Appendix D: The 80x86 Instruction Set

The 80x86 Instruction Set Appendix D

The following three tables discuss the geg/control, fbating point, and MMX instruction sefBhis document uses the fol

lowing abbreiations:

imm- A constant value, must be appropriate for the operand size.

imm8- An eight-bit immediate constant. Some instructions limit the range of this value to less than 0..255.
immL- A 16- or 32-bit immediate constant.

immH- A 16- or 32-bit immediate constant.

reg- A general purpose integer register.

reg8- A general purpose eight-bit register

regl6- A general purpose 16-bit register.

reg32- A general purpose 32-bit register.

mem- An arbitrary memory location using any of the available addressing modes.

mem16- A word variable using any legal addressing mode.

mem32- A dword variable using any legal addressing mode.

mem64- A qword variable using any legal addressing mode.

label- A statement label in the program.

ProcedureName-The name of a procedure in the program.

Instructions that have two source operands typically use the first operand as a source operand and the second oper:
destination operand. For exceptions and other formats, please see the description for the individual instruction.

Note that this appendix only lists those instructions that are generally useful for application programming. HLA actually -
ports some additional instructions that are useful for OS kernel developers; please see the HLA documentation for more

on those instructions.

Table 1: 80x86 Integer and Contol Instruction Set

Instruction Syntax

Description

aaa() ASCII Adjust afterAddition. Adjusts \alue inAL after a decimal addition operation,

aad() ASCII Adjust before Drision.Adjusts two unpackd \alues inAX prior to a decimal
division.

aam() ASCII AdjustAX after Multiplication.Adjusts the result iAX for a decimal muli
ply.

aas() ASCII AdjustAL after SubtractionAdjusts the result iAL for a decimal subtraction.

adc(imm, rg);
adc(imm, mem);
adc(re, reg);
adc(rg, mem);
adc(mem, rg);

Add with carry Adds the source operand plus the caiag tb the destination oper
and.

Beta Draft - Do not distribute

© 2001, By Randall Hyde Pagel449

AppendixD

Table 1: 80x86 Integer and Contol Instruction Set

Instruction Syntax

Description

add(imm, rg);
add(imm, mem);
add(reg, reg);
add(rg, mem);
add(mem, rg);

Add. Adds the source operand to the destination operand.

and(imm, rg);
and(imm, mem);
and(rg, reg);
and(rg, mem),
and(mem, rg);

Bitwise AND. Logically ANDs the source operand into the destination operand.
Clears the carry andrerflow flags and sets the sign and zeag$l according to the
result.

bound(rg, mem);
bound(rg, immL,
immH);

Bounds check. Rpand memory operands must be the same size anthtist be 16
or 32-bit \alues.This instruction compares thegister operand agnst the alue at
the specitd memory location and raises aception if the rgisters value is less
than the alue in the memory location. If greater or equal, then this instruction ¢
pares the mgster to the neg word or dword in memory and raises axception if the
registers \value is greater

The second form of this instruction is an HD&ended syntax instruction. HLA
encodes the constants a®tmemory locations and then emits thistfform of this
instruction using these wdy created memory locations.

For the second form, the constaatues must notxeeed the 16-bit or 32-bitgester
size.

bsf(rey, reg);
bsr(mem, rg);

Bit Scan rward.The two operands must be the same size andrthest be 16-bit or
32-bit operandsThis instruction locates thadi set bit in the source operand and
stores the bit number into the destination operand and clears theagetbtfie
source operand does novbary set bits, then this instruction sets the zeag éind
the dest rgister \alue is undefied.

bsr(rey, reg);
bsr(mem, rg);

Bit Scan Reerse.The two operands must be the same size andrthest be 16-bit or
32-bit operandsThis instruction locates the last set bit in the source operand an
stores the bit number into the destination operand and clears theagetbtfie
source operand does novbary set bits, then this instruction sets the zeag énd
the dest rgister \alue is undefied.

[®N

bswap(reg32);

Byte Swap.This instruction reerses the order of the bytes in a 32-bjister It

swaps bytes zero and three and iap®/ bytes one and owThis efectively corverts
data between the little endian (used by Intel) and big endian (used by some otk
CPUs) formats.

er

Pagel450

© 2001, By Randall Hyde Beta Draft - Do not distribute

Appendix D: The 80x86 Instruction Set

Table 1: 80x86 Integer and Contol Instruction Set

Instruction Syntax

Description

bt(reg, mem);
bt(reg, reg);

bt(imm8, rg);
bt(imm8, mem);

Register and memory operands must be 16- or 32athites. Eight bit immediatealr
ues must be in the range 0..15 for 16-lgisters, 0..31 for 32-bit gisters, and 0..255
for memory operands. Sourcgigter must be in the range 0..15 or 0..31 fgrsters.
Any value is Igal for the source mgster if the destination operand is a memory4o

)

ca

tion. This instruction copies the bit in the second operand, whose bit positiorsthg fi

operand specHs, into the carrydl.

btc(reg, mem);
btc(reg, reg);
btc(imm8, rg);
btc(imm8, mem);

Bit test and complemers abwe, except this instruction also complements thkie
of the specikd bit in the second operand. Note that this instructisndopies the bit
to the carry fhg, then complements To support atomic operations, the mem
ory-based forms of this instruction arevays “memory lockd” and thg always
directly access main memory; the CPU does not use the cache for this result. H
this instruction akays operates at memory speeds (i.ew)slo

Hence

btr(reg, mem);
btr(reg, reg);

btr(imm8, rey);
btr(imm8, mem);

Bit test and reset. Same as BTXCept this instruction tests and resets (clears) the

> bit.

bts(rey, mem);
bts(re, reg);
bts(imm8§, rg);
bts(imm8, mem);

Bit test and set. Same as BTXtept this instructions tests and sets the bit.

spec

nt

call label; Pushes a return address onto the stack and calls the subroutine at the addresg

call(label); fied. Note that therft two forms are the same instructidre other tw forms pre

call(reg32); vide indirect calls via a ggster or a pointer in memary

call(mem32);

cbw(); Corvert Byte toWord. Sign &tendsAL into AX.

cdq(); Corvert double word to quadwrd. Sign &tends EAX into EDX:EAX.

clc(); Clear Carry

cld(); Clear direction ig.When the direction &g is clear the string instructions increme
ESI and/or EDI after each operation.

cli(); Clear the interrupt enabled.

cmc(); Complement (ivert) Carry

cmova(mem, rg);

cmova(reg, reg);
cmova(reg, mem);

Conditional Mwe (if abore). Copies the source operand to the destination opera
the preious comparison found the left operand to be greater than (unsigned) th
operand (c=0, z=0). Rester and memory operands must be 16-bit or 32ahites,

eight-bit operands are ithal. Does not déct the destination operand if the conditig
is false.

nd if
2 righ

N

Beta Draft - Do not distribute

© 2001, By Randall Hyde Pagel451

AppendixD

Table 1: 80x86 Integer and Contol Instruction Set

Instruction Syntax

Description

cmovae(mem, g);
cmovae(rg, reg);
cmovae(rg, mem);

Conditional mee if abore or equal (see craa for details).

cmovb(mem, rg);

cmovb(reg, reg);
cmovb(reg, mem);

Conditional mee if belav (see cmuea for details).

cmovbe(mem, rg);
cmovbe(rey, reg);
cmovbe(reg, mem);

Conditional mee if belav or equal (see cnva for details).

cmovc(mem, rg);

cmovc(reg, reg);
cmovc(reg, mem);

Conditional mee if carry set (see crma for details).

cmove(mem, rg);

cmove(rey, reg);
cmove(reg, mem);

Conditional mee if equal (see cnva for details).

cmovg(mem, rg);

cmovg(reg, reg);
cmovg(reg, mem);

Conditional mee if (signed) greater (see cuzofor details).

cmovge(mem, rg);

cmovge(re, reg);
cmovge(rgg, mem);

Conditional mee if (signed) greater or equal (see eador details).

cmovl(mem, rg);

cmovi(reg, reg);
cmovl(reg, mem);

Conditional mee if (signed) less than (see cvador details).

cmovle(mem, rg);

cmovle(reg, reg);
cmovle(reg, mem);

Conditional mee if (signed) less than or equal (see eanfor details).

cmovna(mem, rg);
cmovna(rey, reg);
cmovna(reg, mem);

Conditional mee if (unsigned) not greater (see arador details).

cmovnae(mem, 1g);
cmovnae(re, reg);
cmovnae(rg, mem);

Conditional mee if (unsigned) not greater or equal (see \carfor details).

cmovnb(mem, rg);
cmovnb(reg, reg);
cmovnb(reg, mem);

Conditional mee if (unsigned) not less than (see eador details).

Pagel452

© 2001, By Randall Hyde Beta Draft - Do not distribute

Appendix D: The 80x86 Instruction Set

Table 1: 80x86 Integer and Contol Instruction Set

Instruction Syntax

Description

cmovnbe(mem, rg);
cmovnbe(reg, reg);
cmovnbe(rg, mem);

Conditional mee if (unsigned) not less than or equal (seevarior details).

cmovnc(mem, rg);
cmovnc(reg, reg);
cmovnc(reg, mem);

Conditional mee if no carry/carry clear (see cu@ofor details).

cmovne(mem, rg);
cmovne(rey, reg);
cmovne(reg, mem);

Conditional mee if not equal (see cma for details).

cmovng(mem, rg);

cmovng(reg, reg);
cmovng(reg, mem);

Conditional mee if (signed) not greater (see cvador details).

cmovnge(mem, 1g);
cmovnge(reg, reg);
cmovnge(rg, mem);

Conditional mee if (signed) not greater or equal (see eanfor details).

cmovnl(mem, rg);

cmovnl(reg, reg);
cmovnl(reg, mem);

Conditional mee if (signed) not less than (see arador details).

cmovnle(mem, rg);
cmovnle(rey, reg);
cmovnle(reg, mem);

Conditional mee if (signed) not less than or equal (seearfor details).

cmovno(mem, rg);
cmovno(reg, reg);
cmovno(reg, mem);

Conditional mee if no overflow / overflow flag = 0 (see cmva for details).

cmovnp(mem, rg);

cmovnp(reg, reg);
cmovnp(reg, mem);

Conditional mee if no parity / parity ig = 0 / odd parity (see cwenfor details).

cmovns(mem, rg);
cmovns(reg, reg);
cmovns(regg, mem);

Conditional mee if no sign / sign g = 0 (see cma for details).

cmovnz(mem, rg);
cmovnz(rey, reg);
cmovnz(reg, mem);

Conditional mee if not zero (see crwa for details).

cmovo(mem, rg);

cmovo(reg, reg);
cmovo(reg, mem);

Conditional mee if overflow / overflow flag = 1 (see cma for details).

