
Notes On Writing Portable Programs In C

(June 1990, 5th Revision)

A. Dolenc
A. Lemmke ∗

and
D. Keppel †

September 7, 2000

Contents

1 Foreword 2

2 Introduction 3

3 Standardization Efforts 4
3.1 ANSI C . 4

3.1.1 Translation limits . 4
3.1.2 Unspecified and undefined behaviour 5

3.2 POSIX . 6

4 Preprocessors 6

5 The Language 8
5.1 The syntax . 8
5.2 The semantics . 8

6 Unix flavours: System V and BSD 9
∗Helsinki University of Technology, Laboratory of Information Processing Sciences, SF-

02150 Espoo, Finland. This document is in the public domain. Email address (Internet) are
ado@sauna.hut.fi (preferred contact) and arl@sauna.hut.fi, respectively.
†CS&E, University of Washington. Email address (Internet) is pardo@cs.washington.edu.

1

1 FOREWORD 2

7 Header Files 9
7.1 ctype.h . 10
7.2 fcntl.h and sys/file.h . 10
7.3 errno.h . 11
7.4 math.h . 11
7.5 strings.h vs. string.h . 11
7.6 time.h and types.h . 12
7.7 varargs.h vs. stdarg.h . 13

8 Run-time Library 13

9 Compiler limitations 14

10 Using floating-point numbers 14
10.1 Machine constants . 15
10.2 Floating-point arguments . 15
10.3 Floating-point arithmetic . 16
10.4 Exceptions . 17

11 VMS 17
11.1 File specifications . 17
11.2 Miscellaneous . 18

12 General Guidelines 18
12.1 Machine architectures, Type compatibility, Pointers, etc. 18
12.2 Compiler differences . 20
12.3 Files . 20
12.4 Miscellaneous . 20

13 Acknowledgements 21

14 Trademarks 21

1 Foreword

A few words about the intended audience before we begin. This document is
mainly for those who have never ported a program to another platform —
a specific hardware and software environment — and, evidently, for those who
plan to write large systems which must be used across different vendor machines.

If you have done some porting before you may not find the information herein
very useful.

2 INTRODUCTION 3

We suggest that [Can89] be read in conjunction with this document1. Sub-
mitters to the News group comp.lang.c have repeatedly recommended [Hor90,
Koe89]2.

Disclaimer: The code fragments presented herein are intended to make ap-
plications “more” portable, meaning that they may fail with some compilers
and/or environments.

This file can be obtained via anonymous ftp from sauna.hut.fi [130.233.251.253]
in ∼ ftp/pub/CompSciLab/doc. The files portableC.tex, portableC.bib and por-
tableC.ps.Z are the LATEX, BibTEX and the compressed PostScript, respectively.

2 Introduction

The aim of this document is to collect the experience of several people who have
had to write and/or port programs in C to more than one platform.

In order to keep this document within reasonable bounds we must restrict our-
selves to programs which must execute under Unix-like operating systems and
those which implement a reasonable Unix-like environment. The only exception
we will consider is VMS.

A wealth of information can be obtained from programs which have been written
to run on several platforms. This is the case of publicly available software such
as developed by the Free Software Foundation and the MIT X Consortium.

When discussing portability one focuses on two issues:

The language, which includes the preprocessor and the syntax and the se-
mantics of the language.

The environment, which includes the location and contents of header files
and the run-time library.

We include in our discussions the standardization efforts of the language and the
environment. Special attention will be given to floating-point representations
and arithmetic, to limitations of specific compilers, and to VMS.

Our main focus will be boiler-plate problems. System programming3 and twisted
code associated with bizarre interpretations of [X3J88] – henceforth refered to
as the Standard – will not be extensively covered in this document4.

1It can be obtained via anonymous ftp from cs.washington.edu in ∼ftp/pub/cstyle.tar.Z.
2We note here that none of the information herein as been taken from those two references.
3We include raw I/O, e.g. from terminals in this category.
4We regard this document as a living entity growing as needed and as information is

gathered. Future versions of this document may contain a lot of such information.

