
gcc macro

coly li
referenced from gcc manual



definition

macro is a block of code with a given name. when the name is used, it is 
replaced by the content of macro (that block of code).

two kinds of macro
object-like       -------  data object
function-like    -------  function calls



object-like macro

commonly used as symbolic names or numbers
#define BUFFER_SIZE 1024foo = (char *) malloc (BUFFER_SIZE);macro is 
named in uppercase makes code easire to read, use "#define"  to define a 
macro:#define MACRO_NAME tokens
 



sequence

gcc processes macro in sequence, which means:
foo = X
#define X=4
bar = X

the result will be:
foo = X
bar = 4

X before the #define will not be affected



sequence 2

see this example:
    #define    TABLESIZE    BUFSIZE
    #define    BUFSIZE        16
 
NOTE, when TABLESIZE is defined, BUFSIZE is not defined yet.
In this case, TABLESIZE is just a BUFSIZE, even BUFSIZE is not used, 
TABLESIZE can be expended by gcc preprocessor.

If BUFSIZE is defined before TABLESIZE is referenced in code, it will not be 
problem to gcc.

NOTE: Even BUFSIZE is defined as 16 following TABLESIZE, if there is a
    #undef    BUFSIZE
    #define    BUFSIZE    8
then the followed TABLESIZE will be expended to 8 (other than 16).



self-referential macro

When a macro name appears in its definition, it is called self-
referential macro. in most cases, should avoid using self-
referential macro.
In gcc, macro will be expended as greedily as possible, but 
self-referential macro is an exception. GCC only expends self-
referential macro once.
Example:

#define x     (4 + y)
#define y     (2 * x)

GCC will expend them into
    x ==>  (4 + y) ==> (4 + (2 * x))
    y ==>  (2 * x) ==> (2 * (4 + y))
Is it confused ?



function-like macro

if a pair of parentheses immediately follows the macro name, 
it's function-like macro.
#define lang_init()  c_init()
lang_init() ==> c_init()
 
If only uses macro name without the parentheses, it will not be 
expend as a function-like macro.
extern void foo()
#define foo() XXXXXXX /* the local version */
... ...
foo();                          /* macro version gets called */
funptr = foo; funptr();  /* external version gets called */

NOTE: "#define foo ()  bar()"  foo will be treaded as object-like 
macro as "() bar ()"



macro arguments

For a function-like macro, the parentheses balance is 
mandatory.
＃define    min(x, y)     ((x) < (y) ? (x) : (y))
 
Leaving arguments as empty is not an error for gcc 
reprocessor.
     min(, b)        ==> ((   ) < (b) ? (   ) : (b))
     min(a, )        ==> ((a  ) < ( ) ? (a  ) : ( ))
     min(,)          ==> ((   ) < ( ) ? (   ) : ( ))
     min((,),)       ==> (((,)) < ( ) ? ((,)) : ( ))
 
NOTE: can not leave all arguments as empty, for multiple 
arguments, at least a comma is needed.
NOTE: only parentheses balance is mandatory, no such 
requirement to square brackets (braces)



stringification

sometimes, one may want to convert macro arguments to 
string.
when a macro parameter is used with a leading '#', gcc 
preprocess replace it with the literal text of the actual argument, 
converted to a string constant.

You can not stringify a string with surrouding strings combined, 
but you can write a series surrounding string constants and 
stringified arguments. e.g.

#define WAR_IF(EXP) \
        do { if(EXP) fprintf(stderr, "Warning: " #EXP "\n";)} while(0)
WAR_IF(x==0) ==>
        do {if (x==0) fprintf(stderr, "Warning: " "x==0" "\n")} while
(0)



stringification 2

gcc preprocessor backslash-escapes the quotes surrounding 
the embedded string constants, and all backslashes inside 
string or character constant.
 
str to stringify                      result
foo\n                                   foo\n
"foo\n"                                 \"foo\\n\"
"\n"                                     \"\\n\"
'\n'                                      \'\\n\'
\n                                        \n
"foo"\n"bar"\n                      \"foo\"\n\"bar\"\n 

By this rule, preprocessor can stringify proper content of string 
constant



stringification 3

there is no way to convert a macro argument to string constant.
If you do want to make it, use 2 level macros

#define xstr(s)    str(s)
#define str(s)      #s
#define foo          4
str(foo) ==> "foo"
xstr(foo) ==> xstr(4) ==> str(4) ==> "4"

NOTE: it only works when foo is a macro. If foo is a varaible(e.
g. int foo=4), both xstr() and str() always stringify it into "foo".



concatenation

merging 2 tokens into 1 is called token pasting or token 
concatenation.  '##' preprocessing operator performs token 
pasting.
 
example 1: 
 NAME ## _command  ==> NAME_command
example 2:
#define NAME name
NAME ## _command ==> name_command



concatenation 2

concatenation expends macro before concatenating.
stringification does not expends macro before stringifying.

sometimes, ## is over used,
#define xstr(s) str(s)
#define str(s)  #s
#define foo     4
#define bar     5
e.g. If you want 45, the following is over used,
        char *str=xstr(foo) ## xstr(bar);
gcc will complain a stray ##. Remove the unnecessary ##,
        char *str=xstr(foo)xstr(bar)
it works.



concatenation 3

the merged token should be valid, e.g. merging 'x' and '*' will be 
an invalid result, even whethere there is white space between 
'x' and '*' is undefined.

If the argument is empty, ## has no effect.
 