Beta Draft - Do not distribute

© 2001, By Randall Hyde Pagel453

AppendixD

Table 1: 80x86 Integer and Contol Instruction Set

Instruction Syntax

Description

cmovp(mem, rg);

cmovp(reg, regy);
cmovp(reg, mem);

Conditional mee if parity flag = 1 (see cmva for details).

cmovpe(mem, rg);

cmovpe(re, reg);
cmovpe(reg, mem);

Conditional mee if even parity / parity ig = 1(see cma for details).

cmovpo(mem, rg);

cmovpo(reg, reg);
cmovpo(reg, mem);

Conditional mee if odd parity / parity 8g = 0 (see cnva for details).

cmovs(mem, rg);

cmovs(reg, reg);
cmovs(reg, mem);

Conditional mee if sign fag = 1 (see cnma for details).

cmovz(mem, rg);

cmovz(rey, reg);
cmovz(reg, mem);

Conditional mee if zero fag = 1 (see cma for details).

cmp(imm, rg);
cmp(imm, mem);
cmp(rey, reg);
cmp(reg, mem);
cmp(mem, rg);

Compare. Compares thesti operand anst the second operarithe two operands
must be the same siZEhis instruction sets the condition codmy as appropriate for
the condition jump and set instructiofi$is instruction does not change traue of
either operand.

cmpsb();
repe.cmpsb();
repne.cmpsb();

Compare string of bytes. Compares the byte pointed at byte ESI with the byte pointed
at by EDI and then adjusts ESI and EDI by +1 depending orathe wof the direction
flag. Sets thedlys according to the resul¥ith the REPNE (repeat while not equal
flag, this instruction compares up to ECX bytes until all tis¢ liyte it fnds in the
two string that are equalith the REPE (repeat while equal) pxethis instruction
compares tw strings up to thert byte that is diérent. See the chapter on the String
Instructions for more details.

cmpsw()
repe.cmpsw();
repne.cmpsw();

Compare a string of evds. Like cmpsb xcept this instruction compare®wds rather
than bytes and adjusts ESI/EDI by +2.

cmpsd()
repe.cmpsd();
repne.cmpsd();

Compare a string of doubleonds. Like cmpsb xcept this instruction compares do
ble words rather than bytes and adjusts ESI/EDI by +4.

=

cmpxchg(rg, mem);
cmpxchg(re, reg);

Regy and mem must be the same sidgey can be eight, 16, or 32 bit objecthis

instruction compares thale in the accumulator (al, ax, or eaxiagt the second
operand. If the tw values are equal, this instruction copies the sounst) (@perand
to the destination (second) operand. Otherwise, this instruction copies the second
operand into the accumulator

Pagel454

© 2001, By Randall Hyde Beta Draft - Do not distribute

Appendix D: The 80x86 Instruction Set

Table 1: 80x86 Integer and Contol Instruction Set

Instruction Syntax

Description

cmpxchg8b(mem64);

Compares the 64-bialue in EDX:EAX with the memory operand. If thalwes are
equal, then this instruction stores the 64-bltie in ECX:EBX into the memory ope
and and sets the zeragdl Otherwise, this instruction copies the 64-bit memory-o
and into the EDX:EAX rgisters and clears the zeradl

Der

cpuid(); CPU ldentifcation.This instruction identi@s \arious features found on thefdifent
Pentium processors. See the Intel documentation on this instruction for more details

cwd(); CorvertWord to Double. Signx@endsAX to DX:AX.

cwde(); ConvertWord to DoubléNord Extended. SignxéendsAX to EAX.

daa(); DecimalAdjust afterAddition. Adjusts \alue inAL after a decimal addition.

das(); DecimalAdjust after SubtractiorAdjusts \alue InAL after a decimal subtraction.

dec(rg); Decrement. Subtracts one from the destination memory locatiogistere

dec(mem);

div(reg); Divides accumulator oxéended accumulator (dx:ax or edx:eax) by the source oper

div(reg8, ax); and. Note that the instructions/alving an immediate operand are HLAtensions.

div(regl6, dx:ax);
div(reg32, edx:eax);
div(mem);

div(mem8, ax);

div(mem16, dx:ax);
div(mem32, edx:eax)
div(imm8, ax);

div(imm16, dx:ax);
div(imm32, edx:eax);

HLA creates a memory object holding these constants and thidasithe accumuia
tor or extended accumulator by the contents of this memory location. Note that
accumulator operand is twice the size of the sourees(at) operandThis instruction
computes the quotient and places Ain AX, or EAX and it computes the remaindg
and places it il\H, DX, or EDX (depending on thewdsor’s size).This instruction
raises anxxeption if you attempt to dide by zero or if the quotient doesfit in the
destination rgister (AL,AX, or EAX).

This instruction performs an unsignedision.

the

enter(imm16, imm8);

Enter a procedure. Creates anwation record for a proceduréhe frst constant
specifes the number of bytes of locanablesThe second parameter (in the rang
0..31) specibs the static nestingvel (lex level) of the procedure.

D

idiv(reg);

idiv(reg8, ax);

idiv(regl6, dx:ax);
idiv(reg32, edx:eax);
idiv(mem);

idiv(mem8, ax);
idiv(mem16, dx:ax);
idiv(mem32, edx:eax
);

idiv(imm8, ax);

idiv(imm16, dx:ax);
idiv(imm32, edx:eax)

Divides accumulator oxéended accumulator (dx:ax or edx:eax) by the source oper

and. Note that the instructions/otving an immediate operand are HLAtensions.
HLA creates a memory object holding these constants and thidaslihe accumuia
tor or extended accumulator by the contents of this memory location. Note that
accumulator operand is twice the size of the sourges(d) operandThis instruction
computes the quotient and places Ain AX, or EAX and it computes the remaindg
and places it il\H, DX, or EDX (depending on thewdsor’s size).This instruction
raises anxeeption if you attempt to dide by zero or if the quotient doesfit in the
destination rgister (AL,AX, or EAX).

This instruction performs a signedsion. The condition code bits are undefd
after executing this instruction.

the

Beta Draft - Do not distribute

© 2001, By Randall Hyde Pagel455

AppendixD

Table 1: 80x86 Integer and Contol Instruction Set

Instruction Syntax

Description

imul(reg);

imul(reg8, al);
imul(regl6, ax);
imul(reg32, eax);
imul(mem);

imul(mem8, al);
imul(mem16, ax);
imul(mem32, eax);
imul(imm8, al);
imul(imm16, ax);
imul(imm32, eax);

Multiplies the accumulator (ALAX, or EAX) by the source operantihe source
operand will be the same size as the accumulBter product produces an operang
that is twice the size of the dwoperands with the product winding upAlX, DX:AX,
or EDX:EAX. Note that the instructionsvolving an immediate operand are HLA
extensions. HLA creates a memory object holding these constants and then mu
the accumulator by the contents of this memory location.

This instruction performs a signed multiplicatiéiso see INTMUL.

This instruction sets the carry aneedlow flag if the H.O. portion of the result (AH
DX, EDX) is not a signx@ension of the L.O. portion of the produ€he sign and
zero fags are undefed after thexecution of this instruction.

)

Iltiplies

X

in(imm38, al); Input data from a porfhese instructions read a bytegrd, or double wrd from an

in(imm8, ax); input port and place the input data into the accumulatipstez Immediate port con

in(Imm8, eax); stants must be in the range 0..25&x. &l other port addresses you must use the O

in(dx, al); register to hold the 16-bit port numbé&tote that this is a prileged instruction that

in(dx, ax); will raise an &ception in map Win32 Operating Systems.

in(dx, eax);

inc(reg); IncrementAdds one to the speafil memory or igster operand. Does nofedt the

inc(mem); carry flag. Sets thewerflow flag if there vas signed eerflow. Sets the zero and sign
flags according to the result. Note that Z=1 indicates an unsigeetbw.

int(imm8); Call an interrupt service routine speetfiby the immediate operand. Note M-

dows does not use this instruction for system calls, so you will probaidy nse this
instruction undewWindows. Note that INT(3); is the user breakpoint instruction (t
raises an appropriateaeption). INT(0) is the d@ide error &ception. INT(4) is the
overflow exception. Havever, it's better to use the HLA RAISE statement than to
this instruction for thesexeeptions.

nat

use

intmul(imm, rey);
intmul(imm, rey, reg);
intmul(imm, mem, rg
);

intmul(reg, reg);
intmul(mem, rg);

Integer mutiply Multiplies the destination (last) operand by the source operand
there are only tew operands; or it multiplies the eavwsource operands together and
stores the result in the destination operand (if there are three opefdredsperands
must all be 16 or 32-bit operands andythmust all be the same size.

This instruction computes a signed proditis instruction sets theverflow and
carry flags if there \as a signed arithmetiverflow; the zero and signas are unde
fined after thexecution of this instruction.

if

into();

Raises anxxeption if the gerflow flag is set. Note: the HLA pseudanable
“@into” controls the code generation for this instruction. If @int@alisef, HLA
ignores this instruction; if @into is true (deft), then HLA emits the object code fq
this instruction. Note that if theverflow flag is set, this instruction befes like the
“INT(4);” instruction.

DI

iret();

Return from an interrup®his instruction is not generally usable from an applicat

on

program. It is for use in interrupt service routines only

Pagel456

© 2001, By Randall Hyde Beta Draft - Do not distribute

Appendix D: The 80x86 Instruction Set

Table 1: 80x86 Integer and Contol Instruction Set

Instruction Syntax

Description

jalabel;

Conditional jump if (unsigned) ake.You would generally use this instruction imme

diately after a CMP instruction to test to see if one operand is greater than ano
using an unsigned comparison. Control transfers to the suaelebel if this condition
is true, controldlls through to the e instruction if the condition isase.

ther

jaelabel; Conditional jump if (unsigned) alie or equal. Seé\Jabove for details.

jb label; Conditional jump if (unsigned) beko See A above for details.

jbelabel; Conditional jump if (unsigned) beloor equal. SeeAJabove for details.

jc labdl; Conditional jump if carry is one. Se& dbove for details.

je label; Conditional jump if equal. Seé&above for details.

jg label; Conditional jump if (signed) greate®ee A above for details.

jge labdl; Conditional jump if (signed) greater or equal. Se@love for details.

jl label; Conditional jump if (signed) less than. S@eabove for detalils.

jle label; Conditional jump if (signed) less than or equal. Seakive for details.
jnalabdl; Conditional jump if (unsigned) not al® SeeA above for details.
jnaelabl; Conditional jump if (unsigned) not ab® or equal. SeAJabove for details.
jnb label; Conditional jump if (unsigned) belo See A above for details.

jnbelabel; Conditional jump if (unsigned) beloor equal. SeeAJabove for details.
jnc label; Conditional jump if carry #g is clear (no carry). Se& above for detalils.
jne label; Conditional jump if not equal. SeA above for detalils.

jng label; Conditional jump if (signed) not great&ee A above for details.
jngelabdl; Conditional jump if (signed) not greater or equal. eaklove for details.
jnl label; Conditional jump if (signed) not less than. Saebove for details.

jnle label; Conditional jump if (signed) not less than or equal. $eahdve for details.
jno label; Conditional jump if no verflow (overflow flag = 0). SeeAlabove for details.
jnp label; Conditional jump if no parity/parity odd (parityafi = 0). SeeAlabove for details.
jnslabel; Conditional jJump if no sign (signdf = 0). SeeAlabove for detalils.

jnz label; Conditional jump if not zero (zercafl) = 0). SeeAlabove for detalils.

jo label; Conditional jump if @erflow (overflow flag = 1). SeeAlabove for details.
jp label; Conditional jump if parity (parity #ig = 1). SeeAlabove for details.

jpe label; Conditional jump if parity een (parity fag = 1). SeeAlabove for details.

