immediately end up at the caller of F1.

To do this the subroutine call performed in FI1 must be changed into a
jump which does not store a new return address. This way the return address
normally used in F1 would be used in F2 and the result would be exactly as we
want.

The compiler already performs this optimization occasionally and in future
will do it more often. The consequence for the programmer is that s/he should
try to arrange the code so that function calls happen as the last thing in a
function.

3.5 Using goto

Despite what Dijkstra says, using the goto command sometimes has advan-
tages. One should, though, not use it without knowing the effect. Using gotos
definitely disturbs the compiler to some extend since the various flow analysis
mechanisms don’t work so well anymore.

Before using goto one should look at the generated assembler code. It
will also be necessary to understand the branch prediction mechanism of the
processor. Equipped with this knowledge one can insert in strategic places
gotos where normally the translation of a loop or conditional statement would
lead to different code. gotos also might enable writing loops differently. With
goto it is possible to leave a loop at an arbitrary point.

It is not possible to give a general advice when to use goto. But if one
decides to use it one should make sure to take measurements of the runtime.
Normally the compilers do a quite good job and adding gotos might even hurt.
For a concrete example how to use goto see page 32.

4 Knowing the Libraries
Programs are normally not written stand-alone. Instead they take advantage

of libraries which already exist on the system. The most important library is
the C library whose minimal content is defined in the ISO C standard. Other

17

standards and system-dependent extension broaden the range of available func-
tions.

A good programmer knows at least most of the available functionality in the
system libraries. But to truly master the programming it is also necessary to
at least have a grasp of how the functions are implemented. This allows the
programmer to avoid using those functions which are slower in favor of those
which do a comparable job but perform faster.

In the remainder of this section we will see several examples of functions with
similar functionality but different runtime characteristics. The reader should be
able to apply the knowledge easily to own programs.

4.1 strcpy vs. memcpy

Handling strings is in C programs a frequent task. There is no string data type
and so the operations have to performed by hand. This has the advantage that
the programmer can take into account the overall use of the string and is not
limited to implement the immediate need only. E.g., If three strings have to be
concatenated it is not necessary to first allocate memory for the concatenating
of the first two strings, copy over the two strings and then perform the con-
catenation with the third string. Instead it is possible to allocate immediately
enough memory for the total result and then copy the strings.

This degree of freedom leads to very different approaches people take and
most of them are all but optimal. The least people can do is to take the correct
functions for the task.

At this point we only want to point out a few general points. Later sections
will give concrete examples. Here we will discuss the differences between the
mem* and the str* functions so that this knowledge can be used later.

For using the mem* functions one has to know the size of the region to copy.
This is the case most of the time since a correctly written program does not
simply copy a string of unknown length (this could lead to crashes and can open
security holes). The main difference between the two function families is that
the str* functions normally don’t need a separate length counter but on the
other hand the mem* functions know about the length of the region and therefore
can perform the work word-wise. We will describe here the characteristics of
the most important functions.

strcpy

memcpy

two values needed: source and des-
tination pointer

works bytewise

strncpy

three values needed: source and des-
tination pointer as well as length
count

can work word-wise

memcpy

three values needed: source and des-
tination pointer as well as length
count

two abort criteria: length reached
and NUL byte found

works byte-wise

no gcc intrinsic
fills rest of target buffer with NUL

Likewise

one abort criteria: length reached

can work word-wise
gcc intrinsic
just stops copying

18

What is here exemplified with memcpy and the string functions strcpy and
strncpy is also true for several other function combinations (e.g., memchr and
strchr). It is therefore important to study the available mem* and str* func-
tions are try to find out where their functionality overlaps.

The number of values needed is not an issue when the actual library function
is called since then the compiler can use the registers marked as call-clobbered.
But it is a problem if the functions are inlined. In this case more used values
means increased register pressure in the current function. For machines with
small register sets it might mean spilling. But also from the algorithm’s point of
view more values can mean more complicated code. But this is not necessarily
the case. In general is true that fewer used values are better then more.

Of importance as soon as the functions are used on strings which are not only
a few characters long is whether the processing can happen word- or byte-wise.
The str* functions all work byte-wise because the lengths of the strings are not
known.* On the other hand the lengths of the memory regions handed over to
the mem* functions are always known since they are given as an argument to the
function call. A last important differentiator is the number of abort criteria.
The more criteria there are, the more complex the loops are, the slower the code
is. The table above mentions this for the
memcpy and strncpy functions: memcpy stops when all bytes are copied. The
strncpy function has to check for the NUL byte and check the length parameter
to not exceed the maximal number of characters to copy. The latter is clearly
slower.

The recommendation for the use of the three functions above is therefore:

e Never use strncpy unless it fits exactly in the current situation. Normally
the string size is known.

e If the strings to copy are known to be short use strcpy.

e If it is possible that the handled strings might be longer use memcpy. The
use of memcpy will not hurt for short strings either since the performance
difference for short strings is not big.

We will see in the remainder of this paper a few more examples of the use of
mem* and str* functions. In many cases one can possibly gain a lot by careful
analysis of the situation. But the rule of thumb, to use the mem* functions when
possible, should lead to overall good results.

4.2 strcat and strncat
A golden rule of optimal string handling code is:
Never ever use strcat and strncat!

It is always wrong to use these two functions. Before concatenating a string
to another, one has to know whether there is enough room. For this it is
necessary to know the current end of the existing string and the length of the
string to be copied. But then it is completely unnecessary to use strcat. The
following is similar to often seen code:

4This must be clarified a bit. “Working byte-wise” here means that every single byte must
be examined. It is possible that str* functions read memory word-wise (which is possible
with aligned accesses). But still every single byte must be tested for a NUL byte.