3 STANDARDIZATION EFFORTS 4

3 Standardization Efforts

All standards have a good and an evil side. Due to the nature of this document
we are forced to focus our attention on the later.

The American National Standards Institute (ANSI) has recently approved of a
standard for the C programming language [X3J88]. The Standard concentrates
on the syntax and semantics of the language and specifies a minimum environ-
ment (the name and contents of some header files and the specification of some
run-time library functions).

Copies of the ANSI C Standard can be obtained from the following address:

American National Standards Institute
Sales Department
1430 Broadway
New York, NY 10018
(Voice) (212) 642–4900
(Fax) (212) 302–1286

3.1 ANSI C

3.1.1 Translation limits

We first bring to attention the fact that the Standard states some environmen-
tal limits. These limits are lower bounds, meaning that a correct (compliant)
compiler may refuse to compile an otherwise correct program which exceeds one
of those limits5.

Below are the limits which we judge to be the most important. The ones related
to the preprocessor are listed first.

• 8 nesting levels of conditional inclusion.

• 8 nesting levels for #included files.

• 32 nesting levels of parenthesized expressions within a full expression. This
will probably occur when using macros.

• 1024 macro identifiers simultaneously. Can happen if one includes too
many header files.

• 509 characters in a logical source line. This is a serious restriction if it
applies after preprocessing. Since a macro expansion always results in

5Maybe there are people out there who still write compilers in FORTRAN after all...

3 STANDARDIZATION EFFORTS 5

one line this affects the maximum size of a macro. It is unclear what
the Standard means by a logical source line in this context and in most
implementations this limit will probably apply em before macro expansion.

• 6 significant initial characters in an external identifier. Usually this con-
straint is imposed by the environment, e.g. the linker, and not by the
compiler.

• 127 members in a single structure or union.

• 31 parameters in one function call. This may cause trouble with functions
which accept a variable number of arguments. Therefore, it is advisable
that when designing such functions that either the number of parame-
ters be kept within reasonable bounds or that alternative interfaces be
supplied, e.g. using arrays.

It is really unfortunate that some of these limits may force a programmer to
code in a less elegant way. We are of the opinion that the remaining limits
stated in the Standard can usually be obeyed if one follows “good” programming
practices.

However, these limits may break programs which generate C code such as
compiler-compilers and many C++ compilers.

3.1.2 Unspecified and undefined behaviour

The following are examples of unspecified and undefined behaviour:

1. The order in which the function designator and the arguments in a function
call are evaluated.

2. The order in which the preprocessor concatenation operators # and ## are
evaluated during macro substitution.

3. The representation of floating types.

4. An identifier is used that is not visible in the current scope.

5. A pointer is converted to other than an integral or pointer type.

The list is long. One of the main reasons for explicitly defining what is not
covered by the Standard is to allow the implementor of the C environment to
make use the most efficient alternative.

4 PREPROCESSORS 6

3.2 POSIX

The objective of the POSIX working group P1003.1 is to define a common
interface for UNIX. Granted, the ANSI C standard does specify the contents of
some header files and the behaviour of some library functions but it falls short
of defining a usefull environment. This is the task of P1003.1.

We do not know how far P1003.1 addresses the problems presented in this
document as at the moment we lack proper documentation. Hopefully, this will
be corrected in a future release of this document.

4 Preprocessors

Preprocessors may present different behaviour in the following:

1. The interpretation of the -I command option can differ from one system
to another. Besides, it is not covered by the Standard. For example,
the directive #include ‘‘dir/file.h’’ in conjunction with -I.. would
cause most preprocessors in a Unix-like environment to search for file.h
in ../dir but under VMS file.h is only searched for in the subdirectory
dir in the current working directory.

2. We would not trust the following to work on all preprocessors:

#define D define
#D this that

The Standard does not allow such a syntax (see section 3.8.3 §20 in
[X3J88]).

3. Directives are very much the same in all preprocessors, except that some
preprocessors may not know about the defined operator in a #if directive
nor about the #pragma directive.