Beta Draft - Do not distribute

© 2001, By Randall Hyde Pagel457

AppendixD

Table 1: 80x86 Integer and Contol Instruction Set

Instruction Syntax

Description

this

this

» data

ansfer

jpo labsl; Conditional jump if parity odd (paritydt = 0). SeeAlabove for details.

Js label; Conditional jJump if sign (signdlg = 0). SeeAlabove for details.

jz labdl; Conditional jump if zero (zerodl = 0). SeeAlabove for detalils.

jcxz labdl; Conditional jump if CX is zero. Sed &bove for details. Note: the range of this
branch is limited to +128 bytes around the instruction. HLA does not check for
(MASM reports the error when it assembles Fd_Autput). Since this instruction is
slower than comparing CX to zero and using JZ, you probably shoeldm use this
instruction. If you do, be sure that thegetrlabel is nearby in your code.

jecxzlabel; Conditional jump if ECX is zero. SeA above for details. Note: the range of this
branch is limited to £128 bytes around the instruction. HLA does not check for
(MASM reports the error when it assembles Fd_Autput). Since this instruction is
slower than comparing ECX to zero and using JZ, you probably shoelem use
this instruction. If you do, be sure that thegtrlabel is nearby in your code.

jmp label; Jump InstructionThis instruction unconditionally transfers control to the spstifi

jmp(label); destination operand. If the operand is a 32-lgitster or memory location, the JMP

jmp ProcedureName; instruction transfers control to the instruction whose address appears igisher i@

jmp(mem32); the memory location.

jmp(reg32);
Note: you shouldxecise great care when jumping to a procedure |&abelJMP
instruction does not push a return address po#mer data associated with a proce
dure’s actvation record. Hence, when the procedure attempts to return it will use
on the stack that &s pushed prior to thexecution of the JMP instruction; it is your
responsibility to ensure such data is present on the stack when using JMP to tr
control to a procedure.

lahf(); LoadAH from FLAGs.This instruction loads th&H register with the L.O. eight bits

of the FLAGs rajister See SAHF for thedly layout.

lea(reg32, mem);
lea(mem, rg32);

Load Efective AddressThese instructions, which are both semantically identical
load the 32-bit rgister with the address of the spesdfimemory locationThe mem
ory location does not need to be a doubbedrobject. Note that there isves ary
ambiguity in this instruction since thegister is alvays the destination operand an
the memory location is&hys the source.

leave();

Leave procedureThis instruction cleans up the asiion record for a procedure prid

to returning from the proceduréou would normally use this instruction to clean up

the actvation record created by the ENTER instruction.

=

Pagel458

© 2001, By Randall Hyde Beta Draft - Do not distribute

Appendix D: The 80x86 Instruction Set

Table 1: 80x86 Integer and Contol Instruction Set

Instruction Syntax

Description

lock prefk

The lock prefx assets a special pin on the processor during<émugon of the fol
lowing instruction. In a multiprocessonaronment, this ensures that the processg
has &clusive use of a shared memory object while the instructtenwgesThe lock
prefix may only precede one of the falimg instructions:

ADD, ADC, AND BTC, BTR, BTS, CMPXCHG, DEC, INC NEG, NQOR, SBB,
SUB, XOR, XADD, and XCHG. Furthermore, this pres only \alid for the forms
that hae a memory operand as their destination operamglother instruction or
addressing mode will raise an undefi opcodexeeption.

HLA does not directly support the LOCK ppebn these instructions (if it did, you
would normally write instructions lé&*“lock.add();” and “lock.bts();” Haever, you
can easily add this instruction to HIsAnstruction set through the use of the foHo
ing macro:

#macro | ock;

byte $F0; // $FO is the opcode for the | ock prefix.
#endnacr o;

To use this macro, simply precede the instruction you wish to lock witlvagaition
of the macro, e.g.,

lock add(al, mem);

Note that a LOCK prefiwill dramatically slov an instruction den since it must
access main memory (i.e., no cache) and it mugitiage for the use of that memol
location with other processors in a multiprocessor sysiée L OCK prefx has ery
little value in single processor systems.

=

y

lodshb();

Load String Byte. Load&L with the byte whose address appears in EBén it
increments or decrements ESI by one depending orathe of the directiondlg. See
the chapter on string instructions for more details. Note: HLA does not thiéouse
of ary repeat prek with this instruction.

lodsw();

Load StringWord. LoadsAX from [ESI] and adds =2 to ESI. See LODSB for mor
details.

11%

loadsd();

Load String Doubl&Vord. Loads EAX from [ESI] and adds 4 to ESI. See LODS
for more details.

B

loop labdl;

Decrements ECX and jumps to thegetrlabel if ECX is not zero. Sea for more
details. Lile JECX, this instruction is limited to a range of +128 bytes around th¢
instruction and only MASM will catch the range er®ince this instruction is actu
ally slowver than a DEC/JNZ paiyou should probablyaid using this instruction.

D

loopelabel;

Check the zerodly, decrement ECX, and branch if the zeag flas set and ECX did
not become zero. Same limitations as LOS&e LOOP abe for details.

loopnelabdl;

Check the zerodly, decrement ECX, and branch if the zeag flas clear and ECX
did not become zero. Same limitations as LOS4¥& LOOP abhe for details.

Beta Draft - Do not distribute

© 2001, By Randall Hyde Pagel459

AppendixD

Table 1: 80x86 Integer and Contol Instruction Set

Instruction Syntax

Description

loopnzlabel;

Same instruction at LOOPNE.

loopzlabd;

Same instruction as LOOPZ.

mov(imm, reg);
mov(imm, mem);
mov(reg, reg);
mov(reg, mem);
mov(mem, rg);

mov(mem16, meml16
);
mov(mem32, mem32

);

Move. Copies the data from the sourcesfioperand to the destination (second)
operandThe operands must be the same size. Note that the memory to memof
moves are an HLAxdension. HLA compiles these statements into a
push(source)/pop(dest) instruction pair

Yy

by

movshb(); Move string of bytes. Copies the byte pointed at byte ESI to the byte pointed at

rep.massh(); EDI and then adjusts ESI and EDI by +1 depending onahe\of the directiondlg.
With the REP (repeat) pr&fithis instruction mees ECX bytes. See the chapter or
the String Instructions for more details.

movsw(); Move string of vards. Like MOVSB abae except it copies wrds and adjusts

rep.mao/sw(); ESI/EDI by £2.

movsd(); Move string of vords. Likk MOVSB abwe except it copies doubleavds and adjusts

rep.masd(); ESI/EDI by +4.

movsx(reg, reg);
movsx(mem, rg);

Move with sign &tension. Copies the (smaller) source operand to ttge(ladestina
tion operand and sigrx&nds the alue to the size of the &r operandlhe source
operand must be smaller than the destination operand.

movzx(reg, reg);
movzx(mem, rg);

Move with zero gtension. Copies the (smaller) source operand to trge(ladestina
tion operand and zerxtends the alue to the size of the g@r operandThe source
operand must be smaller than the destination operand.

mul(reg);

mul(reg8, al);
mul(reg16, ax);
mul(reg32, eax);
mul(mem);

mul(mem8, al);
mul(mem16, ax);
mul(mem32, eax);
mul(imm8, al);
mul(imm16, ax);
mul(imm32, eax);

Multiplies the accumulator (ALAX, or EAX) by the source operan@ihe source
operand will be the same size as the accumulBer product produces an operang
that is twice the size of the dwoperands with the product winding upAX, DX:AX,
or EDX:EAX. Note that the instructionsvolving an immediate operand are HLA
extensions. HLA creates a memory object holding these constants and then mu
the accumulator by the contents of this memory location.

This instruction performs a signed multiplicatidiso see INTMUL.The carry and
overflow flags are cleared if the H.O. portion of the result is zerg,aheset other
wise.The sign and zerodls are undefed after this instruction.

)

Iltiplies

Pagel460

© 2001, By Randall Hyde Beta Draft - Do not distribute

Appendix D: The 80x86 Instruction Set

Table 1: 80x86 Integer and Contol Instruction Set

Instruction Syntax

Description

S

neg(rey); Negate. Computes the dis complement of the operand and/esathe result in the

neg(mem); operandThis instruction clears the carrag if the result is zero, it sets the caragfl
otherwise. It sets theverflow flag if the original alue was the smallest possiblegae
ative value (which has no posig counterpart). It sets the sign and zeagdlaccord
ing to the result obtained.

nop(); No Operation. Consumes space and tintedoes nothing else. Same instruction g
“xchg(eax, eax);”

not(reg); Bitwise NOT. Inverts all the bits in its operandote: this instruction does notfatt

not(mem); ary flags.

or(imm, rey); Bitwise OR. Logically ORs the source operand with the destination operand a{rf

or(imm, mem); leaves the result in the destinatidrhe two operands must be the same size. Clears

or(rey, reg); the carry and\eerflow flags and sets the sign and zeagd$l according to the result.

or(reg, mem);
or(mem, rg);

out(al, imm8);
out(ax, imma3);
out(eax, Imma8);

Outputs the accumulator to the speifport. See the IN instruction for limitations
underWin32.

out(al, dx);

out(ax, dx);

out(eax, dx);

pop(rey); Pop a walue of the stack. Operands must be 16 or 32 bits.

pop(mem);

popa(); Pops all the 16-bit gasters off the stackThe popping order is DI, SI, BBR BX,
DX, CX, AX.

popad(); Pops all the 32-bit gasters off the stackThe popping order is EDI, ESI, EBESR
EBX, EDX, ECX, EAX.

popf(); Pops the 16-bit FLGS raister of the stack. Note that in user (application) mode
this instruction ignores the interrupt disabbgfhalue it pops dfthe stack.

popfd(); Pops the 32-bit EFLAS rayister of the stack. Note that in user (application) mod
this instruction ignores maurof the bits it pops dthe stack.

push(rg); Pushes the speafil 16-bit or 32-bit rgister or memory location onto the stack. N¢

push(mem); that you cannot push eight-bit objects.

pusha(); Pushes all the 16-bit general purpoggsters onto the stack in the rodef, CX,
DX, BX, SR BR SI, DI.

pushad(); Pushes all the 32-bit general purposgsters onto the stack in the roder EAX, EC

EDX, EBX, ESPEBR ESI, EDI.