19

char *buf = ...;
size_t bufmax = ...;

/* Add ‘s’ to the string in buffer ‘buf’. */
if (strlen (buf) + strlen (s) + 1 > bufmax)
buf = (char *) realloc (buf, (bufmax *= 2));

strcat (buf, s);

This looks quite nice from the programmers point of view but the strcat
functions is expensive. What the function has to do first is to search for the
end of the existing string. This is equivalent to the strlen call, it therefore
duplicates work already done. Next the string s must be copied. But though it
is known from the strlen call how long the string is the strcat function has
to perform a normal string copy operation (see the last section for why this is
not good). It is much better to write the code like this:

{
char *buf = ...;
size_t bufmax = ...;
size_t slen;
size_t buflen;

/* Add ‘s’ to the string in buffer ‘buf’. */
slen = strlen (s) + 1;
buflen = strlen (buf);

if (buflen + slen > bufmax)
buf = (char *) realloc (buf, (bufmax *= 2));

memcpy (buf + buflen, s, slen);

This version counters both disadvantages of strcat: when copying we are
not looking through the existing string again since we know how long it is and
simply can add at the end. Also the copying happens using memcpy because
we know how long the string s is. We will give two more examples on how to
implement string concatenation by implementing two often needed functions,
this time with error checking:

char *
concat? (const char *sl, const char *s2)
{
size_t sllen = strlen (sl);
size_t s2len = strlen (s2) + 1;
char *buf = (char *) malloc (sllen + sllen);

if (buf != NULL)
(void) memcpy (mempcpy (buf, sl, sllen), s2, s2len);

return buf;

20

This code uses a function which is not defined by the ISO C or Unix standard
and didn’t appear so far. mempcpy, available in the GNU libc, works like memcpy.
It copies the given number of bytes from the source to the target buffer. But
instead of returning a pointer to the beginning of the buffer it returns a pointer
just after the last copied byte.

In the code above it can be seen how this different behavior can be used.
The returned value can be used immediately in the next function call since it is
exactly the position where the next copy operation must be started. In addition,
by returning the pointer which just was used for copying the mempcpy function
can be implemented a bit faster than the memcpy function. The latter must
return the beginning of the buffer which might not be in a register anymore.

What why is then the function memcpy used to perform the second copying
in the example above if mempcpy is possibly faster? The first observation is
that we don’t need the return value and it therefore does not matter from the
correctness standpoint which function is used. The answer to the question is:
gcc knows about memcpy and has an intrinsic function but it does not (in the
moment) know about mempcpy. Therefore the use of memcpy in some situations
is faster.

Now for a bit more complicated example which does not allow such an easy
argumentation as the function above. We implement a function which concate-
nates arbitrary many strings. The problem here is that we cannot easily save
the lengths of the participating strings in a pair of variable. Or can we?

char *
concat (const char *s, ...)
{
size_t nlens = 127; /* Minimal maximal number of parameters. */

size_t *lens = (size_t *) alloca (nlens * sizeof (size_t));
size_t cnt = 0;

va_list ap;

va_list ap_save;

const char *cp;

size_t total;

char *retval;

if (s == NULL)
return (char *) calloc (1, 1);

total = lens[cnt++] = strlen (s);
va_start (ap, s);
__va_copy (ap_save, ap);

while ((cp = (const char *) va_arg (ap, const char %)) != NULL)
{
if (cnt == nlens)
{
size_t *newp = (size_t *) alloca ((nlens *= 2)
* sizeof (size_t));
lens = (size_t *) memcpy (newp, lens, cnt * sizeof (size_t));
}
total += lens[cnt++] = strlen (cp);

}

21

retval = (char *) malloc (total + 1);
if (retval != NULL)
{
char *endp = (char *) mempcpy (retval, s, lens[0]);
cnt = 1;

while ((cp = (const char #*) va_arg (ap_save, const char *))
!= NULL)
endp = (char *) mempcpy (endp, cp, lens[cnt++]);

xendp = ’\0’;
}

return retval;

}

This code might need a little bit of explanation. First, the dots in the
parameter list this time really mean a variable length parameter list and not,
as in earlier examples, that something is left out. We allow the function to
take arbitrary many parameters (within the limits of the compiler, of course).
All parameters must be strings except for the last one which must be a NULL
pointer. Even only a NULL pointer is allowed.

Second, we are using the same method as in the concat2 function: we first
determine how much memory is needed, allocate it and then copy the strings.
An alternative approach would be to enlarge the destination buffer on demand,
possibly several times during the function run. While this is possible we don’t
implement the function this way since the resizing with the associated copying
of existing content is very costly. Please note in the code above the user of the
return value of memcpy

The problem the chosen implementation faces is that with the arbitrary
number of parameters it is not so easy to remember all the string lengths which
must be determined first to determine how much memory is needed. In addition
we don’t want to add any limitations. Therefore the function allocates memory
for the string lengths on the fly. Since this information is not needed outside the
function the memory can be allocated using alloca (for a detailed discussion
of alloca see the next section). Even though this also involves copying it is not
as bad as copying the string since a) all objects are of fixed width (while strings
can be arbitrarily long) and b) because this probably never has to happen since
concatenations of more than 127 strings at once are not often needed.’

Interesting, since not often used, is also the use of __va_copy. This allows
portably to walk over a parameter list twice. It is not generally possible to
simply assign two objects of type va_list to one another.

The rest of the function is easy. The special case of only a NULL pointer
argument is handled early. The calloc call allocates a memory region of 1
byte length and initializes it to zero, which makes it a zero-length string. The
code to copy the strings is without surprising. We are now using mempcpy for
all the copy operations to always get a pointer to the following byte. Since we
never copy the NUL byte terminating the string we must in the end explicitly
terminate the string in the buffer which will be returned.