## and # ? 
 
#define COMMAND(NAME)  { #NAME, NAME ## _command }
     
     struct command commands[] =
     {
       COMMAND (quit),
       COMMAND (help),
       ...
     };



variadic macros

A macro can be used to accept a variable number of 
arguments. Here is an example:
#define eprintf(...)     printf(stderr, __VA_ARGS__)
 
this kind of macro is called variadic. When the macro is 
invoked, all tokens in its argument list, including commas, 
become variable argument. This sequence of tokens replaces 
the identifier __VA_ARGS__ where it appears.
eprintf("%s:%d:", __FILE__, __LINE__)
  ==> printf(stderr, "%s:%d:", __FILE__, __LINE__)

variable argument is completely macro-expended before it is 
inserted into the macro expansion.



variadic macros 2

An extension without __VA_ARGS__, ... follows args 
immediately:
#define eprintf(args...)    fprintf(stderr, args)
 
the named arguments can  also be listed with variable 
arguments:
#define eprintf(fmt, ...)    fprintf(stderr, fmt, __VA_ARGS__)
 
#ifdef DEBUG
#define BUG1(fmt, args...)    do{printk(fmt, args);}while(0)
#define BUG2(fmt, ...)    do{printk(fmt, __VA_ARGS__);}while
(0)
#else
#define BUG1(fmt, args...)
#define BUG2(fmt, ...) 
#endif



variadic macros 3

If variadic variable is empty, there is a remaining comma and 
now variable followed. the expanded format is unacceptable by 
C99 compiler.
 
GCC extension, allow __VA_ARGS__ part to be empty, the 
remaining comma is allowed.
 
#define  eprintf(fmt, ...)    fprintf(stderr, fmt, ##__VA_ARGS__)
In above example, if __VA_ARGS__ is empy, the comma just 
before ## will be deleted by gcc.

For long time, gcc supports variable arguments by:
#define eprintf(fmt, args...)    fprintf(stderr, fmt , ##args)
NOTE: in this case, there must be a blank between the comma 
(before ##) and what ever before the comma.



predefined macros

__FILE__, __LINE__, __DATE__, __TIME__
__STDC__, __STDC_VERSION__, __STDC_HOSTED__
__cplusplus__
__OBJC__
__ASSEMBLER__

common predefined macros, too many, not listed here.

system predefined macros



undefining macros

If a macro ceases to be useful, it can be undefined by #undef 
directly. #undef is only a argument, the name of macro, 
otherwise error will be complained. If the argument is not 
macro, #undef has no effect.
 
#define FOO 4
x = FOO;        ==> x = 4;
#undef FOO
x = FOO;        ==> x = FOO;
 
 
 



redefining macros

If a macro is redefined, the new definition should be effectively 
same to the old one. Effectively same is,

Both are the same type of macro (object- or function-like).
All the tokens of the replacement list are the same.
If there are any parameters, they are the same.Whitespace 
appears in the same places in both. It need not be exactly 
the same amount of whitespace, though. Remember that 
comments count as whitespace. 

same                                    different
#define FOUR (2 + 2)                  #define FOUR (2 + 2)
#define FOUR (2    +    2)            #define FOUR ( 2+2 )
#define FOUR (2 /* two */ + 2)     #define FOUR (2 * 2)
If the definition is different, gcc will use the new difinition with a 
warning for redefinition conflict.



macro pitfall   ---
misnesting

Example 1: 
#define twice(x) (2*(x))
#define call_with_1(x) x(1)
call_with_1 (twice)
     ==> twice(1)
     ==> (2*(1))
Example 2:
#define strange(file) fprintf (file, "%s %d",
...
strange(stderr) p, 35)
     ==> fprintf (stderr, "%s %d", p, 35)
Example 1 might be useful, example 2 is confused and should 
be avoided.



macro pitfall ----
Operator Precedence Problems

#define ceil_div(x, y) (x + y - 1) / y

a = ceil_div (b & c, sizeof (int));
     ==> a = (b & c + sizeof (int) - 1) / sizeof (int);
This does not do what is intended. The operator-precedence rules of C make it 
equivalent to this:
     a = (b & (c + sizeof (int) - 1)) / sizeof (int);
What we want is this:
     a = ((b & c) + sizeof (int) - 1)) / sizeof (int);

Defining the macro as
     #define ceil_div(x, y) ((x) + (y) - 1) / (y)
provides the desired result.

USING parentheses explicitly.



macro pitfall ---
Swallowing the Semicolon

do {...} while (0);



macro pitfall ---
Duplication of Side Effects

First implementation: 
#define min(X, Y)  ((X) < (Y) ? (X) : (Y))
next = min(x + y, foo(z))
          ==> ((x + y) < (foo(z)) ? (x + y) : (foo(z)))
In this implementation, there are 2 major issues:
1) foo(z) gets called twice, which may result different value 
each time.
2) x + y may not be able to compare with foo(z), data type 
incompatible.



macro pitfall ---
Duplication of Side Effects (2)

Improved implementation with gcc typeof() extension:
#define min(X, Y)   \
        ({ typeof (X) x_ = (X); typeof (Y) y_ = (Y); \
        (x_ < y_) ? x_ : y_; })

advantage:
-X and Y only get referenced once
 
disadvantage:
- If X and Y is not same data types, compiler may automatically 
upgrad data type for one of them. Sometimes, this is what 
programer does not want to.



macro pitfall ---
Duplication of Side Effects (3)

The further Improved implementation with gcc typeof() 
extension:
#define min(X, Y)   \
        ({ typeof (X) x_ = (X); typeof (Y) y_ = (Y); \
          (void) (&x_ == &y_); \
          (x_ < y_) ? x_ : y_; })

advantage:
- If X and Y are different data type, there will be an error in 
compiling time.
 
disadvantage:
-slow ??



macro pitfall ---
Newlines in Arguments

Some time, the error line number may not be the location 
where the real problem is.