X,

Beta Draft - Do not distribute

© 2001, By Randall Hyde Pagel461

AppendixD

Table 1: 80x86 Integer and Contol Instruction Set

Instruction Syntax

Description

I anon

ranon

rcl(cl, mem);

pushd(imm); Pushes the 32-bit operand on to the stack. Generally used to push constantg-0
pushd(rg); mous \ariables. Note that this is a syryomfor PUSH if you specify a gister or
pushd(mem); typed memory operand.

pushf(); Pushes thealue of the 16-bit FL&S rajister onto the stack.

pushfd(); Pushes thealue of the 32-bit FL&S rajister onto the stack.

pushw(imm); Pushes the 16-bit operand on to the stack. Generally used to push constantg-0
pushw(rg); mous \ariables. Note that this is a syryomfor PUSH if you specify a gister or
pushw(mem); typed memory operand.

rcl(imm, reg); Rotate through carryeft. Rotates the destination (second) operand through the
rcl(imm, mem); the number of bits speafil by the fist operand, shifting the bits from the L.O. to t
rcl(cl, reg); H.O. position (i.e., rotate left].he carry fag contains the last bit shifted intoThe

overflow flag, which is alid only when the shift count is one, is set if the sign char
as a result of the rotat€his instruction does notfatt the other #gs. In particular
note that this instruction does not affect the sign or zerflags.

carry

ges

rer(imm, rey);
rcr(imm, mem);

rcr(cl, reg);
rcr(cl, mem);

Rotate through carryight. Rotates the destination (second) operand through the
the number of bits speafil by the fist operand, shifting the bits from the H.O. to t
L.O. position (i.e., rotate right).

The carry fag contains the last bit shifted intoTthe oserflow flag, which is alid

only when the shift count is one, is set if the sign changes as a result of th& hasate.

instruction does not tdct the other #gs. In particulamote that this instruction
does not affect the sign or zerflags.

carry
he

1k

rdtsc(); ReadTime Stamp CounteReturns in EDX:EAX the number of clockates that
have transpired since the last reset of the procegsorcan use this instruction to
time events in your code (i.e., to determine whether one instruction sequease ta
more time than another).

ret(); Return from subroutine. Pops a return addreisthefstack and transfers control to

ret(imm16); that locationThe second form of the instruction adds the immediate constant to

ESP rgister to remwe the procedurs’parameters from the stack.

the

rol(imm, rey);
rol(imm, mem);

rol(cl, reg);
rol(cl, mem);

Rotate left. Rotates the destination (second) operand the number of bitedmcif
the frst operand, shifting the bits from the L.O. to the H.O. position (i.e., rotate
The carry fag contains the last bit shifted intoThe overflow flag, which is alid

only when the shift count is one, is set if the sign changes as a result of th& hosate.

instruction does not tct the other #gs. In particulamote that this instruction
does not affect the sign or zer flags.

eft).

ror(imm, rey);
ror(imm, mem);

ror(cl, reg);
ror(cl, mem);

Rotate right. Rotates the destination (second) operand the number of bitedgc

fi

the frst operand, shifting the bits from the H.O. to the L.O. position (i.e., rotate right).

The carry fag contains the last bit shifted intoThe oserflow flag, which is alid
only when the shift count is one, is set if the sign changes as a result of thé hasat
instruction does not fdct the other 8gs. In particulamote that this instruction
does not affect the sign or zerflags.

e.

Pagel462

© 2001, By Randall Hyde Beta Draft - Do not distribute

Appendix D: The 80x86 Instruction Set

Table 1: 80x86 Integer and Contol Instruction Set

Instruction Syntax

Description

sahf();

StoreAH into FLAGs. Copies thealue inAH into the L.O. eight bits of the FL@s
register Note that this instruction will notfaict the interrupt disableaity when oper
ating in user (application) mode.

Bit #7 of AH goes into the Signdb, bit #6 goes into the zerad|, bit #4 goes into the

auxilary carry (BCD carry) #lg, bit #2 goes into the paritaf, and bit #0 goes into
the carry fag.This instruction also clears bits one, three, avel df the FLAGS rayis-
ter. It does not déct ary other bits in FLASSs or EFLAGS.

sal(imm, rg);
sal(imm, mem);
sal(cl, rg);

sal(cl, mem);

Shift Arithmetic Left. Same instruction as SHL. See SHL for details.

sar(imm, rg);
sar(imm, mem);
sar(cl, rg);

sar(cl, mem);

Shift Arithmetic Right. Shifts the destination (second) operand to the right the s
fied number of bits using an arithmetic shift right algoritfilee carry fag contains
the \alue of the last bit shifted out of the second operahd.orerflow flag is only
defined when the bit shift count is one, this instructiovegk clears theverflow flag.
The sign and zerodys are set according to the result.

Deci

com

sbb(imm, rg); Subtract with borner. Subtracts the sourcer§fi) operand and the carry from the de
sbb(imm, mem); nation (second) operand. Sets the condition code bits according to the resut it
sbb(rg, reg); putes.This instruction sets theafl)s the sameay as the SUB instruction. See SUB
sbb(rg, mem); for detalils.

sbb(mem, rg);

scasb(); Scan string byte. Compares thaue inAL against the byte that EDI points at and

repe.scasb();
repne.scashb();

sets the #gs accordingly (same as the CMP instructiddys +1 to EDI after the

comparison (based on the setting of the directag) With the REPE (repeat while
equal) pref, this instruction will scan through as nyaas ECX bytes in memory ag
long as each byte that EDI points at is equal to #heevinAL (i.e., it scans for the

first value not equal to thealue inAL). With the REPNE pref;, this instruction scans

through as manas ECX bytes as long as thedue that EDI points at is not equal t(
AL (i.e., it scans for therfst byte matchind\L’s value). See the chapter on string
instructions for more details.

D

A=

scasw();
repe.scasw();
repne.scasw();

Scan StringMord. Compares thealue inAX against the ward that EDI points at and
set the fhgs. Adds +2 to EDI after the operatiohlso supports the REPE and REPN
prefixes (see SCASB ate).

)
E

scasd();
repe.scasd();
repne.scasd();

Scan String Double erd. Compares thealue in EAX ag@inst the double ard that
EDI points at and set theafjs.Adds =4 to EDI after the operatiofilso supports the
REPE and REPNE prefés (see SCASB ake).

seta(rg);
seta(mem);

Conditional set if (unsigned) ab® (Carry=0 and Zero=0). Stores a one in the des
tion operand if the result of the preus comparison found thegt operand to be
greater than the second using an unsigned comparison. Stores a zero into the

tina

destil

tion operand otherwise.

Beta Draft - Do not distribute

© 2001, By Randall Hyde Pagel463

AppendixD

Table 1: 80x86 Integer and Contol Instruction Set

Instruction Syntax

Description

setae(rg);
setae(mem);

Conditional set if (unsigned) ab® or equal (Carry=0). See SkTor details.

setbe(mem);

setb(rg); Conditional set if (unsigned) belo(Carry=1). See SENfor detalils.
setb(mem);
setbe(rg); Conditional set if (unsigned) beloor equal (Carry=1 or Zero=1). See E0br

details.

setge(mem);

setc(rg); Conditional set if carry set (Carry=1). See 3H0r details.

setc(mem);

sete(rg); Conditional set if equal (Zero=1). See $E0or details.

sete(mem);

setg(rg); Conditional set if (signed) greater (Sign=#dflow and Zero=0). See SETor

setg(mem); details.

setge(rg); Conditional set if (signed) greater or equal (Signeew or Zero=1). See SEIfor

details.

setna(mem);

setl(rey); Conditional set if (signed) less than (Sign<x@iow). See SEA for details.

setl(mem);

setle(rg); Conditional set if (signed) less than or equal (Sign<er@wv or Zero = 1). See
setle(mem); SETA for details.

setna(rg); Conditional set if (unsigned) not ale(Carry=1 or Zero=1). See SkTor details.

setnae(rg);
setnae(mem);

Conditional set if (unsigned) not almor equal (Carry=1). See S&kTor details.

setnb(rg);
setnb(mem);

Conditional set if (unsigned) not baldCarry=0). See SEA for details.

setnbe(rg);
setnbe(mem);

Conditional set if (unsigned) not bel@r equal (Carry=0 and Zero=0). See 8Hadr
details.

setnc(rg);
setnc(mem);

Conditional set if carry clear (Carry=0). See 8Hdr details.

setne(rg);
setne(mem);

Conditional set if not equal (Zero=0). See 38Hdr details.

Pagel464

© 2001, By Randall Hyde Beta Draft - Do not distribute

Appendix D: The 80x86 Instruction Set

Table 1: 80x86 Integer and Contol Instruction Set

Instruction Syntax

Description

setng(rg);
setng(mem);

Conditional set if (signed) not greater (Sign<e@iow or Zero = 1). See SEATfor
details.

setnge(rg);
setnge(mem);

Conditional set if (signed) not greater than (Sign<efflew). See SEA for details.

setnl(rg); Conditional set if (signed) not less than (Signe@ew or Zero=1). See SETfor
setnl(mem); details.
setnle(rg); Conditional set if (signed) not less than or equal (Sigresfw and Zero=0). See

setnle(mem);

SETA for detalils.

setno(rg); Conditional set if noeerflow (Overflow=0). See SEA for detalils.
setno(mem);
setnp(rg); Conditional set if no parity @ity=0). See SEA for details.

setnp(mem);

setns(rg);
setns(mem);

Conditional set if no sign (Sign=0). See 2EOr details.

setnz(rg);
setnz(mem);

Conditional set if not zero (Zero=0). See 3H®r detalls.

seto(rg); Conditional set if Ogrflow (Overflow=1). See SEA for details.
seto(mem);

setp(rg); Conditional set if Brity (Parity=1). See SEA for detalils.

setp(mem);

setpe(rg); Conditional set if Brity even (Rarity=1). See SEA for detalils.
setpe(mem);

setpo(rg); Conditional set if Brity odd (Rrity=0). See SEA for details.

setpo(mem);

sets(rg); Conditional set if sign set(Sign=1). See 3H®r details.

sets(mem);

setz(rg); Conditional set if zero (Zero=1). See FEDr details.

setz(mem);

shi(imm, rg); Shift left. Shifts the destination (second) operand to the left the number of bit p
shl(imm, mem); tions specitd by the fist operandThe carry fag contains thealue of the last bit
shi(cl, rey); shifted out of the second operaiitie overflow flag is only defied when the bit shift

shi(cl, mem);

count is one, this instruction setgedflow flag if the sign changes as a result of thi

DSI

instructions execution.The sign and zerodls are set according to the result.

Beta Draft - Do not distribute

© 2001, By Randall Hyde Pagel465

AppendixD

Table 1: 80x86 Integer and Contol Instruction Set

Instruction Syntax

Description

shld(imm8, rg, reg);
shld(imm8, rg, mem
);

shid(cl, re, reg);
shld(cl, rg, mem);

Shift Left Double precisionThe frst operand is a bit courfthe second operand is
source and the third operand is a destinaiitblese operands must be the same si;
and thg must be 16- or 32-bitalues (no eight bit operand3his instruction treats
the second and third operands as a double precialoa with the second operand
being the L.O. wrd or double wrd and the third operand being the H.@ravor
double vord. The instruction shifts this double precisiadue the specéd number
of bits and sets theafyys in a manner identical to SHL. Note that this instruction d
not afect the source (second) operangilue.

j*)

/e

oes

shr(imm, rg);
shr(imm, mem);
shr(cl, rg);

shr(cl, mem);

Shift right. Shifts the destination (second) operand to the right the number of bi
tions specitd by the fist operandThe last bit shifted out goes into the caragfl
The overflow flag is set if the H.O. bit originally contained omée sign f&g is
cleared and the zer@{ is set if the result is zero.

