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1 What is this about?Most programmers think that the programs they write are fairly well writtenand perform as good as possible. In most ases this is not orret. Many peoplethink they know how to do it right but they most probably miss something.Writing optimized programs is a learning proess. One learns about a newtehnique every time one looks sharply at the own ode and thinks about theinterations with the underlying libraries or the proessor.In this paper we will disuss several optimization tehniques whih the au-thor learned in the past years of programming. It is ertainly not a ompletelist nor is it a strutured approah. It is merely a list of di�erent tehniquesdoumented using illustrative examples. All examples are given in C but mostof the tehniques an be applied to C++ as well. Using templates as allowed instandard C++ is not at all overed.This paper is not about optimizations performed in the optimizer of the om-piler. This is a ompletely di�erent �eld and a lot of literature exists desribingthe possibilities. What we will desribe are hanges to the soure ode and waysto �nd out where they are needed. The remainder of the paper is strutured in�ve parts:� Using optimizations performed at ompile-time (starting at page 3).� Helping the ompiler to generate better ode (starting at page 12).� Knowing the libraries and understand the funtion implementation (start-ing at page 17).� Writing better ode in the �rst plae (starting at page 30).� Pro�ling (starting at page 34).To read and understand the following text it is neessary that the readerknows how the preproessor works, has advaned knowledge about the C pro-gramming language itself, and preferably knows the funtions of the C language.The text also desribes a few mahine spei� optimizations but it is OK to ig-nore these points if one is not familiar with the desribed arhiteture.2 Using Optimizations Performed at Compile-TimeIn this setion we will desribe optimizations whih an always be performedwithout the fear of negative impats. The optimizations are performed a ompiletime by the ompiler. The worst ase is that the ode behaves as if no optimiza-tion at all is performed. Therefore these kind of optimizations should alwaysbe performed sine they don't have a negative impat. But it should perhapshappen as the last step sine it might disable some of the other optimizations.2.1 Dead Code Elimination WorksUnexperiened users are often afraid of leaving dead ode behind. Dead odeis used to desribe ode whih never gets exeuted. In most ases this fear is3



unfounded. The ompiler will in most ases reognize dead ode and ompletelydrop it from the program. When using g this is only true if optimization isenabled but this his hopefully always true. g generates truly horrible odewhen no optimization is enabled.One not very serious example is this:long intadd (long int a, void *ptr, int type){ if (type == 0)return a + *(int *) ptr;elsereturn a + *(long int *) ptr;}Depending on the parameter type the objet pointed to by the parameterptr is either an int or a long int. On the �rst view the ode makes perfetsense and seems to be optimal. But it is not sine in some environments intobjets and long int objets are atually the same. In this ase the if and theelse lause of the funtion exeute exatly the same ode. This an be avoidedat no extra ost and the solution will work if int and long int are not thesame.long intadd (long int a, void *ptr, int type){ if (sizeof (int) == sizeof (long int) || type == 0)return a + *(int *) ptr;elsereturn a + *(long int *) ptr;}The result of the sizeof operator is always known at runtime and thereforethe added onditional expression always an be omputed by the ompiler. Ifthe types have the same size the expression evaluates to true and therefore theif ondition always is true. In this ase the else lause is never used and theompiler an reognize this and ompletely elide it. If the types have di�erentsizes the ode is equivalent to the initial ode of the example.When writing low-level programs whih are expeted to run on a variety ofplatforms one often omes aross situations like the above. It is important toremember triks like the one just desribed. In some situations it is not possibleor wanted to atually add something to the C ode. To get the orret result onemust the preproessor to hide ertain ode omplete. In this ase one annotuse the sizeof operator. Instead one should use the maros from limits.h:#inlude <limits.h>long intadd (long int a, void *ptr, int type){#if LONG_MAX != INT_MAXif (type == 0)return a + *(int *) ptr; 4



else#endifreturn a + *(long int *) ptr;}Here the preproessor does the work. In this example it is not neessarybut it shows how it works. The preproessor is required to be able to performarithmeti operations and omparisons using the widest available representation(at least with 64 bits). Whih version is the better annot be answered learly.1From the ompiler perspetive both ways are nearly idential sine dead odeelimination works.2.2 Saving Funtion CallsIf the body of a funtion is very small the overhead assoiated with the funtionall an be really high ompared to the time spend in the funtion. Typialexamples of this in the standard library are many of the string and math fun-tions. There are two solutions to this problem: to use maros or to use inlinefuntions to implement the funtion in question.The GNU CC manual says that inline funtions are as fast as maros andmuh safer. This is true, in most ases. There are examples where the equivalentmaro is faster and maros an, using other g features, be made as safe asinline funtions. Generally the suggestion is to use inline funtions as long asnone of the optimizations depend on the use of a maro. Two reasons are:� The use of alloa (see page 23).� The use of builtin onstant p, see page 9.In either ase there are a few things whih the programmer has to take areof. When using inline funtions it is not neessary to treat parameters speially.The handling of parameters happens as in normal funtions, i.e., eah expressionused for the parameters is evaluated exatly one. If the header ontaining theinline funtion is used outside the own projet (e.g., if the projet is a library)than it is important to make sure that used identi�ers to no onit with marosde�ned by the user and the system. The C library implementation thereforeprepend to all identi�ers is situations like this. A user appliation annotlegally do this. One reasonably safe way is to append .A last problem with inline funtions is that they are not always used if theyare delared extern. The GNU C ompiler never expands inline funtions ifno optimization is enabled. It also allows to disable the inline funtion useexpliitly even if it performs all other optimizations. This means for the use ofinline funtions that one has to take this ase into aount and always providereal, non-inline implementations of these funtions as well. If the ompilerexpands the inlines these funtions might never be used. If one puts the odefor these funtions in an arhive and then links against this arhive insteadof the objet diretly, the linker will add these objets to the �nal programonly if the funtions are really needed. Inline funtions de�ned as stati arealways expanded but this overrides the judgment of the ompiler whether it1Some people are strongly opinionated. The guys at USL have not even implemented #ifin the Plan 9 C ompiler making it impossible to write it in the latter form.5



is worthwhile to inline the funtion or not. Espeially with the use of optionslike -Os (optimize for spae) it is questionable whether stati inline funtionsshould be used.Writing orret and safe maros is muh harder. First of all, one has toprotet the parameters. It is important to remember that the passed values forthe parameters are passed verbatim, without evaluation to the plaes where thevariable appears. This requires� orretly adding parenthesis. One must always be prepared for the asewhere the parameter is not a simple value and variable.#define mult(a, b) (a * b){ int a = mult (1 + 2, 3 + 4)}The erroneous de�nition of mult above leads to the surprising result of 11for a. The orret form is#define mult(a, b) ((a) * (b))� that braes to introdue new bloks are not used diretly. The followingexample shows a problem situation:#define sale(result, a, b, ) \{ \int __ = (); \*(result) = (a) * __ + (b) * __; \}{ int r;if (s != 0)sale (&r, e1, e2, s);elser = 0;}The surprising result of the expression above is that result always getsthe value zero assigned. Corretly written the multmaro would not ausethis problem:#define sale(result, a, b, ) \do { \int __ = (); \*(result) = (a) * __ + (b) * __; \} while (0)� The above example already shows the next important point: don't intro-due unwanted side e�ets by evaluating the expressions passed as parame-ters more than one. This is why the variable  was introdued. Without6



the variable the expression would have been evaluated twie. There is alsothe problem that a parameter value is not evaluated at all. If the marois meant as a replaement for a funtion this is also a problem. Thereforethe sale maro is not written like this:#define sale(result, a, b, ) \do { \int __ = (); \*(result) = __ == 0 ? 0 : (a) * __ + (b) * __; \} while (0)This ould safe some time but would lead to strange results (ompared toa real funtion) if the values passed for the seond and third parameterhave side e�ets.� Also visible in the sale example is the problem maros have with non-trivial expressions. As soon as a variable is needed one annot use simpleexpressions anymore. One has reate a new blok whih of ourse meansthe maro annot have a return value. One has to use awkward methodsas in the sale example where the variable, the result has to be storedin, is given as a parameter. It would be muh leaner if the maro wouldreturn the value and one ould assign it. This is not possible in standardC, but it is possible in GNU C.#define sale2(a, b, ) \(__extension__({ \int __ = (); \(a) * __ + (b) * __; \})){ int r;if (s != 0)r = sale (e1, e2, s);elser = 0;}The GNU C feature used here is alled \statement expression" and isdesribed in the GNU CC manual. It basially is a normal blok with theexeption that the value of the last statement is passed up as the resultof the expression. Please note that it is not neessary to use the do ...while (0) trik.There remains one new feature introdued in the last example to be ex-plained. The extension keyword added tells the ompiler that theauthor knows s/he uses a GNU C extension. Therefore the ompiler doesnot issue a warning even if it is asked to point out all ISO C violations.Therefore extension should be used in all headers whih an be usedoutside the projet. 7