The #pragma directive should pose no problems even to old preprocessors
if it comes indented6. Furthermore, it is advisable to enclose them with
#ifdef’s in order to document under which platform they make sense:

#ifdef <platform-specific-symbol>
#pragma ...

#endif
6Old preprocessors only take directives which begin with # in the first column.

4 PREPROCESSORS 7

4. Concatenation of symbols has two variants. One is the old K&R style
which simply relied on the fact that the preprocessor substituted com-
ments such as /**/ for nothing. Obviously, that does not result in con-
catenation if the preprocessor includes a space in the output. The ANSI
C Standard defines the operators ## and (implicit) concatenation of adja-
cent strings. Since both styles are a fact of life it is useful to include the
following in one’s header files7:

#ifdef __STDC__
define GLUE(a,b) a##b
#else
define GLUE(a,b) a/**/b
#endif

If needed, one could define similar macros to GLUE several arguments 8.

5. Some preprocessors perform token substitution within quotes while others
do not. Therefore, this is intrinsicly non-portable. The Standard disallows
it but provides mechanism to obtain the same results. The following
should work with ANSI-compliant preprocessors or with the ones that
which perform token substitution within quotes:

#ifdef __STDC__
define MAKESTRING(s) # s
#else
define MAKESTRING(s) "s"
#endif

There are good publicly available preprocessors which are ANSI C compliant.
One such preprocessor is the one distributed with the X Window System devel-
oped by the MIT X Consortium.

Take note of #pragma directives which alter the semantics of the program and
consider the case when they are not recognized by a particular compiler. Ev-
idently, if the behaviour of the program relies on their correct interpretation
then, in order for the program to be portable, all target platforms must recog-
nize them properly.

Finally, we must add that the Standard has fortunately included a #error
directive with obvious semantics. Indent the #error since old preprocessors do
not recognize it.

7Some have suggeested using #if STDC == 1 instead of simply #ifdef STDC to test
if the compiler is ANSI-compliant.

8GLUE(a,GLUE(b,c)) would not result in the concatenation of a, b, and c.

5 THE LANGUAGE 8

5 The Language

5.1 The syntax

The syntax defined in the Standard is a superset of the one defined in K&R. It
follows that if one restricts oneself to the former there should be no problems
with an ANSI C compliant compiler. The Standard extends the syntax with
the following:

1. The inclusion of the keywords const and volatile.

2. The ellipsis (“...”) notation to indicate a variable number of arguments.

3. Function prototypes.

4. Trigraph notation for specifying “wide” character strings.

We encourage the use of the reserved words const and volatile since they aid
in documenting the code. It is useful to add the following to one’s header files
if the code must be compiled by an non-conforming compiler as well:

#ifndef __STDC__
define const
define volatile
#endif

However, one must then make sure that the behaviour of the application does
not depend on the presence of such keywords.

5.2 The semantics

The syntax does not pose any problem with regard to interpretation because
it can be defined precisely. However, programming languages are always de-
scribed using a natural language, e.g. English, and this can lead to different
interpretations of the same text.

Evidently, [KR78] does not provide an unambiguous definition of the C language
otherwise there would have been no need for a standard. Although the Standard
is much more precise, there is still room for different interpretations in situations
such as f(p=&a, p=&b, p=&c). Does this mean f(&a,&b,&c) or f(&c,&c,&c)?
Even “simple” cases such as a[i] = b[i++] are compiler-dependent [Can89].

As stated in the Introduction we would like to exclude such topics. The reader
is instead directed to the USENET news group comp.std.c or comp.lang.c

6 UNIX FLAVOURS: SYSTEM V AND BSD 9

where such discussions take place and from where the above example was taken.
The Journal of C Language Translation9 could, perhaps, be a good reference.
Another possibility is to obtain a clarification from the Standards Committee
and the address is:

X3 Secretariat, CBEMA
311 1st St NW Ste 500
Washington DC, USA

6 Unix flavours: System V and BSD

A long time ago (1969), Unix said “papa” for the first time at AT&T (then
called Bell Laboratories, or Ma Bell for the intimate) on a PDP-11. Everyone
liked Unix very much and its widespread use we see today is probably due to
the relative simplicity of its design and of its implementation (it is written, of
course, mostly in C).