5Those who noticed that the handling of the array lens is not perfect since it wastes stack
space are correct. But this is an example only.

22

Just for comparison, here is how the copying loop of an implementation
which uses strcat could look like:

char *
concat (const char *s, ...)
{

size_t cnt = 0;

va_list ap;

va_list ap_save;

const char *cp;

size_t total;

char *retval;

if (s == NULL)
return (char *) calloc (1, 1);

total = strlen (s);
va_start (ap, s);
__va_copy (ap_save, ap);

while ((cp = (const char *) va_arg (ap, const char %)) != NULL)
total += strlen (cp);

retval = (char *) malloc (total + 1);
if (retval != NULL)
{

strcat (retval, s);

while ((cp = (const char #*) va_arg (ap_save, const char *))
!= NULL)
strcat (retval, cp);

return retval;

}

This looks much simpler. But this implementation is horrible. The com-
plexity is O(n x m), where n is the average lengths of the strings and m the
number of strings. The problem is that strcat has to scan over the existing
text over and over again. The optimized implementation above has the expected
complexity of O(n). Even if the non-linear nature of the strcat based imple-
mentation does not kick in for few and small strings it is nevertheless noticeable
even then. Hopefully this is enough evidence to proof the statement from the
beginning of this section.

4.3 Optimized memory allocation

The example in the previous section already used two different kinds of memory
allocation: conventional allocation (malloc, calloc) and stack-based allocation
with alloca. The use of alloca isn’t necessary and can easily be replaced by
amalloc call. The question now is why should optimized programs use alloca
wherever possible.

23

To answer the question it is necessary to understand how the two groups
of functions work. The malloc group requests the memory it needs from the
kernel for permanent use (until it is freed). Traditionally this allocation was on
the so called head, an area designated by a break pointer which can be modified
by the sbrk system call. Modern malloc implementations use on some systems
for large memory areas a different method. They allocate the memory using
mmap. This has on some systems the advantage that resizing is very cheap. In
any case the new pieces of memory must be somehow noted in the internal data
structures which the malloc implementation keeps to handle frequent freeing
and re-allocating efficiently. At the minimum the size of the block must be
remembered somewhere. A call to malloc is therefore not cheap. On a modern
system one would have to allow at least 100 cycles. If the memory actually has
to be retrieved from the kernel the number instantly rises to several thousand
(one or two orders of magnitude more).

On the other hand the implementation of the alloca function is trivial.
At least if the compiler directly supports it as an inline. This is what we
assume throughout the whole paper. In this case the alloca call is a simple
manipulation of the stack pointer. The stack pointer is corrected to leave the
specified number of bytes, given in the arguments, between the last used object
on the stack and the current stack pointer. The starting address of the block
is the result of the function call. Le., we are talking about a single assembler
instruction. The alloca implementation therefore is two orders of magnitude
faster than the optimal case of calling the malloc function.

If this is not reason enough, there is another big advantage. While the
program must call free on the returned pointer, the memory allocated with
alloca gets automatically recycled as soon as the function is left. The free
call must not be underestimated. It is often more expensive than the malloc
call since it has to enqueue the new block in the internal data structures and it
has to see whether it has to return memory to the system. This can make the
call very expensive.

This brings up the question why is there a malloc call if alloca has all the
advantages. The question was already partly answered in the last paragraph.
alloca can only be used if the memory block is only used in the current function
of in functions called by it. The memory block is invalid as soon as the function
returns from the current function. Therefore malloc must be used if the live
range of the object must extend over the use of the current functions. Another
limitation of alloca is that most systems install a not too generous limit of the
stack size. This is done for safety reasons to catch unlimited recursion early. For
alloca this means that large memory allocations must happen using malloc
since the heap has much less restrictions. In addition the malloc implementation
and the kernel can handle large allocations must better this way (at least on
systems using mmap).

Now it’s time for an example. alloca is extremely useful for making temporary
copied. This is how it should not be done:

int

tempcopy (const int *a, int n)

{
int *temp = (int *) malloc (n * sizeof (int));
int_fast32_t cnt;

24

int result;

if (temp == NULL)
return -1;

for (cnt = 0; cnt < n; ++cnt)
temp[cnt] = alcnt] ~ Oxffffffff;

result = foo (temp, n);
free (temp);

return result;

As discussed above the malloc call is much more expensive and we also need
a free call. The following is better:

int
tempcopy (const int *a, int n)
{

int *temp = (int *) alloca (n * sizeof (int));
int_fast32_t cnt;

for (cnt = 0; cnt < n; ++cnt)
templcnt] = alcnt] ~ Oxffffffff;

return foo (temp, n);

}

This function is not only faster, it is also smaller due to the two dropped
function calls. And it could allows more optimization due to the sibling function
call at the end. And there is one more point: it is not necessary to test for the
success of the alloca call. It always succeeds since it is only a simple pointer
manipulation. If the maximal stack size is reached the problem will not become
visible in the alloca call but instead in the first access of this memory. This is
quite dangerous but if the stack is reasonably sized and one does not put too
big objects on the stack it should never give any problems. And if there are
problems whey do not result in silent errors but instead cause the application
to crash which then can be analyzed easily.

One kind of object which frequently has to be duplicated temporarily are
strings. This is why the GNU libc provides two special features to ease this:
strdupa and strndupa. The behavior is comparable to the functions strdup
and strndup with the one difference that the returned strings are allocated
using alloca instead of malloc. But this automatically means that strdupa
and strndupa must be macros and no functions!