2.3 Compiler IntrinsisMost modern C ompilers know intrinsi funtions. These are speial inlinefuntions, whih are provided by the ompiler itself. Unlike inline funtions theyare always used, the ompiler annot opt for using an external implementation.Intrinsis known to g as of version 2.96 are:� builtin alloadynamially alloate memory on the stak� builtin ffs�nd �rst bit set� builtin abs, builtin labsabsolute value of an integer� builtin fabs, builtin fabsf, builtin fabslabsolute value of oating-point value� builtin mempyopy memory region� builtin memmpompare memory region� builtin memsetset memory region to given value� builtin strmpompare two strings� builtin strpyopy string� builtin strlenompute string length� builtin sqrt, builtin sqrtf, builtin sqrtlsquare root of oating-point value� builtin sin, builtin sinf, builtin sinlsine of oating-point value� builtin os, builtin osf, builtin oslosine of oating-point value� builtin div, builtin ldivinteger division with rest� builtin fmod, builtin fremmodule and remainder of oating-point division8



There are a few more intrinsis but they are very useful. It is not guar-anteed that all intrinsis are de�ned for all platforms. Therefore one must beprepared for the ase that an intrinsi is not available and one has to use a realimplementation.One important and very useful feature of some intrinsi funtions is thatthey an ompute their results at ompile-time if the parameters are onstantat ompile-time. E.g., it is possible thatstrlen ("foo bar")is diretly replaed with the value seven. This is something whih we will usein the remainder of this paper o� and on.2.4 builtin onstant pThough the name builtin onstant p looks very muh like the names of theintrinsi funtions mentioned in the last setion it is no intrinsi. It is instead anoperator similar to sizeof. Sine it follows the good old LISP tradition to usethe ending p one an see from the name that it is a prediate. It takes a singleparameter and the return value is nonzero if the parameter value is onstant atruntime.This proofs to be a very useful thing to have. Many of the optimizations inthe remainder of this text as well as many of the optimization implemented inthe GNU C library headers depend on this feature. To show how it is used weontinue the example from page 4. When third parameter is onstant the typeof the objet pointed to by the seond parameter an be dedued at ompiletime. Therefore we add in addition to the improved implementation above inthe header with the prototype of this funtion the following maro:#define add(a, ptr, type) \(__extension__ \(__builtin_onstant_p (type) \? ((a) + ((type) == 0 \? *(int *) (ptr) : *(long int *) (ptr))) \: add (a, ptr, type)))This maro hanges the behavior of the add funtion only if the third pa-rameter is onstant. If it is not onstant the real implementation is alled.2Otherwise, the expression (type) == 0 an be evaluated at ompile time atthe whole expression evaluates to either(a) + *(int *) (ptr)or (a) + *(long int *) (ptr)In this small example it might not be visible but the builtin onstant poperator allows to avoid ode bloat in situation where a maro de�nition onlyleads to favorable ode if due to ompile-time omputations, value propagation,and dead ode elimination the ode size is redued drastially. The followingreal-world example shows this more learly.2It is hopefully lear why despite the all to add in the last line this is no reursive all tothe maro. 9



#define strdup(s) \(__extension__ \(__builtin_onstant_p (s) && __string2_1bptr_p (s) \? (((__onst har *) (s))[0℄ == '\0' \? (har *) allo (1, 1) \: ({ size_t __len = strlen (s) + 1; \har *__ret = (har *) mallo (__len); \if (__ret != NULL) \__ret = (har *) mempy (__ret, s, __len); \__ret; })) \: strdup (s)))The use of builtin onstant p prevents the use of the whole bunh oflines of this maro if the parameter is not onstant. For the sake of it, oneshould one look at the ode to see how muh ode would have to be generatedif one would always use the replaement. We simply ould not write suh a marowithout builtin onstant p guarding the expansion (the string2 1bptr pis not interesting here; interested parties should look at the <bits/string2.h>header of a glib 2.1 installation).For a onstant parameter s (whih must be a string onstant) most of theexpression an be omputed at runtime. Sine the omputer an see the �rstharater of the string it knows whether the allo all has to be made orwhether the statement expression has to be exeuted. In the statement expres-sion the result of the strlen all an be determined at ompile-time. One ansee that in either ase the piee of ode whih remains a very small. Due to theoptimizations performed by the ompiler many of the operations of the ode donot have be exeuted at runtime. In the above ase, for a non-empty string, onewould in the end have two funtion alls and an if expression but it would notbe neessary to ompute the string length whih might be a big advantage.2.5 Type-generi MarosWhen writing a maro to help speeding up ertain operations it is sometimesthe ase that one wants the same funtionality for di�erent type. For simpleoperations this is easy, one simply an let the ompiler �gure out how to use thearguments. It gets ompliated as soon as one has to de�ne variables inside themaro and if di�erent funtions depending on the used type have to be used.Going bak to the sale example, we might want to write a type-generiversion of it. Instead of requiring the parameter  to be of type int we makeit of whatever type the other parameters are. The ompiler an help to �gurethis out. Sine the result of operations on two numbers is of the larger type ofthe two operands the type we want to use for  is the same type as the one fora + b + . Using a feature in g it is possible to de�ne suh a variable:#define tgsale(result, a, b, ) \do { \__extension__ __typeof__ ((a) + (b) + ()) __ = (); \*(result) = (a) * __ + (b) * __; \} while (0)This might be a bit onfusing at �rst. But typeof (o) de�nes a typeand it is the same type o has. Therefore the hanged line as before de�nes a10



variable  and assigns a value to it. What we gained through this hange isthat we now an all tgsale with arguments of type int, long long int andeven double and we always get  to be de�ned the best way with respet tothe result.There is another situation where typeof helps writing ode even if notmany variables are used and the ommon type has to be dedued. The ISO C9xstandard introdues a new header <tgmath.h> allows the user to write odeusing the mathematial funtions without taking are of the di�erent variantsfor the di�erent types. E.g., one an all sin and depending on the type ofthe parameter the orret funtion from the six possibilities is piked. A na��veapproah to this problem would be:#define sin(Val) \(sizeof (__real__ (Val)) > sizeof (double) \? (sizeof (__real__ (Val)) == sizeof (Val) \? sinl (Val) : sinl (Val)) \: (sizeof (__real__ (Val)) == sizeof (double) \? (sizeof (__real__ (Val)) == sizeof (Val) \? sin (Val) : sin (Val)) \: (sizeof (__real__ (Val)) == sizeof (Val) \? sinf (Val) : sinf (Val))))But this is not orret. Try to �nd out yourself before reading the footnoteand looking at the orret ode.3 To orret the problem we have to introduea variable and this is where typeof omes into play again.#define sin(Val) \(__extension__ \({ __typeof__ (Val) __tgmres; \if (sizeof (__real__ (Val)) > sizeof (double)) \{ \if (sizeof (__real__ (Val)) == sizeof (Val)) \__tgmres = sinl (Val); \else \__tgmres = sinl (Val); \} \else if (sizeof (__real__ (Val)) == sizeof (double)) \{ \if (sizeof (__real__ (Val)) == sizeof (Val)) \__tgmres = sin (Val); \else \__tgmres = sin (Val); \} \else \{ \if (sizeof (__real__ (Val)) == sizeof (Val)) \__tgmres = sinf (Val); \else \__tgmres = sinf (Val); \3The above is a single expression and it must have exatly one statially determined type.This type must be the most general one to be able to represent values of all the other typeswithout loss. Therefore the returned value is always of type omplex long double whihertainly is not what we want. 11



} \__tgmres; }))This example summarizes almost everything we disussed so far. If youwould have been able to write this ode yourself you have learned the lessons.Otherwise a few explanations. Beause the ode now is not a single expressionthe ompiler does not �nd the most general type. In fat, the assignment to thevariable tgmres might fore a onversion to a narrower type. But this neverhappens for any reahed ode: only one if the six assignments is really exeutedand here the assignment does not loose any preision. All the other ases aredead ode and will be eliminated by the optimizer.3 Helping the CompilerThe GNU C ompiler o�ers a few extensions whih allow the ompiler to desribethe ode more preisely and also features to inuene the ode generation. Inthis setion we will desribe some of the features in examples so that the readeran apply this later her/his own ode.3.1 Funtions of No ReturnEvery bigger projet ontains at least one funtion whih is used for fatal errorsand whih graefully terminates the appliation. Suh a funtion is often nottreated in an optimal way sine the ompiler does not know that the funtiondoes not return. Take the following example funtion and the use in some ode.void fatal (...) __attribute__ ((__noreturn__));voidfatal (...){ ... /* Print error message. */ ...exit (1);}{ ... /* read d */ ..if (d == 0)fatal (...);elsea = b / d;... /* and so on */ ...}The funtion fatal is guaranteed to never return sine the funtion exit hasthe same guarantees. Therefore we annotated the prototype of the funtion withattribute (( noreturn )). This g extension lets the author speifyexatly what we just said: the funtion will never return.Without this assurane the ompiler would have to translate the if lausein the example to something whih orresponds the following pseudo-ode:12