However, these facts also contributed for each one to develop their own dialect.
In particular, the University of Berkeley at California distribute the so-called
BSD10 Unix whereas AT&T distribute (sell) System V Unix. All other vendors
are descendants of one of these major dialects.

The differences between these two major flavours should not upset most ap-
plication programs. In fact, we would even say that most differences are just
annoying.

BSD Unix has an enhanced signal handling capability and implements sockets.
However, all Unix flavours differ significantly in their raw i/o interface (that is,
ioctl system call) which should be avoided if possible.

The reader interested in knowing more about the past and future of Unix can
consult [Man89, Int90].

7 Header Files

Many useful system header files are in different places in different systems or
they define different symbols. We will assume henceforth that the application
has been developed on a BSD-like Unix and must be ported to a System V-like
Unix or VMS or an Unix-like system with header files which comply to the
Standard.

9Address is 2051, Swans Neck Way, Reston, Virginia 22091, USA.
10Berkeley Software Distribution.

7 HEADER FILES 10

In the following sections, we show how to handle the most simple cases which
arise in practice. Some of the code which appears below was derived from the
header file Xos.h which is part of the X Window System distributed by MIT.
We have added changes, e.g. to support VMS.

Many header files are unprotected in many systems, notably those derived from
BSD version 4.2 and earlier. By unprotected we mean that an attempt to include
a header file more than once will either cause compilation errors (e.g. due to
recursive includes) or, in some implementations, warnings from the preprocessor
stating that symbols are being redefined. It is good practice to protect header
files.

7.1 ctype.h

They provide the same functionality in all systems except that some symbols
must be renamed.

#ifdef SYSV
define _ctype_ _ctype
define toupper _toupper
define tolower _tolower
#endif

Note however that the definitions in <ctype.h> are not portable across character
sets.

7.2 fcntl.h and sys/file.h

Many files which a BSD systems expects to find in the sys directory are placed
in /usr/include in System V. Other systems, like VMS, do not even have a
sys directory11.

The symbols used in the open function call are defined in different header files
in both types of systems:

#ifdef SYSV
include <fcntl.h>
#else
include <sys/file.h>
#endif

11Under VMS, since a path such as <sys/file.h> will evaluate to sys:file.h it is sufficient
to equate the logical name sys to sys$library.

7 HEADER FILES 11

7.3 errno.h

The semantics of the error number may differ from one system to another and
the list may differ as well (e.g. BSD systems have more error numbers than
System V). Some systems, e.g. SunOS, define the global symbol errno which
will hold the last error detected by the run-time library. This symbol is not
available in most systems, although the Standard requires that such a symbol
be defined (see section 4.1.3 of [X3J88]).

The most portable way to print error messages is to use perror.

7.4 math.h

System V has more definitions in this header file than BSD-like systems. The
corresponding library has more functions as well. This header file is unprotected
under VMS and Cray, and that case we must do-it-ourselves:

#if defined(CRAY) || defined(VMS)
ifndef __MATH__
define __MATH__
include <math.h>
endif
#endif

7.5 strings.h vs. string.h

Some systems cannot be treated as System V or BSD but are really a special
case, as one can see in the following:

#ifdef SYSV
#ifndef SYSV_STRINGS
define SYSV_STRINGS
#endif
#endif

#ifdef _STDH_ /* ANSI C Standard header files */
#ifndef SYSV_STRINGS
define SYSV_STRINGS
#endif
#endif

#ifdef macII

7 HEADER FILES 12

#ifndef SYSV_STRINGS
define SYSV_STRINGS
#endif
#endif

#ifdef vms
#ifndef SYSV_STRINGS
define SYSV_STRINGS
#endif
#endif

#ifdef SYSV_STRINGS
include <string.h>
define index strchr
define rindex strrchr
#else
include <strings.h>
#endif

As one can easily observe, System V-like Unix systems use different names for
index and rindex and place them in different header files. Although VMS
supports better System V features it must be treated as a special case.