One could think strdupa could be implemented like this:

/* Please note this is WRONG!!! */
#define strdupa(s)
(__extension__
(€1

__const char *__old = (s);

s

25

size_t __len = strlen (__old) + 1; \
(char *) memcpy (__builtin_alloca (__len) old len); \
1))

> - [J—

But the memcpy is very wrong! Everybody who uses alloca must be aware
of this problem. We already explained that alloca works by manipulating the
stack pointer. But on some systems parameters for function calls are also put on
the stack. If this happens for the above memcpy call we could get the following
sequence of operations:

1 push __len on the stack, change stack pointer
push __old in the stack, change stack pointer
modify stack pointer for newly allocated object
push current stack pointer on stack, change stack pointer
call memcpy

DO W N

We can now see why this is wrong. The memory allocated for the alloca
call is in the middle of the parameter list. This can never work. Therefore
everybody using alloca must remember never to call alloca in the parameter
list of a function call. This includes of course hidden alloca calls as in strdupa.

4.4 Some more Memory Issues

Beside the existence and possibilities of alloca there are some more issues one
should know about memory allocation to write optimal code.

The nonzero costs of a call to any of the memory allocation functions was
already mentioned in the last section. Especially the realloc function is pos-
sibly slow since in the worst case it has to do the work of an malloc, memcpy,
and free call all at once.

The malloc implementation will try to keep the amount of used memory as
low as possible. I.e., memory which is freed could be reused in a later malloc
call. To do this the implementation uses sophisticated data structures to make
this possible. Things can work pretty smoothly if memory needs would never
be able to grow. But occasionally a program calls realloc to resize the buffer.
Shrinking is not a problem, but growing the buffer is. Since memory usage has
to be kept minimal allocated buffer lie back to back in memory. But this means
that there is often no room to grow a buffer.

Therefore a realloc call might have to allocate a completely new buffer. In
this case the content of the old buffer must be copied over and the internal data
structures must be updates to contain the old buffer as free.

Programs using dynamic memory allocation therefore should try to deter-
mine the amount of needed memory first. As long as the amount is not un-
derestimated and not heavily overestimated, the numbers need not be 100%
accurate. Shrinking the buffer by a few bytes is not a problem. Getting at least
a usable guess for the amount of memory needed often is not easy, especially if
it involves a lot of computation which would have to be repeated when copying
in the new buffer. That it is possible to handle even these situations efficiently
shows the implementation of concat above. To preserve the results of costly
computations in the first phase one uses memory allocated on the stack.

A final point about memory allocation is to mention calloc. Most people
only know malloc, really, and free. But ISO C defines another function.

26

calloc, as malloc, returns a newly allocated block of memory. The size is
not given as a single integer value but instead as two values, which must be
multiplied to get the total size. The big difference to malloc is that before the
allocated memory is returned to the caller it is initialized with NUL bytes.

/* Allocate NMEMB elements of SIZE bytes each, all initialized to 0. */
void *calloc (size_t __nmemb, size_t __size);

Now the reader can of course ask why this is important. It is easily possible
to call memset after an successful malloc call and initialize the memory. This
is true, but in some situations calloc does not have to call memset because
the memory is already zeroed. This happens if the malloc implementation gets
the memory from the kernel via a mmap call. The memory returned by mmap is
guaranteed to be filled with NUL bytes (unlike the memory made available by
a sbrk call). A good malloc implementation, e.g. the one in the GNU libc,
keeps track of this fact and avoids the memset call whenever possible.

For this reason it is always, especially for large allocation requests, better to
call calloc instead of calling malloc and clearing the memory afterwards with
a memset /bzero call.

4.5 Using the Best Types

The following is not really part of the library but instead part of the library
headers. We are talking about available types and choosing the best one.

The ISO C9x standard will feature an important new header: <stdint.h>.
This header will contain definitions for now types which will be portably usable
over all ISO C9x compliant platforms.

The first problem these new types are solving is a longstanding one. To
reliably exchange data from one system to another one can either encode the
data in textual form (though this leaves to problem of different character sets
open) or one uses the same binary encoding. The latter requires the very same
interpretation of each byte. This is not a problem for single-byte object (like
strings). But if a object consists of more than one byte we get problems with
endianess. The main problem, though, is that types like long int have no
fixed representation over different platforms. There is no way to write a ISO C
compliant program which does not have this problem. ISO C9x will solve this
problem with types like int32_t which has a fixed length but we won’t discuss
this here.

We want to discuss two other categories of types introduced in ISO C9x. The
first group consists of int_least8_t, uint_least8_t, int_least16_t, etc, for
various sizes up to at least 64. The difference between int8_t and int_least8_t
and all the other pairs is that the former has a guaranteed size for the objects
while the latter only guarantees that values which use up to the given number
of bits, can be stored without loss. An object of type int_least*_t type is at
least as big as one of the fixed with type but might possibly be larger.

The question now is where can this be useful. The answer is: wherever val-
ues are stored with a minimal known range and the exact representation is not
important and some waste of memory is acceptable. This happens quite fre-
quently. E.g., a not too large array containing 16 bit values which are frequently
used can be stored, e.g., in an array of int or an array of int_least16_t. The

27

difference might be dramatic. The int_least16_t type can be adapted for the
processor architecture in use and might be much bigger, e.g., 64 bits. This
would allow accessing the array values much faster if the architecture does not
allow directly to access sub-word-size memory values. This is the case for many
modern architectures. Whenever one creates data structures where the access
might be performance critical, one should think about using the types above to
allow the processor to work best.

While the int_least*_t types are mainly used for data objects another
group of types is mainly used for the use in program code. Very often programs
code must have variables which are used as counters.