1 Compare d with zero2 If not zero jump to 53 Call fatal4 Jump to 65 Compute b / d and assign it to a6 ...This is not far from the optimum but there is unneeded ode. The line 4 isnever exeuted sine the all to fatal does not return. If the ompiler knowsabout this it will avoid this line and e�etively transforms the soure ode tothis:{ ... /* read d */ ..if (d == 0)fatal (...);a = b / d;... /* and so on */ ...}Please note that the else is gone. This transformation would have beenillegal without the knowledge about the behavior of fatal. Even if this isno big improvement and does not happen that frequently one should alwaysthink about marking funtion this way. The ompiler will emit warnings aboutunreahable ode if one forgets about the behavior of the not-returning funtionand adds some extra ode after the funtion all.3.2 Constant Value FuntionsSome funtions one writes only depend on the parameters passed into it andthey have no side e�ets. Let us all them pure funtions. This property is forthe ompiler not visible from the prototype and so it always has to assume theworst, namely, that the funtion has side e�ets. But this is something whihprevents ertain optimizations.As an example take the htons funtion whih either returns its argument(if the mahine is big-endian) or swaps the byte order (if it is a little-endianmahine). There are no side e�ets and only the parameter is used to determinethe result. htons learly is a pure funtion.If we now would have the following ode we would get a less than optimalresult:{ short int serv = ... /* Somehow find this out */ ...;while (1){ strut sokaddr_in s_in;memset (&s_in, '\0', sizeof s_in);s_in.sin_port = htons (serv);... /* lots of ode where serv is not used */ ...}} 13



This might be the outer loop of a network appliation whih opens a soketonnetion to various hosts one after the other. The port to onnet to is alwaysthe same sine the variable serv does not hange. Sine we said that htons is apure funtion this means that in every iteration of the loop the result of all tohtons is the same. What we would like to see is an automati transformationof the ode to something like this:{ short int serv = ... /* Somehow find this out */ ...;serv = htons (serv); /* One and for all ompute the port */while (1){ strut sokaddr_in s_in;memset (&s_in, '\0', sizeof s_in);s_in.sin_port = serv;... /* lots of ode where serv is not used */ ...}}It is possible to ahieve this by marking the htons funtion appropriately.g allows to give a funtion the attribute onst whih tells the ompilerthat the funtion is pure. I.e., if we would have addedextern uint16_t htons (uint16_t __x) __attribute__ ((__onst__));before the ode of the initial example we would have given the ompiler the op-portunity to generate the ode we want. Marking pure funtions using onstan mean quite an improvement and will and no ase lead to worse ode. There-fore one should always think about this optimization.3.3 Di�erent Calling ConventionsEah platform has spei� alling onventions whih makes it possible thatprograms/libraries written by di�erent people with possibly di�erent ompilersan work together. These alling onventions were de�ned when the platformwas young and maybe even the arhiteture/proessor behaved di�erently.Anyhow, there might be platforms and situations where one wants to use adi�erent alling onvention the ompiler supports beause it is more eÆient.This is not possible in general but nobody an forbid using this internally in aprojet. If only funtions whih are never alled outside the projet are de�nedwith a di�erent alling onvention there is no problem with this.Espeially on the Intel ia32 platform there are a few alling onventionssupported by the ompiler whih are di�erent from the standard Unix x86 allingonventions and whih an oasionally sped up the program signi�antly. Otherplatforms might allow similar hanges. The GNU C ompiler manual explainsthe details. For this setion we will restrit the desriptions to the x86 platform.Changes to the alling onventions an be made in two ways: generallyhange the onventions by a ommand line option or individually hange it viaa funtion attribute. We will disuss only the latter sine using a ommand line14



option is unsafe beause exported funtions might be e�eted or the ommandline option might be missing in another ompiler run. One should always preferfuntion attributes.3.3.1 stdallThe �rst attribute hanges the way the memory used to pass parameters is freed.Parameters are normally passed on the stak and at some point the stak pointerhas to be adjusted to take this into aount. The standard alling onventionson ia32 Unix is to let the aller orret the stak. This allows delaying the stakorretion so that the e�et of more than one funtion all an be orreted atone. On the other hand, if the stdall attribute is de�ned for a funtionthis signals that the funtion itself orrets the stak. This is not a bad ideaon ia32 platforms sine the arhiteture has a single instrution whih allowsreturning from the funtion all and orreting the stak in one instrution. Thee�et an be seen in the following example.int__attribute__ ((__stdall__))add (int a, int b){ return a + b;}intfoo (int a){ return add (a, 42);}intbar (void){ return foo (100);}If this ode gets translated the assembler output looks like this:8 add:9 0000 8B442408 movl 8(%esp), %eax10 0004 03442404 addl 4(%esp), %eax11 0008 C20800 ret $8...17 foo:18 0010 6A2A pushl $4219 0012 FF742408 pushl 8(%esp)20 0016 E8E5FFFF all add20 FF21 001b C3 ret...27 bar:28 0020 6A64 pushl $10029 0022 E8E9FFFF all foo29 FF 15



30 0027 83C404 addl $4, %esp31 002a C3 retOnly the important lines are shown in the listing above. What has to bereognized is that the funtion foo does not have to do anything after the allof funtion add. The ret instrution in line 11 takes are of the memory needfor the two parameters passed on the stak. The situation in funtion bar isdi�erent. Sine foo is not marked with the stdall attribute it does notfree the memory and this has to be done in the aller. Therefore we see a stakpointer manipulation in line 30.From this short example it seems that using stdall only has advan-tages. Even the ode generated is smaller (the size of the ret instrution in-reased by two bytes, but the addl instrution has three bytes). But this isnot so. Sine the ompiler is lever and orrets the stak pointer for severalfuntion alls whih are done is a row only one the gain in ode size is not thatbig anymore. In addition to this future hanges in the ompiler will make han-dling the parameter alloation muh faster and using stdall will beomeounter-produtive. Therefore this attribute should be used with are.3.3.2 regparmA more interesting funtion attribute is regparm . It is only available forthe ia32 platform sine most other platforms do not have a standard allingonvention whih would make this neessary.Using the regparm attribute it an be spei�ed how many integer andpointer parameters (up to three) are passed in registers instead of on the stak.This an make a signi�ant di�erene espeially if the work performed in thealled funtion is not muh and the parameters have to be used immediately.The following not very realisti example ode shows this dramatially.int__attribute__ ((__regparm__ (3)))add (int a, int b){ return a + b;}Compiling this with optimizations leads to the following assembler output (onlythe important lines are shown).8 add:9 0000 01D0 addl %edx, %eax10 0002 C3 retThis is the optimal ode whih ould be generated for the funtions. Withoutthe attribute the ode would look as in the last setion (see page 15). Using thisway to pass parameters almost always has advantages. In the worst ase thealled funtion will store the variables itself somewhere on the stak if it needsthe registers for some other omputations. But in man ases the values an beused diretly from the registers. 16



3.4 Sibling CallsOne optimization performed automatially by the ompiler for many platformsis sibling all optimization. If a funtion all is the last thing happening in afuntion the ode whih usually gets generated looks like this:This is inside funtion F1n all funtion F2n + 1 exeute ode of F2n + 2 get return address from all in F1n + 3 jump bak into funtion F1n + 4 optionally adjust stak pointer from all to F2n + 5 get return address from all to F1n + 6 jump bak to aller of F1This is not surprising but often not optimal. If no work has to be done instep n + 4 or if this work an be moved before the all to F2 the return fromF2 stops in F1 only to jump again. It would be muh better if the return fromF2 would immediately end up at the aller of F1.To do this the subroutine all performed in F1 must be hanged into ajump whih does not store a new return address. This way the return addressnormally used in F1 would be used in F2 and the result would be exatly as wewant.The ompiler already performs this optimization oasionally and in futurewill do it more often. The onsequene for the programmer is that s/he shouldtry to arrange the ode so that funtion alls happen as the last thing in afuntion.3.5 Using gotoDespite what Dijkstra says, using the goto ommand sometimes has advan-tages. One should, though, not use it without knowing the e�et. Using gotosde�nitely disturbs the ompiler to some extend sine the various ow analysismehanisms don't work so well anymore.Before using goto one should look at the generated assembler ode. Itwill also be neessary to understand the branh predition mehanism of theproessor. Equipped with this knowledge one an insert in strategi plaesgotos where normally the translation of a loop or onditional statement wouldlead to di�erent ode. gotos also might enable writing loops di�erently. Withgoto it is possible to leave a loop at an arbitrary point.It is not possible to give a general advie when to use goto. But if onedeides to use it one should make sure to take measurements of the runtime.Normally the ompilers do a quite good job and adding gotos might even hurt.For a onrete example how to use goto see page 32.4 Knowing the LibrariesPrograms are normally not written stand-alone. Instead they take advantageof libraries whih already exist on the system. The most important library isthe C library whose minimal ontent is de�ned in the ISO C standard. Other17