7.6 time.h and types.h

When using time.h one must also include types.h. The following code does
the trick:

#ifdef macII
include <time.h> /* on a Mac II we need this one as well */
#endif

#ifdef SYSV
include <time.h>
#else
ifdef vms
include <time.h>
else
ifdef CRAY
ifndef __TYPES__ /* it is not protected under CRAY */
define __TYPES__
include <sys/types.h>

8 RUN-TIME LIBRARY 13

endif
else
include <sys/types.h>
endif /* of ifdef CRAY */
include <sys/time.h>
endif /* of ifdef vms */
#endif

The above is not sufficient in order for the code to be portable since the structure
which defines time values is not the same in all systems. Different systems have
vary in the way time t values are represented. The Standard, for instance, only
requires that it be an arithmetic type. Recognizing this difficulty, the Standard
defines a function called difftime to compute the difference between two time
values of type time t, and mktime which takes a string and produces a value of
type time t.

7.7 varargs.h vs. stdarg.h

In some systems the definitions in both header files are contradictory. For
instance, the following will produce compilation errors under VMS12:

#include <varargs.h>
#include <stdio.h>

This is because <stdio.h> includes <stdarg.h> which in turn redefines all the
symbols (va start, va end, etc.) in <varargs.h>. The solution we adopt is to
always include <varargs.h> last and not define in the same module functions
which use <varargs.h> and functions which use the ellipsis notation.

8 Run-time Library

getlogin: This one is not defined, e.g. under VMS. In that case, one can always
use getenv(‘‘HOME’’).

scanf: Scanf can behave differently in different platforms because it’s descrip-
tions, including the one in the Standard, allows for different interpretations
under some circumstances. The most portable input parser is the one you
write yourself.

12We are not sure this behaviour occurs only under VMS.

9 COMPILER LIMITATIONS 14

setjmp and longjmp: Quoting anonymously from comp.std.c, “pre-X3.159
implementations of setjmp and longjmp often did not meet the require-
ments of the Standard. Often they didn’t even meet their own documented
specs. And the specs varied from system to system. Thus it is wise not to
depend too heavily on the exact standard semantics for this facility...”.

In other words, it is not that you should not use them but be careful if
you do. Furthermore, the behaviour of a longjmp invoked from a nested
signal handler13 is undefined.

Finally, the symbols setjmp and longjmp are only defined under SunOS,
BSD, and HP-UX.

9 Compiler limitations

In practice, much too frequently one runs into several, unstated compiler limi-
tations:

• Some of these limitations are bugs. Many of these bugs are in the optimizer
and therefore when dealing with a new environment it is best to explicitly
disable optimization until one gets the application “going”.

• Some compilers cannot handle large modules or “large” statements14.
Therefore, it is advisable to keep the size of modules within reasonable
bounds. Besides, large modules are more cumbersome to edit and under-
stand.

10 Using floating-point numbers

To say that the implementation of numerical algorithms which exhibit the same
behaviour across a wide variety of platforms is difficult is an understatement.
This section provides very little help but we hope it is worth reading. Any
additional suggestions and information is very much appreciated as we would
like to expand this section.

13That is, a function invoked as a result of a signal raised during the handling of another
signal. See section 4.6.2.1 §15 in [X3J88].

14Programs which generate other programs, e.g. YACC, can generate, for instance, very
large switch statements.

10 USING FLOATING-POINT NUMBERS 15

10.1 Machine constants

One problem when writing numerical algorithms is obtaining machine constants.
Typical values one needs are:

• The radix of the floating-point representation.

• The number of digits in the floating-point significand expressed in terms
of the radix of the representation.

• The number of bits reserved for the representation of the exponent.

• The smallest positive floating-point number eps such that 1.0 + eps 6= 1.0.

• The smallest non-vanishing normalized floating-point power of the radix.