[posi

shrd(imm8, rg, reg);
shrd(imms, rg, mem
);

shrd(cl, re, reg);
shrd(cl, rg, mem);

Shift Right Double precisiof.he frst operand is a bit courithe second operand is
source and the third operand is a destinaiitlese operands must be the same si;
and thg must be 16- or 32-bitalues (no eight bit operand3his instruction treats
the second and third operands as a double precialoa with the second operand
being the H.O. wrd or double wrd and the third operand being the L.@rdvor
double vord. The instruction shifts this double precisicaue the speciéid number
of bits and sets theafy)s in a manner identical to SHR. Note that this instruction ¢
not afect the source (second) operangilue.

/e

loes

rep.stosb();

Then in adds 1 to EDI. If the REP preis present, this instruction repeats the al
ber of times spec#d in the ECX rgister This instruction is useful for quickly clea
ing out byte arrays.

stc(); Set CarrySets the carrydh to one.

std(); Set Direction. Sets the directiomadl to one. If the directionat is one, the string
instructions decrement ESI and/or EDI after each operation.

sti(); Set interrupt enabledt). Generally this instruction is not usable in user (application)
mode. In lernel mode it allevs the CPU to lign processing interrupts.

stosh(); Store String Byte. Stores thalue inAL at the location whose address EDI contai

rep.stosd();

stosw(); Store StringNord. Stores thealue inAX at location [EDI] and then adds +2 to ED|.
rep.stosw(); See SDSB for details.
stosd(); Store String Double ard. Stores thealue in EAX at location [EDI] and then adds +

to EDI. See SDSB for details.

4

sub(imm, rg);
sub(imm, mem);
sub(re, reg);
sub(rg, mem);
sub(mem, rg);

Subtract. Subtracts thedi operand from the second operand andelethe difer-
ence in the destination (second) operand. Sets the agnb tihe tvo values were
equal (which produces a zero result), sets the cagyffthere vas unsignedwerflow
or underfow; sets the werflow if there was signed eerflow or underfbw; sets the
sign flag if the result is rgative (H.O. bit is one). Note that SUB sets tlagél identi
cally to the CMP instruction, so you can use conditional jump or set instructions
SUB the same ay you wuld use them after a CMP instruction.

after

Pagel466

© 2001, By Randall Hyde Beta Draft - Do not distribute

Appendix D: The 80x86 Instruction Set

Table 1: 80x86 Integer and Contol Instruction Set

Instruction Syntax

Description

test(imm, rg);
test(imm, mem);
test(rg, reg);
test(rg, mem);
test(mem, rg);

Test operands. LogicallNDs the two operands together and sets thgdllut does
not store the computed result (i.e., it does not disturbahe \n either operand).
Always clears the carry andesflow flags. Sets the sigrafi if the H.O. bit of the
computed result is one. Sets the zeag ff the computed result is zero.

xadd(mem, rg);
xadd(re, reg);

Adds the fist operand to the second operand and then stores the orgjueb¥ the
second operand into thedi operand:
xadd(source, dest);

tenp : = dest
dest := dest + source
source := tenp

This instruction sets theafljs in a manner identical to tABD instruction.

xchg(re, rey);
xchg(rg, mem);
xchg(mem, rg);

Swaps the @lues in the tw operands which must be the same size. Does fiect af
ary flags.

xlat();

Translate. Computes. := [EBX + AL]; That is, it uses thealue inAL as an indg
into a lookup table whose base address is in EBX. It copies the asgdxife from
this table intcAL.

xor(imm, rey);
xor(imm, mem);
xor(reg, reg);
xor(reg, mem);
xor(mem, rg);

Exclusive-OR. Logically XORs the source operand with the destination operand

leaves the result in the destinatidrhe two operands must be the same size. Clears

the carry and\eerflow flags and sets the sign and zeagdl according to the result.

Table 2: Floating Roint Instruction Set

Instruction Description
f2xm1(); Compute 2-1 in STO, leging the result in STO.
fabs(); Computes the absolutalue of STO.
fadd(mem); Add operand to stO or add stO to destinatiauster (st, i=0..7). If the operand is a

fadd(st, stO);
fadd(stO, $J;

memory operand, it must beeal32 or real 64 object.

faddp();
faddp(stO, $t);

With no operands, this instruction adds stO to stl and then pop$ &t BPU stack

Beta Draft - Do not distribute

© 2001, By Randall Hyde Pagel467

and

AppendixD

Table 2: Floating Point Instruction Set

Instruction

Description

fbld(mem80);

This instruction loads a ten-byte (80-bit) padkBCD \alue from memory and cen
verts it to a real80 objecthis instruction does not check for amahd BCD \alue. If
the BCD number contains itial digits, the result is undegd.

fostp(mem80);

This instruction pops the real80 objedt thie top of the FPU stack, ogerts it to an
80-bit BCD \alue, and stores the result in the spedifnemory location (tbyte).

fchs();

This instruction ngates the fiating point alue on the top of the stack (st0).

fclex();

This instruction clears theothting point gception fags.

fcmova(st, st0)2

Floating point conditional me if abave. Copies stto stO if c=0 and z=0 (unsigned
greater than after a CMP).

fcmovae(st, st0);

Floating point conditional me if abave or equal. Copiesidb st0 if c=0 (unsigned
greater or equal after a CMP).

fcmovb(st, st0);

Floating point conditional me if belov. Copies stto stO if c=1 (unsigned less tha
after a CMP).

-

fcmovbe(st, st0);

Floating point conditional me if belov or equal. Copiesisto st0 if c=1 or z=1
(unsigned less than or equal after a CMP).

fcmove(st, st);

Floating point conditional me if equal. Copies isto stO if z=1 (equal after a CMP).

fcmovna(st, st0);

Floating point conditional me if not ab@e. Copies $tto stO if c=1 or z=1 (unsigne(
not abwe after a CMP).

S

fcmovnae(st, stO);

Floating point conditional me if not abee or equal. Copiesidb st0 if c=1
(unsigned not abwe or equal after a CMP).

fcmovnb(st, st0);

Floating point conditional mee if not belav. Copies stto stO if c=0 (unsigned not
below after a CMP).

fcmovnbe(si, st0);

Floating point conditional me if not belov or equal. Copiesistio st0 if c=0 and z=0
(unsigned not belw or equal after a CMP).

fcmovne(st, st0);

Floating point conditional me if not equal. Copiesigb stO if z=0 (not equal after
CMP).

1%

fcmovnu(st, st0);

Floating point conditional mee if not unordered. Copied $b stO if the last dating
point comparison did not produce an unordered result (pady=fi0).

fcmovu(st, st0);

Floating point conditional mee if not unordered. Copied $b stO if the last dating
point comparison produced an unordered result (paaity=l1).

fcom();
fcom(mem);
fcom(stO, st);

Compares thealue of STO with the operand and sets tbatihg point condition bitg
based on the comparison. If the operand is a memory operand, it musal32 ar
real64 value. Note that to test the condition codes you witehia copy the fbating
point status wrd to the FLASS raister; see the chapter ondting point arithmetic
for details.

Pagel468

© 2001, By Randall Hyde Beta Draft - Do not distribute

Appendix D: The 80x86 Instruction Set

Table 2: Floating Point Instruction Set

Instruction

Description

fcomi(stO, sit);b

Compares thealue of STO with the second operand and sets the appropriate bi
the FLAGS rajister

IS in

fcomip(stO, st);

Compares thealue of STO with the second operand, sets the appropriate bits in
FLAGs regyister and then pops STOfdhe FPU stack.

the

by

(4%

fcomp(); Compares thealue of STO with the operand, sets tloafing point status bits, and

fcomp(mem); then pops STO bthe floating point stackWith no operands, this instruction com

fcomp(st); pares STO to ST1. Memory operands mustehE2 or real64 objects.

fcompp(); Compares STO to ST1 and then pops bathes of the stack. Leaes the result of the
comparison in thedlating point status gester

fcos(); Computes STO = cos(STO0).

fdecstp(); Rotates the items on the FPU stack.

fdiv(mem); Floating point drision. If a memory operand is present, it must beakB2 or real64

fdiv(st, st0); object; FDIV will divide STO by the memory operand and/eethe quotient in STO.

fdiv(stO, st); If the FDIV operands are gesters, FDIV dviides the destination (second) operand
the source (fst) operand and lgas the result in the destination operand.

fdivp(); With no operands, this instructiorviles ST1 by STO, pops STO, and replaces th

fdivp(st); new top of stack with the quotient (replacing thevoves ST1 alue).

fdivr(mem); Floating point dride with reversed operands. LekFDIV, but computes operand/ST

fdivr(st, stO);
fdivr(stO, st);

rather than STO/operand.

OJ

0

fdivrp(); Floating point dride and pop, reersed. Like FDIVP ecept it computes operand/ST|
fdivrp(st); rather than STO/operand.

ffree(st); Frees the specdd floating point rgistet

fladd(mem); Memory operand must be a 16-bit or 32-bit signedyeitd his instruction coverts

the inteer to a real, pushes thalwe, and thenxecutes RDDP();

ficom(mem);

Floating point compare to irger Memory operand must be anl6 orint32 object.

This instruction coverts the memory operand toeal 80 value and compares STO to

this value and sets the status bits in tlatihg point status gester

ficomp(mem);

Floating point compare to irder and pop. Memory operand must beémt6 or int32
object.This instruction coverts the memory operand toeal 80 value and compare
STO to this alue and sets the status bits in tieatihg point status gester After the
comparison, this instructions pop STO from the FPU stack.

*2

fidiv(mem);

Floating point dride by intgger Memory operand must be anl6 orint32 object.
These instructions ceart their intgier operands to r&al 80 value and then dide
STO by this alue, le&ing the result in STO.

Beta Draft - Do not distribute

© 2001, By Randall Hyde Pagel469

AppendixD

Table 2: Floating Point Instruction Set

ck.

Instruction Description

fidivr(mem); Floating point diide by int@er, reversed. Lilke FIDIV abore, except this instruction
computes mem/STO rather than STO/mem.

fild(mem); Floating point load in@er Mem operand must be an int16 or int32 obj€hts
instructions coverts the intger to a real80 object and pushes it onto the FPU sta

fimul(mem); Floating point multiply by intger. Corvertsint16 orint32 operand to &eal80 value
and multiplies STO by this result. hess product in STO.

fincstp(); Rotates the gisters on the FPU stack.

finit(); Initializes the FPU for use.

fist(mem); Converts STO to an inger and stores the result in the spedifnemory operand.
Memory operand must be am16 orint32 object.

fistp(mem); Floating point intger store and pop. Pops STdélue of the stack, coverts it to an
integer, and stores the irger in the speciid location. Memory operand must be a
word, double wrd, or quad wrd (64-bit intger) object.

fisub(mem); Floating point subtract ingeer. Corvertsintl16 orint32 operand to aeal80 value and

subtracts it from STO. Leas the result in STO.

fisubr(mem);

Floating point subtract inger, reversed. Lilke FISUB &cept this instruction computg
mem-STO rather than STO-mem. Stilltea the result in STO.