standards and system-dependent extension broaden the range of available fun-tions.A good programmer knows at least most of the available funtionality in thesystem libraries. But to truly master the programming it is also neessary toat least have a grasp of how the funtions are implemented. This allows theprogrammer to avoid using those funtions whih are slower in favor of thosewhih do a omparable job but perform faster.In the remainder of this setion we will see several examples of funtions withsimilar funtionality but di�erent runtime harateristis. The reader should beable to apply the knowledge easily to own programs.4.1 strpy vs. mempyHandling strings is in C programs a frequent task. There is no string data typeand so the operations have to performed by hand. This has the advantage thatthe programmer an take into aount the overall use of the string and is notlimited to implement the immediate need only. E.g., If three strings have to beonatenated it is not neessary to �rst alloate memory for the onatenatingof the �rst two strings, opy over the two strings and then perform the on-atenation with the third string. Instead it is possible to alloate immediatelyenough memory for the total result and then opy the strings.This degree of freedom leads to very di�erent approahes people take andmost of them are all but optimal. The least people an do is to take the orretfuntions for the task.At this point we only want to point out a few general points. Later setionswill give onrete examples. Here we will disuss the di�erenes between themem* and the str* funtions so that this knowledge an be used later.For using the mem* funtions one has to know the size of the region to opy.This is the ase most of the time sine a orretly written program does notsimply opy a string of unknown length (this ould lead to rashes and an openseurity holes). The main di�erene between the two funtion families is thatthe str* funtions normally don't need a separate length ounter but on theother hand the mem* funtions know about the length of the region and thereforean perform the work word-wise. We will desribe here the harateristis ofthe most important funtions.strpy mempytwo values needed: soure and des-tination pointer three values needed: soure and des-tination pointer as well as lengthountworks bytewise an work word-wisestrnpy mempythree values needed: soure and des-tination pointer as well as lengthount Likewisetwo abort riteria: length reahedand NUL byte found one abort riteria: length reahedworks byte-wise an work word-wiseno g intrinsi g intrinsi�lls rest of target bu�er with NUL just stops opying18



What is here exempli�ed with mempy and the string funtions strpy andstrnpy is also true for several other funtion ombinations (e.g., memhr andstrhr). It is therefore important to study the available mem* and str* fun-tions are try to �nd out where their funtionality overlaps.The number of values needed is not an issue when the atual library funtionis alled sine then the ompiler an use the registers marked as all-lobbered.But it is a problem if the funtions are inlined. In this ase more used valuesmeans inreased register pressure in the urrent funtion. For mahines withsmall register sets it might mean spilling. But also from the algorithm's point ofview more values an mean more ompliated ode. But this is not neessarilythe ase. In general is true that fewer used values are better then more.Of importane as soon as the funtions are used on strings whih are not onlya few haraters long is whether the proessing an happen word- or byte-wise.The str* funtions all work byte-wise beause the lengths of the strings are notknown.4 On the other hand the lengths of the memory regions handed over tothe mem* funtions are always known sine they are given as an argument to thefuntion all. A last important di�erentiator is the number of abort riteria.The more riteria there are, the more omplex the loops are, the slower the odeis. The table above mentions this for themempy and strnpy funtions: mempy stops when all bytes are opied. Thestrnpy funtion has to hek for the NUL byte and hek the length parameterto not exeed the maximal number of haraters to opy. The latter is learlyslower.The reommendation for the use of the three funtions above is therefore:� Never use strnpy unless it �ts exatly in the urrent situation. Normallythe string size is known.� If the strings to opy are known to be short use strpy.� If it is possible that the handled strings might be longer use mempy. Theuse of mempy will not hurt for short strings either sine the performanedi�erene for short strings is not big.We will see in the remainder of this paper a few more examples of the use ofmem* and str* funtions. In many ases one an possibly gain a lot by arefulanalysis of the situation. But the rule of thumb, to use the mem* funtions whenpossible, should lead to overall good results.4.2 strat and strnatA golden rule of optimal string handling ode is:Never ever use strat and strnat!It is always wrong to use these two funtions. Before onatenating a stringto another, one has to know whether there is enough room. For this it isneessary to know the urrent end of the existing string and the length of thestring to be opied. But then it is ompletely unneessary to use strat. Thefollowing is similar to often seen ode:4This must be lari�ed a bit. \Working byte-wise" here means that every single byte mustbe examined. It is possible that str* funtions read memory word-wise (whih is possiblewith aligned aesses). But still every single byte must be tested for a NUL byte.19



{ har *buf = ...;size_t bufmax = ...;/* Add `s' to the string in buffer `buf'. */if (strlen (buf) + strlen (s) + 1 > bufmax)buf = (har *) reallo (buf, (bufmax *= 2));strat (buf, s);}This looks quite nie from the programmers point of view but the stratfuntions is expensive. What the funtion has to do �rst is to searh for theend of the existing string. This is equivalent to the strlen all, it thereforedupliates work already done. Next the string s must be opied. But though itis known from the strlen all how long the string is the strat funtion hasto perform a normal string opy operation (see the last setion for why this isnot good). It is muh better to write the ode like this:{ har *buf = ...;size_t bufmax = ...;size_t slen;size_t buflen;/* Add `s' to the string in buffer `buf'. */slen = strlen (s) + 1;buflen = strlen (buf);if (buflen + slen > bufmax)buf = (har *) reallo (buf, (bufmax *= 2));mempy (buf + buflen, s, slen);}This version ounters both disadvantages of strat: when opying we arenot looking through the existing string again sine we know how long it is andsimply an add at the end. Also the opying happens using mempy beausewe know how long the string s is. We will give two more examples on how toimplement string onatenation by implementing two often needed funtions,this time with error heking:har *onat2 (onst har *s1, onst har *s2){ size_t s1len = strlen (s1);size_t s2len = strlen (s2) + 1;har *buf = (har *) mallo (s1len + s1len);if (buf != NULL)(void) mempy (memppy (buf, s1, s1len), s2, s2len);return buf;} 20



This ode uses a funtion whih is not de�ned by the ISO C or Unix standardand didn't appear so far. memppy, available in the GNU lib, works like mempy.It opies the given number of bytes from the soure to the target bu�er. Butinstead of returning a pointer to the beginning of the bu�er it returns a pointerjust after the last opied byte.In the ode above it an be seen how this di�erent behavior an be used.The returned value an be used immediately in the next funtion all sine it isexatly the position where the next opy operation must be started. In addition,by returning the pointer whih just was used for opying the memppy funtionan be implemented a bit faster than the mempy funtion. The latter mustreturn the beginning of the bu�er whih might not be in a register anymore.What why is then the funtion mempy used to perform the seond opyingin the example above if memppy is possibly faster? The �rst observation isthat we don't need the return value and it therefore does not matter from theorretness standpoint whih funtion is used. The answer to the question is:g knows about mempy and has an intrinsi funtion but it does not (in themoment) know about memppy. Therefore the use of mempy in some situationsis faster.Now for a bit more ompliated example whih does not allow suh an easyargumentation as the funtion above. We implement a funtion whih onate-nates arbitrary many strings. The problem here is that we annot easily savethe lengths of the partiipating strings in a pair of variable. Or an we?har *onat (onst har *s, ...){ size_t nlens = 127; /* Minimal maximal number of parameters. */size_t *lens = (size_t *) alloa (nlens * sizeof (size_t));size_t nt = 0;va_list ap;va_list ap_save;onst har *p;size_t total;har *retval;if (s == NULL)return (har *) allo (1, 1);total = lens[nt++℄ = strlen (s);va_start (ap, s);__va_opy (ap_save, ap);while ((p = (onst har *) va_arg (ap, onst har *)) != NULL){ if (nt == nlens){ size_t *newp = (size_t *) alloa ((nlens *= 2)* sizeof (size_t));lens = (size_t *) mempy (newp, lens, nt * sizeof (size_t));}total += lens[nt++℄ = strlen (p);} 21