• The largest finite15 floating-point number.

On Sun’s they can be obtained in <values.h>. The ANSI C Standard recom-
mends that such constants be defined in the header file <float.h>.

Sun’s and standards apart, these values are not always readily available, e.g. in
Tektronix workstations running UTek. One solution is to use a modified version
of a program which can be obtained from the network called machar. Machar
is described in [Cod88] and can obtained by anonymous ftp from the netlib16.

It is straightforward to modify the C version of machar to generate a C pre-
processor file which can be included directly by C programs.

There is also a publicly available program called config.c which attempts to
determine many properties of the C compiler and machine that it is run on.
This program was submitted to comp.sources.misc17.

10.2 Floating-point arguments

In the days of K&R[KR78] one was “encouraged” to use float and double
interchangeably18 since all expressions with such data types where always eval-
uated using the double representation – a real nightmare for those implementing
efficient numerical algorithms in C. This rule applied, in particular, to floating-
point arguments and for most compiler around it does not matter whether one
defines the argument as float or double.

15Some representations have reserved values for +inf and −inf .
16Email (Internet) address is netlib@ornl.gov. For more information, send a message con-

taining the line send index to that address.
17The arquive site of comp.sources.misc is uunet.uu.net.
18In fact one wonders why they even bothered to define two representations for floating-point

numbers considering the rules applied to them.

10 USING FLOATING-POINT NUMBERS 16

According to the ANSI C Standard such programs will continue to exhibit the
same behaviour as long as one does not prototype the function. Therefore, when
prototyping functions make sure the prototype is included when the function
definition is compiled so the compiler can check if the arguments match.

10.3 Floating-point arithmetic

Be careful when using the == and != operators when comparing floating types.
Expressions such as

if (float expr1 == float expr2)

will seldom be satisfied due to rounding errors. To get a feeling about rounding
errors, try evaluating the following expression using your favourite C compiler[KM86]:

1050 + 812− 1050 + 1055 + 511− 1055 = 812 + 511 = 1323

Most computers will produce zero regardless if one uses float or double. Al-
though the absolute error is large, the relative error is quite small and probably
acceptable for many applications.

It is rather better to use expressions such as |float expr1− float expr2| ≤ K

or
∣∣∣∣∣∣ float expr1float expr2

∣∣∣− 1.0
∣∣∣ ≤ K (if float expr2 6= 0.), where 0 < K < 1 is a function

of:

1. The floating type, e.g. float or double,

2. the machine architecture (the machine constants defined in the previous
section), and

3. the precision of the input values and the rounding errors introduced by
the numerical method used.

Other possibilities exist and the choice depends on the application.

The development of reliable and robust numerical algorithm is a very difficult
undertaking. Methods for certifying that the results are correct within reason-
able bounds must usually be implemented. A reference such as [PFTV88] is
always useful.

• Keep in mind that the double representation does not necessarily increase
the precision. Actually, in most implementations the precision decreases
but the range increases.

11 VMS 17

• Do not use double unnecessarily since in most cases there is a large perfor-
mance penalty. Furthermore, there is no point in using higher precision
if the additional bits which will be computed are garbage anyway. The
precision one needs depends mostly on the precision of the input data and
the numerical method used.

10.4 Exceptions

Floating-point exceptions (overlow, underflow, division by zero, etc) are not
signaled automatically in some systems. In that case, they must be explicitly
enabled.

Always enable floating-point exceptions since they may be an indication that
the method is unstable. Otherwise, one must be sure that such events do not
affect the output.

11 VMS

In this section we will report some common problems encountered when porting
a C program to a VMS environment and which we have not mentioned in the
previously.

11.1 File specifications

Under VMS one can use two flavours of command interpreters: DCL and
DEC/Shell. The syntax of file specifications under DCL differs significantly
from the Unix syntax.