1%

fld(mem); Floating point load. Loads (pushes) the spedibperand onto the FPU stack. Men

fld(st); ory operands must breal 32, real64, or real80 objects. Note that FLD(STO) dupli
cates the alue on the top of thedating point stack.

fld1(); Floating point load 1.0This instruction pushes 1.0 onto the FPU stack.

fldcw(mem16);

Load floating point control wrd. This instruction copies theaxd operand into the
floating point control igister

flderv(mem28);

This instruction loads the FPU status from the block of 28 bytes sukbifithe oper
and. Generallyonly an operating systenowld use this instruction.

fldi2e(); Floating point load constant. Loads $¢&) onto the stack.

fldI2t(); Floating point load constant. Loads $010) onto the stack.

fldlg2(); Floating point load constant. Loads {g@) onto the stack.

fldIn2(); Floating point load constant. Loads §{®#) onto the stack.

fldpi(); Floating point load constant. Loads tteue of pi {) onto the stack.

fldz(); Floating point load constant. Pushes takig 0.0 onto the stack.
Pagel470 © 2001, By Randall Hyde Beta Draft - Do not distribute

Appendix D: The 80x86 Instruction Set

Table 2: Floating Point Instruction Set

Instruction

Description

fmul(mem);
fmul(st, st0);
fmul(stO, st);

Floating point multiply If the operand is a memory operand, it must be a real32
real64 \alue; in this case, FMUL multiplies the memory operand and STMintethe
product in STO. &r the other tw forms, the FMUL instruction multiplies thedt
operand by the second andJes the result in the second operand.

fmulp();
fmulp(stO, st);

Floating point multiply and poith no operands this instruction computes
ST1:=STO0*ST1 and then pops SWith two register operands, this instruction cor
putes STO times the destinatiogister and then pops STO.

=

fnop(); Floating point no-operation.

fpatan(); Floating point partial arctangent. Compud&N(ST1/STO), pops STO, and then
stores the result in thewd& OS \alue (preious ST1 alue).

fprem(); Floating point remainder his instruction is retained for compatibility with older pro
grams. Use the FPREM1 instruction instead.

fprem1(); Floating point partial remaindérhis instruction computes the remainder obtained by
dviding STO by ST1, leang the result in STO (it does not pop either operand). Ifthe
C2 flag in the FPU statusgister is set after this instruction, then the computation is
not complete; you must repeatedkeeute this instruction until C2 is cleared.

fptan(); Floating point partial tangenthis instruction computéBAN(STO) and replaces the
value in STO with this resullhen it pushes 1.0 onto the sta€kis instruction sets
the C2 fhg if the input wlue is outside the acceptable range §f+2

frndint(); Floating point round to inger This instruction rounds thealue in STO to an ingger

using the rounding control bits in thedking point control rgister Note that the
result left onTOS is still a real &lue. It simply doeshhave a fractional component
You may use this instruction to round or truncateatithg point alue by setting the
rounding control bits appropriatelgee the chapter ométing point arithmetic for
details.

frstor(mem108);

Restores the FPU status from a 108-byte memory block.

fsave(mem108);

Writes the FPU status to a 108-bye memory block.

fscale(); Floating point scale by meer of two. ST1 contains a scalin@e. This instruction
multiplies STO by 8%,

fsin(); Floating point sine. Replaces STO with sin(STO).

fsincos(); Simultaneously computes the sin and cosalaes of STO. Replaces STO with the
sine of STO and then it pushes the cosine of (the origataé\of) STO onto the stack.
Original STO alue must be in the rangea_?’z

fsqrt(); Floating point square root. Replaces STO with the square root of STO.

Beta Draft - Do not distribute

© 2001, By Randall Hyde Pagel471

AppendixD

Table 2: Floating Point Instruction Set

Instruction Description
fst(mem); Floating point store. Stores a gogf STO in the destination operand. Memory epe
fst(st); ands must beeal 32 or real 64 objectsWhen storing thealue to memoryFST con

=

verts the alue to the smaller format using the rounding control bits in tlairiig
point control rgister to determine koto corvert thereal80 value in STO to aeal 32
or real64 value.

fstcw(mem16);

Floating point store controlavd. Stores a cgpof the fbating point control wrd in
the specitdword memory location.

fsterv(mem28);

Floating point store FPU gmonment. Stores a cgmf the 28-byte Blating point
ervironment in the specdd memory location. Normallan OS wuld use this when
switch cont&ts.

fstp(mem); Floating point store and pop. Stores STO into the destination operand and then pops
fstp(st); STO of the stack. If the operand is a memory object, it mustrieal 32, real64, or

real80 object.
fstsw(ax); Stores a copof the 16-bit fbating point status gester into the specdd word oper

fstsw(mem16);

and. Note that this instruction automatically places the C1, C2, C3, and C4 condition

bits in appropriate places AH so that a follving SAHF instruction will set the pra

cessor fhgs to allav the use of a conditional jump or conditional set instruction after a

floating point comparison. See the chapter oatithg point arithmetic for more
details.

fsub(mem);
fsub(stO, st);
fsub(st, stO);

Floating point subtractVith a single memory operand (which must be a real32 or
real64 object), this instruction subtracts the memory operand fromV8iFdtwo rey-
ister operands, this instruction computlest := dest - src (wheresrc is the frst oper
and andlest is the second operand).

fsubp();
fsubp(stO, st);

Floating point subtract and pdyith no operands, this instruction computes ST1 [=
STO - ST1 and then pops STO thfe stackWith two operands, this instruction cem
putes ST:= STi - STO and then pops ST tiie stack.

fsubr(mem);
fsubr(stO, st);
fsubr(st, st0);

Floating point subtract, versedWith a real32 or real64 memory operand, this
instruction computes STO := mem - STOr Ehe other tw forms, this instruction
computegest := src - dest wheresrc is the fist operand andest is the second oper
and.

fsubrp();
fsubrp(stO, st);

Floating point subtract and popyeesedWith no operands, this instruction computes
ST1:=STO - ST1 and then pops SWith two operands, this instruction compute
STi:= STO - STand then pops STO from the stack.

U

ftst();

Floating point test agnst zero. Compares STO with 0.0 and sets tagifig point
condition code bits accordingly

Pagel472

© 2001, By Randall Hyde Beta Draft - Do not distribute

Appendix D: The 80x86 Instruction Set

Table 2: Floating Point Instruction Set

Instruction Description
fucom(st); Floating point unordered comparist¥ith no operand, this instruction compares ST0
fucom(); to ST1.With an operand, this instruction compares STO toa®d sets @ating point

status bits accordinglynlike FCOM, this instruction will not generate aeption
if either of the operands is an g floating point alue; instead, this sets a specia
status alue in the FPU statusgister

fucomi(st, st0);

Floating point unordered comparison.

fucomp();
fucomp(st);

Floating point unorder comparison and péfith no operands, compares STO to S[T'1
using an unordered comparsion (see FUCOM) and then pops 8heé efackWith
an FPU operand, this instruction compares STO to the sgbagister and then pop
STO of the stack. See FUCOM for more details.

*2)

fucompp(); Floating point unordered compare and double pop. Compares STO to ST1, sets the

fucompp(st); condition code bits (without raising arception for illgal values, see FUCOM), and
then pops both STO and ST1.

fwait(); Floating point vait. Waits for current FPU operation to complete. Generally an-obso
lete instruction. Used back in the days when the FBS an a ditrent chip than the
CPU.

fxam(); Floating point Examine STO. Checks tredue in STO and sets the condition code bits
according to the type of theblie in STO. See the chapter arating point arithmetic
for details.

fxch(); Floating point &changeWith no operands this instructiora@anges STO and ST1

fxch(st); on the FPU stackVith a single rgister operand, this instruction gaps STO and ST

fxtract(); Floating point gponent/mantissaxéraction.This instruction breaks thelue in STO
into two pieces. It replaces STO with the real representation of the bix@opent
(e.g. 2becomes 5.0) and then it pushes the mantissa ofithe with an gponent of
zero.

fyl2x(); Floating point partial logrithm computation. Computes ST1 := ST1 *}@&r0); and
then pops STO.

fyl2xp1(); Floating point partial logrithm computation. Computes ST1 := ST1 *Jo§TO0 + 1.0

) and then pops STOfahe stack. Original STOalue must be in the range

B 28349

a. Floating point conditional move instructions are only available on Pentium Pro and later processors.
b. FCOMIx instructions are only available on Pentium Pro and later processors.

Beta Draft - Do not distribute

© 2001, By Randall Hyde Pagel473

AppendixD

The following table uses these abuiaions:
Reg32- A 32-bit general purpose (integer) register.
mmi- One of the eight MMX registers, MMO0..MM7.
imm8- An eight-bit constant value; some instructions have smaller ranges that 0..255. See the particular instruction for detal

mem64- A memory location (using an arbitrary addressing mode) that references a gword value.

Note: Most instructions have two operands. Typically the first operand is a source operand and the second operand is a d
nation operand. For exceptions, see the description of the instruction.