{

short int n;

0; n < 500; ++n)
a[n] + blnl;

for (n

c[n]

While this seems logical (a short int on interesting machines has at least
16 bits) since it makes the variable n smaller than as if we would use int, the
code is not really good. The variable n is kept in a register and therefore the
size of the variable does matter as long as it does not exceed the size of the
register. Sometimes compilers recognize situations like the above and simply
perform the operations which are fastest even if they are not correct for the
given type (short int in the above case). But it is nevertheless better to help
the compiler doing this. ISO C9x introduces appropriate types for this. The
changed example looks like this:

{
int_fastl6_t n;

0; n < 500; ++n)
aln] + b[nl;

for (n

c[n]

In this version the author expresses everything the compiler has to know.
The counter variable must have at least 16 bits to hold the values from 0 to 500.
How big the variable is actually is uninteresting, the program must only run
fast. This allows the compiler/library to pick the best size for this definition
which in most cases is a type with the same size as the registers.

4.6 Non-Standard String Functions

The designers of the standard library added several useful functions which to-
gether cover most of the needed functionality. This does not mean that the
provided set of functions allow optimal programs. In this section some functions
from the repertoire of the GNU libc will be introduced which add additional
functionality which allows writing more optional programs.

A repeating task in programs which handle strings is to find the end of the
string for further processing. This is often implemented like this:

28

{

char *s = ... /* whatever needed */...;
s += strlen (s);

... /* add something at the end of the string */ ...
}

This is not terribly efficient. The strlen function already had a pointer to
the terminating NUL byte of the string. The addition simply recomputes this
result. It is more appropriate to write something like the following:

{

char *s = ... /* whatever needed */...;
s = strchr (s, ’\0’);

... /* add something at the end of the string */ ...
}

Here we get immediately the result from the function call since the result
of the strchr call is a pointer to the byte containing the searched value. Since
we are searching for the NUL byte this is the end of the string. But this is
worse than the original version. The problem is that the strchr function has
two termination criteria: the given character matches of the end of the string
is reached. That both test are the same in the above case is not seen (at least
it is not guaranteed). The GNU libc contains a function which can be used in
this situation and which does not have this problem.

{

char *s = ... /* whatever needed */...;
s = rawmemchr (s, ’\0’);

... /* add something at the end of the string */ ...
}

The rawmemchr function is much like the memchr function but it does not
take a length parameter and therefore performs only one termination test. It
terminates only if the given character is found. This makes rawmemchr (s,
’\0’) the exact equivalent to s + strlen (s). The implementation of the
rawmemchr function is very simple and fast. It is especially fast on the Intel x86
architecture where it can effectively implemented with a single instruction.

To see the function in action we take a look at a piece of code which can be
found in this form or another in many programs. It handles values given in the
PATH-like style where a string contains individual values separated by a specific
character, a colon in many cases. Code to iterate over all the individual values
and produce NUL terminated strings from them could be done like this:

{

const char *s = ... /* whatever needed */...;

while (*s !'= ’\0?)

29

char *copy;
const char *endp = strchr (s, ’:’);
if (endp == NULL)

endp = rawmemchr (s, ’\0’);

copy = strndupa (s, endp - s);
. /* use copy */ ...

if (xs != ’\0’)
++s;

We are using the rawmemchr function to find the end of the string if there
is no colon anymore. The copy on which the rest of the function is working
on is created using strndupa. This introduces no arbitrary limits (as a static
buffer) and is fast (unlike a malloc call). The above construct of finding a
specific character and, failing that, returning the end of the string appears so
often, that the GNU libc contains a specific function for this. This function is
a slightly modified version of strchr. The original code would scan the last
part of the input string twice although already the strchr call almost had the
result. This deficiency is fixed by the new function.

{
const char *s = ... /* whatever needed */...;
while (*s !'= ’\0’)
{
const char *endp = strchrnul (s, ’:7);
char *copy = strndupa (s, endp - s);
. /* use copy */ ...
if (xs !'= °\0’)
++s;
}
}

This is the ultimate solution for this problem. The strchrnul function
always returns the value we are interested in and it does not cost anything
extra; the strchrnul function is even a big faster than strchr since no special
return value has to be prepared for the case that a NUL byte is found.

The lesson from this section should be: library functions are useful and often
highly optimized for the specific purpose. But there is no guarantee that they
are the best solution in every situation they are used in. There might be better
and generally interesting functions and maybe the GNU libc already provides
them.

5 Writing Better Code

Using the correct functions and types and helping the compiler to generate
better code can only help that much if the general algorithm and use of the

30

functions isn’t good. In this section we will describe in various examples for
what to look for and how to improve algorithms.

5.1 Writing and Using Library Functions Correctly

This paper showed in the earlier section that choosing the correct functions is
important as is writing sometimes new functions which fulfill the job better.
But writing new functions and using other ones to do this also contains a lot
of situations where one can introduce problems. By a simple example we show
some of the things one has to take care of.

The ISO C library does not contain any function to duplicate a string. We
ignore for a moment that the GNU libc already contains an implementation of
the strdup function and assume we want to write it now. A first attempt could
look like this:

char *

duplicate (const char *s)

{
char *res = xmalloc (strlen (s) + 1);
strcpy (res, s);
return res;

}

We use the xmalloc function which is often used in GNU packages to provide
a failsafe malloc implementation. After reading the previous sections of this
paper it be clear that we can do better by not using strcpy and reusing the
result of the strlen call. Second try:

char *

duplicate (const char *s)

{
size_t len = strlen (s) + 1;
char *res = xmalloc (len);
memcpy (res, s, len);
return res;

This is better but we missed one very often missed optimization: most func-
tions are functions in the mathematical sense and have a return value. One
cannot be reminded often enough on that. After fixing this we end up with the
following form:

char *
duplicate (const char *s)
{
size_t len = strlen (s) + 1;
return (char *) memcpy (xmalloc (len), s, len);

}

That’s much nicer and even looks shorter than the original implementation.
To stress it once more: the return values of functions can be used directly! This
is not UCSD Pascal. Especially the memcpy function has a return value which
many people simply forget. In this situation the code change can safe a load

31

from the memory where the buffer pointer is kept since the return value of the
memcpy call can be used directly. Additionally the compiler now could perform
a sibling call optimization.