retval = (har *) mallo (total + 1);if (retval != NULL){ har *endp = (har *) memppy (retval, s, lens[0℄);nt = 1;while ((p = (onst har *) va_arg (ap_save, onst har *))!= NULL)endp = (har *) memppy (endp, p, lens[nt++℄);*endp = '\0';}return retval;}This ode might need a little bit of explanation. First, the dots in theparameter list this time really mean a variable length parameter list and not,as in earlier examples, that something is left out. We allow the funtion totake arbitrary many parameters (within the limits of the ompiler, of ourse).All parameters must be strings exept for the last one whih must be a NULLpointer. Even only a NULL pointer is allowed.Seond, we are using the same method as in the onat2 funtion: we �rstdetermine how muh memory is needed, alloate it and then opy the strings.An alternative approah would be to enlarge the destination bu�er on demand,possibly several times during the funtion run. While this is possible we don'timplement the funtion this way sine the resizing with the assoiated opyingof existing ontent is very ostly. Please note in the ode above the user of thereturn value of mempyThe problem the hosen implementation faes is that with the arbitrarynumber of parameters it is not so easy to remember all the string lengths whihmust be determined �rst to determine how muh memory is needed. In additionwe don't want to add any limitations. Therefore the funtion alloates memoryfor the string lengths on the y. Sine this information is not needed outside thefuntion the memory an be alloated using alloa (for a detailed disussionof alloa see the next setion). Even though this also involves opying it is notas bad as opying the string sine a) all objets are of �xed width (while stringsan be arbitrarily long) and b) beause this probably never has to happen sineonatenations of more than 127 strings at one are not often needed.5Interesting, sine not often used, is also the use of va opy. This allowsportably to walk over a parameter list twie. It is not generally possible tosimply assign two objets of type va list to one another.The rest of the funtion is easy. The speial ase of only a NULL pointerargument is handled early. The allo all alloates a memory region of 1byte length and initializes it to zero, whih makes it a zero-length string. Theode to opy the strings is without surprising. We are now using memppy forall the opy operations to always get a pointer to the following byte. Sine wenever opy the NUL byte terminating the string we must in the end expliitlyterminate the string in the bu�er whih will be returned.5Those who notied that the handling of the array lens is not perfet sine it wastes stakspae are orret. But this is an example only.22



Just for omparison, here is how the opying loop of an implementationwhih uses strat ould look like:har *onat (onst har *s, ...){ size_t nt = 0;va_list ap;va_list ap_save;onst har *p;size_t total;har *retval;if (s == NULL)return (har *) allo (1, 1);total = strlen (s);va_start (ap, s);__va_opy (ap_save, ap);while ((p = (onst har *) va_arg (ap, onst har *)) != NULL)total += strlen (p);retval = (har *) mallo (total + 1);if (retval != NULL){ strat (retval, s);while ((p = (onst har *) va_arg (ap_save, onst har *))!= NULL)strat (retval, p);}return retval;}This looks muh simpler. But this implementation is horrible. The om-plexity is O(n � m), where n is the average lengths of the strings and m thenumber of strings. The problem is that strat has to san over the existingtext over and over again. The optimized implementation above has the expetedomplexity of O(n). Even if the non-linear nature of the strat based imple-mentation does not kik in for few and small strings it is nevertheless notieableeven then. Hopefully this is enough evidene to proof the statement from thebeginning of this setion.4.3 Optimized memory alloationThe example in the previous setion already used two di�erent kinds of memoryalloation: onventional alloation (mallo, allo) and stak-based alloationwith alloa. The use of alloa isn't neessary and an easily be replaed bya mallo all. The question now is why should optimized programs use alloawherever possible. 23



To answer the question it is neessary to understand how the two groupsof funtions work. The mallo group requests the memory it needs from thekernel for permanent use (until it is freed). Traditionally this alloation was onthe so alled head, an area designated by a break pointer whih an be modi�edby the sbrk system all. Modern mallo implementations use on some systemsfor large memory areas a di�erent method. They alloate the memory usingmmap. This has on some systems the advantage that resizing is very heap. Inany ase the new piees of memory must be somehow noted in the internal datastrutures whih the mallo implementation keeps to handle frequent freeingand re-alloating eÆiently. At the minimum the size of the blok must beremembered somewhere. A all to mallo is therefore not heap. On a modernsystem one would have to allow at least 100 yles. If the memory atually hasto be retrieved from the kernel the number instantly rises to several thousand(one or two orders of magnitude more).On the other hand the implementation of the alloa funtion is trivial.At least if the ompiler diretly supports it as an inline. This is what weassume throughout the whole paper. In this ase the alloa all is a simplemanipulation of the stak pointer. The stak pointer is orreted to leave thespei�ed number of bytes, given in the arguments, between the last used objeton the stak and the urrent stak pointer. The starting address of the blokis the result of the funtion all. I.e., we are talking about a single assemblerinstrution. The alloa implementation therefore is two orders of magnitudefaster than the optimal ase of alling the mallo funtion.If this is not reason enough, there is another big advantage. While theprogram must all free on the returned pointer, the memory alloated withalloa gets automatially reyled as soon as the funtion is left. The freeall must not be underestimated. It is often more expensive than the malloall sine it has to enqueue the new blok in the internal data strutures and ithas to see whether it has to return memory to the system. This an make theall very expensive.This brings up the question why is there a mallo all if alloa has all theadvantages. The question was already partly answered in the last paragraph.alloa an only be used if the memory blok is only used in the urrent funtionof in funtions alled by it. The memory blok is invalid as soon as the funtionreturns from the urrent funtion. Therefore mallo must be used if the liverange of the objet must extend over the use of the urrent funtions. Anotherlimitation of alloa is that most systems install a not too generous limit of thestak size. This is done for safety reasons to ath unlimited reursion early. Foralloa this means that large memory alloations must happen using mallosine the heap has muh less restritions. In addition the mallo implementationand the kernel an handle large alloations must better this way (at least onsystems using mmap).Now it's time for an example. alloa is extremely useful for making temporaryopied. This is how it should not be done:inttempopy (onst int *a, int n){ int *temp = (int *) mallo (n * sizeof (int));int_fast32_t nt; 24



int result;if (temp == NULL)return -1;for (nt = 0; nt < n; ++nt)temp[nt℄ = a[nt℄ ^ 0xffffffff;result = foo (temp, n);free (temp);return result;}As disussed above the mallo all is muh more expensive and we also needa free all. The following is better:inttempopy (onst int *a, int n){ int *temp = (int *) alloa (n * sizeof (int));int_fast32_t nt;for (nt = 0; nt < n; ++nt)temp[nt℄ = a[nt℄ ^ 0xffffffff;return foo (temp, n);}This funtion is not only faster, it is also smaller due to the two droppedfuntion alls. And it ould allows more optimization due to the sibling funtionall at the end. And there is one more point: it is not neessary to test for thesuess of the alloa all. It always sueeds sine it is only a simple pointermanipulation. If the maximal stak size is reahed the problem will not beomevisible in the alloa all but instead in the �rst aess of this memory. This isquite dangerous but if the stak is reasonably sized and one does not put toobig objets on the stak it should never give any problems. And if there areproblems whey do not result in silent errors but instead ause the appliationto rash whih then an be analyzed easily.One kind of objet whih frequently has to be dupliated temporarily arestrings. This is why the GNU lib provides two speial features to ease this:strdupa and strndupa. The behavior is omparable to the funtions strdupand strndup with the one di�erene that the returned strings are alloatedusing alloa instead of mallo. But this automatially means that strdupaand strndupa must be maros and no funtions!One ould think strdupa ould be implemented like this:/* Please note this is WRONG!!! */#define strdupa(s) \(__extension__ \({ \__onst har *__old = (s); \25



size_t __len = strlen (__old) + 1; \(har *) mempy (__builtin_alloa (__len), __old, __len); \}))But the mempy is very wrong! Everybody who uses alloa must be awareof this problem. We already explained that alloa works by manipulating thestak pointer. But on some systems parameters for funtion alls are also put onthe stak. If this happens for the above mempy all we ould get the followingsequene of operations:1 push len on the stak, hange stak pointer2 push old in the stak, hange stak pointer3 modify stak pointer for newly alloated objet4 push urrent stak pointer on stak, hange stak pointer5 all mempy6 ...We an now see why this is wrong. The memory alloated for the alloaall is in the middle of the parameter list. This an never work. Thereforeeverybody using alloa must remember never to all alloa in the parameterlist of a funtion all. This inludes of ourse hidden alloa alls as in strdupa.4.4 Some more Memory IssuesBeside the existene and possibilities of alloa there are some more issues oneshould know about memory alloation to write optimal ode.The nonzero osts of a all to any of the memory alloation funtions wasalready mentioned in the last setion. Espeially the reallo funtion is pos-sibly slow sine in the worst ase it has to do the work of an mallo, mempy,and free all all at one.The mallo implementation will try to keep the amount of used memory aslow as possible. I.e., memory whih is freed ould be reused in a later malloall. To do this the implementation uses sophistiated data strutures to makethis possible. Things an work pretty smoothly if memory needs would neverbe able to grow. But oasionally a program alls reallo to resize the bu�er.Shrinking is not a problem, but growing the bu�er is. Sine memory usage hasto be kept minimal alloated bu�er lie bak to bak in memory. But this meansthat there is often no room to grow a bu�er.Therefore a reallo all might have to alloate a ompletely new bu�er. Inthis ase the ontent of the old bu�er must be opied over and the internal datastrutures must be updates to ontain the old bu�er as free.Programs using dynami memory alloation therefore should try to deter-mine the amount of needed memory �rst. As long as the amount is not un-derestimated and not heavily overestimated, the numbers need not be 100%aurate. Shrinking the bu�er by a few bytes is not a problem. Getting at leasta usable guess for the amount of memory needed often is not easy, espeially ifit involves a lot of omputation whih would have to be repeated when opyingin the new bu�er. That it is possible to handle even these situations eÆientlyshows the implementation of onat above. To preserve the results of ostlyomputations in the �rst phase one uses memory alloated on the stak.A �nal point about memory alloation is to mention allo. Most peopleonly know mallo, really, and free. But ISO C de�nes another funtion.26