Some C run-time library functions in VMS which take file specifications as
arguments or return file specifications to the caller will accept an additional
argument indicating which syntax is preferred. It is useful to use these run-time
library functions via macros as follows:

#ifdef VMS
#ifndef VMS_CI /* Which Command Interpreter flavour to use */
define VMS_CI 0 /* 0 for DEC/Shell, 1 for DCL */
#endif

define Getcwd(buff,siz) getcwd((buff),(siz),VMS_CI)
define Getname(fd,buff) getname((fd),(buff),VMS_CI)
define Fgetname(fp,buff) fgetname((fp),(buff),VMS_CI)

12 GENERAL GUIDELINES 18

#else
define Getcwd(buff,siz) getcwd((buff),(siz))
define Getname(fd,buff) getname((fd),(buff))
define Fgetname(fp,buff) fgetname((fp),(buff))

#endif /* of ifdef VMS */

More pitfalls await the unaware who accept file specifications from the user or
take them from environment values (e.g. using the getenv function).

11.2 Miscellaneous

end, etext, edata: these global symbols are not available under VMS.

Struct assignments: VAX C allows assignment of structs if the types of both
sides have the same size. This is not a portable feature.

The system function: the system function under VMS has the same func-
tionality as the Unix version, except that one must take care that the
command interpreter provide also the same functionality. If the user is
using DCL then the application must send a DCL-like command.

The linker: what follows applies only to modules stored in libraries19. If none
of the global functions are explicitly used (referenced by another module)
then the module is not linked at all. It does not matter whether one of
the global variables is used. As a side effect, the initialization of variables
is not done.

The easiest solution is to force the linker to add the module using the
/INCLUDE command modifier. Of course, there is the possibility that
the command line may exceed 256 characters...(*sigh*).

12 General Guidelines

12.1 Machine architectures, Type compatibility, Pointers,
etc.

1. Never make any assumptions about the size of a given type, especially
pointers. [Can89] Statements such as x &= 0177770 make implicit use of
the size of x. If the intention is to clear the lower three bits then it is best

19This does not really belong in this document but whenever one is porting a program to a
VMS environment one is bound to come across this strange behaviour which can result in a
lot of wasted time.

12 GENERAL GUIDELINES 19

to use x &= ∼07. The first alternative will also clear the high order 16
bits if x is 32 bits wide.

2. In some architectures the byte order is inverted; these are called little-
endian versus big-endian architectures. This problem is illustrated by the
code below20:

long int str[2] = {0x41424344, 0x0}; /* ASCII ‘‘ABCD’’ */
printf (‘‘%s\n’’, (char *)&str);

A little-endian (e.g. VAX) will print “DCBA” whereas a big-endian (e.g.
MC68000 microprocessors) will print “ABCD”.

3. Beware of alignment constraints when allocating memory and using point-
ers. Some architectures restrict the addresses that certain operands may
be assigned to (that is, addresses of the form 2kE, k > 0).

4. [Can89] Pointers to objects may have the same size but different formats.
This is illustrated by the code below:

int *p = (int *) malloc(...); ... free(p);

This code may malfunction in architectures where int* and char* have
different representations because free expects a pointer of the latter type.

5. [Can89] Only the operators == and != are defined for all pointers of a given
type. The remaining comparison operators (<, <=, >, and >=) can only be
used when both operands point into the same array or to the first element
after the array. The same applies to arithmetic operators on pointers21.

6. Never redefine the NULL symbol. The NULL symbol should always be the
constant zero. A null pointer of a given type will always compare equal to
the constant zero, whereas comparison with a variable with value zero or
to some non-zero constant has implementation defined behaviour.

A null pointer of a given type will always convert to a null pointer of
another type if implicit or explicit conversion is performed. (See item 4
above.)

The contents of a null pointer may be anything the implementor wishes
and dereferencing it may cause strange things to happen...

20The code will only function correctly if sizeof(long int) is 32 bits. Although not
portable it serves well as an example for the given problem.

21One of the reasons for these rules is that in some architectures pointers are represented
as a pair of values and only under those circumstances are two pairs comparable.