But there is one more optimization which could be performed at compile
time. If the argument to duplicate is a constant string we could compute the
length of the string at compile-time. But with a simple function call this is not
possible. Therefore we add a wrapper macro which recognizes this case. The
following code only works with gcc.

#define duplicate(s) \
(__builtin_constant_p (s) \
? duplicate_c (s, strlen (s) + 1) \
: duplicate (s))

We introduced the __builtin_constant_p operator already on page 9. It
should therefore be clear what the macro does. The missing duplicate_c func-
tion is easily written:

char *
duplicate_c (const char *s, size_t len)
{
return (char *) memcpy (xmalloc (len), s, len);
}

Finally we ended up with a highly optimized version which takes advantage of
all compile time optimization, which enables the compiler to generate optimal
code and which uses the existing functions in an optimal way. Ideally every
function one writes should be optimized that carefully. It is not hard if one only
takes care of these three steps:

1. Are the correct functions used or are there better ones available?

2. Do I use the functions I use in the optimal way? Are the return values
used?

3. Are all computations which can be carried out at compile time done and
used?

5.2 Computed gotos

Sometimes functions cannot be broken up in smaller pieces for design or per-
formance reasons. Then one could end up with a large function with many
conditionals which slow down the execution. A solution would be a kind of
state machine. The traditional and simple way to implement a state machine is
to have one big switch statement with a single state variable controlling which
case is used.

This general form is very often not necessary since in most cases it is not
necessary to be able to go over from each state into another jump. What is
actually a better implementation is a jump table which can be adopted for each
situation. In standard C it is not possible to write jump tables but it is with
gcc’s computed gotos. As an example we use the following code.

32

switch (*cp)

{

case ’1’:
islong = 1;
++cp;
break;

case ’h’:
isshort = 1;
++cp;
break;

default:

}

switch (*cp)

{

case ’d’:
... /* handle this */ ...
break;

case ’'g’:
... /* and code for this */ ...
break;

}
}

This is with lots of code left out from a piece of code in the GNU libc where
now jump tables are used: the printf implementation. The problem is the
processing of the format string. Many optional character can precede the actual
format. So we have to test for them (e.g., the modifiers 1’ and ’h’) even
though we might find out in the first switch statement that we already found a
format character, e.g., ’d’. What we rather would like to do is to jump directly
to the format handling instead of the default case where we start performing
the test again. Using jump tables this is possible.

{
static const void *jumpsl[] =
{
[’1°] = &&do_1,
[’h’] = &&do_h,
[’d’] = &&do_d,
[’g’] = &&do_g
I
static const void *jumps2[] =
{
[’d’] = &&do_d,
[’g’] = &&do_g
3

goto *jumpsl[*cp];
do_1:

islong = 1;
++cp;

33

goto *jumps2[*cp];

do_h:
isshort = 1;
++cp;
goto *jumps2[*cpl;

do_d:
... /* handle this */ ...
goto out;
do_g:
... /* and code for this */ ...
goto out;
out:
}

This might look frightening and complex but it is not. The jump table
syntax has to be learned but it is noting but an array of pointers. The elements
of these arrays can then be used by a goto instruction. By finding the array
elements using the current format string character we are emulating the switch
statements above. But it should be noted that if the first character is directly a
format character, we jump directly to the code performing the handling of the
formatted output. Only if we actually see a modifier character we add some
extra steps. Since (in this simplified situation) it is not valid to have repeated
modifiers we have for the jumps out of the modifier handling code a different
jump table. It is possible to have arbitrary many of them.

The code above is not complete. E.g., the handling of invalid characters is
not correct as the gotos would use NULL pointers in the uninitialized array
spots or even access memory outside the array boundaries. Also, accessing the
array using the character as an index wastes a lot of array space. One should
come up with a tighter packing method.

To see how this can be done and for a real world, complex example take a
look at the viprintf.c file in the GNU libc sources. The file is far too big to
be printed here.

6 Profiling

When one has performed all the obvious optimizations there remains the mean
of profiling to find out where the time in the program is spend and work on those
functions. Profiling is supported on most systems, more or less accurately. In
general there are two kinds of profiling;:

e Timer-based. This allows to find out where the most time is spend.

e Call-arc based. This allows to find out what functions are called how often
and from where.

The peak values for in both counts must not always fall together. Many
simple functions are called very often and still do not contribute prominently

34

to the overall runtime. Nevertheless this peaks in the call count chart indicate
a possible place where inlining might help.

On most Unix system one can compile programs using the gprof method.
Systems using GNU libc and Solaris can perform another kind of profiling which
is implemented using the dynamic linker.

6.1 gprof Profiling

Traditional profiling is implemented by compiling all sources which should par-
ticipate in the profiling with a special option. This causes the compiler to
generate some extra code which records the execution at runtime. The compiler
would have to be called like this:

gcc -c foo.c -o foo.o -pg

The -pg option instruct the compiler to add the extra code. When linking
the program another decision can be made. If the user also wants to know about
the time spend in function and the calls made to functions in the C library s/he
can link against a special version of the C library be adding the -profile option:

gcc -o foo foo.o -profile

Otherwise the normal library is used only only the function of the program
are instrumented. To get results the program must be executed. Once the pro-
gram terminated the user can find a file named gmon.out in the initial working
directory. This file, together with the executable, serves as the input for a pro-
gram named gprof. We will show the various outputs of this program in a small
example. The following, horrible code is used.