allo, as mallo, returns a newly alloated blok of memory. The size isnot given as a single integer value but instead as two values, whih must bemultiplied to get the total size. The big di�erene to mallo is that before thealloated memory is returned to the aller it is initialized with NUL bytes./* Alloate NMEMB elements of SIZE bytes eah, all initialized to 0. */void *allo (size_t __nmemb, size_t __size);Now the reader an of ourse ask why this is important. It is easily possibleto all memset after an suessful mallo all and initialize the memory. Thisis true, but in some situations allo does not have to all memset beausethe memory is already zeroed. This happens if the mallo implementation getsthe memory from the kernel via a mmap all. The memory returned by mmap isguaranteed to be �lled with NUL bytes (unlike the memory made available bya sbrk all). A good mallo implementation, e.g. the one in the GNU lib,keeps trak of this fat and avoids the memset all whenever possible.For this reason it is always, espeially for large alloation requests, better toall allo instead of alling mallo and learing the memory afterwards witha memset/bzero all.4.5 Using the Best TypesThe following is not really part of the library but instead part of the libraryheaders. We are talking about available types and hoosing the best one.The ISO C9x standard will feature an important new header: <stdint.h>.This header will ontain de�nitions for now types whih will be portably usableover all ISO C9x ompliant platforms.The �rst problem these new types are solving is a longstanding one. Toreliably exhange data from one system to another one an either enode thedata in textual form (though this leaves to problem of di�erent harater setsopen) or one uses the same binary enoding. The latter requires the very sameinterpretation of eah byte. This is not a problem for single-byte objet (likestrings). But if a objet onsists of more than one byte we get problems withendianess. The main problem, though, is that types like long int have no�xed representation over di�erent platforms. There is no way to write a ISO Compliant program whih does not have this problem. ISO C9x will solve thisproblem with types like int32 t whih has a �xed length but we won't disussthis here.We want to disuss two other ategories of types introdued in ISO C9x. The�rst group onsists of int least8 t, uint least8 t, int least16 t, et, forvarious sizes up to at least 64. The di�erene between int8 t and int least8 tand all the other pairs is that the former has a guaranteed size for the objetswhile the latter only guarantees that values whih use up to the given numberof bits, an be stored without loss. An objet of type int least* t type is atleast as big as one of the �xed with type but might possibly be larger.The question now is where an this be useful. The answer is: wherever val-ues are stored with a minimal known range and the exat representation is notimportant and some waste of memory is aeptable. This happens quite fre-quently. E.g., a not too large array ontaining 16 bit values whih are frequentlyused an be stored, e.g., in an array of int or an array of int least16 t. The27



di�erene might be dramati. The int least16 t type an be adapted for theproessor arhiteture in use and might be muh bigger, e.g., 64 bits. Thiswould allow aessing the array values muh faster if the arhiteture does notallow diretly to aess sub-word-size memory values. This is the ase for manymodern arhitetures. Whenever one reates data strutures where the aessmight be performane ritial, one should think about using the types above toallow the proessor to work best.While the int least* t types are mainly used for data objets anothergroup of types is mainly used for the use in program ode. Very often programsode must have variables whih are used as ounters.{ short int n;...for (n = 0; n < 500; ++n)[n℄ = a[n℄ + b[n℄;...}While this seems logial (a short int on interesting mahines has at least16 bits) sine it makes the variable n smaller than as if we would use int, theode is not really good. The variable n is kept in a register and therefore thesize of the variable does matter as long as it does not exeed the size of theregister. Sometimes ompilers reognize situations like the above and simplyperform the operations whih are fastest even if they are not orret for thegiven type (short int in the above ase). But it is nevertheless better to helpthe ompiler doing this. ISO C9x introdues appropriate types for this. Thehanged example looks like this:{ int_fast16_t n;...for (n = 0; n < 500; ++n)[n℄ = a[n℄ + b[n℄;...}In this version the author expresses everything the ompiler has to know.The ounter variable must have at least 16 bits to hold the values from 0 to 500.How big the variable is atually is uninteresting, the program must only runfast. This allows the ompiler/library to pik the best size for this de�nitionwhih in most ases is a type with the same size as the registers.4.6 Non-Standard String FuntionsThe designers of the standard library added several useful funtions whih to-gether over most of the needed funtionality. This does not mean that theprovided set of funtions allow optimal programs. In this setion some funtionsfrom the repertoire of the GNU lib will be introdued whih add additionalfuntionality whih allows writing more optional programs.A repeating task in programs whih handle strings is to �nd the end of thestring for further proessing. This is often implemented like this:28



{ har *s = ... /* whatever needed */...;s += strlen (s);... /* add something at the end of the string */ ...}This is not terribly eÆient. The strlen funtion already had a pointer tothe terminating NUL byte of the string. The addition simply reomputes thisresult. It is more appropriate to write something like the following:{ har *s = ... /* whatever needed */...;s = strhr (s, '\0');... /* add something at the end of the string */ ...}Here we get immediately the result from the funtion all sine the resultof the strhr all is a pointer to the byte ontaining the searhed value. Sinewe are searhing for the NUL byte this is the end of the string. But this isworse than the original version. The problem is that the strhr funtion hastwo termination riteria: the given harater mathes of the end of the stringis reahed. That both test are the same in the above ase is not seen (at leastit is not guaranteed). The GNU lib ontains a funtion whih an be used inthis situation and whih does not have this problem.{ har *s = ... /* whatever needed */...;s = rawmemhr (s, '\0');... /* add something at the end of the string */ ...}The rawmemhr funtion is muh like the memhr funtion but it does nottake a length parameter and therefore performs only one termination test. Itterminates only if the given harater is found. This makes rawmemhr (s,'\0') the exat equivalent to s + strlen (s). The implementation of therawmemhr funtion is very simple and fast. It is espeially fast on the Intel x86arhiteture where it an e�etively implemented with a single instrution.To see the funtion in ation we take a look at a piee of ode whih an befound in this form or another in many programs. It handles values given in thePATH-like style where a string ontains individual values separated by a spei�harater, a olon in many ases. Code to iterate over all the individual valuesand produe NUL terminated strings from them ould be done like this:{ onst har *s = ... /* whatever needed */...;while (*s != '\0') 29



{ har *opy;onst har *endp = strhr (s, ':');if (endp == NULL)endp = rawmemhr (s, '\0');opy = strndupa (s, endp - s);... /* use opy */ ...if (*s != '\0')++s;}}We are using the rawmemhr funtion to �nd the end of the string if thereis no olon anymore. The opy on whih the rest of the funtion is workingon is reated using strndupa. This introdues no arbitrary limits (as a statibu�er) and is fast (unlike a mallo all). The above onstrut of �nding aspei� harater and, failing that, returning the end of the string appears sooften, that the GNU lib ontains a spei� funtion for this. This funtion isa slightly modi�ed version of strhr. The original ode would san the lastpart of the input string twie although already the strhr all almost had theresult. This de�ieny is �xed by the new funtion.{ onst har *s = ... /* whatever needed */...;while (*s != '\0'){ onst har *endp = strhrnul (s, ':');har *opy = strndupa (s, endp - s);... /* use opy */ ...if (*s != '\0')++s;}}This is the ultimate solution for this problem. The strhrnul funtionalways returns the value we are interested in and it does not ost anythingextra; the strhrnul funtion is even a big faster than strhr sine no speialreturn value has to be prepared for the ase that a NUL byte is found.The lesson from this setion should be: library funtions are useful and oftenhighly optimized for the spei� purpose. But there is no guarantee that theyare the best solution in every situation they are used in. There might be betterand generally interesting funtions and maybe the GNU lib already providesthem.5 Writing Better CodeUsing the orret funtions and types and helping the ompiler to generatebetter ode an only help that muh if the general algorithm and use of the30