12 GENERAL GUIDELINES 20

12.2 Compiler differences

1. When char types are used in expressions most implementations will treat
them as unsigned but there are others which treat them as signed (e.g.
VAX C and HP-UX). It is advisable to always cast them when used in
arithmetic expressions.

2. Do not rely on the initialization of auto variables and of memory returned
by malloc.

3. Some compilers, e.g. VAX C, require that bit fields within structs be of
type int or unsigned. Futhermore, the upper bound on the length of the
bit field may differ among different implementations.

4. The result of sizeof may be unsigned.

12.3 Files

1. Keep files reasonably small in order not to upset some compilers.

2. File names should not exceed 14 characters (many System V derived sys-
tem impose this limit, whereas in BSD derived systems a limit of 15 is
usually the case). In some implementations this limit can be as low as 8
characters. These limits are often not imposed by the operating system
but by system utilities such as ar.

3. Do not use special characters especially multiple dots (dots have a very
special meaning under VMS).

12.4 Miscellaneous

Functions as arguments: when calling functions passed as arguments always
dereference the pointer. In other words, if F is a pointer to a function, use
(*F) instead of simply (F) because some compilers may not recognize the
latter.

System dependencies: Isolate system dependent code in separate modules
and use conditional compilation.

Utilities: Utilities for compiling and linking such as Make simplify consider-
ably the task of moving an application from one environment to another.

Name space pollution: Minimize the number of global symbols in the appli-
cation. One of the benefits is the lower probability that any conflicts will
arise with system-defined functions.

13 ACKNOWLEDGEMENTS 21

String constants: Do not modify string constants since many implementa-
tions place them in read-only memory. Furthermore, that is what the
Standard requires — and that is how a constant should behave!

13 Acknowledgements

We are grateful for the help of Antti Louko (HTKK/Lsk) and Jari Helmi-
nen (HTKK) in commenting and correcting a previous draft of this docu-
ment. We thank all the contributors of USENET News groups comp.std.c
and comp.lang.c from where we have taken a lot of information. Some infor-
mation within was obtained from [Hew88].

14 Trademarks

DEC, PDP-11, VMS and VAX are trademarks of Digital Equipment Corporation.

HP is a trademark of Hewlett-Packard, Inc.

MC68000 is a trademark of Motorola.

PostScript is a registred trademark of Adobe Systems, Inc.

Sun is a trademark of Sun Microsystems, Inc.

UNIX is a registred trademark of AT&T.

X Window System is a trademark of MIT.

References

[Can89] L.W. Cannon. Recommended C Style and Coding Standards. Tech-
nical report, November 1989.

[Cod88] W. J. Cody. Algorithm 665, MACHAR: A Subroutine to Dynami-
cally Determine Machine Parameters. ACM Transactions on Math-
ematical Software, 14(4):303–311, December 1988.

[Hew88] Hewlett-Packard Company. HP-UX Portability Guide, 1988.

[Hor90] Mark Horton. Portable C Software. Prentice-Hall, 1990.

[Int90] Interviews. Interview With Five Technologists. UNIX Review,
8(1):41–89, January 1990.

[KM86] U. W. Kulish and W. L. Miranker. The Arithmetic of the Digital
Computer: A New Approach. SIAM Review, 28(1):1–40, March
1986.

REFERENCES 22

[Koe89] Andrew Koenig. C Traps and Pitfalls. Addison-Wesley Publishing
Co., Reading, Massachusetts, 1989.

[KR78] Brian W. Kernighan and Dennis M. Ritchie. The C Programming
Language. Prentice-Hall, Inc., 1978.

[Man89] Tom Manuel. A Single Standard Emerges from the UNIX Tug-Of-
War. Electronics, pages 141–143, January 1989.

[PFTV88] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and
William T. Vetterling. NUMERICAL RECIPES in C: The Art of
Scientific Computing. Cambridge University Press, 1988.

[X3J88] X3J11. Draft Proposed American National Standard for Information
Systems — Programming Language C. Technical Report X3J11/88–
158, ANSI Accredited Standards Committee, X3 Information Pro-
cessing Systems, December 1988.