#include <stdio.h>
#include <stdlib.h>

int
main (int argc, char *argv[])
{

char *buf = NULL;

size_t buflen = 0;

size_t bufmax = 0;

char *line = NULL;

size_t linelen = 0;

size_t cnt;

while (!feof (stdin))
{
size_t len;
if (getline (&line, &linelen, stdin) == EOF)
break;
len = strlen (line);
if (len == 0)
break;
if (buflen + len + 1 > bufmax)
{
buf = realloc (buf, bufmax = (2 * bufmax + len + 1));
buf [buflen] = ’\0’;
}

35

strcat (buf, line);
buflen += len;

for (cnt = 0; cnt < buflen - strlen (argv[1]); ++cnt)
size_t inner;

for (inner = 0; inner < strlen (argv[1]); ++inner)

if (argv[1] [inner] != buf[cnt + inner])
break;
if (inner == strlen (argv[1]))
printf ("Found at offset %lu\n", (unsigned long int) cnt);
}
return O;

}

This problem probably violates all of the rules defined in the previous sec-
tions. And it indeed runs very slowly. Using the gprof output we can see why.
To do this we run the program and we get in the end a file gmon.out. Now
we start the gprof program to analyze it. Without options the programs the
output consists of two parts. We will explain them here.

The first part is the flat profile. Here every function is listed with the number
of times the function is called and the time spent executing it. The beginning
of the output is this:

Flat profile:

Each sample counts as 0.01 seconds.

% cumulative self self total

time seconds seconds calls ms/call ms/call name

95.27 8.66 8.66 10445 0.83 0.83 strcat

2.86 8.92 0.26 __mcount_internal
0.55 8.97 0.05 1327730 0.00 0.00 strlen

0.44 9.01 0.04 108 0.37 0.37 read

0.44 9.05 0.04 mcount

0.22 9.07 0.02 1 20.00 8790.00 main

0.11 9.08 0.01 10551 0.00 0.00 memcpy

0.11 9.09 0.01 58 0.17 0.17 write

0.00 9.09 0.00 20950 0.00 0.00 flockfile
0.00 9.09 0.00 20950 0.00 0.00 funlockfile
0.00 9.09 0.00 10548 0.00 0.00 memchr

0.00 9.09 0.00 10446 0.00 0.00 feof

0.00 9.09 0.00 10446 0.00 0.00 getdelim
0.00 9.09 0.00 10446 0.00 0.00 getline

What we can see is that of the total runtime of 8.79 seconds the program
spent 95% in the strcat function. This again shows how evil strcat is. The
chart also shows how calls to strlen are made. The function is executable very
quickly so we have no hit by the profiling interrupt, but 1.3 million calls to
process 10445 lines of input is too much.

More detailed information about the contexts in which the functions are
called can be found in the second part, the call graph. Here every function is

36

listed with the places from which it is called and the function which are called
from it. This is an excerpt from the same run as the flat profile output:

index % time self children called name
0.02 8.77 1/1 __libc_start_main [2]
[1] 100.0 0.02 8.77 1 main [1]
8.66 0.00 10445/10445 strcat [3]
0.05 0.00 1327730/1327730 strlen [4]
0.00 0.05 10446/10446 getline [6]
0.00 0.01 58/58 printf [13]
0.00 0.00 15/15 realloc [23]
0.00 0.00 10446/10446 feof [28]
<spontaneous>
[2] 100.0 0.00 8.79 __libc_start_main [2]
0.02 8.77 1/1 main [1]
0.00 0.00 1/1 exit [39]
8.66 0.00 10445/10445 main [1]
[3] 98.5 8.66 0.00 10445 strcat [3]
0.05 0.00 1327730/1327730 main [1]
[4] 0.6 0.05 0.00 1327730 strlen [4]

This output shows all the functions called from main. For this simple pro-
gram there are no surprises and we could have predicated the output easily.
But if the program is more complicated a function might be called from differ-
ent places and then it is useful to know from which places how many calls are
made. The content of the column titled “called” consists of two parts (except
for the line with the function this is all about). The left part is the number of
calls made to this function from this place. The right column specifies the total
number of calls. For all functions all calls come from main.

Now we try to improve the program a bit and use the following modified version:

#include <stdio.h>
#include <stdlib.h>

int
main (int argc, char *argv[])
{
char *buf = NULL;
size_t buflen = 0;
size_t bufmax = 0;
char *line = NULL;
size_t linelen = 0;
size_t cnt;
size_t argvl_len = strlen (argv[1]);

while (!'feof_unlocked (stdin))
{
size_t len;
if (getline (&line, &linelen, stdin) == EQOF)
break;

37

buf

for

len = strlen (line);
if (len == 0)
break;
if (buflen + len + 1 > bufmax)
{
= realloc (buf, bufmax = (2 * bufmax + len + 1));
buf [buflen] = ’\0’;
}
memcpy (buf + buflen, line, len);
buflen += len;

(cnt = 0; cnt < buflen - argvl_len; ++cnt)
size_t inner;

for (inner = 0; inner < argvl_len; ++inner)

if (argv[1] [inner] != buf[cnt + inner])
break;
if (inner == argvl_len)
printf ("Found at offset %lu\n", (unsigned long int) cnt);
}
return 0;

}

All we changed is to use memcpy instead of strcat, to use feof unlocked
instead of feof and to precompute strlen (argv[1]) and reuse the value. The
results are dramatic:

Flat profile:

Each sample counts as 0.01 seconds.

h

time

40.
20.
20.
20.
.00
.00
.00
.00
.00
.00

O O O O O O

00
00
00
00

cumulative self self total

seconds seconds calls us/call us/call name
0.02 0.02 1 20000.00 40000.00 main
0.03 0.01 20996 0.48 0.48 memcpy
0.04 0.01 10548 0.95 0.95 memchr
0.05 0.01 __mcount_internal
0.05 0.00 10504 0.00 0.00 flockfile
0.05 0.00 10504 0.00 0.00 funlockfile
0.05 0.00 10446 0.00 0.00 feof_unlocked
0.05 0.00 10446 0.00 1.44 getdelim
0.05 0.00 10446 0.00 1.44 getline
0.05 0.00 10446 0.00 0.00 strlen

The total program runtime went down to 40 milliseconds. Most of the time
now is spend in the application itself. The calls to memcpy, which replaced the
strcat calls, do not play any significant role. Also, the number of calls to
strlen went down dramatically.

This exampled showed how the profiling possibilities can be used to pin-
point the most time consuming part of the program. With the different output
modes it is then easy to locate the places where calls are made and possibly
rewrite the code. The results, as can be seen above, can be dramatic.

38

6.2 sprof Profiling

In the last section we have mentioned that profiling is possible with and without
taking the library function into account. For the latter case one has to provide
the -profile option and gets the result of the last section where timing and
call counts are given for all the library functions. What wasn’t said is that the
resulting binary is statically linked. The special library version necessary to
support -profile is only available as an archive.

The reason for this is the way profiling is implemented. The algorithms need
a single text section for the whole program. This is not the case if shared objects
are used and therefore they cannot be used. At least not before the profiling
code is completely rewritten.

But this means that programs are not really profiled in the same form they
would later be used. Normally every application is linked dynamically. There-
fore realistic profiling should allow profiling shared objects.

In GNU libc 2.1 (and also on Solaris) this possibility is implemented. It
allows to profile single shared objects, for one executable or systemwide. I.e.,
it does not allow profiling all shared objects of an application but exactly one.
And it also does not allow profiling the application code itself with an shared
object.

These all are significant restrictions but you can solve these problems partly
using the static profiling using gprof. The profiling of a single shared object as
implemented provides something which is not available from static profiling: it is
possible to profile the use of a shared object by several applications at the same
time and contributing to the same output file. Profiling a single application will
allow optimizing only the use of a library. But to optimize the library itself it
is necessary to see the data from uses of different programs. And having all the
data (optionally) combined in one single file is even better.

And there is one more good thing about the sprof approach: there is no need
to recompile any code. The normal code which is used for everyday operations
is the one which gets debugged. This means we need absolutely no preparation
to start profiling.

LD_PROFILE=1libc.so.6 LD_PROFILE_OUTPUT=. /bin/ls -alF ~

Executing this command on a Linux/x86 system (where the SONAME of
the C library is libc.so.6) normally executes the program. But during the
execution the file 1ibc.so.6.profile in the current working directory (spec-
ified by the LD_PROFILE_OUTPUT environment variable) is filled with profiling
information. We can execute the program or a completely different program
arbitrary many times, even in parallel, and they all can contribute to the pro-
filing data. Once enough data is collected one can look at the content using the
sprof program (on Solaris systems the gprof program must be used).

Flat profile:

Each sample counts as 0.01 seconds.

% cumulative self self total

time seconds seconds calls us/call wus/call name

50.00 0.02 0.02 341 58.65 __lxstat64

25.00 0.03 0.01 1362 7.34 _I0_str_init_static
25.00 0.04 0.01 72 138.89 strcasecmp

39

0.00 0.04 0.00 4836 0.00 strcmp

0.00 0.04 0.00 2872 0.00 mempcpy
0.00 0.04 0.00 2568 0.00 flockfile
0.00 0.04 0.00 2568 0.00 funlockfile
0.00 0.04 0.00 2420 0.00 memcpy

The output looks like the output of gprof and this is of course intended.
We see the functions which were used most, see how often they were called and
the time the contribute to the total runtime.

[85] 0.0 0.00 0.00 0 _nl_make_110nflist [85]
0.00 0.00 3/3 argz_count [658]
0.00 0.00 1/19 cfree [543]
0.00 0.00 4/12 stpcpy [636]
0.00 0.00 2/2 argz_stringify [665]
0.00 0.00 2/2420 memcpy [643]
0.00 0.00 3/425 malloc [541]
0.00 0.00 1/1 _nl_expand_alias [79]
[175] 0.0 0.00 0.00 1 bsearch [175]
[177] 0.0 0.00 0.00 0 msort_with_tmp [177]
0.00 0.00 506/2420 memcpy [643]
0.00 0.00 2466/2872 mempcpy [631]
0.00 0.00 1/3 read_alias_file [80]
0.00 0.00 2/3 <UNKNOWN>
[178] 0.0 0.00 0.00 3 gsort [178]
0.00 0.00 1/19 cfree [543]
0.00 0.00 1/425 malloc [541]
0.00 0.00 2/1391 __errno_location [12]

The output also contains the call graph. We can exactly analyze from where
each function was called how often. If the name is <UNKNOWN> it is a call from
the main program or another library.

Profiling shared objects is a very powerful mean to optimized them. It is
not meant to optimize applications but to optimize the system-wide use of the
library. It is very well possible that libraries should be optimized differently on
different systems. In future there will be tools which interpret the sprof output
appropriately. For now one can use sprof for the library as if it is the program
one wants to optimize.

40