funtions isn't good. In this setion we will desribe in various examples forwhat to look for and how to improve algorithms.5.1 Writing and Using Library Funtions CorretlyThis paper showed in the earlier setion that hoosing the orret funtions isimportant as is writing sometimes new funtions whih ful�ll the job better.But writing new funtions and using other ones to do this also ontains a lotof situations where one an introdue problems. By a simple example we showsome of the things one has to take are of.The ISO C library does not ontain any funtion to dupliate a string. Weignore for a moment that the GNU lib already ontains an implementation ofthe strdup funtion and assume we want to write it now. A �rst attempt ouldlook like this:har *dupliate (onst har *s){ har *res = xmallo (strlen (s) + 1);strpy (res, s);return res;}We use the xmallo funtion whih is often used in GNU pakages to providea failsafe mallo implementation. After reading the previous setions of thispaper it be lear that we an do better by not using strpy and reusing theresult of the strlen all. Seond try:har *dupliate (onst har *s){ size_t len = strlen (s) + 1;har *res = xmallo (len);mempy (res, s, len);return res;}This is better but we missed one very often missed optimization: most fun-tions are funtions in the mathematial sense and have a return value. Oneannot be reminded often enough on that. After �xing this we end up with thefollowing form:har *dupliate (onst har *s){ size_t len = strlen (s) + 1;return (har *) mempy (xmallo (len), s, len);}That's muh nier and even looks shorter than the original implementation.To stress it one more: the return values of funtions an be used diretly! Thisis not UCSD Pasal. Espeially the mempy funtion has a return value whihmany people simply forget. In this situation the ode hange an safe a load31



from the memory where the bu�er pointer is kept sine the return value of themempy all an be used diretly. Additionally the ompiler now ould performa sibling all optimization.But there is one more optimization whih ould be performed at ompiletime. If the argument to dupliate is a onstant string we ould ompute thelength of the string at ompile-time. But with a simple funtion all this is notpossible. Therefore we add a wrapper maro whih reognizes this ase. Thefollowing ode only works with g.#define dupliate(s) \(__builtin_onstant_p (s) \? dupliate_ (s, strlen (s) + 1) \: dupliate (s))We introdued the builtin onstant p operator already on page 9. Itshould therefore be lear what the maro does. The missing dupliate  fun-tion is easily written:har *dupliate_ (onst har *s, size_t len){ return (har *) mempy (xmallo (len), s, len);}Finally we ended up with a highly optimized version whih takes advantage ofall ompile time optimization, whih enables the ompiler to generate optimalode and whih uses the existing funtions in an optimal way. Ideally everyfuntion one writes should be optimized that arefully. It is not hard if one onlytakes are of these three steps:1. Are the orret funtions used or are there better ones available?2. Do I use the funtions I use in the optimal way? Are the return valuesused?3. Are all omputations whih an be arried out at ompile time done andused?5.2 Computed gotosSometimes funtions annot be broken up in smaller piees for design or per-formane reasons. Then one ould end up with a large funtion with manyonditionals whih slow down the exeution. A solution would be a kind ofstate mahine. The traditional and simple way to implement a state mahine isto have one big swith statement with a single state variable ontrolling whihase is used.This general form is very often not neessary sine in most ases it is notneessary to be able to go over from eah state into another jump. What isatually a better implementation is a jump table whih an be adopted for eahsituation. In standard C it is not possible to write jump tables but it is withg's omputed gotos. As an example we use the following ode.32



{ ...swith (*p){ase 'l':islong = 1;++p;break;ase 'h':isshort = 1;++p;break;default:}swith (*p){ase 'd':... /* handle this */ ...break;ase 'g':... /* and ode for this */ ...break;}}This is with lots of ode left out from a piee of ode in the GNU lib wherenow jump tables are used: the printf implementation. The problem is theproessing of the format string. Many optional harater an preede the atualformat. So we have to test for them (e.g., the modi�ers 'l' and 'h') eventhough we might �nd out in the �rst swith statement that we already found aformat harater, e.g., 'd'. What we rather would like to do is to jump diretlyto the format handling instead of the default ase where we start performingthe test again. Using jump tables this is possible.{ stati onst void *jumps1[℄ ={ ['l'℄ = &&do_l,['h'℄ = &&do_h,['d'℄ = &&do_d,['g'℄ = &&do_g};stati onst void *jumps2[℄ ={ ['d'℄ = &&do_d,['g'℄ = &&do_g};goto *jumps1[*p℄;do_l:islong = 1;++p; 33



goto *jumps2[*p℄;do_h:isshort = 1;++p;goto *jumps2[*p℄;do_d:... /* handle this */ ...goto out;do_g:... /* and ode for this */ ...goto out;out:}This might look frightening and omplex but it is not. The jump tablesyntax has to be learned but it is noting but an array of pointers. The elementsof these arrays an then be used by a goto instrution. By �nding the arrayelements using the urrent format string harater we are emulating the swithstatements above. But it should be noted that if the �rst harater is diretly aformat harater, we jump diretly to the ode performing the handling of theformatted output. Only if we atually see a modi�er harater we add someextra steps. Sine (in this simpli�ed situation) it is not valid to have repeatedmodi�ers we have for the jumps out of the modi�er handling ode a di�erentjump table. It is possible to have arbitrary many of them.The ode above is not omplete. E.g., the handling of invalid haraters isnot orret as the gotos would use NULL pointers in the uninitialized arrayspots or even aess memory outside the array boundaries. Also, aessing thearray using the harater as an index wastes a lot of array spae. One shouldome up with a tighter paking method.To see how this an be done and for a real world, omplex example take alook at the vfprintf. �le in the GNU lib soures. The �le is far too big tobe printed here.6 Pro�lingWhen one has performed all the obvious optimizations there remains the meanof pro�ling to �nd out where the time in the program is spend and work on thosefuntions. Pro�ling is supported on most systems, more or less aurately. Ingeneral there are two kinds of pro�ling:� Timer-based. This allows to �nd out where the most time is spend.� Call-ar based. This allows to �nd out what funtions are alled how oftenand from where.The peak values for in both ounts must not always fall together. Manysimple funtions are alled very often and still do not ontribute prominently34



to the overall runtime. Nevertheless this peaks in the all ount hart indiatea possible plae where inlining might help.On most Unix system one an ompile programs using the gprof method.Systems using GNU lib and Solaris an perform another kind of pro�ling whihis implemented using the dynami linker.6.1 gprof Pro�lingTraditional pro�ling is implemented by ompiling all soures whih should par-tiipate in the pro�ling with a speial option. This auses the ompiler togenerate some extra ode whih reords the exeution at runtime. The ompilerwould have to be alled like this:g - foo. -o foo.o -pgThe -pg option instrut the ompiler to add the extra ode. When linkingthe program another deision an be made. If the user also wants to know aboutthe time spend in funtion and the alls made to funtions in the C library s/hean link against a speial version of the C library be adding the -profile option:g -o foo foo.o -profileOtherwise the normal library is used only only the funtion of the programare instrumented. To get results the program must be exeuted. One the pro-gram terminated the user an �nd a �le named gmon.out in the initial workingdiretory. This �le, together with the exeutable, serves as the input for a pro-gram named gprof. We will show the various outputs of this program in a smallexample. The following, horrible ode is used.#inlude <stdio.h>#inlude <stdlib.h>intmain (int arg, har *argv[℄){ har *buf = NULL;size_t buflen = 0;size_t bufmax = 0;har *line = NULL;size_t linelen = 0;size_t nt;while (!feof (stdin)){ size_t len;if (getline (&line, &linelen, stdin) == EOF)break;len = strlen (line);if (len == 0)break;if (buflen + len + 1 > bufmax){buf = reallo (buf, bufmax = (2 * bufmax + len + 1));buf[buflen℄ = '\0';} 35



strat (buf, line);buflen += len;}for (nt = 0; nt < buflen - strlen (argv[1℄); ++nt){ size_t inner;for (inner = 0; inner < strlen (argv[1℄); ++inner)if (argv[1℄[inner℄ != buf[nt + inner℄)break;if (inner == strlen (argv[1℄))printf ("Found at offset %lu\n", (unsigned long int) nt);}return 0;}This problem probably violates all of the rules de�ned in the previous se-tions. And it indeed runs very slowly. Using the gprof output we an see why.To do this we run the program and we get in the end a �le gmon.out. Nowwe start the gprof program to analyze it. Without options the programs theoutput onsists of two parts. We will explain them here.The �rst part is the at pro�le. Here every funtion is listed with the numberof times the funtion is alled and the time spent exeuting it. The beginningof the output is this:Flat profile:Eah sample ounts as 0.01 seonds.% umulative self self totaltime seonds seonds alls ms/all ms/all name95.27 8.66 8.66 10445 0.83 0.83 strat2.86 8.92 0.26 __mount_internal0.55 8.97 0.05 1327730 0.00 0.00 strlen0.44 9.01 0.04 108 0.37 0.37 read0.44 9.05 0.04 mount0.22 9.07 0.02 1 20.00 8790.00 main0.11 9.08 0.01 10551 0.00 0.00 mempy0.11 9.09 0.01 58 0.17 0.17 write0.00 9.09 0.00 20950 0.00 0.00 flokfile0.00 9.09 0.00 20950 0.00 0.00 funlokfile0.00 9.09 0.00 10548 0.00 0.00 memhr0.00 9.09 0.00 10446 0.00 0.00 feof0.00 9.09 0.00 10446 0.00 0.00 getdelim0.00 9.09 0.00 10446 0.00 0.00 getlineWhat we an see is that of the total runtime of 8.79 seonds the programspent 95% in the strat funtion. This again shows how evil strat is. Thehart also shows how alls to strlen are made. The funtion is exeutable veryquikly so we have no hit by the pro�ling interrupt, but 1.3 million alls toproess 10445 lines of input is too muh.More detailed information about the ontexts in whih the funtions arealled an be found in the seond part, the all graph. Here every funtion is36