Table 3: MMX Instruction Set

Instruction Description

emms(); Empty MMX StateYou must gecute this instruction when you arei$hed using
MMX instructions and before grfollowing floating point instructions.

movd(reg32, mm); Moves data between a 32-bit igée rayister or dvord memory location and an

movd(mem32, mm); MMX register (mmO..mm7). If the destination operand is an MM)}{ster then the

movd(mmi, reg32); source operand is zeratended to 64 bits during the transfiéthe destination

movd(mm, mema32); operand is a dard memory location or 32-bitgester this instruction copies only
the L.O. 32 bits of the MMX gster to the destination.

movq(mem64, mm); This instruction mees 64 bits between an MMXgister and @word variable in

movg(mm, memé64); memory or between wvMMX registers.

movg(mmi, mmi);

packssdw(mem64, mim | Pack and saturate twsigned double ards from source and twsigned double

); words from destination and store result into destination MMjister This process
packssdw(mm mm); involves taking these four doubleovds and “saturating” therithis means that if
the \alue is in the range -32768..32768 th&ue is left unchangedubif it's greater
than 32767 thealue is set to 32767 or ifstless than -32768 thalue is clipped to
-32768.The four double wrds are paad into a single 64-bit MMX gaster The
source operand supplies the uppes imords and the destination operand supplies
the lover two words of the paakd 64-bit result. See the chapter on the MMX
instructions for more details.

packsswb(mem64, mim | Pack and saturate four signednds from source and four signednas from desti
); nation and store the result as eight signed bytes into the destination NiMbere
packsswb(mm mmi); See the chapter on the MMX instructions for more detHlils.bytes obtained from
the destination gaster wind up in the L.O. four bytes of the destination; the bytes
computed from the signed saturation of the sourgistex wind up in the H.O. four
bytes of the destinationgister

Pagel474 © 2001, By Randall Hyde Beta Draft - Do not distribute

Appendix D: The 80x86 Instruction Set

Table 3: MMX Instruction Set

Instruction

Description

packusdw(mem64, mm
);

packusdw(mm mmi);

Pack and saturate twunsigned double evds from source and twnsigned double
words from destination and store result into destination MMjister This process
involves taking these four doubleovds and “saturating” therithis means that if
the \alue is in the range 0..65535 tredue is left unchangedubif it’s greater than
65535 the alue is clipped to 65533 he four double wrds are paad into a single
64-bit MMX register The source operand supplies the upperwoerds and the des
tination operand supplies thenler two words of the pactd 64-bit result. See the
chapter on the MMX instructions for more details.

packuswb(mem64, mm
);

packuswb(mm mmi);

Pack and saturate four unsignedrds from source and four unsignedrds from
destination and store the result as eight unsigned bytes into the destination M
register Word values greater than 255 are clipped to 255 during the saturation
ation. See the chapter on the MMX instructions for more detditsbytes obtained
from the destination ggster wind up in the L.O. four bytes of the destination; th
bytes computed from the signed saturation of the sougtgteewind up in the
H.O. four bytes of the destinatiorgister

IMX
opel

e

paddb(mem64, mnj;
paddb(mm mmi);

PackedAdd of Bytes.This instruction adds together the wmidual bytes of the taw
operandsThe addition of each byte is independent of the other eight bytes; th
no carry from byte to byte. If arverflow occurs in an byte, the ®lue simply wraps
around to zero with no indication of theesflow. This instruction does notfatt
ary flags.

ere i

paddd(mem64, mi);
paddd(mm, mmi);

PackedAdd of DoubleWords.This instruction adds together the wmidual dwords
of the two operandsThe addition of each dwd is independent of the otheraw
dwords; there is no carry from a@nd to dword. If an werflow occurs in ap dword,
the \alue simply wraps around to zero with no indication of thexftow. This
instruction does not tdct ary flags.

paddsb(mem64, miny;
paddsb(mm mm);

PackedAdd of Bytes, signed saturatékhis instruction adds together the widual
bytes of the tw operandsThe addition of each byte is independent of the othet
eight bytes; there is no carry from byte to byte. If @erflow or underfbw occurs in
ary byte, then thealue saturates at -128 or +1dhis instruction does notfatt
ary flags.

paddsw(mem64, min);
paddsw(mm mm);

PackedAdd of Words, signed saturatethis instruction adds together the widr
ual words of the tw operandsThe addition of each ovd is independent of the
other four vords; there is no carry fromond to word. If an awerflow or underfbw
occurs in ap word, the alue saturates at either -32768 or +3276is instruction
does not déct ary flags.

paddusb(mem64, mnj
paddusb(mm mmi);

PackedAdd of Bytes, unsigned saturatddhis instruction adds together the wmidk

ual bytes of the tav operandsThe addition of each byte is independent of the other

eight bytes; there is no carry from byte to byte. If @erflow or underfbw occurs in
ary byte, then thealue saturates at 0 or 2595is instruction does notfatt ary

flags.

Beta Draft - Do not distribute

© 2001, By Randall Hyde Pagel475

AppendixD

Table 3: MMX Instruction Set

Instruction

Description

paddusw(mem64, miny,
paddusw(mm mm);

PaclkedAdd of Words, unsigned saturatethis instruction adds together the indi
vidual words of the tw operandsThe addition of each ovd is independent of the
other four vords; there is no carry fromosd to word. If an werflow or underfbw
occurs in ap word, the alue saturates at either O or 6558Bis instruction does
not afect ary flags.

paddw(mem64, mmn);
paddw(mnn, mm);

PackedAdd of Words.This instruction adds together the midual words of the tw
operandsThe addition of eachevd is independent of the other fouonas; there is
no carry from word to word. If an werflow occurs in ap word, the alue simply
wraps around to zero with no indication of thveidlow. This instruction does not
affect ary flags.

pand(mem64, mim;
pand(mnn, mmi);

PackedAND. This instruction computes the bitwi8&ID of the source and the de
tination \alues, leaing the result in the destinatiohhis instruction does notfatt
ary flags.

pandn(mem64, mnj;
pandn(mm mm);

PackedAND NOT. This instruction mags a temporary cgpof the frst operand and
inverts all of the bits in this cgpthen itANDs this \alue with the destination MMX
register This instruction does notfatt ary flags.

pavgb(mem64, min);
pavgb(mm, mm);

PackedAverage of BytesThis instruction computes theexage of the eight pairs g
bytes in the tw operands. It lees the result in the destination (second) operan

f
d.

pavgw(mem64, mm);
pavgw(mmi, mmi);

PaclkedAverage ofNVords.This instruction computes thegexrage of the four pairs of

words in the tw operands. It lees the result in the destination (second) opera

nd.

pcmpegb(mem64, miny;
pcmpegb(mm mm);

Packed Compare for Equal ByteBhis instruction compares the inalual bytes in
the two operands. If theare equal this instruction sets the corresponding byte i
destination (second)gester to $FF (all ones); if tyeare not equal, this instructio
sets the corresponding byte to zero.

1 the
X

pcmpeqd(mem64, miny;
pcmpeqd(mm mm);

Packed Compare for Equal Doublgords.This instruction compares the in@tiual
double vordsin the tw operands. If theare equal this instruction sets the corre
sponding double ardin the destination (secondpister to $FFFF_FFFF (all
ones); if thg are not equal, this instruction sets the correspondimgdite zero.

pcmpeqw(mem64, mm
);

pcmpegw(mm mm);

Packed Compare for EquaVords.This instruction compares the indlual words
in the two operands. If theare equal this instruction sets the correspondiomg\w
the destination (second)gister to $FFFF (all ones); if there not equal, this

instruction sets the correspondingng to zero.

Pagel476

© 2001, By Randall Hyde Beta Draft - Do not distribute

Appendix D: The 80x86 Instruction Set

Table 3: MMX Instruction Set

Instruction

Description

pcmpgtb(mem64, mn);
pcmpgtb(mm mmi);

Packed Compare for Great@han, BytesThis instruction compares the indiual
bytes in the tw operands. If the destination (second) operand byte is greater {
the source (fst) operand byte, then this instruction sets the corresponding byt

the destination (second)gister to $FF (all ones); if tgeare not equal, this instru¢

tion sets the corresponding byte to zero. Note that there is no PCMPLEB-inst
tion.You can simulate this instruction by awping the operands in the PCMPGT]
instruction (i.e., compare in the opposite directiégo note that these operands
are, in a sense, backvds compared with the standard CMP instrucfldris
instruction compares the second operand to theréither than the otheray
around.This was done because the second operanavasyalthe destination oper
and and, unlie the CMP instruction, this instruction writes data to the destinat
operand.

han
ein

ruc
B

on

pcmpgtd(mem64, mi);
pcmpgtd(mm mm);

Packed Compare for Great@han, DoubléVords.This instruction compares the
individual dwords in the tw operands. If the destination (second) operanatdivs
greater than the sourcergt) operand dard, then this instruction sets the cerre
sponding dwrd in the destination (secondyrster to $FFFF_FFFF (all ones); if
they are not equal, this instruction sets the correspondimgdite zero. Note that
there is no PCMPLED instructiovfou can simulate this instruction by awping

the operands in the PCMPGTD instruction (i.e., compare in the opposite dired

Also note that these operands are, in a sense, had&kwompared with the standard

CMP instructionThis instruction compares the second operand torgtadither
than the other ay aroundThis was done because the second operanavasyalthe
destination operand and, urdikhe CMP instruction, this instruction writes data
the destination operand.

tion)

to

pcmpgtw(mem64, mm

);

pcmpgtw(mny, mmi);

Packed Compare for Great@han,Words.This instruction compares the in@iual
words in the tw operands. If the destination (second) operamdivg greater than
the source (fst) operand wrd, then this instruction sets the correspondingdvin
the destination (second)gister to $FFFF (all ones); if there not equal, this

instruction sets the correspondingatd to zero. Note that there is no PCMPLE\
instruction.You can simulate this instruction by &wping the operands in the
PCMPGTW instruction (i.e., compare in the opposite directidisp note that
these operands are, in a sense, baattsvcompared with the standard CMP instr

tion. This instruction compares the second operand torte-dither than the other

way aroundThis was done because the second operanavasyalthe destination

NV

uc

operand and, unli&kthe CMP instruction, this instruction writes data to the destina

tion operand.

Beta Draft - Do not distribute

© 2001, By Randall Hyde Pagel477

AppendixD

Table 3: MMX Instruction Set

Instruction

Description

pextrw(imm8, mm,
reg32);

Paclked Extraction of a wrd. The imm8 walue must be a constant in the range 0.,

This instruction copies the speeifi word from the MMX reister into the L.O.
word of the destination 32-bit irger reister This instruction zerox@ends the
16-bit value to 32 bits in the inger reyister Note that there are nateaction

instructions for bytes or dwds. Havever, you can easilyxdract a byte using PEX

TRW and amAND or XCHG instruction (depending on whether the byte number is

even or odd)You can use MWD to extract the L.O. dwrd. to etract the H.O.
dword of an MMX reister requires a bit moreork; either &tract the tvo words
and mege them or mee the data to memory and grab theodiwoute interested
in.

pinsw(imm8, rg32,
mmi);

Paclked Insertion of a wrd. The imm8 alue must be a constant in the range 0..3.