listed with the plaes from whih it is alled and the funtion whih are alledfrom it. This is an exerpt from the same run as the at pro�le output:index % time self hildren alled name0.02 8.77 1/1 __lib_start_main [2℄[1℄ 100.0 0.02 8.77 1 main [1℄8.66 0.00 10445/10445 strat [3℄0.05 0.00 1327730/1327730 strlen [4℄0.00 0.05 10446/10446 getline [6℄0.00 0.01 58/58 printf [13℄0.00 0.00 15/15 reallo [23℄0.00 0.00 10446/10446 feof [28℄----------------------------------------------- <spontaneous>[2℄ 100.0 0.00 8.79 __lib_start_main [2℄0.02 8.77 1/1 main [1℄0.00 0.00 1/1 exit [39℄-----------------------------------------------8.66 0.00 10445/10445 main [1℄[3℄ 98.5 8.66 0.00 10445 strat [3℄-----------------------------------------------0.05 0.00 1327730/1327730 main [1℄[4℄ 0.6 0.05 0.00 1327730 strlen [4℄-----------------------------------------------This output shows all the funtions alled from main. For this simple pro-gram there are no surprises and we ould have prediated the output easily.But if the program is more ompliated a funtion might be alled from di�er-ent plaes and then it is useful to know from whih plaes how many alls aremade. The ontent of the olumn titled \alled" onsists of two parts (exeptfor the line with the funtion this is all about). The left part is the number ofalls made to this funtion from this plae. The right olumn spei�es the totalnumber of alls. For all funtions all alls ome from main.Now we try to improve the program a bit and use the following modi�ed version:#inlude <stdio.h>#inlude <stdlib.h>intmain (int arg, har *argv[℄){ har *buf = NULL;size_t buflen = 0;size_t bufmax = 0;har *line = NULL;size_t linelen = 0;size_t nt;size_t argv1_len = strlen (argv[1℄);while (!feof_unloked (stdin)){ size_t len;if (getline (&line, &linelen, stdin) == EOF)break; 37



len = strlen (line);if (len == 0)break;if (buflen + len + 1 > bufmax){buf = reallo (buf, bufmax = (2 * bufmax + len + 1));buf[buflen℄ = '\0';}mempy (buf + buflen, line, len);buflen += len;}for (nt = 0; nt < buflen - argv1_len; ++nt){ size_t inner;for (inner = 0; inner < argv1_len; ++inner)if (argv[1℄[inner℄ != buf[nt + inner℄)break;if (inner == argv1_len)printf ("Found at offset %lu\n", (unsigned long int) nt);}return 0;}All we hanged is to use mempy instead of strat, to use feof unlokedinstead of feof and to preompute strlen (argv[1℄) and reuse the value. Theresults are dramati:Flat profile:Eah sample ounts as 0.01 seonds.% umulative self self totaltime seonds seonds alls us/all us/all name40.00 0.02 0.02 1 20000.00 40000.00 main20.00 0.03 0.01 20996 0.48 0.48 mempy20.00 0.04 0.01 10548 0.95 0.95 memhr20.00 0.05 0.01 __mount_internal0.00 0.05 0.00 10504 0.00 0.00 flokfile0.00 0.05 0.00 10504 0.00 0.00 funlokfile0.00 0.05 0.00 10446 0.00 0.00 feof_unloked0.00 0.05 0.00 10446 0.00 1.44 getdelim0.00 0.05 0.00 10446 0.00 1.44 getline0.00 0.05 0.00 10446 0.00 0.00 strlenThe total program runtime went down to 40 milliseonds. Most of the timenow is spend in the appliation itself. The alls to mempy, whih replaed thestrat alls, do not play any signi�ant role. Also, the number of alls tostrlen went down dramatially.This exampled showed how the pro�ling possibilities an be used to pin-point the most time onsuming part of the program. With the di�erent outputmodes it is then easy to loate the plaes where alls are made and possiblyrewrite the ode. The results, as an be seen above, an be dramati.38



6.2 sprof Pro�lingIn the last setion we have mentioned that pro�ling is possible with and withouttaking the library funtion into aount. For the latter ase one has to providethe -profile option and gets the result of the last setion where timing andall ounts are given for all the library funtions. What wasn't said is that theresulting binary is statially linked. The speial library version neessary tosupport -profile is only available as an arhive.The reason for this is the way pro�ling is implemented. The algorithms needa single text setion for the whole program. This is not the ase if shared objetsare used and therefore they annot be used. At least not before the pro�lingode is ompletely rewritten.But this means that programs are not really pro�led in the same form theywould later be used. Normally every appliation is linked dynamially. There-fore realisti pro�ling should allow pro�ling shared objets.In GNU lib 2.1 (and also on Solaris) this possibility is implemented. Itallows to pro�le single shared objets, for one exeutable or systemwide. I.e.,it does not allow pro�ling all shared objets of an appliation but exatly one.And it also does not allow pro�ling the appliation ode itself with an sharedobjet.These all are signi�ant restritions but you an solve these problems partlyusing the stati pro�ling using gprof. The pro�ling of a single shared objet asimplemented provides something whih is not available from stati pro�ling: it ispossible to pro�le the use of a shared objet by several appliations at the sametime and ontributing to the same output �le. Pro�ling a single appliation willallow optimizing only the use of a library. But to optimize the library itself itis neessary to see the data from uses of di�erent programs. And having all thedata (optionally) ombined in one single �le is even better.And there is one more good thing about the sprof approah: there is no needto reompile any ode. The normal ode whih is used for everyday operationsis the one whih gets debugged. This means we need absolutely no preparationto start pro�ling.LD_PROFILE=lib.so.6 LD_PROFILE_OUTPUT=. /bin/ls -alF ~Exeuting this ommand on a Linux/x86 system (where the SONAME ofthe C library is lib.so.6) normally exeutes the program. But during theexeution the �le lib.so.6.profile in the urrent working diretory (spe-i�ed by the LD PROFILE OUTPUT environment variable) is �lled with pro�linginformation. We an exeute the program or a ompletely di�erent programarbitrary many times, even in parallel, and they all an ontribute to the pro-�ling data. One enough data is olleted one an look at the ontent using thesprof program (on Solaris systems the gprof program must be used).Flat profile:Eah sample ounts as 0.01 seonds.% umulative self self totaltime seonds seonds alls us/all us/all name50.00 0.02 0.02 341 58.65 __lxstat6425.00 0.03 0.01 1362 7.34 _IO_str_init_stati25.00 0.04 0.01 72 138.89 strasemp39



0.00 0.04 0.00 4836 0.00 strmp0.00 0.04 0.00 2872 0.00 memppy0.00 0.04 0.00 2568 0.00 flokfile0.00 0.04 0.00 2568 0.00 funlokfile0.00 0.04 0.00 2420 0.00 mempyThe output looks like the output of gprof and this is of ourse intended.We see the funtions whih were used most, see how often they were alled andthe time the ontribute to the total runtime.[85℄ 0.0 0.00 0.00 0 _nl_make_l10nflist [85℄0.00 0.00 3/3 argz_ount [658℄0.00 0.00 1/19 free [543℄0.00 0.00 4/12 stppy [636℄0.00 0.00 2/2 argz_stringify [665℄0.00 0.00 2/2420 mempy [643℄0.00 0.00 3/425 mallo [541℄-----------------------------------------------0.00 0.00 1/1 _nl_expand_alias [79℄[175℄ 0.0 0.00 0.00 1 bsearh [175℄-----------------------------------------------[177℄ 0.0 0.00 0.00 0 msort_with_tmp [177℄0.00 0.00 506/2420 mempy [643℄0.00 0.00 2466/2872 memppy [631℄-----------------------------------------------0.00 0.00 1/3 read_alias_file [80℄0.00 0.00 2/3 <UNKNOWN>[178℄ 0.0 0.00 0.00 3 qsort [178℄0.00 0.00 1/19 free [543℄0.00 0.00 1/425 mallo [541℄0.00 0.00 2/1391 __errno_loation [12℄The output also ontains the all graph. We an exatly analyze from whereeah funtion was alled how often. If the name is <UNKNOWN> it is a all fromthe main program or another library.Pro�ling shared objets is a very powerful mean to optimized them. It isnot meant to optimize appliations but to optimize the system-wide use of thelibrary. It is very well possible that libraries should be optimized di�erently ondi�erent systems. In future there will be tools whih interpret the sprof outputappropriately. For now one an use sprof for the library as if it is the programone wants to optimize.
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