This instruction copies the L.O.ond from the 32-bit intger rayister into the speci
fied word of the destination MMX gaster This instruction ignores the H.O.ond
of the intger raister

pmaddwd(mem64, mm
);
pmaddwd(mm mmi);

Packed Multiple andAccumulate (Add)This instruction multiplies together the
corresponding wrds in the source and destination operaitden it adds the tav
double vord products from the multiplication of thedw..O. words and stores this
double vord sum in the L.O. dard of the destination MMX gaster Finally, it adds
the two double vard products from the multiplication of the H.Oomls and stores
this double wrd sum in the H.O. dard of the destination MMX ggster

U7

pmaxw(mem64, mim);
pmaxw(mm, mm);

Packed Signed IntgerWord Maximum.This instruction compares the fouowds

between the tow operands and stores the signed maximum of each corresponding

word in the destination MMX ggster

pmaxub(mem64, mi);
pmaxub(mm mmi);

Packed Unsigned Byte MaximunThis instruction compares the eight bytes
between the towvoperands and stores the unsigned maximum of each correspg
byte in the destination MMX gaster

nding

pminw(mem64, min);
pminw(mm, mm);

Packed Signed IntgerWord Minimum.This instruction compares the fouowms
between the tev operands and stores the signed minimum of each correspond
word in the destination MMX ggster

ing

pminub(mem64, mm);
pminub(mm, mm);

Packed Unsigned Byte MinimunThis instruction compares the eight bytes

between the tow operands and stores the unsigned minimum of each corresponding

byte in the destination MMX ggster

pmovmskb(mm, reg32);

Move Byte Mask to Intger. This instruction creates a byte bytracting the H.O.
bit of the eight bytes from the MMX sourceyrgter It zero etends this alue to 32
bits and stores the result in the 32-bit gatereayister

pmulhuw(mem64, mm
).

pmulhuw(mni, mi):

Packed Multiply High, UnsignedVords.This instruction multiplies the four
unsigned wrds of the tw operands together and stores the H.@dvef the resuilt

ing products into the correspondingmd of the destination MMX ggster

Pagel478

© 2001, By Randall Hyde Beta Draft - Do not distribute

Appendix D: The 80x86 Instruction Set

Table 3: MMX Instruction Set

Instruction Description

pmulhw(mem64, mm); | Packed Multiply High, SignedVords.This instruction multiplies the four signed
pmulhw(mm, mm); words of the tw operands together and stores the H.@dvof the resulting pred
ucts into the correspondingowd of the destination MMX gastet

pmuliw(mem64, mm); | Packed Multiply Low, SignedWords.This instruction multiplies the four signed
pmuliw(mmi, mm); words of the tw operands together and stores the L.Gravof the resulting prod
ucts into the correspondingowd of the destination MMX ggster

por(mem64, min); Packed OR. Computes the bitwise OR of th@taperands and stores the result in
por(mm, mmi); the destination (second) MMXgister

psadbw(mem64, mn); | Packed Sum oRbsolute DiferencesThis instruction computes the absolugdue
psadbw(mm mmi); of the diference of each of the unsigned bytes between th@psrandsThen it

adds these eight results together to formoedveum. Finallythe instruction zero
extends this wrd to 64 bits and stores the result in the destination (second) opgeran

pshufw(imm8,mem64,m| Packed Shufle Word. This instruction treats the imm&bue as an array of four
mi); two-bit values.These bits specify where the destination (third) opesanol'ds
obtain their wlues. Bits zero and one tell this instruction where to obtain the L|O.
word, bits two and three specify whereovd #1 comes from, bits four anddispee
ify the source for wrd #2, and bits six andsn specify the source of the H.O.
word in the destination operand. Each pair of bytes spea@fiord number in the
source (second) operandirfexample, an immediatealue of %00011011 tells thi
instruction to grab wrd #3 from the source and place it in the L.Ordwvof the des
tination; grab werd #2 from the source and place it iond #1 of the destination;
grab word #1 from the source and place it inre #2 of the destination; and grab
the L.O. word of the source and place it in the H.@ravof the destination (i.e.,
swap all the words in a manner similar to the B3W instruction).

U

pslid(mem, mm); Packed Shift Left Logical, Doubl&/ords.This instruction shifts the destination
pslld(mm, mmi); (second) operand to the left the number of bits sjeelcidy the fist operand. Each
pslld(imm8, mm); double vord in the destination is treated as an independent.dBitisyare not car

ried over from the L.O. dwrd to the H.O. dward. Bits shifted out are lost and this
instruction alvays shifts in zeros.

pslig(mem, mm); Packed Shift Left Logical, Quatlvord. This instruction shifts the destination oper
psllg(mm, mm); and to the left the number of bits spesifiby the fist operand.

pslig(imm8, mm);

psliw(mem, mnn); Paclked Shift Left Logical, Vidrds.This instruction shifts the destination (second)
psliw(mmi, mmi); operand to the left the number of bits spedifiby the fist operand. Bits shifted out
psliw(imm8, mm); are lost and this instructionvedys shifts in zeros. Eachond in the destination is

treated as an independent entits are not carriedver from the L.O. wrds into
the net higher word. Bits shifted out are lost and this instructionagls shifts in
zeros.

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagel479

AppendixD

Table 3: MMX Instruction Set

Instruction

Description

psard(mem, mim);
psard(mm, mm);
psard(imm8, mrn);

Packed Shift RightArithmetic, DoubléWord. This instruction treats the twhales
of the 64-bit rgister as tw double vords and performs separate arithmetic shift
rights on themThe bit shifted out of the bottom of thedwlouble vords is lost.

psarw(mem, mim);
psarw(mnn, mm);
psarw(imm8, mm);

Packed Shift RighArithmetic, Word. This instruction operates independently on
four words of the 64-bit destinationgister and performs separate arithmetic sh
rights on themThe bit shifted out of the bottom of the fouonas is lost.

he
ft

psrlid(mem, mm);
psrid(mm, mm);
psrid(imm8, mm);

Packed Shift Right Logical, Doublé/ords.This instruction shifts the destination
(second) operand to the right the number of bits spddify the fist operand. Each
double vord in the destination is treated as an independent.dBitisyare not car
ried over from the H.O. dwrd to the L.O. dwrd. Bits shifted out are lost and this
instruction alvays shifts in zeros.

pslrg(mem, mm);
psirg(mm, mm);
psirq(imm8, mm);

Packed Shift Right Logical, Quad/ord. This instruction shifts the destination op
and to the right the number of bits speifby the fist operand.

pslrw(mem, mm);
pslrw(mm, mmi);
pslrw(imm8, mnn);

Packed Shift Right Logical,Wrds.This instruction shifts the destination (second
operand to the right the number of bits spedifyy the fist operand. Bits shifted ou
are lost and this instructionvedys shifts in zeros. Eachond in the destination is
treated as an independent entits are not carriedver from the H.O. wrds into
the net lower word. Bits shifted out are lost and this instructionaais shifts in
zeros.

~ N

psubb(mem64, mn);
psubb(mm mm);

Packed Subtract of Byte§.his instruction subtracts the in@ual bytes of the
source (fist) operand from the corresponding bytes of the destination (second
operandThe subtraction of each byte is independent of the other eight bytes;
is no borrev from byte to byte. If anwerflow or underfbw occurs in ap byte, the
value simply wraps around to zero with no indication of thexftow. This instrue
tion does not &kct ary flags.

)

there

psubd(mem64, mi);
psubd(mm mm);

Packed Subtract of Doubléd/ords.This instruction subtracts the ingdual dwords

of the source (fst) operand from the correspondingatds of the destination (sec

ond) operandThe subtraction of each dwnd is independent of the other; there is
borrav from dword to dword. If an aerflow or underfbw occurs in ap dword, the
value simply wraps around to zero with no indication of thexftow. This instrue
tion does not &éct ary flags.

no

psubsb(mem64, min);
psubsb(mm mmi);

Packed Subtract of Bytes, signed saturafus instruction subracts the ineiual
bytes of the source operand from the corresponding bytes of the destination
and, saturating to -128 or +127 wWesflow or underfbw occurs.The subtraction of
each byte is independent of the othetesebytes; there is no carry from byte to

bper

byte.This instruction does notfatt ary flags.

Pagel480

© 2001, By Randall Hyde Beta Draft - Do not distribute

Appendix D: The 80x86 Instruction Set

Table 3: MMX Instruction Set

Instruction

Description

psubsw(mem64, mi);
psubsw(mm mmi);

Packed Subtract oiVords, signed saturatethis instruction subracts the inciual
words of the source operand from the correspondimgisvof the destination oper
and, saturating to -32768 or +3276 Aredflow or underfbw occursThe subtraction
of each vord is independent of the other threerds; there is no carry fromond to
word. This instruction does notfaft ary flags.

psulusb(mem64, min);
psulusb(mn, mmi);

Packed Subtract of Bytes, unsigned saturaldds instruction subracts the ineti-
ual bytes of the source operand from the corresponding bytes of the destinati
operand, saturating to O if undewfl occurs.The subtraction of each byte is inde
pendent of the othergen bytes; there is no carry from byte to byi@s instruction
does not déct ary flags.

on

psulusw(mem64, mim);
psutusw(mm, mm);

Packed Subtract o¥Words, unsigned saturatehis instruction subracts the ineti-
ual words of the source operand from the correspondngisvof the destination
operand, saturating to O if undewfl occurs.The subtraction of eachond is inde
pendent of the other threevds; there is no carry fromond to word. This instrue
tion does not &éct ary flags.

psubw(mem64, mi);
psubw(mnn, mmi);

Paclked Subtract oWords.This instruction subtracts the ingdual words of the
source (fist) operand from the correspondingras of the destination (second)
operandThe subtraction of eachond is independent of the others; there is ne &
row from word to word. If an overflow or underfbw occurs in ap word, the alue
simply wraps around to zero with no indication of therflow. This instruction
does not déct ary flags.

or

punpckhbw(mem64,
mmi);
punpckhbw(mm mm);

Unpack high padkd data, bytes toavds.This instruction unpacks and intenes
the high-order four bytes of the sourcesti and destination (second) operands.
places the H.O. four bytes of the destination operand avémebyte positions in
the destination and it places the H.O. four bytes of the source operand in the
byte positions of the destination operand.

t

odd

punpckhdqg(mem64, mm
);
punpckhdg(mm mmi);

Unpack high packd data, dwrds to gverd. This instruction copies the H.O. dvd

of the source operand to the H.O.ad of the destination operand and it copies
(original) H.O. dvord of the destination operand to the L.Oodavof the destina

tion.

the

punpckhwd(mem64,
mmi);
punpckhwd(mm mm);

Unpack high pactd data, wrds to dwrds.This instruction unpacks and inter
leaves the high-order tvwords of the source (fit) and destination (second) ope
ands. It places the H.O. dwwords of the destination operand at tkiereword
positions in the destination and it places the H.@dw of the source operand in tf
odd word positions of the destination operand.

=

ne

punpcklbw(mem64, mm

);

punpcklbw(mnn, mm);

Unpack lav pacled data, bytes toavds.This instruction unpacks and intenes
the lav-order four bytes of the sourcergt) and destination (second) operands.

places the L.O. four bytes of the destination operand avémelyte positions in the

destination and it places the L.O. four bytes of the source operand in the odd

~—+

byte

positions of the destination operand.

Beta Draft - Do not distribute

© 2001, By Randall Hyde Pagel481

AppendixD

Table 3: MMX Instruction Set

Instruction

Description

punpckldg(mem64, mm

);
punpckldg(mm mm);

Unpack lav pacled data, dwrds to qword. This instruction copies the L.O. dwd
of the source operand to the H.O.ad of the destination operand and it copies
(original) L.O. dvord of the destination operand to the L.O odivof the destina
tion (i.e., it doesrt’change the L.O. davd of the destination).

the

punpckivd(mem64, mm
);

punpckivd(mm, mmi);

Unpack lav pacled data, wrds to dverds.This instruction unpacks and intenes
the lov-order two words of the source (&t) and destination (second) operands.
places the L.O. tvwords of the destination operand at thereword positions in

the destination and it places the L.Qords of the source operand in the odutav

positions of the destination operand.

t

pxor(mem64, mm);
pxor(mm, mmi);

Packed Exclusie-OR.This instruction rclusive-ORs the source operand with th
destination operand leimg the result in the destination operand.

e

Pagel482

© 2001, By Randall Hyde Beta Draft - Do not distribute

	The 80x86 Instruction Set Appendix D

